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(57) Abstract

data,

method utilized for identifying the optimum representation of data.

A distributed hierarchical evolutionary modeling and visualization
of empirical data method and machine readable storage medium for
creating an empirical modeling system based upon previously acquired
The data represents inputs to the systems and corresponding
outputs from the system. The method and machine readable storage
medium utilize an entropy fonction based upon information theory and the
principles of thermodynamics to accurately predict system outputs from
subsequently acquired inputs. The method and machine readable storage
medium identify the most information-rich (i.e., optimum) representation
of a data set in order to reveal the underlying order, or structure, of what
appears to be a disordered system. Evolutionary programming is one
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TITLE
DISTRIBUTED HIERARCHICAL EVOLUTIONARY MODELING
AND VISUALIZATION OF EMPIRICAL DATA
FIELD OF THE INVENTION
The present invention combines the concepts of pictorial representations of

data with concepts from information theory, to create a hierarchy of “objects”,
e.g., features, models, frameworks, and super-frameworks. This invention relates
to a method and a machine readable storage medium of creating an empirical
model of a system, based upon previously acquired data, i.e., data representing
inputs to the system and corresponding outputs from the system. The model is
then used to accurately predict system outputs from subsequently acquired inputs.
The method and machine readable storage medium of the invention utilizes an
entropy function, which is based upon information theory and the principles of
thermodynamics, and the method is particularly suitable for the modeling of
complex, multi-dimensional processes. The method of the invention can be used
for both categorical modeling, i.e., where the output variable assumes discrete
states, or for quantitative modeling, i.e., where the output variable is continuous.
The method of the invention identifies the optimum representation of the data set,
i.e., the most information-rich representation, in order to reveal the underlying
order, or structure, of what outwardly appears to be a disordered system. The use
of evolutionary programming is one method of identifying an optimum
representation. The method is distinguished by its use of both local and global
information measures in characterizing the information content of multi-
dimensional feature spaces. Experiments have shown that local information
measures dominate the predictive capability of the model. The method can thus
be described as a globally influenced, but locally optimized, technique, in contrast
to many other methods, which primarily use global optimization over the entire
data set.
BACKGROUND OF THE INVENTION

INFORMATION THEORY

The idea of using an entropy function in order to describe the information

content of a system was first introduced by C. E. Shannon in his pioneering work,
“A Mathematical Theory of Communication”, Bell System Technical Journal, 27,
379-423; 623-656 (1948). Shannon showed that a definition of entropy similar in
form to a corresponding definition in statistical mechanics could be used to
measure the information gained from the selection of a specific event among an
ensemble of possible events. Shannon’s entropy function can be represented as:

PCT/US00/10425
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H(p,, p,--p,) = Zpk In p,

k=1

where p, represents the probability of occurrence for the k’th event, and uniquely

satisfies the following three conditions:

1. H(p,s.P, ) is a maximum for p, = 1/n fork = 1,....n. This implies that a
uniform probability distribution possesses the maximum entropy. In addition,
H,,.(1/n,1/n,...,1/n) = In n. Therefore, the entropy of a uniform probability
distribution scales logarithmically with the number of possible states;

2. H(AB)=H(A) + H,(B) where A and B are two finite schemes. H(AB)
represents the total entropy of schemes A and B and H, (B) is the conditional
entropy of scheme B given scheme A. When the two scheme distributions are
mutually independent, H,(B) = H(B);

3. H(py,PysPw0) = H(D, sP2s---sp,)- Any event with zero probability of
occurrence in a scheme does not change the entropy function.

Shannon’s work was directed to describing the information content of one-
dimensional electrical signals. In his book Physics from Fisher Information: A
Unification, Cambridge University Press, 1998, Roy Friedan describes the
“Shannon entropy” as a global information measure across an entire data set. An
alternative informational measure, known as “Fisher entropy”, is also described by
Friedan as a measurement of local information across a data set. For |
mathematical modeling, Friedan has recently shown that Fisher entropy is
particularly well suited to discover physical laws.

More recently, T. Nishi has used the Shannon entropy function to define a
normalized “informational entropy” function, which can be applied to any data
set. See: Hayashi, T. and Nishi, T., “Morphology and Physical Properties of
Polymer Alloys”, Proceedings of the International Conference on ‘Mechanical
Behaviour of Materials VI’, Kyoto, 325, 1991. See also: Hayashi, T., Watanabe,
A., Tanaka, H., and Nishi, T., “Morphology and Physical Properties of Three-
Component Incompatible Polymer Alloys”, Kobunshi Ronbunshu, 49 (4), 373-82,
1992.

Nishi’s definition can be summarized as follows: Consider a data set
D={d,,...,d,} with n data elements. If the sum of all the elements d,, is
defined as
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then d;,; can be used to normalize each of the data elements such that
fi=di/dx Vie{l,.. n}

It is then possible to define an informational entropy function, £:

E = (Z f.In £,)/In(1/n) .

The entropy function E has the useful property that it is normalized
between 0 and 1. A perfectly uniform distribution, where f; = 1/n results in an £
value of 1. As the distribution becomes less uniform, the value of £ drops and
asymptotically approaches zero. A significant advantage of the Nishi
informational entropy function £ is that it characterizes the uniformity of any
distribution regardless of the shape of the distribution. In contrast, the commonly
used “standard deviation” is usually interpreted in standard statistics only for
Gaussian distributions.

Prior art methods, such as neural networks, statistical regression, and
decision tree methods, have certain inherent limitations. Although neural
networks and other statistical regression methods have been used for categorical
modeling, they are much better suited and perform better for quantitative
modeling, due to the continuous non-linear sigmoid function used within the
nodes of the network. Decision trees are best suited for categorical modeling, due
to their inability to perform accurate quantitative predictions on continuous output

values.
SUMMARY OF THE INVENTION

The present invention generalizes the concepts of information entropy,
extending those concepts to multi-dimensional data sets. In particular the
quantification of information entropy set forth by Shannon is modified and
applied to data obtained from systems having one or more inputs, or features, and
one or more outputs. The entropy quantification is performed to identify various
subsets of data inputs, or feature subsets, that are information-rich and thus may
be useful in predicting the system output(s). The entropy quantification also
identifies regions, or cells, within the various feature subsets that are information-

rich. The cells are defined in the feature subspaces using a fixed or adaptive

binning process.
The input combinations, or feature combinations, define a feature
subspace. The feature subspaces are represented by binary bit strings, and are

referred to herein as genes. The genes indicate which inputs are present in a
3
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particular subspace, and hence the dimensionality of a particular subspace is
determined by the number of “1” bits in the gene sequence. The information-
richness of all feature subspaces may be searched exhaustively to identify those
genes corresponding to subspaces having desirable information properties.

Note that if the total number of possible subspaces is small, an exhaustive
search may be the preferred method of identifying the most information-rich
subspaces. In many instances, however, the number of possible subspaces is large
enough that exhaustively searching all possible subspaces is computationally
impractical. In those situations, the subspaces are preferably searched using a
genetic algorithm to manipulate the gene sequences. That is, the genes are
combined and/or selectively mutated to evolve a set of feature subspaces having
desirable information properties. In particular, the fitness function for the genetic
feature subspace evolution process is a measure of the information entropy for the
feature subspace represented by that particular gene. Other measures of
information content measure the uniformity of the subspaces with respect to the
output(s). These measures include variance, standard deviation, or a heuristic
such as the number of cells (or percentage of cells) having a specified output-
dependent probability above a certain threshold. These informational measures
may be used to identify genes, or subspaces, having desirable information
properties, i.e., high informational content. In addition, decision tree-based
methods may also be used. Note that these alternative methods may also be used
to identify desirable subspaces when performing exhaustive searches.

In a preferred embodiment, the feature subspace entropy, referred to herein
as global entropy, is preferably determined by calculating a weighted average of
the entropy measurements of the cells within the subspace. An output-specific
entropy measurement may also be used. Cell entropy is referred to herein as local
entropy, and is calculated using a modified Nishi entropy calculation.

An empirical model is then created in a hierarchical manner by examining
combinations of feature subspaces that have been determined to contain high
information content. The feature subspaces may be selected and combined into
models using exhaustive search techniques to find combinations of feature
subspaces that provide highly accurate predictions utilizing test data (sample input
data points having known corresponding outputs). The models may also be
evolved using a genetic algorithm. In this case, the model genes specify which
feature subspaces are utilized, and the length of the model gene is determined by
the number of feature subspaces previously identified as having desirable
informational properties. The fitness function used in the model evolutionary

4
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process 1s preferably the prediction accuracy of the particular model under
consideration.

In accordance with one aspect of the invention, a method of creating an
empirical model of a system, based upon previously acquired data representing
corresponding inputs and outputs to the system, to accurately predict system
outputs from subsequently acquired inputs is provided. The method comprising
the steps of:

(a) acquiring a data set from a number of inputs to the system and
corresponding outputs from the system;

(b) grouping the previously acquired data set into at least one training data
set, at least one test data set, and at least one verification data set, where the sets
may be identical to each other, or may be exclusive or non-exclusive subsets of
the previously acquired data;

(c) determining a plurality of feature subspaces having high global
entropic weights by: ,

(1) selecting a plurality of inputs defining a feature subspace from
said training data set,

(ii) dividing the feature subspace into cells by dividing the range of
each input into subranges, either by fixed or adaptive quantization
methods,

(iif) determining the global entropic weights, either by forming a
weighted average of local cellular entropic weights or a weighted
average of output-specific entropic weights (using, e.g., the
modified Nishi information content);

(d) optionally, examining the frequency of occurrence of each input in the
determined feature subspaces having high entropic weights, and retaining only
those inputs occurring most frequently to define a reduced-dimensionality data
set, and thereafter repeating step (c);

(e) optionally, exhaustively searching over a plurality of the dimensions
(e.g., some or all of the dimensions) of the reduced-dimensionality data set under
a plurality of quantization conditions to determine an optimum or near-optimum
dimensionality and an optimum or near-optimum quantization condition that most
accurately predicts system outputs from system inputs to define a reduced-
dimensionality feature data set;

(f) determining a combination of the determined feature subsets having
high global entropic weights (e.g., either a fraction of, or the entire, feature data
set) that most accurately predicts system outputs from system inputs on said data

set;
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(g) determining a subset of the reduced-dimensionality feature data set
(e.g., either a fraction of or the entire reduced-dimensionality feature data set) that
more accurately predicts system outputs from system inputs on a test data set.

For large data sets, the model creating steps (b)-(g) may then be repeated
on different training and test data sets to find a group of optimum models. This
group of optimum models can be “polled” on new data to develop one or more
predictions resulting from those models. These predictions can be based, for
example, on a winner-takes-all voting rule. A subset of the group of optimum
models that most accurately predicts system outputs from system inputs may then
be determined as follows. The inputs of the test data set are submitted to each
model of a selected subset group of models (which may be randomly selected) and
each subset-predicted output is compared with each test data output. The step of
calculating the subset-predicted output is performed in a manner similar to (b)-(e)
(or optionally (b)-(g)), where a new training and test data set is created using
individual model output predicted values as inputs and actual output values as the
outputs. This step may be repeated for multiple selected subset groups of models.
The selected subset groups of models are then evolved to find an optimum subset
group of models that most accurately predicts system outputs from system inputs
to define a “framework”.

The framework creating steps may further be repeated, in a manner similar
to the model creating steps, to find a group of optimum frameworks. This group
of optimum frameworks can be “polled” on new data to develop one or more
predictions resulting from those frameworks. These predictions can be based, for
example, on a winner-takes-all voting rule. A subset of the group of optimum
frameworks that most accurately predicts system outputs from system inputs may
then be determined as follows. The inputs of the test data set are applied to each
framework of the selected subset group of frameworks and each framework
subset-predicted output is compared with each test data output. The step of
calculating the subset-predicted output is performed in 2 manner similar to (b)-(g),
where a new training and test data set is created using individual model
framework-predicted values as inputs and actual output values as the outputs.
This step may be repeated for multiple selected subset groups of frameworks. The
selected subset groups of frameworks are then evolved to find an optimum subset
group of frameworks, which is referred to as a “super-framework”, that most
accurately predicts system outputs from system inputs.

The optimum model determination steps, the optimum framework
determination steps, or the optimum super-framework determination steps may be

repeated until a predetermined stopping condition has been achieved. The
6
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stopping condition may be defined as, for example: 1) achievement of
predetermined prediction accuracy from the polling of a family of evolutionary
objects; or 2) when the incremental improvement in prediction accuracy drops
below a predetermined threshold; or 3) when no further improvement in prediction
accuracy is achieved.

Distributed hierarchical evolution is an evolutionary process in which
groups of successively more complex interacting evolutionary “objects”, such as
models, frameworks, super-frameworks, etc. are created to model and understand
progressively larger amounts of complex data.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram illustrating the overall flow of the method,;

Figures 2A and 2B show examples of adaptive binning;

Figure 2C shows a method of data balancing;

Figure 3A shows a one-dimensional feature subspace;

Figure 3B shows a two-dimensional feature subspace;

Figure 3C shows a three-dimensional feature subspace;

Figure 4 shows an exemplary binary bit string representing which inputs
are included in a feature subspace;

Figures 5A and 5B is a block diagram illustrating evolution of
“information-rich” input features;

Figure 5C shows a weighted roulette wheel of binary string fitness.

Figure 5D shows a crossover operation diagram.

Figure 6 is a block diagram illustrating a method for calculating local
entropy parameter;

Figure 7 is a block diagram illustrating a method for calculating a global
entropy parameter; ,

Figure 8 illustrates calculating local and global information content;

Figure 9 shows an example of local entropy parameter and global entropy
parameter; '

Figure 10A is a block diagram illustrating a method for determining an
optimum model;

Figure 10B is a block diagram illustrating a method for model evolution;

Figure 11 illustrates a method for generating an information map;

Figure 12 is an example of a gene list and its associated information map;

Figure 13 is a block diagram illustrating a method for the exhaustive
dimensional modeling step;

Figure 14 is a block diagram illustrating a method for the step of

calculating the output state probability vector/output state value;
7
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Figure 15 is a block diagram illustrating a method for calculating a fitness
function for a model gene;

Figure 16 is a block diagram illustrating a method for distributed
hierarchical modeling to evolve a single framework;

Figures 17A and 17B comprise a block diagram illustrating a method for
framework evolution;

Figure 18A is a block diagram illustrating a method for distributed
modeling to evolve a super-framework;

Figure 18B is a list of considerations for super-framework evolution;

Figures 19A and 19B are a block diagram illustrating a method for cluster
evolution;

Figure 19C is a block diagram illustrating a method for discovering data
clusters;

Figure 19D is a block diagram illustrating a method for calculation of a
global clustering index for a pictorial representation.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 is a block diagram illustrating the overall flow of the method 100
of the present invention. As may be appreciated from this figure, an evolutionary
process is used to create a model of a complex system from empirical data. The
preferred method combines multidimensional representations of data 110 with

information theory 120, to create an extensible hierarchy of “evolutionary
objects”, e.g., features 130, models 140, frameworks 150, and super-frameworks
160, etc. The process can be continued to generate further combinations in a
hierarchical manner as indicated at 170.

First, combinations of inputs, also referred to as feature subspaces, are
identified by exhaustive search or by an evolutionary process from an initial
randomly selected feature subspace pool. Optimum combinations of feature
subspaces are then searched or evolved to create models, optimum combinations
of models are further searched or evolved to create frameworks, and optimum
combinations of frameworks are further searched or evolved to create super-
frameworks etc. The successive evolution of more complex evolutionary objects
described above continues until a predetermined stopping condition, for example,
a predetermined model performance, has been achieved. As a rule, the larger the
data set, the more of these objects are created, so that the complexity of the
empirical model reflects the complexity of the interactions of the inputs with the
outputs of the system from which the data was acquired.

In developing the method described herein, several design criteria have

been considered. It is necessary for the method to deal successfully with data
8
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spaces having arbitrary, non-linear structures. It is also desirable that the method
not distinguish between the “forward” problem of predicting outputs knowing
inputs and the “inverse” problem of predicting inputs knowing outputs, thereby
placing the problems of data modeling and control on the same footing. This
implies that only minimal additional model geometry is superposed on the data set
itself. The term “geometry” includes both linear and nonlinear manifolds, such as
introduced in regression techniques. The symmetry implied here also has the
advantage of identifying the most information-rich inputs or combinations of
inputs for the modeling task at hand. This knowledge can be used to develop
optimum strategies for decision making and planning. Finally, the method needs
to be computationally tractable, so that it can in fact be implemented conveniently.
In order to meet these design goals, several existing linear and nonlinear methods
have been carefully analyzed and common themes abstracted out with the goal of
identifying fundamental limitations and opportunities.

The discussion that follows will begin with a description of the basic
method of the evolution of a single model using concepts from information theory
and evolution. Further extensions of the method to address the successive
hierarchical evolution of successively more complex objects to explain larger,
more complex data sets is then described. The application of the underlying
principles of the method to discover input feature clusters even in the absence of
data outputs is then discussed, followed by a description of a method to perform
“information visualization” in multi-dimensional data spaces. The combination of
the method of the present invention with other modeling paradigms such as neural
networks to create hybrid modeling schemes is then detailed. The description
concludes with a new approach to discovering physical laws using the data
modeling approach of the method of the present invention coupled with the field
of genetic programming.

As a point of interest, it is worth noting that fundamental ideas from
information theory provide the core tools required to solve all these problems,
providing the method with a simple, unifying kernel. The concept of entropy
provides a quantitative measure of order (or disorder) in a data space. This
measure can be used as the fitness function for an evolutionary engine to drive the
emergence of order from initially disordered systems. In this sense, information
theory provides the driver and evolutionary programming provides the engine for
systematizing the process of discovery. Finally, the paradigm described in the
method of the present invention is data driven because the information content in
the data itself is used for prediction. The method thus falls squarely in the field of
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empirical modeling as opposed to the field of mathematical modeling with its
inherent constraints of the underlying mathematics.
DATA MODELING:

A framework based on the concepts of informational entropy has been applied
towards the problem of data modeling where either single or multiple output(s)
need to be predicted given a set of inputs. The basic method consists of the
following steps: ‘

1. Data representation or data preprocessing.
2. Data quantization using fixed or adaptive methods to define cell

boundaries.

3. Feature combination selection using genetic evolution and
informational entropy.

4. Determining a subset of the feature data set that most accurately
predicts system outputs from system inputs.
1. Data Representation

In a typical empirically derived data set, several “measurement” inputs and
outputs are provided. Each system input and system output is sampled or
otherwise measured to obtain input and output sequences of data values, referred
to herein as data points. The goal is to extract the maximum information from the
data point inputs in order to predict the data point outputs most accurately. In
many real systems, the data points, or actual measured inputs, may be sufficiently
“information-rich” for them to remain as suitable representations of the data. In
other cases, this may not be so and it may be necessary to transform the data in
order to create more suitable “eigenvectors” by which to represent the data.
Commonly used transformations include singular value decomposition (SVD),
principal component analysis (PCA) and the partial least squares (PLS) method.
The principal component “eigenvectors” which have the largest

corresponding “eigenvalues” are usually used as inputs for the data modeling step.
There are two significant limitations to the principal component selection method:

a. The principal component method only deals with the variance of
the inputs and does not encode any information regarding the outputs. In many
modeling problems, it is the eigenvectors that may have relatively low eigenvalues
that contain the most information with respect to the output property being
modeled.

b. The PCA method performs linear transformations of the inputs.
This may not be the optimum transformation for all problems, especially those
where the input-output relationships are highly non-linear.

10
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In the preferred embodiment of the method described herein, the inputs,
the combinations of which are also known as “input features”, are not transformed
initially. If the subsequent input data sets do not reveal sufficient information
regarding the outputs that need to be modeled, then data transformations such as
those described above may be performed. The primary reason for employing this
strategy is to use actual data, wherever possible, rather than imposing an
additional geometry in the form of a transformation. The form that this additional
geometry takes may be unknown. In addition, avoiding the data transformation
step avoids computational overhead of the transformation step and thus improves
computational efficiency, especially for very large data sets.

Even though the actual data is preferably used without transformation, the
dimensionality may still be reduced by identifying and selecting inputs, or
features, that are more information-rich than other inputs. This may be
particularly desirable when the number of inputs is very large and it may be
impractical to use all the possible features in the final model. The “dimension” of
the data set may be defined as the total number of inputs. Prior to developing an
empirical model, the most information-rich features are preferably identified for
the modeling task at hand. One technique to reduce the number of inputs, or
reduce the dimensionality of the problem, is to eliminate inputs having little
informational content. This may be done by examining the correlation of an input
and the corresponding output. Preferably, however, the dimensionality reduction
is performed by examining each input’s frequency of occurrence in feature
combinations that have been determined to be information-rich, as discussed
below. The less-frequently-occurring inputs may then be excluded in the model
generation process.

For time varying or dynamical systems, an additional complication may
result from the fact that an output at any given time may also depend on both
inputs and outputs at earlier times. In such systems, the correct representation of
the data set is very important. If the inputs corresponding to an output measured
at a particular time are also measured only at that time, the information contained
in the time lags (i.e., the period of time between an input occurrence and the
resulting output occurrence) will be lost. To alleviate this problem, a data table
consisting of an expanded set of inputs can be constructed where the expanded set
of inputs consists of the current set of inputs as well as inputs and outputs at
multiple prior times. This new data table can then be analyzed for information-
rich input combinations spanning a selected time horizon.

An important issue in the creation of the expanded data table is knowing

how far to go back in time. In many cases, this is not known a priori, and by
11
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including too long an earlier time interval (time span), the dimensionality of the
data table can become very large. In order to deal with this issue, multiple smaller
time-spanning data tables can be constructed from the original data table, with
each data table consisting of a given time interval in the past. The time intervals
spanned by each of these newer data tables maybe overlapping, contiguous or
disjoint.. The most information-rich inputs from each of these smaller data tables
can then be collected and combined to create a hybrid data table which include
selected inputs and outputs from the smaller data tables. This final hybrid table
can then be used as the inputs to the data modeling process, as potential
interactions across the time intervals are now included.

For example, if one wants to investigate whether home sales rates affect
commodity lumber prices, but there is a suspected time lag of about two months,
the data table requires matched inputs and outputs where the inputs precede the
outputs by two months for the present invention to discover this time lag. This
can be done by forming one or more data tables (i.e., columns are inputs and
outputs and rows are consecutive times) where the various inputs have different
time lags with respect to a single output to discover what the actual time lag is.
Specifically, a single output may be the price of lumber on day X. The inputs are
then home sales rates on day X, day X-1, day X-2 .... through day X-120 as well
as outputs from day X-1, X-2 ... through X-120. To ensure that the earliest—time
inputs having high information content are not missed, a time interval longer than
the suspected time lag between inputs and corresponding outputs is selected.
Then the next table row has the output equal to the price of lumber on day Y (for
example X+1 or some later date), and the inputs are home sales rateson Y, Y-1,
Y-2, ... Y-120, as well as outputs from day Y-1, Y-2 ... through Y-120 ... . Then
the system will identify the proper time lag by identifying the combination of
inputs that affect the output.

2. Data Quantization and Cell Boundaries Within a Feature Subspace

Once a proper data representation has been established, a data
“quantization” step is performed on each input used to characterize a sample
point. Two quantization methods may be used to divide the range of values of an
input into subranges, i.e., dividing into bins, also known in the art as “binning”.
The binning is performed on each input of a given feature subspace, where each
input corresponds to a dimension of the subspace, which results in the given
feature subspace being divided into cellular regions.

The simplest quantization method is based on fixed-sized subranges, or bin
widths (sometimes known as “fixed binning”) where the entire range of values
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associated with each input is divided into equally-spaced, or equally-sized,
subranges or bins.

Another quantization method, referred to herein as “adaptive
quantization”, best seen in Figure 2A, which might also be called “statistical
quantization”, is based on dividing the range of values into unequally sized
subranges. Ifthe data is uniformly distributed as shown by data bins 210, the bin
sizes will be more or less equal. However, when the data distribution is clustered,
the bin sizes are adaptively adjusted so that each bin contains a nearly equal
number of data points, as shown by bins 220. As seen in Figure 2B, the size of
each subrange, or bin, may be related to the cumulative probability distribution
230 (or histogram) of each input by dividing the input range into equal percentile
subranges and projecting those percentiles onto the range of feature values to
create the bins 240.

In this way, global information on each input is used to adaptively
quantize the data on that input. In this method each input is separately quantized,
that is, quantization is performed on an input by input basis. It should be noted
that the subrange or bin sizes (widths) are generally non-uniform within a given
input, reflecting the shape of the cumulative probability distribution of that input.
The sizes of the subranges may also vary from input to input. Adaptive
quantization (adaptive binning) reduces the possibility of having an empty input
subrange which contain no information, which might otherwise result in
informational gaps in the resulting model.

The size of the subranges, or bins, for a given input may also vary from
subspace to subspace. That is, certain inputs may have a finer resolution binning
when they appear in lower-dimensioned subspaces than when they appear in
higher dimensioned subspaces. This is due to the fact that a certain overall
cellular resolution (number of points per cell) is desired so that meaningful
quantities of data can be grouped, or binned, together in a cell. Because the
number of cells is exponentially proportional to the number of dimensions, higher
dimensioned feature subspace utilize coarser binning for individual inputs so as to
maintain the desired average number of points per cell. Data quantization has
significant implications for the robustness of a modeling method since the
magnitude of the deviation of outlier points from the rest of the data is suppressed
during the quantization (binning) process. For example, if an input value exceeds
the upper limit in the highest subrange (bin), it gets quantized (binned) into that
subrange (bin) regardless of its value.

As used herein a “feature subspace” is defined as a combination of one or

more inputs. A pictorial representation of a feature subspace may be created,
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which is also referred to herein as simply a “subspace”. The subspace is
preferably divided into a plurality of “cells”, the cells being defined by
combinations of subranges of the inputs that comprise the feature subspace. Ina
preferred embodiment, data quantization can be further specified either by
defining the number of subranges (bins) per input (using either fixed or adaptive
methods previously described) or, aiternatively, by defining the mean number of
data points per cell in the feature. This may be viewed as a multidimensional
extension of the adaptive quantization method.

With reference to Figures 3A, 3B, and 3C, fixed-sized binning is shown in
one, two, and three dimensional feature subspaces, respectively. The data set
consists of four data points, DP1-DP4, each having four inputs, or features. The
data set is the same for all three figures. The data points fall into a particular cell
depending upon which feature (or feature combination) is selected. In Figure 3A,
if the one-dimensional subspace represents the third input (designated 0010 — with
the first input corresponding to the left-most bit), DP1 and DP4 fall into cell C1
(DP1=.5, DP4=.3), and DP2 and DP3 fall into cell C2 (DP2=1.2, DP3=1.7). If
however, the one-dimensional subspace is taken to be the second input (0100)
then DP2 and DP4 fall into C1 (DP2=.7, DP4=.4), and DP1 And DP3 fall into cell
C2 (DP1=1.5, DP3=1.9).

In Figure 3B, if the subspace is specified by the first and second inputs
(1100), DP1 falls into cell C2 (DP1=(.5, 1.5)), yet falls into cell C2 in the
subspace generated by the first and third inputs (1010). In Figure 3C, DP1 falls in
cell C1 in the subspace defined by the first, third and fourth inputs (1011) and cell
C2 in the subspace defined by the first, second and fourth inputs (1101).

It is desirable to identify feature combinations that have some accuracy in
predicting an output of the system based on the inputs. It can be seen from the
above examples that the particular input combinations, or feature combinations,
define many unique subspaces. The number of subspaces is of course finite,
assuming a finite number of input sequences, but the number grows quite rapidly
with the number of inputs.

The task of feature selection is complicated by the possibility of input-input
interactions. If such interactions are present, individually information-poor inputs
could combine in complementary ways to produce combinations of inputs with
high informational entropy. Thus, any feature selection method that ignores the
possibility of input-input interactions could potentially exclude useful inputs from
the modeling process. To avoid these limitations, the preferred method utilizes an
information theory based approach to select feature subspaces that inherently
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includes input-input relationships and also deals very naturally with any non-
linearities which may be present in the data.

In addition, while the method may include exhaustively searching the
available subspaces, it preferably includes a genetic evolutionary algorithm that
utilizes a measure of information entropy as a fitness function.

3. Feature Subspace Selection Using Genetic Evolution and Informational
Entropy

The method described herein preferably uses a relatively recent algorithmic
approach known as “genetic algorithms.” As formulated by John H. Holland, (in
“Adaptation in Natural and Artificial Systems”, Ann Arbor: the University of
Michigan Press (1975)) and also described by D. E. Goldberg, (in“Genetic
Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley
Publishing Company (1989)) and by M. Mitchell (in “An Introduction to Genetic
Algorithms”, M. I. T. Press (1997)), the approach is a powerful, general way of
solving optimization problems. The genetic algorithm approach is as follows:

(a) Encode the solution space of the problem as a population of N-bit
strings. A popular encoding framework is based on binary strings. The collection
of the bit strings is called a “gene pool” and an individual bit string may be called
a “gene’.

(b) Define a “fitness function” which measures the fitness of any bit
string relative to the problem at hand. In other words, the fitness function
measures the goodness (or accuracy) of any possible solution.

(c) Initially start off with a random gene pool of bit strings. By using
ideas derived from genetics, such as selective recombination and mutation,
through which the more “fit” bit strings preferentially mate to produce a new pool
of “fitter” offspring, subsequent generations of fitter bit strings can evolve.
“Fitness” is determined by a measure of information entropy. The role of
mutation is to expand the search space of possible solutions, which creates an
improved degree of robustness.

(d) After several generations of evolution following the prescription
above, a pool of fitter bit strings will result. An optimum solution can be selected
as the “fittest” bit string in this pool.

Each of these aspects are discussed in further detail below:
a. Encoding solution as a population of N-bit strings

A first step in using a genetic algorithm to solve an optimization problem
is to represent the problem in a way that results in solutions that can be
represented as bit strings. A simple example is a data base with 4 inputs and 1

output. The various combinations of inputs can be represented by 4 bit binary
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strings. The bit string 1111 would represent an input combination, or feature
subspace, where all inputs are included in the combination. The left most bit
refers to Input A, the second left most bit to Input B, the third left bit to Input C
and the rightmost bit to Input D. If a bit is turned on to the value 1, it means that
the corresponding feature should be included in the combination. Conversely, if a
bit is turned off to the value 0, it means that the corresponding feature should be
excluded in the combination. |

Similarly, the bit string 1000 would represent an input combination where
only Feature A is included and all other inputs are excluded. In this way, every
possible input combination out of the 16 total possibilities can be represented by a
4 bit binary string. In general, if there are N inputs in the database being modeled,
all possible input combinations can be expressed using a N bit binary string. A
sample binary bit string representing a four-dimensional feature subspace is
shown in Figure 4. The bit string of Figure 4 has D bits, only four of which are
“1” bits. The “1” bits correspond to the four features Fy, F4, F;, and F. The
variables 1 and D are used to represent a generalized case. Further examples are
shown in Figure 3A, where a four-bit string, representing a four-input system,
having a single “1” bit codes to a one dimensional feature subspace. Two “1” bits
code to a two-dimensional subspace as seen in Figure 3B, and three “1” bits code
to a three dimensional subspace as seen in Figure 3C.

b. Defining a fitness function to measure the fitness of a bit string

In order to evolve the optimum bit string as the solution to an optimization
problem, it is necessary to define a metric used to drive the evolutionary process.
This metric is referred to as a fitness function in a genetic algorithm. Itis a
measure of how well a given bit string solves the problem at hand. Defining an
appropriate fitness function is a critical step in ensuring that the bit strings are
evolving towards better solutions.

In the above example, each 4 bit binary string encodes a possible
combination of inputs. An input feature subspace can be constructed by using the
input features that are turned on in the corresponding bit string. The data in the
data base can then be projected into this feature subspace. The fitness function
provides a measure of information-richness by examining the distribution of
output states over the input feature subspace. If the output states are highly
clustered and separated over this subspace, the fitness function should result in a
high value as the corresponding input feature combination is doing a good job in
segregating the different output states. Conversely, if all the output states are
randomly distributed over the subspace, the fitness function should result in a Jow

value as the corresponding input feature combination is doing a poor job in
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segregating the different output states. Alternatively, the fitness function may
provide a measure of the information-richness of the subspace by examining the
informational richness of individual cells within the subspace and then forming a
weighted average of the cells.

Preferably, a global measure of output state clustering is used as the fitness
function to drive the evolution of the best bit strings. This measure is preferably
based on an entropy function that is a powerful way to define clustering. With
this entropic definition of a fitness function, bit strings that represent input
combinations that best cluster and separate the output states emerge from the
evolutionary process. Alternative fitness functions include the standard deviation
or variance of output state probabilities, or a value representing the number of
cells in a subspace where at least one output probability is significantly larger than
other output probabilities. Other similar heuristics, or ad hoc rules, that measure
the concentration of output states, are easily substituted in the evolutionary
process.

c. Details of the evolutionary process

1. Creation of a random pool of N bit binary strings

With reference to Figure SA, the evolutionary process 500 begins with
step 510, where a random pool of N bit binary strings is created. These initial
binary strings encode input feature combinations that in general will have very
low values for their fitness functions since there is no a priori reason that they are
optimum in any way. This initial pool is used to initiate the evolutionary process.

2. Calculation of fitness

The fitness of each binary string in the pool is calculated using the
methods described in step (b). The data may be balanced as shown in step 520. A
feature subspace is generated for each binary string, and the data in the database is
projected into the corresponding subspace. The subspaces are divided into bins
according to the selection of equally spaced binning 532 or adaptively spaced
binning 534, depending on the selection made at step 530. The particular gene
under consideration is selected at step 540, and the number of bins is determined
by specifying a fixed number of bins 552 or by specifying a mean number of
samples per cell 554, preferably by user input, at step 550. The bin locations are
then determined as shown in step 560. An entropy function or other rule is then
used to calculate the degree of clustering and separation of the output states that
represents the fitness of the corresponding binary string. This is shown by step
570, where the data points are located within each subspace, and step 580 where
the global information content is determined. As shown by step 585, the next

gene sequence is acted on beginning at step 540.
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3. Creation of a weighted roulette wheel of fitnesses

After the fitness of each binary string has been calculated, a weighted
roulette wheel 592 of the fitnesses is created as shown in Figure 5C. This can be
considered as a step where the binary strings with higher fitness values are
associated with proportionately wider slot widths than binary strings with a lower
fitness values. This will weight the selection of the higher fitness binary strings
more heavily than the lower fitness binary strings as the roulette wheel is spun.
This step is described in further detail below.

4. Selection of new parent binary strings

The roulette wheel 592 is then spun and the binary string corresponding to
the slot where the wheel ends up is selected. If there are N binary strings in the
original pool, the wheel 592 is spun N times to select N new parent strings. The
important point here is that the same binary string can be chosen more than once if
it has a high fitness value. Conversely, it is possible that a binary string with a
low fitness function is never selected as a parent although it is not ruled out
completely. The N parents are then paired off into N/2 pairs as a precursor to
generating new child binary strings.

5. Parent Crossover and Mutation to create child strings

Once two parents have been chosen, a weighted coin is flipped to decide
whether or not a crossover operation 594, shown in Figure 5D, should be
performed. If this results in a crossover operation, a crossing site is randomly
selected between bit position 1 and the last possible crossing site which is the next
to last bit position in the string. The crossing site splits each parent into a right
side and a left side. Two child strings are created by concatenating the left side of
each parent with the right side of the other parent, as shown in Figure 5D, where
the parent genes 10001 and 00011 are split into left halves 100 and 000, and right
halves 01 and 11, and then combined to form 10011 and 00011. Finally, after the
two child strings have been created, a small number of individual bits in the child
strings are randomly reversed (or mutated) to increase the diversity of the child
string pool. This can be specified in terms of a probability that a given bit is
reversed. The probability of reversal can be scaled based on the number of
desired bit mutations and the number of bits in the strings. That is, if an average
of five mutations per string is desired, then the probability of a given bit changing
is set to .05 for one hundred-bit strings and set to .1 for fifty-bit strings, etc.

6. Continuing the evolutionary process

As shown in step 590, the above steps 2-5 are repeated several times (or
generations) using each created child string pool as the new parent pool for the

next generation. As the child string pools evolve, their corresponding fitnesses
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should improve on average since at each generation, fitter strings are preferentially
mated to create new child strings.

The evolutionary process can either stop after a predetermined number of
generations or when either the highest fitness string or average pool fitness no
longer changes.

In using genetic algorithms to solve an optimization problem, there are two
significant issues that need to be resolved. The first issue is the encoding scheme.
Does the problem lend itself to solutions that can be encoded as bit strings? The
second issue is the choice of the fitness function. Since the evolutionary process
is governed (i.e., directed) by the fitness function, the quality of the solution is
closely dependent upon matching the fitness function to the goal at hand.

In the preferred method described herein, the first issue is resolved by
defining a gene comprising an N-bit binary feature bit string, illustrated in
Figure 4, where each bit corresponds to one of N inputs in the data set. Each bit in
the N-bit binary feature bit string refers to a corresponding input, and has the
value 1 if the corresponding input is present in the feature subspace and has the
value 0 if the corresponding input is not present in the feature subspace.

In the preferred method, the second issue is resolved by using
informational entropy measures to calculate the global entropy of feature
subspaces. The global entropy of the feature subspace is used as the fitness
function to drive the evolution of a pool of the fittest feature combinations from
which an optimum model can be evolved. The global entropy may be calculated
by first determining the local entropy of a cell in a feature subspace and
calculating the global entropy of the entire feature subspace as a weighted sum of
the local entropies. Alternatively, the global entropy of a subspace may be
determined by examining the distribution of points for a given output across the
entire subspace, and then forming a weighted average of the state-specific
entropies across all states. The ability to maintain a feature subspace pool
provides both redundancy and diversity in the solution space, both of which can
contribute to robustness in the final model.

Determination of Local Cell Entropy and Global Subspace Entropy

In accordance with an aspect of the preferred method, the level of
information content is measured. Specifically, the level of information content of
a cell or a subspace is a measure of the uniformity of the data distribution. That
is, the more uniform the data, the more predictive value it will have for purposes
of modeling a system, and hence, the higher level of information content. The
uniformity may be measured in 2 number of alternative methods. One such

method utilizes a clustering parameter. The term clustering parameter refers to a
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local cell entropy, an output specific entropy calculated over the particular
subspace under consideration, or a heuristic method as discussed herein, or other
similar method.

With reference to Figure 6, the informational content of individual cells is
determined for categorical output systems as shown by method 600 and for
continuous quantitative models by method 602. In the preferred embodiment, the
Nishi informational entropy definition discussed earlier is used to mathematically
define both local and global entropic weights representing the information
content. For the empirical modeling of the present invention, it has been found
that Shannon’s concept of entropy, as extended by Nishi, is an appropriate
measure for the data sets over which the entropic measures are calculated. The
Nishi formula is applied to the set of probabilities corresponding to the output
states. Cells having equal output probabilities (each output is equally likely)
contain little information content. Thus, data sets with high information content
will have some probabilities that are higher than others. Greater probabilistic
variations reflect the imbalance in the output states, and hence give an indication
of the high information-richness of the data set.

In the preferred method, a general entropic weighting term W is defined,
having the form # = 1 — E. The entropic weighting term # is the complement of
the Nishi informational entropy function E and has the vatue 1 for a completely
non-uniform distribution, and has the value 0 for a perfectly uniform distribution.

Referring again to method 600 of Figure 6, the informational level may be
determined by calculating a local entropic weighting term. For example, an
appropriate for a given cell within a subspace can be defined in the following
manner: first, at step 610, a data set having n, entries is created, where n.is the
number of output states. Each entry corresponds to a state-specific local

probability pc|; for cell  given by:

n
Pei = /ani ’
k=1

where n,; is the number of points in cell / having an output state of ¢, and the
summation extends over all the output states £ within cell 7 and thus includes all
points in the cell . For a given cell i, the sequence of values p.|;represents the
probabilities of being in the various output states c. At step 620, the informational
content of the cell is determined. Preferably, the Nishi informational entropy
definition is used to define a local entropic term E for a given cell 7 in subspace S:

20



WO 00/67200 PCT/US00/10425

10

15

20

25

30

ES= fimfS)/n(i/n),
k=1

where the variable of summation £ 1s the output state, 7, represents the total

number of output states (or “categories”), and
",
N N N
.fkli = Pgi /Zpkli .
k=i

Of course, the sum of all py; over all k is equal to one, but is included
above for clarification.
Finally, also in step 620, the local entropic weighting factor can be

expressed as

g

where the superscript Ls designates that ¥ is a local entropic function for a cell in
subspace S. Cells with high informational content will have a high local entropic
weight. That is, they will have a high value of WI.LS .

Alternatively, the informational content may be measured by another
measure of uniformity, such as by determining the variance or standard deviation
of the output probability values, or by determining whether any single output has
an associated probability above a predefined threshold. For example, one may
assign a value to a cell based on the cell’s probability distribution. In particular, a
cell having any output state probability greater than a predetermined value may be
assigned a value of 1, and any cell where none of the output state probabilities are
greater than a predetermined value is assigned a value of 0. The predetermined
value can be a constant that is chosen empirically based on the results of the
feature subspace (model, framework, superframework, etc.). The constant may
also be based on the number of output states. For example, one may wish to count
the number of cells where any output state has a greater-than-average likelihood of
occurring. So, for an n-output state system, any cell having any single output state
probability greater than 1/n can be given a value of one, or greater than k/n, for
some constant k. Other cells will be given a value of zero.

Alternatively, the weights given to cells can be increased based on the
number of output states that exceed a given probability. For example, in a four-
output-state system, a cell having two output states having a probability of
occurrence greater than .25 would be given a weight of 2. As a further alternative,
the cellular or global weights can be based on the variance of the output states.
Other similar heuristic methods may be utilized to determine the information

content of the cell under consideration.
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In the case where the output of the process being modeled is continuous,
the local entropy may be calculated as shown in method 602. At step 630, a data
set comprising all of the output values present in the cell is created. The
informational content of the cell is calculated in step 640. Recall that when
dealing with output-specific probabilities, data sets with high information content
will have some probabilities that are higher than others. When dealing directly
with output values, however, as is the case in steps 630-670, information-rich sets
are those having more uniform data values. That is, high information sets have
less variation in the output values. Thus, if the informational content is
determined using the Nishi entropy calculation, there is no need to form the
complimentary value 1-E. The weighting factor in this case 1s simply equal to the
Nishi entropy E.

In addition, as shown in steps 650 and 660, it may be desirable to apply a
threshold limitation to set low entropy cells to zero. This assists in limiting the
erroneous effects associated with accumulating the information content of cells
having insignificant information content when the global calculation is made. The
calculation of local cell entropy is completed as indicated at step 670.

Alternatively, when dealing with continuous output systems, it is possible
to quantize the output into a plurality of categories and use the above-described
method steps shown in step 610 to define a data set comprising the probabilities
for each quantization level. The remaining step 620 is also performed to
determine the informational content by calculating the entropic weights as
described above.

Calculation of global entropy as a weighted sum of local entropies:

Referring to Figure 7, the global entropy W&S for a subspace S can then be
calculated as a cell-population-weighted sum of local cell entropies Wis over all
the cells in that subspace.

we =S WS,

i=1 i=l

where n represents the number of cells in subspace S, #; represents the number of
counts (data points) in cell / in subspace S. In practice, this has proven to be a ‘
useful measure of global entropy, as it describes an overall measure of the purity
of the cells within that subspace. Figure 8 illustrates calculating local and global
information content. Figure 9 shows an example of local and global entropy
parameters. Subspaces with high informational content will have a high value of
wE.
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Alternate method for calculating output state dependent global entropy:
The basic statistical quantity defined is a probability pj| which represents
the probability of being in cell 7 given that the output is in state ¢ in a subspace S:

h
s
Dy =n, /an’ >

=

where n,; is the number of points in cell / having outptt state ¢, and the
summation extends over all the cells j in subspace S.

The Nishi informational entropy definition can be used to define a global
entropic term W# _for a given output state ¢ in subspace S. First, the Nishi

entropy for a given state c is calculated:
E; = fuln f2)/In(l/n)
i=1

where n is the number of cells, and
Jie =D/ Z}p}c :
J=

Again, the denominator, being the summation over all cells of the state-
specific probabilities, will equal one, but is included in the above expression for
consistency and clarity. E thus represents the giobal uniformity of the
distribution of the probability p¥;|c over the subspace S. Finally, the global
entropic term W# may be defined as:

e =1-E,

which is the global output-specific entropic weighting term for category ¢ within
subspace S. This is a global measure in the sense that it represents the clustering
of the distribution of points (that correspond to output ¢) throughout the entire
subspace. Subspaces with high informational content will have a high value of
wEe.
Category-independent generalization for the alternative definition of global
entropic weighting factor

By summing across all categories, an alternative global entropic weighting
factor may be defined as a category-independent global entropic weighting factor:

ES=XY £2n f5) /(1 n')
c=l =l

where n'=n¢n, which is the product of the number of output states and number of
cells, and where

£2=p5 00 ).

cml i=]

Of course, the denominator in the above equation simplifies to:
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> p=n.

c=t i=l

which simply indicates that the probabilities used in the Nishi formula are
properly normalized. This alternative definition is believed useful in situations
where the number of output states is large and computational efficiency is desired.

In the discussion above, it is assumed that the output values of the system
are discrete, or “categorical”. The same methods can be used to calculate local
and global entropies even when the output values are continuous by first
artificially quantizing the output values into discrete states or categories prior to
the entropy calculations.

It is worth noting that the distribution of the population of the output states
in the training data set is associated with the ultimate validity of the model. In the
above analysis, it has also been assumed that the data set is balanced, however,
such might not always be the case. Consider a problem where there are two
output states, A and B. If the training data set consists primarily of data items
representative of state A, the population statistics will be unbalanced, possibly
resulting in the creation of a biased model. The reason for the imbalance could be
either bias on the part of the data collector, or an intrinsic imbalance present in the
parent population characteristic of the data set.

In the case of bias on the part of the data collector, a simple normalization
can be performed so that the population statistics within a cell refer to the fraction
of data items of a given output state present in the cell rather than the absolute
number of data items. This normalization has been employed successfully on
many empirical data sets. In the second case, normalization may not be
appropriate since the imbalance is “real”.

An example of data normalization follows:

Consider a data set with 100 items where there are 2 output states A and B.
Assume that there are 75 items corresponding to state A and 25 items
corresponding to state B. Consider a cell in a subspace where there are a total of
10 items with 5 items corresponding to state A and 5 items corresponding to state
B. In absolute terms, this is an impure cell since we have a “count data set”
corresponding to {5,5} where each entry refers to a count for a particular state.
However, the data may be balanced by normalizing each count with respect to the

overall count for that state as follows:

State Count Fraction of Total
A 5 5/75=1/15
B 5 5/25=1/5
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The fractional count from the table is then used in the entropy calculation:

The data set D is D={1/15, 1/5}, with d,,,=1/15+1/5=4/15, and the
normalized data set F becomes F={1/4, 3/4}. The entropy £ is calculated:

E=(0.25In(0.25)+0.75In(0.75))/In(1/2)=0.811.

The modified Nishi entropy # is 1-E, or 1-0.811=0.189. Figure 2Cisa
block diagram illustrating a method for balancing the influence of data when a
given output state predominates in the data set.

Model Evolution Using A Prediction-Oriented Fitness Function

Once the inputs have been quantized and a pool of feature subspaces have
been initially identified by the genetic algorithm, a model is generated by forming
combinations of those preferred subspaces. As described above, the data, or a
subset of the data called a training data set, is used to create the many feature
subspace topographies from which information can be extracted. Once the
subspaces having high informational content have been identified, these subspaces
can be used as “look up” subspaces into which the data (or a subset of the data
called test data) can be projected for the purposes of output prediction.

Output prediction by a particular subspace is determined by the
distribution of output states within a given cell in the particular subspace. That is,
each data point (or each point in a test data subset) will fall into a single cell in a
given subspace, as seen in relation to Figures 3A-C. To predict the output
associated with each data point, one simply looks at the distribution of the data
used to populate the subspace (the entire data set, or a training subset), and uses
this to arrive at a prediction. A simple rule to follow for output prediction by a
particular subspace is that the probability to be that the output will be in state ¢ 1s
given by pe|;. This “local” probability simply represents the output distribution of
sample points that occupy a given cell in a feature subspace.

A given model is a combination of subspaces, and each point is therefore
examined with respect to all the subspaces under consideration in the model. The
local probabilities are essentially the “base” quantity that is then weighted by both
the local and global entropies in a model. The terms “local entropy” and “global
entropy” are collectively referred to herein as “entropic factors” or “entropic
weights”. It is the addition of both global and local information metrics to
determine model predictions that makes the present method considerably more
accurate when compared to a simple probabilistic model. The purpose of these
entropic factors is to emphasize “information-rich” cells in “information-rich”
subspaces and to de-emphasize cells which are either individually information-
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poor (i.e., less information-rich) or are located in information-poor (i.e., less
information-rich) subspaces.

Thus the fitness function for each subspace combination, or model, used to
drive the evolutionary model process is an entropic weighted sum of predictions
and the associated error rate between the predictions and the actual output value
associated with the test data points (again, either the entire data set or a subset).

Thus, in accordance with one aspect of the method, local and global
entropic weighting factors are used to characterize the information content of the
feature subspaces. By weighting the contributions of a feature subspace cell by
local and global information measures, the method is able to effectively suppress
different types of noise sources. One such noise source is local noise within a cell.
If the distribution of output states within a cell is uniform, then that cell contains
little predictive information. Although the probability of a given output state can
hint at the nature of the total distribution of output states in a cell, it does not tell
the whole story. The distribution of all the other output states is not contained
within the probability of a given output state. For anything other than a binary
output system, the information contained within a single output state probability is
thus incomplete. The calculation of a local entropic term associated with an
individual cell results in a weighting factor which does characterize the entire
local probability distribution.

As described above, the global entropy factor can be calculated in several
different ways for comparative purposes. The preferred technique for defining the
global entropy of a subspace is to define the global entropy as a cell-population-
weighted sum of local cell entropies. The local entropy is calculated for each cell
in a subspace and the global entropy for this subspace is then calculated by
performing a cell-population-weighted sum over all the cells. This measures an
overall global cell informational entropy for a subspace (over all the cells of a
subspace).

The alternate global measure examines the probability distribution of each
output state within the cells over the entire subspace. If this distribution is
uniform, then the subspace of interest contains little predictive information on that
output state. In this embodiment, a separate global entropy term is calculated for
each output state within a subspace. This alternate global entropy term differs
from the earlier described global entropy term, which is the same for each output
state. This alternate global entropy measure accommodates the possibility that a
given subspace might be “information-rich” with respect to one output state, but
be “information-poor” with respect to a different output state.
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The present method advantageously allows for the independent calculation
of both local and global entropy based weighting factors to suppress noise. These
factors can be individually adjusted or “tweaked” to obtain an optimal balance
between local and global information for maximum predictive accuracy. In many
prior art data modeling systems, it is difficult to conveniently adjust the relative
magnitudes of local and global weighting factors. As previously mentioned, most
prior art methods rely on the optimization of an objective function over the entire
data set to arrive at a solution.

Another related issue is that of redundancy. Several input features may
contain essentially the same information content with respect to a given output.
Even if two features do not contain information related to a particular output state,
they might still be correlated. Redundancy does not intrinsically restrict the
method of the present invention, and in fact can be very helpful as a way of
building in robustness into the model that is created although it can increase total
computational cost. Clustering methods using information measures are available
to identify redundancy between features and are discussed below.

Both the local and global entropy-weighting factors measure the amount of
“structure” in a distribution. The less uniform, or “more structured” a distribution
is, the higher its corresponding entropic weight W. This aspect of structure of the
data space 1s used to weight the importance of both local and global statistics.

The calculation of both local and global entropy terms allows for the
separate control of local and global information weighting factors in the method.
A natural issue which arises is the definition of locality: How local is local? The
answer to this question depends of course on the specific problem being
addressed. In accordance with a preferred embodiment, the method systematically
searches for the “best” description of locality by scanning the bin resolutions
which in turn determine the multi-dimensional cell sizes in order to provide the
highest predictive accuracy. In particular, different groups of information-rich
feature subspaces may be identified (either by exhaustive searching or feature
subspace evolution), where each group uses a different number of cells n per
subspace. In fact, the number of cells » may be exhaustively searched from a
minimum value to a maximum value. The maximum number of cells may be
specified in terms of a minimum average of points per cell, because it is
undesirable to over-resolve the subspace with too many bins. The minimum
number may be even be less than one.

It is worth digressing at this point to consider the properties of the “output
state” in more detail. In the method of the present invention, quantization of the

inputs is performed to create the multi-dimensional subspaces. In classification
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problems, the output variable is a discrete category or state, and is thus already
quantized. In quantitative modeling, the output variable can be continuous. In
such cases, one possible solution is to perform an artificial quantization of the
output data space into discrete bins. After the output data space has been
quantized, the discrete modeling framework described above can be used to
measure local and global entropy factors. These entropy factors can then be used
to predict continuous values of the output using methods described below.

A significant measure regarding precision is the ratio of the number of
output state categories, . , to the mean total cell population statistics < n,,,>. If
n, is much greater than < n,,,>, most of the output states will be unoccupied
within a cell, resulting in poor statistics and possible degradation in the model.
This again argues for more data, which is not surprising for a data driven model.
With the advances in computer hardware technology, the ability to acquire and
store massive data sets is increasing rapidly; the method of the present invention
enables the extraction of information from the data. The method has been found
to work surprisingly well even when n_ is much greater than < n_,> in many real
world problems where the value of n_ is small (on the order of 1-10). This may be
due to the cooperative effects of summing statistics over a large number of
subspaces.

To summarize, the global entropy factors associated with feature
subspaces can be used as the fitness functions used to evolve a pool of the most
information-rich features using a genetic algorithm. The determination of this
pool is dependent on the data quantization conditions as described earlier. As the
mean number of sample points per cell decreases, the local and global entropic
information measures generally increase. However, this does not necessarily
imply that these quantization conditions will generalize well in the development
of the final models. In practice, evolving features under quantization conditions
where the mean number of sample points per cell is significantly less than 1 (i.e.,
0.1 or less) has still resulted in accurate models. This may be due in large part to
the cooperative effects of summing statistics over a large number of subspaces in
the feature pool.

Determining a subset of the feature data set that most accurately predicts
system outputs from system inputs

Referring to Figure 10, once a feature data set with high informational
entropy has been determined, this feature set may be used directly to develop a
predictive model. However, the feature selection process using evolutionary
methods has the significant advantage of alleviating the so-called “curse of

dimensionality” by only retaining those features in a high dimensionality data
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space which have a relatively high informational entropy. In this regard, it should
be noted that the total number of possible binary feature bit strings in an
N-dimensional space is 2" , a quantity which increases exponentially with N.

Once a feature data set has been determined, it is possible to calculate an
output state probability vector for any sample data point. Referring to Figure 14,
in order to calculate this vector, it is first necessary to combine the local and
global entropic weighting factors to create a total weighting factor. In the method
of the present invention, a general third order expression involving the local and
global entropic weights has been defined with the coefficients empirically
adjusted for optimum model performance. The general expression for the total
weighting factor thus looks as follows:

W, = a( W5 P WS + b(WF)? W + ¢ (W) +
d (W) + e W WP, + fW" +gW®_+ h

Thus, each cell i, in each subspace S, has an associated general weighting
factor WS that is a combination of the local and global weights for the given
subspace S (note that the equation also indicates that the global weighting factor
W&S is output state dependent, and hence the general weighting factor is output
state dependent. In the event that the global weighting factor is calculated across
all output states, then the dependence upon output state ¢ is removed).

The parameters a through h may be empirically adjusted to obtain the most
accurate models, frames, superframes, etc. In many problems, the weighting
factor is dominated by the local entropic weighting factor, although the global
entropic factor is also present. It reinforces the point that the method described
herein provides significant importance to local statistics in a feature subspace,
which is a distinguishing feature between the method described herein and prior
art modeling approaches. In establishing confidence limits for the model, the
model coefficients can be varied to calculate the error statistics.

Once a suitable value for W*, has been determined, the probability of each
output state for a sample point d can be calculated as

P(d)=Y WPy,
=}

where the summation extends over all the ng subspaces, the sample point d is
assumed to project into a corresponding cells iz in each subspace, and the local
probability pcy;, is the probability that the output is state ¢ given the fact that the
point maps into cell iz. As mentioned above, if the general entropic weight is not

output dependent, then the subscript ¢ of the general entropic weight may be
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ignored in the above equation. The probabilities for each output state ¢ can then

be combined into a probability vector

P(d) = (P(d) .... , Py(d)) / N(),

where K_output states are assumed, and

N@ = X P()
is a normalizing factor, summed over ¢ = 1 to K, to ensure that the sum of
probabilities is unity.

The output state probability vector P(i) encapsulates the information
contained within the data space as far as the classification of sample point 4.
Various prior art modeling approaches such as neural networks also result in a
similar vector and different approaches have been taken to interpret the result. A
commonly used method, as described in Bishop, C. M., “Neural networks and
Their Applications,” Review of Scientific Instruments, vol. 65 (6), pp. 1803-1832
(1994), is to use the “winner take all” tactic of assigning the predicted output state
as the state with the largest probability of occurrence.

Evolving an optimum model using a subset of feature subspaces

Evolutionary methods for identifying subspaces with high global entropic
weights have been discussed above. This is particularly useful in problems that
have many input features where the curse of dimensionality is evident. In a first
evolutionary stage, the fitness function that drives the evolution is the global
entropy of the subspace. It is also possible to use the concept of evolution for
determining the best predictive model. In a second evolutionary stage the goal is
to identify the optimum subset of feature subspaces with high global entropy
which results in the lowest error in a test data set. This second evolutionary stage
will group those subspaces which “work well together” in a cooperative fashion to
produce the best predictive model. At the same time subspaces that introduce
additional noise in the modeling process will be culled out during the second
evolutionary stage. Referring to Figure 15, the fitness function in this second
evolutionary stage is then the overall prediction error in the test set obtained from
using a particular subset of feature subspaces.

If M features are present in the final gene pool of feature subspaces with
high global entropy after the first evolutionary stage where M has been
predetermined, a second evolutionary process may be used to find the optimum
combination of features. An M-bit “model vector” is defined where each bit
position encodes the presence or absence of a given feature. Training and testing
are then performed using the features encoded by the model vector, with the

fitness function being an appropriate performance metric resulting from the
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modeling process on a test set. For classification problems, the appropriate
performance metric could be the percent of samples correctly classified in the test
set. For the quantitative modeling problem, the appropriate performance metric
could be the normalized absolute difference between predicted and actual values

in the test set, as given by

S lad_pd‘
F_:l_gdmax—dmm
N 3

where aj is the actual output value for the test point d, py is the predicted value for
the test point d, dpmqy is the maximum value of the output range of test point
values, and d,;, is the minimum output value of the range of test point values.

Once the second evolutionary process has finished, the fittest model vector
is used to select the optimal feature combination for the modeling process. So, the
first evolutionary stage has identified a pool of features of high informational
entropy that are then further evolved in the second evolutionary stage to find the
best subset of features that minimizes the predictive error in a test set. This entire
process may be repeated under different evolutionary conditions and constraints to
find the best empirical solution to the modeling problem.

The method of the present invention thus incorporates the concept of
hierarchical evolution, where evolutionary methods are used both to identify the
most information-rich features, as well as the optimum subset of feature subspaces
needed to develop the best predictive model. Having two evolutionary stages
provides a unique advantage of the method. The first stage produces an
information-rich subset of feature subspaces that can be examined independently
of any subsequent modeling step to gain insight into the problem at hand. This
insight in turn can be used to guide a decision-making process.

A common complaint with prior art modeling paradigms is that they do
not easily reveal where the information lies amongst the input features. This
deficiency limits the ability of prior art methods to participate in strategic planning
and decision making. In the method of the present invention, the breakpoint after
the first evolutionary stage allows for the possibility of intelligent strategic
planning and decision making as well as an opportunity to determine whether the
subsequent modeling step is worthwhile. For example, if no sufficiently rich set
of input features can be found, the method of the present invention points the
modeler back to the data to include more information-rich features as inputs prior
to developing a robust model. Although the present method does not specify
which information is missing, the present method does indicate that there is an
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information gap that needs to be filled. This indication of an information gap
itself is very valuable in the understanding of complex processes.
Creation of an Information Map

Referring to Figure 11, after the first evolutionary stage, it is also very
useful to create a histogram of the frequency of occurrence of inputs present in the
evolved feature data set to gain fundamental understanding of the problem. This
histogram can be defined as an “Information Map” for the problem. For some
problems, the structure of the Information Map can be used to reduce the
dimensionality of the problem if certain subsets of inputs occur significantly more
frequently than other subsets of inputs. Reducing the dimensionality of the
subspaces has the additional advantage of alleviating another aspect of the curse
of dimensionality where the amount of data needed to populate a subspace with a
mean number of sample points per cell increases exponentially as the dimension
increases. Figure 12 is an example of a gene list and its associated information
map.

Exhaustive Dimensional Modeling

Referring to Figure 13, if such a dimensionality reduction is possible,
predictive models can be developed using the reduced input data set. In
accordance with one preferred embodiment of the method, the N most commonly
occurring inputs are identified from the Information Map and then all possible
projections of the N features into M sub-dimensions for all M less than or equal to
N are computed to define the feature subspaces. A recursive algorithm to
compute all such projections is as follows:

A recursive technique to enumerate all combinations of features: For each
sub-dimension M, consider the problem of identifying all M-tuples (combinations
of length M) in a list of N numbers. The first element is initially selected and then
all (M-1)-tuples (combinations of length M-1) in the remaining list of N-1
numbers need to be identified in a recursive fashion. Once all such (M-1)-tuples
have been identified and combined with the first element, the second element in
the original list is selected as a new first element and then all the (M-1)-tuples in
the N-2 remaining elements past the second element are identified. This process
continues until the first element exceeds the M+1 ’th element from the end of the
original list. The algorithm is inherently recursive since it calls itself, and it also
assumes that the ordering of the elements is unimportant.

Once a pool of all feature subspaces for a given sub-dimension M have
been identified, this pool can be used directly as the set of feature subspaces used
to predict output values in a test set using the methods described above. This

process can be repeated over a plurality of quantization conditions for each sub-
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dimension M. The optimum (sub-dimension, quantization)-pair is then selected
based on minimizing the total predictive error on a test set. After an optimum
(sub-dimension, quantization) pair has been selected, the pool of feature subspaces
corresponding to the optimum (sub-dimension, quantization) condition can be
used as the starting point for the second evolutionary stage. This second
evolutionary stage selects the optimurm subset of feature subspaces from this pool
having the minimum total predictive error in a test set, and thus defines an
optimum model.

As a general rule, it has been found advantageous to determine a relatively
low sub-dimensional representation which still preserves enough total predictive
accuracy on a test set. At lower sub-dimensions, higher cell population statistics
can still be maintained even at relatively fine levels of quantization, thus
improving the precision of the model.

It has also been found that if the dimension of the original data set is not
very high, the method of exhaustive dimensional modeling can be applied directly
on the original data set. This eliminates the need to perform the first evolutionary
step of identifying a pool of features with high informational entropy.
Quantitative Modeling

The transformation of a quantitative modeling problem into a classification
problem by performing an artificial quantization of the output variable is useful
for calculating local and global entropy factors. A natural question that arises is
how to preserve the precision present in the original data set in the final predictive
model. This is especially significant if the output bin resolution is constrained by
the size of the data set in order to avoid sparse cell statistics. For traditional
classification problems, the precision issue is not present since the output variable
can only assume one of a discrete ensemble of possible states.

One advantage of performing the artificial quantization of the output
variable is that the calculations of the local and global information measures are
based on Shannon terms where the summations occur over categories or cells
which are both independent of the number of sample points. This facilitates
decoupling sample population statistics from information content. For
quantitative modeling, the artificial quantization of the output variable allows the
local and global entropies to be calculated in the same way, thus maintaining the
separation of information measures from sample population statistics.

After the local and global information measures have been caiculated
using the output variable quantization, the precision in the raw output variables

can be used to recover precision in the final predictive model.
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First the “spectrum” of output values is balanced over all the artificial
output variable categories. This is accomplished by effectively replicating the
data items in each output category by a scale factor so that the final population in
each category is at a common target value. A typical common target value is a
number representing the total number of data points.

One method for data balancing has been described above, wherein the
state-specific probabilities are normalized based on the number of points
corresponding to that state. An alternate approach to data balancing without
explicitly replicating data is described below. Although the calculation of the
Nishi informational entropy term has a normalization term involving a In (1/N)
factor where N represents the size of the data set, this normalization serves
primarily to bound the entropic term to values between 0 and 1. The
normalization term does not directly address the issue that the degree of the
uniformity depends on the size of the data set.

For a small data set, the normalization of the data items to the total of all
the data items in the data set introduces a subtle bias. The relative variation
between the normalized data items in the smaller data set can be greater than that
between corresponding items in a larger data set, even if the absolute variation in
data is comparable. In order to correct for this bias, a data balancing step has been
introduced. The balancing step is described below:

Consider two data sets D, and D, where the sets represent the inputs
corresponding to a first and second output state, respectively. D, has N, items and
D, has N, items. Let M represent the lowest common multiple of N, and NV,, and
let M, and M, represent the multiplying scale factors for each of the corresponding
data sets. If one replicates D, by M, times and D, by M, times, both the resulting
data sets D, and D ', will have M items. After performing the requisite algebra,
one finds that the Nishi entropy terms for each of the new data sets are modified

as follows:
E',= (In (I/M,) + X f;Inf;)/(In (1/M)) + In(1/N}))

E,= (In(I/M,)+Xf Inf",)/(In (I/M, ) +In(1/N,))

where f; and f | represent the normalized data fractions over the original data sets
D, and D, respectively.

If the output data within a cell is tightly clustered, W, will be high.
Conversely, if the output data is spread out over all the artificial output categories
within the cell, W, will be low. The global entropy can be defined simply as a
number weighted average < W', > over the cells in the subspace. W qpa
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measures a normalized total amount of information in the subspace. Finally, the
basic probability metric P%, used in the category based classification can be
replaced by the mean (or alternatively median or other representative statistic) cell
analog output value. A weighted sum of the mean cell analog output values over
the subspaces can then be performed as in the discrete case to predict an output
value. Note that cells that have a wide spread in their output values will be
weighted down, as will be subspaces where the individual cells are not
information-rich.

In the estimation of the mean output value ,uls. of a cell the data replication
scale factor defined above is used to calculate the mean value in the cell for a
balanced data set. The data-balancing step is performed to remove any bias
introduced by the distribution of output values in the training data set.

inMj

s Jj=1
.=

I n
2 M
=1

J:

where n represents the total number of items within a cell; o; represents the output
value of the jth item and M, is the data replication factor associated with the jth
data item, which depends on the artificially quantized state to which the jth item
belongs.

In order to reduce “creep error” from information-poor cells and
subspaces, the following steps are optionally performed. First, information-rich
subspaces can be evolved as described earlier in the discussion of discrete output
states. Once the most information-rich subspaces have evolved, both local and
global entropic thresholds can be applied towards the computation of an
entropically-weighted sum of either the mean or median values associated with the
information-rich subspaces. Local entropy values for cells that are lower than the
local entropic threshold are set to zero (0). Similarly, global entropy values for a
subspace which are lower than the global entropic threshold are set to zero (0) to
prevent the gradual accumulation of error in the calculation of the mean.

In the thresholding of the local and global entropy functions, it is often
desirable to perform an additional thresholding of the local entropy based on the
value of the global entropy function. If the global entropy for a given subspace
projection is below its corresponding threshold, the local entropy function for all
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cells in that subspace can optionally be set to zero regardless of their individual
values. The previously described thresholding methods can also be optionally
performed for discrete output state modeling, but may be more valuable for
quantitative modeling where more restrictive steps should be taken in order to
minimize the creep error.

Finally, either with or without the thresholding steps, the method of the
present invention can evolve the optimum combination of information-rich
subspaces which results in the minimum total output error over a test set of
samples. The method of quantitative modeling within the scope of the present
invention also involves hierarchical evolution. In a first evolutionary stage the
most information-rich subspaces are evolved using global entropy as the fitness
function, followed by a second evolutionary stage where the optimum
combination of information-rich subspaces are evolved which result in the
minimum test error.

An advantage of the method of the present invention over prior art
methods is that a common paradigm is used for both categorical and quantitative
modeling. The concept of distributed hierarchical evolution as the basis for
empirical modeling and process understanding applies to both classes of output
variables (both continuous and discrete) in contrast to prior art methods which are
optimized for only one type of output variable (either continuous or discrete).
Distributed Hierarchical Evolution

The method described herein utilizes the concepts of pictorial
representations of data, or multidimensional representations of data, with concepts
from information theory, to create a hierarchy of “objects”, e. g., features, models,
frameworks, and super-frameworks. The term “distributed hierarchical evolution”
is defined as an evolutionary process in which groups of successively more
complex interacting evolutionary “objects”, such as models, frameworks, super-
frameworks, etc. are created to model and understand progressively larger
amounts of complex data.

For large, complex data sets, the model creating steps described earlier
may then be repeated on different training and test data sets to find a group of
optimum models. An information-rich subset of the group of optimum models
can be determined as follows:

Referring to Figure 16, the inputs of a test data set are submitted to each
model of a selected subset group of models (may be randomly selected) and each
subset-predicted output is compared with each test data output. The step of
calculating the subset-predicted output is performed in a manner similar to the

steps for creating an individual model, where a new training and test data set is
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created using individual model-predicted values as inputs and actual output values
as the outputs. This step may be repeated for multiple selected subset groups of
models. The selected subset groups are then evolved to find an optimum subset
group of models that most accurately predicts system outputs from system inputs
to define what is called a “framework™. Figures 17A and 17B illustrate the
concepts of framework evolution.

Referring to Figure 18A, the framework creating steps may further be
repeated, in a manner similar to the model creating steps, to find a group of
optimum frameworks. An information-rich subset of the group of optimum
frameworks may be determined as follows. The inputs of a test data set are
applied to each framework of the selected subset group of frameworks and each
framework-subset-predicted output is compared with each test data output. The
step of calculating the framework-subset-predicted output is performed in a
manner similar to the steps for creating an individual model, where a new training
and test data set is created using individual framework-predicted values as inputs
and actual output values as the outputs. This step may be repeated for multiple
selected subset groups of frameworks. The selected subset groups are then
evolved to find an optimum subset group of frameworks (this is called a “super-
framework”™) that most accurately predicts system outputs from system inputs.
Figure 18B illustrates the considerations for super-framework evolution.

The optimum model determination steps, the optimum framework
determination steps, or the optimum super-framework determination steps may be
repeated until a predetermined stopping condition has been achieved. The
stopping condition may be defined as, for example: 1) achievement of a
predetermined prediction accuracy; or 2) when no further improvement in
prediction accuracy is achieved. The method of the present invention is thus an
extensible evolutionary process where a hierarchy of multiple interacting
evolutionary objects distributed over the empirical data set is identified. The
depth of the hierarchy of evolutionary objects is determined by the complexity of
the data set to be analyzed. For simple data sets, one compact model using a very
small subset of the total data set might be sufficient to accurately predict test and
verification data set values across the total data set. As the complexity of the data
set increases, it may be necessary to develop a hierarchy of models, frameworks,
super frameworks etc to accurately explain the total data set (including the
verification data set).

A significant computational advantage of Distributed Hierarchical
Evolution results from the creation of multiple, compact evolutionary objects

distributed across a large data set to define an empirical model rather than the
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creation of one large, monolithic empirical model. For highly non-linear
processes, dividing a large task into many small tasks can provide significant
computational advantage that has important practical consequences.

It should also be noted that as the distributed hierarchy grows, further
optimizations are being performed at each stage, resulting in significant
performance improvements over a single, global optimization over the entire data
set. More and more of the information contained in the large data set is
encapsulated in the interactions of the successively more complex evolutionary
objects, with the interactions acting as a significant source of degrees of freedom
in the empirical modeling process. This simplifies updating the empirical model
when new data is presented. The initial steps in updating the empirical model
involve evolving new groups of the most current or “highest” evolutionary objects
in the existing empirical model using the new data as a test set. The earlier or
“lower” evolutionary objects, which were evolved using the earlier data, need not
be changed at all but can be used to create new groups of the most current
evolutionary objects in the hierarchy. Only if an insufficiently accurate new
empirical model results from this reclustering of earlier evolutionary objects is
there a need to re-evolve (repeat the evolution of) the earlier evolutionary objects
in the hierarchy using a subset of the new data. When this has been accomplished,
then subsequently new groups of the most current evolutionary object are re-
evolved using a different subset of the new data. This top-down approach to
model updating offers significant computational advantages over more traditional
bottom-up model updating common to most prior art modeling approaches.
Unsupervised Feature Clustering

The concept of a global entropy measure for a subspace can also be used as
a fitness function to evolve feature clusters based on input correlations. Even if
the cells in a feature subspace do not contain significant information with respect
to an output state, the cell population statistics could still be highly clustered over
the subspace. Correlations between input features can be identified by calculating
the uniformity of cell population statistics independent of output state using an
informational entropy definition very similar to the alternative definition of the
global entropy parameter described above in the section entitled “Alternate
Definition of Global Entropic Weighting Factor”. In this case, the base quantity
in the Nishi data set used to calculate the informational entropy is the cell
population and the number of entries in the Nishi data set is the number of cells in
the subspace.

By using evolutionary techniques driven by the global entropy of the cell

occupation statistics, the most highly clustered feature subspaces can be evolved
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and shown in Figures 19A, 19B, 19C and 19D. (The evolutionary process of 19A
and 19B is similar to previously described process of Figures 5A and 5B. The
particular gene under consideration is selected at step 700. As shown by step 740,
the next gene sequence is acted on beginning at step 700.)

This would be an alternative to other unsupervised methods such as the
Kohonen neural networks, as described in Kohonen, T., “The Self-Organizing
Map”, Proceedings of the IEEE, vol. 78, (4), 1464-1480 (1990) for discovering
clusters. An appealing aspect of the method of the present invention over such
prior art methods is that the distinction between unsupervised and supervised
modeling occurs very naturally by simply excluding or including the output state
information in the entropy calculation.

Once a pool of highly clustered feature subspaces has been evolved,
groups of feature subspaces in this pool can be recursively merged to create larger
clusters using, for example, a threshold condition for the overlap of inputs across
the subspaces as a driving condition for the recursion. In this way, a smaller
group of larger feature clusters can be efficiently identified even in a very high
dimensional data set where the direct identification of the larger feature clusters
would be computationally intractable.

Information Visualization

During the first evolutionary stage of determining a feature data set of high
global informational entropy, it is also possible to maintain a list of the cells with
the highest local informational entropy, which are identified during the
evolutionary process.

A minimum cell-count threshold may be used in selecting this list to
prevent the entry of sparse, i.e., artificially information-rich, cells. It is also
possible to create this high local entropy list at the end of the first evolutionary
stage by examining the cells present in the features with high global information.
For reasons of computational efficiency, creating this high local entropy list at the
end of the first evolutionary stage is preferred.

This method of identifying information-rich cells in a multi-dimensional
data space can also be used for “information visualization”. Information
visualization in a multi-dimensional space can be viewed as a problem of data
reduction. In order to capture the essential information in a data set in an easily
understandable fashion, only the most information-rich cells need be displayed.
In the previous paragraph, a systematic method for selecting the most information-
rich cells was discussed. Once these cells have been selected over all the
subspaces, methods derived from color science may be used to display the

selected cells in a visually appealing fashion. For example, in a (Hue, Saturation,
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Lightess) characterization of a color space, the hue coordinate can be mapped to
the cell output category. The saturation coordinate can be mapped to the local cell
entropy (either E, or W',), which is a measure of cell purity, and the lightness
coordinate can be mapped to the number of data points (i.e., the population) in the
cell. Other visual mappings can also be performed. It should be noted that the
process of generating an active list of the most information-rich cells on a per
category basis at the end of the first evolutionary stage has resulted in a significant
data reduction step. This data reduction facilitates identification of localized
domains of high information in a large data space. Once the scan over all the
subspaces is completed at the end of the first evolutionary stage, this list can be
displayed on a suitable display device (such as a color CRT monitor) using an
appropriate visual mapping method. The multi-dimensional data space has thus
been reduced to a one-dimensional list for display purposes. A unique aspect of
the method of the present invention is the combination of the methodology used to
perform data modeling with the methodology used for information visualization.
The common unifying kernel for both methods lies in the integration of
informational entropy and evolution with the pictorial representation of data in the
form of cells and subspaces.
Hybrid Modeling - Combining distributed hierarchical evolution with neural
networks or other modeling paradigms

Although the present method discloses a powerful framework for data
modeling, it is important to note that ne modeling framework is perfect. Every
modeling method imposes a “model bias”, either due to its approach or due to
geometries that are imposed on the data. Distributed hierarchical evolution can be
combined with other modeling paradigms to create a hybrid model. These other
paradigms could be neural networks or other classification or modeling
frameworks. If the other available modeling tools have a fundamentally different
philosophy, combining one or more of them with Distributed Hierarchical
Evolution has the effect of smoothing out model bias. In addition, multiple
distributed models can be built within each paradigm using different data sets to
smooth out data bias. The final predictive result could be a weighted or
unweighted combination of the individual predictions comsng from each model.
Hybrid modeling thus provides an extremely powerful framework for modeling
because it takes advantages of the strengths of diverse modeling philosophies.
The Discovery of Laws - Combining distributed hierarchical evolution with
genetic programming

After the first evolutionary stage, it is instructive to examine the

information content of the resulting feature data set. In many cases, there will be a
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number of relatively information-rich features, which taken together, can form the
basis for the subsequent development of empirical models. On the other hand, if
there are no information-rich features which have evolved, as measured by their
absolute information content (which is normalized between 0 and 1), the most
appropriate next step is to go back to the data instead of trying to evolve useful,
robust models.

Occasionally, however, there could be another outcome of the first
evolutionary stage. It may be that a standout feature has evolved from the data.
This feature could be extremely information-rich, and may in fact represent the
“genetic code” for the problem at hand. In such a case, the larger data set can be
parsed using the inputs coded for by the standout gene, and this reduced data set
can be used as an input into a genetic programming framework, to evolve a
mathematical expression describing the underlying law. Genetic programming is
described, for example, in Koza, J. R., “Genetic Programming - On the
Programming of Computers by Natural Selection”, M.I.T. Press (1994). This
expression would represent an analytic description of the process being studied
and would be the final outcome of an evolutionary discovery process. With this
step, the combination of information theory and evolution will have resulted in
discovering a mathematical expression encapsulating the underlying order in an
apparently disordered system. The entire process of examining the features for
information content and then embarking on either empirical modeling,
mathematical discovery, or returning to the data describes a systematic approach
to a “Science of Discovery” based on a data driven paradigm.

The evolution of a mathematical description of a disordered system
transforms the empirical model from a fundamentally interpolative nature to an
extrapolative nature. The mathematical expression can thus be used to predict
output values even in data domains outside the range of the training sets used in
the development of the empirical model. The mathematical description could also
provide the stimulus for gaining fundamental insight into a process or system
being modeled and perhaps discovering underlying principles.

EXAMPLE }
HOMOGENEOUS POLYMERASE CHAIN REACTION
(PCR) FRAGMENT IDENTIFICATION

The present invention has been applied to the identification of
homogeneous PCR fragments. The present method first identifies the
information-rich portion of the DNA melting curve and then evolves optimal
models using the information-rich subset of the input spectrum.
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Background:

DNA fragment identification has traditionally been performed by gel
electrophoresis. An alternative method using intercalated dyes offers potential
time and sensitivity advantages. This method is based on the observation that the
dye fluorescence decreases as the double stranded DNA denatures (unwinds) upon
heating. Data analysis of the resulting so-called “melt curve”, which plots the
fluorescence versus temperature, provides the basis fora unique identification of
the DNA fragment. The method, however, requires an accurate identification of a
specific DNA fragment both in the presence of other non-specific fragments and
in the presence of fluorescence noise from the background matrix.

Preparation of spiked food samples:

This study evaluated foods that are known to inhibit PCR. The evaluation
tested the ability of the addition of bovine serum albumin (BSA) to the reaction to
overcome the inhibitory effect of the inhibitory foods. In addition, the
homogeneous detection of PCR product using melting curve analysis was
compared to standard gel electrophoresis with ethidium bromide staining.

Foods were purchased from local grocery stores and were stored at 4°C.
Thirty different foods were pre-enriched according the BAM procedure.
Following the prescribed enrichment, samples were spiked with Salmonella
newport or were left unspiked, see Table III. The enrichments were then diluted
1:10 in BHI (Difco) and then incubated at 37°C for 3 hours.

TABLE ]
Pre-enrichment Food:Broth Inoculation
Food Broth Dilution Levels
Almonds LB 1:10 0, 104/mL, 105/mL
Liquid Egg TSB 1:10 0, 104mL, 105/mL
Red Wheat Bran LB 1:10 0, 104/mL, 105/mL
Peanut Butter LB 1:10 0, 104/mL, 105/mL
Walnuts LB 1:10 0, 104/mL, 105/mL
Ground Coffee LB 1:10 0, 107/mL
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Pre-enrichment Food:Broth Inoculation
Food Broth Dilution Levels

Instant Coffee LB: 1:10 0, 107/mL

Instant Tea LB 1:10 0, 107/mL

Thyme TSB 1:10 107/mL

Chocolate Ice-cream Non fat dry 1:10 107/mL
milk

Basil TSB 1:10 107/mL

Hot Chocolate Mix Non fat dry 1:10 107/mL
milk

Oregano TSB 1:100 107/mL

Pastry Nut Mix LB 1:10 107/mL

All Spice TSB 1:100 107/mL

Rosemary TSB 1:10 107/mL

Cinnamon TSB 1:100 107/mL

Wheatbran LB 1:10 107/mL

Carnation, Hot Cocoa Non fat dry 1:10 0, 107/mL

Mix milk

Nestle’s cocoa Non fat dry 1:10 0, 107/mL
milk

Oreo Crumbs Non fat dry 1:10 0, 107/mL
milk

Swiss Mocha Café Non fat dry 1:10 0, 107/mL
milk

Nestle Chocolate Liquor  Non fat dry 1:10 0, 107/mL
milk

Milk Chocolate Non fat dry 1:10 0, 107/mL
milk

Hershey's cocoa Non fat dry 1:10 0, 107/mL
milk

Dark Cocoa Non fat dry 1:10 0, 107/mL
milk

Viennese Chocolate Non fat dry 1:10 0, 107/mL

Café milk

Walnut Whip Non fat dry 1:10 0, 107/mL
milk

Nestle’s milk chocolate ~ Non fat dry 1:10 0, 107/mL

crumbs milk

Polyvinylpolypyrrolidone (PVPP) treatment:
A 500 ul aliquot of the growback sample was added to a tube containing a
50 mg tablet of PVPP (Qualicon, Inc.). The tube was vortexed and the PVPP was

43



WO 00/67200 PCT/US00/10425

10

15

20

25

30

35

allowed to settle for 15 minutes. The resultant supernatant was then used in the

lysis procedure.

Salmonella Sample Preparation:
In a 2 ml screw cap tube, five (5) microliters of the enrichment or PVPP

treated sample was added to 200 ul of the lysis reagent (5 ml BAX® lysis buffer
and 62.5 ul BAX® Protease) containing a 1:10,000 dilution of the DNA
intercalating dye SYBR® Green (Molecular Probes). The tubes were incubated at
37°C for 20 minutes followed by 95°C for 10 minutes. Following the 95°C
incubation, 50 ul of a 4 mg/ml BSA solution was added to the lysate. This was
done for both PVPP treated and untreated samples. As a control, some samples
were left untreated. Fifty (50) microliters of this crude bacterial lysate was used to
hydrate one BAX® Salmonella sample tablet that were contained in PCR tubes
used with the Perkin Elmer 7700 Sequence Detector instrument. The tubes were
capped and thermal cycled according to the following protocol in a Perkin Elmer

9600 thermal cycler:
94°C 2.0 minutes 1 cycle
94°C 15 seconds 35 cycles
72°C 3.0 minutes
72°C 7 minutes 1 cycle
4°C “forever”

Post Amplification Analysis:
Following the amplification, melting curves were generated on the Perkin
Elmer 7700 DNA Sequence Detector by running the following conditions:

Plate Type: Single Reporter

Instrument: 7700 Sequence Detection System

Run: Real Time

Dye Layer: FAM

Sample type: Unknown

Sample volume: 50ul

Running Conditions:
70°C 2 minutes 1 cycle No data collection
68°C 10 seconds 98 cycles Collect data
Auto increment +0.3°C/cycle
25°C “forever”

The multicomponent data was exported from the instrument and was used
in the analysis. The production of the specific DNA fragment was verified by
adding 15 ul of BAX® Loading Dye to the amplified sample. A 15 ul was aliquot

was then loaded into a well of a 2% agarose gel containing ethidium bromide.
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The gel was run at 180 volts for 30 minutes. The specific product was then
visualized using UV transillumination.
Data Analysis: N

The raw fluorescence data was imported into Microsoft Excel for
processing. From this stage divergent approaches were used for visualizing the
data and making predictions from the data.

Data Preprocessing:

It has been determined experimentally that preprocessing the data to
reduce the fluorescence noise increases the likelihood of successful modeling. The
data preprocessing consists of the following steps:

a.  Normalizing the fluoresence data.

b.  Interpolating the normalized fluorescence with a cubic spline
function at 0.1°C resolution.

c.  Taking the logarithm of the interpolated fluorescence spectrum.
Smoothing the logarithm of the fluorescence using a 25 point
Savitsky Golay smoothing function.

The resulting temperature spectrum is used as the set of inputs to the
modeling method described herein. Two different modeling examples using the
temperature spectrum are described.

Step a. Normalizing and Visualizing the Data

The fluorescence data is normalized by: first, determining the lowest
measured fluorescence level in the spectrum; subtracting this values from each
point in the spectrum to remove the dc offset. The normalized data of step a.
above was then smoothed with a Savitzky-Golay smoothing algorithm. The
negative derivative is taken of the smoothed fluorescence with respect to
temperature (-dlog(F)/dT) and plotted, -dlog(F)/dT (y-axis) vs.Temperature (x-
axis).

Steps b-d. Predictions From the Data

Starting with the normalized data, the data is interpolated to a2 0.1C
resolution using a cubic spline interpolating function. The logarithm of the
interpolated data is then taken and then smoothed with a Savitzky-Golay
smoothing algorithm over 2.5 degrees (i.e., 25 points at 0.1°C. The negative
derivative is taken of the log fluorescence with respect to temperature (-d(log
F)/dT) and parsed at a 1.0C interval using the data range for Salmonella: 82.0°C
to 93.0°C (12 data points).

For method comparison, the method described herein was compared to
two other well-known modeling methods: a Neural Network, and logistic

regression; and the results are reported in the table below.
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The most effective DNA fragment identification method found comprises
using two modeling schemes in a back-to-back in a sequential fashion. The first
level of identification is to separate smears from non-smears. This is followed by :
identifying the specific DNA fragment of interest for the non-smear samples. In
practice, this hierarchical method has proven to be more accurate than using a
single 3-state model with positives, negatives and smears representing the possible
output categories. ‘

1. Modeling of non-specific PCR fragments versus specific PCR fragments.

The PCR amplification process produces non-specific PCR fragments as
well as fragments corresponding to a specific type of DNA of interest. The first
example demonstrates the present method’s ability to discriminate between the
non-specific and specific PCR fragments. A group of 30 non-specific or “smear”
fluorescence spectra were created, along with 149 locked process (i.e., control)
specific training spectra and 309 test spectra of problem foods (actual foods
known to be problematic for PCR). A temperature spectrum (over a range of
11.1°C) for each sample comprising one hundred eleven (111) points, with a
temperature resolution of 0.1°C, was created. Both the locked process and
problem food samples contained both positive and negative exemplars. In this
example, the positive samples were spiked (i.e., contaminated) with a specific
bacteria (e.g., Salmonella) and the negative samples were left unspiked
(uncontaminated). The smear samples were randomly introduced into both the
locked process training set (12 smear samples) and the problem food test set (18
smear samples). Both the positive and negative sample states were merged and
labeled with a binary zero “0” character and the smear sample states were labeled
with a binary one “1”.

a. Evolving the most information-rich set of inputs:

The first step in the modeling process was to reduce the 111-dimensional
input feature space into a smaller, more information-rich subset. The evolutionary
framework described earlier was used to evolve the most information-rich
features. An initial gene pool of 100 genes was randomly generated, where each
gene comprised a binary string 111 bits long, with the state of each bit denoting
whether the corresponding input feature was activated in the gene. The
evolutionary process was constrained by the mean cell occupation number to be 1
sample per cell, and the evolution proceeded over 5 generations. The number-
weighted-sum of local entropies was used as the global entropy, or fitness
function, to drive the evolution for each gene. The evolution proceeded using
fixed-sized subranges (i.¢., fixed bins, rather than adaptive binning) and the data

was balanced, as described above, to balance the number of 0 and 1 output states.
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A global list of the 100 most information-rich genes was maintained
throughout the evolutionary process. A histogram of the bit frequencies for all
111 input features was analyzed at the end of each generation of the evolution to
identify the most frequently occurring bits in the information-rich gene pool
which had evolved. This histogram provided information about which
temperature points were most closely associated with the output states.

The 111 point temperature range was indexed from 0 to 110, the following
31 temperature points were selected from the evolutionary process: 12, 14, 16, 18,
20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 50, 52, 54, 56, 58, 60, 62, 64,
80, 82, 84, 86, 88.

It should be noted that information-rich regions were observed in the
histogram and even-numbered index points (listed above) spanning these regions
were selected. It should be noted that most of the selected points span the range
from 12-60. This is because the melting curve spectrum for the smear samples
starts to rise above the baseline and separate from both the positive and negative .
samples in the temperature range corresponding to the index interval [12,60].
Even though smears by their very definition have variable melting curve structure,
the main structural features generally appear at lower temperatures than in the
positive samples. The negative samples are essentially structure free. Thus, the
present method confirms that the lower temperature region is where the best
discrimination between smears and non-smears occurs.

b. Exhaustively searching all low-dimensional projections of parsed

data.

After the training data set was parsed using the information-rich points
discovered in the first evolutionary process, the reduced data set was exhaustively
searched at low dimensions over a wide binning range. Fixed bins and dataset
balancing was used throughout the exhaustive process. In this modeling problem,
it was found that generating 465 projections of the 31-dimensional input space
into all two-dimensional projections using 26 fixed bins per dimension resulted in
the best exhaustive model. Entropic weighting coefficients of W,> =10, W, =5,
constant term = 1 were used. However, the exhaustive model using all 465
projections is not guaranteed to be the optimum model, since many of the
projections could introduce more noise than information. So a second
evolutionary stage was performed using 465 bit long binary strings with each bit
representing the inclusion (binary 1) or the exclusion (binary 0) of a given two-
dimensional projection in the gene pool for the model.
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c. Evolving the best two-dimensional model

One hundred (100) random binary strings were initially generated and their
fitness functions were calculated using the error in the test data set as the fitness
function to drive the evolutionary process. The model was evolved over 20
generations and a global list of the most information-rich genes was maintained.
Finally, the most information-rich gene in this gene pool (corresponding to the
gene that resulted in the minimum test error) was selected as genetic code for
smear detection. This gene had 163 of the two-dimensional projections included
with the remaining projections excluded. The minimum test error using these 163
projections was 3 errors out of the 327 test cases (309 problem food samples plus
18 smear samples) resulting in a model accuracy of greater than 99%!

2. Modeling a specific Salmonella PCR fragment (positive) against negative
samples

As a second example of PCR modeling, the present method was presented
the task of identifying a specific DNA fragment corresponding to Salmonella in a
food sample. Once again, the locked process spectra was used as the training data
set and the problem food spectra was used as the test data set. A similar process
to the one described above was used to evolve the best predictive model.

a. Evolving the most information-rich set of inputs:

Following a similar procedure to that described in the previous example,
the present method evolved a set of 12 input features corresponding to the
following temperature points:

10,13,16,61,64,67,76,79,82,85,88,91

Note that in this example, the information-rich portion of the spectrum is
in the higher end of the temperature range ( between points 61 and 91). This is
not too surprising, since the main structure in the positive melting curves occurs in
the vicinity of temperature index 80.

b. Exhaustively searching all low dimensional projections of parsed

data

After the training data set was parsed using the information-rich points
discovered in the first evolutionary process, the reduced data set was exhaustively
searched at low dimensions over a wide binning range. Fixed bins and dataset
balancing was used throughout the exhaustive process. In this modeling problem,
it was found that generating 220 projections of the 12-dimensional input space
into all three-dimensional projections using 19 fixed bins per dimension resulted
in the best exhaustive model. The same entropic weighting coefficients were used
as in the previous example. In this example, it was found that using all 220

projections resulted in the best model. Evolving subsets of the 220 projections did
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not improve the predicted accuracy on the test data set. With all 220 projections,
301 out of the 309 problem food test samples (in the absence of smears) were
identified properly for an accuracy of 97.4%.

Results

Of the 309 data samples produced during these experiments, 204 were
spiked with Salmonella and 105 samples were “blank” reactions. Of the 204
spiked samples, 143 samples were positive on an agarose gel and 61 were
negative on the gel. The negative samples can be attributed to the inhibition of
PCR or inadequate gel or PCR sensitivity. Of the 105 “blank” reactions, 95 were
negative on the gel, and 10 were positive on the gel. The positive samples can be
attributed to natural food contamination (e.g., liquid egg samples) or technical
errors.

The following Table summarizes the results of the three modeling
methods. The output of each of the modeling methods is a number between one
and zero. A “1” represents a “spiked” prediction while a “0” represents an
“unspiked” prediction. The closer the number is to zero or one, the more
confidence can be placed in the prediction. Any prediction higher than the
threshold of 0.5 is considered positive. The number for each of the methods
below shows the number of samples that agreed with the expected prediction.

TABLE II
Expected Number of Present Neural Logistic
Description Prediction? Samples3 Method Net Regression
Spiked Confirmed Pos I 143 139 138 134
/Pos Gel :
Unspiked | Confirmed Neg 0 95 93 92 64
/Neg Gel
Unspiked | Contaminated 1 10 8 8 10
/Pos Gel Sample
Spiked Detection 0/1 61 56/5 55/6 47/14
/Neg Gel' | Sensitivity
Total 309 301 299 269
%
Agreement 97.41% 96.76% 87.06%

1These samples were spiked, but were negative on the gel. Because homogeneous detection is

more sensitive than gel detection, it is possible to detect a positive sample with homogeneous
detection and not with a gel-based method. When calculating percent agreement, all samples
in this category are assumed to be correct.
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2The “Expected Prediction” column displays a one or a zero based on the spike status and gel
result. This number is what the model would be expected to predict based on the training
samples.

3The “Number of Samples” column displays the number of samples that fall into a particular
spike/gel category.

In addition to the hierarchical modeling of the present method, a hybrid
modeling framework may be employed.

Neural net models have been developed for both smear/non-smear
identification as well as positive/negative identification. In fact, as more data
becomes available, multiple training/test data sets can be generated resulting in
multiple neural net and InfoEvolve™ models. An unknown sample can be tested
in all the models and categorized based on the statistics of the individual model
predictions. As we discussed in Appendix G, this approach has the advantage of
reducing data bias as well as model bias, by diversifying over multiple data sets
and modeling paradigms. In addition, the hierarchical approach of using two
separate modeling stages successively will further improve model accuracy.
Hybrid Modeling

Although the present method discloses a powerful framework for data
modeling, it is important to note that no modeling framework is perfect. Every
modeling method imposes a “model bias”, either due to its approach or due to
geometries that are imposed on the data. The present method makes minimal use
of additional geometries and has several advantages as described above; however
the present method is fundamentally interpolative rather than extrapolative. In
relatively data poor systems, this interpolative characteristic reduces the ease of
generalization.

In order to take advantage of the present method’s strengths and minimize
its weaknesses, it can be combined with other modeling paradigms to create a
hybrid model. These other paradigms could be neural networks or other
classification or modeling frameworks. If the other modeling tool(s) has (have) a
fundamentally different philosophy, combining one or more other modeling
tool(s) with the present method has the effect of smoothing out model bias. In
addition, multiple models can be built within each paradigm using different data
sets to smooth out data bias. The final predictive result could be a weighted or
unweighted combination of the individual predictions coming from each model.
Hybrid modeling provides an extremely powerful framework for modeling to take
advantage of the strengths of diverse modeling philosophies. In an important
sense, this approach represents the ultimate goal of empirical modeling.
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For instance, if there is a desire to minimize the percent of false negatives,
as in the example described above in testing for foodborne pathogens, a positive
result would be reported if any one of the models predicted a spiked sample. If
this rule was applied to the data in this example the false positive rate based on gel
results would be less than 0.7%. The false negative rate for any one model would
have been: present method =3.9%, neural networks = 4.5%, and logistic
regression =5.8% respectively.

Concluding Remarks

This example illustrates the power of InfoEvolve™ in an important
empirical modeling problem. InfoEvolve™ first identifies the information-rich
portion of the DNA melting curve and then evolves optimal models using the
information-rich subset of the input spectrum. The general paradigm followed in
this example has been tested on a variety of industrial and business applications
with great success, and provides powerful support for this new discovery
framework.

Manufacturing process Example:

An important variable in the Kevlar® manufacturing process is the residual
moisture retained in the Kevlar® pulp. The retained moisture can have a
significant effect both in the subsequent processability of the pulp and resulting
product properties. It is thus important to first identify the key factors, or system
inputs, that affect moisture retention in the pulp in order to define an optimum
control strategy. The manufacturing system process is complicated by the
presence of multiple time lags between the input variables and the final pulp
moisture due to the overall time frame for the drying process. A spreadsheet
model of the pulp drying process can be created where the inputs represent several
temperature and mechanical variables at multiple prior times, and the output
variable is the pulp moisture at the current time. The most information-rich
feature combinations (or genes) can be evolved using the InfoEvolve™ method
described herein to discover which variables at which earlier time points are most
information-rich in affecting pulp moisture.

Fraud Detection Example:

Fraud detection is a particularly challenging application, not only because
it is hard to build a training set of known fraudulent cases, but also because fraud
may take on many forms. The detection of fraud can lead to significant cost
savings for a business able to prevent fraud by predictive modeling. Identification
of system inputs that can determine with some threshold probability that fraud
will occur is desirable. For example, by first determining what is a “normal”

record, records that vary from the norm by more than some threshold may be
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flagged for closer scrutiny. This might be done by applying clustering algorithms
and then examining records that do not fall into any cluster, or by building rules
that describe the expected range of values for each field, or by flagging unusual
associations of fields. Credit card companies routinely build this feature of
flagging unexpected usage patterns into their charge authorization process. If a
cardholder normally uses his/her card for airplane tick_ets, rental cars, and
restaurants, but one day uses it to buy stereo equipment or jewelry, the transaction
may be delayed until the cardholder can speak with a representative of the card
issuing company to verify his identity. (Reference: “Data Mining Techniques for
Marketing, Sales and customer Support”, by Micheal J. A. Berry, and Gordon
Linhoff, 1997, pg. 76). The most information-rich feature combinations (or
genes) can be evolved using the present invention described herein to discover

which variables are most information-rich in detecting fraud. These variables may
include the types and amounts of purchases over a time interval, credit balances,
recent address changes etc. Once an information rich set of inputs has been
1dentified, empirical models using these inputs can be evolved using the present
invention. These models can be updated on a regular basis as new data comes in
to create an adaptive learning framework for fraud detection.

Marketing Example:

Banks desire sufficient warning of customer attrition for its demand
deposit accounts (e.g. checking accounts) to have time to take preventive action.
It is important to determine key factors or system inputs that predict potential
customer attrition in a timely manner to spot trouble areas before it is too late.
Thus, monthly summaries of account activity would not provide such timely
output, whereas detailed data at a transactional-level may. System inputs include
reasons customers may leave the bank, identifying data sources to determine if
such reasons are feasibie and then combining the data sources with transactional
history data. For example, a customer’s death may provide an output of
transaction ceasing or a customer no longer is paid bi-weekly or no longer has
direct deposit and thus no longer direct deposits on a regular bi-weekly basis.
However, data generated by internal decisions may not be reflected in
transactional data. Examples include a customer leaving because the bank now
charges for debit card transactions that were once free or the customer was turned
down for a loan. (See “Data Mining Techniques for Marketing. Sales and
Customer Support”, by Micheal J. A. Berry, and Gordon Linhoff, 1997, pg. 85).
The most information-rich feature combinations (or genes) can be evolved using
the present invention described herein to discover which variables will be the most

information-rich in determining predictive attrition. Creating a data base where
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both internal controls associated with bank strategy as well as customer attributes
are combined with transactional data patterns will allow potential information rich
linkages between bank strategies, customer attributes and transactional patterns to
be discovered. This in turn can lead to the evolution of customer behaviour
forecasting models to anticipate transactional behaviour.

Financial Forecasting Example:

An important consideration in financial forecasting (e.g., stock, option,
portfolio and index pricing) is to determine an output variable tolerant of a wide
margin of error in a dynamic and volatile arena such as the stock market. For
example, predicting the change in the Dow Jones Index, rather than the actual
price level, has a wider tolerance for error. Once a useful output variable has been
identified, the next step is to identify the key factors, or system inputs, that may
affect the selected output variable in order to define an optimum prediction
strategy. The change in the Dow Jones Index, for example, might depend on prior
changes in the Dow Jones Index as well as other national and global indices. In
addition, global interest rates, foreign exchange rates and other macroeconomic
measures may play a significant role. In addition, most financial forecasting
problems are complicated by the presence of multiple time lags between the input
variables (e.g. prior price changes) and the final price change at the end time
frame. Thus, the inputs represent market variables (e.g., price changes, volatility
of the market, change in volatility model,...) at multiple prior times and the output
variable is the price change at the current time. (Reference: “Neural Networks
for Financial Forcasting” by Edward Gately, 1996, pg. 20). The most
information-rich feature combinations (or genes) can be evolved using the present
invention described herein to discover which variables at which earlier time points
are most information-rich in affecting market variables for financial forecasting.

Once these (variable, time point) combinations have been discovered, they can be

used to evolve optimum financial forecasting models.
What follows is a Pseudo Code listing relating to the method described

herein used to generate models:

LoadParameters(); // Loads data set, and various
parameter values such as type of
binning, balance data choice,
entropic weighting coefficients,
number of data subsets etc...

Loop through subset_number {

CreateDataSubset(filename); // randomly subset data
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Loop through number of local models {

EvolveFeatures(); » /I Evolve Info-Rich Genes

CreateTrainTestSubsets(); /! Break Data Subset into
Train/Test subsets

EvolveModel(); // Evolve a model

}

CreateDataSubset

DetermineRangesoflnputs;

if ( BalanceStatsPerCatFlag is TRUE)
BalanceRandomize;

else

NaturalRandomize;

DetermineRangeofinputs

Loop through data records {
Loop through input features {

if ( input feature value == max
or input feature value == min) {

LoadMinMaxArray(feature index, feature value);
UpdateMinMax(feature value);

} / end of input feature loop
} //'end of data loop

BalanceRandomize

/*****************************************************************

/divides dataset into current subset and remainder subset;

/user specifies number of items per output category.
/*****************************************************************
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Loop through output states {

InitializeCountinState(output) to 0;
InitializeCountinRemainingState(output) to 0;
5 )

Loop through data records {
Set IncludeTrainFlag to FALSE;

Loop through input features {

10
if ( input feature = min) {
if ( input FeatureMinFlag == CLEAR) {
IncludeTrainFlag = TRUE;
FeatureMinFlag = SET;
15
}
3
elseif ( input feature = max) {
20 if ( input FeatureMaxFlag =— CLEAR) {
IncludeTrainFlag = TRUE;
FeatureMaxFlag = SET;
}
25 }
} // end of feature loop
output = ReadOutputState; // read output state for record

guess = GuessRandomValue;
Threshold(output) = NUMITEMSPERCAT/ Total CountinState(output)

30
/[TotalCountinState(output)

means #data items in output
category

35 /************************************************************

If data record is the FIRST instance of a feature minimum or maximum value,

copy record to BOTH the current data subset and the remaining data subset.
/************************************************************

40 if ( IncludeTrainFlag == TRUE) {  // copy record to both
// the current subset &

// remaining data subset.

CopyRecordtoCurrentDataSubset;

45 IncrementCountinState(output);
CopyRecordtoRemainingDataSubset;
IncrementCountinRemainingState(output);
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}

e R L L TR

or else if the number of items in the output category is NOT in excess, replace the
data item in the REMAINING data subset.

A AR AR KR K R KR KKK Ko R KK K KK R K O SR KS Kok kR ok ko kR k

elseif (Threshold(output) > MINIMUM_THRESHOLD){
CopyRecordtoRemainingData;
IncrementCountinRemainingState(output);
if ( CountinState(output) < NUMITEMSPERCAT) {
CopyRecordtoDataSubset;
IncrementCountinState(output);

}

/f MINIMUM_THRESHOLD is typically 0.5 to insure
/enough data remains in remaining data
/subset to create another current subset

/*****************************************************************

or else if the random guess decides that the data item should go to the current data
subset, check and see if the desired quota of NUMITEMSPERCAT has been

exceeded. If not, add data point to current data subset and increment CountinState.
/*****************************************************************

elseif ( guess <= Threshold(output)) {
if ( CountinState(output) < NUMITEMSPERCAT) {
CopyRecordtoDataSubset;
IncrementCountinState(output);

}

else {
CopyRecordtoRemainingData;
IncrementCountinRemainingState(output);
}

}

[ R A E A AR KRR AR KRR R KKK AR KRR F R FRRI KRR F KKK R

or finally, if the random guess decides that the data item should go into the
remaining data subset, check if the quota for the remaining subset has been
exceeded. If not, add the data item to the remaining data subset. If the quota has
been exceeded, add the data item to the current data subset if more items in that

category are needed.
Rk e e ek ok o R sk kR sk ok Aok kR Rk R Rk ko ok ok ok Kok ok ok

elseif ( CountinRemainingState(output) < (1-Threshold(output))*
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TotalCountinState(output)) {
CopyRecordtoRemainingDataSubset;
5 IncrementCountinRemainingData(output);
3
elseif ( CountinState(output) < NUMITEMSPERCAT) {

CopyRecordtoDataSubset;
IncrementCountinDataSubset(output);

10 }

! // end of data record loop

15

20
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30

35

40

45

)]
/lend of BalanceRandomize

NaturalRandomize

SampleSize = NumberOfDataRecords/NumberOfModels;
Threshold = 1 — SampleSize/NumberOfRemainingDataRecords;

Loop through output states {

InitializeCountinState(output) to 0;
InitializeCountinR emainingState(output) to 0;
}

Loop through data records {
Loop through input features {

if ( input feature = min) {
if ( input FeatureMinFlag == CLEAR) {
IncludeTrainFlag = TRUE;
FeatureMinFlag =SET;

}

elseif ( input feature = max) {
if ( input FeatureMaxFlag = CLEAR) {
IncludeTrainFlag = TRUE;

FeatureMaxFlag = SET;
}
}
} // end of feature loop
output = ReadOutputState; // read output state for record

guess = GuessRandomValue;
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/***********************************************************

If data record is the FIRST instance of a feature minimum or maximum value,

copy record to BOTH the data subset and the remaining data subset.
************************************************************/

if ( IncludeTrainFlag = TRUE) { // copy record to
// both the data subset and

// the remaining data set.

CopyRecordtoCurrentDataSubset;
CopyRecordtoRemainingDataSubset;

}

SRR EE AR AR kR KKK R KRR R kR Rk

or if the random guess decides that the data item should go into the remaining data
subset, check if the statistical limit for the remaining subset has been exceeded for
that category. If not, add the data item to the remaining data subset. If the quota

has been exceeded, add the data item to the data subset.
skokkokokokkokokokokakkkkokokkkdkkckokdkokkskkokkokckokkkkkkkkakdkkokkkokkkkkkkkkkkkkkkrkkk

elseif ( guess <= Threshold) {
if ( CountinRemainingState(output) <
Threshold * TotalCountinState(output))

CopyRecordtoRemainingDataSubset;

else
CopyRecordtoCurrentDataSubset;

/*****************************************************************
or if the random guess decides that the data item should go into the current data
subset, check if the statistical limit for the current subset has been exceeded for
that category. If not, add the data item to the current data subset. If the quota has

been exceeded, add the data item to the remaining data subset.
/*****************************************************************

else {
if ( CountinState(output) <
(1-Threshold])*TotalCountinState) {

CopyRecordtoCurrentDataSubset;

else
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CopyRecordtoRemainingDataSubset;

} } // end of data record loop
: /end of NaturalRandomize
EvolveFeatures
10

SelectRandomStackofGenes(N),
Loop Through each gene in Stack {
15 /******************Crcate Subspace from gene ***************/
ReadParameters();

ReadSubspaceAxesfromGene();

» if ( AdaptiveNumberofBinsFlag = SET)
CalculateAdaptiveNumBins;
25 else
UseNumBinsinParameterList;
if ( AdaptiveBinPositionsFlag == SET)
* CalculateAdaptiveBinPositions;
else
35 CalculateFixedBinPositions;
[Rxxxkxrkrkxxrkx*+¥End of Create Subspace from gene ¥*+****xxxkxsk/
40
ProjectTrainDataintoSubspace;
CalculateGlobalEntropyforSubspace;
45 } // end of gene loop
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EvolveGenesUsingGlobalEntropy();
}
5
CreateTrainTestSubsets
DetermineRangesoflnputs;
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RandomizeTrainTestSubsets;

RandomizeTrainTestSubsets

{
Threshold = ReadThresholdfromParameterList;

Loop through data records in Data Subset {
Loop through input features {

if ( input feature = min) {

PCT/US00/10425

// genetic algorithm

if ( input FeatureMinFlag == CLEAR) {
IncludeTrainFlag = TRUE;

FeatureMinFlag = SET;
}
}
else {
if ( input feature = max) {
if ( input FeatureMaxFlag = CLEAR) {
IncludeTrainFlag = TRUE;
FeatureMaxFlag = SET;
}
}
} // end of feature loop
output = ReadOutputState; // read output state for record

guess = GuessRandomValue;

if ( guess <= Threshold) {

if ( CountinTrainDataSubset(output) <
Threshold(output)*Total CountinState
OR IncludeTrainFlag == TRUE)

CopyRecordtoTrainDataSubset;

else

CopyRecordtoTestDataSubset;
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}

else {
if ( CountinTestDataSubset(output) <
(1-Threshold)* TotalCountinState(output)
5 AND IncludeTrainFlag = FALSE) {

CopyRecordtoTestDataSubset;

else
10 CopyRecordtoTrainDataSubset;

}
} / end of data record loop

/fend of RandomizeTrainTestSubsets

15  ModelEvolution

{

GenerateRandomStackofModelGenes(); // generate random
// model genes where

20 // a model gene is
// a cluster of genes

Loop through each model gene in stack {

25
CalculateMGFF(); // calculate model gene
// fitness function(MGFF)
} // end of model gene loop
30 '
EvolveFittestModelGene(); /f use MGFF to drive a
//genetic algorithm to
/levolve the fittest model
//gene
35 1}
CalculateMGFF - Calculation of Model Gene Fitness Function (MGFF)
40 ¢
IdentifyFeatureGenes(); /[Parse model gene to identify
// set of feature genes
45 Loop through each feature gene {
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CreateFeatureSubspace();
Loop through each test record {
ProjectTestRecordintoSubspace();

UpdateTestRecordPrediction();

}

Total Error = 0;
Loop through each test record {

If ( RecordPrediction != ActualRecordOutput)

TotalError = TotalError +1; // increment error

;

MGFF = Total_Error;

Preferred embodiments of the present invention have been described
herein. It is to be understood, of course, that changes and modifications may be
made in the embodiments without departing from the true scope of the present
invention, as defined by the appended claims. The present embodiment preferably
includes logic to implement the described methods in software modules as a set of
computer executable software instructions. A Central Processing Unit ("CPU"),
or microprocessor, implements the logic that controls the operation of the
transceiver. The microprocessor executes software that can be programmed by
those of skill in the art to provide the described functionality.

The software can be represented as a sequence of binary bits maintained on
a computer readable medium including magnetic disks, optical disks, and any
other volatile or (e.g., Random Access memory (“RAM?”)) non-volatile firmware
(e.g., Read Only Memory (“ROM™)) storage system readable by the CPU. The
memory locations where data bits are maintained also include physical locations
that have particular electrical, magnetic, optical, or organic properties
corresponding to the stored data bits. The software instructions are executed as
data bits by the CPU with a memory system causing a transformation of the
electrical signal representation, and the maintenance of data bits at memory
locations in the memory system to thereby reconfigure or otherwise alter the unit's
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operation. The executable software code may implement, for example, the
methods as described above.

It should be understood that the programs, processes, methods and
apparatus described herein are not related or limited to any particular type of
computer or network apparatus (hardware or software), unless indicated
otherwise. Various types of general purpose or specialized computer apparatus or
computing device may be used with or perform operations in accordance with the
teachings described herein.

In view of the wide variety of embodiments to which the principles of the
present invention can be applied, it should be understood that the illustrated
embodiments are exemplary only, and should not be taken as limiting the scope of
the present invention. For example, the invention may be utilized in systems
relating to the financial services market, advertising and marketing services,
manufacturing processes, or other systems that involve large data sets. In
addition, the steps of the flow diagrams may be taken in sequences other than
those described, and more or fewer elements may be used in the block diagrams.

It should be understood that a hardware embodiment may take a variety of
different forms. The hardware may be implemented as an integrated circuit with
custom gate arrays or an application specific integrated circuit (“ASIC”). Of the
course, the embodiment may also be implemented with discrete hardware
components and circuitry. In particular, it is understood that the logic structures
and method steps described herein may be implemented in dedicated hardware
such as an ASIC, or as program instructions carried out by a microprocessor or
other computing device.

The claims should not be read as limited to the described order of elements
unless stated to that effect. In addition, use of the term “means” in any claim is
intended to invoke 35 U.S.C. §112, paragraph 6, and any claim without the word
“means” is not so intended. Therefore, all embodiments that come within the
scope and spirit of the following claims and equivalents thereto are claimed as the

invention.
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I Claim:
1. A method of selecting a feature set having high global informational

content, the feature set being selected from an initial feature set of inputs
corresponding to inputs to a system, comprising the steps of:

(a) acquiring a large number of input data points to the system and
corresponding output data points from the system and storing the input and output
data points in a storage device;

(b) grouping previously acquired data into at least one training data
set, at least one test data set and at least one verification data set by selecting
corresponding combinations of inputs and outputs;

(c) determining a feature set of high global informational content by:

(1) creating a plurality of feature subspaces, each said feature
subspace comprising a set of features from the data of the training
set,

(i1) quantizing the inputs of the training set, the inputs having a
range of values, by dividing the range of values into subranges,
thereby dividing said feature subspace into a plurality of cells,
(ii1) determining the global level of informational content of each
feature subspace,

(iv) selecting at least one feature set that has high global
informational content.

2. The method of Claim 1 wherein the step of quantizing the inputs of
the training set is performed by dividing the range of values of each input into
equally sized subranges.

3. The method of Claim 1 wherein the step of quantizing the inputs of
the training set is performed by adaptively dividing the range of values of the
inputs into subranges, such that the population of data within each subrange
approximates the mean population of the subranges, the mean population being
defined as the ratio of the overall selected data population divided by the number
of subranges.

4. The method of Claim 1, wherein, in step (c)(ii) the plurality of cells
within a feature subspace is a predetermined number.

5. The method of Claim 1, wherein the number of subranges of each
input is an integer value, which is the D-th root of the predetermined number of
cells, where D is the total number of inputs contained within the feature set.

6. The method of Claim 1 wherein the informational content of step
(c)(iii) is determined by calculating a Nishi information entropy.
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7. The method of Claim 1, wherein the step of creating a plurality of
feature subspaces is performed using a genetic selection method employing a
fitness function.

8. The method of Claim 7, wherein a fitness function for the genetic
selection method utilizes the global level of information content of the feature
subspaces.

9. The method of Claim 8, wherein the global level of information
content of the feature subspaces is based on a global entropic weight for each
subspace.

10. The method of Claim 9, wherein the global entropic weight for a
subspace is defined by an output-state-population- weighted sum of clustering
parameters, wherein each output-state-population is based on the total number of
training set data points corresponding to that output state.

11. The method of Claim 10, wherein the clustering parameter for each
output state is based on the distribution of the population of the output state over
the subspace.

12. The method of Claim 9, wherein the global entropic weight for a
subspace is based on a cell-population-weighted sum of local entropic weight
parameters for each cell within the subspace.

13. The method of Claim 12, wherein the local entropic weights for each
cell within the subspace is based on the distribution of the population of the output
states over the cell.

14. The method of Claim 12, wherein the local entropic weights for each
cell within the subspace is defined by the distribution of a normalized population
of the output states over the cell, the normalized population of each output state
being defined by the ratio of the population of output states over the cell to the
total output state population.

15. The method of Claim 9, wherein the global entropic weight for a
subspace is defined by a cell-population- weighted sum of clustering parameters,
wherein each cell-population represents the total number of training set data points
in the cell.

16. The method of Claim 15, wherein the clustering parameter is defined
by the distribution of the cell populations over the subspace.

17. The method of Claim 1 wherein step (b) of grouping the previously
acquired data into at least one training data set, at least one test data set and at
least one verification data set is performed by randomly selecting corresponding
combinations of input data points and output data points, and wherein the at least
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one training data set, at least one test data set and at least one verification data set
do not contain the same data points.

18. The method of Claim 1 further comprising, prior to step (b), the step
of preprocessing the previously acquired data by applying a transformation

function to the acquired data.
19. The method of Claim 17 wherein the transformation function is

applied to only inputs of the acquired data.

20. The method of Claim 1, wherein the step of selecting at least one
feature set comprises selecting a plurality of sets of features, and further
comprising the step:

(d) selecting a group of feature sets that most accurately predicts
system outputs from system inputs on a test data set.

21. The method of Claim 20, wherein the step of selecting a group of
feature sets is performed using a genetic selection method employing a fitness

function.
22. The method of Claim 21, wherein the fitness function for the genetic

selection method is based on a predictive error parameter for the entire test set.

23. The method of Claim 22, wherein the predictive error for a discrete
system, having discrete outputs is the fraction of samples correctly classified in
the test set.

24. The method of Claim 23, wherein the output state of each data point is
predicted by creation and analysis of an output state probability vector for that
data point.

25. The method of Claim 24, wherein the output state is predicted by the
state having the largest probability in the output state probability vector.

26. The method of Claim 24, wherein the output state probability vector is
based on a set of probabilities of each possible output state.

27. The method of Claim 26, wherein the probability of each output state
is a weighted sum over all feature subspaces of the probability of being in that

output state.

28. The method of Claim 27, wherein the weighted sum is computed
using local entropic weights and global entropic weights.

29. The method of Claim 22, wherein the predictive error for a continuous
system, having quantitative outputs is the normalized mean absolute difference
between the predicted and the actual values of the test set.

30. The method of Claim 29, wherein the output values are artificially
quantized into a set of discrete output states to facilitate computing the local and

global entropic weights.
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31. The method of Claim 29, wherein the output state value for each data
point is predicted by calculating a mean analog output value in a cell for a
subspace.

32. The method of Claim 30, wherein the mean analog output value is
calculated by using a data replication scale factor for balancing the data set over
all the artificially quantized output states.

33. The method of Claim 31, wherein the mean analog output value is
calculated as a weighted sum of the mean cell analog output values over all the
subspaces.

34. The method of Claim 33, wherein the weighted sum is computed
using local entropic weights and global entropic weights.

35. The method of Claim 22, wherein the predictive error for a continuous
system, having quantitative outputs is the normalized median absolute difference
between the predicted and the actual values of the test set.

36. The method of Claim 35, wherein the output values are artificially
quantized into a set of discrete output states to facilitate computing the local and
global entropic weights.

37. The method of Claim 35, wherein the output state value for each data
point is predicted by calculating a median analog output value in a cell for a
subspace.

38. The method of Claim 36, wherein the median analog output value is
calculated by using a data replication scale factor for balancing the data set over
all the artificially quantized output states.

39. The method of Claim 37, wherein the median analog output value is
calculated as a weighted sum of the median cell analog output values over all the
subspaces.

40. The method of Claim 1, further comprising:

(d) creating a histogram representing the frequency of occurrence
of each input in the feature data set.

41. The method of Claim 40, wherein a dimensionality of the data set is
the number of inputs, further comprising:

(e) retaining the most frequently occurring inputs to define a
reduced-dimensionality data set, wherein the reduced-
dimensionality is less than or equal to the dimensionality of the
data set.

42. The method of Claim 41, wherein the retaining step (e) further

comprises:
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using an automated method of analyzing the histogram to select a
subset of the inputs to create a reduced-dimensionality data set, wherein the size
of the subset is less than or equal to the number of inputs.

43. The method of Claim 42, wherein the automated method comprises a
peak-finding method to select the subset of the inputs.

44, The method of Claim 43, wherein the automated method comprises a
sorting of the histogram frequencies to select the subset of the inputs.

45. The method of Claim 41, wherein the retaining step (e) further
comprises creating a visual representation of the histogram and subjectively
selecting a subset of the inputs, wherein the size of the selected subset is less than
or equal to the number of inputs.

46. The method of Claim 41, wherein the retaining step (e) further
comprises:

using a subjective method of selecting one or more inputs to represent
each peak in the histogram.

47. The method of Claim 41, further comprising:

(f) defining a reduced-dimensionality group of feature sets by
exhaustively searching over a plurality of subsets of the reduced-
dimensionality data set under a plurality of quantization conditions,
to determine an optimum or near-optimum dimensionality and an
optimum or near-optimum quantization condition, the combination
of which most accurately predicts system outputs from system
inputs on a test data set.

48. The method of Claim 47, further comprising:

(g) selecting a final group of feature sets from the reduced-
dimensionality group of feature sets that most accurately predicts
system outputs from system inputs on a test data set.

49. The method of Claim 48, wherein the step of selecting a set of features
that most accurately predicts system outputs is performed using a genetic selection

method.
50. A method of defining a model from a data set that most accurately

predicts system outputs from system inputs on a test set, comprising the steps of:
(a) acquiring a large number of inputs to the system and
corresponding outputs from the system and storing the inputs and
outputs as previously acquired data in a storage device;
(b) dividing the previously acquired data into at least one training
data set, at least one test data set and at least one verification data

set by selecting corresponding combinations of inputs and outputs;
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(¢) defining a feature subspace as a combination of one or more
inputs, wherein the dimension of a feature subspace 1s the number
of inputs in the combination;

(d) defining a model by exhaustively searching over a plurality of
feature subspaces of the data set under a plurality of quantization
conditions to determine an optimum or near-optimum
dimensionality and an optimum or near-optimum quantization
condition of cells, the combination of which most accurately

predicts system outputs from system inputs on a test data set.

The method of Claim 50 further comprising the step of retaining a

subset of the cells in the feature subspace having high local entropic weights.

52. The method of Claim 51, further comprising displaying the subset of

cells on a display device.

The method of Claim 52, wherein the information content of a cell

comprises the output value, the local cell entropic weight and the cell population,
which are displayed by mapping the output value, the local cell entropic weight
and the cell population into a color space.

54. A method of defining a framework by selecting a group of models that

most accurately predict system outputs from system inputs, comprising the steps

of:

(a) acquiring a large number of inputs to the system and
corresponding outputs from the system and storing the inputs and
outputs as previously acquired data in a storage device;
(b) dividing the previously acquired data into at least one training
data set, at least one test data set and at least one verification data
set by selecting corresponding combinations of inputs and outputs;
(c) defining a feature subspace as a combination of one or more
inputs, wherein the dimension of a feature is the number of inputs
in the combination;
(d) determining a combination of feature subspaces having high
global informational content by:

(1) selecting data of a training set;

(i) creating a plurality of feature subspaces from the data of

the training set;

(iii) quantizing the inputs of the training set with respect to

each feature subspace, the inputs having a range of values, by

dividing the range of values into subranges
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thereby dividing each feature subspace into a plurality of
cells, each cell having a cell population being defined as the
number of training set data points which occupy each cell,
(iv) determining the local informational entropy of each cell
5 in the subspace,

(v) determining the global informational content of each
feature subspace,

(vi) determining a set of feature subspaces that have high
global informational content;

10 (e) selecting a model comprising a set of feature subspaces that
most accurately predicts system outputs from system inputs on a
test data set;

(f) repeating steps (b)-(e) on different training and test sets to
define a group of models;

15 (g) creating a new training and new test data set using individual
model output-predicted values as inputs and actual output values as
the outputs;

(h) selecting a subset group of optimum models from the group of
models that most accurately predict system outputs from system

20 inputs on the new test data set to define the framework

55. The method of Claim 54, wherein the selecting step (h) is performed
using a genetic method employing a fitness function.

56. The method of Claim 55, wherein the fitness function for the genetic
selection method is defined by a predictive error parameter for the entire new test

25  data set of step (h).

57. The method of Claim 54, wherein the step (d) (vi) of determining a set
of feature subspaces that have high global informational entropy is performed
using a genetic method employing a fitness function.

58. A method of defining a super-framework by selecting a group of

30 frameworks that most aécurately predict system outputs from system inputs,

comprising the steps of:
(a) acquiring a large number of inputs to the system and
corresponding outputs from the system and storing the inputs and
outputs as previously acquired data in a storage device;

35 (b) dividing the previously acquired data into at least one training
data set, at least one test data set and at least one verification data
set by selecting corresponding combinations of inputs and outputs;
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(c) defining a feature subspace as a combination of one or more
inputs, wherein the dimension of a feature subspace is the number
of inputs in the combination;
(d) determining a combination of feature subspaces of high global
informational content by:
(1) selecting data of a training set,
(ii) creating an initial set of features from the data of the
training set,
(ili) quantizing the inputs of the training set, the inputs having
a range of values, by dividing the range of values into
subranges,
thereby dividing each feature subspace into a plurality of
cells, the cells being defined by combinations of subranges of
inputs, each cell having a cell population being defined as the
number of training set data points which occupy each cell,
(iv) determining the local informational entropy of each cell
in the subspace,
(v) determining the global informational content of each
feature,
(vi) determining a set of feature subspaces that have high
global informational content;
(e) selecting a model comprising a combination of features
subspaces that most accurately predicts system outputs from system
inputs on a test data set;
(f) repeating steps (b) — (e) on different training and test sets to
define a group of models;
(g) creating a new training and new test data set using individual
model output-predicted values as inputs and actual output values as
the outputs;
(h) defining a framework by selecting a subset group of optimum
models from the group of models that most accurately predict
system outputs from system inputs on the new test data set;
(i) repeating steps (b) — (h) on different training and test sets to
define a group of optimum frameworks;
(3) creating a new training and new test data set using individual
framework output-predicted values as inputs and actual output

values as the outputs;
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(k) defining a super-framework by selecting a subset group of
frameworks from the group of optimum frameworks that most
accurately predict system outputs from system inputs on the new
test data set.

59. The method of Claim 58, wherein the step (h) of selecting the subset
group of frameworks from the group of optimum frameworks that most accurately
predict system outputs from system inputs is performed using a genetic method
employing a fitness function.

60. The method of Claim 59, wherein the fitness function for the genetic
selection method is defined by a predictive error parameter for the entire new test
data set of step (k).

61. The method of Claim 58, wherein the step (d) (vi) of determining a set
of feature subspaces that have high global informational entropy is performed
using a genetic method employing a fitness function.

62. A method of evolving a mathematical relationship between inputs and
outputs in an empirical data set, comprising:

(a) acquiring a large number of inputs to the system and
corresponding outputs from the system and storing the inputs and
outputs as previously acquired data in a storage device;
(b) dividing the previously acquired data into at least one training
data set, at least one test data set and at least one verification data
set by selecting corresponding combinations of inputs and outputs;
(c) defining a feature subspace as a combination of one or more
inputs, wherein the dimension of a feature subspace is the number
of inputs in the combination;
(d) determining a combination of feature subspaces of high global
informational entropy by:
(1) selecting data of a training set,
(ii) creating an initial set of feature subspaces from the data of
the training set,
(iii) quantizing the inputs of the training set, the inputs having
a range of values, by dividing the range of values into
subranges,
thereby dividing each feature subspace into a plurality of
cells, each cell having a cell population being defined as the
number of training set data points which occupy each cell,
(iv) determining the local informational entropy of each cell

in the subspace relative to each output of the subset,
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(v) determining the global informational entropy of each
feature,
(vi) selecting a set of feature subspaces that have high global
informational entropy;
(e) selecting the feature subspace with the highest global
informational entropy from the feature data set ;
(f) creating a reduced-dimensionality data set by selecting only
those inputs from the data set that are contained in the selected
feature subspace;
(g) applying a genetic programming method to evolve a
mathematical relationship between the inputs and outputs of the
reduced-dimensionality data set.

A hybrid method of evolving a mathematical relationship between

inputs and outputs in an empirical data set, comprising:

15

20

25

(a) generating a first model from a data set using the method of
claim 50 or 54 or 58 or 62;

(b) generating a second model using a modeling technique different
from the first model generating step;

(c) dividing the data set into subsets and determining a local
performance of each model in each subset;

(d) generating a weighting function based upon the local
performance of the first and second models in each subset; and

(e) combining the first and second models using the weighting
function, thereby combining the local performance advantages of

each of the models.

64. A machine-readable storage medium containing a set of instructions

for causing a computing device to generate a model of a system using inputs and
outputs of the system, said instructions comprising the steps of:

searching a plurality of feature subspaces to locate high informational

30 feature subspaces, said high informational feature subspaces comprise

combinations of one or more inputs;

searching a plurality of models, said models comprising one or more

of said high informational feature subspaces, each of said models having an

associated output prediction; and

35

selecting one of said models having an output prediction accuracy that

is greater than that of at least one other model.
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65. The storage medium of Claim 64 wherein said step of searching a
plurality of subspaces is performed by examining substantially all possible
subspaces. )

66. The storage medium of Claim 64 wherein said step of searching a
plurality of subspaces is performed by a genetic evolution algorithm.

67. The storage medium of Claim 66 wherein said genetic evolution
algorithm uses a measure of informational content as a fitness function.

68. The storage medium of Claim 67 wherein said fitness function is a
measure of global subspace entropy.

69. The storage medium of Claim 68 further comprising the step of
eliminating one or more inputs having the lowest frequency of occurrence in the
plurality of models, and thereafter repeating the step of searching, wherein the
feature subspaces comprise combinations of one or more of the remaining inputs.

70. The storage medium of Claim 64 wherein said step of searching a
plurality of models is performed by a genetic evolution algorithm.

71. The storage medium of Claim 70 wherein said genetic evolution
algorithm uses a measure of prediction accuracy as a fitness function.

72. The storage medium of Claim 71 wherein said measure of prediction
accuracy is based on predictions comprising a weighted combination of
predictions of a localized cellular regions within said one or more informational
feature subspaces.

73. The storage medium of Claim 64 wherein said searching includes
dividing each said subspace into cells.

74. The storage medium of Claim 73 wherein the number of cells is varied
to identify a cell division that provides a higher informational content than at least
one other cell division. '

75. The storage medium of Claim 73 wherein the number of cells is
determined based on the number of available data points.

76. The storage medium of Claim 73 wherein cell boundaries are
determined by dividing each dimension into equally sized subranges.

77. The storage medium of Claim 73 wherein the cell boundaries are
determined by dividing each dimension of a given subspace into subranges such
that each subrange has approximately the same number of data points.

78. The storage medium of Claim 64 wherein the informational content of
a subspace is a weighted sum of cell informational content.

79. The storage medium of Claim 78 wherein the cell informational
content is based on the probabilities of an output being in a given output state for

that cell.
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80. The storage medium of Claim 78 wherein the cell informational
content is based on output state entropy.

81. The storage medium of Claim 78 wherein the weight is based on
number of points in the cell.

82. The storage medium of Claim 64 wherein the informational content is
a weighted sum of output-specific probabilities.

83. The storage medium of Claim 82 wherein the output-specific
probabilities are based on the probabilities of being in individual cells for a given
output state.

84. The storage medium of Claim 83 wherein the output-specific
probabilities are based on the entropy of the cell distribution for a given output
state.

85. The storage medium of Claim 82 wherein the weight is based on the
number of points in subspace in that state.

86. The storage medium of Claim 64 wherein high informational
subspaces are identified by a heuristic algorithm.

87. The storage medium of Claim 86 wherein the heuristic algorithm
utilizes the number of cells within a subspace having a clustering of output states.

88. The storage medium of Claim 64 wherein each subspace is divided
into cells and each cell in each subspace has a cell probability vector, and wherein
elements of the probability vector correspond to the probability of each output
state.

89. The storage medium of Claim 88 wherein each model has an
associated probability vector containing a weighted sum of cell probability
vectors.

90. The storage medium of Claim 89 wherein the weight is a combination
of local and global entropic weights.

91. The storage medium of Claim 64 wherein the output prediction
accuracy is based on predictions having a value equal to the output having the
highest probability of occurrence.

92. The storage medium of Claim 64 further including instructions
comprising the steps of selecting a plurality of models; and

grouping subsets of selected models into framework.

93. A machine-readable storage medium containing data representing a
model generated by the method of any of Claims 1, 6, 7, 17, 18, 20, 22, 29, 40, 45,
47, 50, 54, 58, 62, or 63.

94. A machine-readable storage medium containing data structures, said

data structures comprising:
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a subspace data structure containing data representing a plurality of
input combinations corresponding to a plurality of subspaces;
a model data structure containing data representing a plurality of
subspace combinations; and
a training data structure containing data representing the training data
set needed to populate the subspaces.
95. The storage medium of Claim 94 further containing a data structure
containing data used to specify cell regions for each subspace.
96. The storage medium of Claim 95 further containing a data structure
containing entropic weights for each subspace.
97. The storage medium of Claim 95 further containing a data structure
containing entropic weights for each cell region.
98. The storage medium of Claim 95 further containing a data structure
containing prediction values for each cell region.
99. The storage medium of Claim 95 further containing a framework data
structure containing data representing a plurality of model combinations.

100. A machine-readable storage medium containing a plurality of data
structures, said plurality of data structures being used to determine a system
output prediction response to system input data points, said data structures
comprising:

a mapping data structure containing data used to map an input data
point to a cell prediction value; and,

a model data structure containing data representing a plurality of
subspace combinations.

101. The storage medium of Claim 100 wherein the prediction values are
weighted probability vectors.

102. The storage medium of Claim 100 further comprising a weighting data
structure containing data representing local and global entropic weights.

103. The storage medium of Claim 100 further containing a framework
data structure containing data representing a plurality of model combinations.

104. A hybrid method of evolving a mathematical relationship between
inputs and outputs in an empirical data set, comprising:

(a) generating a first model from a data set using the method of
Claim 50 or 54 or 58 or 62;

(b) generating a second mode! using a modeling technique different
from the first model generating step;

(c) generating a weighting function based upon a performance of the

first and second models in each subset; and
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(d) combining the first and second models using the weighting
function, thereby combining advantages of the performance of each of the models.
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BASIC MOTIVATION:

InfoEvolvé“‘fromework can be used to discover data clusters
based on similarity of input features. This is independent
of any output state, and is very useful for subdividing large

data bases into smaller subsets based on input feature
similarity.

HIGHEST LEVEL FLOW DIAGRAM

DATA PRE-PROCESSING (using existing methods/
transformations)

CLUSTER EVOLUTION

CLUSTER GROWING

l

(use modified recursive merge algorithm
similar to region growing algorithms in
image analysis.)
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