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(57) ABSTRACT

A method for allocating memory includes an operation that
determines whether a prototype of a callee function is within
a scope of a caller. The caller is a module containing a
function call to the callee function. In addition, the method
includes determining whether the function call includes one
or more unnamed parameters when a prototype of the callee
function is within the scope of the caller. Further, the method
may include inserting instructions in the caller to allocate a
register save area in a memory when it is determined that the
function call includes one or more unnamed parameters.
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CONDITIONAL STACK FRAME
ALLOCATION

STATEMENT REGARDING PRIOR
DISCLOSURES BY THE INVENTOR OR A
JOINT INVENTOR

[0001] The following disclosure(s) are submitted under 35
U.S.C. 102(b)(1)(A): Messages 1141 (2013-11) and 1149
(2013-11) posted to the GCC (compiler) website (http://gcc.
gnu.org/ml/gce-patches) as a mailing list message. Message
316 (2013-11) posted to the glibc (system library and
dynamic loader) website (https://sourceware.org/ml/libc-al-
pha) as mailing list messages. Power Architecture 64-bit
ELF V2 ABI Specification, OpenPOWER ABI for Linux
Supplement, 21 Jul. 2014.

BACKGROUND

[0002] The present disclosure relates to compiling source
code in a computer system, and more specifically, to the
manner in which a compiler provides stack space associated
with passing parameters to a function when it is called and
how a home memory location for a parameter passed in a
register may be provided.

[0003] A function definition or prototype typically
declares parameters in a parameter list between parentheses.
For example, the function “func1” may be defined as: void
funcl (int x, float y, long 7). The parameters of funcl are x,
y, and z. The parameters are of data type integral, float, and
long, respectively. The term “parameter” may be used to
refer to a variable named in the parenthesized parameter list
and “argument” may be used to refer to a particular value
that is used in a function call. However, those skilled in the
art may refer to the value that is used in a function call as a
parameter and may a variable as an argument, the intended
meaning being clear from the context.

[0004] Inthe some programming languages, such as the C
language, a function can have a variable number of argu-
ments. A function that can have a variable arguments is
referred to as a variadic function. A variadic function may be
declared with an ellipsis as its last parameter, matching zero
or more arguments on a call and indicating that the types and
number of arguments may vary. An example of a variadic
function is printf (int x, floaty, . . . ).

[0005] An application binary interface (“ABI”) is the set
of rules that must be followed by any interface between two
program modules at the level of machine code. Among other
things, an ABI defines how functions are called and how
arguments are passed to functions, i.e., calling conventions.
Every parameter has a data type. An ABI generally specifies
how each of the various different data types is passed when
a function is called. Generally, arguments can be passed in
memory, registers, or a combination of memory and regis-
ters. Generally, an ABI may specify that a particular argu-
ment is to be passed in a register or a memory location. A
compiler typically compiles source code according the rules
and conventions specified in an ABL

SUMMARY

[0006] According to embodiments of the present disclo-
sure, a computer-implemented method for allocating
memory includes an operation that determines whether a
prototype of a callee function is within a scope of a caller.
The caller is a module containing a function call to the callee
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function. In addition, the method includes determining
whether the function call includes one or more unnamed
parameters when a prototype of the callee function is within
the scope of the caller. Further, the method may include
inserting instructions in the caller to allocate a register save
area in a memory when it is determined that the function call
includes one or more unnamed parameters.

[0007] Various embodiments are directed to a system and
computer program product for allocating memory.

[0008] The above summary is not intended to describe
each illustrated embodiment or every implementation of the
present disclosure.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0009] The drawings included in the present application
are incorporated into, and form part of, the specification.
They illustrate embodiments of the present disclosure and,
along with the description, serve to explain the principles of
the disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

[0010] FIG. 1 shows the relative layout of elements in a
stack frame according to various embodiments.

[0011] FIG. 2 depicts a correspondence between general
purpose registers and a register save area according to
various embodiments.

[0012] FIG. 3 is a block diagram of an example of a
computing device in which various embodiments of this
disclosure can be implemented.

[0013] FIG. 4 is a simplified diagram showing registers
that may be included in a processor of a computing device,
according to various embodiments.

[0014] FIG. 5 shows a method for a compiler to generate
instructions for a function call in accordance with various
embodiments.

[0015] FIG. 6 shows a method for a compiler to generate
instructions for a function call when the prototype of the
called function is known, according to various embodi-
ments.

[0016] FIG. 7 shows a method for a compiler to generate
instructions for a function call when the prototype of the
called function is unknown, according to various embodi-
ments.

[0017] FIG. 8 depicts examples intended to illustrate vari-
ous methods for a compiler to generate instructions for a
function call, according to various embodiments.

[0018] FIG. 9 shows a method for a compiler to generate
instructions for a callee function in accordance with various
embodiments.

[0019] FIG. 10 shows a method for compiler to generate
instructions for a callee function in accordance with various
embodiments.

[0020] While the invention is amenable to various modi-
fications and alternative forms, specifics thereof have been
shown by way of example in the drawings and will be
described in detail. It should be understood, however, that
the intention is not to limit the invention to the particular
embodiments described. On the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention.
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DETAILED DESCRIPTION

[0021] Aspects of the present disclosure relate to compil-
ing source code in a computer system, with more particular
aspects relating to the manner in which a compiler provides
stack space associated with passing parameters to a function
when it is called and how a home memory location for a
parameter passed in a register may be provided. While the
present disclosure is not necessarily limited to such appli-
cations, various aspects of the disclosure may be appreciated
through a discussion of various examples using this context.
[0022] FIG. 1 shows the relative layout of elements in a
stack frame 100 according to various embodiments. The
stack frame 100 includes minimum elements 102, a param-
eter save area 104, and an optional area for callee use 109.
The parameter save area 104 includes a register save area
106 and a parameter overflow area 108. The minimum
elements 102 are required. The minimum elements 102
consume 32 bytes. The optional area for callee use 109 may
include a local variable save area 111. A stack pointer 103
(“SP”) points to the lowest address in the stack frame, which
may be referenced as SP+0.

[0023] In various embodiments, the minimum elements
102 may include a back chain double word, a CR (condition
register) save word, a reserved word, an LR (link register)
save double word, and TOC (table of contents) pointer
double word.

[0024] In one embodiment, the register save area 106 is
the first 64 bytes of the parameter save arca 104. The lowest
address in the parameter save area 104 is at SP+32. The
lowest address in the parameter overflow area 108 is just
above the highest address of the register save area 106. For
example, if 64 bytes are allocated for the register save area
106, the lowest address in the parameter overflow arca 108
is at SP+96. In various embodiments, a processor provides
eight general purpose registers (“GPRs”) for passing param-
eter and return values. In one example, registers r3-r10 are
GPRs provided for passing parameters and return values.
Each of the registers r3-r10 is 64 bits wide, which corre-
sponds to a double word. The register save area 106 provides
an area for storing values that may be contained in the GPRs
r3-r10. In various embodiments, there is a one-to-one cor-
respondence between GPR register numbers and an address
offset in the register save area 106. See FIG. 2, for example,
which shows a correspondence between the GPRs and the
register save area. In FIG. 2, the first eight bytes of the
register save area 106 correspond to GPR 13, the next eight
bytes correspond to GPR r4, and so on.

[0025] In this description and in the claims, the term
“parameter”” may be used to refer to either a variable named
in the parenthesized parameter list of a function prototype or
a value used in a function call. Similarly, the term “argu-
ment” may be used to refer to either a particular value that
is used in a function call or a variable named in the
parenthesized parameter list of a function prototype. The
meaning of these terms will be apparent to one skilled in art
based on the context.

[0026] The parameter overflow area 108 is optional, how-
ever, a legacy ABI ftreats the register save area 106 as
required. One reason for requiring a caller to allocate a
register save area 106 is for use with function calls where the
called function uses a variable number of arguments. Allo-
cating a register save area allows the called function to save
up to eight arguments in the eight GPRs into the register
save area 106. When this save operation is performed, up to
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eight arguments of the function will be arranged in a linear
order on the stack frame 100. When the elements are
arranged in linear order in memory, the called function can
employ a simple “va_list” method to access the arguments.
However, when a legacy ABI requires a register save area
106, the stack frame may be larger than necessary.

[0027] Inthe C language, a variable of type va_list can be
declared. This description uses as an example, a variable of
type va_list named “ap.” However, it will be appreciated that
any name for the variable may be chosen. The variable ap is
initialized using the va_start macro to point to the first
argument. Each time the va_arg macro is subsequently
invoked on ap, it returns the next argument in a list, e.g., the
register save area 106.

[0028] A legacy feature of some programming languages
permits a first function to call a second function in the
absence of a prototype for the second function. As further
described below, this makes it impossible for a compiler to
determine whether the function call includes unnamed
parameters.

[0029] Reducing the minimum size requirement for stack
frames may be important for environments where stack
space is restricted, e.g. Linux kernel code, or where there are
a large number of stacks, e.g. heavily multi-threaded appli-
cations. At the same time, it can be important for a new ABI
to support features of legacy ABIs and programming lan-
guages, such as permitting function calls in the absence of
a prototype, as well as supporting efficient implementations
of variadic functions in accordance with the known ISO C
stdarg facility.

[0030] Conditional Stack Frame Allocation

[0031] According to various embodiments, a compiler
determines whether a prototype of a callee function is within
a scope of a module containing a function call, i.e., whether
the function is declared and “known” to the compiler. When
a prototype is known, the compiler determines whether the
function call includes one or more unnamed parameters.
According to various embodiments, a register save arca 106
in a caller’s stack frame is optionally allocated.

[0032] When a prototype is known, if the function call is
found to include one or more unnamed parameters, the
compiler inserts instructions in object code to allocate a
register save area and, if needed, a parameter overflow area
in a memory. In at least one embodiment, when a register
save area is allocated, the register save area has a fixed size
regardless of the number of arguments being passed.
[0033] When a prototype is known, if the function call is
found to include only named parameters, the compiler
determines whether all parameters of the function can be
passed in registers. If all parameters of the function cannot
be passed in registers, the compiler inserts instructions to
allocate a register save area and a parameter overflow area
in a memory. If all parameters of the function can be passed
in registers, these areas are not allocated in memory.
[0034] When the compiled module is executed (prototype
known), named parameters are passed in their natural reg-
isters. If all parameters of the function cannot be passed in
their natural registers, the parameters that cannot be passed
in a register are passed in the parameter’s natural location in
memory.

[0035] When a prototype of the callee function is not
known, the compiler determines whether all parameters of
the function can be passed in registers. If all parameters can
be passed in registers, the compiler inserts instructions in
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object code to allocate a register save area and, if needed, a
parameter overflow area in the stack frame of the caller. If
all parameters cannot be passed in registers, the compiler
inserts instructions in object code to allocate a register save
area and a parameter overflow area in memory.

[0036] When the compiled module is executed (prototype
unknown), a parameter of vector type is passed in one or
more general purpose registers to the extent that general
purpose registers are available and a parameter of floating
point type is passed in a general purpose register to the
extent that general purpose registers are available. In addi-
tion, the parameter of vector type is also passed in its natural
register, i.e.,, in a vector register, and the parameter of
floating point type is also passed in its natural register, i.e.,
in a floating point register.

[0037] FIG. 3 is a block diagram of an example of a
computing device in which various embodiments of this
disclosure can be implemented. The computing device 200
is one example of a context in which various embodiments
may be implemented. The mechanisms and apparatus of the
various embodiments disclosed herein apply equally to any
appropriate computing device. The major components of the
computing device 200 include one or more processors 202,
a memory 204, a terminal interface 212, a storage interface
214, an Input/Output (“I/O”) device interface 216, and a
network interface 218, all of which are communicatively
coupled, directly or indirectly, for inter-component commu-
nication via a memory bus 206, an I/O bus 208, bus interface
unit (“IF”’) 209, and an I/O bus interface unit 210.

[0038] The computing device 200 may contain one or
more general-purpose programmable central processing
units (CPUs) 202A and 202B, herein generically referred to
as the processor 202. In an embodiment, the computing
device 200 may contain multiple processors; however, in
another embodiment, the computing device 200 may alter-
natively be a single CPU device. Each processor 202
executes instructions stored in the memory 204 and may
include one or more levels of on-board cache. In addition,
each processor 202 includes various registers. In the
example of FIG. 3, the CPU 202A includes a set of registers
REGA and the CPU 202B includes a set of registers REGB.
Both sets of registers REGA and REGB may include GPRs
r0-r31. In addition, both REGA and REGB may include
floating point registers (FPR) fO-f31 and vector registers
(VR) v0-v31. As shown in FIG. 4, registers r3-r10 of GPRs
r0-r31 may be used for parameters and return values, and
registers r14-r31 may be used for local variables. In addi-
tion, registers f1-f13 of floating point registers f0-f31 may be
used for parameters and return values, and registers f14-{31
may be used for local variables. Further, registers v2-v13 of
vector registers v0-v31 may be used for parameters and
return values, and registers v14-v31 may be used for local
variables.

[0039] In an embodiment, the memory 204 may include a
random-access semiconductor memory, storage device, or
storage medium (either volatile or non-volatile) for storing
or encoding data and programs. In another embodiment, the
memory 204 represents the entire virtual memory of the
computing device 200, and may also include the virtual
memory of other computer systems coupled to the comput-
ing device 200 or connected via a network 220. The memory
204 is conceptually a single monolithic entity, but in other
embodiments the memory 204 is a more complex arrange-
ment, such as a hierarchy of caches and other memory
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devices. For example, memory may exist in multiple levels
of caches, and these caches may be further divided by
function, so that one cache holds instructions while another
holds non-instruction data, which is used by the processor or
processors. Memory may be further distributed and associ-
ated with different CPUs or sets of CPUs, as is known in any
of various so-called non-uniform memory access (NUMA)
computer architectures.

[0040] The memory 204 may store all or a portion of the
components and data shown in FIG. 3. The memory 204
may store a compiler 240, a first module 242, a second
module 244, and a stack 246. In one example, the first
module 242 may be source code and the second module 244
may be object code. In another example, the first module 242
may be a user application and the second module 244 may
be a shared library. Any number of modules of any type may
be stored in the memory 204. The stack 246 may store one
or more stack frames, such as the stack frame 100. These
programs and data structures are illustrated in FIG. 3 as
being included within the memory 204 in the computing
device 200, however, in other embodiments, some or all of
them may be on different computer systems and may be
accessed remotely, e.g., via a network 120. The computing
device 200 may use virtual addressing mechanisms that
allow the programs of the computing device 200 to behave
as if they only have access to a large, single storage entity
instead of access to multiple, smaller storage entities. Thus,
while the components and data shown in FIG. 3 are illus-
trated as being included within the memory 204, these
components and data are not necessarily all completely
contained in the same storage device at the same time.
Further, although the components and data shown in FIG. 3
are illustrated as being separate entities, in other embodi-
ments some of them, portions of some of them, or all of them
may be packaged together.

[0041] Inan embodiment, the components and data shown
in FIG. 3 may include instructions or statements that execute
on the processor 202 or instructions or statements that are
interpreted by instructions or statements that execute on the
processor 202 to carry out the functions as further described
below. In another embodiment, the components shown in
FIG. 3 may be implemented in hardware via semiconductor
devices, chips, logical gates, circuits, circuit cards, and/or
other physical hardware devices in lieu of, or in addition to,
a processor-based system. In various embodiments, the
components shown in FIG. 3 may include data in addition to
instructions or statements.

[0042] Still referring to FIG. 3, the computing device 200
may include a bus interface unit 209 to handle communi-
cations among the processor 202, the memory 204, a display
system 224, and the I/O bus interface unit 210. The I/O bus
interface unit 210 may be coupled with the /O bus 208 for
transferring data to and from the various I/O units. The I/O
bus interface unit 210 communicates with multiple 1/O
interface units 212, 214, 216, and 218, which are also known
as I/O processors (IOPs) or /O adapters (I0OAs), through the
1/0 bus 208. The display system 224 may include a display
controller, a display memory, or both. The display controller
may provide video, audio, or both types of data to a display
device 226. The display memory may be a dedicated
memory for buffering video data. The display system 224
may be coupled with a display device 226, such as a
standalone display screen, computer monitor, television, or
a tablet or handheld device display. In an embodiment, the
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display device 226 may include one or more speakers for
rendering audio. Alternatively, one or more speakers for
rendering audio may be coupled with an I/O interface unit.
In alternate embodiments, one or more of the functions
provided by the display system 224 may be on board an
integrated circuit that also includes the processor 202. In
addition, one or more of the functions provided by the bus
interface unit 209 may be on board an integrated circuit that
also includes the processor 202.

[0043] The I/O interface units support communication
with a variety of storage and I/O devices. For example, the
terminal interface unit 212 supports the attachment of one or
more user 1/O devices 220, which may include user output
devices (such as a video display device, speaker, and/or
television set) and user input devices (such as a keyboard,
mouse, keypad, touchpad, trackball, buttons, light pen, or
other pointing device). A user may manipulate the user input
devices using a user interface, in order to provide input data
and commands to the user I/O device 220 and the computing
device 200, and may receive output data via the user output
devices. For example, a user interface may be presented via
the user /O device 220 or display device 226, such as
displayed on a display device, played via a speaker, or
printed via a printer.

[0044] The storage interface 214 supports the attachment
of one or more disk drives or direct access storage devices
222 (which are typically rotating magnetic disk drive storage
devices, although they could alternatively be other storage
devices, including arrays of disk drives configured to appear
as a single large storage device to a host computer, or
solid-state drives, such as flash memory). In another
embodiment, the storage device 222 may be implemented
via any type of secondary storage device. The contents of the
memory 204, or any portion thereof, may be stored to and
retrieved from the storage device 222 as needed. The I/O
device interface 216 provides an interface to any of various
other I/O devices or devices of other types, such as printers
or fax machines. The network interface 218 provides one or
more communication paths from the computing device 200
to other digital devices and computer systems; these com-
munication paths may include, e.g., one or more networks
120.

[0045] Although the computing device 200 shown in FIG.
3 illustrates a particular bus structure providing a direct
communication path among the processors 202, the memory
204, the bus interface 209, the display system 224, and the
I/0 bus interface unit 210, in alternative embodiments the
computing device 200 may include different buses or com-
munication paths, which may be arranged in any of various
forms, such as point-to-point links in hierarchical, star or
web configurations, multiple hierarchical buses, parallel and
redundant paths, or any other appropriate type of configu-
ration. Furthermore, while the 1/O bus interface unit 210 and
the I/O bus 208 are shown as single respective units, the
computing device 200 may, in fact, contain multiple I/O bus
interface units 210 and/or multiple I/O buses 208. While
multiple I/O interface units are shown, which separate the
1/0 bus 208 from various communications paths running to
the various I/O devices, in other embodiments, some or all
of the 1/O devices are connected directly to one or more
system 1/O buses.

[0046] In various embodiments, the computing device 200
is a multi-user mainframe computer system, a single-user
system, or a server computer or similar device that has little
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or no direct user interface, but receives requests from other
computer systems (clients). In other embodiments, the com-
puting device 200 may be implemented as a desktop com-
puter, portable computer, laptop or notebook computer,
tablet computer, pocket computer, telephone, smart phone,
or any other suitable type of electronic device.

[0047] FIG. 3 is intended to depict the representative
major components of the computing device 200. Individual
components, however, may have greater complexity than
represented in FIG. 3, components other than or in addition
to those shown in FIG. 3 may be present, and the number,
type, and configuration of such components may vary.
Several particular examples of additional complexity or
additional variations are disclosed herein; these are by way
of example only and are not necessarily the only such
variations. The various program components illustrated in
FIG. 3 may be implemented, in various embodiments, in a
number of different manners, including using various com-
puter applications, routines, components, programs, objects,
modules, data structures, etc., which may be referred to
herein as “software,” “computer programs,” or simply “pro-
grams.”

[0048] In various aspects, embodiments may provide a
calling convention that combines: simple argument passing
in registers for normal functions, efficient argument passing
for variadic functions, and correct argument passing for
unprototyped (not fully declared) functions while using less
memory for stack space than known ABIs by only allocating
a register save area for a called function when it is needed.

[0049] Many data types are known. Examples include
Boolean, character, enumeration, integral, pointer, floating
and vector data types. There are various subcategories
within these categories, such as short int and double float. In
accordance with various embodiments, each data type is
associated with a register passing prototype. However, to
avoid obscuring the examples in this description, this
description will focus on the register passing prototypes for
a few representative data types. It should be understood that
all known data types may be processed according to the
disclosed embodiments. In addition, with respect to the
discussion of natural registers for data types, integral data
types are referred to as representative of a natural data type
that may be passed in GPRs. However, it should be under-
stood that various other data types be designated as having
GPRs as their natural register.

[0050] It is generally more efficient to pass arguments to
called functions in registers than to construct an argument
list in storage or to push them onto the stack. Since all
computations must be performed in registers anyway,
memory traffic can be eliminated if the caller can compute
arguments into registers and pass them in the same registers
to the called function, where the called function can then use
them for computation in the same registers. Of course, the
number of registers in a processor naturally limits the
number of arguments that can be passed in registers.

[0051] A function prototype lists parameters in a particular
sequence. For example, in the function void funcl (int x,
float y, int z, float w), the parameters X, y, z, and w are listed
in a particular sequence. This sequence is referred to herein
as the parameter or argument sequence of the function call.
In addition, there may be a sequence for the type of
parameter in a function call. In the example, the parameters
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x and z form a sequence of integral type parameters and the
parameters y and w form a sequence of floating point type
parameters.

[0052] According to various embodiments, “natural” reg-
isters for passing parameters of floating point data type are
FPRs f1-f13. Floating point parameters are passed in FPRs
according to their position in the sequence of floating point
parameters in the function call. In addition, in those circum-
stances when not all floating point parameters are passed in
registers, the “natural” memory locations for passing param-
eters of the floating point data type is the parameter overflow
area 108. Floating point parameters are passed in the next
available location in the parameter overflow area 108 in
accordance with the position of the floating point parameter
in the parameter sequence of the function call (i.e., including
non-floating point parameters). For instance, a first floating
point parameter may be passed in FPR fl, a second floating
point parameter may be passed in FPR {2, a third floating
point parameter may be passed in FPR 3, and so forth, until
the floating point registers are exhausted. The next floating
point parameter is then passed in the next available in-
memory location in the parameter overflow area 108, in
accordance with the position of the floating point parameter
in the parameter sequence of the function call (i.e., including
non-floating point parameters).

[0053] According to various embodiments, “natural” reg-
isters for passing parameters of vector data type are VRs
v2-v13. In addition, in those circumstances when not all
vector parameters are passed in registers, the “natural”
memory locations for passing parameters of vector data type
is the parameter overflow area 108 in accordance with the
position of the vector parameter in the parameter sequence
of the function call (i.e., including non-vector parameters).
For instance, a first vector parameter may be passed in VR
v2, a second vector parameter may be passed in VR v3, a
third vector parameter may be passed in VR v4, and so forth,
until the vector parameter registers are exhausted. The next
vector parameter is then passed in the next available in-
memory location in the parameter overflow area 108, in
accordance with the position of the vector parameter in the
parameter sequence of the function call (i.e., including
non-vector parameters).

[0054] According to various embodiments, “natural” reg-
isters for passing parameters of integral data type are GPRs
r3-r10. In addition, in those circumstances when not all
integral data type parameters are passed in registers, the
“natural” memory locations for passing parameters of inte-
gral data type is the parameter overflow area 108. However,
certain rules apply to the use of GPRs. When a parameter of
integral type is to be passed in a GPR, it is passed in the GPR
corresponding to its position in the parameter or argument
sequence of the function call, which includes any floating
point or vector parameters specified in the function call.
When a floating point or vector parameter is present in a
function call, one or more GPRs corresponding to the
position of the parameter in the parameter sequence of the
function call is not used for passing an integral type param-
eter. (Some floating point parameters fit in one GPR but
some need two GPRS and all vector parameters need two
GPRs.) For example, assume that the parameter sequence of
a function call is (int X, float y). The integer parameter x,
which is the first parameter in the parameter sequence, is
passed in the first GPR r3. As a second example, assume that
the parameter sequence of a function call is (float x, int y).
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The first integer parameter y follows the floating point
parameter X in the parameter sequence of the function call.
The first integer parameter y, which follows the first param-
eter in the parameter sequence of the function call, is passed
in the second GPR r4, skipping the first GPR r3. When this
scheme is followed and the GPRs are exhausted, the next
integral parameter is passed in the next available in-memory
location in the parameter overflow area 108, in accordance
with the position of the integral parameter in the parameter
sequence of the function call (i.e., including non-integral
parameters).

[0055] According to various embodiments, structures are
passed in GPRs or corresponding type-dependent register
types for a set of well-defined structures. Parameters of type
float and double are to be passed in their natural registers,
i.e., f1-f13. Vector data types are to be passed in their natural
registers, i.e., v2-v13.

[0056] Generally, a function prototype declares all of the
parameters that are used in a function call. The parameters
declared in a function prototype are referred to herein as
“named parameters.” However, a variadic or “vararg” func-
tion may be called with more arguments than parameters.
When a function has more arguments than parameters, the
arguments that do not correspond to a named parameter are
referred to herein as “unnamed” parameters. Consider the
variadic function prototype: void func2 (int x, floaty, . . . ).
In a first example, a function call that calls this function is
func2 (%, y). In the first example, x and y are named
parameters. In a second example, a function call that calls
the function is func2 (X, y, z). In the second example, x and
y are named parameters, while z is an unnamed parameter.
[0057] Inthe some programming languages, such as the C
language, a first function (a “caller”) can include a function
call to a second function in the absence of a prototype for a
second function (a “callee”). This aspect of the C language
was introduced early in the history of the language. While
omitting a prototype for a second function in a first function
that calls the second function is presently discouraged, there
is legacy code in existence in which callee function proto-
types are missing in the caller. An ABI that requires proto-
types in a caller for all called functions would be incom-
patible with legacy code. As mentioned, it may be important
for a new ABI to support features of legacy ABIs and
programming languages.

[0058] One aspect of portions of software code that
include a function call but do not include a prototype for the
called function is that a compiler cannot determine whether
a parameter in the function call is a named or unnamed
parameter. Consider three function calls: funcl (a, b, ¢),
func2 (x, y), and func2 (X, y, z). Assume the code that
includes these function calls does not include a prototype for
either function. Assume that function funcl is not variadic
while func2 is variadic. In the first function call, because the
compiler is unable to determine that funcl is not variadic, it
is unable to determine whether a, b, or ¢ are named or
unnamed parameters. In second and third function calls, the
compiler is again unable to determine whether x, y, or z are
named or unnamed parameters. Even if the compiler were
able to determine that func2 is variadic, it is unable to
determine which parameters are named and which are
unnamed without a prototype for the function.

[0059] FIG. 5 shows a method 300 for compiler to gen-
erate instructions for a function call (a “caller”) that calls a
function (a “callee”) in accordance with various embodi-
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ments. The method 300 may be compatible with legacy code
in which callee function prototypes are missing in a caller.
In accordance with the method 300 for a caller, when a
compiler encounters caller function (operation 302) when
compiling a source code module, it determines (operation
304) whether the caller includes a fully prototyped declara-
tion for the function to be called. If the called function is
declared with a full prototype, a method 400 for a call with
a (A) known prototype is invoked. Otherwise, when a
prototype is not declared, a method 500 for a call with (B)
an unknown prototype is invoked.

[0060] FIG. 6 shows a method 400 for a function call
where the compiler “knows” the prototype of the called
function, i.e., the prototype is within scope of the code
portion being compiled. (It should be understood that if an
argument in the function call is of a type that does not
correspond to the type specified in the function prototype,
the argument is first converted or promoted to the specified
type.) In operation 402, it is determined whether the callee
function includes any unnamed parameters. If the callee is
not variadic or if the callee is variadic, but the only param-
eters specified in the function call are named, then there are
no unnamed parameters, and the method moves to operation
404. Otherwise, the method moves to operation 412.

[0061] In operation 404, it is determined whether all
parameters can be passed in registers. If all parameters can
be passed in registers, the method moves to operation 406.
If one or more parameters cannot be passed in registers, the
method moves to operation 408. In operation 408, instruc-
tions are inserted in object code to allocate a register save
area 106 and a parameter overflow area, and the method
moves to operation 410. In operation 410, at least one
parameter is passed in the parameter overflow area 108. The
method moves from operation 410 to operation 406. In
operation 406, instructions are inserted in object code to pass
all named parameters corresponding to arguments that cor-
respond to parameter registers in their natural registers.

[0062] In operation 406, any floating point parameters are
passed in FPRs according to a sequence of floating point
parameters in the function call. Similarly, any vector param-
eters are passed in VRs according to a sequence of vector
parameters in the function call. For example, consider the
function void func4 (int x, float y, int z, float w). The floating
point parameter sequence is y, w. Parameter y is passed in
FPR f1 and w is passed in FPR 12, even though y and w are
in the second and fourth positions of the parameter sequence
of the function call.

[0063] In contrast, in operation 406, integral type param-
eters are passed in GPRs according to a parameter sequence
of the function call, not according to a parameter sequence
of integral parameters. Continuing the example of void
func4 (int x, float y, int z, float w), parameter x is passed in
GPR r3 and z is passed in GPR r5. When integral type
parameters are passed in GPRs according to the parameter
sequence of the function call and the parameter sequence
includes floating point or vector data types, particular GPRs
may be skipped. In this example, GPR r4 is skipped. The
GPR r4 corresponds to the second parameter in the param-
eter sequence of the function, which in this example is a
floating point type parameter. The parameter z, which is the
second integral parameter, but the third parameter in the
function call, is placed in the third GPR.
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[0064] In operation 410, at least one parameter is passed
in the parameter overflow area 108. The at least one param-
eter may be a floating point, vector, or integral parameter.
[0065] In operation 412, the callee is variadic and at least
one parameter specified in the function call is unnamed.
Under these conditions, instructions are inserted in object
code to allocate a register save area 106. In addition, if all
parameters cannot be passed in registers, instructions are
inserted in object code to allocate a parameter overflow area
108. The method moves to operation 414.

[0066] In operation 414, named parameters are passed in
their natural register in the same manner as operation 406.
For named parameters of type float or vector, one or more
GPRs corresponding to the sequential position of the named
float or vector parameter is skipped. However, for unnamed
parameters of type float or vector, a parameter is passed in
one or more GPRs corresponding to the sequential position
of the unnamed float or vector parameter. When all param-
eters are not passed in registers, a parameter not passed in a
register is passed in the parameter overflow area 108.
[0067] FIG. 7 shows a method 500 for a function call
where the prototype of the called function is “unknown” to
the compiler, i.e., the prototype is not within scope of the
code portion being compiled. (It should be understood that
arguments in the function call may first be converted or
promoted to conform to various conventions.) In operation
502, it is determined whether all parameters can be passed
in registers. If all parameters can be passed in registers, the
method moves to operation 504. If one or more parameters
cannot be passed in registers, the method moves to operation
506.

[0068] Inoperation 504, instructions are inserted in object
code to allocate a register save area 106. In operation 506,
instructions are inserted in object code to allocate a register
save area 106 and a parameter overflow area 108. Following
both operations, the method moves to operation 508.
[0069] Operation 508 may be understood as having two
parts, even though the operation may be a single operation.
In operation 508 (A), all parameters are passed in their
natural registers according to parameter sequence. Referring
back to operations 406, 410 (for named parameters) and
operation 414 (for named and unnamed parameters), named
parameters are passed in their natural register. Operation 508
(A) is similar to these operations 406, 410, and 414 in that
all parameters are treated as though they were named
parameters in operation 508. All parameters are passed in
their natural register or natural memory location in operation
508, as if they were a named parameter in operations 406,
410, and 414. In operation 508 (B), floating point and vector
parameters are additionally passed in a slot in the GPRs or
in their natural memory locations according to parameter
sequence of the function. Operation 508 (B) is similar to
operation 414 in that unnamed floating point and vector
parameters are passed in one or more GPRs. In other words,
floating point and vector parameters may be passed twice—
once in their natural register and once in one or more GPRs
or a natural memory location.

[0070] To further illustrate, the methods 300, 400, and
500, FIG. 8 depicts several examples.

[0071] Reference number 702 is for a case 1 where the
prototype of the called function is known to the compiler and
all of the parameters are named. In case 1, x, y, Z, and w are
all named parameters of a function having a prototype: “void
funcl(int x, float y, float z, int w);”. Case 1 corresponds to
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a condition in which the method 400 reaches operation 406.
Parameter x is first in the parameter sequence of the func-
tion. Parameter x is passed in the first GPR, r3. Parameter y
is second in the parameter sequence of the function and first
in the sequence of floating point parameters. Parameter y is
passed in the first FPR, f1. The GPR for the second param-
eter in the parameter sequence of the function is skipped.
Parameter z is third in the parameter sequence of the
function and second in the sequence of floating point param-
eters. Parameter z is passed in the second FPR, 2. The GPR
for the third parameter in the parameter sequence of the
function is skipped. Parameter w is fourth in the parameter
sequence of the function. Parameter w is passed in the fourth
GPR, r6.

[0072] Reference number 704 is for a case 2. In case 2, X,
y, and z are named parameters of a function having a
prototype: “void funcl(int x, float y, float z, . . . );”. In case
2, w is an unnamed parameter. Case 2 corresponds to a
condition in which the method 400 reaches operation 414. In
case 2, parameters are passed in a manner identical to case
1.

[0073] Reference number 706 is for a case 3. In case 3, x
is a named parameters and y, z, and w are unnamed
parameters of a function having a prototype: “void func1(int
X, . .. );”. Case 3 corresponds to a condition in which the
method 400 reaches operation 414, but the parameters y, z,
and w are unnamed parameters of type floating point.
Parameter x is first in the parameter sequence of the func-
tion. Parameter x is passed in the first GPR, r3. Parameter y
is second in the parameter sequence of the function and first
in the sequence of floating point parameters. Parameter y is
passed in the second GPR, r4. Parameter z is third in the
parameter sequence of the function and second in the
sequence of floating point parameters. Parameter z is passed
in the third GPR, r5. Parameter w is fourth in the parameter
sequence of the function. Parameter w is passed in the fourth
GPR, r6.

[0074] Reference number 708 is for a case 4. In case 4, it
is not known whether the parameters are named or unnamed,
i.e., the function has been declared as “funcl1( );” or has not
been declared (i.e., an implicit declaration of a function).
Case 4 corresponds to a condition in which the method 500
reaches operation 508. Parameters x, y, z, and w are passed
in GPRs according to their sequential position in the func-
tion call. In addition, floating point type parameters y and z
are passed in FPRs according to their sequential position in
the sequence of floating point parameters.

[0075] FIG. 9 shows a method 800 for compiler to gen-
erate instructions for a callee function in accordance with
various embodiments. The method 800 is somewhat simpli-
fied in comparison to a real world example in that it assumes
that the callee function employs a single variable of the type
va_list. In practice, a single callee function may employ
multiple different variables of the va_type list. Depending on
the algorithm implemented by the callee function, param-
eters may be accessed multiple times or not at all, or a list
of unnamed parameters may be walked multiple times. The
prototype of the callee function is known to the compiler.
The compiler inserts instructions in object code to perform
the operations described in the method 800. In operation
802, it is determined whether the function includes any
unnamed parameters. In various embodiments, if a function
contains an instance of the va_start command, it may be
determined to include unnamed parameters. If the function
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does not include any unnamed parameters, the method
moves to operation 808. If the function includes one or more
unnamed parameters, the method moves to operation 804. In
operation 804, each parameter stored in a GPR is fetched
and saved to the register save area 106. In various embodi-
ments, in operation 804, at least the unnamed parameters are
saved from their respective GPR locations to corresponding
locations in the register save area and the saving of unnamed
parameters may be performed without regard to the number
of va_list variables that may have been declared. The
operation 804 is generally performed just one time per
function call. The method advances to operation 806, where
a va_list pointer, e.g., ap, is initialized to point to the
parameter stored at SP+32. In contrast to operation 804, the
operation 806 may be performed multiple times per function
call, depending on the particular called function, e.g.,
whether the called function uses more than one variable of
the va_list type. From operation 806 the method moves to
operation 808.

[0076] Operations 808-814 are performed for each param-
eter. The operations 808-814 may be performed each time a
parameter is accessed. In operation 808, it is determined
whether the particular parameter is named or unnamed. If
the parameter is named, the method advances to operation
810. In operation 810, the parameter is fetched from its
natural register or its natural memory location according to
parameter sequence of the function and parameter sequence
of the variable type. Operation 810 is similar to the above-
described operation 406, except that operation 406 is con-
cerned with passing parameters and operation 810 is con-
cerned with accessing parameters once they have been
passed.

[0077] In operation 812, an unnamed parameter is
accessed from a stack frame 100. A pointer ap may point to
the parameter. In operation 814, the pointer is updated to
point to the next parameter. One example implementation of
the operations 812-814 employs the following macro. A
va_arg macro has two arguments: the va_list being operated
on and the type of the next argument. Assume the va_list is
called “ap” and the type is called “type”, then a va_arg (ap,
type) may be implemented as: *(type *) ((ap+=round_sizeof
(type)), (ap-round_sizeof(type)).

[0078] More particularly, as shown by the exemplary
implementation of va_arg( ) above, an update in accordance
with embodiments of the present invention does not differ-
entiate between parameters having been passed in parameter
registers (and that have been spilled to memory by step 804)
and those having been passed in memory. Furthermore, in
accordance with embodiments of the present invention, it is
not necessary to prevent a parameter from spanning the
register parameters and the memory parameter arca by
having to identify such cases and include logic in both the
parameter handling logic of the compiler, as well as the
parameter handling logic corresponding to va_arg. Rather, it
is possible to pass such parameters partly in registers and
partly in memory, and a va_arg( ) access may refer to such
a parameter having been passed partially in registers and
partially in memory without any special handling logic. In
accordance with embodiments of the present invention, this
is possible because the caller has allocated a register save
area that enables the saving of register parameters in a
contiguous manner to any memory parameters. In yet
another advantageous aspect of embodiments of the present
invention, the memory overhead of a register save area is
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avoided for most function calls, in particular for those
function calls that have been properly declared with proto-
types in accordance with modern programming practice and
programming language standards, such as those published
by ANSI and ISO.

[0079] The method 800 may be further explained by
referring back to the examples of FIG. 8. In case 1, 702, x,
y, Z, and w are named and will be fetched in operation 810
from r3, f1, {2, and r6, respectively. In case 2, 704, x, y, and
7 are named and will be fetched in operation 810 from r3, f1,
and 12, respectively. The unnamed parameter w will be
fetched from the register save area 106 of the stack frame
100 in operation 812. In case 3, 706, x is named and fetched
from r3 in operation 810. The unnamed parameters y, z, and
w will be fetched from the register save area 106 of the stack
frame 100 in operation 812. In case 4, 708, the compiler did
not know at the point of the function call which parameters
were named and which were unnamed. At the callee func-
tion, the compiler knows which parameters are named and
unnamed. First, assume that all of the parameters X, y, z, and
w are unnamed. The parameters X, y, z, and w will accessed
will be fetched from the register save area 106 of the stack
frame 100 in operation 812. Next assume that the parameters
x and z are unnamed and the parameters y and w are named.
The unnamed parameters x and z will be fetched from the
register save area 106 in operation 812. The named param-
eters y and w will be fetched from their natural registers f1
and r6, respectively, in operation 810.

[0080] Referring now to step 804, in various embodi-
ments, the saving of at least the unnamed parameters from
their respective GPR locations to corresponding locations in
the register save area may be performed without regard to
the number of va_list variables that may have been declared.
[0081] Assigning Memory Addresses to Input Parameters
[0082] As described above, it is generally desirable to pass
parameters to called functions in registers. However, in
some languages, the called function may need to obtain the
address of one or more input parameters. In the C program-
ming language, the unary operator & takes the address of its
operand. For example, the statement “p=&c;” takes the
address of ¢ and assigns it to p. In other languages, refer-
ences to an address of an input parameter are implicitly
created by language features, such as by-reference passing.
[0083] The unary & operator cannot be applied to “register
variables.” A register variable is a variable stored in a
register. Parameters passed to a callee function in a register,
e.g., a GPR, FPR, or VR are examples of register variables.
In order to allow a callee function to obtain an address of one
of its input parameters that is stored in a register, the input
parameter must be first saved to a memory location.
[0084] One approach for allowing a callee function to
obtain an address of an input parameter is to require a caller
to allocate memory locations for all parameters it passes in
registers to a callee function and then save all of the
parameters passed in registers in the allocated memory
locations. For example, fixed locations in the register save
area of the caller’s frame could always be allocated by a
caller for all of the parameters passed to a function. How-
ever, as described above, it may be desirable to conserve
stack space and this approach may result in a significant
amount of allocated, but unused, stack space. In another
approach, all input parameters passed in registers may be
saved by the callee to the callee’s local stack frame. How-
ever, this approach can result in duplicate memory locations
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being allocated for register variables. As described above, a
caller allocates memory locations for variables passed in
registers in certain cases, e.g., a register save area is allo-
cated by a caller for functions with unknown prototypes or
known prototypes with unnamed parameters. Memory allo-
cated by a callee to save register parameters would duplicate
the register save area allocated by the caller in these cases,
which may result in more stack space being allocated than
is required.

[0085] According to various embodiments, a “home loca-
tion” is determined or allocated for each register variable,
i.e., a parameter passed in a register in a function call. An
address in memory of a variable is deemed to be its home
location. When the address of a variable is taken, e.g., by the
unary & operator, the address is the home location of the
variable.

[0086] FIG. 10 shows a method 900 to generate instruc-
tions for a callee function in accordance with various
embodiments. The method 900 may be performed by a
compiler inserting instruction in various locations in object
code. In some cases, the instructions may be provided in
source code. The method 900 may be used to assign “home”
memory addresses to input parameters passed in registers in
a function call to a callee function. The method 900 shows
general operations that may be performed and one example
of a sequence for performing the operations for a single
parameter. As described below, the method 900 may be
adapted to perform the operations 902-906 in variety of
different ways.

[0087] According to various embodiments, it is deter-
mined, in operation 902, whether the caller has allocated a
natural memory location for a register parameter. The opera-
tion 902 may make this determination when the callee
function is compiled by determining whether the prototype
for the callee function declares any unnamed parameters,
determining whether named parameters are of a number and
type such that all of the named parameters are capable of
being passed in registers, and using the rules employed by
the compiler when the caller function was compiled. When
compiling the callee function, the compiler always knows
the number and types of named parameters and always
knows whether unnamed parameters are used. (However,
the compiler does not know number/types of unnamed
parameters.) These are specified as part of the function
definition of the callee function being compiled.

[0088] Ifthe compiler determines in operation 902 that the
callee only uses named parameters and that the named
parameters are of a number and type such that all of the
named parameters are capable of being passed in registers,
then if it is assumed that the prototype was in scope when the
caller was compiled, the compiler knows that the caller did
not allocate any memory for the parameters. This case
corresponds with determining in operation 404 of the
method 400 that all parameters can be passed in registers and
operation 406. Accordingly, the callee needs to allocate a
home memory location for a named parameter in this case
and under this assumption that the prototype was known to
the caller.

[0089] Ifthe compiler determines in operation 902 that the
callee only uses named parameters and that the named
parameters are of a number and type such that all of the
named parameters are not capable of being passed in reg-
isters, then if it is assumed that the prototype was in scope
when the caller was compiled, the compiler knows that the
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caller allocated a register save area and a parameter overtlow
area. This case corresponds with determining in operation
404 of the method 400 that all parameters cannot be passed
in registers and operation 408. Accordingly, the callee does
not need to allocate a home memory location for a named
parameter in this case and under this assumption that the
prototype was known to the caller.

[0090] Ifthe compiler determines in operation 902 that the
callee only uses named parameters and it is assumed that the
prototype was not known to the caller, then the compiler
knows, when compiling the callee, that the caller allocated
at least a register save area. This case corresponds with
operation 504 of the method 500. In addition, if the compiler
determines that the named parameters are of a number and
type such that all of the named parameters are not capable
of being passed in registers, the compiler knows that the
caller would have allocated both a register save area and a
parameter overflow area. This case corresponds with opera-
tion 506 of the method 500. Accordingly, the callee does not
need to allocate a home memory location for a named
parameter in this case and under this assumption that the
prototype was not known to the caller.

[0091] Ifthe compiler determines in operation 902 that the
callee uses at least one unnamed parameter and it is assumed
that the prototype was known to the caller, then the compiler
knows, when compiling the callee, that the caller allocated
at least a register save area. In addition, if the compiler
determines that the named parameters are of a number and
type such that all of the named parameters are not capable
of being passed in registers, the compiler knows that the
caller would have allocated both a register save area and a
parameter overflow area. These cases correspond with
operation 412 of the method 400. If the named parameters
are of a number and type such that all of the named
parameters are not capable of being passed in registers, then
all of the parameters are not capable of being passed in
registers. Accordingly, the callee does not need to allocate a
home memory location for a named parameter in this case
and under this assumption that the prototype was not known
to the caller.

[0092] Ifthe compiler determines in operation 902 that the
callee uses at least one unnamed parameter and it is assumed
that the prototype was not known to the caller, then the
compiler knows, when compiling the callee, that the caller
allocated at least a register save area. This case corresponds
with operation 504 of the method 500. In addition, if the
compiler determines that the named parameters are of a
number and type such that all of the named parameters are
not capable of being passed in registers, the compiler knows
that the caller would have allocated both a register save area
and a parameter overflow area. This case corresponds with
operation 506 of the method 500. If the named parameters
are of a number and type such that all of the named
parameters are not capable of being passed in registers, then
all of the parameters are not capable of being passed in
registers. Accordingly, the callee does not need to allocate a
home memory location for a named parameter in this case
and under this assumption that the prototype was not known
to the caller.

[0093] To summarize, if the compiler determines the
callee function includes only named parameters and deter-
mines that named parameters are of a number and type such
that all of the named parameters are capable of being passed
in registers, instructions must be inserted into the callee to
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allocate a register save area 106. Otherwise, the compiler
can assume that at least a register save are would have been
allocated by the caller and the callee need not allocate a
register save area 106. In addition, if the named parameters
are of a number and type such that all of the named
parameters are not capable of being passed in registers, the
compiler can assume that a parameter overflow area would
have been allocated by the caller and the callee need not
allocate a register save area 106 or a parameter overtflow area
108.

[0094] If it is determined in operation 902 that the caller
has allocated a natural memory location for the register
parameter(s), the natural memory location(s) provided by
the caller may be used or “set” as the home memory
location(s) for the register parameter(s) in operation 904.
[0095] Inoperation 905, it may be determined whether the
caller has saved one or more parameter(s) to its (their)
natural memory location. The operation 905 may make this
determination using logic similar to that described for deter-
mining whether the caller would have allocated a memory
location for parameters. When parameters are of a number
and type such that all of the named parameters are capable
of being passed in registers, then the caller would not have
saved parameters passed in registers to memory. Otherwise,
when parameters are of a number and type such that all of
the parameters are not capable of being passed in registers,
then the caller would save those parameters that were not
passed in registers to memory. Accordingly, the compiler
may need to insert instructions in the callee to save a
parameter passed in a register to memory.

[0096] If a parameter has not been saved by the caller, the
register parameter may be saved to its home memory
location in operation 906 prior to any address-based refer-
ence to the parameter. Operation 906 may be performed by
compiler-inserted instructions in a callee.

[0097] If it is determined that the caller has not provided
a natural memory location for the parameter passed in a
register to the callee, the callee allocates a home location for
the register parameter in operation 908. A parameter passed
in a register may be saved to a home memory location
allocated by the callee in operation 906 prior to any address-
based reference to the parameter. The callee may allocate a
home memory location for the register in any desired
memory location. In various embodiments, the callee may
allocate a home memory location for the register input
parameter in its own stack frame, such as in the local
variable save area 111 of optional area for callee use 109 (see
FIG. 1).

[0098] In various embodiments, the method 900 may be
invoked when a function is called. In various other embodi-
ments, the method 900 may be invoked in response to a need
to obtain the address of one or more input parameters, e.g.,
an instruction that takes an address of an operand.

[0099] The method 900 is described with respect to a
single register parameter. In various embodiments, the
method may be performed repeatedly for each register input
parameters associated with a function call. In other embodi-
ments, the method 900 may be modified so that it is
performed once, but the various operations are performed
for all register input parameters associated with a function
call.

[0100] In various embodiments, when a use of an address
for a particular register parameter is encountered, the opera-
tion 908, in which a home location is allocated by the caller,
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may be performed individually for the particular register
parameter. In other embodiments, when a use of an address
for a particular register parameter is encountered, the opera-
tion 908 may be performed for all of register input param-
eters associated with a function call.

[0101] In various embodiments, when a use of an address
for a particular register parameter is encountered, the opera-
tion 906, in which a register parameter is stored in its home
location, may be performed individually for the particular
register parameter. In various embodiments, when a use of
an address for a particular register parameter is encountered,
the operation 906 may be performed for all of the register
input parameters associated with a function call.

[0102] In various embodiments, the method 900 may be
invoked for all register input parameters of one or more
particular data types, e.g., integral, floating point, vector, etc.
In various embodiments, the method 900 may be invoked for
all register input parameters of one or more stored in one or
more types of registers. For example, when a use of an
address for an unnamed parameter stored in a GPR is
encountered, all parameters stored in a GPR register are
saved to their home locations. The saving of parameters
stored in a GPR register to their home locations may be
performed in conjunction with an initialization step of the
processing of variadic unnamed parameters.

[0103] In various embodiments, the method 900 may be
invoked when a compiler analyzes an input parameter list of
a callee. In various embodiments, the method 900 may be
invoked when a compiler determines that a caller has
allocated a register save or a register overflow area, or both.
In various embodiments, the method 900 may be invoked
when a compiler determines that home locations have been
allocated in the caller’s stack frame. In one embodiment, the
presence of a register save area and, optionally, a parameter
overflow area is determined by the presence of unnamed
parameters as indicated by a prototype. In another embodi-
ment, the presence of a register save area and, optionally, a
parameter overflow area is determined by the presence of a
va_start indication. In another embodiment, the presence is
determined by the presence of at least one parameter having
its home location in the parameter overflow area. In another
embodiment, the presence is determined by the presence of
at least one actual in-memory parameter in a parameter list
of a called function. In one embodiment, the presence is
determined by a combination of two or more of the above
described criteria.

[0104] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
aspects of the present invention.

[0105] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
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(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0106] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0107] Computer readable program instructions for carry-
ing out operations of embodiments of the present invention
may be assembler instructions, instruction-set-architecture
(ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, or either source code or object code written in any
combination of one or more programming languages,
including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The computer
readable program instructions may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of
embodiments of the present invention.

[0108] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
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blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0109] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0110] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0111] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

[0112] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
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What is claimed is:
1. A computer-implemented method for allocating
memory, comprising:
determining that a prototype of a callee function is within
a scope of a caller, the caller being a module containing
a function call to the callee function;

determining, in response to determining that the prototype
of the callee function is within the scope of the caller,
that the function call includes one or more parameters
that cannot be passed in registers; and

inserting instructions in the caller to allocate a register

save area in a memory for the one or more parameters
that cannot be passed in registers.

2. The method of claim 1, wherein the method further
comprises inserting instructions in the caller to allocate a
parameter overflow area in the memory.

3. The method of claim 2, wherein the inserting instruc-
tions is performed in response to determining the function
call includes the one or more parameters that cannot be
passed in registers.

4. The method of claim 1, wherein the memory is a stack
frame of the caller.

5. The method of claim 1, wherein the one or more
parameters that cannot be passed in registers are unnamed
parameters.

6. The method of claim 5, wherein determining that the
function call includes one or more parameters that cannot be
passed in registers includes determining that the function
call includes the unnamed parameters.

7. The method of claim 1, wherein the method is per-
formed by a compiler.

8. A system for allocating memory, comprising:

a processor; and

a memory to store a compiler and one or more modules,

the compiler being comprised of instructions that when
executed by the processor, cause the processor to
perform a method comprising:

determining that a prototype of a callee function is within

a scope of a caller, the caller containing a function call
to the callee function;

determining, in response to determining that the prototype

of the callee function is within the scope of the caller,
that the function call includes one or more parameters
that cannot be passed in registers; and

inserting instructions in the caller to allocate a register

save area in the memory for the one or more parameters
that cannot be passed in registers.

9. The system of claim 8, wherein the method further
comprises inserting instructions in the caller to allocate a
parameter overflow area in the memory.

10. The system of claim 9, wherein the inserting instruc-
tions is performed in response to determining the function
call includes the one or more parameters that cannot be
passed in registers.

11. The system of claim 8, wherein the memory is a stack
frame of the caller.

12. The system of claim 8, wherein the one or more
parameters that cannot be passed in registers are unnamed
parameters.

13. The system of claim 12, wherein determining that the
function call includes one or more parameters that cannot be
passed in registers includes determining that the function
call includes the unnamed parameters.

14. A computer program product for allocating memory,
comprising a computer readable storage medium having
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program instructions embodied therewith, the program
instructions readable by a processor to cause the processor
to:

determining that a prototype of a callee function is within

a scope of a caller, the caller containing a function call
to the callee function;

determining, in response to determining that the prototype

of the callee function is within the scope of the caller,
that the function call includes one or more parameters
that cannot be passed in registers; and

inserting instructions in the caller to allocate a register

save area in the memory for the one or more parameters
that cannot be passed in registers.

15. The computer program product of claim 14, wherein
the method further comprises inserting instructions in the
caller to allocate a parameter overflow area in the memory.

16. The computer program product of claim 15, wherein
the inserting instructions is performed in response to deter-
mining the function call includes the one or more parameters
that cannot be passed in registers.

17. The computer program product of claim 14, wherein
the memory is a stack frame of the caller.

18. The computer program product of claim 14, wherein
the one or more parameters that cannot be passed in registers
are unnamed parameters.

19. The computer program product of claim 18, wherein
determining that the function call includes one or more
parameters that cannot be passed in registers includes deter-
mining that the function call includes the unnamed param-
eters.



