(54) 发明名称

一种提高烯草酮稳定性的方法

(57) 摘要

本发明涉及一种提高烯草酮稳定性的方法，其使烯草酮与胺类化合物在有机溶剂中，温度-10℃至80℃下反应生成烯草酮胺盐，然后以烯草酮胺盐形式进行保存，所述胺类化合物为氨、一级胺、二级胺或三级胺。本发明的方法在将烯草酮转化为烯草酮胺盐的过程中，不会生成水，反应收率高，反应条件温和，操作简便，与已有技术将烯草酮转化为烯草酮钠盐形式相比，成本降低，更适于工业化生产。此外，本发明的烯草酮胺盐的高温稳定性好，有效解决了烯草酮原药在长时间运输过程中的高温分解问题。
1. 一种提高烯草酮稳定性的方法，其特征在于，所述方法使烯草酮与胺类化合物在有机溶剂中、温度 0℃～30℃下反应生成烯草酮胺盐，然后以烯草酮胺盐形式进行保存，所述胺类化合物为氨、一级胺、二级胺或三级胺，所述反应用化学反应方程式表示如下：

![化学反应方程式](image)

上式中，式(I)化合物为烯草酮；式(II)化合物为所述烯草酮胺盐，M 代表胺类化合物；所述胺类化合物为甲胺、乙胺、丙胺、异丙胺、丁胺以及异丁胺中的一种或几种。

2. 根据权利要求1所述的提高烯草酮稳定性的方法，其特征在于，烯草酮与胺类化合物的投料摩尔比为 1:1～1.5。

3. 根据权利要求1所述的提高烯草酮稳定性的方法，其特征在于，所述有机溶剂为烷烃类、氯代烷烃类以及苯类溶液中的一种或多种的混合溶剂。

4. 根据权利要求3所述的提高烯草酮稳定性的方法，其特征在于，所述的有机溶剂为石油醚、正己烷、环己烷、二氯甲烷、二氯乙烷、氯仿、苯以及甲苯中的一种或多种的混合溶剂。

5. 根据权利要求1或3或4所述的方法，其特征在于，所述有机溶剂的用量为烯草酮与胺类化合物总重量的 0.1～10 倍。
一种提高烯草酮稳定性的方法

技术领域
[0001] 本发明涉及一种提高烯草酮稳定性的方法。

背景技术
[0002] 烯草酮，化学名为2-[1-[(3-氯-2-烯丙基)氧] 亚胺基丙基]-5-[2-(乙硫基)丙基]-3-羟基-2-环己烯-1-酮，是美国Chevron化学公司推出的一种除除阔叶作物中禾本科杂草的广谱后除草剂，其对多种一年生和多年生杂草具有很强的杀伤作用，主要适用于大豆、亚麻、烟草、西瓜等40余种作物的农田除草，可除杂草等30余种禾本科杂草。烯草酮分子结构中含有羟基、双键、肟等官能团，根据文献报道日常环境中的水份，氧气，紫外线和温度等因素，都容易造成烯草酮的分解。而避免水份，氧气和紫外线，可以采取干燥、冲氮、避光等措施解决。但是如何解决烯草酮原药在国际间跨国海长时间运输过程中高温分解问题，是一个比较难解决的课题。
[0003] 美国专利文献US5981440公开了稳定的烯草酮钠盐的制备方法，该方法使烯草酮与氢氧化钠反应生成钠盐，其化学反应如下：

\[
\text{(I)} \quad \text{NaOH} \quad \text{(III)}
\]

[0004] 该方法的原理是烯草酮分子结构中含有羟基官能团，显弱酸性，能与强碱起反应，掉下分子水，生成烯草酮钠盐（III）。所得烯草酮钠盐（III）的化学性质较为稳定，在高温下不易分解。虽然最后制得的烯草酮钠盐的化学性质是稳定的，但是，在烯草酮钠盐的制备过程中，烯草酮却容易被作为副产物产生的水所分解（中国发明专利公开CN1846493中对此有确切的数据说明），因此，只有脱除反应生成的水才能得到稳定的烯草酮钠盐（III），然而，脱水操作不但增加了制备成本，又显著降低了反应收率。

发明内容
[0006] 本发明所要解决的技术问题是克服现有技术的不足，提供一种成本降低的提高烯草酮的稳定性的方法。
[0007] 为解决以上技术问题，本发明所采用如下技术方案：
[0008] 一种提高烯草酮稳定性的方法，其使烯草酮与胺类化合物在有机溶剂中，温度-10℃～80℃下反应生成烯草酮胺盐，然后以烯草酮胺盐形式进行保存，所述胺类化合物为氨、一级胺、二级胺或三级胺，所述反应应用化学反应方程式表示如下：

[0009]
[0010] 上式中，式 (I) 化合物为烯草醚，式 (II) 化合物为所述烯草醚胺盐，M 代表胺类化合物。

[0011] 根据本发明，所述胺类化合物优选为碳数 1～13 的脂肪胺，可以是直链或支链形式，胺类化合物有例如甲胺、乙胺、丙胺、异丙胺、丁胺以及异丁胺中等，其中，胺类化合物优选为碳数 1～4 的脂肪胺。

[0012] 根据本发明的一个优选方面，所述烯草醚与胺类化合物的投料摩尔比为 1：1～1.5。所述反应在温度 0℃～30℃下进行。所述有机溶剂可以为烷烃类，氯代烷烃类以及苯类溶剂中的一种或多种的混合溶剂。优选地，有机溶剂为石油醚、正己烷、环己烷、二氯甲烷、二氯乙烷，氯仿，苯以及甲苯中的一种或多种的混合溶剂。有机溶剂的用量为烯草醚与胺类化合物总重量的 0.1～10 倍。

[0013] 本发明还涉及一种烯草醚胺盐，其具有式 (II) 表示的结构：

[0014]

[0015] 式 (II) 中，M 代表氨、一级胺、二级胺或三级胺。

[0016] 上述的烯草醚胺盐的制备方法为：使烯草醚与胺类化合物在有机溶剂中、温度 0℃～30℃下反应得到所述烯草醚胺盐，所述胺类化合物为氨、一级胺、二级胺或三级胺。

[0017] 由于采用以上技术方案，本发明与现有技术相比具有如下优点：

[0018] 本发明的方法在将烯草醚转化为烯草醚胺盐的过程中，不会生成水，反应收率高，反应条件温和，操作简便，与已有技术将烯草醚转换为烯草醚钠盐形式相比，成本降低，更适于工业化生产。此外，本发明的烯草醚胺盐的高温稳定性好，有效解决了烯草醚原药在长时间运输过程中的高温分解问题。

具体实施方式

[0019] 下面结合具体实施例对本发明的技术方案作进一步的描述，但本发明不应仅限于这些实施例。

[0020] 实施例 1 烯草醚甲胺盐的制备

[0021] 在反应瓶中加入 36g 烯草醚原药 (86％，0.086mol) 和 90g 的正己烷，室温下搅拌均匀。冷却条件下，慢慢通入甲胺气体。控制温度在 0～5℃，加完后在 20℃搅拌 1.5 小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得 34g 产品，测熔点 131℃。经高压液
说明书记述了通过HPLC检测分析，将所得烯草酮含量定为95.1%，反应率定为96.2%。

实施例1烯草酮乙胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol）和80g的石油醚，室温下搅拌均匀，冷却条件下，慢慢滴加乙胺气体。控制温度在5-10℃，加完在20℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得35g产品，测熔点137℃，经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.1%，反应率95.9%。

实施例2烯草酮丙胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和70g的环己烷，室温下搅拌均匀。冷却条件下，慢慢滴加丙胺液体。控制温度在10-20℃，加完在20℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得36g产品，测熔点142℃，经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.1%，反应率95.1%。

实施例3烯草酮异丙胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和20g的二氯甲烷，室温下搅拌均匀，冷却条件下，慢慢滴加异丙胺液体。控制温度在10-20℃，加完在20℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得36g产品。经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.2%，反应率95.2%。

实施例4烯草酮丁胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和30g的二氯乙烷，室温下搅拌均匀，冷却条件下，慢慢滴加丁胺液体。控制温度在20-30℃，加完在20-30℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得38g产品，测熔点148℃，经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.2%，反应率95.2%。

实施例5烯草酮苯胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和40g的苯，室温下搅拌均匀，冷却条件下，慢慢滴加苯胺液体。控制温度在0-10℃，加完自然升温到20-30℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得38g产品。经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.1%，反应率95.1%。

实施例6烯草酮异丁胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和60g的氯仿，室温下搅拌均匀，冷却条件下，慢慢滴加异丁胺液体。控制温度在10-15℃，加完自然升温至20-30℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得34g产品，测熔点131℃，经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.2%，反应率95.5%。

实施例7烯草酮甲胺盐的制备
在反应器中加入36g烯草酮原料（86%），0.086mol），和30g的甲苯，室温下搅拌均匀，冷却条件下，慢慢滴入甲胺气体。控制温度在0-10℃，加完自然升温到20-30℃搅拌1.5小时。将反应物过滤，得到灰白色的固体。再经减压干燥，即得34g产品，测熔点131℃，经高压液相色谱（HPLC）检测分析，折算成烯草酮含量为95.3%，反应率96.6%。

将上述实施例制备的6种烯草酮胺盐与烯草酮原料，在50℃的温度下进行热贮15天后，经高压液相色谱（HPLC）分析，折算成烯草酮含量，计算分解率，结果参见表1。

表1
<table>
<thead>
<tr>
<th>药物留存形式</th>
<th>开始含量（%）</th>
<th>50℃ 15 天后含量（%）</th>
<th>分解率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>稀草酮甲胺盐</td>
<td>95.1</td>
<td>92.2</td>
<td>3.05</td>
</tr>
<tr>
<td>稀草酮乙胺盐</td>
<td>95.2</td>
<td>92.4</td>
<td>2.94</td>
</tr>
<tr>
<td>稀草酮丙胺盐</td>
<td>95.1</td>
<td>92.5</td>
<td>2.73</td>
</tr>
<tr>
<td>稀草酮异丙胺盐</td>
<td>95.2</td>
<td>92.4</td>
<td>2.94</td>
</tr>
<tr>
<td>稀草酮丁胺盐</td>
<td>95.2</td>
<td>93.1</td>
<td>2.20</td>
</tr>
<tr>
<td>稀草酮异丁胺盐</td>
<td>95.1</td>
<td>93.2</td>
<td>1.99</td>
</tr>
<tr>
<td>稀草酮原药</td>
<td>86</td>
<td>66</td>
<td>23.3</td>
</tr>
</tbody>
</table>

从表1可见，稀草酮胺盐的热稳定性要显著好于稀草酮原药，将稀草酮原药转化为稀草酮胺盐进行保存，可有效解决稀草酮原药在长时间运输过程中的高温分解问题。由于稀草酮转化为稀草酮胺盐的反应具有较高的收率，且反应本身的操作非常简便，因此，这种方法的成本较低，适于工业化应用。

上述实施例只为说明本发明的技术构思及特点，其目的在于让熟悉此项技术的人士能够了解本发明的内容并据此实施，并不能以此限制本发明的保护范围，凡根据本发明精神实质所作的等效变化或装饰，都应涵盖在本发明的保护范围之内。