Title: SPECIFIC IMMUNOPHILIN LIGANDS AS ANTIASTHMATICS AND IMMUNOSUPPRESSANTS

Bezeichnung: SPEZIFISCHE IMMUNOPHILIN-LIGANDEN ALS ANTIASTHMATIKA, IMMUNSUPPRESSIVA

Abstract

The new specific immunophilin ligands of the general formula (I) have antiasthmatic and immunosuppressive action and can be used to produce drugs.

Zusammenfassung

Die neuen spezifischen Immunphilin-Liganden der allgemeinen Formel (I) besitzen antiasthmatische und immunsuppresssive Wirkung und eignen sich zur Herstellung von Arzneimitteln.
LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
<th>Code</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Geben</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Island</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgisistan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KR</td>
<td>Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LT</td>
<td>Litauen</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>MK</td>
<td>Die ehemalige jugoslawische Republik Mazedonien</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>TR</td>
<td>Türkei</td>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td>MR</td>
<td>Mauretanien</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>UK</td>
<td>Uganda</td>
<td>MX</td>
<td>Mexiko</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>YU</td>
<td>Jugoslawien</td>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>ZA</td>
<td>Sambia</td>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
<td>RO</td>
<td>Rumänien</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SZ</td>
<td>Swasiland</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>SG</td>
<td>Singapur</td>
</tr>
</tbody>
</table>
SPEZIFISCHE IMMUNOPHILIN-LIGANDEN ALS ANTIASTHMATIKA, IMMUNSUPPRESSIVA

Die Erfindung betrifft neue spezifische Immunophilin-Liganden der Formel

\[
\text{I}
\]

Die Reste \(R_1, R_2, R_3, R_4, X, Y, A, B \) und \(D \) haben folgende Bedeutung:

\(R_1 \) Wasserstoff, \((C_1-C_{12})\)-Alkyl oder \((C_2-C_6)\)-Alkyloxygruppen, wobei die Alkylgruppe geradkettig oder verzweigt ist und durch ein mono- oder bicyclisches Heteroaryl mit 1-4 Heteroatomen, vorzugsweise N, S, O, wie Morpholin, Piperazin, Piperidin, Indol, Indazol, Phthalazine, Thiophen, Furan, Imidazol, ein- oder mehrfach durch einen Phenylring substituiert sein kann. Dieser Phenylring kann selbst ein- oder mehrfach durch Halogen, \((C_1-C_6)\)-Alkyl, \((C_3-C_7)\)-Cycloalkyl, durch Carboxygruppen, mit geradkettigen oder verzweigten \((C_1-C_8)\)-Alkanolen veresterten Carboxygruppen, Carbamoylgruppen, Trifluormethylrigruppen, Hydroxylgruppen, Methoxygruppen, Ethoxygruppen, Benzoxoxygruppen Amino-gruppen, die selbst wieder durch Benzyl, Benzoyl Acetyl substituiert sind, substituiert sein.

\(R_1 \) kann außerdem der Aminrest von folgenden Aminosäuremethylestern sein: Histidin, Leucin, Valin, Serin(Bzl), Threonin, Piecolinsäure, 4-Piperidincarbonsäure, 3-Piperidincarbonsäure, \(\varepsilon \)-NH\(_2\)-Lysin, \(\varepsilon \)-Z-NH-Lysin, \(\varepsilon \)-(2Cl-Z)-NH-Lysin, 2-Pyridylalanin, Phenylalanin, Tryptophan, Glutaminsäure, Arginin(Tos), Asparagin, Citrullin, Hmcocitrullin, Ornithin, Prolin, 2-
Indolincarbonsäure, Octahydrindolincarbonsäure, Tetrahydroisochinolincarbonsäure, 5-Aminovaleriansäure, 8-Aminoctansäure

R_2 Wasserstoff, (C$_1$-C$_{12}$)-Alkyl oder (C$_2$-C$_6$)-Alkyloxygruppen, wobei die Alkylgruppe geradkettig oder verzweigt ist und durch ein mono- oder bicyclisches Heteroaryl mit 1-4 Heteroatomen, vorzugsweise N, S, O, wie Morpholin, Piperazin, Piperidin, Indol, Indazol, Phthalazine, Thiophen, Furan, Imidazol, ein- oder mehrfach durch einen Phenylring substituiert sein kann. Dieser Phenylring kann selbst ein- oder mehrfach durch Halogen, (C$_1$-C$_6$)-Alkyl, (C$_3$-C$_7$)-Cycloalkyl, durch Carboxylgruppen, mit geradkettigen oder verzweigten (C$_1$-C$_8$)-Alkanolen veresterten Carboxylgruppen, Carbamoylgruppen, Trifluormethylgruppen, Hydroxygruppen, Methoxygruppen, Ethoxygruppen, Benzylxygruppen Amino-gruppen, die selbst wieder durch Benzyl, Benzoyl Acetyl substituiert sind, substituiert sein.

Benzyl- und Aminogruppen, die selbst wieder durch Benzyl, Benzoyl, Acetyl substituiert sind, substituiert sein kann.

\[R_3 \] kann ferner der Saurerest folgender Aminosäuren sein: Histidin, Leucin, Valin, Serin(Bzl), Threonin, Ppecolinsäure, 4-Piperidincarbonsäure, 3-Piperidincarbonsäure, \(\varepsilon \)-NH\(_2\)-Lysin, \(\varepsilon \)-Z-NH-Lysin, \(\varepsilon \)-(2Cl-Z)-NH-Lysin, 2-Pyridylalanin, Phenylalanin, Tryptophan, Glutaminsäure, Arginin(Tos), Asparagin, Citrullin, Homocitrullin, Ornithin, Prolin, 2-Indolincarbonsäure, Octahydrindolincarbonsäure, Tetrahydroisochinolin-carbonsäure, 5-Aminovaleriansäure, 8-Aminoctansäure, wobei der N-Terminus der Aminosäuren durch Butylloxy carbonyl, Carboxybenzyl oder durch den Saurerest von mono- bi- oder tricyclischen Aryl- oder Heteroarylcarbonsäuren mit 1-4 Heteroatomen, vorzugsweise N, S, O, wie Methoxyphenylessigsäure, Naphthylessigsäure, Pyridylessigsäure, Chinazolinylessigsäure, Indazolylessigsäure, Indolglyoxylysäure, Phenylglyoxylysäure, Isobutylglyoxylysäure, 2-Aminothiazol-4-glyoxylysäure bzw. durch Carboxy-(C\(_1\) - C\(_{12}\))-alkyl, Carboxycyclopentan, Carboxycyclohexan, Benzoyl, das ein oder mehrfach substituiert sein kann durch Halogen, Methoxygruppen, Aminogruppen, Carbamoylgruppen, Trifluormethylgruppen, Carboxylgruppen, mit geradkettigen oder verzweigten (C\(_1\)-C\(_6\))-Alkanolen veresterten Carboxylgruppen, substituiert sein kann.

\[R_4 \] H, F, OR\(_5\)

\[R_5 \] = Wasserstoff, (C\(_3\)-C\(_7\)) Cycloalkyl, (C\(_1\)-C\(_8\)) Alkyl oder Carboxy-(C\(_1\)-C\(_6\))-Alkyl, wobei die Alkylgruppe geradkettig oder verzweigt sein kann und durch einen mono- bi- oder tricyclisches Carbonyl-Aryl oder Carbonyl-Heteroaryl mit 1-4 Heteroatomen, vorzugsweise N, S, O, wobei Aryl bzw. Heteroaryl selbst ein- oder mehrfach durch Halogen, (C\(_1\)-C\(_8\))-Alkyl, (C\(_3\)-C\(_7\)) Cycloalkyl, durch Carboxylgruppen, mit geradkettigen oder verzweigten (C\(_1\)-C\(_6\))-Alkanolen veresterten Carboxylgruppen, Carbamoylgruppen, Trifluormethylgruppen, Hydroxygruppen, Methoxygruppen, Ethoxygruppen, Benzyl- und Aminogruppen, die selbst wieder durch Benzyl, Benzoyl, Acetyl substituiert sind, substituiert sein kann.
A = aromatisch, nicht aromatisch, aromatisch heterocyclisch mit 1-2 Heteroatomen,
vorzugsweise N, S, O, nicht aromatisch heterocyclisch mit 1-2 Heteroatomen,
vorzugsweise N, S, O.

B = CH₂
D = CH
B-D = CH=C
X = O, S, H₂
Y = C, Einfachbindung.

Weiterhin betrifft die Erfindung die physiologisch verträglichen Salze der
Verbindungen gemäß Formel I, die Verfahren zur Herstellung der Verbindungen
gemäß Formel I und ihre pharmazeutische Verwendung.

Cyclosporin A (CsA) oder FK 506 sind immunsuppressiv, von Pilzen stammende
Naturstoffe, die den Ca²⁺-abhängigen Signalübertragungsweg in einigen Zelltypen
inhibieren. In T-Zellen inhibieren beide Agentien die Transkription einer Reihe von
Genen, einschließlich des Gens für IL-2, das durch Stimulierung der T-Zell-
Rezeptoren (TCR) aktiviert wird. FK 506 und CsA binden beide mit hoher Affinität an
CsA-Rezeptor Cyclophilin (Cyp) genannt. Beide Proteine katalysieren die
Isomerisierung von cis- und trans-Amidbindungsrotameren von Peptiden und werden
auch häufig als Immunosup抑ive bezeichnet.

Das Übermoleküll aus CsA-Cyp bzw. FK 506-FKBP bindet Calcineurin (CN) und
inhibiert dessen Phosphataseaktivität. Als zelluläres Zielmolekül von CN wurde die
cytosolische, phosphorylierte Komponente des Transkriptionsfaktors NF-AT erkannt,
das bei fehlender CN-Aktivität für die Wirkung im Zellkern nicht dephosphoryliert
und somit der aktive Transkriptionskomplex am IL-2-Promoter nicht angeschaltet
werden kann. (M. K. Rosen, S. L. Schreiber, Angew. Chem. 104 (1992), 413-430; G.
Fischer, Angew. Chem. 106 (1994), 1479-1501;
Den allergischen, asthmatischen Erkrankungen liegt eine entzündliche Reaktion zugrunde, die von T-Zellen und ihren Mediatoren gesteuert wird. Corticosteroide stellen immer noch das Mittel der Wahl in der Behandlung vieler allergischer Erkrankungen dar. Auch CsA und FK 506 erwies sich sowohl im Tierexperiment als auch in klinischen Studien beim bronchiale Asthma und zugrunde liegende Entzündungen als günstiges Therapeutikum. Im Tierexperiment konnte die Blockade von verschiedenen Cytokinen wie IL-2, IL-4 und IL-5, die allergisch induzierte Entzündungen hervorrufen, gezeigt werden.

Der Erfindung liegt die Aufgabe zugrunde, neue Verbindungen mit wertvollen pharmakologischen Eigenschaften zu finden und durch gezielte Synthese bereitzustellen.

Eine völlig neuartige Substanzklasse, die Immunophiline überrascherweise spezifisch bindet und die IL-2-Proliferation überrascherweise inhibiert, wird durch die erfindungsgemäßen Verbindungen der Formel I dargestellt. Diese Klasse von Verbindungen und deren pharmazeutisch akzeptablen Salze weist eine hohe Affinität zu Immunophilinen wie CypA, CypB, CypC und FKBP12 auf.
Diejenigen Verbindungen der Formel I, die asymmetrische Kohlenstoffatome enthalten und deshalb in der Regel als Racemate anfallen, können in an sich bekannter Weise beispielsweise mit einer optisch aktiven Säure in die optisch aktiven Isomeren getrennt werden. Es besteht aber auch die Möglichkeit, von vornherein optisch aktive Ausgangssubstanzen einzusetzen, wobei dann als Endprodukt entsprechende optisch aktive bzw. diastereoisomere Verbindungen erhalten werden.

Die Erfindung umfaßt also von Verbindungen der Formel I, die ein asymmetrisches Kohlenstoffatom enthalten, die R-Form, die S-Form und R, S-Mischungen, sowie im Falle mehrerer asymmetrischer Kohlenstoffatome die diastereoisomeren Formen.

In Abhängigkeit der Verfahrensbedingungen und Ausgangsstoffe können die Verbindungen der Formel I als freie Verbindungen oder in Form ihrer Salze erhalten werden. Die erhaltenen Salze können in an sich bekannter Weise beispielsweise mit Säuren, Alkali oder Ionenaustauschern in die freien Basen bzw. Säuren überführt werden.

Die so freigesetzten Verbindungen der Formel I lassen sich mit anorganischen oder organischen Säuren bzw. Basen in die entsprechenden physiologisch verträglichen Säureadditionssalze überführen.

Weiter betrifft die Erfindung pharmazeutische Zubereitungen mit einem Gehalt an wenigstens einer Verbindung der Formel I oder deren Salze mit physiologisch verträglichen anorganischen oder organischen Säuren bzw. Basen und gegebenenfalls pharmazeutisch verwendbaren Träger- und Hilfsstoffe.

Als Applikationsformen eignen sich beispielsweise Tabletten oder Dragees, Kapseln, Lösungen bzw. Ampullen, Suppositorien, Pflaster oder in Inhalatoren einsetzbare Pulverzubereitungen.
Die Dosierung der vorgenannten pharmazeutischen Zubereitungen hängt vom Zustand des Patienten und von der Applikationsform ab. Die tägliche Wirkstoffdosis beträgt zwischen 0.01-100 mg pro kg Körpergewicht und Tag.

Die Herstellung der unter Formel I dargestellten Verbindungen gelingt beispielsweise nach der Festphasensynthese nach B. Merrifield, vorzugsweise an einem unlöslichen Polymeren wie zum Beispiel in organischen Lösungsmitteln quellbares Polystyrolharz in Perlenform (beispielsweise ein Copolymerisat aus Polystyrol und 1% Divinylbenzol), nach Standardpeptidkupplungsmethoden der Peptid-Festphasensynthese.

Der stufenweise Aufbau erfolgt zum Beispiel, indem man zunächst die Carboxy-terminale Aminosäure, deren α-ständige Aminogruppe geschützt ist, an einen hierfür üblichen unlöslichen Träger kovalent bindet, die α-Amino-Schutzgruppe dieser Aminosäure abspaltet, an die so erhaltene freie Aminogruppe die nächste geschützte Aminosäure über ihre Carboxy-Gruppe bindet, und in dieser Weise Schritt für Schritt die übrigen Aminosäuren des zu synthetisierenden Peptids in der richtigen Reihenfolge verknüpft, und gegebenenfalls weitere vorhandene Seitenfunktions-Schutzgruppen abspaltet und nach Verknüpfung aller Aminosäuren
Als Beispiel für Verbindungen der Formel I seien genannt:

Beispiel 1 N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(N-ε-Boc)-Lysin-methylester]-amid

Beispiel 2 N-[Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(ε-NH₂)-Lysin-methyl-ester]-amid

Beispiel 7 1-Boc-Indolin-2-(R, S)-carbonsäure-(S-Phenylalaninmethylester)-amid

Beispiel 8 N-[N’-(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäuremethylester
 (als Vorstufe zur Herstellung eines Amides der allgemeinen Formel I)

Beispiel 9 N-(4-Methoxyphenylacetyl)-Indolin-2-(R, S)-carbonsäuremethylester
 (als Vorstufe zur Herstellung eines Amides der allgemeinen Formel I)

Beispiel 10 N-Boc-Indolin-2-(R, S)-carbonsäure-4-Piperidyl-amid

Beispiel 11 N-Boc-Indolin-2-(R, S)-carbonsäure-[Piperazino-essigsäure-morpholid]-amid
Beispiel 12 N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[Piperazino-
 essigsäuremorphicid]-amid

Beispiel 13 N-[N´-(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl]-Indolin-2-(R, S) -
carbonsäure-[S-(N-ε-Z)-Lysin-methylene]-amid

Entsprechend der vorliegenden Erfindung können die Verbindungen der Formel I auch nach folgendem Verfahren hergestellt werden.
Erfindungsgemäß werden Verbindungen der Formel I, in der R₁, R₂, R₃, R₄, A, B, D, X und Y die genannte Bedeutung haben, hergestellt, indem man ein Indolderivat der Formel II, worin R₄, A, B, D, X und Y die genannte Bedeutung haben, mit einem Alkanol III der Kettenlänge C₁₋C₁₂ zu einem Indolderivatalkylester IV, worin R₄, A, B, D, X und Y die genannte Bedeutung haben, umsetzt, diesen Ester IV in einer weiterführenden Reaktion mit einer Verbindung V, worin R₃, X und Y die genannte Bedeutung haben, zu einer Verbindung VI, worin R₃, R₄, A, B, D, X und Y die genannte Bedeutung haben, umsetzt, anschließend diese Verbindung VI einer Verseifung zu einer Verbindung VII, worin R₃, R₄, A, B, D, X und Y die genannte Bedeutung haben, unterzieht und danach die Verbindung VII mit einer Verbindung VIII, worin R₁ und R₂ die genannte Bedeutung haben, zu der Zielverbindung I umsetzt.

Zur Herstellung der physiologisch verträglichen Salze werden die Verbindungen der Formel I mit anorganischen oder organischen Säuren, wie z. B. Chlorwasserstoffsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Essigsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure, Milchsäure oder Embonsäure, oder mit anorganisch oder anorganischen Basen in bekannter Weise umgesetzt.

Pharmazeutische Zubereitungen enthalten mindestens eine Verbindung der allgemeinen Formel I oder deren Salze mit physiologisch verträglichen anorganischen oder organischen Säuren oder Basen und gegebenenfalls pharmazeutisch verwendbare Träger- und Hilfsstoffe.

Die Verbindung der Formel I können in freier Form oder als Salz mit einer physiologisch verträglichen Säure oder Base peroral, parenteral, intravenös, transdermal oder inhalativ appliziert werden.

Als Applikationsformen sind beispielsweise Tabletten oder Dragees, Kapseln, Lösungen bzw. Ampullen, Suppositorien, Pflaster oder in Inhalatoren einsetzbare Pulverzubereitungen geeignet.
Die Dosierung dieser vorgenannten pharmazeutischen Zubereitungen hängt ab vom Zustand des Patienten und von der Applikationsform. Die tägliche Wirkstoffdosis beträgt zwischen 0,01-100 mg pro kg Körpergewicht.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert. Die verwendeten Abkürzungen hierzu sind:

AcOEt Essigester
Boc tert. Butyloxycarbonyl
(Boc)$_2$O tert. Butyloxycarbonyl-Anhydrid
CN Calcineurin
CsA Cyclosporin A
Cyp Cyclophilin
DMAP N, N-Dimethylaminopyridin
EA Elementaranalyse
EE Essigester
FKBP FK 506-Bindungsprotein
HPLC Hochdruckflüssigkeitschromatographie
i. ÖPV im Ölpumpenvakuum
Lsg. Lösung
MeOH Methanol
PPlase Peptidyl-Prolin-cis-trans-Isomerase
i. RV. im Rotationsverdampfer
i. V. im Vakuum
RT Raumtemperatur
rac recemisch
ent enantio
TFA Trifluoressigsäure
Z Benzyloxycarbonyl
Beispiel 1:

Stufe 1: (R, S)-Indolin-2-carbonsäuremethylester x HCl

In einem 100 ml Dreihalskolben wurden 5.3 g (32.5 mmol) (R, S)-2-Indolincarbonsäure in 70 ml wasserfreiem Methanol gelöst und bei Zimmertemperatur mit 4.25 g (35.75 mmol) Thionylchlorid versetzt. Das gelbe Reaktionsgemisch wurde 5h unter Rückfluß erhitzt und nach dem Abkühlen i. V. i. RV. vom Lösungsmittel befreit. Nach dem Trocknen i. ÖPV erhielt man das Rohprodukt als kristallinen Feststoff, der mit Diethylether verrührt und abgesaugt wurde.

Ausbeute: 5.4 g (78 %)

Stufe 2: Boc-Piperidin-4-carbonsäure

In einem 250 ml Einhalskolben wurden 7 g (54 mmol) Piperidin-4-carbonsäure in 50 ml Dioxan und 40,5 ml 2 N NaOH gelöst und auf 0° C gekühlt. Dazu wurden innerhalb von 30 min 12,99 g (59.4 mmol) (Boc)_2 O gelöst in 30 ml Dioxan zugetropft. Anschließend wurde für 24 h bei Raumtemp. gerührt. Es fiel ein weißer Niederschlag aus. Das Dioxan wurde i. V. i. RV. entfernt und der Rückstand mit gesättigter KHSO_4 -Lsg. aufgenommen. Die wässrige Phase wurde zweimal mit EE extrahiert. Die organische Phase wurde einmal mit gesättigter NaCl-Lsg. gewaschen und über MgSO_4 getrocknet. Nach Entfernen des Lösungsmittels i. V. i. RV. wurden 11,93 g (96 %) eines weißen Pulvers erhalten.
H-NMR (DMSO-d⁶, 270 MHz): 1,25-1,5 (m, 11, Boc, 2-Pip); 1,8 (m, 2 Pip); 2,4 (m, 1, H-C4); 2,8 (t, 2, H-C3, H-C5); 3,8 (d, 2, H-C2, H-C6); 12,25 (s, 1, COOH).

EA: berechnet für C₂₁H₁₉N₄O₄ (229,1): C 57,62; H 8,29; N 6,11
gefunden: C 57,89; H 8,36; N 5,86

Stufe 3: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäuremethyl ester

4,6 g (22 mmol) (R,S)-Indolin-2-carbonsäuremethylester x HCl und 7,4 g (32 mmol) Boc-Piperidin-4-carbonsäure wurden in 50 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 9,27 g (36 mmol) 2-Chloro-1-methylpyridiniumjodid und 8,06 ml (58 mmol) Triethylamin in 40 ml CH₂Cl₂ zugetropft. Anschließend wurde 8 h unter Rückfluß gekocht. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit wässriger halb gesättigter KHSO₄ -Lsg., zweimal mit wässriger 2 N NaOH-Lsg. und einmal mit wässriger gesättigter NaCl-Lsg. gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₃Cl / MeOH 95:5 gereinigt. Nach Entfernen des Lösungsmittels i.V.i.RV. wurde nach dem Trocknen i.OPV 4,61 g (54 %) eines hellbraunen Pulvers erhalten.

Schmp.: 54-56°

DC: CH₃Cl / MeOH 95:5 R_r = 0,61

H-NMR (DMSO-d⁶, 270 MHz): 1,35-1,85 (m, 15, Boc, 6 Pip); 2,7-2,8 (m, 2, H-C3, H-C5); 3,25 (m, 1, H-C3-Ind); 3,65 (m, 1, H-C3'-Ind); 3,8 (s, 3, COOCH₃); 3,95 (m, 2, H-C6-Pip); 5,45 (d, 1, H-C2-Ind); 7,05 (m, 1, Ar); 7,1-7,3 (m, 2, Ar); 8,1 (d, 1, Ar).

EA: berechnet für C₂₁H₂₆N₂O₅ (388,47): C 64,92; H 7,27; N 7,21
gefunden: C 65,20; H 7,49; N 7,38.

MS: (ESI+): berechnet 388,3, gefunden 389,2
Stufe 4: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure

In einem 50 ml Einhalskolben wurden 3,3 g (8,51 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäuremethylester in 25 ml MeOH gelöst, mit 2.14 g (51 mmol) LiOH x H_2 O versetzt und 2,5 h bei Raumtemp. gerührt. Die Lösung wurde mit halb gesättigter wässriger KHSO_4-Lsg. auf pH = 5 angesäuert und zweimal mit EE extrahiert. Die organische Phase wurde einmal mit gesättigter NaCl-Lsg. gewaschen, über MgSO_4 getrocknet und das Lösungsmittel i.V.i.RV. entfernt. Nach Trocknen i.ÖPV. wurden 3,09 g (97 %) eines hellbraunen Pulvers erhalten.

Schmp.: 118-119°
DC: CH₂Cl₂/MeOH 95:5 R_f = 0,14

¹ H-NMR (DMSO-d₆, 270 MHz): 1,35-1,85 (m, 15, Boc, 6 Pip); 2,7-2,85 (m, 2, H-C3, H-C5); 3,2 (m, 1, H-C3-Ind); 3,65 (m, 1, H-C3'-Ind); 3,95 (m, 2, H-C6-Pip); 5,45 (d, 1, H-C2-Ind); 7,05 (m, 1, Ar); 7,1-7,3 (m, 2, Ar); 8,1 (d, 1, Ar); 13,0-13,3 (s, 1, COOH).

MS: (ESI+): berechnet 374,3; gefunden: 375,1

Stufe 5: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(N-ε-Boc)-Lysin-methylester]-amid

2 g (5,35 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure und 1.59 g (5,35 mmol) N-ε-Boc-Lysinmethylester x HCl wurden in 20 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 2.81 g (11 mmol, 2,73 g) 2-Chloro-1-methylpyridinium-
jodid und 1.62 g (16 mmol) Triethylamin in 30 ml CH₂Cl₂ zugetropft.
Anschließen wurde 8 h unter Rückfluss gekocht. Das Lösungsmittel
wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und
die organische Phase einmal mit Wasser, zweimal mit halb gesättigter
wässriger KHSO₄-Lösung, zweimal mit wässriger 2 N NaOH-Lösung und
einmal mit gesättigter wässriger NaCl-Lösung gewaschen. Das
Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch
Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt.
Nach erneutem Entfernen des Lösungsmittels i.V.i.RV. und Trocknen
i.ÖPV. wurden 2,61 g (79 %) eines hellbraunen Pulvers erhalten.

Schmp.: 83-84°
DC: CH₂Cl₂/MeOH 95:5 Rₐ = 0,48

FT-IR (KBr): 3365w (N-H); 2976w (C-H); 1744m (C=O); 1684s (CONH);
1540w (C-O); 1407m (C-H); 1170s (C-O); 755m (C=C);

¹H-NMR (DMSO-d₆, 270 MHz): 1,25-1,9 (m, 28, 18 Boc + 3 CH₂-Lys + 4
Pip); 2,7-3,05 (m, 5, ϵ-CH₂-Lys + H-C3-Ind + 2 Pip); 3,55-3,7 (m, 3,
COOME); 3,9-4,1 (m, 2, Pip); 4,15-4,3 (m, 1, H-C3-Ind); 5,15 (m ,1, H-C2-Ind);
6,8 (m, 1, Ar-Ind); 7,0 (m, 1, Ar-Ind); 7,1-7,3 (m, 2, Ar-Ind + α-
NHCO); 8,1 (d, 1, Ar-Ind); 8,7-8,9 (dd, 1, NHCO-Boc).

MS: (ESI+): berechnet 616,4 gefunden: 617,5

HPLC: 2 Peaks bei 24,25 und 24,63 min

EA: (berechnet für C₁₁H₁₉N₂O₂ : 616,4): C 62,34; H 7,47; N 9,09
gefunden: C 62,08; H 7,67; N 8,86
Beispiel 2:

Synthese von: N-[1-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(ε-NH₂)-Lysinmethyl-ester]-amid

500 mg (0,812 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbon-säure-[S-(N-ε-Boc)-Lysin-methylester]-amid wurden in einem 25 ml Einhals-kolben in 2,8 ml CH₂Cl₂ gelöst. Dazu wurden 15 äq (0,0122 mol, 0,93 ml) Trifluoressigsäure gegeben und zwei Stunden bei Raumtemp. gerührt. Zu der Lösung wurden 10 ml Diethylether gegeben, es fiel ein weißer Niederschlag aus, der abgesaugt und 6 mal mit Diethylether gewaschen wurde. Nach Trocknen i.ÖPV. wurden 513 mg (98 %) eines weißen Pulvers erhalten.

Schmp.: 164-165°
DC (RP): CH₃CN/H₂O 1:1, 1 % TFA Rₜ = 0,61
FT-IR (KBr): 3435w (N-H); 3049w (C-H); 1740w (C=O); 1676s (CONH); 1420m (C-H); 1205m, 1135s (C-O);
¹ H-NMR (DMSO-d₆, 270 MHz): 1,2-2,05 (m, 10, 3 CH₃-Lys + 4 Pip); 2,7-3,15 (m, 5, ε-CH₂-Lys + H-C3-Ind + 2 Pip); 3,55-3,7 (m, 3, COOMe); 4,1-4,25 (m, 1, C3-Ind); 5,15 (d, 1, H-C2-Ind); 6,95 (m, 1, Ar-Ind); 7,1-7,3 (m, 2, Ar-Ind); 7,7-7,85 (s, 3, NH); 8,1 (d, 1, Ar-Ind); 8,7-8,9 (m, 2, NH₂).
MS: (ESI+): berechnet 418,2 gefunden: 417,3 und 209,1 für m/2
HPLC: 2 Peaks bei 11,54 und 12,65 min
Beispiel 3:

Synthese von: \(N-[1\text{-Boc-Indolin-2-\(R,\ S\)-carbonyl}]\text{-Indolin-2-\(R,\ S\)-carbonsäure-}
[S-(\text{N-\(\varepsilon\)-Boc})\text{-Lysin-methylester}]\text{-amid} \)

Stufe 1: \(\text{Boc-\(R,\ S\)-Indolin-2-carbonsäure} \)

In einem 250 ml Einhalskolben wurden 5 g (30.8 mmol) \((R,\ S)\text{-Indolin-2-carbonsäure}\) in 30 ml Dioxan und 23 ml 2 \(\text{N NaOH}\) gelöst und auf 0° C gekühlt. Dazu tropfte man innerhalb von 30 min eine Lösung aus 7.39 g (33.9 mol) \((\text{Boc})_2\text{O}\) in 20 ml Dioxan und rührte 24 h bei Raumtemperatur. Es fiel ein weißer Niederschlag aus. Das Dioxan wurde am i. V. i. RV. entfernt, der Rückstand mit gesättigter \(\text{KHSO}_4\text{-Lsg.}\) aufgenommen und zweimal mit EE extrahiert. Die organische Phase wurde einmal mit gesättigter \(\text{NaCl-Lsg.}\) gewaschen und über \(\text{MgSO}_4\) getrocknet. Nach Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.ÖPV. wurden 7,76 g (96 %) eines braunen Pulvers erhalten.

DC: \(\text{CH}_2\text{Cl}_2/\text{MeOH} 95:5 + 1 \% \text{NEt}_3, \ R_f = 0,91 \)

\(^1\text{H-NMR (DMSO-d\text{\textasciitilde}6, 270 MHz):}
- 1,4-1,7 (s, 9, Boc); 3,1 (m, 1, H-C3); 3,5 (m, 1, H-C3'); 4,9 (m, 1, H-C2); 7,0 (m, 1, Ar); 7,1-7,3 (m, 2, Ar); 7,5-7,9 (m, 1, Ar) 11,5 (m, 1, COOH)

EA: berechnet für \(\text{C}_{14}\text{H}_{17}\text{N}_1\text{O}_4\) (263,2) \(\text{C} 63,88; \text{H} 6,46; \text{N} 5,32\) gefunden: \(\text{C} 64,05; \text{H} 6,53; \text{N} 5,41\)

Stufe 2: \(N-[1\text{-Boc-Indolin-2-\(R,\ S\)-carbonyl}]\text{-Indolin-2-\(R,\ S\)-carbonsäure-}
methylester \)

5 g (0,023 mol) \((R,\ S)\text{-Indolin-2-carbonsäuremethylester} \) x HCl und 12,11 g (46 mmol) \(\text{Boc-Indolin-2\(R,\ S\)-carbonsäure} \) wurden in 40 ml \(\text{CH}_2\text{Cl}_2\) gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 12,92 g (51 mmol) \(2\text{-Chloro-1-methylpyridiniumjodid} \) und 10,23 ml (74
mmol) Triethylamin in 40 ml CH₂Cl₂ zugetropft. Anschließend wurde 8 h unter Rückfluß gekocht. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit halb gesättigter wässriger KHSO₄-Lösung, zweimal mit wässriger 2 N NaOH-Lösung und einmal mit wässriger gesättigter NaCl-Lösung gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt. Nach Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.ÖPV. wurden 5,01 g (51 %) eines dunkelbraunen Pulvers erhalten.

Schmp.: 86°C
DC: CH₂Cl₂/MeOH 95:5 Rᵣ = 0,67 und 0,7
FT-IR (KBr): 3448w (N-H); 2976w (C-H); 1751s, 1707s (C=O); 1680s (CONH); 1485s (C-H); 1168m (C-O); 1020m (C-O); 752s (C=C);
MS: (ESI+) berechnet: 422,4 gefunden: 423,3
EA (berechnet für C₂₆H₂₆N₂O₃ (422,4): C 68,25; H 6,16; N 6,64 gefunden: C 67,96; H 6,17; N 6,4

In einem 50 ml Einhalskolben wurden 2,84 g (6,77 mmol) N-[1-Boc-Indolin-2-(R, S)-carbonyl]-Indolin-2-(R, S)-carbonsäuremethylester in 20 ml MeOH gelöst. Dazu wurden 1,71 g (41 mmol) LiOH x H₂O gegeben und 2,5 h bei Raumtemp. gerührt. Anschließend wurde die Lösung mit halb gesättigter KHSO₄-Lsg. auf pH = 5 angesäuert und zweimal mit EE extrahiert. Die organische Phase wurde einmal mit gesättigter NaCl-Lsg. gewaschen, über MgSO₄ getrocknet und das Lösungsmittel i.V.i.RV. entfernt. Nach Trocknen i.ÖPV. wurden 2,71 g (98 %) eines dunkelbraunen Pulvers erhalten.
Schmp.: 118-119°
DC: CH₂, Cl₂, MeOH 95:5 R₇ = 0,14
MS: (ESI+) berechnet: 408,2 gefunden: 409,3

2 g (4,9 mmol) N-[1-Boc-Indolin-2-(R, S)-carbonyl]-Indolin-2-(R, S)-carbonsäure und 1,45 (4,9 mmol) N-ε-Boc-S-Lysinmethylester x HCl wurden in 20 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 2,51 g (9,8 mmol) 2-Chloro-1-methylpyridiniumjodid und 2,04 ml (14,7 mmol) Triethylamin in 30 ml CH₂Cl₂ zugetropft. Anschließend wurde 8 h unter Rückfluß erwärmt. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit wässriger halb gesättigter KHSO₄-Lösung, zweimal mit wässriger 2 N NaOH-Lösung und einmal mit wässriger gesättigter NaCl-Lösung gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt. Nach Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.ÖPV. wurden 2,21 g (69 %) eines braunen Pulvers erhalten.

Schmp.: 78-80°
DC: CH₂, Cl₂, MeOH 95:5 R₇ = 0,51
FT-IR (KBr): 3504w (N-H); 2975w (C-H); 1749s, 1690s (CONH, C=O); 1490s (C-H); 1407m (C-H); 1170s (C-O); 757m (C=C);
¹ H-NMR (DMSO-d⁶, 270 MHz): 1,2-1,8 (m, 24, 18 Boc, 3 CH₂-Lys); 2,8-3,0 (m, 3, ε-CH₂-Lys, H-C3-Ind); 3,0-3,2 (m, 1, H-C3-Ind); 3,4-3,5 (m, 1, H-C3-Ind); 3,5-3,7 (m, 3, COOME); 4,2-4,3 (m, 1, H-C3-Ind); 4,7-4,9 (m, 1, H-C2-Ind); 5,0-5,5 (m, 1, H-C2-Ind); 6,7-6,8 (m, 1, Ar-Ind); 6,85-7,3 (m, 6, Ar-Ind); 7,7-8,9 (m, 3, NHCO, Ar-Ind, α-NHCO).
MS: (ESI+) berechnet: 650,2, gefunden: 651,4
Beispiel 4:

Synthese von: \(N-[\text{Indolin-2-}(R, S)\text{-carbonyl}]-\text{Indolin-2-}(R, S)\text{-carbonsäure-}[S-(\varepsilon-N\text{H}_2)]\text{-Lysin-methylester}]\text{-amid} \)

500 mg (0,812 mmol) \(N-[1\text{-Boc-Indolin-2-}(R, S)\text{-carbonyl}]-\text{Indolin-2-}(R, S)\text{-carbonsäure-[S-(N-o-Boc)-Lysin-methylester]}\text{-amid} \) wurden in einem 25 ml Einhalskolben in 2,8 ml \(\text{CH}_2\text{Cl}_2 \) gelöst. Dazu wurden 15 äq (0,0122 mol, 0,93 ml) Trifluoressigsäure gegeben und zwei Stunden bei Raumtemp. gerührt. Zu der Lösung wurden 10 ml Diethylether gegeben, es fiel ein weißer Niederschlag aus, der abgesaugt und 6 mal mit Diethylether gewaschen wurde. Nach Trocknen i.ÖPV. wurden 513 mg (98 %) eines weißen Pulvers erhalten.

Schmp.: 164-165°

DC (RP): CH₁, CN/H₂, O 1:1, 1 % TFA \(R_f = 0,61 \)

FT-IR (KBr): 3435w (N-H); 3049w (C-H); 1740w (C=O); 1676s (CONH); 1420m (C-H); 1205m, 1135s (C-O);

\(^1\) H-NMR (DMSO-d°, 270 MHz): 1,2-2,05 (m, 10, \(\text{CH}_2 \) -Lys + 4 Pip); 2,7-3,15 (m, 5, \(\varepsilon-\text{CH}_2 \) -Lys + H-C3-Ind + 2 Pip); 3,55-3,7 (m, 3, COOMe); 4,1-4,25 (m, 1, C3-Ind); 5,15 (d ,1, H-C2-Ind); 6,95 (m, 1, Ar-Ind); 7,1-7,3 (m, 2, Ar-Ind); 7,7-7,85 (s, 3, NH₁, \(\cdot \)); 8,1 (d, 1, Ar-Ind); 8,7-8,9 (m, 2, \(\text{NH}_2 \) \(\cdot \)).

MS: (ESI+): berechnet 418,2 gefunden: 417,3 und 209,1 für m/z

HPLC: 2 Peaks bei 11,54 und 12,65 min
Beispiel 5:

\(\text{(S-(N-\varepsilon-Z)-Lysin-methylester)-amid} \)

2,5 g (6,13 mmol) \textit{N-[1-Boc-Indolin-2-(R, S)-carbonyl]-Indolin-2-(R, S)-carbonsäure} und 2.03 g (6,13 mmol) \textit{N-\varepsilon-Z-Lysinmethylster} x HCl wurden in 20 ml \(\text{CH}_2\text{Cl}_2 \) gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 2.35 g (9,2 mmol) \textit{2-Chloro-1-methylpyridiniumjodid} und 2.13 ml (15 mmol) Triethylamin in 30 ml \(\text{CH}_2\text{Cl}_2 \) zugetropft. Anschließend wurde 8 h unter Rückfluß gekocht. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit halb gesättigter \textit{KHCO}_3-Lsg., zweimal mit 2 N NaOH-Lsg. und einmal mit gesättigter NaCl-Lsg. gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit \(\text{CH}_2\text{Cl}_2/\text{MeOH} \) 95:5 gereinigt. Nach Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.OPV. wurden 2,57 g (61 %) eines braunen Pulvers erhalten.

\textbf{Schmp.:} 68\degree

\textbf{DC:} \(\text{CH}_2\text{Cl}_2/\text{MeOH} \) 95:5 \(R_f = 0,48 \)

\textbf{FT-IR (KBr):} 3329w (N-H); 2935w (C-H); 1701s (C=O); 1485s (C-H); 1260m (C-O); 1149m, 1020m (C-O); 753m (C=C);

\textbf{MS: (ESI+)} berechnet: 684,5, gefunden: 685,4

\textbf{EA (berechnet für C}_{36}\text{H}_{44}\text{N}_{5}\text{O}_{8} (684,5):} C 66,67; H 6,43; N 8,19

gefunden: C 64,15; H 6,5; N 7,88;
Beispiel 6:

6,36 g (0,0242 mol) 1-Boc-Indolin-2-(R, S)-carbonsäure und 8.0 g (24.2 mmol) N-ε-Z-Lysinmethylester x HCl wurden in 70 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 9.27 g (36.3 mmol) 2-Chloro-1-methylpyridiniumjodid und 8.41 ml (60.4 mmol) Triethylamin in 60 ml CH₂Cl₂ zugetropft. Anschließend wurde 8 h unter Rückfluß gekocht. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit halb gesättigter KHSO₄-Lsg., zweimal mit 2 N NaOH-Lsg. und einmal mit gesättigter NaCl-Lsg. gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt. Nach Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.ÖPV. wurden 10,91 g (84 %) eines hell-braunen Pulvers erhalten.

DC: CH₂Cl₂/MeOH 95:5 Rᵣ = 0.74

1 H-NMR (DMSO-d₆, 270 MHz): 1,3-1,75 (m, 15, 9 Boc + 6 CH₂-Lys);
2,8-3,0 (m, 3, CH₂-Lys + H-C3-Ind); 3,4-3,55 (m, 1, H-C3'-Ind); 3,65 (s, 3, COOCH₃); 4,2 (m, 1, H-α-C-Lys); 4,8 (m, 1, H-C2-Ind); 5,0 (s, 2, CH₂-Z); 6,85 (m, 1, Ar-Ind); 7,15 (t, 2, Ar-Ind); 7,2-7,4 (m, 5, Ph-Z); 7,7 (m, 1, NHCO); 8,4 (m, 1, Ar-Ind)

EA: berechnet für C₉₂H₅₇N₁₀O₇ (539,4) C 64,56; H 6,86; N 7,79
gefunen: C 64,61; H 7,06; N 7,67;

MS: (ESI+) berechnet: 539,4; gefunden: 540,3
Beispiel 7:

Stufe 1: S-Phenylalaninmethylester x HCl

In einem 100-ml-Einnahskolben wurden zu einer Suspension von 8.0 g (48.4 mmol) S-Phenylalanin in 50 ml MeOH innerhalb von 30 min bei Raumtemp. 5.3 ml (72.6 mmol) Thionylchlorid zugetropft. Anschließend wurde 3 h zum Rückfluß erhitzt. Methanol und überschüssiges Thionylchlorid wurden zuerst mit Wasserstrahlvakuem, dann am Rotationsverdampfer abdestilliert. Der Rückstand wurde in 50 ml MeOH gelöst und mit 800 ml Diethylether versetzt. Es fiel ein weißer Niederschlag aus. Das Lösungsmittel wurde über eine Fritte abgesaugt, es wurden 7.93 g (75 %) eines weißen Pulvers erhalten.

¹ H-NMR (DMSO-d₆, 270 MHz): 3.0-3.2 (m, 2, CH₂); 3.65 (s, 3, COOMe); 4.35 (m, 1, Hα-C); 7.2-7.4 (m, 5, Ph); 8.5-8.7 (m, 3, NH₁)

Stufe 2: N-[1-Boc-Indolin-2-(R, S)-carbonyl]-(S-Phenylalaninmethylester)-amid

3.5 g (16.2 mmol) S-Phenylalaninmethylester-Hydrochlorid und 4.27 g (16.2 mmol) wurden in 70 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 6.21 g (24.3 mmol) 2-Chloro-1-methyl-pyridiniumjodid und 5.32 ml (40.5 mmol) Triethylamin in 60 ml CH₂Cl₂ zugetropft. Anschließend wurde das Reaktionsgemisch 8 h unter Rückfluß erhitzt. Das Lösungsmittel wurde i.V.i.RV. entfernt, der Rückstand in 200 ml EE aufgenommen und die organische Phase einmal mit Wasser, zweimal mit halb gesättigter KHSO₄-Lsg., zweimal mit 2 N HCl -2.5-
NaOH-Lsg. und einmal mit gesättigter NaCl-Lsg. gewaschen. Das Lösungsmittel wurde i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt. Nach erneutem Entfernen des Lösungsmittels i.V.i.RV. und Trocknen i.ÖPV. wurden 7,71 g (62 %) eines hell-gelben Pulvers erhalten.

DC: CH₂Cl₂/MeOH 95:5 \(R_f = 0,87 \)

1 H-NMR (DMSO-d₆, 270 MHz): 1,2-1,5 (m, 9, Boc); 2,3-2,45 (m, 0,5, H-C3-Ind); 2,8-3,5 (m, 3,5, C3-Ind + CH₂); 3,65 (d, 3, COOMe); 4,4-4,65 (m, 1, C2-Ind); 4,8 (m, 1, H α-C); 6,8-7,3 (m, 8, 5 Ph + 3 Ar-Ind); 7,7 (m, 1, Ar-Ind); 8,55 (m, 1, NH).

EA: berechnet für C₃₈H₃₂N₂O₄ (424,3) C 67,92; H 6,6; N 6,6

gefunden: C 67,94; H 6,79; N 6,59

MS: (ESI+): berechnet: 424,4 gefunden: 425,2

Beispiel 8:

Synthese von: N-[N′-(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl]-Indolin-2-[(R, S)-carbonsäre-methylster

(Diese Verbindung kann als Vorstufe für die Herstellung eines Amides der allgemeinen Formel I eingesetzt werden)

1.2 g (3,0 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-[(R, S)-carbonsäre-methylester wurden bei RT in 30 ml CH₂Cl₂ gelöst, mit 1,14 g (10 mmol) TFA versetzt und 24 h lang rühren lassen. Das Reaktionsgemisch wurde i.V.i.RV. eingeengt, mit 100 ml Essigester aufgenommen und 3 mal mit gesättigter wässriger NaHCO₃-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen. Die organische Phase trocknete man über MgSO₄ und entfernte das Lösungsmittel i.V.i.RV. Der Rückstand wurde in 30 ml CH₂Cl₂ gelöst, mit 1,01 g (10 mmol) Triethylamin, mit 366 mg (3,0 mmol) 4-Dimethylaminopyridin versetzt, auf 0° C gekühlt und mit einer Lösung von 606 mg (3,3 mmol) 4-Methoxyphenylacetylchlorid in 10 ml CH₂Cl₂ versehen. Nach 24 h

\[Z \]
Rühren wurde das Reaktionsgemisch i. V. i. RV. vom Lösungsmittel befreit, mit 100 ml Essigester aufgenommen und 2 mal mit 1n HCl-Lösung, 2 mal mit gesättigter wässriger NaHCO₃-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen. Nach dem Abdestillieren des Lösungsmittels i. V. i. RV. wurde der Rückstand an 80 g Flashgel mit n-Hexan/AcOEt chromatographiert. Die entsprechenden Fraktionen wurden gesammelt und i. V. i. RV. vom Lösungsmittel befreit und i. ÖPV getrocknet. Man erhielt 1.1 g Produkt als weißen Schaum.

DC: AcOEt, Rₜ = 0,22

¹ H-NMR (DMSO-d₆, 270 MHz): 1,35-1,85 (m, 13, Boc, 4 Pip); 2,7-2,8 (m, 4, H-C(3), H-C(5)); 3,25 (m, 1, H-C(3)-Ind); 3,65 (m, 1, H-C(3')-Ind); 3,8 (s, 3, COOCH₃); 3,95 (m, 1, H-C(4)-Pip); 5,45 (d, 1, H-C(2)-Ind); 7,05 (m, 1, Ar); 7,1-7,3 (m, 2, Ar); 8,1 (d, 1, Ar).

EA: berechnet für C₂₅H₃₄N₂ O₄ (436.51) C 68.70; H 6,47; N 6,42 gefunden: C 69.97; H 6,98; N 5,27.

Beispiel 9:

Synthese von: N-(4-Methoxyphenylacetyl)-Indolin-2-(R, S)-carbonsäuremethylster
(Diese Verbindung kann als Vorstufe für die Herstellung eines Amides der allgemeinen Formel I eingesetzt werden)

In einem 100 ml Einhalskolben mit Septum wurden 1 g (R,S)-Indolin-2-carbonsäuremethylster x HCl und 1,14 g (9,36 mmol) DMAP in 25 ml trocknem CH₂Cl₂ vorgelegt. Bei 0° C wurden unter Rühren innerhalb von 30 min 1,04 g (856 µl) 4-Methoxyphenylacetylchlorid mit einer Spritze zugetropft. Anschließend ließ man 3 h bei Raumtemp. rühren. Das Lsgm. wurde i.V.i.RV. entfernt und der Rückstand durch Flash-Chromatographie an 150 g Flash-Kieselgel (CH₂Cl₂/MeOH 9:1) gereinigt. Nach Entfernen des Lsgm. i.V.i.RV. wurden 830 mg (59 %) eines hell-grauen Pulvers erhalten.
Beispiel 10:

Synthese von: N-Boc-Indolin-2-(R, S)-carbonsäure-4-Piperidyl-amid

In einem 100 ml Einhalskolben wurden 2.63 g (10.0 mmol) 1-Boc-(R,S)-Indolin-2-carbonsäure mit 1.13 g (12.0 mmol) 4-Aminopyridin, 1.47 g (12.0 mmol) 4-Dimethylaminopyridin in 30 ml CH₂Cl₂ bei 0° C vorgelegt und mit einer Lösung aus 2.48 g (12.0 mmol) Dicyclohexylcarbodiimid in 5 ml CH₂Cl₂ versetzt. Nach 48 h wurde das Reaktionsgemisch über Celite filtriert, i. V. i. RV. vom Lösungsmittel befreit, der Rückstand mit 100 ml Essigester abgenommen, 2 mal mit 10 % wässriger HCl-Lösung, 2 mal mit gesättigter wässriger NaHCO₃-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen. Nach dem Abdestillieren des Lösungsmittels i. V. i. RV. wurde der Rückstand an 50 g Flashgel mit n-Hexan/acetongemisch chromatographiert. Nach Entfernen des Lösungsmittels i. V. i. RV. wurde der Rückstand aus AcOEt/Ether kristallisiert, wobei man 2.4 g des Produktes erhielt.

DC: CH₂Cl₂/MeOH = 95/5; Rf = 0,19

\(^1\) H-NMR (CDCl₃, 270 MHz): 1.58 (s, 9H, Boc); 3.43-3.54 (m, 2H, H-C(3)-Ind); 5.0 (m, 1, H-C2-Ind); 7.02 (m, 1H, H-C(7)-Ind); 7.17-7.26 (m, 3H, H-
C(6), H-C(5), H-C(4)-Ind); 7,45 (q, 2H, H-C(3), H-C(5)-Py); 7,57 (NH); 8,47 (q, 2H, H-C(2), H-C(6)-Py).

EA: berechnet für C_{19}H_{21}N_{3}O_{3} (339.40): C 67.84; H 6.29; N 12.49;
gefunden: C 67.75; H 6.33; N 12.53.

Beispiel 11:

Synthese von: N-Boc-Indolin-2-(R, S)-carbonsäure-[Piperazino-essigsäure-morpholid]-amid

In einem 100 ml Einhalskolben wurden 2.63 g (10.0 mmol) 1-Boc-(R,S)-Indolin-2-carbonsäure mit 2.56 g (12.0 mmol) Piperazinoessigsäuremorpholid, 1.47 g (12.0 mmol) 4-Dimethylaminopyridin in 30 ml CH_{2}Cl_{2} bei 0 °C vorgelegt und mit einer Lösung aus 2.48 g (12.0 mmol) Dicyclohexylcarbodiimid in 5 ml CH_{2}Cl_{2} versetzt. Nach 48 h wurde das Reaktionsgemisch über Celite filtriert, i. V. i. RV. vom Lösungsmittel befreit, der Rückstand mit 100 ml Essigester aufgenommen, 2 mal mit 10%-iger wässriger HCl-Lösung, 2 mal mit gesättigter wässriger NaHCO_{3}-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen. Nach dem Abdestillieren des Lösungsmittels i. V. i. RV. wurde der Rückstand an 50 g Flashgel mit n-Hexan/AcOEt chromatographiert. Nach Entfernen des Lösungsmittels i. V. i. RV. wurde der Rückstand aus AcOEt/Ether kristallisiert, wobei man 2.4 g des Produktes erhielt.

DC: CH_{2}Cl_{2}/MeOH = 95/5; R_{f} = 0,19

H-NMR (CDCl_{3}, 270 MHz): 1.48-1.58 (d, 9H, Boc); 3.21 (s, 2H, H-C(2’’)); 3.42-3.69 (m, 16H); 5.1 (br, 2H, H-C(3)-Ind); 6.48 (q, 1H); 6.90 (q, 1H); 7.14 (m, 1H), 8.22 (q, 1H).

EA: berechnet für C_{23}H_{34}N_{4}O_{5} (458.56): C 63.86; H 7.47; N 12.21;
gefunden: C 63.21; H 7.48; N 13.61.
Beispiel 12:

Synthese von: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[Piperazinoessigsäure-morpholid]-amid

458.56 mg (1.0 mmol) 1-Boc-Indolin-2-(R, S)-carbonsäure-[Piperazinoessigsäuremopholid]-amid wurden bei RT in 20 ml CH₂Cl₂ gelöst, mit 1.14 g (10 mmol) TFA versetzt und 24 h lang rühren lassen. Das Reaktionsgemisch wurde i.V.i.RV. eingeengt, mit 10 ml Essigester aufgenommen und 2 mal mit gesättigter wässriger NaHCO₃-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen. Die organische Phase trocknete man über MgSO₄ und entfernte das Lösungsmittel i.V.i.RV. Der Rückstand wurde in 10 ml CH₂Cl₂ gelöst, mit 505 mg (5 mmol) Triethylamin, mit 320.7 mg (1.4 mmol) 4-Boc-Piperidincarbonsäure und mit 357.7 mg (1.4 mmol) 2-Chlor-1-methyl-pyridiniumhydrochlorid versetzt, 8 h auf Rückflüstermperatur erhitzt. Das Reaktionsgemisch wurde i. V. i. RV. vom Lösungsmittel befreit, mit 100 ml Essigester aufgenommen und 2 mal mit Wasser, einmal mit 10 %iger wässriger HCl-Lösung, 2 mal mit gesättigter wässriger NaHCO₃-Lösung und 1 mal mit gesättigter wässriger NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach dem Abdéstillieren des Lösungsmittels i. V. i. RV. wurde der Rückstand aus Essigester/Isopropanol kristallisiert.

EA: berechnet für C₂₅H₂₃N₂O₄ (557.70): C 62.46; H 7.77; N 12.56

gefunden: C 61.56; H 7.62; N 11.96.

Beispiel 13:

Stufe 1: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(N-ε-Z)-Lysin-methylester]-amid

3.74 g (10 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure und 3.31 g (10 mmol) N-ε-Z-Lysinmethylester x HCl wurden in 20 ml CH₂Cl₂ gelöst und innerhalb von 30 min bei Raumtemp. zu einer Suspension von 5.11 g (20 mmol) 2-Chloro-1-methylpyridiniumiodid und 4.04 g (40 mmol) Triethylamin in 30 ml CH₂Cl₂ zugetropft. Das Reaktionsgemisch wurde nach 8 stündigem refluxieren i.V.i.RV. vom Lösungsmittel befreit. Der Rückstand wurde in 200 ml Essigester aufgenommen und die organische Phase einmal mit Wasser, zweimal mit halb gesättigter wässriger KHSO₄-Lösung, zweimal mit wässriger 2 N NaOH-Lösung und einmal mit gesättigter wässriger NaCl-Lösung gewaschen. Nach dem Trocknen über MgSO₄ wurde das Lösungsmittel i.V.i.RV. entfernt und der Rückstand durch Chromatographie an 400 g Kieselgel mit CH₂Cl₂/MeOH 95:5 gereinigt. Die entsprechenden Fraktionen wurden vereinigt und das Lösungsmittels i.V.i.RV. entfernt. Nach dem Trocknen i.OPV. wurden 4.2 g eines hellbraunen Pulvers erhalten.

DC: CH₂Cl₂/MeOH 95:5 Rᵣ = 0.41

EA: (berechnet für C₇₁H₆₇N₄O₁₈: 650,78): C 64.60; H 7.13; N 8.61;
gefunden: C 64.73; H 7.01; N 8.64.

3.25 g (5.0 mmol) N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R, S)-carbonsäure-[S-(N-ε-Z)-Lysin-methylester]-amid wurden bei RT in 50 ml
\[\text{CH}_2\text{Cl}_2 \text{ gelöst, mit 2.28 g (20 mmol) TFA versetzt und 4 h gerührt. Das} \]
\[\text{Reaktionsgemisch wurde i.V.i.RV. eingeengt, mit 100 ml Essigester} \]
\[\text{aufgenommen und 3 mal mit gesättigter wässriger NaHCO}_3\text{-Lösung und 1} \]
\[\text{mal mit gesättigter wässriger NaCl-Lösung gewaschen. Die organische} \]
\[\text{Phase trocknete man über MgSO}_4\text{ und entfernte das Lösungsmittel} \]
\[\text{i.V.i.RV. Der Rückstand wurde in 30 ml CH}_2\text{Cl}_2 \text{ gelöst, mit 1.01 g (10} \]
\[\text{mmol) Triethylamin, mit 366 mg (3,0 mmol) 4-Dimethylaminopyridin} \]
\[\text{versetzt, auf 0°C gekühlt und mit einer Lösung von 1,01 g (5,5 mmol) 4-} \]
\[\text{Methoxyphenylacetychlorid in 10 ml CH}_2\text{Cl}_2 \text{ versehen. Nach 24 h} \]
\[\text{Rühren wurde das Reaktionsgemisch i. V. i. RV. vom Lösungsmittel} \]
\[\text{befreit, mit 100 ml Essigester aufgenommen und 2 mal mit wässriger 1 n} \]
\[\text{HCl-Lösung, 2 mal mit gesättigter wässriger NaHCO}_3\text{-Lösung und 1 mal} \]
\[\text{mit gesättigter wässriger NaCl-Lösung gewaschen. Nach dem} \]
\[\text{Abdestillieren des Lösungsmittels i. V. i. RV. wurde der Rückstand an 80} \]
\[\text{g Flashgel mit n-Hexan/AcOEt chromatographiert. Die entsprechenden} \]
\[\text{Fraktionen wurden gesammelt und i. V. i. RV. vom Lösungsmittel befreit, i.} \]
\[\text{ÖPV getrocknet, wobei das Produkt als weißer Schaum verblieb.} \]

EA: berechnet für C\text{36}H\text{46}N\text{4}O\text{6} \times H\text{2}O (716.84): C 65.35; H 6.75; N 7.82;
\[\text{gefunden: C 65.47; H 6.89; N 7.81.} \]

Die aufgeführten Beispiele 1-7 und 10-13 erwiesen sich überraschenderweise als stark bindende Immunophilin-Modulatoren, die als trägerfixierte Form geeignet und in der Lage sind, pathogen wirkende Immunophiline aus Flüssigkeiten, insbesonders Körperflüssigkeiten, zu binden.

Zum Auffinden von stark bindenden Cyp B bzw. FKBP-Liganden der Formel I wurden die immobilisierten Liganden einem SDS-PAGE (Abbildung 1) mit Zellhomogenat unterzogen. Trägerfixierte Liganden, die eine besondere Affinität gegenüber den Immunophilinen aufweisen, binden diese spezifisch mit einer Affinität, die höher ist als CsA beziehungsweise FK 506. Die hohe Affinität von den mit Formel I dargestellten, trägerfixierten Liganden gegenüber Immunophilinen lässt sich an einem SDS-PAGE zeigen.
Erklärung zum SDS-PAGE

a) Zellhomogenat

b) Zellhomogenat-Eluat nach Equilibrierung mit trägerfixierten Liganden der allgemeinen Formel I

c) Ablösung des Cyclophilin B mit SDS von der unter b) genannten Matrix bei 25 °C

d) SDS-Kontrolle

e) Ablösung des Cyclophilin B mit SDS von der unter b) genannten Matrix bei 95 °C

f) Proteinstandard (Sigma: 12 kDa, 18 kDa, 25 kDa, 45 kDa, 66 kDa)

g) Zellhomogenat-Eluat nach Equilibrierung mit immobilisiertem CsA

h) Ablösung des Cyclophilin B von der unter g) genannten CsA-Matrix mit SDS bei 25 °C

i) Ablösung des Cyclophilin B von der unter g) genannten CsA-Matrix mit SDS bei 95 °C

k) SDS-Kontrolle

Die erfindungsgemäßen Verbindungen gemäß Formel (I) zeichnen sich überraschenderweise durch Immunophilin-Bindung aus und hemmen deren Peptidyl-Prolyl-cis-trans-Isomerase (PPlase)-Aktivität. Für das Eingangsscreening (1 μmol/l Substanz) wird die Inhibition des humanen Cyclophilin B im PPlase-Test bestimmt.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I werden zusammen mit 10 nmol Cyp B für 15 min. bei 4°C präinkubiert. Die Enzymreaktion wird nach Zugabe von Chymotrypsin und HEPES-Puffer mit dem Testpeptid Suc-Ala-Ala-Pro-Phe-Nan gestartet. Anschließend wird die Extinktionsänderung bei 390 nm verfolgt und ausgewertet. Die photometrisch ermittelte Extinktionsänderung resultiert aus zwei Teilreaktionen: a) die schnelle chymotryptische Spaltung des trans-Peptides; b) die nicht-enzymatische cis-trans-Isomerisierung, die durch Cyclophilin katalysiert ist. Die entsprechende PPlase-Aktivität der erfindungsgemäßen Verbindungen der allgemeinen Formel sind in Tabelle 1 dargestellt:
Tabelle 1:

<table>
<thead>
<tr>
<th>Verbindung [10 µmol]</th>
<th>Inhibition [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispiel 1: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[S-(N-c-Boc)-Lysin-methylester]-amid</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 2: N-[Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[S-(c-NH₂)-Lysinmethylester]-amid</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 8: N-[N’-(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäuremethylester</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 9: N-(4-Methoxyphenylacetyl)-Indolin-2-(R,S)-carbonsäuremethylester</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 10: N-Boc-Indolin-2-(R,S)-carbonsäure-4-Piperidyl-amin</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 11: N-Boc-Indolin-2-(R,S)-carbonsäure-[Piperazinoessigsäure-morpholid]-amid</td>
<td>0-20</td>
</tr>
<tr>
<td>Beispiel 12: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[Piperazinoessigsäure-morpholid]-amid</td>
<td>0-20</td>
</tr>
</tbody>
</table>

Für die bekannten immunsuppressiven Effekte von CsA scheint die Bildung des Übermoleküles aus CsA-Cyp B-Calcineurin (Ca²⁺-abhängige Phophatase) verantwortlich zu sein. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I wurden für die Untersuchung auf die Wechselwirkung mit diesem Übermolekül aus CsA-Cyp B beziehungsweise CsA-Cyp B-Calcineurin mit Zellhomogenate einer humanen T-Zelllinie mit ³H-CsA (100 nmol) inkubiert. Nach der Gelfiltration an Superose 12 wurde die Radioaktivität der eluierten Fraktionen gemessen und mit der unbehandelten Kontrolle verglichen. Die entsprechende Verdrängung von ³H-CsA durch die erfindungsgemäßen Verbindungen der
allgemeinen Formel I aus dem Übermolekül Cyp B-CsA und Cyp-CsA-Calcineurin ist in Tabelle 2 dargestellt:

<table>
<thead>
<tr>
<th>Verbindung [10 μmol]</th>
<th>Verdrängung aus Cyp-CsA in [%]</th>
<th>Verdrängung aus Cyp-CsA-CN in [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispiel 1: N-[1-Boc-Piperidyl-4-carbonyl]-indolin-2-(R,S)-carbonsäure-[S-(N-c-Boc)-Lysin-methylester]-amid</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Beispiel 2: N-[Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[S-(c-NH₂)-Lysinmethylester]-amid</td>
<td>45 (-53)</td>
<td></td>
</tr>
<tr>
<td>Beispiel 7: 1-Boc-Indolin-2-(R,S)-carbonsäure-(S-Phenylalaninmethyl-ester)-amid</td>
<td>38 (-0)</td>
<td></td>
</tr>
<tr>
<td>Beispiel 8: N-[N-(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäuremethylster</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Beispiel 9: N-(4-Methoxyphenylacetyl)-Indolin-2-(R,S)-carbonsäuremethyl-ester</td>
<td>39 (-37)</td>
<td></td>
</tr>
<tr>
<td>Beispiel 10: N-Boc-Indolin-2-(R,S)-carbonsäure-4-Piperidyl-amid</td>
<td>-58 (-0)</td>
<td></td>
</tr>
<tr>
<td>Beispiel 11: N-Boc-Indolin-2-(R,S)-carbonsäure-[Piperazinoessigsäure-morpholid]-amid</td>
<td>-28 (-0)</td>
<td></td>
</tr>
</tbody>
</table>

Der IL-2-Proliferationstest beruht auf dem Einbau von 3H-Thymidin in mit OKT-3 (humane anti-CD-3-Antikörper) stimulierten T-Zellen und wird folgendermaßen durchgeführt:

-36-
100 000 T-Zellen werden in 150 µl Kulturmedium pro Well in Mikrotiterplatten ausgesät, durch Zugabe von OKT-3 (1 µg/ml) stimuliert und für 45 h mit jeweils einer der erfindungsgemäßen Verbindungen der allgemeinen Formel I inkubiert. Nach dieser Inkubationszeit werden in jedes Well 10 µl der ³H-Thymidin-Lösung (0,5 µCi) pipettiert. Danach wird 6 h bei 37°C in einer 5%-igen CO₂-Atmosphäre inkubiert. Nach dem Ernten der Zellen wird die Radioaktivität im β-Counter quantifiziert. Die entsprechende CD3-induzierte Proliferationshemmung der

Tabelle 3:

<table>
<thead>
<tr>
<th>Verbindung [10 µmol]</th>
<th>CD3-induzierte Proliferationshemmung in [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beispiel 2: N-[Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[S-(c-NH₂)-Lysinmethylester]-amid</td>
<td>40</td>
</tr>
<tr>
<td>Beispiel 10: N-Boc-Indolin-2-(R,S)-carbonsäure-4-Piperidyl-amid</td>
<td>6</td>
</tr>
<tr>
<td>Beispiel 12: N-[1-Boc-Piperidyl-4-carbonyl]-Indolin-2-(R,S)-carbonsäure-[Piperazinoessigsäure-morpholid]-amid</td>
<td>5</td>
</tr>
</tbody>
</table>

erfindungsgemäßen Verbindungen der allgemeinen Formel I sind in Tabelle 3 dargestellt:
Die erfindungsgemäßen Verbindungen der allgemeinen Formel I zeigen wie CsA, FK 506 beziehungsweise Rapamycin im Tierexperiment die Blockade von Cytokinen wie IL-2, IL-4 und IL-5, die im Krankheitsfalle die allergisch induzierten Entzündungen hervorrufen.

Patentansprüche

1. Neue spezifische Immunophilin-Liganden der Formel I

worin \(R_1, R_2, R_3, R_4, X, Y, A, B \) und \(D \) die folgende Bedeutung haben:

\(R_1 \), Wasserstoff, \((C_1-C_{12})\)-Alkyl oder \((C_2-C_6)\)-Alkoxygruppen, wobei die Alkylgruppe geradkettig oder verzweigt ist und durch ein mono- oder bicyclisches Heteroaryl mit 1-4 Heteroatomen, vorzugsweise N, S, O, wie Morpholin, Piperazin, Piperidin, Indol, Indazol, Phthalazine, Thiophen, Furan, Imidazol, ein- oder mehrfach durch einen Phenylring substituiert sein kann, wobei dieser Phenylring selbst ein- oder mehrfach durch Halogen, \((C_1-C_6)\)-Alkyl, \((C_3-C_7)\)-Cycloalkyl, durch Carboxylgruppen, mit geradkettigen oder verzweigten \((C_1-C_6)\)-Alkanolen veresterten Carboxylgruppen, Carbamoylgruppen, Trifluor-methylgruppen, Hydroxylgruppen, Methoxygruppen, Ethoxygruppen, Benzylxygruppen Amino-gruppen, die selbst wieder durch Benzyl, Benzoyl Acetyl substituiert sind, substituiert sein kann,

\(R_1 \) kann außerdem der Aminrest von folgenden Aminosäuremethylresten sein: Histidin, Leucin, Valin, Serin(Bzl), Threonin, Pipocolinsäure, 4-Piperidincarbonsäure, 3-Piperidincarbonsäure, \(\varepsilon \)-NH\(_2\)-Lysin, \(\varepsilon \)-Z-NH-Lysin, \(\varepsilon \)-(2Cl-Z)-NH-Lysin, 2-Pyridylalanin, Phenylalanin, Tryptophan, Glutaminsäure, Arginin(Tos), Asparagin, Citrullin, Homocitrullin, Ornithin, Prolin, 2-Indolincarbonsäure, Octahydrindolincarbonsäure, Tetrahydroisochinolincarbonsäure, 5-Aminovaleriansäure, 8-Aminoctansäure;

R₃ kann ferner der Säurerest folgender Aminosäuren sein: Histidin, Leucin, Valin, Serin(Bzl), Threonin, Pipelolinsäure, 4-Piperidincarbonsäure, 3-Piperidincarbonsäure, ε-NH₂-Lysin, ε-Z-NH₂-Lysin, ε-(2Cl-Z)-NH₂-Lysin, 2-Pyrindylalanin, Phenylalanin, Tryptophan, Glutaminsäure, Arginin(Tos), Asparagin, Citrullin, Homocitrullin, Ornithin, Prolin, 2-Indolincarbonsäure, Octahydrindolincarbonsäure, Tetrahydrosochinolin-carbonsäure, 5-Aminovaleriansäure, 8-Aminoctansäure, wobei der N-Terminus der Aminosäuren durch Butyloxycarbonyl, Carboxybenzyl oder durch den Säurerest von mono- or tricyclischen Aryl- oder Heteroarylcarnonsäuren mit 1-4 Heteroatomen, vorzugsweise N, S, O, wie Methoxyphenylessigsäure, Naphthylessigsäure, Pyridylessigsäure, Chinazolinonylessigsäure, Indazolylessigsäure, Indolyglyoxylysäure, Phenylglyoxylysäure, Isobutyrglyoxylysäure, 2-Aminothiazol-4-glyoxylysäure bzw. durch Carboxy-(C₁-C₁₂)-Alkyl, Carboxycyclopentan, Carboxycyclohexan, Benzoyl, das ein oder mehrfach substituiert sein kann durch Halogen, Methoxygruppen, Aminogruppen, Carboxamidgruppen, Trifluormethylgruppen, Carboxygruppen, mit geradkettigem oder verzweigtem (C₁-C₆)-Alkanol veresterten Carboxygruppen, substituiert sein kann;

R₄ H, F, OR₅.

R₅ = Wasserstoff, (C₃-C₇)-Cycloalkyl, (C₁-C₆)-Alkyl oder Carboxy-(C₁-C₆)-Alkyl, wobei die Alkylgruppe geradkettig oder verzweigt sein kann und durch einen mono- or tricyclisches Carbonyl-Aryl oder Carbonyl-Heteroaryl mit 1-4 Heteroatomen, vorzugsweise N, S, O, wobei Aryl bzw. Heteroaryl selbst ein- oder mehrfach durch Halogen, (C₁-C₆)-Alkyl, (C₃-C₇)-Cycloalkyl, durch Carboxygruppen, mit geradkettigem oder verzweigtem (C₁-C₆)-Alkanol veresterten Carboxygruppen, Carbamoylgruppen, Trifluormethylgruppen, Hydroxygruppen, Methoxygruppen, Ethoxygruppen, Benzyloxygruppen, Aminogruppen, die selbst wieder durch Benzyl, Benzoyl, Acetyl substituiert sind, substituierter sein kann;

B = CH₂;
D = CH;
B-D = CH=C;
X = O, S, H₂;
Y = C, Einfachbindung.

8. 1-Boc-Indolin-2-(R, S)-carbonsäure-(S-Phenylalaninmethylester)-amid

12. N-[N'-{(4-Methoxyphenylacetyl)-Piperidyl-4-carbonyl}-Indolin-2-(R, S)-
carbonsäure-[S-(N-ε-Z)-Lysin-methylester]-amid

13. Verwendung der Verbindungen gemäß einem der Ansprüche 1 bis 12 zur
Herstellung eines fertigen Arzneimittels.

14. Verwendungen der Verbindungen gemäß Anspruch 13, zur Herstellung eines
Arzneimittels mit antiasthmatischer und immunsuppressiver Wirkung oder in
Kombination mit therapeutisch bekannten Antiasthmatika bzw.
Immunsuppressiva.

15. Trägerfixierte Formen, enthaltend Verbindungen gemäß einem der Ansprüche 1
bis 12 zur Anwendung, pathogen wirkende Immunophile aus Flüssigkeiten,
insbesonders Körperflüssigkeiten, zu binden.

16. Arzneimittel, enthaltend mindestens eine Verbindung nach einem der Ansprüche
1 bis 12 neben üblichen Träger- und/oder Verdünnungs- beziehungsweise
Hilfsstoffen.

17. Verfahren zur Herstellung eines Arzneimittels, dadurch gekennzeichnet, daß
man eine Verbindung nach einem der Ansprüche 1 bis 12 mit gebrauchlichen
pharmazeutischen Trägerstoffen oder Verdünnungsmitteln beziehungsweise
sonstigen Hilfsstoffen zu pharmazeutischen Zubereitungen verarbeitet
beziehungsweise in eine therapeutisch anwendbare Form bringt.

18. Arzneimittel gemäß den Ansprüchen 1 bis 14, 16 und 17 in Form von Tabletten
oder Dragees, Kapseln, Lösungen beziehungsweise Ampullen, Suppositorien,
Pflastern oder Inhalatoren einsetzbaren Pulverzubereitungen.
19. Verfahren zur Herstellung von neuen spezifischen Immunophilin-Liganden der Formel I gemäß Anspruch 1, worin R₁, R₂, R₃, R₄, X, Y, A, B und D die im Anspruch 1 genannte Bedeutung haben, dadurch gekennzeichnet, daß man ein Indolderivat der Formel II, worin R₄, A, B, D, X und Y die genannte Bedeutung haben,

![Diagram of molecule II]

mit einem Alkanol III der Kettenlänge C₁₋C₁₂

![Diagram of molecule III]

zu einem Indolderivatalkylester IV, worin R₄, A, B, D, X und Y die genannte Bedeutung haben,

![Diagram of molecule IV]

umgesetzt, den Ester IV mit einer Verbindung V, worin R₃, X und Y die genannte Bedeutung haben,

![Diagram of molecule V]
zu einer Verbindung VI, worin \(R_3, R_4, A, B, D, X \) und \(Y \) genannte Bedeutung haben,

\[
\begin{align*}
\text{VI} \\
\end{align*}
\]

umgesetzt, anschließend diese Verbindung VI verseift zu einer Verbindung VII, worin \(R_3, R_4, A, B, D, X \) und \(Y \) genannte Bedeutung haben,

\[
\begin{align*}
\text{VII} \\
\end{align*}
\]

und danach die Verbindung VII mit einer Verbindung VIII, worin \(R_1 \) und \(R_2 \) die genannte Bedeutung haben,

\[
\begin{align*}
\text{VIII} \\
\end{align*}
\]

zu der Zielverbindung der Formel I umsetzt.
Abbildung 1: SDS-PAGE von trägerfixierten Liganden mit Zellhomogenat
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07K5/06 C07D401/06 C07D209/42 C07D401/12 A61K31/40 A61K31/445 A61K38/05

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K C07D A61K

Documentation searched other than minimum documentation to the extent that such document are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 618 193 A (ADIR ET COMPAGNIE) 5 October 1994 see examples 11-14</td>
<td>1,13, 15-19</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 681 864 A (ADIR ET CO.) 2 April 1993 see the whole document</td>
<td>1,13, 15-19</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 320 753 A (HOECHST AG) 21 June 1989 see the whole document</td>
<td>1,13, 15-19</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 585 709 A (ADIR ET CO.) 6 February 1987 see examples 11-13</td>
<td>1,13, 15-19</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 + "A" document defining the general state of the art which is not considered to be of particular relevance
 + "E" earlier document published on or after the international filing date
 + "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 + "O" document referring to an oral disclosure, use, exhibition or other means
 + "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 July 1997</td>
<td>07.08.97</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV RIJSWIJK
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Mastruzo, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P,X</td>
<td>US 5 547 978 A (CHRISTENSEN ET AL.) 20 August 1996 see the whole document</td>
<td>1,13, 15-19</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.
 - [] Claims Nos.:
 - because they relate to subject matter not required to be searched by this Authority, namely:

2. [x] Claims Nos.: 1, 13–19
 - because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 - **see annex**

3.
 - [] Claims Nos.:
 - because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.
 - [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2.
 - [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3.
 - [] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4.
 - [] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- [] The additional search fees were accompanied by the applicant’s protest.
- [] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
The scope of claim 1 and dependent claims 13-19 is defined too broadly and without sufficient clarity to permit a meaningful search of the entire subject matter of the aforesaid claims. For reasons of economy the subject matter covered by the search was restricted as follows: compounds according to claim 1 only insofar as X=Y is C=O, R₁ and R₂ are hydrogen, a heterocyclic radical or a peptide radical, provided that at least one of the radicals R₁ and R₂ constitute a heterocyclic or peptide radical, and R₄ = H. The A group is very unclearly defined and therefore was searched only with terms that appear in the examples. Apart from this limitation, the actually existing examples were also searched.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 618193 A</td>
<td>05-10-94</td>
<td>FR 2703050 A</td>
<td>30-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 671347 B</td>
<td>22-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5795694 A</td>
<td>29-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2119662 A</td>
<td>25-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7002853 A</td>
<td>06-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 260159 A</td>
<td>27-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5506237 A</td>
<td>09-04-96</td>
</tr>
<tr>
<td>FR 2681864 A</td>
<td>02-04-93</td>
<td>AT 149165 T</td>
<td>15-03-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 651495 B</td>
<td>21-07-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2533492 A</td>
<td>01-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2079185 A</td>
<td>28-03-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69217613 D</td>
<td>03-04-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0541407 A</td>
<td>12-05-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2101059 T</td>
<td>01-07-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5262730 A</td>
<td>12-10-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7119212 B</td>
<td>20-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5384322 A</td>
<td>24-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5286732 A</td>
<td>15-02-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9207381 A</td>
<td>26-04-93</td>
</tr>
<tr>
<td>EP 320753 A</td>
<td>21-06-89</td>
<td>DE 3742431 A</td>
<td>13-07-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2687188 A</td>
<td>15-06-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1197468 A</td>
<td>09-08-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4983623 A</td>
<td>08-01-91</td>
</tr>
<tr>
<td>FR 2585709 A</td>
<td>06-02-87</td>
<td>AU 581599 B</td>
<td>23-02-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6081286 A</td>
<td>12-02-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1276397 A</td>
<td>13-11-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0217688 A</td>
<td>08-04-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 58541 B</td>
<td>06-10-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1230597 A</td>
<td>14-09-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1632451 C</td>
<td>26-12-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2059160 B</td>
<td>11-12-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1603623 C</td>
<td>22-04-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2029880 B</td>
<td>02-07-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62033198 A</td>
<td>13-02-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4725581 A</td>
<td>16-02-88</td>
</tr>
<tr>
<td>US 5547978 A</td>
<td>20-08-96</td>
<td>JP 6227980 A</td>
<td>16-08-94</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 6 C07K5/06 C07D401/06 C07D209/42 C07D401/12 A61K31/40 A61K33/445 A61K38/05

Nach der internationalen Patenklassifizierung (IPK) oder nach der nationalen Klassifizierung und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07K C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die rechercherten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der im Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 618 193 A (ADIR ET COMPAGNIE) 5. Oktober 1994 siehe Beispiele 11-14</td>
<td>1,13, 15-19</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 681 864 A (ADIR ET CO.) 2. April 1993 siehe das ganze Dokument</td>
<td>1,13, 15-19</td>
</tr>
<tr>
<td>X</td>
<td>FR 2 585 709 A (ADIR ET CO.) 6. Februar 1987 siehe Beispiele 11-13</td>
<td>1,13, 15-19</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutungsvoll angesehen
 'E' ältestes Dokument, das jedoch erst am oder nach dem internationalen Anmeldetidatum veröffentlicht worden ist
 'L' Veröffentlichung, die, gemäß ihrer Entscheidung erwartet zu werden, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belastet werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 'O' Veröffentlichung, die sich auf inhaltliche Offenbarung, eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht
 'P' Veröffentlichung, die vor dem internationalen Anmeldetidatum, aber nach dem angegebenen Prioritätsdatum veröffentlicht worden ist

Spätere Veröffentlichung, die nach dem internationalen Anmeldetidatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindungsreichen Tatbestand beruhend betrachtet werden

Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindungsreichen Tatbestand beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und die Verwendung für einen Fachmann nahelegend ist

Absendatum des internationalen Recherchenberichts: 07.08.97

Name und Postanschrift der Internationale Recherchenbehörde:

European Patent Office, P.B. 5818 Patentanw 2
NL 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Beauftragter

Masturzo, P
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
</table>
INTERNATIONALER RECHERCHENBERICH

Gesetz Artikel 17(2) a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. □ Ansprüche Nr.,
 weil sie sich auf Gegenstände beziehen, zu denen Recherche die Behörde nicht verpflichtet ist, nämlich

2. ✗ Ansprüche Nr. 1.13-19
 weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen,
 daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
 SIEHE BEILAGE

3. □ Ansprüche Nr.
 weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. □ Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.

2. □ Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebuhr gerechtfertigt hatte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. □ Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. □ Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt.

RJerkungen hinsichtlich eines Widerspruchs

□ Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.

□ Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 618193 A</td>
<td>05-10-94</td>
<td>FR 2703050 A</td>
<td>30-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 671347 B</td>
<td>22-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5795694 A</td>
<td>29-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2119662 A</td>
<td>25-09-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7002853 A</td>
<td>06-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 260159 A</td>
<td>27-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5506237 A</td>
<td>09-04-96</td>
</tr>
<tr>
<td>FR 2681864 A</td>
<td>02-04-93</td>
<td>AT 149165 T</td>
<td>15-03-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 651495 B</td>
<td>21-07-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2533492 A</td>
<td>01-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2079185 A</td>
<td>28-03-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69217613 D</td>
<td>03-04-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0541407 A</td>
<td>12-05-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2101059 T</td>
<td>01-07-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5262730 A</td>
<td>12-10-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7119212 B</td>
<td>20-12-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5384322 A</td>
<td>24-01-95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5286732 A</td>
<td>15-02-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9207381 A</td>
<td>26-04-93</td>
</tr>
<tr>
<td>EP 320753 A</td>
<td>21-06-89</td>
<td>DE 3742431 A</td>
<td>13-07-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2687188 A</td>
<td>15-06-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1197468 A</td>
<td>09-08-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4983623 A</td>
<td>08-01-91</td>
</tr>
<tr>
<td>FR 2585709 A</td>
<td>06-02-87</td>
<td>AU 581599 B</td>
<td>23-02-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6081286 A</td>
<td>12-02-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1276397 A</td>
<td>13-11-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0217688 A</td>
<td>08-04-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 58541 B</td>
<td>06-10-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1230597 A</td>
<td>14-09-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1632451 C</td>
<td>26-12-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2059160 B</td>
<td>11-12-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1603623 C</td>
<td>22-04-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2029680 B</td>
<td>02-07-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62033198 A</td>
<td>13-02-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4725581 A</td>
<td>16-02-88</td>
</tr>
<tr>
<td>US 5547978 A</td>
<td>20-08-96</td>
<td>JP 6227980 A</td>
<td>16-08-94</td>
</tr>
</tbody>
</table>

Formiert: PCT/ISA/218 (Anhang Patentfamilie, Juli 1993)