Office de la Propriete Canadian CA 2505155 A1 2004/06/17

Intellectuelle Intellectual Property
du Canada Office (21) 2 505 1 55
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2003/11/19 (51) CL.Int.”/Int.Cl.” GO6F 15/16, GOBF 11/16

(87) Date publication PCT/PCT Publication Date: 2004/06/17 | (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2005/04/21 ORACLE INTERNATIONAL CORPORATION, US
(86) N° demande PCT/PCT Application No.: US 2003/037172| (72 Inventeur/inventor:

COEKAERTS, WIM A., US
(87) N° publication PCT/PCT Publication No.: 2004/051479
o o (74) Agent: PAUL SMITH INTELLECTUAL PROPERTY LAW
(30) Priornité/Priority: 2002/11/27 (10/305,483) US

(54) Titre : MECANISME DE BATTEMENT DE COEUR POUR SYSTEMES DE GRAPPES
(54) Title:. HEARTBEAT MECHANISM FOR CLUSTER SYSTEMS

100

145
Processor /

Database Instance

Operating Lock Manager

System

Cluster

Bus Device Config File

Driver

Network Device
Driver

16~ 170~

Interconnect
Bus Controller

Node Map

Network Controller

125 Storage
\ Device(s)

Shared Files
k _/"/

(57) Abréegée/Abstract:

A heartbeat system and method Is provided for a cluster system. The cluster includes a plurality of nodes. The nodes access files
on one or more data storage devices over a network. The system includes a quorum file that receives and stores heartbeat
messages from the plurality of nodes indicating they are active. A network controller connects the quorum file to the plurality of
nodes In accordance with IEEE 1394 communication protocol.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

wO 2004/051479 A3 I DDA 0 AT 000) 0000 0 AL O R0

CA 02505155 2005-04-21

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

17 June 2004 (17.06.2004) PCT

(51) International Patent Classification’: GO6F 11/14 (74) Agent:

(10) International Publication Number

WO 2004/051479 A3

KRAGULJAC, Peter; Benesch, Friedlander,

Coplan & Aronoff, LLP, 2300 BP Tower, 200 Public

(21) International Application Number:

Square, Cleveland, OH 44114-2378 (US).

PCT/US2003/037172
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: AZ.,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
19 November 2003 (19.11.2003) CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
- | GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(25) Filing Language: English LK. LR, LS. LT, LU, LV, MA, MD, MG, MK, MN, MW,
(26) Publication Language: English MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD. SE, SG, SK, SL, SY. TJ, TM, TN, TR, TT, TZ, UA,
(30) Priority Data: UG, UZ, VC, VN, YU, ZA, ZM, ZW.

10/305,483 27 November 2002 (27.11.2002) - US (84) Designated States (regional): ARIPO patent (BW, GH,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- GM, KE, LS, MW, MZ, SD, SL, 82, TZ, UG, ZM, ZW),
TION [US/US]; 500 Oracle Parkway, Mail Stop 50P7, EBurasian patent (AM, AZ, BY, KG, KZ, MD, RU, 1], TM),
Redwood Shores, CA 94065 (US). European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,
ES. FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
(72) Inventor: COEKAERTS, Wim, A.; 801 Walnut Street #6, SI, SK, TR), OAPI patent (BE, BJ, CEF, CG, CI, CM, GA,

San Carlos, CA 94070 (US). GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(54) Title: HEARTBEAT MECHANISM FOR CLUSTER SYSTEMS

100

105

115

145
N Processor /-
y Database Instance
120 — . Lock Manager
\ Operating !
System 155
175 Bus Device Cluster
1 " Driver Config File

140 .
—_ | Network Device
Driver

165: 17(

Interconnect
Bus Controller

| Node Map
180

130
Network Controller

125\ Storage
Device(s)
Shared Files

N

[Continued on next page]

(57) Abstract: A heartbeat system
and method is provided for a cluster
system. The cluster includes a plurality
of nodes. The nodes access files on
one or more data storage devices
over a network. The system includes
a quorum file that receives and
stores heartbeat messages from the
plurality of nodes indicating they are
active. A network controller connects
the quorum file to the plurality of
nodes in accordance with IEEE 1394

communication protocol.

CA 02505155 2005-04-21

WO 2004/051479 A3 | HIHHVA!H DDA DA 10 0 A R e

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments

(88) Date of publication of the international search report:
11 November 2004

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

HEARTBEAT MECHANISM FOR CLUSTER SYSTEMS

Field Of The Invention

[0001] The mvention relates to the clustering arts. It finds particular application

to a clustering system having a heartbeat system and method.

Background Of The Invention

[0002] A cluster 1s a group of independent servers that collaborate as a single
system. The primary cluster components are processor nodes, a cluster interconnect
(private network), and a disk subsystem. The clusters share disk access and resources
that manage the data, but each distinct hardware cluster nodes do not share memory.
Each node has its own dedicated system memory as well as its own operating system,
database imstance, and application software. Clusters can provide improved fault
resilience and modular incremental system growth over single symmetric multi-
processors systems. In the event of subsystem failures, clustering ensures high
availability. Redundant hardware components, such as additional nodes,
mterconnects, and shared disks, provide higher availability. Such redundant hardware

architectures avoid single points-of-failure and provide fault resilience.

[0003] In a database cluster, CPU and memory requirements for each node may
vary depending on the database application. Performance and cost requirements also
vary between database applications. One factor that contributes to performance is that
each node 1n a cluster needs to keep other nodes in that cluster informed of its health
and configuration. This has been done by periodically broadcasting a network
message, called a heartbeat, across a network. The heartbeat signal is usually sent
over a private network, a cluster interconnect, which is used for internode

communications. However, lost or delayed heartbeat messages may cause false

reports that a node 1s not functioning.

[0004] In prior systems, the cluster interconnect has been built by installing

network cards in each node and connecting them by an appropriate network cable and

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

configuring a software protocol to run across the wire. The interconnect was typically
a low-cost/slow-speed Ethernet card running TCP/IP or UDP, or a high-cost/high-
speed proprietary interconnect like Compaq’s Memory Channel running Reliable
DataGram (RDG) or Hewlett-Packard’s Hyperfabric/2 with Hyper Messaging

Protocol (HMP). A low-cost/high-speed interconnect would reduce clustering costs

for users and reduce latency during run-time.

[0005] The present 1mnvention provides a new and useful method and system of

clustering that addresses the above problems.

Summary Of The Invention

[0006] In one embodiment, a heartbeat mechanism for a cluster system including
a plurality of nodes is provided. In one aspect, the system comprises a quorum file
that receives heartbeat messages from the plurality of nodes. A network controller
connects the quorum file to the plurality of nodes where the network controller

provides communication with the quorum file in accordance with IEEE 1394

protocol.

[0007] In accordance of another embodiment of the present invention, a method
of monitoring nodes 1n a cluster 1s provided. A quorum file is allocated for storing
status messages received from nodes in the cluster. Status messages are periodically
received from a node in the cluster indicating that the node is active where the status

message 1s received based on IEEE 1394 communication protocol.

Brief Description Of The Drawings

[0008] In the accompanying drawings which are incorporated in and constitute a
part of the specification, embodiments of a system and method are illustrated, which,
together with the detailed description given below, serve to describe the example
embodiments of the system and method. It will be appreciated that the illustrated
boundaries of elements (e.g. boxes or groups of boxes) in the figures represent one

example of the boundaries. One of ordinary skill in the art will appreciate that one

element may be designed as multiple elements or that multiple elements may be

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

designed as one element. An element shown as an internal component of another

element may be implemented as an external component and vise versa.

[0009] Figure 1 1s an example system diagram of one embodiment of a cluster

node 1n accordance with the present invention;

[0010] Figure 2 1s an example diagram of the interconnect bus controller of Figure
L

[0011] Figure 3 1s an example of a shared disk cluster architecture;
[0012] Figure 4 1s an example of an share-nothing cluster architecture;

[0013] Figure 5 1s an example methodology of communicating data using the

interconnect bus;

[0014] Figure 6 1s an example methodology of detecting a topology change;
[0015] Figure 7 1s another example methodology of detecting a topology change;
[0016] Figure 8 1s another embodiment of a cluster including a heartbeat system;
[0017] Figure 9 1s another embodiment of a heartbeat system;

[0018] Figure 10 1s an example methodology of maintaining a quorum file; and

[0019] Figure 11 1s an example methodology of determining the status of a node

using the quorum file.

Detailed Description Of Illustrated Embodiments

[0020] The following includes definitions of selected terms used throughout the

disclosure. Both singular and plural forms of all terms fall within each meaning:

[0021] “Computer-readable medium” as used herein refers to any medium that
participates in directly or indirectly providing signals, instructions and/or data to a
processor for execution. Such a medium may take many forms, including but not
limited to, non-volatile media, volatile media, and transmission media. Non-volatile

media may include, for example, optical or magnetic disks. Volatile media may

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

include dynamic memory. Transmission media may include coaxial cables, copper
wire, and fiber optic cables. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and infra-red data
communications. Common forms of computer-readable media include, for example,
a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic
medium, a CD-ROM, any other optical medium, punch cards, papertape, any other
physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-
EPROM, any other memory chip or cartridge, a carrier wave/pulse, or any other

medium from which a computer can read.

[0022] “Logic”, as used herein, includes but is not limited to hardware, firmware,
software and/or combinations of each to perform a function(s) or an action(s), and/or
to cause a function or action from another component. For example, based on a
desired application or needs, logic may include a software controlled microprocessor,
discrete logic such as an application specific integrated circuit (ASIC), or other

programmed logic device. Logic may also be fully embodied as software.

[0023]} “Signal”, as used herein, includes but is not limited to one or more
electrical signals, analog or digital signals, a change in a signal’s state (e.g. a voltage
increase/drop), one or more computer instructions, messages, a bit or bit stream, or

other means that can be received, tfransmitted, and/or detected.

[0024] “Software”, as used herein, includes but is not limited to one or more
computer readable and/or executable mstructions that cause a computer or other
electronic device to perform functions, actions, and/or behave in a desired manner.
The instructions may be embodied in various forms such as routines, algorithms,
modules or programs including separate applications or code from dynamically linked
libraries. Software may also be implemented in various forms such as a stand-alone
program, a function call, a servlet, an applet, instructions stored in a memory, part of
an operating system or other type of executable instructions. It will be appreciated by
one of ordinary skill in the art that the form of software is dependent on, for example,

requirements of a desired application, the environment 1t runs on, and/or the desires of

a designer/programmer or the like.

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

(0025] Illustrated in Figure 1 is one embodiment of a simplified clustered
database system 100 in accordance with one embodiment of the present invention.
Although two nodes are shown in the example, node 105 and node 110, different
numbers of nodes may be used and clustered in different configurations. Although a
database cluster 1s used as an example, the system can also be applied to other types
of clustered systems. Each node is a computer system that executes software and
processes mformation. The computer system may be a personal computer, a server,
or other computing device. Each node may include a variety of components and
devices such as one or more processors 115, an operating system 120, memories, data
storage devices, data communication buses, and network communication devices.
Each node may have a different configuration from other nodes. An example of one
type of clustering system i1s described in U.S. Patent Number 6,353,836, entitled
“METHOD AND APPARATUS FOR TRANSFERRING DATA FROM THE
CACHE OF ONE NODE TO THE CACHE OF ANOTHER NODE,” assigned to the

present assignee, and which is incorporated herein by reference in its entirety for all

purposes.

[0026] With further reference to Figure 1, node 105 will be used to describe an
example configuration of a node in the clustered database system 100. In this
embodiment, nodes are networked in a data sharing arrangement where each node has
access to one or more data storage devices 125. The data storage devices 125 can
maintain a variety of files such as database files that may be shared by the nodes
connected in the cluster. A network controller 130 connects the node 105 to a
network 135. The operating system 120 includes a communication interface between
software applications running on the node 105 and the network controller 130. For

example, the interface may be a network device driver 140 that is programmed in

accordance with the selected communications protocol of the network 135.

[0027] Examples of communication protocols that may be used for network
controller 130 and network 135 include the Fibre Channel ANSI Standard X3.230
and/or the SCSI-3 ANSI Standard X3.270. The Fibre Chaﬁnel architecture provides
high speed interface links to both serial communications and storage I/0. Other
embodiments of the network controller 130 may support other methods of connecting

the storage device 125 and nodes 105, 110 such as embodiments utilizing Fast-40

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

(Ultra-SCSI), Serial Storage Architecture (SSA), IEEE Standard 1394, Asynchronous
Transter Mode (ATM), Scalable Coherent Interface (SCI) IEEE Standard 1596-1992,

or some combination of the above, among other possibilities.

[0028] The node 105 further includes a database instance 145 that manages and
controls access to data maintained in the one or more storage devices 125. Since each
node 1 the clustered database system 100 executes a database instance that allows
that particular node to access and manipulate data on the shared database in the
storage device 125, a lock manager 150 is provided. The lock manager 150 is an
entity that 1s responsible for granting, queuing, and keeping track of locks on one or
more resources, such as the shared database stored on the storage device 125. Before
a process can perform an operation on the shared database, the process is required to
obtain a lock that grants to the process a right to perform a desired operation on the
database. To obtain a lock, a process transmits a request for the lock to a lock

manager. To manage the use of resources in a network system, lock managers are

executed on one or more nodes in the network.

[0029] A lock 1s a data structure that indicates that a particular process has been
granted certain rights with respect to the resource. There are many types of locks.
Some types of locks may be shared by many processes while other types of locks
prevent any other locks to be granted on the same resource. A more detailed

description of one example of a lock management system is found in U.S. Patent
Number 6,405,274 B1 entitled “ANTICIPATORY LOCK MODE CONVERSIONS
IN A LOCK MANAGEMENT SYSTEM,” assigned to the present assignee, and

which 1s incorporated herein by reference in its entirety for all purposes.

[0030] To keep track of and manage the nodes on the network that may have
access to the storage device 125, a cluster configuration file 155 1s maintained. The
cluster configuration file 155 contains a current list of active nodes in the cluster
including 1dentification information such as node address, node ID, and connectivity
structure (e.g. neighbor nodes, parent-child nodes). Of course, other types of
information may be included in such a conﬁguration file and may vary based on the
type of network system. When a topology change occurs in the cluster, the node 1s

identified and the cluster configuration file 155 is updated to reflect the current state

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

of the cluster node. Examples of topology changes include when a node is added,

removed, or stops operating.

[0031] With further reference to Figure 1, the database cluster system 100 further
includes an interconnect network 160 that provides node-to-node communication
between the nodes 105 and 110. The iﬁterconnect network 160 provides a bus that
allows all nodes on the network to have two-way communication with each other.
The interconnect 160 provides an active communication protocol for sending
messages and data to and from each node over the same bus. To be connected to the
interconnect network 160, each node includes an interconnect bus controller 165
which may be a peripheral card plugged into a PCI slot of the node. The controller
165 includes one or more connection ports 170 for connecting cables between nodes.

Three connection ports are illustrated in port 170 although different numbers of ports

may be used.

[0032] In one embodiment, the interconnect bus controller 165 operates' in
accordance with IEEE 1394 protocol, also known as firewire or i.LINK. In order for
the database instance 145, or other application running on node 105, to communicate
with the interconnect bus 160, a bus device driver 175 is provided. The bus device
driver 175 works with the operating system 120 to interface applications with the
interconnect bus controller 165. For example, database commands from the database
instance 145 are translated by the bus device driver 165 to IEEE 1394 commands or
open host controller mterface (OHCI) commands. The IEEE 1394 OHCI
specification defines standard hardware and software for connections to the IEEE

1394 bus. OHCI defines standard register addresses and functions, data structures,

and direct memory access (DMA) models.

[0033] IEEE 1394 1s a bus protocol that provides easy to use, low cost, high speed
communications. The protocol is very scaleable, provides for both asynchronous and
isochronous applications, allows for access to large amounts of memory mapped
address space, and allows peer-to-peer communication. It will be appreciated by one

of ordinary skill in the art that the interconnect bus controller 165 may be modified to

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

accommodate other versions of the IEEE 1394 protocol such as IEEE 1394a, 1394b,

or other future modifications and enhancements.

[0034] The IEEE 1394 protocol is a peer-to-peer network with a point-to-point
signaling environment. Nodes on the bus 160 may have several ports on them, for
example ports 170. Each of these ports acts as a repeater, retransmitting any data
packets received by other ports within the node. Each node maintains a node map 180
that keeps track of the current state of the network topology/configuration. In its
current form, the IEEE 1394 protocol supports up to 63 devices on a single bus, and
connecting to a device is as easy as plugging in a telephone jack. Nodes, and other
devices, can be instantly connected without first powering down the node and re-

booting the network. Management of the database cluster topology will be described

in greater detail below.

[0035] With the interconnect network 160, the database 145 in node 105 may
directly request data, transmit/receive data, or send messages to a running database
application on node 110 or other node in the cluster. This avoids having to send
messages or data packets to the storage device 125 which would involve one or more

intermediate steps, additional disk I/O, and would increase latency.

[0036] Illustrated in Figure 2 1s an example of the interconnect bus controller 165
based on the IEEE 1394 standard. It includes three ISO protocol layers: a transaction
layer 200, a link layer 205 and a physical layer 210. The layers may be implemented
in logic as defined above including hardware, software, or both. The transaction iayer
200 defines a complete request-response protocol to perform bus transactions with
three basic operations: read, write, and lock. The link layer 205 1s the midlevel layer
and it interacts with both the transaction layer 200 and the physical layer 210,
providing asynchronous and i1sochronous delivery service for data packets.

Components to control data delivery include a data packet transmitter, data packet

receiver, and a clock cycle controller.

[0037] The physical layer 210 provides the electrical and mechanical interface
between the controller 165 and a cable(s) that forms part the interconnect bus 160.

This includes the physical ports 170. The physical layer 210 also ensures that all

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

nodes have fair access to the bus using an arbitration mechanism. For example, when
a node needs to access the bus, it sends a request to 1ts parent node(s), which forwards
the request to a root node. The first request received by the root is accepted; all others
are rejected and withdrawn. The closer the node 1s to the root, the better its chance of
acceptance. To solve consequent arbitration unfairness, periods of bus activity are
split mmto intervals. During an interval, each node gets to transmit once and then it

waits until the next imnterval. Of course, other schemes may be used for arbitration.

[0038] Other functions of the physical layer 210 include data resynchronization,
encoding and decoding, bus initialization, and controlling signal levels. As mentioned
previously, the physical layer of each node also acts as a repeater, translating the
point-to-point connections into a virtual broadcast bus. A standard IEEE 1394 cable
provides up to 1.5 amps of DC power to keep remote devices "aware," even when
they are powered down. Based on IEEE 1394, the physical layer also allows nodes to
transmit data at different speeds on a single medium. Nodes, or other devices, with

different data rate capabilities communicate at the slower device rate.

[0039] The interconnect bus controller 165, operating based on IEEE 1394
protocol, 1s an active port and provides for a self-monitoring/self-configuring seriai
bus. This 1s known as hot plug-and-play that allows users to add or remove devices
even if the bus 1s active. Thus, nodes and other devices may be connected and
disconnected without interrupting network operation. A self-monitoring/self-
configuring logic 215 automatically detects topology changes in the cluster system
based on changes in the interconnect bus signal. The bus controller 165 of a node
places a bias signal on the iterconnect bus 160 once the node is connected to the bus.
Neighboring nodes, through the self-monitoring logic 215, automatically detect the
bias signal which may appear as a change in voltage. Thus, the detected bias signal
indicates that a node has been added and/or that the node is still active. Conversely,
the absence of the bias signal indicates that a node has been removed or has stopped
functioning. In this manner, topology changes can be detected without using polling
messages that are transmitted between nodes. The self-configuring aspect of the logic

215 will be described 1n greater detail with reference to Figures 6 and 7.

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

[0040] An application program interface (API) layer 220 may be included in the
bus controller 165 as an interface to the bus device driver 175. It generally includes
higher level system guidelines/interfaces that bring the data, the end system design,
and the application together. The API layer 220 may be programmed with desired
features to customize communication between the database instance 145 (and other
applications) and the interconnect bus controller 165. Optionally, the functions of the

API layer 220 may be embodied in whole or in part within the transaction layer 200 or
the bus device driver 175.

[0041] With reference to Figure 3, one embodiment of a database cluster
architecture 300 1s shown i which the present system and method may be
implemented. The architecture 300 is generally known as a shared disk architecture
and is similar to Figure 1 except that additional nodes are shown. Generally in a
shared disk database architecture, files and/or data are logically shared among the
nodes with each database instance having access to all data. The shared disk access 1s
accomplished, for example, by direct hardware connectivity to one or more storage
devices 305 that maintain the files. Optionally, the connections may be performed by
using an operating system abstraction layer that provides a single view of all the
storage devices 305 on all the nodes. The nodes A-
D are also connected via the node imterconnect 160 to provide node-to-node
communication. In the shared disk architecture, transactions running on any database
instance within a node can directly read or modify any part of the database on storage

device 305. Access 1s confrolled by one or more lock managers as described

previously.

[0042] With reference to Figure 4, another embodiment of a cluster architecture
is shown that may incorporate the present system and method. Cluster architecture
400 1s typically referred to as a shared-nothing architecture. An example of a shared-
nothing architecture 1s described in U.S. Patent Number 6,321,218, entitled
“HYBRID SHARED NOTHING/SHARED DISK DATABASE SYSTEM,” assigned
to the present assignee, and which is incorporated herein by reference in its entirety
for all purposes. In a pure shared-nothing architecture, database files, for example,

are partitioned among the database instances running on nodes A-D. Each database

10

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

instance or node has ownership of a distinct subset of the data and all access to this
data is performed exclusively by this “owning” instance. The nodes are also

connected with the iterconnect 160.

[0043] For example, if data files stored on storage devices A-D contained
employee files, the data files may be partitioned such that node A controls employee
files for employee names beginning with the letters A-G, node B controls employee
files on storage device B for employee names H-N, node C controls employee files
for names “O-U” on storage device C and node D controls employee file names “V-
Z” on storage device D. To access data from other nodes, a message would be sent
requesting such data. For example, if node D desired an employee file which was
controlled by node A, a message would be sent to node A requesting the data file.
Node A would then retrieve the data file from storage device A and transmit the data
to node D. It will be appreciated that the present system and method may be
implemented on other cluster architectures and configurations such as tree structures

and with other data access rights and/or resirictions as desired for a particular

application.

[0044] Illustrated in Figure 5 1s one embodiment of a methodology associated
with the cluster system of Figure 3 or 4. The embodiment describes directly
transmitting and receiving data between nodes using the interconnect bus 160. The
illustrated elements denote "processing blocks" and represent computer software
instructions or groups of instructions that cause a computer to perform an action(s)
and/or to make decisions. Alternatively, the processing blocks may represent
functions and/or actions performed by functionally equivalent circuits such as a
digital signal processor circuit or an application specific integrated circuit (ASIC).
The diagram, as well as the other illustrated diagrams, does not depict syntax of any
particular programming language. Rather, the diagram 1illustrates functional
information one skilled in the art could use to fabricate circuits, to generate computer
software, or a combination of hardware and software to perform the illustrated
processing. It will be appreciated that electronic and software applications may
involve dynamic and flexible processes such that the illustrated blocks can be

performed in other sequences different than the one shown and/or blocks may be

11

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

combined or, separated into additional components. They may also be implemented
using various programming approaches such as machine language, procedural, object

oriented and/or artificial intelligence techniques. The foregoing applies to all

methodologies described herein.

[0045] With reference to Figure 5, diagram 500 is one example of
communicating data between nodes using the node-to-node interconnect network 160.
When a node (a requesting node) desires data from another node, a data request
message 1s transmitted (block 505) to a destination node via the interconnect bus 160.
The data request may be sent directly to one or more selected destination nodes by
attaching the node name and/or address to the request. If the location of the requested

data 1s unknown, the data request may be broadcasted to each node in the interconnect

network.

[0046] When the data request is received by the appropriate node, the database
instance determines whether the data is available on that node (block 510). If the data
1s not available, a message is transmitted to the requesting node that the data is not
available (block 515). If the data is available, the data is retrieved from local memory
(block 520) by direct memory access, and it is transmitted to the requesting node over
the interconnect bus (block 525). Remote direct memory access can also be
implemented to perform a direct memory to memory transfer. In this manner,
messages and data may be transmitted directly between nodes without having to
transmit the messages or data to a shared storage device. The node-to-node

communication reduces latency and reduces the number of disk inputs/outputs.

[0047] Illustrated in Figure 6 in an example methodology of reconfiguring the
cluster architecture based on the IEEE 1394 bus protocol. When a node in the

database cluster is added, removed, or stops functioning, the database cluster needs to
detect the change, identify the node, and the cluster needs to be reconfigured
appropriately. As described previously, the interconnect bus controller 165 (Figure
1), operating based on IEEE 1394 protocol, is an active port and provides for a self-
configuring serial bus. Thus, nodes and other devices may be connected and

disconnected without interrupting network operation.

12

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

[0048] For example, when a node 1s added to the bus, the bus is reset (block 605).
The terconnect controller 165 of the added node automatically sends a bias signal
on the bus and neighboring nodes can detect its bias signal (block 610). Similarly, the
absence of a node’s bias signal can be detected when a node is removed. In other
words, the interconnect controller 165 of neighboring nodes can detect signal changes
on the imterconnect bus 160 such as a change in the bus signal strength caused by
adding or removing a node. The topology change is then transmitted to all other
nodes in the database cluster. The bus node map is rebuilt with the changes (block
615). In one embodiment, the node map can be updated with the changes. The
database instance 1s notified and it updates the cluster configuration file (block 620) to

keep track of the active nodes for the lock managers. Of course, the order of the

illustrated sequence may be implemented in other ways.

[0049] Using the IEEE 1394 protocol, the interconnect controller 165 is an active
port that includes a self-monitoring/self-configuration mechanism as described above.
With this mechanism, the database cluster system can be reconfigured without the
added latency mvolved with polling mechanisms since nodes can virtually instantly

detect a change in the topology. The active port also allows reconfiguration of the

cluster without having to power-down the network.

[0050] Illustrated m Figure 7 1s another embodiment of detecting and
reconfiguring the cluster. Each node monitors the interconnect bus (block 705) to
detect a change in the bus signal such as the presence or absence of a bias signal.
When a node detects a topology change (block 710), it sends a bus reset signal on the
bus, starting a self-configuring mechanism. This mechanism, managed by the
physical layer 210, may include three phases: bus initialization, tree identification,
and self identification. During bus initialization, active nodes are identified and a
treelike logical topology is built (block 715). Each active node is assigned an address,
a root node 1s dynamically assigned, and the node map is rebuilt or updated with the
new topology (block 720). Once the bus is configured itself, the nodes can then
access the bus. The database mstances on each node are notified of the topology
change (block 725) and the database lock manager(s) are reconfigured with the

changes so that the shared database can be managed properly throughout the cluster
(block 730).

13

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

[0051] It will be appreciated that the network connections, such as network 135
may be implemented in other ways. For example, it may include communications or
networking software such as the software available from Novell, Microsoft, Artisoft,
and other vendors, and may operate using TCP/IP, SPX, IPX, and other protocols
over twisted pair, coaxial, or optical fiber cables, telephone lines, satellites,
microwave relays, radio frequency signals, modulated AC power lines, and/or other
data transmission wires known to those of skill in the art. The network 135 can be
connectable to other networks through a gateway or similar mechanism. It will also

be appreciated that the protocol of the interconnect bus 160 may include a wireless

version.

[0052] With reference to Figure 8, one embodiment of a heartbeat system 1s
shown for a database cluster 800. A heartbeat system 1s a mechanism where nodes
periodically generate signals or messages indicating that they are active and
functioning. The mechanism also allows nodes to determine the health or status of
other nodes 1n the cluster based on the generated signals. As shown, the cluster 800
includes nodes 805 and 810 although any number of nodes may be connected to the
cluster. The 1llustrated nodes may have a similar configuration as the nodes shown 1n

Figure 1. However, a simplified configuration is shown for 1llustrative purposes.

[0053] The nodes 805, 810 share access to a storage device 815 that maintains
files such as database files. The nodes are connected to the storage device 815 by a
shared storage network 820. In one embodiment, the network 820 1s based on IEEE
1394 communication protocol. To communicate with each other, nodes 805, 810 and
the storage device 815 include an IEEE 1394 network controller 825. The network
controller 825 1is similar to the interconnect bus controller 165 and i1n one
embodiment, is a network card that is plugged mto each device. Alternatively, the
controller may be fixed within the node. The network controller 825 includes one or
more ports so that cables can be connected between each device. Additionally, other

types of network connections may be utilized, for example wireless connections, that

are based on the IEEE 1394 protocol, or other similar protocol standards.

[0054] With further reference to Figure 8, each node includes a database instance

830 that controls access to the files on the storage device 815. Since resources are

14

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

shared between nodes in the database cluster 800, each node includes logic to inform
other nodes of their health and includes logic to determine the health of other nodes
on the network. For example, a heartbeat logic 835 is programmed to generate and
transmit a heartbeat message within a predetermined time interval. A heartbeat
message 1s also referred to as a status signal. The predetermined time interval may be
any selected iterval but 1s typically on the order of milliseconds to seconds, for

example, 300 milliseconds to 5 seconds. So if the interval is one second, each node

would transmait a heartbeat message every one second.

[0055] In one embodiment, the network load 1s used as a factor in determining the
heartbeat time interval. For example, if heartbeat messages are transmitted on the
same network as data, then a high frequency of heartbeat messages on the network
may cause delays in data transmission processees. Figure 8 shows a network that
may be impacted by this situation while Figure 9 shows a network that reduces the
amount of network traffic by implementing the heartbeat system on a different

network. It will be further appreciated that the networks of Figures 8 and 9 may also

be configured as a shared-nothing architecture.

[0056] With reference again to Figure 8, heartbeat messages from each node are
collected and stored in a quorum file 840. In this embodiment, the quorum file 840 is
one or more files or areas defined within the storage device 815 which also maintains
the shared files. Each node in the cluster 800 is allocated address space within the
quorum file 840 to which its heartbeat messages are stored. The space of the quorum
tile 840 1s typically equally divided and allocated to each node although other
configurations may be possible. Thus, the quorum file 840 can be implemented as a
separate file for each node rather than one file for the entire cluster even though the
file may be logically defined as one data structure. The quorum file may be
implemented as a stack, an array, a table, a linked list, a text file or other type of data
structure, stored 1n one or more memory locations, registers, or other type of storage

area. Once a node’s quorum space is full, the oldest messages in the space are pushed

out or overwriiten as new messages are received.

[0057] Illustrated 1 Figure 9 1s another embodiment of a database cluster 900

and a heartbeat system. In this embodiment, nodes 905 and 910 communicate with a

15

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

quorum device 915 over a quorum network 920. The quorum network 920 1s a
separate network than a shared storage network 925. Thus, the nodes access shared
files on storage device 930 using a different network bus than the quorum network.
The quorum network 920 may be part of a node-to-node interconnect network as
previously described. The quorum device 915 includes data storage configured to

maintain a quorum file for storing heartbeat messages received from the nodes in the

cluster.

[0058] With further reference to Figure 9, the nodes 905, 910 are connected to
the quorum device 915 and communicate to each other in accordance with the IEEE
1394 communication protocol. Each node and the quorum device 915 includes an
IEEE 1394 controller 935 similar to the controllers described previously. Since a
separate network 1s configured for data communication to the files, each node
includes a separate shared network controller 940 that communicates to the storage
device 930. The shared network controller 940 may be an IEEE 1394 controller or
other network protocol such as fibre channel protocol. A database instance 945

within each node processes data requests over the shared network controller 940.

[0059] A heartbeat logic 950 controls the heartbeat mechanism and uses the IEEE
1394 controller 935 to communicate with the quorum device 915. With this
architecture, adding or replacing a quorum devices 915 within an existing database
cluster 900 can be easily performed with minimal impact on the existing network.
Also, since the heartbeat mechanism 1s processed over a separate network, traffic on
the shared storage network 925 1s reduced allowing quicker responses for data

processing requests. It will also be appreciated that the clusters of Figures 8 and 9

may mclude a node-to-node interconnect network.

[0060] Illustrated 1n Figure 10 1s an example methodology 1000 of a heartbeat
system performed with the quorum file 840 or quorum device 915, both of which will
be referred to below as a quorum file. Once a quorum file 1s configured and activated
within a database cluster, memory within the quorum file is allocated to each of the
nodes 1n the cluster (block 1005). The quorum file may be equally divided and
allocated to each node or other allocations may be defined. Once the quorum file is

active, it receives heartbeat messages from each node in accordance with the IEEE

16

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

1394 protocol (block 1010). Each heartbeat message includes a node identifier that
identifies the node sending the message and a time stamp indicating the time of the
message. Each message received by the quorum file is then stored in its node’s

allocated location (block 1015) and the process repeats for each received heartbeat

message.

[0061] For each node, heartbeat messages are stored in the quorum file in the
order they are received. Thus, by comparing the most recently received time stamps
to the current time, the system can determine which nodes are actively sending their
heartbeat messages. This information can indicate whether a node is active or not.
For example, 1f a node has missed a predetermined number of consecutive time
stamps, a potential problem may be assumed. Any number of messages can be stored
for each node including one message. As mentioned previously, the heartbeat logic of
each node 1s programmed to generate and transmit a heartbeat message at a
predetermined interval. Thus, by reading the data from the quorum file, the logic can
determine 1f a number of missed intervals has occurred. This type of status check

logic may be part of the heartbeat logic 835 or 950 and will be described in greater

detail with reference to Figure 11.

[0062] Figure 11 illustrates an example methodology for determining the health or
status of a node. As described previously, the heartbeat logic includes logic for
generating each heartbeat message at the predetermined time interval and transmitting
the message to the quorum file. At any desired time, the heartbeat logic of a node
may update its cluster configuration file to determine the current set of active nodes
and to determine if any nodes have stopped functioning or otherwise have been
removed from the network. This determination may also be synchronized throughout

the cluster. A status check logic (not illustrated) may be programmed as part of the
heartbeat logic to perform this task as follows.

[0063] To begin a status check, the quorum file is read to review the time stamped
information for each of the nodes (block 1105). Based on the time stamped data
stored for each node, the logic can determine if a particular node is still functioning
based on the time of the last messages written to the quorum file (block 1110). A
threshold may be set to allow a predetermined number of time stamps to be missed

before the determination indicates that a problem may exist. For example, a node

17

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

may be allowed to miss two consecutive time stamps but 1f a third is missed, then the
node may not be functioning properly. The threshold may also be set to other values,

for example a value of 1.

[0064] If a node misses the designated amount of time stamp messages (block
1120), it may not necessarily mean that the node has stopped functioning. Since the
nodes are connected to the quorum file in accordance with the IEEE 1394 standard, an
additional status check can be performed. As explained previously, the IEEE 1394
bus is active and each device connected to the bus can detect if a neighboring node
stops functioning or is removed from the network. This additional information may
help to better determine the health of a node. The status logic can compare the time

stamp information from the quorum file and the node map data maintained by the
IEEE 1394 controller.

[0065] For example, if a node misses its time stamp (block 1120) and the node is
not an active node in the node map (block 1125), then it 1s determined that the node 1s
presumed down or has been removed from the network (block 1130). However, if a
node misses 1ts time stamp but the node is still active 1n the node map, then the node
1s possibly hung-up or some other delay may exist in the cluster (block 1135). If this
is the case, the process may optionally re-check the quorum file for that node to
determine if a new time stamp has been received, a message can be generated to

indicated a possible delay, and/or the node can be removed from the active node list.

[0066] Referring to decision block 1120 again, if a node does not miss its time
stamp, the node is presumably functioning properly. However, an additional
determination may be made by checking if the node 1s active in the node map (block
1140). If the node 1s active (block 1145), then the node 1s functioning properly. If the
node 1s not active (block 1150), then a possible network bus error may exist. Thus,
with information from both the quorum file and the node map of the IEEE 1394 bus, a
more detailed analysis of node health may be determined. Furthermore, in the cluster
configuration shown in Figure 9 in the embodiment where the shared storage network
925 1s also a IEEE 1394 bus, two separate network node maps are maintained. The

additional node map may also be included in the above comparison process and status
check.

18

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

[0067] With reference again to Figure 11, a simplified embodiment may be
implemented. At the decision block 1120, if a node fails to write its time stamps, the
logic can declare that node as non-functioning and remove it from the cluster

configuration file of the database instances. In this process, the node maps are not

reviewed.

[0068] It will be appreciated that the various storage devices described herein,
including the quorum device for allocating a quorum file, may be implemented in
numerous ways. For example, a storage device may include one or more dedicated
storage devices such as magnetic or optical disk drives, tape drives, electronic
memories or the like. A storage device may also include one or more processing
devices such as a computer, a server, a hand-held processing device, or similar device
that contains storage, memories, or combinations of these for maintaining data. The

storage device may also be any computer-readable medium.

[0069] Suitable software for implementing the various components of the present
system and method are readily provided by those of skill in the art using the teachings
presented here and programming languages and tools such as Java, Pascal, C++, C,
CGl, Perl, SQL, APIs, SDKs, assembly, firmware, microcode, and/or other languages
and tools. The components embodied as software 1nclude computer
readable/executable instructions that cause a computer to behave m a prescribed

manner. The software may be as an article of manufacture and/or stored in a

computer readable medium as defined previously.

[0070] While the present invention has been illustraied by the description of
embodiments thereof, and while the embodiments have been described in
considerable detail, it 1s not the intention of the applicants to restrict or in any way
limit the scope of the appended claims to such detail. Additional advantages and
modifications will readily appear to those skilled in the art. Therefore, the invention,
in 1its broader aspects, 1s not limited to the specific details, the representative
apparatus, and illustrative examples shown and described. Accordingly, departures
may be made from such details without departing from the spirit or scope of the

applicant’s general inventive concept.

19

CA 02505155 2005-04-21

WO 2004/051479 PCT/US2003/037172
CLAIMS
I claim:
1. A heartbeat mechanism for a cluster including a plurality of nodes, the system
comprising:

a quorum file for receiving heartbeat messages from the plurality of nodes;
and
a network controller for connecting the quorum file to the plurality of nodes

where the network controller provides communication with the quorum file m

accordance with IEEE 1394 protocol.

2. The heartbeat mechanism as set forth in claim 1 wherein the network

controller is an IEEE 1394 card.

3. The heartbeat mechanism as set forth in claim 1 wherein the quorum file

includes memory allocated within a storage device.

4, The heartbeat mechanism as set forth in claim 3 wherein the storage device

includes both the quorum file and files shared by the plurality of nodes.

5. The heartbeat mechanism as set forth in claim 1 further including a node map

maintained by the network controller for identifying active nodes based on the IEEE
1394 protocol.

6. The heartbeat mechanism as set forth in claim 5 further including status logic
for determining a status of a node from the plurahty of nodes by comparing heartbeat

messages in the quorum file written by the node and the node map.

7. The heartbeat mechanism as set forth in claim 1 wherein the heartbeat

messages include a timestamp.

20

CA 02505155 2005-04-21

WO 2004/051479 PCT/US2003/037172
8. The heartbeat system as set forth in claim 1 wherein the cluster is a database
cluster.

9. A clustered system comprising:

one or more shared files

a plurality of nodes clustered together and having communication access to the

shared files ; and

a quorum file configured for communication with each of the plurality of

nodes based on IEEE 1394 protocol, the quorum file storing status messages from

each of the plurality of nodes.

10. The clustered system as set forth in claim 9 wherein the quorum file 1s
maintained on one or more first storage devices and the shared files are maintained on

one or more second storage devices separate from the first storage devices.

11. The clustered system as set forth 1n claim 9 wherein the quorum file and the

shared files are maintained on one or more common storage devices.

12. The clustered system as set forth in claim 9 further including:

a first network for providing communication between the shared files and the

plurality of nodes; and

a second network for providing communication between the quorum file and

the plurality of nodes.

13. The clustered system as set forth in claim 12 wherein the first network and the

second network communicate data based on IEEE 1394 protocol.

14. The clustered system as set forth in claim 12 wherein the first network and the

second network are the same network.

15. The clustered system as set forth in claim 9 wherein the status messages

include a timestamp.

21

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

16. The clustered system as set forth in claim 9 further including a common

network for connecting the plurality of nodes to both the one or more shared files and

the quorum file.

17. The clustered system as set forth in claim 9 further including a heartbeat logic
maintained 1n each of the plurality of nodes that periodically generates a status

message and transmits the status message to the quorum file in accordance with the
IEEE 1394 protocol.

18. The clustered system as set forth i claim 9 wherein the clustered system

includes a database cluster.

19. A method of momitoring nodes 1n a cluster, the method comprising the steps
of:

allocating a quorum file for storing status messages received from nodes in the

cluster; and

periodically receiving a status message from a node in the cluster indicating
that the node 1s active, the status message being received based on IEEE 1394

communication protocol.

20. The method as set forth i claim 19 further including maintaining a node map

of active nodes 1n the cluster based on the IEEE 1394 communication protocol.

21. The method as set forth in claim 20 further including determining whether a

node 1s active by comparing status messages in the quorum file and the node map.

22. The method as set forth in claim 19 further including generating status
messages at selected time intervals and transmitting the status messages to the quorum

file 1mn accordance with the IEEE 1394 communication protocol.

23. The method as set forth in claim 19 wherein the allocating step includes

equally allocating portions of the quorum file to each of the nodes.

22

CA 02505155 2005-04-21
WO 2004/051479 PCT/US2003/037172

24. The method as set forth in claim 19 wherein the allocating step includes

defining the quorum file in a storage device containing files accessed by the nodes.

25. The method as set forth in claim 19 wherein the allocating step includes

defining the quorum file in a quorum device including an IEEE 1394 controller.

26. A heartbeat sy<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>