Title: APPLICATOR COMPRISING A STEM CONNECTED TO AN APPLICATOR ELEMENT BY AN ARTICULATION

Abstract: The present invention relates to an applicator comprising: - a gripping member (7), - a stem (6), of longitudinal axis X, connected by its first end to the gripping member (7), - an applicator element (20) connected to a second end of the stem (6) by an articulation comprising a ball joint (206), characterized in that the articulation comprises a rotation axis that coincides with the longitudinal axis X of the stem (6), and the stem (6) is in one piece, and the applicator element (20) is made of metal, ceramic or glass.

Fig. 2
Published: with international search report (Art. 21(3))
Applicator comprising a stem connected to an applicator element by an articulation

The present invention relates to applicators comprising a gripping member, a stem and an applicator element disposed at one end of the wand.

Applicators for makeup or care product that are able to move with respect to the gripping means are known. For example, the document FR 2 753 056 discloses an applicator comprising a product reservoir, a removable cap and a wand. The stem is secured to the cap by an articulation that allows an angular movement with a maximum range of less than or equal to 90°.

The documents FR 2 840 514 and US 4 165 755 describe an applicator comprising a gripping member, a stem connected to the gripping member by an articulation, and an applicator element. The articulation separates the stem into two portions. A first portion is connected to the applicator element. A second portion is connected to the gripping means.

In FR 2 840 514 and in the first two embodiments of the applicator according to US 4 165 755, the two stem portions are articulated by a pivot linkage. The first portion of the stem describes, with respect to the second portion, a movement in a plane perpendicular to the rotation axis. The longitudinal axis of the second stem portion passes through this plane.

In the third embodiment of the applicator according to US 4 165 755, the two stem portions are articulated by a ball joint linkage.

The drawback of this type of applicator is that the applicator element can be oriented only by way of the wand. It is difficult to achieve precision in this orientation, even if the articulation is close to the applicator element. In all cases, the applicator is lacking in degrees of freedom. For example, with this type of applicator, it is not possible to massage the face.

Another drawback resides in that fact that the applicator element is not free to move under the effect of its own weight.
The document US 5 435 328 describes an applicator mounted on a ball joint without play at one end of a wand. The other end of the stem is connected to the gripping means. The articulation axis of the ball joint is perpendicular to the longitudinal axis of the wand.

The document WO201 1/0176856 describes an applicator that pivots about an axis perpendicular to the longitudinal axis of the wand. The axis of the applicator can be located in line with the longitudinal axis of the wand. It may deviate from this axis by more than 90° in the two directions of rotation.

These applicators lack precision and fluidity in their movement.

The invention aims to provide an ergonomic cosmetic applicator which improves the making up or caring, while also carrying out a pleasant and fluid massage, running smoothly over the area of the body in question. The movement must be able to be continuous, regular and without jerking or jolting.

In particular, the invention relates to an applicator that is more flexible and more precise to handle, by way of which the user can also more easily reach all the parts of the face without constraint. It must also be able to lightly massage areas of the face that are more delicate or are more marked by tiredness.

The subject of the invention is an applicator comprising:
- a gripping member,
- a wand, of longitudinal axis X, connected by its first end to the gripping member,
- an applicator element connected to a second end of the stem by an articulation comprising a ball joint,

the articulation comprises a rotation axis that coincides with the longitudinal axis X of the wand, and

the stem is in one piece, and

the applicator element is made of metal, ceramic or glass.

According to the invention, it is preferably chosen an applicator element capable of storing and retaining thermal energy.

The applicator preferably has high thermal capacities. The applicator element may transfer a cool sensation to the user's skin.
This applicator provides fluidity of movement on application, pleasant hand movements and can be oriented in all the desired directions without resistance.

Within the meaning of the invention, the term "ball joint" is understood to mean an articulation formed from a spherical component that can rotate in a hollow housing.

The ball joint linkage is identified by its degrees of freedom: it completely links two components in translation but leaves them free to rotate. It comprises three degrees of linkage (the three translations) and three degrees of freedom (the three rotations). The simplest case is that of two, male and female, spheres. There is no preferred direction from the point of view of behavior. There is only one schematic representation, inasmuch as no direction can be distinguished. When two components are linked by a ball joint, there is a fixed point of one component that coincides with a fixed point of the other component. This point is the center of the connection.

A "ball joint linkage" is distinguished from a "pivot linkage". The latter guides a component in rotation, only allowing rotation about the axis of the linkage. When two solids are in a pivot linkage, there are at least two fixed points of each solid that coincide in each case. The straight line passing through these points constitutes the axis of the linkage. It comprises three degrees of linkage (the three translations) and a single degree of freedom (one rotation).

A "one-piece wand" is understood to be a stem formed from a single part or from a single block. The stem is not articulated. It is not separated into two stem portions: one portion comprising the gripping member and the other portion comprising the applicator element. A stem as defined in FR2840514 or in US 4 165 755 is not a one-piece wand. According to the invention, no stem portion can, for example, form the core of the applicator element or form the free end of the applicator element.

The expression "axial movement of the applicator element" is understood to mean a movement of the latter in the direction of the longitudinal axis of the wand.

The expression "lateral movement of the applicator element" is understood to mean a movement of the latter perpendicularly to the longitudinal axis of the wand.

The expression "hollow housing (or seat), complementary to the ball joint" is understood to mean a cavity in which the ball joint sits, this cavity being configured such
that, in the state of equilibrium of the articulation, more than 30% of the surface of the ball joint is facing a spherical surface of the cavity, preferably more than 60%, and more preferably more than 80%.

5 The articulation

Advantageously, the articulation consists of a spherical ball joint fixed to one end of the applicator element, and of a hollow housing (or seat), complementary to the ball joint, located at a first end of the wand. This configuration is simple to produce and to use.

Preferably, the spherical ball joint is force-fitted into the hollow housing. This fitting is rapid, secure and effective.

According to another embodiment of the invention, the articulation consists of a spherical ball joint fixed to a first end of the wand, and of a hollow housing (or seat), complementary to the ball joint, located at one end of the applicator element.

In this other embodiment, the spherical ball joint of the stem is force-fitted into the hollow housing of the applicator element.

More preferably, the hollow housing is made of plastics material. This choice of material for the hollow housing makes it possible to adjust rubbing and slows down wear.

Even more preferably, the ball joint is made of metal. This choice of material also helps to increase the service life of the articulation.

More advantageous, the articulation is designed to prevent substantial axial and/or lateral movement of the applicator element in relation to the wand.

The absence of axial and/or lateral movement of the applicator element in relation to the stem in the region of the articulation can enable the user to precisely position the applicator element at the location where the product is intended to be applied.

The articulation may comprise a brake for braking the movement of the applicator element with respect to the wand. The brake can exert a braking action regardless of the position of the applicator element in relation to the wand. Alternatively, it is possible for the brake only to exert a braking action in at least one predetermined position of the applicator element in relation to the wand. For example, the brake is a clamp.
The applicator may be designed in such a way that the applicator element maintains the orientation it is given by the user when the latter releases it.

The applicator may also comprise an elastic return means suitable for returning the applicator element into a predetermined orientation when the user releases it, for example in order to align its axis with that of the wand. This return member may consist for example of a constituent element of the articulation. The return member may consist of a sheath and/or of a return lug.

The applicator element

The applicator element may comprise a massage element comprising a substantially smooth outer surface, such as a ball. Alternatively, the outer surface may also be provided with irregularities, such as sculptures in relief, in particular if the massage is carried out in order to abrade epidermal tissue.

Preferably, the applicator element is able to move under the effect of a force of between 0 N and 0.4 N, preferably between 0.01 N and 0.02 N. More preferably, the applicator element is able to move under the effect of its own weight.

Advantageously, there is no rubbing or friction between the applicator element and the seat.

Even more preferably, the applicator element is in one piece. For example, it may be in the form of a sphere, a rugby ball or a tear equipped with a ball joint. In particular, the applicator element has no core, and in particular it has no core that realizes its longitudinal axis.

The applicator element is in particular made of aluminum, titanium, steel, stainless steel, nickel, tin, copper, brass, alloys thereof.

It may comprise at least one material chosen among metal, ceramic and glass.

Advantageously, the applicator element is made of metal. It provides a sensation of freshness, which improves the well-being and relaxation of the person, while increasing the effectiveness of the product applied.

(i) **mass of the applicator element**
Preferably, the applicator element has a mass of at least 0.8 grams and at most 6 grams.

More preferably, the applicator element has a mass of at least 2 grams and at most 4 grams.

Even more preferably, the applicator element has a mass of at least 2.5 grams and at most 3.5 grams.

(ii) Density of the applicator element

Preferably, the applicator element has a density of at least 7.5 and at most 8.5.

More preferably, the applicator element has a density of at least 7.9 and at most 8.1.

(Mi) Specific Heat Capacity

The specific capacity is the amount of heat required to raise the temperature of 1 kg of a substance through 1 K.

It is measured by the standard technique of calorimetric.

Preferably, the applicator element has a specific heat capacity of at least 300 J kg\(^{-1}\) K\(^{-1}\) and at most about 1200 J kg\(^{-1}\) K\(^{-1}\).

More preferably, the applicator element has a specific heat capacity of at least 400 J kg\(^{-1}\) K\(^{-1}\) and at most about 1100 J kg\(^{-1}\) K\(^{-1}\).

Even more preferably, the applicator element has a specific heat capacity of at least 500 J kg\(^{-1}\) K\(^{-1}\) and at most about 1000 J kg\(^{-1}\) K\(^{-1}\).

(iv) Contact between the applicator element and the skin of the user

According to the invention, the applicator element made of metal, glass or ceramic is directly in contact with the skin of the user.
In particular, an applicator including an applicator element with:
- A core made of metal, glass or ceramic, and
- Tooth made of another material than metal, glass or ceramic,
does not belong to the present invention.

The applicator element may be able to hold product by capillary action. The applicator element may have a rectilinear or curved axis, and preferably the axis is rectilinear in order to adapt better to the articulation.

Packaging and application device

Another subject of the invention is a device for packaging and applying a cosmetic product, comprising a container containing the product and an applicator as defined above, the applicator closing the device and the applicator element being inside the container in the closed position.

The applicator may be designed to close the container.

The container may comprise a wiper. The wiper may make it possible to move the stem into a position in which it has zero inclination when the applicator is moved onto the container.

The container and the applicator may be designed such that the stem the applicator is prevented from pivoting in relation to the container when the applicator is put in place on the latter.

A sealed closure of the container can be obtained by sealing means located above the articulation.

The cosmetic product may be in particular a body care product or a facial care product, a makeup product or a hygiene product. In particular, the cosmetic product may be a moisturizing care product, an anti-wrinkle product, a foundation, a gloss, a lip balm, a lipstick, or an eyeshadow.

Picking up of the cosmetic product

According to a first embodiment of the invention, the product is picked up from a container by bringing the applicator element into contact with the product. The latter can adhere temporarily to the surface of the applicator element before being deposited on the skin. Optionally, there may be a zone for retaining cosmetic product
between the stem and the applicator element or even within the applicator itself. The cosmetic product is temporarily stored in this zone before being deposited onto the body surface.

According to a second embodiment of the invention, the applicator comprises a pipette. The cosmetic product is picked up from the container by being drawn through a duct passing through the stem and optionally the applicator element. The duct comprises at least one orifice that leads onto the surface of the stem or of the applicator element. The product flows through this duct and can be temporarily stored therein, in particular in the portion of the duct located inside the wand.

The product is drawn through the orifice that leads onto the surface of the applicator element on account of the negative pressure created in the duct. It passes through the duct in the applicator element and is directed toward the duct in the wand, even if the applicator element is inclined with respect to the latter. It can be stored in the duct in the stem or in a reservoir that leads into this duct.

When a positive pressure is created in the wand, the product follows exactly the opposite path. In this case, the product is expelled from the applicator element after it has passed into the duct in the applicator element.

The gripping means linked to the applicator may comprise a flexible, elastically deformable wall, thereby allowing the user to create a negative pressure therein in order to draw the product into the duct, and then a positive pressure in order to expel it out of the duct and drive it in particular toward the body surface.

Alternatively or in addition, the duct may lead through at least one lateral orifice in the applicator element, this lateral orifice being for example located between two massage elements or between two teeth or bristles when the applicator element comprises at least one series of teeth or bristles.

The cross-sectional area of the duct passing through the applicator element and that of the duct passing through the stem may be produced with different cross sections, so as to avoid leaks of product or clogging.

Application method

A further subject of the invention is a method for applying a cosmetic product to a part of the body or face, characterized in that it comprises the following steps of:
- loading the applicator element of an applicator as defined above with a cosmetic product,
- bringing the applicator element into contact with a body surface,
- moving the applicator in order to sweep an area of the body,
- modifying the orientation of the applicator element with respect to the stem by changing the pressure exerted on this element, in order to massage the area of the body.

When the applicator element is designed to apply a product to a particularly sensitive area, such as an eye contour area, the method may comprise the following steps of:
- positioning the end of the applicator element such that it rests under one eye and aligning the axis of the stem with that of the applicator element, bringing the stem into a substantially horizontal position,
- turning the stem about its axis,
- with the applicator element at a first inclination in relation to the wand, rotating the applicator element about a first axis, in particular an axis perpendicular to the area,
- with the applicator element at a second inclination, different from the first, in relation to the wand, rotating the applicator element about a second axis, in particular an axis not perpendicular to the area,
- changing the resting point.

The invention may be better understood from reading the following detailed description of non-limiting implementation examples and from examining the appended drawing, in which:
- figure 1 is a schematic front view of a device produced in accordance with the invention,
- figure 2 shows a cross section AA of the device from figure 1,
- figure 3 shows, on its own, the ball joint articulation of the applicator of the device from figure 2, after the stem has been pivoted in relation to the gripping member,
- figure 4 shows, on its own, the ball joint articulation of the applicator of the device from figure 2, after the applicator element has been pivoted in relation to the wand, in cross section AA,
- figure 5 shows, on its own, the ball joint articulation of the applicator of the device from figure 2, in two rotary positions of the applicator element in relation to the wand, in cross section AA,
- figure 6 illustrates the field of action of the applicator element in a fixed position of the wand, the rotation axis of the applicator coinciding with the axis of the wand, in cross section AA,
- figure 7 illustrates a rotary movement of the applicator, starting from a resting point of the applicator element, with the stem oriented approximately vertically, in cross section AA,
- figures 8 to 10 show various examples of ball joint articulations, in cross section AA,
- figure 11 is a longitudinal section through an applicator according to the invention having a pipette function, in cross section AA,
- figure 12 illustrates the path of the cosmetic product drawn through an applicator according to the invention having a pipette function, in cross section AA,
- figure 13 illustrates the path of the cosmetic product expelled from an applicator according to the invention having a pipette function, in cross section AA,
- figure 14 is a longitudinal section through an applicator according to the invention having a pipette function, comprising two ducts that lead out of the applicator element, in cross section AA,
- figure 15 is a longitudinal section through an applicator according to the invention provided with an intermediate part that makes it easier to assemble,
- figures 16 to 18 illustrate the use of the applicator according to the invention for eye contour care.

The device 1 shown in figures 1 and 2 is intended for the application of a product P to the face or body, for example a moisturizing cream. It comprises a container 3 containing the product P, and an applicator 7. The applicator is fixed in a more or less
sealed manner on the container when not in use. To this end, the container 3 may comprise, in a conventional manner, a threaded neck 92.

The applicator 7 comprises a stem 6, a gripping member 9 and an applicator element 20. The wand, the applicator member and the applicator element may be aligned along the same longitudinal axis X. The gripping member 9 forms a closure cap for the container 3. To this end, it is provided with an internal thread 91 configured to be screwed onto the threaded neck 92 of the container 3.

The stem 6 and the member 9 may be obtained by molding a thermoplastic material chosen from polyolefms, polypropylenes (PP), polyethylene terephthalates (PET) or a high density polyethylene (HDPE). The thermoplastic material may be introduced into the mould by injection.

The stem 6 is connected to the gripping member 9 in a fixed manner by a first end 61. It is connected to the applicator element 20 by a ball joint articulation 206 located at a second end 62.

Figures 3 to 5 show the ball joint articulation 206. It comprises a generally spherical part 10 formed on the applicator element 20 and a housing or seat 11. having a corresponding shape, inside the stem 6. Such a ball joint allows rotation of the applicator element 20 on itself, about its axis X, in relation to the stem 6, following the arrow shown in figure 3. Of course, the rotation may take place in the clockwise or counterclockwise direction.

The axis Y of the applicator element may be inclined with respect to the axis of the wand, for example in order to take up the position of the axis Y’. This is because the applicator element 20 is maneuverable and can be oriented in relation to the stem 6.

The angle ii formed between the axis X of the stem 6 and the axis Y of the applicator element may be modified by the user. In figures 4 and 5, the applicator element is off-axis to one side and the other of the axis X.

Figure 6 shows the area swept by the applicator element when the longitudinal axis Y of the latter is inclined an angle ii_{max} with respect to X and when the applicator element is set into rotation about X, maintaining this inclination. The extent of the swept area 1000 is the projection of the cone formed by the axes Y on the body surface. Of course, the greater the angle ii_{max}, the larger the surface area of the disk projected by the cone.
The change in orientation of the stem 6 in relation to the applicator element 20 is illustrated in figure 7. The area 1000 swept by the applicator element may be practically point-like, if the user brings about this configuration, but it may be different therefrom, depending on the desired massage effect. Figure 7 illustrates, for example, micro-massage over a target area.

In the examples in figures 8 and 9, ball joint articulations comprising two different seats 11 are shown. In the two cases, in the state of equilibrium of the articulation, more than 30% of the surface of the ball joint is facing a spherical surface of the cavity. These two articulations are in accordance with the invention.

In figure 8, the seat is formed by a spherical cavity hollowed out in the wall 60 of the stem 6. The thickness e of the wall 60 is equal to the diameter d of the ball joint. The ball joint is force-fitted into this cavity, with the desired play, as between the two jaws of a pair of pliers.

In figure 9, the seat is formed by a spherical cavity having a diameter di greater than the thickness e of the wall 60. The ball joint is force-fitted into this cavity, with the desired play. The ball joint 10 is forcibly kept between the two jaws 12 of the cavity 11. Since the thickness ei of the jaws 12 is greater than di, the surface of the ball joint facing the cavity is greater in this figure 9 than in figure 10.

In figure 10, the configuration of the linkage 620 is reversed. The spherical ball joint 10 is positioned at one end of the stem 6. The cavity 11 is located at one end of the applicator element 20. With this configuration, notable mobility of the applicator element 20 is likewise obtained.

Figure 11 shows an applicator that also plays the role of a pipette. The applicator is identical to the one shown in the preceding figures, apart from the fact that it additionally comprises a duct 88 that serves to draw in and expel the cosmetic product. This duct 88 passes through the stem 6 and the applicator element 20. It comprises:

- A portion 5 hollowed out in the wand. This portion passes through the wand. It ends at an orifice 25 at the end of the cavity 11. The longitudinal axis of this portion coincides with the axis X.

- A portion 70 hollowed out in the applicator element 20. This portion passes through the applicator element. It ends at an orifice 27 at the end of the ball joint and at an orifice 17 at that end of the applicator element that is intended to come into contact with
the skin. In the aligned position of the stem and the applicator element, the longitudinal axis of this portion coincides with the axis X.

Figure 12 illustrates by way of arrows the path followed by the product as it is drawn through the pipette. The product passes into the applicator element through the orifice 17, passes through the applicator element through the duct 70 and leaves this element through the orifice 27. It is joined to the portion 5 by the end 25. It can be stored in the portion 5.

In figure 13, the product is expelled from the pipette by following the route of the arrows, in the aligned position of the applicator element and the wand. The product leaves the stem through the orifice 25 in the portion 5. It passes into the applicator element through the orifice 27, passes through the applicator element through the duct 70 and leaves this element through the orifice 17.

In figure 14, the applicator additionally comprises a widened zone 55 located in line with the portion 5. This widened zone serves as a reservoir for storing product. It makes drawing in more effective. In addition, the element 20 comprises two secondary ducts 71 and 72 that form offshoots from the main duct 70. These ducts 71 and 72 lead out of the element through the orifices 28 and 29. The duct 70 could have more offshoots, for example a multiplicity of offshoots. The advantage of multiplying the secondary ducts is that the distribution of the product to the surface of the applicator is improved. By multiplying the ducts, the applicator can release the product in the manner of a sponge.

In figure 15, the applicator comprises an intermediate part 99 located between the seat 6 and the ball joint 10. This intermediate part 99 makes it easier to produce the applicator. This is because, instead of fitting the ball joint 10 directly into the seat 6 of the applicator, said ball joint is first of all fitted into the part 99. Next, this assembly, formed by the part 99 and the ball joint 10, is arranged in the seat 6, for example by force-fitting, by clamping or by snap-fastening.

Figures 16 to 18 show examples of the use of the applicator. Each figure is associated with a hand movement of the person. She can prefer point-wise massage, local massage or care.

The applicator is used for eye contour care. During such care with the stem of the applicator oriented downward (figure 16), the angle formed between the stem and the normal to the area of the face can be relatively high, in order to keep the stem away from
the eye and to make hand movements easier. In the example shown, this angle is around 45°.

Once the applicator element has been loaded with the product, the person applies the element 20 close to the eye. She brings the stem 6 in line with the element 20 and aligns the longitudinal axes of the stem and the element. She turns the stem and the applicator element on themselves as per the arrow shown in figure 16. She thus carries out practically point-like massage at a location she has chosen, for example on account of its sensitivity. The area massaged is the area 1000 centered on the point of contact I between the axis X and the skin.

The person can likewise maintain this point of contact I with the skin while offsetting the stem 6. She brings about an inclination β between the axis X of the stem and the axis Y of the element 20. She can turn the element 20 about the axis Z, which is the normal to the skin passing through I, with this inclination β. The area massaged is enlarged to the surface 1000 indicated in figure 17.

In figure 18, the person moves the element 20 in translation with respect to the skin. β_{max} is for example the maximum inclination between the axis X of the stem and the axis Y of the element 20. The person offsets the stem in order to obtain this inclination, then moves the stem 6 parallel to the contour of the eye, sliding the element 20 over the skin along the arrow. The area 1000 is enlarged at will. The element 20 rubs on the skin. It is moved by sliding in the desired direction when the user exerts a sufficient force on the gripping means to overcome this resistance.
CLAIMS

1. An applicator comprising:
 - a gripping member (7),
 - a stem (6), of longitudinal axis X, connected by its first end to the gripping member (7),
 - an applicator element (20) connected to a second end of the stem (6) by an articulation comprising a ball joint (206),

 the articulation comprises a rotation axis that coincides with the longitudinal axis X of the stem (6), and

 the stem (6) is in one piece, and

 the applicator element (20) is made of metal, ceramic or glass.

2. The applicator according to claim 1 in which the applicator element has a mass of at least 2.5 grams and at most 3.5 grams.

3. The applicator as claimed in either one of the preceding claims, in which the applicator element has a density of at least 7.9 and at most 8.1.

4. The applicator as claimed in either one of the preceding claims, in which the applicator element has a specific heat capacity of at least 500 Jkg$^{-1}$K$^{-1}$ and at most about 1000 Jkg$^{-1}$K$^{-1}$.

5. The applicator as claimed in either one of the preceding claims, characterized in that the applicator element (20) is able to move under the effect of a force of between 0 N and 0.4 N, preferably between 0.01 N and 0.02 N.

6. The applicator as claimed in either one of the preceding claims, characterized in that the applicator element (20) is able to move under the effect of its own weight.
7. The applicator as claimed in any one of the preceding claims, characterized in that the articulation (206) consists of a spherical ball joint (20) fixed to one end of the applicator element, and of a hollow housing (10), complementary to the ball joint (20), located at a first end of the stem (6).

8. The applicator as claimed in any one of the preceding claims, characterized in that the spherical ball joint (20) is force-fitted into the hollow housing (10).

9. The applicator as claimed in any one of the preceding claims, characterized in that the housing is made of plastics material.

10. The applicator as claimed in any one of the preceding claims, characterized in that the applicator element is made of metal.

11. The applicator as claimed in any one of the preceding claims, characterized in that the applicator comprises a pipette.

12. The applicator as claimed in claim 11, characterized in that it is provided with a duct passing through the stem and optionally the applicator element, the duct comprising at least one orifice that leads onto the surface of the stem or of the applicator element, the applicator closing the device and the applicator element being inside the container in the closed position.

13. A device for packaging and applying a cosmetic product, comprising a container containing the product and an applicator as defined in any one of the preceding claims.

14. A method for applying a cosmetic product to a part of the body or face, characterized in that it comprises the following steps of:

- loading the applicator element of an applicator as defined in any one of claims 1 to 12 with a cosmetic product,
- bringing the applicator element into contact with a body surface,
- moving the applicator in order to sweep an area of the body,
- modifying the orientation of the applicator element with respect to the stem by changing the pressure exerted on this element, in order to massage the area of the body.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A45D34/04 A45D40/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A45D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP 2 329 742 A1 (GEKA GMBH [DE]) 8 June 2011 (2011-06-08) paragraph [0024] - paragraph [0031]; figures 1, 1a paragraph [0047]----</td>
<td>1-10, 13, 14</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 851 138 A1 (TECHPACK INT [FR]) 20 August 2004 (2004-08-20) page 5, line 5 - line 25 page 9, line 5 - line 20; figures 1a, 1b, 1c, 1d ----</td>
<td>1-14</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[X] See patent family annex.

* Special categories of cited documents:

* "A" document defining the general state of the art which is not considered to be of particular relevance

* "B" earlier application or patent but published on or after the international filing date

* "L" documents which may throw doubts on priority claim(s) on which it is considered to establish the publication date of another citation or other special reason (as specified)

* "O" document referring to an oral disclosure, use, exhibition or other means

* "P" document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "A" document member of the same patent family

Date of the actual completion of the international search: 27 May 2013

Date of mailing of the international search report: 05/06/2013

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Ehrsam, Sabine

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 10 099127 A (SHISEIDO CO LTD; FIGURA KK) 21 April 1998 (1998-04-21) abstract; figure 1</td>
<td>1, 4, 5</td>
</tr>
<tr>
<td>A</td>
<td>US 2006/054179 A1 (KUZUU MIKI [JP]) 16 March 2006 (2006-03-16) paragraph [0032]; figure 7</td>
<td>1-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 2329742 A</td>
<td>08-06-2011</td>
<td>CN 102085042 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102009057026 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2329742 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011115589 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011135376 A</td>
</tr>
<tr>
<td>EP 2243393 A</td>
<td>27-10-2010</td>
<td>BR PI 1000962 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101843401 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2243393 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2943512 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010227584 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2010111412 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010269842 A</td>
</tr>
<tr>
<td>FR 2851138 A</td>
<td>20-08-2004</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2004270032 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0407017 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2511391 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1722967 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1661483 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1083993 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3574828 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006197952 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060032580 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MY 144102 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1249387 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006054179 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2005023048 A</td>
</tr>
<tr>
<td>US 2001053305 A</td>
<td>20-12-2001</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2005238408 A</td>
<td>27-10-2005</td>
<td>NONE</td>
</tr>
</tbody>
</table>