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CONDITIONAL STACK FRAME 
ALLOCATION 

STATEMENT REGARDING PRIOR 
DISCLOSURES BY THE INVENTOR OR A 

JOINT INVENTOR 
[ 0001 ] The following disclosure ( s ) are submitted under 35 
U . S . C . 102 ( b ) ( 1 ) ( A ) : Messages 1141 ( 2013 - 11 ) and 1149 
( 2013 - 11 ) posted to the GCC ( compiler ) website ( http : / / gcc . 
gnu . org / ml / gcc - patches ) as a mailing list message . Message 
316 ( 2013 - 11 ) posted to the glibc ( system library and 
dynamic loader ) website ( https : / / sourceware . org / ml / libc - al 
pha ) as mailing list messages . Power Architecture 64 - bit 
ELF V2 ABI Specification , OpenPOWER ABI for Linux 
Supplement , 21 Jul . 2014 . 

function . In addition , the method includes determining 
whether the function call includes one or more unnamed 
parameters when a prototype of the callee function is within 
the scope of the caller . Further , the method may include 
inserting instructions in the caller to allocate a register save 
area in a memory when it is determined that the function call 
includes one or more unnamed parameters . 
[ 0007 ] Various embodiments are directed to a system and 
computer program product for allocating memory . 
[ 0008 ] The above summary is not intended to describe 
each illustrated embodiment or every implementation of the 
present disclosure . 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

BACKGROUND 
[ 0002 ] The present disclosure relates to compiling source 
code in a computer system , and more specifically , to the 
manner in which a compiler provides stack space associated 
with passing parameters to a function when it is called and 
how a home memory location for a parameter passed in a 
register may be provided . 
[ 0003 ] A function definition or prototype typically 
declares parameters in a parameter list between parentheses . 
For example , the function “ func1 ” may be defined as : void 
funcl ( int x , float y , long z ) . The parameters of funcl are x , 
y , and z . The parameters are of data type integral , float , and 
long , respectively . The term " parameter ” may be used to 
refer to a variable named in the parenthesized parameter list 
and “ argument ” may be used to refer to a particular value 
that is used in a function call . However , those skilled in the 
art may refer to the value that is used in a function call as a 
parameter and may a variable as an argument , the intended 
meaning being clear from the context . 
[ 0004 ] In the some programming languages , such as the C 
language , a function can have a variable number of argu 
ments . A function that can have a variable arguments is 
referred to as a variadic function . A variadic function may be 
declared with an ellipsis as its last parameter , matching zero 
or more arguments on a call and indicating that the types and 
number of arguments may vary . An example of a variadic 
function is printf ( int x , float y , . . . ) . 
[ 0005 ] An application binary interface ( “ ABI ” ) is the set 
of rules that must be followed by any interface between two 
program modules at the level of machine code . Among other 
things , an ABI defines how functions are called and how 
arguments are passed to functions , i . e . , calling conventions . 
Every parameter has a data type . An ABI generally specifies 
how each of the various different data types is passed when 
a function is called . Generally , arguments can be passed in 
memory , registers , or a combination of memory and regis 
ters . Generally , an ABI may specify that a particular argu 
ment is to be passed in a register or a memory location . A 
compiler typically compiles source code according the rules 
and conventions specified in an ABI . 

[ 0009 ] The drawings included in the present application 
are incorporated into , and form part of , the specification . 
They illustrate embodiments of the present disclosure and , 
along with the description , serve to explain the principles of 
the disclosure . The drawings are only illustrative of certain 
embodiments and do not limit the disclosure . 
[ 0010 ] FIG . 1 shows the relative layout of elements in a 
stack frame according to various embodiments . 
[ 0011 ] FIG . 2 depicts a correspondence between general 
purpose registers and a register save area according to 
various embodiments . 
[ 0012 ] FIG . 3 is a block diagram of an example of a 
computing device in which various embodiments of this 
disclosure can be implemented . 
[ 0013 ] FIG . 4 is a simplified diagram showing registers 
that may be included in a processor of a computing device , 
according to various embodiments . 
[ 0014 ] FIG . 5 shows a method for a compiler to generate 
instructions for a function call in accordance with various 
embodiments . 
[ 0015 ] FIG . 6 shows a method for a compiler to generate 
instructions for a function call when the prototype of the 
called function is known , according to various embodi 
ments . 
[ 0016 ] FIG . 7 shows a method for a compiler to generate 
instructions for a function call when the prototype of the 
called function is unknown , according to various embodi 
ments . 
[ 0017 ] FIG . 8 depicts examples intended to illustrate vari 
ous methods for a compiler to generate instructions for a 
function call , according to various embodiments . 
[ 0018 ] FIG . 9 shows a method for a compiler to generate 
instructions for a callee function in accordance with various 
embodiments . 
[ 0019 ] FIG . 10 shows a method for compiler to generate 
instructions for a callee function in accordance with various 
embodiments . 
[ 0020 ] While the invention is amenable to various modi 
fications and alternative forms , specifics thereof have been 
shown by way of example in the drawings and will be 
described in detail . It should be understood , however , that 
the intention is not to limit the invention to the particular 
embodiments described . On the contrary , the intention is to 
cover all modifications , equivalents , and alternatives falling 
within the spirit and scope of the invention . 

SUMMARY 
[ 0006 ] According to embodiments of the present disclo 
sure , a computer - implemented method for allocating 
memory includes an operation that determines whether a 
prototype of a callee function is within a scope of a caller . 
The caller is a module containing a function call to the callee 
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DETAILED DESCRIPTION 
[ 0021 ] Aspects of the present disclosure relate to compil 
ing source code in a computer system , with more particular 
aspects relating to the manner in which a compiler provides 
stack space associated with passing parameters to a function 
when it is called and how a home memory location for a 
parameter passed in a register may be provided . While the 
present disclosure is not necessarily limited to such appli 
cations , various aspects of the disclosure may be appreciated 
through a discussion of various examples using this context . 
[ 0022 ] . FIG . 1 shows the relative layout of elements in a 
stack frame 100 according to various embodiments . The 
stack frame 100 includes minimum elements 102 , a param 
eter save area 104 , and an optional area for callee use 109 . 
The parameter save area 104 includes a register save area 
106 and a parameter overflow area 108 . The minimum 
elements 102 are required . The minimum elements 102 
consume 32 bytes . The optional area for callee use 109 may 
include a local variable save area 111 . A stack pointer 103 
( " SP " ) points to the lowest address in the stack frame , which 
may be referenced as SP + 0 . 
10023 ] In various embodiments , the minimum elements 
102 may include a back chain double word , a CR ( condition 
register ) save word , a reserved word , an LR ( link register ) 
save double word , and TOC ( table of contents ) pointer 
double word . 
[ 0024 ] In one embodiment , the register save area 106 is 
the first 64 bytes of the parameter save area 104 . The lowest 
address in the parameter save area 104 is at SP + 32 . The 
lowest address in the parameter overflow area 108 is just 
above the highest address of the register save area 106 . For 
example , if 64 bytes are allocated for the register save area 
106 , the lowest address in the parameter overflow area 108 
is at SP + 96 . In various embodiments , a processor provides 
eight general purpose registers ( “ GPRS ” ) for passing param 
eter and return values . In one example , registers r3 - r10 are 
GPRs provided for passing parameters and return values . 
Each of the registers r3 - r10 is 64 bits wide , which corre 
sponds to a double word . The register save area 106 provides 
an area for storing values that may be contained in the GPRS 
r3 - r10 . In various embodiments , there is a one - to - one cor 
respondence between GPR register numbers and an address 
offset in the register save area 106 . See FIG . 2 , for example , 
which shows a correspondence between the GPRs and the 
register save area . In FIG . 2 , the first eight bytes of the 
register save area 106 correspond to GPR r3 , the next eight 
bytes correspond to GPR r4 , and so on . 
[ 0025 ] In this description and in the claims , the term 
" parameter ” may be used to refer to either a variable named 
in the parenthesized parameter list of a function prototype or 
a value used in a function call . Similarly , the term “ argu 
ment ” may be used to refer to either a particular value that 
is used in a function call or a variable named in the 
parenthesized parameter list of a function prototype . The 
meaning of these terms will be apparent to one skilled in art 
based on the context . 
[ 0026 ] The parameter overflow area 108 is optional , how 
ever , a legacy ABI treats the register save area 106 as 
required . One reason for requiring a caller to allocate a 
register save area 106 is for use with function calls where the 
called function uses a variable number of arguments . Allo 
cating a register save area allows the called function to save 
up to eight arguments in the eight GPRs into the register 
save area 106 . When this save operation is performed , up to 

eight arguments of the function will be arranged in a linear 
order on the stack frame 100 . When the elements are 
arranged in linear order in memory , the called function can 
employ a simple “ va _ list " method to access the arguments . 
However , when a legacy ABI requires a register save area 
106 , the stack frame may be larger than necessary . 
10027 ] In the C language , a variable of type va _ list can be 
declared . This description uses as an example , a variable of 
type va _ list named “ ap . ” However , it will be appreciated that 
any name for the variable may be chosen . The variable ap is 
initialized using the va _ start macro to point to the first 
argument . Each time the va _ arg macro is subsequently 
invoked on ap , it returns the next argument in a list , e . g . , the 
register save area 106 . 
[ 0028 ] A legacy feature of some programming languages 
permits a first function to call a second function in the 
absence of a prototype for the second function . As further 
described below , this makes it impossible for a compiler to 
determine whether the function call includes unnamed 
parameters . 
100291 Reducing the minimum size requirement for stack 
frames may be important for environments where stack 
space is restricted , e . g . Linux kernel code , or where there are 
a large number of stacks , e . g . heavily multi - threaded appli 
cations . At the same time , it can be important for a new ABI 
to support features of legacy ABIs and programming lan 
guages , such as permitting function calls in the absence of 
a prototype , as well as supporting efficient implementations 
of variadic functions in accordance with the known ISO C 
stdarg facility . 
[ 0030 ] Conditional Stack Frame Allocation 
[ 0031 ] According to various embodiments , a compiler 
determines whether a prototype of a callee function is within 
a scope of a module containing a function call , i . e . , whether 
the function is declared and “ known ” to the compiler . When 
a prototype is known , the compiler determines whether the 
function call includes one or more unnamed parameters . 
According to various embodiments , a register save area 106 
in a caller ' s stack frame is optionally allocated . 
[ 0032 ] When a prototype is known , if the function call is 
found to include one or more unnamed parameters , the 
compiler inserts instructions in object code to allocate a 
register save area and , if needed , a parameter overflow area 
in a memory . In at least one embodiment , when a register 
save area is allocated , the register save area has a fixed size 
regardless of the number of arguments being passed . 
[ 0033 ] When a prototype is known , if the function call is 
found to include only named parameters , the compiler 
determines whether all parameters of the function can be 
passed in registers . If all parameters of the function cannot 
be passed in registers , the compiler inserts instructions to 
allocate a register save area and a parameter overflow area 
in a memory . If all parameters of the function can be passed 
in registers , these areas are not allocated in memory . 
[ 0034 ] When the compiled module is executed ( prototype 
known ) , named parameters are passed in their natural reg 
isters . If all parameters of the function cannot be passed in 
their natural registers , the parameters that cannot be passed 
in a register are passed in the parameter ' s natural location in 
memory . 
0035 ] When a prototype of the callee function is not 
known , the compiler determines whether all parameters of 
the function can be passed in registers . If all parameters can 
be passed in registers , the compiler inserts instructions in 
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object code to allocate a register save area and , if needed , a 
parameter overflow area in the stack frame of the caller . If 
all parameters cannot be passed in registers , the compiler 
inserts instructions in object code to allocate a register save 
area and a parameter overflow area in memory . 
[ 0036 ] When the compiled module is executed ( prototype 
unknown ) , a parameter of vector type is passed in one or 
more general purpose registers to the extent that general 
purpose registers are available and a parameter of floating 
point type is passed in a general purpose register to the 
extent that general purpose registers are available . In addi 
tion , the parameter of vector type is also passed in its natural 
register , i . e . , in a vector register , and the parameter of 
floating point type is also passed in its natural register , i . e . , 
in a floating point register . 
[ 0037 ] FIG . 3 is a block diagram of an example of a 
computing device in which various embodiments of this 
disclosure can be implemented . The computing device 200 
is one example of a context in which various embodiments 
may be implemented . The mechanisms and apparatus of the 
various embodiments disclosed herein apply equally to any 
appropriate computing device . The major components of the 
computing device 200 include one or more processors 202 , 
a memory 204 , a terminal interface 212 , a storage interface 
214 , an Input / Output ( “ I / O ” ) device interface 216 , and a 
network interface 218 , all of which are communicatively 
coupled , directly or indirectly , for inter - component commu 
nication via a memory bus 206 , an I / O bus 208 , bus interface 
unit ( “ IF ” ) 209 , and an I / O bus interface unit 210 . 
[ 0038 ] The computing device 200 may contain one or 
more general - purpose programmable central processing 
units ( CPUs ) 202A and 202B , herein generically referred to 
as the processor 202 . In an embodiment , the computing 
device 200 may contain multiple processors ; however , in 
another embodiment , the computing device 200 may alter 
natively be a single CPU device . Each processor 202 
executes instructions stored in the memory 204 and may 
include one or more levels of on - board cache . In addition , 
each processor 202 includes various registers . In the 
example of FIG . 3 , the CPU 202A includes a set of registers 
REGA and the CPU 202B includes a set of registers REGB . 
Both sets of registers REGA and REGB may include GPRS 
r0 - r31 . In addition , both REGA and REGB may include 
floating point registers ( FPR ) f0 - f31 and vector registers 
( VR ) VO - v31 . As shown in FIG . 4 , registers r3 - r10 of GPRS 
rO - r31 may be used for parameters and return values , and 
registers r14 - r31 may be used for local variables . In addi - 
tion , registers f1 - f13 of floating point registers f0 - f31 may be 
used for parameters and return values , and registers f14 - f31 
may be used for local variables . Further , registers v2 - v13 of 
vector registers v0 - v31 may be used for parameters and 
return values , and registers v14 - v31 may be used for local 
variables . 
[ 0039 ] In an embodiment , the memory 204 may include a 
random - access semiconductor memory , storage device , or 
storage medium ( either volatile or non - volatile ) for storing 
or encoding data and programs . In another embodiment , the 
memory 204 represents the entire virtual memory of the 
computing device 200 , and may also include the virtual 
memory of other computer systems coupled to the comput 
ing device 200 or connected via a network 220 . The memory 
204 is conceptually a single monolithic entity , but in other 
embodiments the memory 204 is a more complex arrange - 
ment , such as a hierarchy of caches and other memory 

devices . For example , memory may exist in multiple levels 
of caches , and these caches may be further divided by 
function , so that one cache holds instructions while another 
holds non - instruction data , which is used by the processor or 
processors . Memory may be further distributed and associ 
ated with different CPUs or sets of CPUs , as is known in any 
of various so - called non - uniform memory access ( NUMA ) 
computer architectures . 
10040 ] The memory 204 may store all or a portion of the 
components and data shown in FIG . 3 . The memory 204 
may store a compiler 240 , a first module 242 , a second 
module 244 , and a stack 246 . In one example , the first 
module 242 may be source code and the second module 244 
may be object code . In another example , the first module 242 
may be a user application and the second module 244 may 
be a shared library . Any number of modules of any type may 
be stored in the memory 204 . The stack 246 may store one 
or more stack frames , such as the stack frame 100 . These 
programs and data structures are illustrated in FIG . 3 as 
being included within the memory 204 in the computing 
device 200 , however , in other embodiments , some or all of 
them may be on different computer systems and may be 
accessed remotely , e . g . , via a network 120 . The computing 
device 200 may use virtual addressing mechanisms that 
allow the programs of the computing device 200 to behave 
as if they only have access to a large , single storage entity 
instead of access to multiple , smaller storage entities . Thus , 
while the components and data shown in FIG . 3 are illus 
trated as being included within the memory 204 , these 
components and data are not necessarily all completely 
contained in the same storage device at the same time . 
Further , although the components and data shown in FIG . 3 
are illustrated as being separate entities , in other embodi 
ments some of them , portions of some of them , or all of them 
may be packaged together . 
[ 0041 ] In an embodiment , the components and data shown 
in FIG . 3 may include instructions or statements that execute 
on the processor 202 or instructions or statements that are 
interpreted by instructions or statements that execute on the 
processor 202 to carry out the functions as further described 
below . In another embodiment , the components shown in 
FIG . 3 may be implemented in hardware via semiconductor 
devices , chips , logical gates , circuits , circuit cards , and / or 
other physical hardware devices in lieu of , or in addition to , 
a processor - based system . In various embodiments , the 
components shown in FIG . 3 may include data in addition to 
instructions or statements . 
[ 0042 ] Still referring to FIG . 3 , the computing device 200 
may include a bus interface unit 209 to handle communi 
cations among the processor 202 , the memory 204 , a display 
system 224 , and the I / O bus interface unit 210 . The I / O bus 
interface unit 210 may be coupled with the I / O bus 208 for 
transferring data to and from the various I / O units . The I / O 
bus interface unit 210 communicates with multiple I / O 
interface units 212 , 214 , 216 , and 218 , which are also known 
as I / O processors ( IOPs ) or I / O adapters ( IOAS ) , through the 
I / O bus 208 . The display system 224 may include a display 
controller , a display memory , or both . The display controller 
may provide video , audio , or both types of data to a display 
device 226 . The display memory may be a dedicated 
memory for buffering video data . The display system 224 
may be coupled with a display device 226 , such as a 
standalone display screen , computer monitor , television , or 
a tablet or handheld device display . In an embodiment , the 
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display device 226 may include one or more speakers for 
rendering audio . Alternatively , one or more speakers for 
rendering audio may be coupled with an I / O interface unit . 
In alternate embodiments , one or more of the functions 
provided by the display system 224 may be on board an 
integrated circuit that also includes the processor 202 . In 
addition , one or more of the functions provided by the bus 
interface unit 209 may be on board an integrated circuit that 
also includes the processor 202 . 
[ 0043 ] The I / O interface units support communication 
with a variety of storage and I / O devices . For example , the 
terminal interface unit 212 supports the attachment of one or 
more user I / O devices 220 , which may include user output 
devices ( such as a video display device , speaker , and / or 
television set ) and user input devices ( such as a keyboard , 
mouse , keypad , touchpad , trackball , buttons , light pen , or 
other pointing device ) . A user may manipulate the user input 
devices using a user interface , in order to provide input data 
and commands to the user I / O device 220 and the computing 
device 200 , and may receive output data via the user output 
devices . For example , a user interface may be presented via 
the user 1 / 0 device 220 or display device 226 , such as 
displayed on a display device , played via a speaker , or 
printed via a printer . 
[ 0044 ] The storage interface 214 supports the attachment 
of one or more disk drives or direct access storage devices 
222 ( which are typically rotating magnetic disk drive storage 
devices , although they could alternatively be other storage 
devices , including arrays of disk drives configured to appear 
as a single large storage device to a host computer , or 
solid - state drives , such as flash memory ) . In another 
embodiment , the storage device 222 may be implemented 
via any type of secondary storage device . The contents of the 
memory 204 , or any portion thereof , may be stored to and 
retrieved from the storage device 222 as needed . The I / O 
device interface 216 provides an interface to any of various 
other I / O devices or devices of other types , such as printers 
or fax machines . The network interface 218 provides one or 
more communication paths from the computing device 200 
to other digital devices and computer systems ; these com 
munication paths may include , e . g . , one or more networks 
120 . 
[ 0045 ] Although the computing device 200 shown in FIG . 
3 illustrates a particular bus structure providing a direct 
communication path among the processors 202 , the memory 
204 , the bus interface 209 , the display system 224 , and the 
I / O bus interface unit 210 , in alternative embodiments the 
computing device 200 may include different buses or com 
munication paths , which may be arranged in any of various 
forms , such as point - to - point links in hierarchical , star or 
web configurations , multiple hierarchical buses , parallel and 
redundant paths , or any other appropriate type of configu 
ration . Furthermore , while the I / O bus interface unit 210 and 
the I / O bus 208 are shown as single respective units , the 
computing device 200 may , in fact , contain multiple I / O bus 
interface units 210 and / or multiple I / O buses 208 . While 
multiple I / O interface units are shown , which separate the 
I / O bus 208 from various communications paths running to 
the various I / O devices , in other embodiments , some or all 
of the I / O devices are connected directly to one or more 
system I / O buses . 
[ 0046 ] In various embodiments , the computing device 200 
is a multi - user mainframe computer system , a single - user 
system , or a server computer or similar device that has little 

or no direct user interface , but receives requests from other 
computer systems ( clients ) . In other embodiments , the com 
puting device 200 may be implemented as a desktop com 
puter , portable computer , laptop or notebook computer , 
tablet computer , pocket computer , telephone , smart phone , 
or any other suitable type of electronic device . 
[ 0047 ] FIG . 3 is intended to depict the representative 
major components of the computing device 200 . Individual 
components , however , may have greater complexity than 
represented in FIG . 3 , components other than or in addition 
to those shown in FIG . 3 may be present , and the number , 
type , and configuration of such components may vary . 
Several particular examples of additional complexity or 
additional variations are disclosed herein ; these are by way 
of example only and are not necessarily the only such 
variations . The various program components illustrated in 
FIG . 3 may be implemented , in various embodiments , in a 
number of different manners , including using various com 
puter applications , routines , components , programs , objects , 
modules , data structures , etc . , which may be referred to 
herein as “ software , " " computer programs , ” or simply “ pro 
grams . ” 
[ 0048 ] In various aspects , embodiments may provide a 
calling convention that combines : simple argument passing 
in registers for normal functions , efficient argument passing 
for variadic functions , and correct argument passing for 
unprototyped ( not fully declared ) functions while using less 
memory for stack space than known ABIs by only allocating 
a register save area for a called function when it is needed . 

[ 0049 ] Many data types are known . Examples include 
Boolean , character , enumeration , integral , pointer , floating 
and vector data types . There are various subcategories 
within these categories , such as short int and double float . In 
accordance with various embodiments , each data type is 
associated with a register passing prototype . However , to 
avoid obscuring the examples in this description , this 
description will focus on the register passing prototypes for 
a few representative data types . It should be understood that 
all known data types may be processed according to the 
disclosed embodiments . In addition , with respect to the 
discussion of natural registers for data types , integral data 
types are referred to as representative of a natural data type 
that may be passed in GPRs . However , it should be under 
stood that various other data types be designated as having 
GPRs as their natural register . 
[ 0050 ] It is generally more efficient to pass arguments to 
called functions in registers than to construct an argument 
list in storage or to push them onto the stack . Since all 
computations must be performed in registers anyway , 
memory traffic can be eliminated if the caller can compute 
arguments into registers and pass them in the same registers 
to the called function , where the called function can then use 
them for computation in the same registers . Of course , the 
number of registers in a processor naturally limits the 
number of arguments that can be passed in registers . 
[ 0051 ] A function prototype lists parameters in a particular 
sequence . For example , in the function void funcl ( int x , 
float y , int z , float w ) , the parameters x , y , z , and w are listed 
in a particular sequence . This sequence is referred to herein 
as the parameter or argument sequence of the function call . 
In addition , there may be a sequence for the type of 
parameter in a function call . In the example , the parameters 
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x and z form a sequence of integral type parameters and the 
parameters y and w form a sequence of floating point type 
parameters . 
10052 ] . According to various embodiments , “ natural ” reg 
isters for passing parameters of floating point data type are 
FPRs f1 - f13 . Floating point parameters are passed in FPRs 
according to their position in the sequence of floating point 
parameters in the function call . In addition , in those circum 
stances when not all floating point parameters are passed in 
registers , the “ natural ” memory locations for passing param 
eters of the floating point data type is the parameter overflow 
area 108 . Floating point parameters are passed in the next 
available location in the parameter overflow area 108 in 
accordance with the position of the floating point parameter 
in the parameter sequence of the function call ( i . e . , including 
non - floating point parameters ) . For instance , a first floating 
point parameter may be passed in FPR f1 , a second floating 
point parameter may be passed in FPR 12 , a third floating 
point parameter may be passed in FPR f3 , and so forth , until 
the floating point registers are exhausted . The next floating 
point parameter is then passed in the next available in 
memory location in the parameter overflow area 108 , in 
accordance with the position of the floating point parameter 
in the parameter sequence of the function call ( i . e . , including 
non - floating point parameters ) . 
[ 0053 ] According to various embodiments , “ natural ” reg 
isters for passing parameters of vector data type are VRs 
v2 - v13 . In addition , in those circumstances when not all 
vector parameters are passed in registers , the “ natural ” 
memory locations for passing parameters of vector data type 
is the parameter overflow area 108 in accordance with the 
position of the vector parameter in the parameter sequence 
of the function call ( i . e . , including non - vector parameters ) . 
For instance , a first vector parameter may be passed in VR 
V2 , a second vector parameter may be passed in VR v3 , a 
third vector parameter may be passed in VR v4 , and so forth , 
until the vector parameter registers are exhausted . The next 
vector parameter is then passed in the next available in 
memory location in the parameter overflow area 108 , in 
accordance with the position of the vector parameter in the 
parameter sequence of the function call ( i . e . , including 
non - vector parameters ) . 
[ 0054 ] According to various embodiments , “ natural ” reg 
isters for passing parameters of integral data type are GPRS 
r3 - r10 . In addition , in those circumstances when not all 
integral data type parameters are passed in registers , the 
" natural " memory locations for passing parameters of inte 
gral data type is the parameter overflow area 108 . However , 
certain rules apply to the use of GPRs . When a parameter of 
integral type is to be passed in a GPR , it is passed in the GPR 
corresponding to its position in the parameter or argument 
sequence of the function call , which includes any floating 
point or vector parameters specified in the function call . 
When a floating point or vector parameter is present in a 
function call , one or more GPRs corresponding to the 
position of the parameter in the parameter sequence of the 
function call is not used for passing an integral type param 
eter . ( Some floating point parameters fit in one GPR but 
some need two GPRS and all vector parameters need two 
GPRs . ) For example , assume that the parameter sequence of 
a function call is ( int x , float y ) . The integer parameter x , 
which is the first parameter in the parameter sequence , is 
passed in the first GPR r3 . As a second example , assume that 
the parameter sequence of a function call is ( float x , int y ) . 

The first integer parameter y follows the floating point 
parameter x in the parameter sequence of the function call . 
The first integer parameter y , which follows the first param 
eter in the parameter sequence of the function call , is passed 
in the second GPR r4 , skipping the first GPR r3 . When this 
scheme is followed and the GPRs are exhausted , the next 
integral parameter is passed in the next available in - memory 
location in the parameter overflow area 108 , in accordance 
with the position of the integral parameter in the parameter 
sequence of the function call ( i . e . , including non - integral 
parameters ) . 
[ 0055 ] According to various embodiments , structures are 
passed in GPRs or corresponding type - dependent register 
types for a set of well - defined structures . Parameters of type 
float and double are to be passed in their natural registers , 
i . e . , f1 - f13 . Vector data types are to be passed in their natural 
registers , i . e . , V2 - v13 . 
[ 0056 ] Generally , a function prototype declares all of the 
parameters that are used in a function call . The parameters 
declared in a function prototype are referred to herein as 
" named parameters . ” However , a variadic or “ vararg ” func 
tion may be called with more arguments than parameters . 
When a function has more arguments than parameters , the 
arguments that do not correspond to a named parameter are 
referred to herein as " unnamed ” parameters . Consider the 
variadic function prototype : void func2 ( int x , float y , . . . ) . 
In a first example , a function call that calls this function is 
func2 ( x , y ) . In the first example , x and y are named 
parameters . In a second example , a function call that calls 
the function is func2 ( x , y , z ) . In the second example , x and 
y are named parameters , while z is an unnamed parameter . 
[ 0057 ] In the some programming languages , such as the C 
language , a first function ( a " caller ” ) can include a function 
call to a second function in the absence of a prototype for a 
second function ( a " callee ” ) . This aspect of the C language 
was introduced early in the history of the language . While 
omitting a prototype for a second function in a first function 
that calls the second function is presently discouraged , there 
is legacy code in existence in which callee function proto 
types are missing in the caller . An ABI that requires proto 
types in a caller for all called functions would be incom 
patible with legacy code . As mentioned , it may be important 
for a new ABI to support features of legacy ABIs and 
programming languages . 
[ 0058 ] One aspect of portions of software code that 
include a function call but do not include a prototype for the 
called function is that a compiler cannot determine whether 
a parameter in the function call is a named or unnamed 
parameter . Consider three function calls : funcl ( a , b , c ) , 
func2 ( x , y ) , and func2 ( x , y , z ) . Assume the code that 
includes these function calls does not include a prototype for 
either function . Assume that function funci is not variadic 
while func2 is variadic . In the first function call , because the 
compiler is unable to determine that funcl is not variadic , it 
is unable to determine whether a , b , or c are named or 
unnamed parameters . In second and third function calls , the 
compiler is again unable to determine whether x , y , or z are 
named or unnamed parameters . Even if the compiler were 
able to determine that func2 is variadic , it is unable to 
determine which parameters are named and which are 
unnamed without a prototype for the function . 
[ 0059 ] FIG . 5 shows a method 300 for compiler to gen 
erate instructions for a function call ( a " caller ” ) that calls a 
function ( a “ callee ” ) in accordance with various embodi 
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ments . The method 300 may be compatible with legacy code 
in which callee function prototypes are missing in a caller . 
In accordance with the method 300 for a caller , when a 
compiler encounters caller function ( operation 302 ) when 
compiling a source code module , it determines ( operation 
304 ) whether the caller includes a fully prototyped declara 
tion for the function to be called . If the called function is 
declared with a full prototype , a method 400 for a call with 
a ( A ) known prototype is invoked . Otherwise , when a 
prototype is not declared , a method 500 for a call with ( B ) 
an unknown prototype is invoked . 
[ 0060 ] FIG . 6 shows a method 400 for a function call 
where the compiler " knows ” the prototype of the called 
function , i . e . , the prototype is within scope of the code 
portion being compiled . ( It should be understood that if an 
argument in the function call is of a type that does not 
correspond to the type specified in the function prototype , 
the argument is first converted or promoted to the specified 
type . ) In operation 402 , it is determined whether the callee 
function includes any unnamed parameters . If the callee is 
not variadic or if the callee is variadic , but the only param 
eters specified in the function call are named , then there are 
no unnamed parameters , and the method moves to operation 
404 . Otherwise , the method moves to operation 412 . 
[ 0061 ] In operation 404 , it is determined whether all 
parameters can be passed in registers . If all parameters can 
be passed in registers , the method moves to operation 406 . 
If one or more parameters cannot be passed in registers , the 
method moves to operation 408 . In operation 408 , instruc 
tions are inserted in object code to allocate a register save 
area 106 and a parameter overflow area , and the method 
moves to operation 410 . In operation 410 , at least one 
parameter is passed in the parameter overflow area 108 . The 
method moves from operation 410 to operation 406 . In 
operation 406 , instructions are inserted in object code to pass 
all named parameters corresponding to arguments that cor 
respond to parameter registers in their natural registers . 
[ 0062 ] In operation 406 , any floating point parameters are 
passed in FPRs according to a sequence of floating point 
parameters in the function call . Similarly , any vector param 
eters are passed in VRs according to a sequence of vector 
parameters in the function call . For example , consider the 
function void func4 ( int x , float y , int z , float w ) . The floating 
point parameter sequence is y , w . Parameter y is passed in 
FPR f1 and w is passed in FPR f2 , even though y and w are 
in the second and fourth positions of the parameter sequence 
of the function call . 
[ 0063 ] In contrast , in operation 406 , integral type param 
eters are passed in GPRs according to a parameter sequence 
of the function call , not according to a parameter sequence 
of integral parameters . Continuing the example of void 
func4 ( int x , float y , int z , float w ) , parameter x is passed in 
GPR r3 and z is passed in GPR r5 . When integral type 
parameters are passed in GPRs according to the parameter 
sequence of the function call and the parameter sequence 
includes floating point or vector data types , particular GPRS 
may be skipped . In this example , GPR r4 is skipped . The 
GPR r4 corresponds to the second parameter in the param 
eter sequence of the function , which in this example is a 
floating point type parameter . The parameter z , which is the 
second integral parameter , but the third parameter in the 
function call , is placed in the third GPR . 

[ 0064 ] In operation 410 , at least one parameter is passed 
in the parameter overflow area 108 . The at least one param 
eter may be a floating point , vector , or integral parameter . 
[ 0065 ] In operation 412 , the callee is variadic and at least 
one parameter specified in the function call is unnamed . 
Under these conditions , instructions are inserted in object 
code to allocate a register save area 106 . In addition , if all 
parameters cannot be passed in registers , instructions are 
inserted in object code to allocate a parameter overflow area 
108 . The method moves to operation 414 . 
10066 ] In operation 414 , named parameters are passed in 
their natural register in the same manner as operation 406 . 
For named parameters of type float or vector , one or more 
GPRs corresponding to the sequential position of the named 
float or vector parameter is skipped . However , for unnamed 
parameters of type float or vector , a parameter is passed in 
one or more GPRs corresponding to the sequential position 
of the unnamed float or vector parameter . When all param 
eters are not passed in registers , a parameter not passed in a 
register is passed in the parameter overflow area 108 . 
[ 0067 ] FIG . 7 shows a method 500 for a function call 
where the prototype of the called function is “ unknown ” to 
the compiler , i . e . , the prototype is not within scope of the 
code portion being compiled . ( It should be understood that 
arguments in the function call may first be converted or 
promoted to conform to various conventions . ) In operation 
502 , it is determined whether all parameters can be passed 
in registers . If all parameters can be passed in registers , the 
method moves to operation 504 . If one or more parameters 
cannot be passed in registers , the method moves to operation 
506 . 
[ 0068 ] In operation 504 , instructions are inserted in object 
code to allocate a register save area 106 . In operation 506 , 
instructions are inserted in object code to allocate a register 
save area 106 and a parameter overflow area 108 . Following 
both operations , the method moves to operation 508 . 
[ 0069 ] Operation 508 may be understood as having two 
parts , even though the operation may be a single operation . 
In operation 508 ( A ) , all parameters are passed in their 
natural registers according to parameter sequence . Referring 
back to operations 406 , 410 ( for named parameters ) and 
operation 414 ( for named and unnamed parameters ) , named 
parameters are passed in their natural register . Operation 508 
( A ) is similar to these operations 406 , 410 , and 414 in that 
all parameters are treated as though they were named 
parameters in operation 508 . All parameters are passed in 
their natural register or natural memory location in operation 
508 , as if they were a named parameter in operations 406 , 
410 , and 414 . In operation 508 ( B ) , floating point and vector 
parameters are additionally passed in a slot in the GPRs or 
in their natural memory locations according to parameter 
sequence of the function . Operation 508 ( B ) is similar to 
operation 414 in that unnamed floating point and vector 
parameters are passed in one or more GPRs . In other words , 
floating point and vector parameters may be passed twice 
once in their natural register and once in one or more GPRS 
or a natural memory location . 
[ 0070 ] To further illustrate , the methods 300 , 400 , and 
500 , FIG . 8 depicts several examples . 
[ 0071 ] Reference number 702 is for a case 1 where the 
prototype of the called function is known to the compiler and 
all of the parameters are named . In case 1 , x , y , z , and w are 
all named parameters of a function having a prototype : " void 
func1 ( int x , float y , float z , int w ) ; " . Case 1 corresponds to 
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a condition in which the method 400 reaches operation 406 . 
Parameter x is first in the parameter sequence of the func 
tion . Parameter x is passed in the first GPR , r3 . Parameter y 
is second in the parameter sequence of the function and first 
in the sequence of floating point parameters . Parameter y is 
passed in the first FPR , f1 . The GPR for the second param 
eter in the parameter sequence of the function is skipped . 
Parameter z is third in the parameter sequence of the 
function and second in the sequence of floating point param 
eters . Parameter z is passed in the second FPR , f2 . The GPR 
for the third parameter in the parameter sequence of the 
function is skipped . Parameter w is fourth in the parameter 
sequence of the function . Parameter w is passed in the fourth 
GPR , r6 . 
[ 0072 ] Reference number 704 is for a case 2 . In case 2 , x , 
y , and z are named parameters of a function having a 
prototype : " void func1 ( int x , float y , float z , . . . ) ; " . In case 
2 , w is an unnamed parameter . Case 2 corresponds to a 
condition in which the method 400 reaches operation 414 . In 
case 2 , parameters are passed in a manner identical to case 

does not include any unnamed parameters , the method 
moves to operation 808 . If the function includes one or more 
unnamed parameters , the method moves to operation 804 . In 
operation 804 , each parameter stored in a GPR is fetched 
and saved to the register save area 106 . In various embodi 
ments , in operation 804 , at least the unnamed parameters are 
saved from their respective GPR locations to corresponding 
locations in the register save area and the saving of unnamed 
parameters may be performed without regard to the number 
of va _ list variables that may have been declared . The 
operation 804 is generally performed just one time per 
function call . The method advances to operation 806 , where 
a va _ list pointer , e . g . , ap , is initialized to point to the 
parameter stored at SP + 32 . In contrast to operation 804 , the 
operation 806 may be performed multiple times per function 
call , depending on the particular called function , e . g . , 
whether the called function uses more than one variable of 
the va _ list type . From operation 806 the method moves to 
operation 808 . 
[ 0076 ] Operations 808 - 814 are performed for each param 
eter . The operations 808 - 814 may be performed each time a 
parameter is accessed . In operation 808 , it is determined 
whether the particular parameter is named or unnamed . If 
the parameter is named , the method advances to operation 
810 . In operation 810 , the parameter is fetched from its 
natural register or its natural memory location according to 
parameter sequence of the function and parameter sequence 
of the variable type . Operation 810 is similar to the above 
described operation 406 , except that operation 406 is con 
cerned with passing parameters and operation 810 is con 
cerned with accessing parameters once they have been 
passed . 

[ 0073 ] Reference number 706 is for a case 3 . In case 3 , X 
is a named parameters and y , z , and w are unnamed 
parameters of a function having a prototype : " void func1 ( int 
X , . . . ) ; " . Case 3 corresponds to a condition in which the 
method 400 reaches operation 414 , but the parameters y , z , 
and w are unnamed parameters of type floating point . 
Parameter x is first in the parameter sequence of the func 
tion . Parameter x is passed in the first GPR , r3 . Parameter y 
is second in the parameter sequence of the function and first 
in the sequence of floating point parameters . Parameter y is 
passed in the second GPR , r4 . Parameter z is third in the 
parameter sequence of the function and second in the 
sequence of floating point parameters . Parameter z is passed 
in the third GPR , r5 . Parameter w is fourth in the parameter 
sequence of the function . Parameter w is passed in the fourth 
GPR , r6 . 
[ 0074 ] Reference number 708 is for a case 4 . In case 4 , it 
is not known whether the parameters are named or unnamed , 
i . e . , the function has been declared as " func1 ( ) ; " or has not 
been declared ( i . e . , an implicit declaration of a function ) . 
Case 4 corresponds to a condition in which the method 500 
reaches operation 508 . Parameters x , y , z , and w are passed 
in GPRs according to their sequential position in the func 
tion call . In addition , floating point type parameters y and z 
are passed in FPRs according to their sequential position in 
the sequence of floating point parameters . 
[ 0075 ] FIG . 9 shows a method 800 for compiler to gen 
erate instructions for a callee function in accordance with 
various embodiments . The method 800 is somewhat simpli 
fied in comparison to a real world example in that it assumes 
that the callee function employs a single variable of the type 
va _ list . In practice , a single callee function may employ 
multiple different variables of the va _ type list . Depending on 
the algorithm implemented by the callee function , param 
eters may be accessed multiple times or not at all , or a list 
of unnamed parameters may be walked multiple times . The 
prototype of the callee function is known to the compiler . 
The compiler inserts instructions in object code to perform 
the operations described in the method 800 . In operation 
802 , it is determined whether the function includes any 
unnamed parameters . In various embodiments , if a function 
contains an instance of the va _ start command , it may be 
determined to include unnamed parameters . If the function 

10077 ] In operation 812 , an unnamed parameter is 
accessed from a stack frame 100 . A pointer ap may point to 
the parameter . In operation 814 , the pointer is updated to 
point to the next parameter . One example implementation of 
the operations 812 - 814 employs the following macro . A 
va _ arg macro has two arguments : the va _ list being operated 
on and the type of the next argument . Assume the va _ list is 
called “ ap ” and the type is called “ type ” , then a va _ arg ( ap , 
type ) may be implemented as : * ( type * ) ( ( ap + = round _ sizeof 
( type ) ) , ( ap - round _ sizeof ( type ) ) . 
[ 0078 ] More particularly , as shown by the exemplary 
implementation of va _ arg ( ) above , an update in accordance 
with embodiments of the present invention does not differ 
entiate between parameters having been passed in parameter 
registers ( and that have been spilled to memory by step 804 ) 
and those having been passed in memory . Furthermore , in 
accordance with embodiments of the present invention , it is 
not necessary to prevent a parameter from spanning the 
register parameters and the memory parameter area by 
having to identify such cases and include logic in both the 
parameter handling logic of the compiler , as well as the 
parameter handling logic corresponding to va _ arg . Rather , it 
is possible to pass such parameters partly in registers and 
partly in memory , and a va _ arg ( ) access may refer to such 
a parameter having been passed partially in registers and 
partially in memory without any special handling logic . In 
accordance with embodiments of the present invention , this 
is possible because the caller has allocated a register save 
area that enables the saving of register parameters in a 
contiguous manner to any memory parameters . In yet 
another advantageous aspect of embodiments of the present 
invention , the memory overhead of a register save area is 
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avoided for most function calls , in particular for those 
function calls that have been properly declared with proto 
types in accordance with modern programming practice and 
programming language standards , such as those published 
by ANSI and ISO . 
[ 0079 ] The method 800 may be further explained by 
referring back to the examples of FIG . 8 . In case 1 , 702 , x , 
y , z , and w are named and will be fetched in operation 810 
from r3 , f1 , f2 , and r6 , respectively . In case 2 , 704 , x , y , and 
z are named and will be fetched in operation 810 from r3 , f1 , 
and f2 , respectively . The unnamed parameter w will be 
fetched from the register save area 106 of the stack frame 
100 in operation 812 . In case 3 , 706 , x is named and fetched 
from r3 in operation 810 . The unnamed parameters y , z , and 
w will be fetched from the register save area 106 of the stack 
frame 100 in operation 812 . In case 4 , 708 , the compiler did 
not know at the point of the function call which parameters 
were named and which were unnamed . At the callee func 
tion , the compiler knows which parameters are named and 
unnamed . First , assume that all of the parameters x , y , z , and 
w are unnamed . The parameters x , y , z , and w will accessed 
will be fetched from the register save area 106 of the stack 
frame 100 in operation 812 . Next assume that the parameters 
x and z are unnamed and the parameters y and w are named . 
The unnamed parameters x and z will be fetched from the 
register save area 106 in operation 812 . The named param 
eters y and w will be fetched from their natural registers fi 
and r6 , respectively , in operation 810 . 
[ 0080 ] Referring now to step 804 , in various embodi 
ments , the saving of at least the unnamed parameters from 
their respective GPR locations to corresponding locations in 
the register save area may be performed without regard to 
the number of va _ list variables that may have been declared . 
[ 0081 ] Assigning Memory Addresses to Input Parameters 
[ 0082 ] As described above , it is generally desirable to pass 
parameters to called functions in registers . However , in 
some languages , the called function may need to obtain the 
address of one or more input parameters . In the C program 
ming language , the unary operator & takes the address of its 
operand . For example , the statement " p = & c ; " takes the 
address of c and assigns it to p . In other languages , refer 
ences to an address of an input parameter are implicitly 
created by language features , such as by - reference passing . 
[ 0083 ] The unary & operator cannot be applied to “ register 
variables . ” A register variable is a variable stored in a 
register . Parameters passed to a callee function in a register , 
e . g . , a GPR , FPR , or VR are examples of register variables . 
In order to allow a callee function to obtain an address of one 
of its input parameters that is stored in a register , the input 
parameter must be first saved to a memory location . 
[ 0084 ] One approach for allowing a callee function to 
obtain an address of an input parameter is to require a caller 
to allocate memory locations for all parameters it passes in 
registers to a callee function and then save all of the 
parameters passed in registers in the allocated memory 
locations . For example , fixed locations in the register save 
area of the caller ' s frame could always be allocated by a 
caller for all of the parameters passed to a function . How 
ever , as described above , it may be desirable to conserve 
stack space and this approach may result in a significant 
amount of allocated , but unused , stack space . In another 
approach , all input parameters passed in registers may be 
saved by the callee to the callee ' s local stack frame . How - 
ever , this approach can result in duplicate memory locations 

being allocated for register variables . As described above , a 
caller allocates memory locations for variables passed in 
registers in certain cases , e . g . , a register save area is allo 
cated by a caller for functions with unknown prototypes or 
known prototypes with unnamed parameters . Memory allo 
cated by a callee to save register parameters would duplicate 
the register save area allocated by the caller in these cases , 
which may result in more stack space being allocated than 
is required . 
[ 0085 ] According to various embodiments , a “ home loca 
tion ” is determined or allocated for each register variable , 
i . e . , a parameter passed in a register in a function call . An 
address in memory of a variable is deemed to be its home 
location . When the address of a variable is taken , e . g . , by the 
unary & operator , the address is the home location of the 
variable . 
10086 ] . FIG . 10 shows a method 900 to generate instruc 
tions for a callee function in accordance with various 
embodiments . The method 900 may be performed by a 
compiler inserting instruction in various locations in object 
code . In some cases , the instructions may be provided in 
source code . The method 900 may be used to assign “ home ” 
memory addresses to input parameters passed in registers in 
a function call to a callee function . The method 900 shows 
general operations that may be performed and one example 
of a sequence for performing the operations for a single 
parameter . As described below , the method 900 may be 
adapted to perform the operations 902 - 906 in variety of 
different ways . 
10087 ] According to various embodiments , it is deter 
mined , in operation 902 , whether the caller has allocated a 
natural memory location for a register parameter . The opera 
tion 902 may make this determination when the callee 
function is compiled by determining whether the prototype 
for the callee function declares any unnamed parameters , 
determining whether named parameters are of a number and 
type such that all of the named parameters are capable of 
being passed in registers , and using the rules employed by 
the compiler when the caller function was compiled . When 
compiling the callee function , the compiler always knows 
the number and types of named parameters and always 
knows whether unnamed parameters are used . ( However , 
the compiler does not know number / types of unnamed 
parameters . ) These are specified as part of the function 
definition of the callee function being compiled . 
[ 0088 ] If the compiler determines in operation 902 that the 
callee only uses named parameters and that the named 
parameters are of a number and type such that all of the 
named parameters are capable of being passed in registers , 
then if it is assumed that the prototype was in scope when the 
caller was compiled , the compiler knows that the caller did 
not allocate any memory for the parameters . This case 
corresponds with determining in operation 404 of the 
method 400 that all parameters can be passed in registers and 
operation 406 . Accordingly , the callee needs to allocate a 
home memory location for a named parameter in this case 
and under this assumption that the prototype was known to 
the caller . 
[ 0089 ] If the compiler determines in operation 902 that the 
callee only uses named parameters and that the named 
parameters are of a number and type such that all of the 
named parameters are not capable of being passed in reg 
isters , then if it is assumed that the prototype was in scope 
when the caller was compiled , the compiler knows that the 
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caller allocated a register save area and a parameter overflow 
area . This case corresponds with determining in operation 
404 of the method 400 that all parameters cannot be passed 
in registers and operation 408 . Accordingly , the callee does 
not need to allocate a home memory location for a named 
parameter in this case and under this assumption that the 
prototype was known to the caller . 
[ 0090 ] If the compiler determines in operation 902 that the 
callee only uses named parameters and it is assumed that the 
prototype was not known to the caller , then the compiler 
knows , when compiling the callee , that the caller allocated 
at least a register save area . This case corresponds with 
operation 504 of the method 500 . In addition , if the compiler 
determines that the named parameters are of a number and 
type such that all of the named parameters are not capable 
of being passed in registers , the compiler knows that the 
caller would have allocated both a register save area and a 
parameter overflow area . This case corresponds with opera 
tion 506 of the method 500 . Accordingly , the callee does not 
need to allocate a home memory location for a named 
parameter in this case and under this assumption that the 
prototype was not known to the caller . 
[ 0091 ] If the compiler determines in operation 902 that the 
callee uses at least one unnamed parameter and it is assumed 
that the prototype was known to the caller , then the compiler 
knows , when compiling the callee , that the caller allocated 
at least a register save area . In addition , if the compiler 
determines that the named parameters are of a number and 
type such that all of the named parameters are not capable 
of being passed in registers , the compiler knows that the 
caller would have allocated both a register save area and a 
parameter overflow area . These cases correspond with 
operation 412 of the method 400 . If the named parameters 
are of a number and type such that all of the named 
parameters are not capable of being passed in registers , then 
all of the parameters are not capable of being passed in 
registers . Accordingly , the callee does not need to allocate a 
home memory location for a named parameter in this case 
and under this assumption that the prototype was not known 
to the caller . 
[ 0092 ] If the compiler determines in operation 902 that the 
callee uses at least one unnamed parameter and it is assumed 
that the prototype was not known to the caller , then the 
compiler knows , when compiling the callee , that the caller 
allocated at least a register save area . This case corresponds 
with operation 504 of the method 500 . In addition , if the 
compiler determines that the named parameters are of a 
number and type such that all of the named parameters are 
not capable of being passed in registers , the compiler knows 
that the caller would have allocated both a register save area 
and a parameter overflow area . This case corresponds with 
operation 506 of the method 500 . If the named parameters 
are of a number and type such that all of the named 
parameters are not capable of being passed in registers , then 
all of the parameters are not capable of being passed in 
registers . Accordingly , the callee does not need to allocate a 
home memory location for a named parameter in this case 
and under this assumption that the prototype was not known 
to the caller . 
[ 0093 ] To summarize , if the compiler determines the 
callee function includes only named parameters and deter 
mines that named parameters are of a number and type such 
that all of the named parameters are capable of being passed 
in registers , instructions must be inserted into the callee to 

allocate a register save area 106 . Otherwise , the compiler 
can assume that at least a register save are would have been 
allocated by the caller and the callee need not allocate a 
register save area 106 . In addition , if the named parameters 
are of a number and type such that all of the named 
parameters are not capable of being passed in registers , the 
compiler can assume that a parameter overflow area would 
have been allocated by the caller and the callee need not 
allocate a register save area 106 or a parameter overflow area 
108 . 
[ 0094 ] If it is determined in operation 902 that the caller 
has allocated a natural memory location for the register 
parameter ( s ) , the natural memory location ( s ) provided by 
the caller may be used or “ set ” as the home memory 
location ( s ) for the register parameter ( s ) in operation 904 . 
[ 0095 ] In operation 905 , it may be determined whether the 
caller has saved one or more parameter ( s ) to its ( their ) 
natural memory location . The operation 905 may make this 
determination using logic similar to that described for deter 
mining whether the caller would have allocated a memory 
location for parameters . When parameters are of a number 
and type such that all of the named parameters are capable 
of being passed in registers , then the caller would not have 
saved parameters passed in registers to memory . Otherwise , 
when parameters are of a number and type such that all of 
the parameters are not capable of being passed in registers , 
then the caller would save those parameters that were not 
passed in registers to memory . Accordingly , the compiler 
may need to insert instructions in the callee to save a 
parameter passed in a register to memory . 
[ 0096 ] If a parameter has not been saved by the caller , the 
register parameter may be saved to its home memory 
location in operation 906 prior to any address - based refer 
ence to the parameter . Operation 906 may be performed by 
compiler - inserted instructions in a callee . 
[ 0097 ] If it is determined that the caller has not provided 
a natural memory location for the parameter passed in a 
register to the callee , the callee allocates a home location for 
the register parameter in operation 908 . A parameter passed 
in a register may be saved to a home memory location 
allocated by the callee in operation 906 prior to any address 
based reference to the parameter . The callee may allocate a 
home memory location for the register in any desired 
memory location . In various embodiments , the callee may 
allocate a home memory location for the register input 
parameter in its own stack frame , such as in the local 
variable save area 111 of optional area for callee use 109 ( see 
FIG . 1 ) . 
[ 0098 ] In various embodiments , the method 900 may be 
invoked when a function is called . In various other embodi 
ments , the method 900 may be invoked in response to a need 
to obtain the address of one or more input parameters , e . g . , 
an instruction that takes an address of an operand . 
10099 ] The method 900 is described with respect to a 
single register parameter . In various embodiments , the 
method may be performed repeatedly for each register input 
parameters associated with a function call . In other embodi 
ments , the method 900 may be modified so that it is 
performed once , but the various operations are performed 
for all register input parameters associated with a function 
call . 
[ 0100 ] In various embodiments , when a use of an address 
for a particular register parameter is encountered , the opera 
tion 908 , in which a home location is allocated by the caller , 
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may be performed individually for the particular register 
parameter . In other embodiments , when a use of an address 
for a particular register parameter is encountered , the opera 
tion 908 may be performed for all of register input param 
eters associated with a function call . 
[ 0101 ] In various embodiments , when a use of an address 
for a particular register parameter is encountered , the opera 
tion 906 , in which a register parameter is stored in its home 
location , may be performed individually for the particular 
register parameter . In various embodiments , when a use of 
an address for a particular register parameter is encountered , 
the operation 906 may be performed for all of the register 
input parameters associated with a function call . 
10102 ] In various embodiments , the method 900 may be 
invoked for all register input parameters of one or more 
particular data types , e . g . , integral , floating point , vector , etc . 
In various embodiments , the method 900 may be invoked for 
all register input parameters of one or more stored in one or 
more types of registers . For example , when a use of an 
address for an unnamed parameter stored in a GPR is 
encountered , all parameters stored in a GPR register are 
saved to their home locations . The saving of parameters 
stored in a GPR register to their home locations may be 
performed in conjunction with an initialization step of the 
processing of variadic unnamed parameters . 
[ 0103 ] In various embodiments , the method 900 may be 
invoked when a compiler analyzes an input parameter list of 
a callee . In various embodiments , the method 900 may be 
invoked when a compiler determines that a caller has 
allocated a register save or a register overflow area , or both . 
In various embodiments , the method 900 may be invoked 
when a compiler determines that home locations have been 
allocated in the caller ' s stack frame . In one embodiment , the 
presence of a register save area and , optionally , a parameter 
overflow area is determined by the presence of unnamed 
parameters as indicated by a prototype . In another embodi 
ment , the presence of a register save area and , optionally , a 
parameter overflow area is determined by the presence of a 
va _ start indication . In another embodiment , the presence is 
determined by the presence of at least one parameter having 
its home location in the parameter overflow area . In another 
embodiment , the presence is determined by the presence of 
at least one actual in - memory parameter in a parameter list 
of a called function . In one embodiment , the presence is 
determined by a combination of two or more of the above 
described criteria . 
[ 0104 ] The present invention may be a system , a method , 
and / or a computer program product . The computer program 
product may include a computer readable storage medium 
( or media ) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
aspects of the present invention . 
10105 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 

( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0106 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0107 ] Computer readable program instructions for carry 
ing out operations of embodiments of the present invention 
may be assembler instructions , instruction - set - architecture 
( ISA ) instructions , machine instructions , machine dependent 
instructions , microcode , firmware instructions , state - setting 
data , or either source code or object code written in any 
combination of one or more programming languages , 
including an object oriented programming language such as 
Smalltalk , C + + or the like , and conventional procedural 
programming languages , such as the “ C ” programming 
language or similar programming languages . The computer 
readable program instructions may execute entirely on the 
user ' s computer , partly on the user ' s computer , as a stand 
alone software package , partly on the user ' s computer and 
partly on a remote computer or entirely on the remote 
computer or server . In the latter scenario , the remote com 
puter may be connected to the user ' s computer through any 
type of network , including a local area network ( LAN ) or a 
wide area network ( WAN ) , or the connection may be made 
to an external computer ( for example , through the Internet 
using an Internet Service Provider ) . In some embodiments , 
electronic circuitry including , for example , programmable 
logic circuitry , field - programmable gate arrays ( FPGA ) , or 
programmable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of 
embodiments of the present invention . 
0108 Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
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blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 

[ 0109 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 

[ 0110 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0111 ] The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions . 
[ 0112 ] The descriptions of the various embodiments of the 
present disclosure have been presented for purposes of 
illustration , but are not intended to be exhaustive or limited 
to the embodiments disclosed . Many modifications and 
variations will be apparent to those of ordinary skill in the 
art without departing from the scope and spirit of the 
described embodiments . The terminology used herein was 
chosen to explain the principles of the embodiments , the 
practical application or technical improvement over tech 
nologies found in the marketplace , or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed herein . 

What is claimed is : 
1 . A computer - implemented method for allocating 

memory , comprising : 
determining that a prototype of a callee function is within 

a scope of a caller , the caller being a module containing 
a function call to the callee function ; 

determining , in response to determining that the prototype 
of the callee function is within the scope of the caller , 
that the function call includes one or more parameters 
that cannot be passed in registers ; and 

inserting instructions in the caller to allocate a register 
save area in a memory for the one or more parameters 
that cannot be passed in registers . 

2 . The method of claim 1 , wherein the method further 
comprises inserting instructions in the caller to allocate a 
parameter overflow area in the memory . 

3 . The method of claim 2 , wherein the inserting instruc 
tions is performed in response to determining the function 
call includes the one or more parameters that cannot be 
passed in registers . 

4 . The method of claim 1 , wherein the memory is a stack 
frame of the caller . 

5 . The method of claim 1 , wherein the one or more 
parameters that cannot be passed in registers are unnamed 
parameters . 

6 . The method of claim 5 , wherein determining that the 
function call includes one or more parameters that cannot be 
passed in registers includes determining that the function 
call includes the unnamed parameters . 

7 . The method of claim 1 , wherein the method is per 
formed by a compiler . 

8 . A system for allocating memory , comprising : 
a processor ; and 
a memory to store a compiler and one or more modules , 

the compiler being comprised of instructions that when 
executed by the processor , cause the processor to 
perform a method comprising : 

determining that a prototype of a callee function is within 
a scope of a caller , the caller containing a function call 
to the callee function ; 

determining , in response to determining that the prototype 
of the callee function is within the scope of the caller , 
that the function call includes one or more parameters 
that cannot be passed in registers ; and 

inserting instructions in the caller to allocate a register 
save area in the memory for the one or more parameters 
that cannot be passed in registers . 

9 . The system of claim 8 , wherein the method further 
comprises inserting instructions in the caller to allocate a 
parameter overflow area in the memory 

10 . The system of claim 9 , wherein the inserting instruc 
tions is performed in response to determining the function 
call includes the one or more parameters that cannot be 
passed in registers . 

11 . The system of claim 8 , wherein the memory is a stack 
frame of the caller . 

12 . The system of claim 8 , wherein the one or more 
parameters that cannot be passed in registers are unnamed 
parameters . 

13 . The system of claim 12 , wherein determining that the 
function call includes one or more parameters that cannot be 
passed in registers includes determining that the function 
call includes the unnamed parameters . 

14 . A computer program product for allocating memory , 
comprising a computer readable storage medium having 
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program instructions embodied therewith , the program 
instructions readable by a processor to cause the processor 
to : 

determining that a prototype of a callee function is within 
a scope of a caller , the caller containing a function call 
to the callee function ; 

determining , in response to determining that the prototype 
of the callee function is within the scope of the caller , 
that the function call includes one or more parameters 
that cannot be passed in registers ; and 

inserting instructions in the caller to allocate a register 
save area in the memory for the one or more parameters 
that cannot be passed in registers . 

15 . The computer program product of claim 14 , wherein 
the method further comprises inserting instructions in the 
caller to allocate a parameter overflow area in the memory . 

16 . The computer program product of claim 15 , wherein 
the inserting instructions is performed in response to deter 
mining the function call includes the one or more parameters 
that cannot be passed in registers . 

17 . The computer program product of claim 14 , wherein 
the memory is a stack frame of the caller . 

18 . The computer program product of claim 14 , wherein 
the one or more parameters that cannot be passed in registers 
are unnamed parameters . 

19 . The computer program product of claim 18 , wherein 
determining that the function call includes one or more 
parameters that cannot be passed in registers includes deter 
mining that the function call includes the unnamed param 
eters . 


