WO 20047013725 A2 ||| 000 000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

000 0 OO0

(10) International Publication Number

WO 2004/013725 A2

(43) International Publication Date
12 February 2004 (12.02.2004)

(51) International Patent Classification’: GO6F (72) Inventors: SOUDER, Benny; 1577 Winding Way, Bel-
mont, CA 94002 (US). GAWLICK, Dieter; 757 Paul

(21) International Application Number: Avenue, Palo Alto, CA 94306 (US). STAMOS, Jim;
PCT/US2003/023747 13361 Argonne Drive, Saratoga, CA 95070 (US). DOWN-

ING, Alan; 4784 Creekwood Drive, Fremont, CA 94555
(US). ARORA, Nimar; 32432 Lighthouse Way, Union
Foster City Boulevard #3, Foster City, CA 94404 (US).

(22) International Filing Date: 29 July 2003 (29.07.2003)

(26) Publication Language: English

(74) Agents: HICKMAN, Brian et al; HICKMAN

(30) Priority Data: .
PALERMO TRUONG & BECKER LLP, 1600 Wil-

60/400,532 1 August 2002 (01.08.2002) US
60/410,883 13 September 2002 (13.09.2002) US low Street, San Jose, CA 95125 (US).
10/308,924 2 December 2002 (02.12.2002) US
10/308,879 2 December 2002 (02122002) Us (81) Designated States (national): AE, AG, AL, AM, AT, AU,
10/308,851 2 December 2002 (02.12.2002) US AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
TION [US/US]; 500 Oracle Parkway, Redwood Shores, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
CA 94065 (US). MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,

[Continued on next page]

(54) Title: ASYNCHRONOUS INFORMATION SHARING SYSTEM

100 (57) Abstract: Techniques are

\\ disclosed for sharing information
129 116 in a wide variety of contexts. An
information sharing system is
described that allows both an explicit
capture process and an implicit
capture process to add information
items to a staging area. Further,
the information sharing system
supports both implicit and explicit
consumption of information items

118

CONSUMING
PROCESS

PROPAGATION
PROCESS

CAPTURE
PROCESS

/102 106 that are stored in said staging area.
STAGING STAGING A rules engine is provided to allow
AREA AREA users to create and register rules

that customize the behavior of the
capture processes, the consuming
processes, and propagation processes
that propagate information from
the staging areas to designated
destinations. Techniques are also
described for achieving exactly-once
handling of sequence of items,
where the items are maintained in
volatile memory. Techniques are
also provided for recording DDL
operations, and for asynchronously
performing operations based on
the previously-performed DDL
operations.

126

104
STAGING V
AREA

CAPTURE
PROCESS

CONSUMING
PROCESS

CONSUMING
PROCESS

CAPTURE
PROCESS

WO 2004/013725 A2 I} N0 0000 00000 000 AR

SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, Published:
UG, UZ, VC, VN, YU, ZA, ZM, ZW. — without international search report and to be republished

(84) Designated States (regional): ARIPO patent (GH, GM, upon receipt of that report

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ance Notes on Codes and Abbreviations" appearing at the begin-
ES, FIL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, ning of each regular issue of the PCT Gazette.

SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

WO 2004/013725 PCT/US2003/023747

ASYNCHRONOUS INFORMATION SHARING SYSTEM

RELATED APPLICATIONS
[0001] This application is related to and claims priority from the following
applications, the content of each of which is incorporated herein in its entirety, for all
purposes:
U.S. Provisional Patent Application No. 60/400,532, filed on August 1, 2002,
entitled UTILIZING RULES IN DISTRIBUTED INFORMATION SHARING; and
U.S. Provisional Patent Application No. 60/410,883, filed September 13, 2002,
entitled ORACLE STREAMS.

FIELD OF THE INVENTION

[0002] The present invention relates to information sharing systems.

BACKGROUND OF THE INVENTION

[0003] The ability to share information easily and in a timely fashion is a crucial
requirement for any business environment. Consequently, information sharing has been
supported by many mechanisms, such as discussions, mail, books, periodicals, and
computer technology. Many computer-based technologies have evolved to promote the
goal of information sharing, such as reports/statements, replication and messaging.
[0004] Unfortunately, most information sharing is still handled through applications,
which represent a relatively expensive solution due to the costs associated with
developing, deploying, operating and maintaining the applications that provide the
information sharing services. In addition, the services provided by such applications
often lack desired functionality, such as support for ad-hoc requests, customization, as
well as timely and flexible delivery.

[0005] An important feature of any database management system is the ability to
share information among multiple databases and applications. Traditionally, this has
involved users and applications pulling information from the database using various
overlapping technologies. Today, new efficiencies and business models require a more
comprehensive and automatic approach. Many information sharing solutions are targeted
to specific information sharing problems. While such solutions may solve the specific
information sharing problem to which they are directed, they may not be applicable to,

and may even be incompatible with, other information sharing problems.

WO 2004/013725 PCT/US2003/023747

[0006] Based on the foregoing, it is desirable to provide a system and techniques for
sharing electronic information in a manner that is more flexible than current problem-

specific solutions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0008] FIG.1is ablock diagram of an information sharing system configured
according to an embodiment of the invention;

[0009] FIG. 2 is a block diagram illustrating three general phases experienced by data
items as they flow through an information sharing system, according to an embodiment of
the invention;

[0010] FIG. 3 is a block diagram illustrating the automated capture of changes in a
database, according to an embodiment of the invention;

[0011] FIG. 4 is a block diagram illustrating events that are propagated from a source
queue to a destination queue according to an embodiment of the invention;

[0012] FIG. 5 is a block diagram illustrating a directed networks environment,
implemented according to an embodiment of the invention;

[0013] FIG. 6 is a block diagram illustrating the explicit enqueue and dequeue of
events in a single queue, according to an embodiment of the invention;

[0014] FIG. 7 is a block diagram illustrating an explicit enqueue, propagation and
dequeue of events, according to an embodiment of the invention;

[0015] FIG. 8 is a block diagram illustrating an apply process according to an
embodiment of the invention;

[0016] FIG. 9 is a block diagram illustrating a transformation during an apply
operation, according to an embodiment of the invention;

[0017] FIG. 10 is a block diagram illustrating the use of an information sharing
system to share data from an Oracle database system to a non-Oracle database system;
[0018] FIG. 11 is a block diagram illustrating the use of an information sharing
system to share data from a non-Oracle database system to an Oracle database system;
[0019] FIG. 12 is a block diagram that illustrates an information sharing system

implemented within a single database, according to an embodiment of the invention;

WO 2004/013725 PCT/US2003/023747

[0020] FIG. 13A and 13B are block diagrams illustrating an information sharing
system used to share information between multiple databases, according to an
embodiment of the invention;

[0021] FIG. 14 is a block diagram illustrating stages in a rule set evaluation process,
according to an embodiment of the invention;

[0022] FIG. 15 is a block diagram illustrating that one rule set can be used by
multiple clients of a rules engine, according to an embodiment of the invention;

[0023] FIG. 16 is a block diagram illustrating transformation during capture,
according to an embodiment of the invention;

[0024] FIG. 17 is a block diagram illustrating transformation during propagation,
according to an embodiment of the invention;

[0025] FIGS. 18A, 18B and 18C are block diagrams illustrating a multiple-node
system in which each database is both a source and a destination database;

[0026] FIG. 19 is a block diagram illustrating the use of tags when each database is a
source and destination database;

[0027] FIG. 20 is a block diagram illustrating a primary database sharing data with
several secondary databases;

[0028] FIG. 21 is a block diagram illustrating tags used at the primary database;
[0029] FIG. 22 is a block diagram illustrating tags used at a secondary database;
[0030] FIG. 23 is a block diagram illustrating a primary database and several
extended secondary databases;

[0031] FIG. 24 is a block diagram illustrating the in-memory streaming of change
information from a source site to a destination site through one intermediary site,
according to an embodiment of the invention;

[0032] FIG. 25 is a flowchart illustrating steps performed by an apply engine,
according to an embodiment of the invention, that uses a persistently stored LOW
WATERMARK, persistently stored data that identifies ABOVE-MARK APPLIED
transactions, and non-persistently stored HIGHEST SO FAR CSNs, to achieve exactly-
once behavior; and

[0033] FIG. 26 is a block diagram of a computer system on which embodiments of

the invention may be implemented.

DETAILED DESCRIPTION OF THE INVENTION
[0034] A method and system are described for sharing electronic information. In the

following description, for the purposes of explanation, numerous specific details are set

3

WO 2004/013725 PCT/US2003/023747

forth in order to provide a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block

diagram form in order to avoid unnecessarily obscuring the present invention.

CHAINS OF TRIGGERED ACTIVITIES
[0035] Conventional database system technology frequently treats the manipulation
of data as an isolated action. However, in many real-world scenarios, this is not the case.
Specifically, the manipulation of data often triggers a series or "chain" of activities. The
activities thus triggered my fall into various categories, including but not limited to:
e Information creation, modification, deletion, or the passage of time: activities in
this category may constitute a "business event".
e Evaluation of information requirements: determining who needs/likes to be
informed about a business event.
o (Creation of desired information: the information is created in a mutually agreed
format, using applications, views, and/or transformations.
e Transfer of information to the desired location via the desired transport.
e Modification of the data at a target location: absorption of new information in the
target environment organized according to the needs of the recipient.
¢ Notification of new state: provides low latency knowledge for recipients or
programs; notification may activate applications.
e Access to information: potentially for a reaction, creating and/or modifying
information (thereby causing another "business event").
[0036] According to one embodiment, rules may be established for the various
activities to automatically carry out the chain of activities that are desired for certain data
modification events. Of course, the specific chain of activities that is triggered by any
given data manipulation event will vary based on the nature of the event and the rules that

have been established.

FUNCTIONAL OVERVIEW
[0037] A flexible asynchronous information sharing system is described hereafter.
The system provides numerous features that can be used alone or in combination to solve
wide varieties of information sharing problems. According to one embodiment, the

information sharing system includes one or more staging areas for storing information

WO 2004/013725 PCT/US2003/023747

that is to be shared. One set of software processes, referred to herein as "capture
processes", place information in the staging areas. Another set of software processes,
referred to herein as "consuming processes”, consume information from the staging areas.
[0038] According to one embodiment, the information sharing performed through the
staging areas is asynchronous. Specifically, the processes that generate changes that are
captured by capture processes do not pause execution to await the capture of the changes
by the capture processes. Conversely, the capture processes need not report back to the
processes that generated the changes. Similarly, the capture processes do not pause
execution to await the further processing of the information that they add to the staging
areas. Similarly, the consuming processes need not report back to the capture processes
to prompt the capture processes to continue execution.

[0039] According to one aspect, the information sharing system supports a wide
variety of capture processes, including implicit capture processes and explicit capture
processes. An implicit capture process is a process that adds the information to one or
more staging areas based on events that occur in a system associated with said implicit
capture process. A log capture process is an example of an implicit capture process. A
log capture process reads logs, such as logs generated by a database system in response to
events that occur within the database system, and places information into a staging area
based on the contents of the logs. An explicit capture process is a process the adds
information to a staging area by making an explicit function call, through an API
associated with a staging area, to add information to the staging area.

[0040] According to another aspect, the information sharing system supports a wide
variety of consuming processes, including apply processes, propagation processes and
explicit dequeue processes. An apply process is a process that automatically dequeues
and acts upon information contained in a staging area. A propagation process
automatically dequeues and moves information from one staging area to a specified
destination. The specified destination may be, for example, another staging area. An
explicit dequeue processes retrieves information from a staging area by making an
explicit call, through an API associated with the staging area, to retrieve the information
from the staging area.

[0041] Consuming processes may be configured to perform a wide variety of
operations with the information they consume. For example, a consuming process may
be configured to deliver messages that are extracted from the queue to "subscriber
processes"” that have previously registered an interest in receiving, or being notified about,

certain types of information or events. In another context, the extracted information may

WO 2004/013725 PCT/US2003/023747

represent changes that have been made within one database system, and the consuming

process may be configured to make corresponding changes in another database system.

SYSTEM OVERVIEW
[0042] FIG. 1 is a block diagram of a system 100 for asynchronously sharing
information according to an embodiment of the invention. Referring to FIG. 1, it includes
a plurality of staging areas 102, 104, 106. Information is added to each of staging areas
102, 104, 106 by capture processes 112, 114 and 116, respectively. Information is
consumed from each of staging areas 102, 104, 106 by consuming processes 122, 124 and
126, respectively. Capture processes 112, 114 and 116 may include implicit capture
processes and/or explicit capture processes. Consuming processes 122, 124 and 126 may
include apply processes and explicit dequeue processes.
[0043] System 100 further includes a propagation process 118 configured to extract
information from one staging area 106 and add the information to another staging area
102. As shall be described in greater detail hereafter, the source and target of a
propagation process 118 need not always be a staging area. For example, a propagation
process may be configured to selectively extract information from a staging area and send
the extracted information to another process that is interested in the information. The
other process may be, for example, a process running in a system that is remote relative to
system 100.
[0044] According to one embodiment, staging areas 102, 104 and 106 are
implemented as queues that are not type-specific. Because the staging areas 102, 104 and
106 are not type-specific, the same staging area can be used to store numerous different
types of data. Consequently, various pieces of information may be stored together within
a staging area in a sequence or arrangement that reflects a relationship between the pieces
of information, even when the pieces of information correspond to different types of data.
In alternative embodiments, the staging areas may be type specific, where each staging
area is designed to store a particular type of information item.
[0045] Information sharing system 100 enables users to share data and events. The
information sharing system 100 can propagate this information within a database or from
one database to another. The information sharing system 100 routes specified information
to specified destinations. The result is a new feature that provides greater functionality
and flexibility than traditional solutions for capturing and managing events, and sharing
the events with other databases and applications. Information sharing system 100 enables

users to break the cycle of trading off one solution for another. Information sharing

6

WO 2004/013725 PCT/US2003/023747

system 100 provides the capabilities needed to build and operate distributed enterprises
and applications, data warehouses, and high availability solutions. Users can use all the
capabilities of information sharing system 100 at the same time. If needs change, then
users can implement a new capability of information sharing system 100 without
sacrificing existing capabilities.

[0046] Using information sharing system 100, users control what information is put
into the information sharing system 100, how the information flows or is routed from
staging area to staging area or from database to database, what happens to events in the
information sharing system 100 as they flow into each database, and how the information
sharing system 100 terminates. By configuring specific capabilities of information
sharing system 100, users can address specific requirements. Based on user specifications,
information sharing system 100 can capture, stage, and manage events in the database
automatically, including, but not limited to, data manipulation language (DML) changes
and data definition language (DDL) changes. Users can also put user-defined events into
the information sharing system 100. Then, information sharing system 100 can propagate
the information to other databases or applications automatically. Again, based on user
specifications, information sharing system 100 can apply events at a destination database.
Figure 2 shows the phases through which information typically flows when being shared

through information sharing system 100.

INFORMATION SHARING OPTIONS
[0047] As mentioned above, the chain of activities that can be carried out by system
100 in response to an event may take many forms. In general, the chain of activities may
involve one or more of: Data capture, out-bound staging, propagation, in-bound staging
and consumption. According to one embodiment, system 100 provides mechanisms to
perform each of these activities in a variety of ways. Table 1 lists various options for

some of the characteristics for each of the various activities.

WO 2004/013725 PCT/US2003/023747

TABLE 1

COMPONENT ELEMENT | OPTION COMMENTS

Data Capture Mode E — Explicit One to choose

T— Implicit

Data Type S — Schema One to choose

B — Business Object

Constraints N — None Any combination

S — Sequence

CY — Cycle

CO — Conflict

P —Process

D —Data

TR — Transactional

Staging: Out-Bound N — None One to choose

J — Journal

B — Basic

S —SQL

Propagation Delivery B — Best Effort One to choose

E — Exactly Once

Security C — Confidential Any combination

S — Signed

Addressing | O —Open One to choose

C —Closed

Constraints Same options as data
capture

Staging: In-Bound Same options as Staging
Out-bound, except J

Consumption Same options as data
capture

[0048] With respect to the data type in which information is captured, the "schema"
option refers to a schema-oriented view of the data. Conversely, the "B" option refers to
a business document oriented view of the data.

[0049] The list of activities, elements, and corresponding options given in Table 1 is
not exhaustive. The information sharing framework described herein may be
implemented in a manner that provides numerous other activities, elements and options.
For example, another option for the delivery element of the propagation activity may be
"at least once". Thus, Table 1 is merely intended to illustrate the flexibility of the
information sharing system described herein.

[0050] Table 2 illustrates how the flexibility of the information system described
herein may be exploited to accomplish information sharing tasks in a diversity of
contexts. Specifically, Table 2 lists a context in which information sharing is desirable or
required, and lists the options that might be used when using system 100 to carry out the

information sharing activities in that context.

8

WO 2004/013725 PCT/US2003/023747

TABLE 2

CONTEXT | DATA OUTBOUND | PROPAGATION | INBOUND
CAPTURE AND | STAGING OPTIONS STAGING
CONSUMPTION | OPTIONS OPTIONS
OPTIONS

Messaging— | E, B, TR B/S N/A N/A

Local ‘

Messaging— | E, B, TR B/S ** % TR B/S

Remote

Application | E, B, P, TR S E,C,0O, TR S

to

Application

Replication | L S,S,CY,CO, |S E,C,C, TR B

—Standard | TR

Replication | LS, S, CY,CO, |]J E,C,C, TR B

— Journal TR

Replication |I,B,S,CY,CO, |S/J E,C,C,TR B

—Semantic | TR

or B2B

HA IS, TR J E,C,C, TR B

HA - I, B, TR J E,C C, TR B

Semantic

B2B E,B, TR S E, * 0, TR S

Messaging

B2B E,B,P, TR S E, *, O, TR S

Protocols

OPERATIONAL OVERVIEW OF INFORMATION SHARING SYSTEM 100
[0051] According to one embodiment, users can use information sharing system 100
to capture changes at a database, enqueue events into a queue, propagate events from one
queue to another, dequeue events, apply events at a database, implement directed
networks, perform automatic conflict detection and resolution, perform transformations,
and implement heterogeneous information sharing.

[0052] With respect to capturing changes, users can configure a background log
capture process to capture changes made to tables, schemas, or the entire database.
According to one embodiment, a log capture process captures changes from the redo log
and formats each captured change into a "logical change record" (LCR). The database
where changes are generated in the redo log is called the source database.

[0053] With respect to placing events into a queue, at least two types of events may
be staged in a queue of information sharing system 100: LCRs and user messages. A
capture process enqueues events into a queue that users specify. The queue can then share

the events within the same database or with other databases. Users can also enqueue user

9

WO 2004/013725 PCT/US2003/023747

events explicitly with a user application. These explicitly enqueued events can be LCRs
Or user messages.

[0054] With respect to propagating events from one queue to another, the queues may
be in the same database or in different databases.

[0055] With respect to dequeueing events, a background apply process can dequeue
events. Users can also dequeue events explicitly with a user application.

[0056] With respect to applying events at a database, users can configure an apply
process to apply all of the events in a queue or only the events that users specify. Users
can also configure an apply process to call user-created subprograms (e.g. subprograms
written in the PL/SQL language) to process events. The database where events are
applied and other types of events are processed is called the destination database. In some

configurations, the source database and the destination database may be the same.

TYPICAL APPLICATIONS OF INFORMATION SHARING SYSTEM 100
[0057] Information sharing system 100 is flexible enough to achieve a virtually
unlimited number of information sharing objectives. Consequently, the number of
applications to which information sharing system 100 may be put is equally great. For
the purpose of illustrating the utility and versatility of information sharing system 100,
details shall be given as to how information sharing system may be applied to implement
message queuing and data replication.

[0058] With respect to message queuing, information sharing system 100 allows user
applications to enqueue messages of different types, propagate the messages to
subscribing queues, notify user applications that messages are ready for consumption, and
dequeue messages at the destination database. A rule-based message notification
consuming process may be used in conjunction with a log capture process. With this
combination of components, the capture process may add to a staging area LCRs that
reflect events reflected in the log files of a database, and the consuming process may send
out notifications to those subscribers that have indicated an interest in particular types of
database events. The specific events in which subscribers are interested may be stored as
subscription data, which may identify the data in which a subscriber is interested using
one or more SQL statements. Significantly, such notifications may be sent directly to
subscribers, to subscribers through remote but compatible messaging systems, or to
subscribers through message gateways to messaging systems that are otherwise

incompatible with the system in which the LCRs were originally generated.

10

WO 2004/013725 PCT/US2003/023747

[0059] According to one embodiment, information sharing system 100 implements
staging areas 102, 104 and 106 using a type of queue that stages messages of
SYS.AnyData type. Messages of almost any type can be wrapped in a SYS.AnyData
wrapper and staged in SYS.AnyData queues. Information sharing system 100
interoperates with a queuing mechanism that supports all the standard features of message
queuing systems, including multiconsumer queues, publishing and subscribing, content-
based routing, Internet propagation, transformations, and gateways to other messaging
subsystems.

[0060] With respect to data replication, information sharing system 100 can
efficiently capture both Data Manipulation Language (DML) and Data Definition
Language (DDL) changes made to database objects and replicate those changes to one or
more other databases. A capture process (e.g. capture process 116) captures changes
made to source database objects and formats them into LCRs, which can be propagated to
destination databases (e.g. via propagation process 118) and then applied by an apply
processes (e.g. consuming process 122).

[0061] The destination databases can allow DML and DDL changes to the same
database objects, and these changes may or may not be propagated to the other databases
in the environment. In other words, users can configure information sharing system 100
with one database that propagates changes, or users can configure an environment where
changes are propagated between databases bidirectionally. Also, the tables for which data
is shared need not be identical copies at all databases. Both the structure and the contents
of these tables can differ at different databases, and the information in these tables can be

shared between these databases.

CORE SERVICES
[0062] The components of system 100 provide a set of core services. According to
one embodiment, those core services include event capturing, event distribution and event
consumption.
[0063] Event capturing generally refers to establishing a record of events that occur in
a system of interest. For example, the system of interest may be a database system, and
the event capturing may be performed by a set of capture processes, as shall be described
in greater detail hereafter.
[0064] Event distribution generally refers to distributing information about the events
to the entities that are interested in the events. Such entities may reside within the system

that created the event of interest, or external to the system. For example, event

11

WO 2004/013725 PCT/US2003/023747

distribution may involve sending information about the changes that are made in one
database system to another database system.

[0065] Event consumption generally refers to reading the captured event information.
Frequently, the consuming process will perform some action, or initiate some chain of
activities, based upon the captured events. For example, a process in a target database
system that receives change information from a source database system may read the
change information from the source database system and initiate changes in the target

database system based on corresponding changes made in the source database system.

IMPLICIT CAPTURE PROCESS EXAMPLE
[0066] As mentioned above, system 100 supports both explicit and implicit capture
processes. A log capture process is an example of an implicit capture process. According
to one embodiment, a log capture process is a process configured to read information
stored in the log files of a database server, and to store information into one or more
staging areas based on the information in the log files. Such log files may include, for
example, the redo log files that are generated by the database system to record changes
that are being made by the database system.
[0067] A redo log file may, for example, include a redo record that indicates that, at a
particular point in time, the database server changed the value in a particular column of a
particular row of a particular table from X to Y. The information contained in such redo
records is typically used by the database server to ensure that no committed changes are
lost when failures occur. However, the use of a log capture process to selectively share
the information contained in the redo records with other processes, by placing the
information in one or more staging areas accessible to consuming processes, allows the
information to be used in a wide variety of ways beyond the recovery purpose for which
the logs were originally generated. For example, consuming processes may selectively
provide the change information from the staging area to processes that reside external to
the database server that produced the logs.
[0068] According to one embodiment, the log capture process selectively captures
information from a log file. For example, an asynchronous trigger may be defined to fire
in response to a particular type of change made to a particular table. Consequently, when
a transaction makes the particular type of change to the particular table (1) the database
server will generate a redo record in response to the change, and (2) the trigger will fire
and a capture process will capture the new redo record. Because the trigger is

asynchronous, the execution of the capture process will not be performed as part of the

12

WO 2004/013725 PCT/US2003/023747

transaction that caused the change. Thus, the transaction may proceed without waiting
for the capture process, and the capture process may capture the new redo record some
time after the change was made.

[0069] Executing the capture process in response to the firing of an asynchronous
trigger is merely one example of capture process operation. Alternatively, the log capture
process may simply be programmed to check the appropriate logs for new records on a
periodic basis. As another alternative, the log capture process may be executed in
response to a synchronous trigger. When a synchronous trigger is used, the capturing
operation is performed by the capture process as part of the transaction that made the
change that caused the trigger to fire. Thus, the capture of the change is "synchronous"
relative to the transaction that caused the change. However, any other activities in the
chain of activities associated with the chain (e.g. staging, propagation, consumption) may
still be performed asynchronous relative to that transaction.

[0070] According to one embodiment, the capture process retrieves the change data
extracted from the redo log, and formats the change data into an LCR. The capture
process places the LCR into a staging area for further proCessing. In one embodiment,
support is provided for both hot mining an online redo log, and mining archived log files.
When hot mining is performed, the redo stream may be mined for change data at the same
- time it is written, thereby reducing the latency of capture.

[0071] As mentioned above, changes made to database objects in a typical database
are logged in the redo log to guarantee recoverability in the event of user error or media
failure. In one embodiment, an implicit capture process is a background process,
executing within the database server that is managing a database, that reads the database
redo log to capture DML and DDL changes made to database objects. After formatting
these changes into LCRs, the implicit capture process enqueues them into a staging area.
[0072] According to one embodiment, there are several types of LCRs, including:
row LCRs contain information about a change to a row in table resulting from a DML
operation, and DDL LCRs contain information about a DDL change to a database object.
Users use rules to specify which changes are captured. Figure 3 shows an implicit capture
process capturing LCRs.

[0073] As shall be explained in greater detail hereafter, users can specify "tags" for
redo entries generated by a certain session or by an apply process. These tags then
become part of the LCRs captured by a capture process. A tag can be used to determine
whether a redo entry or an LCR contains a change that originated in the local database or

at a different database, so that users can avoid sending LCRs back to the database where

13

WO 2004/013725 PCT/US2003/023747

they originated. Tags may be used for other LCR tracking purposes as well. Users can
also use tags to specify the set of destination databases for each LCR. Depending on the
rules that have been established for the various components of information sharing system
100, the tag values associated with an LCR may be set, modified and/or transformed at
various points as the LCR flows through the system. For example, for an LCR created for
a change identified in a log file, a tag value may be set by the capture process to indicate
the database in which the change originated. As another example, a tag value for an LCR
may be set by a propagation process to indicate the system from which the propagation
process is propagating the LCR.

[0074] A capture process that mines logs for changes may reside either locally (in the
system whose logs are being mined) or remotely (outside the system whose logs are being
mined). Where the capture process is executing remotely, the logs may be exported from
the system that generated them to the system in which the capture process is executing.
For efcample, a capture process may be configured to mine the logs of a first database, and
to store into a staging area LCRs for the various events represented in the logs. The
capture process may actually be executing in a second database system. In this scenario,
the log files may be communicated from the first database system to the second database
system, for processing by the capture process in the second database system. The staging
area into which the capture process stores the LCRs may also reside within the second
database system. The ability to "offload" the overhead associated with the capture

process in this matter may be useful for the purposes of load and resource balancing.

STAGING AREAS

[0075] Asillustrated in FIG. 1, staging areas may be used to temporarily hold
information between capture, distribution and consumption of the information. The
nature of the staging area that is used to hold the information may vary depending on the
nature of the information and the chain of activities triggered by the information. For
example, the staging area used to hold information between capture, distribution and
consumption of the information may take any of the following forms:

e None: captured information is passed directly to a propagation or consumption

process.
e Journal: information in a recovery journal is used to find the captured events.

e Basic: the information is held in a memory area that does not itself provide a

recovery mechanism.

14

WO 2004/013725 PCT/US2003/023747

e SQL: the information is stored, but not necessarily retained, in a data container
that can be queried using a database language, such as SQL.
e Documented: the same as the SQL option, except that the information is retained
in the data container.

[0076] Staging areas with the characteristics described above may be implemented in
a variety of ways, and the present invention in not limited to any specific implementation.
For example, the SQL and Documented options may be implemented using the Advanced
Queuing mechanisms in the Oracle 9iR2 database system currently available for Oracle
Corporation. Further, the Advanced Queuing functionality may be used in conjunction
with Oracle Workﬂovy 2.6, also available for Oracle Corporation, to attain the ability to
check events in the context of other events. For example, an explicit event (e.g. a
message received from an application in a call made by the application through an APT)
can be seen in the context of other explicit events (e.g. other messages received from the
same application). Similarly, an implicitly captured event (e.g. a change to data managed
by a database server) can be seen in the context of other implicitly captured events (e.g.
other database changes).
[0077] In one embodiment, information sharing system 100 uses queues to stage
events for propagation or consumption. Users can use information sharing system 100 to
propagate events from one queue to another, and these queues can be in the same
database or in different databases. The queue from which the events are propagated is
called the source queue, and the queue that receives the events is called the destination
queue. There can be a one-to-many, many-to-one, or many-to-many relationship between
source and destination queues.
[0078] Events that are staged in a queue can be consumed by one or more consuming
processes, such as an apply processes or a user-defined subprogram. If users configure a
propagation process (e.g. propagation process 118) to propagate changes from a source
queue to a destination queue, then users can use rules to specify which changes are

propagated. Figure 4 shows propagation from a source queue to a destination queue.

DIRECTED NETWORKS OVERVIEW
[0079] Information sharing system 100 enables users to configure an environment
where changes are shared through directed networks. A directed network is a network in
which propagated events may pass through one or more intermediate databases before
arriving at a destination database. The events may or may not be processed at an

intermediate database. Using information sharing system 100, users can choose which

15

WO 2004/013725 PCT/US2003/023747

events are propagated to each destination database, and users can specify the route events
will traverse on their way to a destination database.

[0080] Figure 5 shows an example directed networks environment. In the example
shown in FIG. 5, the queue at the intermediate database in Chicago is both a source queue

and a destination queue.

EXPLICIT ENQUEUE AND DEQUEUE OF EVENTS
[0081] User applications can explicitly enqueue events into a staging area of
information sharing system 100. User applications can format these events as LCRs,
which allows an apply process to apply them at a destination database. Alternatively,
these events can be formatted as user messages for consumption by another user
application, which either explicitly dequeues the events or processes the events with
callbacks from an apply process. Events that were explicitly enqueued into a queue can be
explicitly dequeued from the same queue. Figure 6 shows explicit enqueue of events into
and dequeue of events from the same queue.
[0082] When events are propagated between queues, events that were explicitly
enqueued into a source queue can be explicitly dequeued from a destination queue by a
user application without any intervention from an apply process. Figure 7 shows explicit
enqueue of events into a source queue, propagation to a destination queue, and then
explicit dequeue of events from the destination queue.
[0083] While many of the examples given herein involve the capture, propagation and
application of LCRs, the techniques illustrated in those examples are equally applicable to
any form of shared data. Such shared data may, for example, take the form of explicitly
enqueued user messages, or even implicitly captured information that is organized in a
format that differs from LCRs.

APPLY PROCESS OVERVIEW
[0084] According to one embodiment, an apply process is a background process,
running within a database server, that dequeues events from a queue and either applies
each event directly to a database object or passes the event as a parameter to a user-
defined procedure called an apply handler. These apply handlers can include message
handlers, DML handlers, and DDL handlers.
[0085] According to one embodiment, an apply process is designed to be aware of
transaction boundaries. For example, an apply process is aware of which changes,

represented in the LCRs that the apply process is consuming, were initially made as part

16

WO 2004/013725 PCT/US2003/023747

of the same transaction. The apply process assembles the changes into transactions, and
applies the changes in a manner that takes into account the dependencies between the
transactions. According to one embodiment, the apply process applies the changes in
parallel, to the extent permitted by the dependencies between the transactions.

[0086] Typically, an apply process applies events to the local database where it is
running, but, in a heterogeneous database environment, it can be configured to apply
events at a remote database that is a different type of database than the local database.

For example, the local database may be a database created by a database server produced
by one company, and the remote database may be a database created by a database server
produced by another company. Users use rules to specify which events in the queue are
applied. Figure 8 shows an apply process processing LCRs and user messages.

[0087] According to one embodiment, an apply process detects conflicts
automatically when directly applying LCRs. Typically, a conflict results when the same
row in the source database and destination database is changed at approximately the same
time. When conflicts occur, users need a mechanism to ensure that the conflict is
resolved in accordance with user-specified business rules. According to one embodiment,
information sharing system 100 includes a variety of prebuilt conflict resolution handlers.
Using these prebuilt handlers, users can define a conflict resolution system for each of the
users' databases that resolves conflicts in accordance with user-specified business rules. If
users have a unique situation that the prebuilt conflict resolution handlers cannot resolve,
then users can build custom conflict resolution handlers. According to one embodiment,
if a conflict is not resolved, or if a handler procedure raises an error, then all events in the
transaction that raised the error are saved in an exception queue for later analysis and
possible reexecution.

[0088] As mentioned above, LCRs are merely one example of the type of shared
information that may be handled by an apply process. Apply processes may be
configured to "apply" any form of shared information, including explicitly enqueued user

messages and automatically captured data that is not organized as an LCR.

RULES-DRIVEN INFORMATION SHARING
[0089] As explained above, each of the activities in a chain of activities may be
performed in a variety of ways. For example, propagation may be performed with "Best
Effort" and "Open" characteristics, or "Exactly Once" and "Closed" characteristics.
According to one embodiment of the invention, a rule registration mechanism is provided

to allow users to register rules that specify:

17

WO 2004/013725 PCT/US2003/023747

e achain of activities to perform in response to a particular event, and
e how each activity in the chain of activities is to be performed.
[0090] According to one embodiment, the registration mechanism is implemented
within a database system. When an information sharing rule is registered with the
database system, the database system generates and stores metadata (referred to herein as
"rules metadata") that reflects the rule. In addition, the database system generates any
mechanisms required to execute the rule. For example, assume that a user wants to use
system 100 to replicate at a target database a table that exists in a source database. To
program system 100 to carry out the replication, the user could register a set of rules that:
e identify the database table that is to be replicated
o identify the target database, and
e specify the data capture, staging, propagation and consumption options for
performing the replication
[0091] Inresponse to receipt of this set of rules, the database system would generate
metadata to record the rules, and generate any supporting mechanisms to implement the
rules. Such supporting mechanisms may include, for example, an asynchronous trigger
for triggering execution of a capture process in response to modifications performed on
the database table. The metadata might include, for example, (1) metadata that instructs
the capture process about which log to capture information from, which information to
capture, the capture options to use, and where to stage the captured information; (2)
metadata that instructs a propagation process which information to propagate, how the
information is to be transformed prior to propagation, where to propagate the data, etc. (3)
metadata that instructs an apply process in the target database system where to receive the
propagated information, how to process the propagated information, how to apply the
propagated information to keep a table in the target database system in sync with the

changes reflected in the propagated information, etc.

RULES OVERVIEW
[0092] Information sharing system 100 enables users to control which information to
share and where to share it using rules. A rule is specified as a condition that is similar to
the condition in the WHERE clause of a SQL query, and users can group related rules
together into rule sets. According to one embodiment, a rule includes a rule condition, a

rule evaluation context, and a rule action context.

18

WO 2004/013725 PCT/US2003/023747

[0093] The rule condition combines one or more expressions and operators and
returns a Boolean value, which is a value of TRUE, FALSE, or NULL (unknown), based
on an event.
[0094] The rule evaluation context defines external data that can be referenced in rule
conditions. The external data can either exist as external variables, as table data, or both.
[0095] The rule action context is optional information associated with a rule that is
interpreted by the client of the rules engine when the rule is evaluated.
[0096] For example, the following rule condition may be used in information sharing
system 100 to specify that the schema name that owns a table must be hr and the table
name must be departments for the condition to evaluate to TRUE:
-dml.get_object_owner() = "hr' AND :dml.get_object_name() = 'departments’
[0097] Within information sharing system 100, this rule condition may be used in the
following ways:
[0098] To instruct a capture process to capture DML changes to the hr. departments
table
[0099] To instruct a propagation to propagate DML changes to the hr. departments
table
[0100] To instruct an apply process to apply DML changes to the hr. departments
table ‘
[0101] Information sharing system 100 performs tasks based on rules. These tasks
include capturing changes with a capture process, propagating changes with a
propagation, and applying changes with an apply process. According to one embodiment,
users can define rules for these tasks at three different levels: table rules, schema rules,
and global rules.
[0102] When users define a table rule, the task is performed when a change is made to
the table that the users specify. For example, users can define a rule that instructs a
capture process to capture changes to the hr.employees table. Given this rule, if a row is
inserted into the hr. employees table, then the capture process captures the insert, formats
it into an LCR, and enqueues the LCR into a queue.
[0103] When users define a schema rule, the task is performed when a change is
made to the database objects in the schema users specify, and any database objects added
to the schema in the future. For example, users can define two rules that instruct a
propagation to propagate DML and DDL changes to the hr schema from a source queue
to a destination queue. Given these rules, suppose the source queue contains LCRs that

define the following changes:

19

WO 2004/013725 PCT/US2003/023747

[0104] The hr. loc city_ix index is altered.

[0105] A row is updated in the hr. j obs table.

[0106] The propagation propagates these changes from the source queue to the
destination queue, because both changes are to database objects in the hr schema.

[0107] When users define a global rule, the task is performed when a change is made
to any database object in the database. If it is a global DML capture rule, then a capture
process captures all DML changes to the database objects in the database. If it is a global
DDL propagation or apply rule, then the task is performed for all DDL changes in a

queue.

THE RULES ENGINE
[0108] Asmentioned above, the various components of system 100 may be designed
with a default behavior that can be overridden by registeﬁng rules with system 100.
When a rule is registered, metadata is generated within system 100 to reflect the rule.
The various components of system 100 are configured to read the metadata and modify
their behavior according to any rules reflected therein which (1) apply to them, and (2)
apply to the context in which they are currently operating.
[0109] For example, a particular user may register a rule that changes the propagation
policy from a default "Exactly once" to a new value "Best effort” when the item being
propagated is a particular type of message. The process responsible for propagating that
particular type of message is configured to read the metadata and use a "Best effort"
propagation technique when processing that particular type of message for that particular
user. However, when propagating the same type of message for other users, the
propagation process may continue to use the default "Exactly once" technique.
[0110] In addition to overriding the default behavior of components, rules may be
used to supplement the behavior. For example, a particular capture process may be
configured to capture certain types of information and add the information to a staging
area. Rules may be registered with system 100 which specify several additional tasks for
the capture process to perform before, during, and/or after performing the task addressed
by its default behavior. For example, the capture process may, based upon registered
rules, be configured to perform numerous additional tasks when adding information to the
staging area, such as (1) adding tags to the information before placing it in the staging
area, and (2) sending out notifications to various entities after placing the information in

the staging area.

20

WO 2004/013725 PCT/US2003/023747

[0111] The various processes involved in registering and managing the rules used by
the
[0112] components of system 100 are collectively referred to herein as the "rules

engine".

TRANSFORMATIONS OVERVIEW
[0113] A rule-based transformation is any modification to an event that results when a
rule evaluates to TRUE. For example, users can use a rule-based transformation when
u;ers want to change the datatype of a particular column in a table for an event. In this
case, the transformation can be a PL/SQL function that takes as input a SYS.AnyData
object containing a logical change record (LCR) with a NUMBER datatype for a column
and returns a SYS.AnyData object containing an LCR with a VARCHAR?2 datatype for
the same column.
[0114] According to one embodiment, a transformation can occur at the following
times:
e During enqueue of an event, which can be useful for formatting an event in a
manner appropriate for all destination databases
e During propagation of an event, which may be useful for subsetting data before it
is sent to a remote site
e During dequeue of an event, which can be useful for formatting an event in a
manner appropriate for a specific destination database

[0115] Figure 9 shows a rule-based transformation during apply.

HETEROGENEOUS INFORMATION SHARING OVERVIEW
[0116] In addition to information sharing between databases produced by the same
company, information sharing system 100 supports information sharing between
databases from different companies. Typically, the features supported by the database
system offered by one company differ from the features supported by database systems
offered by other companies. Consequently, the task of sharing information between two
different types of database systems can be quite challenging. As shall be described in
greater detail hereafter, information sharing system 100 may be employed to significantly
facilitate information sharing among such heterogeneous database systems.
[0117] For the purpose of describing how information sharing system 100 may be
used to share data among heterogeneous databases, it shall be assumed that data is to be

shared between an Oracle database server and a non-Oracle database server. However,

21

WO 2004/013725 PCT/US2003/023747

the techniques described herein are not limited to such a context. Thus, the actual types
of databases within the heterogeneous systems in which these techniques are applied may
vary from implementation to implementation.

[0118] For the purpose of explanation, the database system that originally produces
the information that is to be communicated to the other database system is referred to
herein as the "source" database. Conversely, the database system that received the shared
information is referred to as the "destination" database. If an Oracle database is the
source and a non-Oracle database is the destination, then the non-Oracle database
destination will typically lack the following components of information sharing system
100: a queue to receive events, and an apply process to dequeue and apply events.

[0119] To share DML changes from an Oracle source database with a non-Oracle
destination database, the Oracle database functions as a proxy aﬁd carries out some of the
steps that would normally be done at the destination database. That is, the events intended
for the non-Oracle destination database are dequeued in the Oracle database itself, and an
apply process at the Oracle database uses Heterogeneous Services to apply the events to
the non-Oracle database across a network connection through a gateway. Figure 10 shows
an Oracle database sharing data with a non-Oracle database.

[0120] According to one embodiment, a custom application is used to capture and
propagate changes from a non-Oracle database to an Oracle database. This application
gets the changes made to the non-Oracle database by reading from transaction logs, using
triggers, or some other method. The application assembles and orders the transactions and
converts each change into a logical change record (LCR). Then, the application enqueues
the LCRs into a queue in an Oracle database by using the PL/SQL interface, where they
can be processed by an apply process. Figure 11 shows a non-Oracle databases sharing
data with an Oracle database.

[0121] Figure 12 shows how information sharing system 100 might be configured to
share information within a single database, while Figures 13A and 13B show how
information sharing system 100 might be configured to share information between two
different databases.

[0122] It should be noted that each of the various components involved in the
information sharing operation shown in FIGS. 13A and 13B may operate according to
rule sets stored in a rules engine. For example, the capture process used to capture
changes made at the source database may operate according to rules registered by a user.
The rules may dictate, among other things, which changes to capture, how to transform

the changes, and how to generate and tag the LCRs that represent those changes.

22

WO 2004/013725 PCT/US2003/023747

Similarly, the propagation process, the apply process, and the various handler procedures
may all be rules-driven.
[0123] According to one embodiment, these various components are designed with a

default behavior that they perform in the absence of any registered rule set.

REPLICATION EXAMPLE
[0124] As mentioned above, information from the redo logs of a database server
(hereinafter the "source server") may be selectively added to a staging area by a capture
process. A consuming process may then selectively provide this information from the
staging area to a process external to the source server. The change information may be,
for example, provided to a process in a different database server (hereinafter the "target"
database server). The process in the target database server may then use the change
information from the source database server to maintain information that resides in the
target database in sync with corresponding information in the source database server. For
example, the process may update a table T1 in the target database server based on
changes that were made to a table T2 in the source database server, so that T1 may serve

as areplica of T2.

AN ORACLE-BASED EXAMPLE OF THE REDO LOG AND CAPTURE PROCESS
[0125] Every Oracle database has a set of two or more redo log files. The redo log
files for a database are collectively known as the database's redo log. The primary
function of the redo log is to record all changes made to the database.

[0126] Redo logs are used to guarantee recoverability in the event of human error or
media failure. According to one embodiment, a capture process of information sharing
system 100 is implemented as an optional Oracle background process that reads the
database redo log to capture DML and DDL changes made to database objects. When a
capture process is configured to capture changes from a redo log, the database where the

changes were generated is called the source database.

LOGICAL CHANGE RECORDS (LCRS)
[0127] A capture process reformats changes captured from the redo log into LCRs.
An LCR is an object that describes a database change. According to one embodiment, a
capture process captures multiple types of LCRs, including row LCRs and DDL LCRs.
[0128] After capturing an LCR, a capture process enqueues an event containing the
LCR into a queue. A capture process is always associated with a single SYS.AnyData

23

WO 2004/013725 PCT/US2003/023747

queue, and it enqueues events into this queue only. Users can create multiple queues and
associate a different capture process with each queue. Figure 3 shows a capture process
capturing LCRs.
[0129] A row LCR describes a change to the data in a single row or a change to a
single LOB column in a row. The change results from a data manipulation language
(DML) statement or a piecewise update to a LOB. For example, a DML statement may
insert or merge multiple rows into a table, may update multiple rows in a table, or may
delete multiple rows from a table. So, a single DML statement can produce multiple row
LCRs. That is, a capture process creates an LCR for each row that is changed by the
DML statement. Further, the DML statement itself may be part of a transaction that
includes many DML statements.
[0130] A captured row LCR may also contain transaction control statements. These
row LCRs contain directives such as commit and rRoLLBACK. These row LCRs are internal
and are used by an apply process to maintain transaction consistency between a source
database and a destination database.
[0131] According to one embodiment, each row LCR contains the following
information:
e The name of the source database where the row change occurred
e The type of DML statement that produced the change, either INSERT, UPDATE,
DELETE, LOB ERASE, LOB WRITE, or LOB TRIM
e The schema name that contains the table with the changed row
e The name of the table that contains the changed row
e A raw tag that can be used to track the LCR
e The identifier of the transaction in which the DML statement was run
e The system change number (SCN) when the change was written to the redo log
e The old values related to the change. If the type of the DML statement is
UPDATE or DELETE, then these old values include some or all of the columns in
the changed row before the DML statement. If the type of the DML statement
INSERT, then there are no old values.
e The new values related to the change. If the type of the DML statement is
UPDATE or INSERT statement, then these new values include some or all of the
columns in the changed row after the DML statement. If the type of the DML

statement DELETE, then there are no new values.

24

WO 2004/013725 PCT/US2003/023747

[0132] A DDL LCR describes a data definition language (DDL) change. A DDL
statement changes the structure of the database. For example, a DDL statement may
create, alter, or drop a database object.
[0133] According to one embodiment, each DDL LCR contains the following
information:

e The name of the source database where the DDL change occurred

e The type of DDL statement that produced the change, for example ALTER TABLE or
CREATE INDEX

e The schema name of the user who owns the database object on which the DDL statement

was run

¢ The name of the database object on which the DDL statemeﬁt was run

e The type of database object on which the DDL statement was run, for example
TABLE or PACKAGE

e The text of the DDL statement

e The logon user, which is the user whose session executed the DDL statement

e The schema that is used if no schema is specified for an object in the DDL text

e The base table owner. If the DDL statement is dependent on a table, then the base
table owner is the owner of the table on which it is dependent.

e The base table name. If the DDL statement is dependent on a table, then the base
table name is the name of the table on which it is dependent.

e A raw tag that can be used to track the LCR

e The identifier of the transaction in which the DDL statement was run

e The SCN when the change was written to the redo log

CAPTURE RULES

[0134] According to one embodiment, a capture process within information sharing
system 100 (e.g. capture process 116) captures changes based on rules that users define.
Each rule specifies the database objects for which the capture process captures changes
and the types of changes to capture. In one embodiment, users can specify capture rules at
the following levels:

e A table rule captures either DML or DDL changes to a particular table.

o A schema rule captures either DML or DDL changes to the database objects in a

particular schema.

e A global rule captures either all DML or all DDL changes in the database.

25

WO 2004/013725 PCT/US2003/023747

CAPTURE PROCESS RULE EVALUATION
[0135] A running capture process completes the following series of actions to capture
changes:
[0136] 1. Finds changes in the redo log.
[0137] 2. Performs prefiltering of the changes in the redo log. During this step, a
capture process evaluates rules in its rule set at the object level and schema level to place
changes found in the redo log into two categories: changes that should be converted into
LCRs and changes that should not be converted into LCRs.
[0138] Prefiltering is a safe optimization done with incomplete information. This step
identifies relevant changes to be processed subsequently, such that:
[0139] A change is converted into an LCR if one or more rules may evaluate to
TRUE after conversion. ,
[0140] A change is not converted into an LCR if the capture process can ensure that
no rules would evaluate to TRUE after conversion.
[0141] 3. Converts changes that may cause one or more rules to evaluate to TRUE
into LCRs based on prefiltering.
[0142] 4. Performs LCR filtering. During this step, a capture process evaluates rules
regarding information in each LCR to separate the LCRs into two categories: LCRs that
should be enqueued and LCRs that should be discarded.
[0143] 5. Discards the LCRs that should not be enqueued based on the rules.
[0144] 6. Enqueues the remaining captured LCRs into the queue associated with the
capture process.
[0145] For example, suppose the following rule is defined for a capture process:
Capture changes to the hr. employees table where the department-id is 50. No other rules
are defined for the capture process, and the parallelism parameter for the capture process
is set to 1.
[0146] Given this rule, suppose an UPDATE statement on the hr. employees table
changes 50 rows in the table. The capture process performs the following series of actions
for each row change:
[0147] 1. Finds the next change resulting from the UPDATE statement in the redo
log.
[0148] 2. Determines that the change resulted from an UPDATE statement to the hr.
employees table and must be captured. If the change was made to a different table, then
the capture process ignores the change.
[0149] 3. Captures the change and converts it into an LCR.

26

WO 2004/013725 PCT/US2003/023747

[0150] 4. TFilters the LCR to determine whether it involves a row where the
department id is 50 .

[0151] 5. Either enqueues the LCR into the queue associated with the capture
process if it involves a row where the department-id is 50, or discards the LCR if it

involves a row where the department-id is not 50 or is missing.

EVENT STAGING AND PROPAGATION OVERVIEW
[0152] Information sharing system 100 uses queues of type SYS.AnyData to stage
events. There are two types of events that can be staged in a queue: logical change
records (LCRs) and user messages. LCRs are objects that contain information about a
change to a database object, while user messages are custom messages created by users or
applications. Both types of events are of type SYS.AnyData and can be used for
information sharing within a single database or between databases.
[0153] Staged events can be consumed or propagated, or both. These events can be
consumed by an apply process or by a user application that explicitly dequeues them.
Even after an event is consumed, it may remain in the queue if users have also configured
information sharing system 100 to propagate the event to one or more other queues or if
message retention is specified. These other queues may reside in the same database or in
different databases. In either case, the queue from which the events are propagated is
called the source queue, and the queue that receives the events is called the destination
queue. There can be a one-to-many, many-to-one, or many-to-many relationship between
source and destination queues. Figure 4 shows propagation from a source queue to a
destination queue.
[0154] According to one embodiment, the ordering of information items is
maintained during the propagation of the data items. Maintaining the order is particularly
useful when the order of the items has functional ramifications. For example, if the items
being propagated are changes made to a database system, it is important to maintain the
order so that propagated changes are made in the target system after the propagated
changes on which they depend.
[0155] Users can create, alter, and drop a propagation, and users can define
propagation rules that control which events are propagated. The user who owns the source
queue is the user who propagates events. This user must have the necessary privileges to

propagate events. These privileges include the following:

27

WO 2004/013725 PCT/US2003/023747

[0156]

[0157]

Execute privilege on the rule set used by the propagation
Execute privilege on all transformation functions used in the rule set
Enqueue privilege on the destination queue if the destination queue is in the same

database

CAPTURED AND USER-ENQUEUED EVENTS

According to one embodiment, events can be enqueued in two ways:
A capture process enqueues captured éhanges in the form of events containing
LCRs. An event containing an LCR that was originally captured and enqueued by
a capture process is called a captured event.
A user application enqueues user messages of type SYS . AnyData. These user
messages can contain LCRs or any other type of message. Any user message that
was explicitly enqueued by a user or an application is called a user-enqueued
event. Events that were enqueued by a user procedure called from an apply
process are also user-enqueued events.

Thus, each captured event contains an LCR, but a user-enqueued event may or

may not contain an LCR. Propagating a captured event or a user-enqueued event

enqueues the event into the destination queue.

[0158]

[0159]

According to one embodiment, events can be dequeued in two ways:
An apply process dequeues either captured or user-enqueued events. If the event
contains an LCR, then the apply process can either apply it directly or call a user-
specified procedure for processing. If the event does not contain an LCR, then the
apply process can invoke a user-specified procedure called a message handler to
process it.
A user application explicitly dequeues user-enqueued events and processes them.
Captured events cannot be dequeued by a user application; they must be dequeued
by an apply process. However, if a user procedure called by an apply process
explicitly enqueues an event, then the event is a user-enqueued event and can be
explicitly dequeued, even if the event was originally a captured event.

The dequeued events may have originated at the same database where they are

dequeued, or they may have originated at a different database.

28

WO 2004/013725 PCT/US2003/023747

EVENT PROPAGATION BETWEEN QUEUES
[0160] Users can use information sharing system 100 to configure event propagation
between two queues, which may reside in different databases. Information sharing system
100 uses job queues to propagate events.
[0161] According to one embodiment, a propagation is between a source queue and a
destination queue. Although propagation is between two queues, a single queue may
participate in many propagations. That is, a single source queue may propagate events to
multiple destination queues, and a single destination queue may receive events from
multiple source queues. According to one embodiment, only one propagation is allowed
between a particular source queue and a particular destination queue. Also, a single queue
may be a destination queue for some propagations and a éource queue for other
propagations.
[0162] A propagation may propagate all of the events in a source queue to the
destination queue, or a propagation may propagate only a subset of the events. Also, a
single propagation can propagate both captured and user-enqueued events. Users can use
rules to control which events in the source queue are propagated to the destination queue.
[0163] Depending on how users set up the information sharing system 100
environment, changes could be sent back to the site where they originated. Users need to
ensure that the environment is configured to avoid cycling the change in an endless loop.

Users can use tags to avoid such a change cycling loop.

PROPAGATION RULES
[0164] A propagation propagates events based on rules that users define. For events,
each rule specifies the database objects for which the propagation propagates changes and
the types of changes to propagate. Users can specify propagation rules for events at the
following levels:

e A table rule propagates either DML or DDL changes to a particular table.

e A schema rule propagates either DML or DDL changes to the database objects in

a particular schema.

e A global rule propagates either all DML or all DDL changes in the source queue.
[0165] For non-LCR events and for LCR events with special needs, users can create
their own rules to control propagation.

[0166] A queue subscriber that specifies a condition causes the system to generate a
rule. The rule sets for all subscribers to a queue are combined into a single system-

generated rule set to make subscription more efficient.

29

WO 2004/013725 PCT/US2003/023747

APPLY PROCESS OVERVIEW
[0167] According to one embodiment, an apply process is a background process that
dequeues logical change records (LCRs) and user messages from a specific queue and
either applies each one directly or passes it as a parameter to a user-defined procedure.
The LCRs dequeued by an apply process contain data manipulation language (DML)
changes or data definition langunage (DDL) changes that an apply process can apply to
database objects in a destination database. A user-defined message dequeued by an apply
process is of type SYS.AnyData and can contain any user message, including a user-
created LCR.
[0168] Events applied by an apply process are applied by an apply user. The apply
user is the user who applies all DML statements and DDL statements and who runs user-

defined apply handlers.

APPLY RULES
[0169] An apply process applies changes based on rules that users define. Each rule
specifies the database objects to which an apply process applies changes and the types of
changes to apply. Users can specify apply rules at the following levels:
e A table rule applies either DML or DDL changes to a particular table. Subset rules
are table rules that include a subset of the changes to a particular table.
e A schema rule applies either DML or DDL changes to the database objects in a
particular schema.
e A global rule applies either all DML or all DDL changes in the queue associated
with an apply process.
[0170] For non-LCR events and for LCR events with special needs, users can create

their own rules to control apply process behavior.

EVENT PROCESSING WITH AN APPLY PROCESS
[0171] An apply process is a flexible mechanism for processing the events in a queue.
Users have options to consider when users configure one or more apply processes for
your environment. This section discusses the types of events that an apply process can
apply and the ways that it can apply them.
[0172] According to one embodiment, a single apply process can apply either

captured events or user-enqueued events, but not both. If a queue at a destination database

30

WO 2004/013725 PCT/US2003/023747

contains both captured and user-enqueued events, then the destination database must have
at least two apply processes to process the events.

[0173] According to one embodiment, when users create an apply process, users use
an apply captured parameter to specify whether the apply process applies captured or
user-enqueued events.

[0174] The database where an event originated is important to an apply process for
captured events but not for user-enqueued events. For a captured event, the source
database is the database where the change was generated in the redo log. According to
one embodiment, for a user-enqueuned event, an apply process ignores information about
the database where the event originated, even if the event is a user-enqueued LCR. A
single apply process can apply user-enqueued events that originated at different

databases.

EVENT PROCESSING OPTIONS
[0175] Options for event processing depend on the kind of event received by an apply
process. Figure 8 shows the event processing options for an apply process.
[0176] Captured LCRs from multiple databases may be sent to a single destination
queue. If a single queue contains captured LCRs from multiple databases, then one or
more apply processes may be used to retrieve these LCRs. When multiple apply processes
are used, each of these apply processes may be configured to receive captured LCRs from
exactly one source database using rules.
[0177] If there are multiple capture processes running on a source database, and
LCRs from more than one of these capture processes are applied at a destination database,
then one or more apply processes may be used to apply the changes.
[0178] Users can configure an apply process to process a captured or user-enqueued
event that contains an LCR in the following ways: directly apply the event or pass the
event as a parameter to a user procedure for processing. The following sections explain
these options.
[0179] Apply the LCR Event Directly: If users use this option, then an apply process
applies the event without running a user procedure. The apply process either successfully
applies the change in the LCR to a database object or, if a conflict or an apply error is
encountered, tries to resolve the error with a conflict handler or a user-specified procedure
called an error handler.
[0180] If a conflict handler can resolve the conflict, then it either applies the LCR or

it discards the change in the LCR. If the error handler can resolve the etror, then it should

31

WO 2004/013725 PCT/US2003/023747

apply the LCR, if appropriate. An error handler may resolve an error by modifying the
LCR before applying it. If the error handler cannot resolve the error, then the apply
process places the transaction, and all LCRs associated with the transaction, into an
exception queue.

[0181] Call a User Procedure to Process the LCR Event: If users use this option, then
an apply process passes the event as a parameter to a user procedure for processing. The
user procedure can then process the event in a customized way.

[0182] A user procedure that processes row LCRs resulting from DML statements is
called a DML handler, while a user procedure that processes DDL LCRs resulting from
DDL statements is called a DDL handler. An apply process can have many DML
handlers and DDL handlers.

[0183] For each table associated with an apply process, users can set a separate DML
handler to process each of the following types of operations in row LCRs:

[0184] INSERT UPDATE DELETE LOB UPDATE

[0185] For example, the hr. employees table may have one DML handler to process
INSERT operations and a different DML handler to process UPDATE operations.

[0186] A user procedure can be used for any customized processing of LCRs. For
example, if users want each insert into a particular table at the source database to result in
inserts into multiple tables at the destination database, then users can create a user
procedure that processes INSERT operations on the table to accomplish this. Or, if users
want to log DDL changes before applying them, then users can create a user procedure

that processes DDL operations to accomplish this.

NON-LCR USER MESSAGE PROCESSING
[0187] A user-enqueued event that does not contain an LCR is processed by the
message handler specified for an apply process, if the user-enqueued event satisfies at
least one rule in the rule set for the apply process. A message handler is a user-defined
procedure that can process non-LCR user messages in a customized way for your
environment.
[0188] The message handler offers advantages in any environment that has
applications that need to update one or more remote databases or perform some other
remote action. These applications can enqueue user messages into a queue at the local
database, and information sharing system 100 can propagate each user message to the
appropriate queues at destination databases. If there are multiple destinations, then

information sharing system 100 provides the infrastructure for automatic propagation and

32

WO 2004/013725 PCT/US2003/023747

processing of these messages at these destinations. If there is only one destination, then
information sharing system 100 still provides a layer between the application at the
source database and the application at the destination database, so that, if the application
at the remote database becomes unavailable, then the application at the source database
can continue to function normally.

[0189] For example, a message handler may format a user message into an electronic
mail message. In this case, the user message may contain the attributes users would
expect in an electronic mail message, such as from, to, subject, text-of-message, and so
on. A message handler could convert these user messages into electronic mail messages

and send them out through an electronic mail gateway.

APPLY PROCESS COMPONENTS
[0190] According to an embodiment of the invention, an apply process includes a
reader server, a coordinator process, and one or more apply servers.
[0191] The reader server dequeues events. The reader server is a parallel execution
server that computes dependencies between LCRs and assembles events into transactions.
The reader server then returns the assembled transactions to the coordinator, which
assigns them to idle apply servers.
[0192] The coordinator process gets transactions from the reader and passes them to
apply servers. The apply servers apply LCRs to database objects as DML or DDL
statements or that pass the LCRs to their appropriate handlers. For non-LCR messages,
the apply servers pass the events to the message handler. Each apply server is a parallel
execution server. If an apply server encounters an error, it then tries to resolve the error
with a user-specified error handler. If an apply server cannot resolve an error, then it rolls
back the transaction and places the entire transaction, including all of its events, in an
exception queue.
[0193] When an apply server commits a completed transaction, this transaction has
been applied. When an apply server places a transaction in an exception queue and
commits, this transaction also has been applied.
[0194] If a transaction being handled by an apply server has a dependency with
another transaction that is not known to have been applied, then the apply server contacts
the coordinator and waits for instructions. The coordinator monitors all of the apply
servers to ensure that transactions are applied and committed in the correct order.
[0195] For example, consider these two transactions:
[0196] 1. A row is inserted into a table.

33

WO 2004/013725 PCT/US2003/023747

[0197] 2. The same row is updated to change certain column values.

[0198] In this case, transaction 2 is dependent on transaction 1, because the row
cannot be updated until after it is inserted into the table. Suppose these transactions are
captured from the redo log at a source database, propagated to a destination database, and
applied at the destination database. Apply server A handles the insert transaction, and
apply server B handles the update transaction.

[0199] If apply server B is ready to apply the update transaction before apply server A
has applied the insert transaction, then apply server B waits for instructions from the
coordinator. After apply server A has applied the insert transaction, the coordinator

process instructs apply server B to apply the update transaction.

THE COMPONENTS OF A RULE

[0200] According to one embodiment, a rule is a database object that enables a client
to perform an action when an event occurs and a condition is satisfied. Rules are
evaluated by a rules engine which, according to one embodiment, is built into a database
server that manages information sharing system 100. Both user-created applications and
information sharing system 100, can be clients of the rules engine. According to one
embodiment, a rule consists of the following components:

e Rule Condition

¢ Rule Evaluation Context (optional)

e Rule Action Context (optional)
[0201] Each rule is specified as a condition that is similar to the condition in the
WHERE clause of a SQL query. Users can group related rules together into rule sets. A
single rule can be in one rule set, multiple rule sets, or no rule sets.
[0202] A rule condition combines one or more expressions and operators and returns
a Boolean value, which is a value of TRUE, FALSE, or NULL (unknown). An expression
is a combination of one or more values and operators that evaluate to a value. A value can
be data in a table, data in variables, or data returned by a SQL function or a PL/SQL
function. For example, the following condition consists of two expressions (department-id
and 30) and an operator (-):

department id = 30

[0203] This logical condition evaluates to TRUE for a given row when the
department-id column is 3 0. Here, the value is data in the department id column of a
table.

34

WO 2004/013725 PCT/US2003/023747

[0204] A single rule condition may include more than one condition combined with
the AND, OR, and NOT conditional operators to form compound conditions. For
example, consider the following compound condition:

department id =30 OR job_title = Programmer’
[0205] This rule condition contains two conditions joined by the OR conditional
operator. If either condition evaluates to TRUE, then the rule condition evaluates to
TRUE. If the conditional operator were AND instead of OR, then both conditions would
have to evaluate to TRUE for the entire rule condition to evaluate to TRUE.
[0206] Variables in Rule Conditions
[0207] Rule conditions may contain variables. According to one embodiment,
variables in rule conditions are preceded with a colon (:). The following is an example of
a variable used in a rule condition:

x=255
[0208] Variables enable users to refer to data that is not stored in a table. A variable
may also improve performance by replacing a commonly occurring expression.
Performance may improve because, instead of evaluating the same expression multiple
times, the variable is evaluated once.
[0209] A rule condition may also contain an evaluation of a call to a subprogram.
These conditions are evaluated in the same way as other conditions. That is, they evaluate
to a value of TRUE, FALSE, or unknown. The following is an example of a condition
that contains a call to a simple function named is _Manager that determines whether an
employee is a manager:

is_manager(employee id) ="Y"
[0210] Here, the value of employee_id is determined by data in a table where
employee_id is a column.
[0211] Users can use user-defined types for variables. Therefore, variables can have
attributes. When a variable has attributes, each attribute contains partial data for variable.
In rule conditions, users specify attributes using dot notation. For example, the following
condition evaluates to TRUE if the value of attribute z in variable y is 9:

y. z =9

SIMPLE RULE CONDITIONS

[0212] A simple rule condition is a condition that has either of the following forms:
e simple-rule-expression operator constant

e constant operator simple-rule-expression

35

WO 2004/013725 PCT/US2003/023747

[0213] The Components of a Rule
[0214] In a simple rule condition, a simple rule expression is one of the following:
e Table column
e Variable
e Variable attribute
e Method result where the method takes no arguments and the method result can be
returned by the variable method function, so that the expression is either a
numerical or character type
[0215] For table columns, variables, and variable attributes, all numeric (NUMBER,
FLOAT, DOUBLE, INTEGER) and character (CHAR, VARCHAR?) types are
supported. Use of other types of expressions results in non-simple rule conditions.
[0216] In a simple rule condition, an operator is one of the following:
= <=, or >=
[0217] Use of other operators results in non-simple rule conditions. A constant is a
fixed value. A constant can be:
[0218] A number, such as 12 or 5. 4 A character, such as x or $
[0219] A character string, such as "this is a string" Therefore, the following
conditions are simple rule conditions: tabl.col =5
e :vl>'aaa
o :v2.21<10.01
e :v3Im()=10

RULE SET EVALUATION
[0220] The rules engine evaluates rule sets based on events. An event is an
occurrence that is defined by the client of the rules engine. The client initiates evaluation
of an event by calling the DBMS-RULE. EVALUATE procedure. The information
specified by the client when it calls the DBMS-RULE. EVALUATE procedure includes
the following:
[0221] The name of the rule set that contains the rules to use to evaluate the event The
evaluation context to use for evaluation. Only rules that use the specified evaluation
context are evaluated.
[0222] Table values and variable values: The table values contain rowids that refer to
the data in table rows, and the variable values contain the data for explicit variables.
Values specified for implicit variables override the values that might be obtained using a

variable value evaluation function. If a specified variable has attributes, then the client

36

WO 2004/013725 PCT/US2003/023747

can send a value for the entire variable, or the client can send values for any number of
the variable's attributes. However, clients cannot specify attribute values if the value of
the entire variable is specified.

[0223] An optional event context: An event context is a variable-length array of type
SYS. RE$NV_LIST that contains name-value pairs that contain information about the
event. This optional information is not directly used or interpreted by the rules engine.
Instead, it is passed to client callbacks, such as an evaluation function, a variable value
evaluation function (for implicit variables), and a variable method function.

[0224] The client can also send other information about the event and about how to
evaluate the event using the DBMS-RULE. EVALUATE procedure. For example, the
caller may specify if evaluation must stop as soon as the first TRUE rule or the first
MAYBE rule (if there are no TRUE rules) is found.

[0225] The rules engine uses the rules in the specified rule set to evaluate the event.
Then, the rules engine returns the results to the client. The rules engine returns rules using
the two OUT parameters in the EVALUATE procedure: true-rules and maybe_rules. That
is, the true rules parameter returns rules that evaluate to TRUE, and, optionally, the
maybe_rules parameter returns rules that may evaluate to TRUE given more information.
[0226] Figure 14 shows the rule set evaluation process:

[0227] 1. A client-defined event occurs.

[0228] 2. The client sends the event to the rules engine by running the
DBMS_RULE.EVALUATE procedure.

[0229] 3. The rules engine evaluates the event based on rules in the rule set and the
relevant evaluation context. The client specifies both the rule set and the evaluation
context in the call to the DBMS_RULE.EVALUATE procedure. Only rules that are in the
specified rule set and use the specified evaluation context are used for evaluation.

[0230] 4. The rules engine obtains the results of the evaluation. Each rule evaluates
to either TRUE, FALSE, or NULL (unknown).

[0231] 5. The rules engine returns rules that evaluated to TRUE to the client. Each
returned rule is returned with its entire action context, which may contain information or
may be NULL.

[0232] 6. The client performs actions based on the results returned by the rules

engine. The rules engine does not perform actions based rule evaluations.

37

WO 2004/013725 PCT/US2003/023747

OVERVIEW OF HOW RULES ARE USED IN INFORMATION
SHARING SYSTEM 100

[0233] In information sharing system 100, each of the following mechanisms is a
client of a rules engine, when the mechanism is associated with a rule set: a capture
process, a propagation, and an apply process.
[0234] In one embodiment, each of these mechanisms can be associated with at most
one rule set. However, a single rule set can be used by multiple capture processes,
propagations, and apply processes within the same database. Figure 15 illustrates how
multiple clients of a rules engine can use one rule set.
[0235] Specifically, users use rule sets in Information sharing system 100 to do the
following:
[0236] (1) Specify the changes a capture process captures from the redo log. That is,
if a change found in the redo log causes any rule in the rule set associated with a capture
process to evaluate to TRUE, then the change is captured by the capture process.
[0237] (2) Specify the events a propagation propagates from one queue to another.
That is, if an event in a queue causes any rule in the rule set associated with a propagation
to evaluate to TRUE, then the event is propagated by the propagation.
[0238] (3) Specify the events an apply process retrieves from a queue. That is, if an
event in a queue causes any rule in the rule set associated with an apply process to
evaluate to TRUE, then the event is retrieved and processed by the apply process.
[0239] In the case of a propagation or an apply process, the events evaluated against
the rule sets can be captured events or user-enqueued events.
[0240] If there are conflicting rules associated with a mechanism, then the mechanism
performs the task if either rule evaluates to TRUE. For example, if a rule set associated
with a capture process contains one rule that instructs the capture process to capture DML
changes to the hr. employees table, but another rule in the rule set instructs the capture
process not to capture DML changes to the hr.employees table, then the capture process
captures DML changes to the hr. employees table.

SYSTEM-CREATED RULES
[0241] Information sharing system 100 performs three tasks based on rules: Capturing
changes with a capture process, propagating changes with a propagation, and applying
changes with an apply process. Both user-created and system-created rules can be used to

govern how each of these tasks is performed. Further, for any one of these tasks may be

38

WO 2004/013725

PCT/US2003/023747

governed by a single rule set that includes both system-created rules and user-created

rules.
[0242]

A system-created rule specifies one of the following levels of granularity for a

task: table, schema, or global. This section describes each of these levels. Users can

specify more than one level for a particular task. For example, users can instruct a single

apply process to perform table-level apply for specific tables in the oe schema and

schema-level apply for the entire hr schema.

[0243]

Table 6-1 shows what each level of rule means for each Information sharing

system 100 task.

Types of Tasks and Rule Levels

Task Table Rule Schema Rule Global Rule
Capture Capture the changes in the Capture the changes in the Capture the changes to
all
redo log for the specified redo log for the database the database objects in
the
table, convert them into objects in the specified database, convert them
into
logical change records schema, convert them into LCRs, and enqueue
them.
(LCRs), and enqueue them. LCRs, and enqueue them.
Propagate Propagate the LCRs relating Propagate the LCRs related Propagate all of the
changes
to the specified table in the to the database objects in thein the source queue to
the
source queue to the specified schema in the destination queue.
destination queue. source queue to the
destination queue.
Apply Apply all or a subset of the Apply the LCRs in the Apply all of the LCRs in
the ’
LCRs in the queue relating queue relating to the queue.
to the specified table. database objects in the
specified schema.
RULE-BASED TRANSFORMATIONS AND A CAPTURE PROCESS
[0244] If a capture process uses a rule set, then both of the following conditions must

be met in order for a transformation to be performed during capture:

[0245] A rule evaluates to TRUE for a particular change found in the redo log.

[0246] An action context containing a name-value pair with a particular, system-
recognized name

[0247] A TRANSFORM FUNCTION is returned to the capture process when the rule

is evaluated.

[0248]

Given these conditions, the capture process completes the following steps:

1. Formats the change in the redo log into an LCR
2. Converts the LCR into a SYS.AnyData object

39

WO 2004/013725 PCT/US2003/023747
|
3. Runs the PL/SQL function in the name-value pair to transform the
SYS.AnyData object
4. Enqueues the transformed SYS.AnyData object into the queue associated

with the capture process
[0249] Figure 16 shows a transformation during capture. For example, if an event is
transformed during capture, then the transformed event is enqueued into the source queue.
Therefore, if such a captured event is propagated from the dbsl.net database to the
dbs2.net and the dbs3.net databases, then the queues at dbs2 .net and dbs3.net will contain
the transformed event after propagation.
[0250] The advantages of performing transformations during capture are the
following:
[0251] Security can be improved if the transformation removes or changes private
information, because this private information does not appear in the source queue and is
not propagated to any destination queue.
[0252] Space consumption may be reduced, depending on the type of transformation
performed. For example, a transformation that reduces the amount of data results in less
data to enqueue, propagate, and apply.
[0253] Transformation overhead is reduced when there are multiple destinations for a
transformed event, because the transformation is performed only once at the source, not at
multiple destinations.
[0254] The possible disadvantages of performing transformations during capture are
the following:

e All sites receive the transformed event.

e The transformation overhead occurs in the source database.

e Rule-Based Transformation Errors During Capture
[0255] If an error occurs when the transformation function is run during capture, then
the change is not captured, the error is returned to the capture process, and the capture
process is disabled. Before the capture process can be enabled, users must either change

or remove the rule-based transformation to avoid the error.

RULE-BASED TRANSFORMATIONS AND PROPAGATION
[0256] If a propagation uses a rule set, then both of the following conditions must be
met in order for a transformation to be performed during propagation:
e A rule evaluates to TRUE for an event in the source queue for the propagation.

This event can be a captured or a user-enqueued event.

40

WO 2004/013725 PCT/US2003/023747

e An action context containing a name-value pair with a particular, system-
recognized name
e A TRANSFORM-FUNCTION is returned to the propagation when the rule is
evaluated.

[0257] Given these conditions, the propagation completes the following steps:

1. Starts dequeuing the event from the source queue

2. Runs the PL/SQL function in the name-value pair to transform the event

3. Completes dequeuing the transformed event

4, Propagates the transformed event to the destination queue
[0258] Figure 17 shows a transformation during propagation. In several of the
examples given hereafter, the information being transformed is in the form of an LCR.
However, as explained above, LCRs are only one type of information that can be shared
using system 100. Thus, the various techniques described herein, including rule-based
transformations, apply equally regardless of the form of the information that is being
shared.
[0259] Referring again to FIG. 17, suppose users use a rule-based transformation for a
propagation from the dbs 1.net database to the dbs2 .net database, but users do not use a
rule-based transformation for a propagation from the dbs1.net database to the dbs3 .net
database. In this case, an event in the queue at dbsl.net can be transformed before it is
propagated to dbs2.net, but the same event can remain in its original form when it is
propagated to dbs3.net. In this case, after propagation, the queue at dbs2.net contains the
transformed event, and the queue at dbs3.net contains the original event.
[0260] The advantages of performing transformations during propagation are the
following: '
[0261] Security can be improved if the transformation removes or changes private
information before events are propagated.
[0262] Some destination queues can receive a transformed event, while other
destination queues can receive the original event.
[0263] Different destinations can receive different variations of the same event. The
possible disadvantages of performing transformations during propagation are the
following:
[0264] Once an event is transformed, any database to which it is propagated after the
first propagation receives the transformed event. For example, if dbs2.net propagates the

event to dbs4. net, then dbs4.net receives the transformed event.

41

WO 2004/013725 PCT/US2003/023747

[0265] When the first propagation in a directed network performs the transformation,
the transformation overhead occurs on the source database.

[0266] The same transformation may be done multiple times when multiple
destination databases need the same transformation.

[0267] If an error occurs when the transformation function is run during propagation,
then the event that caused the error is not dequeued, the event is not propagated, and the
error is returned to the propagation. Before the event can be propagated, users must

change or remove the rule-based transformation to avoid the error.

RULE-BASED TRANSFORMATIONS AND AN APPLY PROCESS
[0268] If an apply process uses a rule set, then both of the following conditions must
be met in order for a transformation to be performed during apply:
e A rule evaluates to TRUE for an event in the queue associated with the apply
process. This event can be a captured or a user-enqueued event.
e An action context containing a name-value pair with a particular, system-
recognized name
e A TRANSFORM_FUNCTION is returned to the apply process when the rule is
evaluated.

[0269] Given these conditions, the apply process completes the following steps:

1. Starts to dequeue the event from the queue

2. Runs the PL/SQL function in the name-value ‘pair to transform the event
during dequeue

3. Completes dequeuing the transformed event

4. Applies the transformed event

[0270] For example, suppose an event is propagated from the dbsl.net database to the
dbs2.net database in its original form. When the apply process dequeues the event from a
queue at dbs2. net, the event is transformed.

[0271] The possible advantages of performing transformations during apply are the
following:

[0272] Any database to which the event is propagated after the first propagation can
receive the event in its original form. For example, if dbs2.net propagates the event to
dbs4. net, then dbs4.net can receive the original event.

[0273] The transformation overhead does not occur on the source database when the

source and destination database are different.

42

WO 2004/013725 PCT/US2003/023747

[0274] The possible disadvantages of performing transformations during apply are the
following:

[0275] Security may be a concern if the events contain private information, because
all databases to which the events are propagated receive the original events.

[0276] The same transformation may be done multiple times when multiple

destination databases need the same transformation.

RULE-BASED TRANSFORMATION ERRORS DURING APPLY PROCESS
DEQUEUE
[0277] If an error occurs when the transformation function is run during apply process
dequeue, then the event that caused the error is not dequeued, the transaction containing
the event is not applied, the error is returned to the apply process, and the apply process is
disabled. Before the apply process can be enabled, users must change or remove the rule-

based transformation to avoid the error.

INTEGRATION WITH GATEWAYS
[0278] According to one embodiment, an apply process may be configured to "apply"
a set of LCRs to a database by (1) reading the LCRs to identify the changes reflected in
the LCRs, (2) constructing a database command (e.g. a SQL command) that will cause
the desired changes, and (3) executing the database command against the database.
[0279] According to one embodiment, the apply process may be configured to
construct a remote SQL statement for a database other than the database that the
originally made the change reflected in the LCR. When executed within a remote
database, the SQL statement will cause the desired changes to be made at the remote
database.
[0280] Once such a remote SQL statement is constructed, the SQL statement may be
sent to the remote database through a gateway. The gateway may be configured, for
example, to transform the query as necessary when the remote database is a different type
of database than the source database. For example, a set of LCRs may be created in
response to changes made in an Oracle database. Based on the LCRs, an apply process
may construct a remote SQL query, and send the SQL query to a gateway. The gateway
may then transform the SQL as necessary prior to forwarding the query to a non-Oracle
data store. The non-Oracle data store may then execute the query to effect changes,
asynchronously and remotely, in response to the changes, made to the Oracle database,

upon which the LCRs were originally based.

43

WO 2004/013725 PCT/US2003/023747

INTEGRATION WITH FLASHBACK
[0281] Various database languages, such as SQL (Structured Query Language),
support special-purpose constructs referred to herein as “cursors”. Prior to retrieving the
results of a specific query statement, the DBMS may perform a significant amount of
preliminary work for the statement, such as parsing, semantic analysis, and query plan
generation. A cursor stores the results of much of this preliminary work. Consequently,
when a query statement arrives, the DBMS first attempts to match the statement to
statements for which cursors have already been created. If a match is found, the cursor is
shared by the query statements, and the overhead work is avoided.
[0282] A “flashback cursor” is a particular type of cursor that is used to access past
data. A flashback cursor is created in response to receipt of a "flashback query". Unlike
conventional queries, flashback queries specify a flashback time, and return data as it
existed at the specified flashback time. One technique for handling flashback queries is
described in Patent Application Serial No. 09/676,305, filed September 29, 2000, entitled
SYSTEM AND METHOD FOR PROVIDING FINE-GRAINED TEMPORAL
DATABASE ACCESS, by JONATHAN D. KLEIN, et al, the contents of which are
incorporated herein by this reference.
[0283] According to one embodiment, flashback queries and cursors can be used in
conjunction with information sharing system 100 to make decisions about how to handle
a change in a manner that is both (1) asynchronous to the change, and (2) takes into
account the state of the system at the time of the change.
[0284] For example, assume that a user makes a change to a source database at time
T10. The change is reflected in the redo log at the source database. Eventually, a capture
process reads the log and generates an LCR that corresponds to the change. The LCR is
then stored in a staging area.
[0285] According to one embodiment, the time at which the change was made
permanent (committed) at the source database is stored in the LCR. Eventually, an apply
process reads the LCR and passes the LCR to an update handler. By the time the update
handler receives the LCR, the state of the system may have significantly changed relative
to the state of the system at time T10. The update handler may read the change time T10
from the LCR and execute a flashback query to see the state in which the database system
existed at the time the change was originally made (at time T10). The update handler
may then determine what actions to take in response to the change based on the condition
of the database system at T10.

44

WO 2004/013725 PCT/US2003/023747

[0286] Flashback queries are generally able to specify the same types of operations as
standard queries. Thus, the flashback queries used by the update handler to see the
previous state of the system may involve performing complex operations using values
that existed at that previous time. For example, the flashback query could perform
complex joins and comparisons, all of which would be performed on the data values that
existed at the previous point in time, in order to determine what actions to take in

response to an LCR that identifies a change made at that previous point in time.

TAGS AND CYCLE AVOIDANCE
[0287] As mentioned above, the various components of information sharing system
100 may be configured such that a particular event main initiate a complex chain of
activities. Because each activity in a chain (e.g. the propagation of the event from one
staging area to another) may itself initiate another chain of activities, it is possible for
cycles to form. For example, assume that the components to information sharing system
100 are configured to propagate changes made to a first database to a second database,
and to propagate changes made to the second database to the first database. In this
scenario, the event associated with a change in the first database would be propagated to
and applied at the second database. However, the application of the event at the second
database would constitute a change to the second database. The event for that change at
the second database would (without a mechanism for cycle avoidance) be propagated
back to and applied at the first database. The application of the event at the second
database would constitute a "change" to the first database, which would cause the entire
process to repeat itself. According to one embodiment, the various components of
information sharing system 100 set tags and inspect tags in a manner that avoids

perpetuating such cycles.

INTRODUCTION TO TAGS
[0288] According to one embodiment, every redo entry in the redo log has a tag
associated with it. The datatype of the tag is RAW. By default, when a user or application
generates redo entries, the value of the tag is NULL for each redo entry, and a NULL tag
consumes no space in the redo entry.
[0289] Mechanisms are provided to allow users to configure to components of
information sharing system 100 to customize how the components (1) set tag values, (2)
inspect tag values, and (3) interpret and use the tag values, at various stages in an

information sharing operation. For example, a tag can be used to determine whether an

45

WO 2004/013725 PCT/US2003/023747

LCR contains a change that originated in the local database or at a different database, so
that users can avoid change cycling (sending an LCR back to the database where it
originated). Tags may be used for other LCR tracking purposes as well. Users can also
use tags to specify the set of destination databases for each LCR.
[0290] According to one embodiment, a variety of mechanisms are provided to allow
users to control the value of the tags generated in the redo log. These mechanisms
include, but are not limited to procedures referred to hereafter as SET_TAG,
CREATE_APPLY, and ALTER_APPLY.
[0291] The SET TAG procedure is used to specify the value of the redo tags
generated in the current session. When a database change is made in the session, the tag
becomies part of the redo entry that records the change. Different sessions can have the
same tag setting or different tag settings.
[0292] The CREATE_APPLY and ALTER_APPLY procedures are used to control
the value of the redo tags generated when an apply process runs. All sessions coordinated
by the apply process coordinator use this tag setting. By default, redo entries generated by
an apply process have a tag value that is the hexadecimal equivalent of '00' (double zero).
[0293] These tags become part of the LCRs captured by a capture process retrieving
changes from the redo log. Based on the rules in the rule set for the capture process, the
tag value in the redo entry for a change may determine whether or not the change is
captured.
[0294] Similarly, once a tag is part of an LCR, the value of the tag may determine
whether a propagation propagates the LCR and whether an apply process applies the
LCR. The behavior of a transformation, DML handler, or error handler can also depend
on the value of the tag. In addition, users can set the tag value for an existing LCR using
the SET TAG member procedure for the LCR. For example, users may set a tag in an
LCR during a transformation.
[0295] According to one embodiment, users create rules, by default each rule contains
a condition that evaluates to TRUE only if the tag is NULL. In DML rules, the condition
is the following:

:dml.is mull tag()="Y"
[0296] In DDL rules, the condition is the following:

:ddl.is null_tagO ="Y"
[0297] Consider a rule set with a single rule and assume the rule contains such a
condition. In this case, capture processes, propagations, and apply processes behave in the

following way:

46

WO 2004/013725 PCT/US2003/023747

[0298]

A capture process captures a change only if the tag in the redo log for the change
is NULL and the rest of the rule conditions evaluate to TRUE for the change.

A propagation propagates an event containing an LCR only if the tag in the LCR
is NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

An apply process applies an event containing an LCR only if the tag in the LCR is
NULL and the rest of the rule conditions evaluate to TRUE for the LCR.

Specifically, the following procedures are proVided to create rules that contain

one of these conditions by default:

[0299]

ADD_GLOBAL PROPAGATION RULES
ADD_GLOBAL RULES

ADD-SCHEMA PROPAGATION RULES
ADD_SCHEMA _RULES

ADD_SUBSET RULES
ADD_TABLE_PROPAGATION_RULES
ADD_TABLE RULES

If users do not want the created rules to contain such a condition, then they

may set the include_tagged lcr parameter to true when users run these procedures. This

setting results in no conditions relating to tags in the rules. Therefore, rule evaluation of

the LCR does not depend on the value of the tag.

[0300]

For example, consider a table-level rule that evaluates to TRUE for all DML

changes to the hr.locations table that originated at the dbsl. net source database. Assume

the ADD TABLE RULES procedure is run to generate this rule:
BEGIN

DBMS_STREAMS_ADM.ADD_TABLE_RULES(
Table_name => 'hr.locations',
streams_type => 'capture,
streams_name => 'capture',
queue_name => 'streams_queue',

include_tagged lcr => false, -- Note parameter setting
source_database =» ‘'dbslnet,

include_dml => true,

include_ddl => false);

END;

47

WO 2004/013725 PCT/US2003/023747

[0301] Notice that the include tagged lcr parameter is set to false, which is the
~ default. The ADD-TABLE-RULES procedure generates a rule with a rule condition
similar to the following:
(((:dml.get_object_owner() ="'HR' and :dml.get_object_name() ='LOCATIONS"))
and :dmlis_null tag() ='Y'and :dml.get source database name() = 'DBS1.NET'
)
[0302] If a capture process uses a rule set that contains this rule, then the rule
evaluates to FALSE if the tag for a change in a redo entry is a non-NULL value, such as
'0'or'l". So, if a redo entry contains a row change to the hr.locations table, then the
change is captured only if the tag for the redo entry is NULL.
[0303] However, suppose the include tagged lcr parameter is set to true when
ADD _TABLE_RULES is run:

BEGIN
DBMS_STREAMS_ADM.ADD_TABLE_RULES(
table_name => ‘hr.locations',
streams_type => 'capture',
streams_name => 'capture,
queue_name => streams_queue

include_tagged lcr => true, -- Note parameter setting

source_database => 'dbsl.net,

include_dml => true,

include_ddi => false);
END;

[0304] In this case, the ADD TABLE RULES procedure generates a rule with a rule
condition similar to the following:
(((:dml.get_object_owner() ="HR' and :dml.get_object name() = 'LOCATIONS")
and :dml.get source database name() = 'DBS1.NET')
[0305] Notice that there is no condition relating to the tag. If a capture process uses a
rule set that contains this rule, then the rule evaluates to TRUE if the tag in a redo entry
for a DML change to the hr. locations table is a non-NULL value, such as'0'or'1"'. The
rule also evaluates to TRUE if the tag is NULL. So, if a redo entry contains a DML
change to the hr. locations table, then the change is captured regardless of the value for
the tag.
[0306] If users are using global rules to capture and apply DDL changes for an entire
database, then online backup statements will be captured, propagated, and applied by
default. Typically, database administrators do not want to replicate online backup

statements. Instead, they only want them to run at the database where they are executed

48

WO 2004/013725 PCT/US2003/023747

originally. To avoid replicating online backup statements, users can use one of the
following strategies: |
e Include one or more calls to the SET TAG procedure in users’ online backup
procedures, and set the session tag, to a value that will cause the online backup
statements to be ignored by a capture process.
e Use a DDL handler for an apply process to avoid applying the online backup

statements.

TAGS AND AN APPLY PROCESS
[0307] An apply process generates entries in the redo log of a destination database
when it applies DML or DDL changes. For example, if the apply process applies a change
that updates a row in a table, then that change is recorded in the redo log at the destination
database. Users can control the tags in these redo entries by setting the apply tag
parameter in the CREATE_APPLY or ALTER_APPLY procedure in the
DBMS_APPLY_ADM package. For example, an apply process may generate redo tags
that are equivalent to the hexadecimal value of ' 0 ' (zero) or'1".
[0308] The default tag value generated in the redo log by an apply process is '00'
(double zero). This value is the default tag value for an apply process if users use a
procedure to create an apply process. There is nothing special about this value beyond the
fact that it is a non-NULL value. The fact that it is a non-NULL value is important
because rules created by the certain procedures by default contain a condition that
evaluates to TRUE only if the tag is NULL in a redo entry or LCR. Users can alter the tag
value for an existing apply process using the ALTER _APPLY procedure.
[0309] If a DML handler, DDL handler, or message handler calls the SET TAG
procedure, then any subsequent redo entries generated by the handler will include the tag
specified in the SET_TAG call, even if the tag for the apply process is different. When
the handler exits, any subsequent redo entries generated by the apply process have the tag

specified for the apply process.

AVOID CHANGE CYCLING WITH TAGS
[0310] In an environment that includes more than one database sharing data
bidirectionally, users can use tags to avoid change cycling. Change cycling means
sending a change back to the database where it originated. Typically, change cycling

should be avoided because it can result in each change going through endless loops back

49

WO 2004/013725 PCT/US2003/023747

to the database where it originated. Such loops can result in unintended data in the
database and tax the networking and computer resources of an environment.
[0311] Using tags and appropriate rules for capture processes, propagations, and
apply processes, users can avoid such change cycles. The following sections describe
various environments and how tags and rules can be used to avoid change cycling in these
environments:

e FEach Database Is a Source and Destination Database for Shared Data

e Primary Database Sharing Data with Several Secondary Databases
o Primary Database Sharing Data with Several Extended Secondary Databases

EACH DATABASE IS A SOURCE AND DESTINATION DATABASE
FOR SHARED DATA
[0312] This scenario involves an environment in which each database is a source
database for every other database, and each database is a destination database of every
other database. Each database communicates directly with every other database.
[0313] For example, consider an environment that replicates the database objects and
data in the hr schema between three Oracle databases: multl.net, mult2.net, and mult3.net.
DML and DDL changes made to tables in the hr schema are captured at all three
databases in the environment and propagated to each of the other databases in the
environment, where changes are applied. Figures 18A-18C illustrate an example
environment in which each database is a source database.
[0314] Users can avoid change cycles by configuring such an environment in the
following way: Configure one apply process at each database to generate non-NULL redo
tags for changes from each source database. If users use a procedure to create an apply
process, then the apply process generates non-NULL tags with a value of '00' in the redo
log by default. In this case, no further action is required for the apply process to generate
non-NULL tags.
[0315] If users use the CREATE_APPLY procedure, then do not set the apply tag
parameter. Again, the apply process generates non-NULL tags with a value of ' 00 ' in the
redo log by default, and no further action is required.
[0316] Configure the capture process at each database to capture changes only if the
tag in the redo entry for the change is NULL. Users do this by ensuring that each DML
rule in the rule set used by the capture process has the following condition:
:dml.is is_null tag'Y"

50

WO 2004/013725 PCT/US2003/023747

[0317] Each DDL rule should have the following condition:

:ddLis null_tag()="Y"
[0318] These rule conditions indicate that the capture process captures a change only
if the tag for the change is NULL.
[0319] This configuration prevents change cycling because all of the changes applied
by the apply processes are never recaptured (they were captured originally at the source
databases). Each database sends all of its changes to the hr schema to every other
database. So, in this environment, no changes are lost, and all databases are synchronized.

Figure 19 illustrates how tags can be used in a database in a multiple source environment.

PRIMARY DATABASE SHARING DATA WITH SEVERAL SECONDARY
DATABASES

[0320] This scenario involves a Information sharing system 100 environment in
which one database is the primary database, and this primary database shares data with
several secondary databases. The secondary databases share data only with the primary
database. The secondary databases do not share data directly with each other, but, instead,
share data indirectly with each other through the primary database. This type of
environment is sometimes called a "hub and spoke" environment, with the primary
database being the hub and the secondary databases being the spokes.
[0321] In such an environment, changes are captured, propagated, and applied in the
following way:
[0322] The primary database captures local changes to the shared data and propagates
these changes to all secondary databases, where these changes are applied at each
secondary database locally.
[0323] Each secondary database captures local changes to the shared data and
propagates these changes to the primary database only, where these changes are applied at
the primary database locally.
[0324] The primary database applies changes from each secondary database locally.
Then, these changes are captured at the primary database and propagated to all secondary
databases, except for the one at which the change originated. Each secondary database
applies the changes from the other secondary databases locally, after they have gone
through the primary database. This configuration is an example of apply forwarding,.
[0325] An alternate scenario may use queue forwarding, If this environment used
queue forwarding, then changes from secondary databases that are applied at the primary

database are not captured at the primary database. Instead, these changes are forwarded

51

WO 2004/013725 PCT/US2003/023747

from the queue at the primary database to all secondary databases, except for the one at
which the change originated.

[0326] For example, consider an environment that replicates the database objects and
data in the hr schema between one primary database named psl.net and three secondary
databases named ps2.net, ps3.net, and ps4.net. DML and DDL changes made to tables in
the hr schema are captured at the primary database and at the three secondary databases in
the environment. Then, these changes are propagated and applied as described previously.
The environment uses apply forwarding, not queue forwarding, to share data between the
secondary databases through the primary database. Figure 20 illustrates an example
environment which has one primary database and multiple secondary databases.

[0327] Users can avoid change cycles by configuring the environment in the
following way: Configure each apply process at the primary database ps1.net to generate
non-NULL redo tags that indicate the site from which it is receiving changes. In this
environment, the primary database has at least one apply process for each secondary
database from which it receives changes. For example, if an apply process at the primary
database receives changes from the ps2.net secondary site, then this apply process may
generate a raw value that is equivalent to the hexadecimal value ' 2 ' for all changes it
applies. Users do this by setting the apply tag parameter in the CREATE_APPLY or
ALTER_APPLY procedure in the DBMS_APPLY_ADM package to the non-NULL
value.

[0328] For example, run the following procedure to create an apply process that

generates redo entries with tags that are equivalent to the hexadecimal value ' 2"

BEGIN
DBMS_APPLY_ADM.CREATE_APPLY(

queue_name => 'strmadmin.streams_queue’,
apply_name => 'apply_ps2',

rule_set_name => 'strmadmin.apply_rules-ps2',
apply tag => HEXTORAW(2'),
apply_captured => true);

END;

[0329] Configure the apply process at each secondary database to generate non-
NULL redo tags. The exact value of the tags is irrelevant as long as it is non-NULL. In
this environment, each secondary database has one apply process that applies changes
from the primary database.

[0330] Ifusers use aprocedure in the DBMS INFORMATION SHARING SYSTEM
100 ADM package to create an apply process, then the apply process generates non-

52

WO 2004/013725 PCT/US2003/023747

NULL tags with a value of ' 00 ' in the redo log by default. In this case, no further action
is required for the apply process to generate non-NULL tags.

[0331] For example, assuming no apply processes exist at the secondary databases,
run the ADD SCHEMA RULES procedure at each secondary database to create an apply
process that generates non-NULL redo entries with tags that are equivalent to the

hexadecimal value '00'.

BEGIN
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES (

schema_name => 'hr,
streams_type =>"apply',
streams_name =>'apply',
queue_name => 'strmadmin.streams_queue',
include_dml . => true,
include_dml => {rue,
source database => 'psl.net');

END;

[0332] Configure the capture process at the primary database to capture changes to
the shared data regardless of the tags. Users do this by setting the include_tagged._ lcr
parameter to true when users run one of the procedures that generate capture rules. If
users create rules for the capture process at the primary database, then make sure the rules
do not contain is_null_tag conditions, because these conditions involve tags in the redo
log.

[0333] For example, run the following procedure at the primary database to produce
one DML capture process rule and one DDL capture process rule that each have a

condition that evaluates to TRUE for changes in the hr schema, regardless of the tag for

the change:
BEGIN
DBMS_STREAMS_ADM.ADD_SCHEMA_RULES(

schema_name => ‘hr,
streams_type => 'capture’,
streams_name => 'capture’,
queue_name => 'strmadmin.streams_queue',
include_tagged_lcr => true, -- Note parameter setting
include_dml => true,
include_ddl => true);

END;

[0334] Configure the capture process at each secondary database to capture changes
only if the tag in the redo entry for the change is NULL. Users do this by ensuring that

53

WO 2004/013725 PCT/US2003/023747

each DML rule in the rule set used by the capture process at the secondary database has
the following condition:

:dml.is_null tag () ="Y"
[0335] DDL rules should have the following condition:

:ddLis_null tag ()="Y"
[0336] These rules indicate that the capture process captures a change only if the tag
for the change is NULL. If users use the DBMS INFORMATION SHARING SYSTEM
100 ADM package to generate rules, then each rule has one of these conditions by
default. If users use the DBMS RULE ADM package to create rules for the capture
process at a secondary database, then make sure each rule contains one of these
conditions.
[0337] Configure one propagation from the queue at the primary database to the
queue at each secondary database. Each propagation should use a rule set with rules that
instruct the propagation to propagate all LCRs in the queue at the primary database to the
queue at the secondary database, except for changes that originated at the secondary
database.
[0338] For example, if a propagation propagates changes to the secondary database
ps2.net, whose tags are equivalent to the hexadecimal value ' 2 ', then the rules for the
propagation should propagate all LCRs relating to the hr schema to the secondary
database, except for LCRs with a tag of ' 2'. For row LCRs, such rules should include the
following condition :dml.get tag()!=HEXTORAW('2")
[0339] For DDL LCRs, such rules should include the following condition:

:ddl.get tag()!=HEXTORAW(2")
[0340] Users can use the CREATE_RULE procedure to create rules with these
conditions.
[0341] Configure one propagation from the queue at each secondary database to the
queue at the primary database. A queue at one of the secondary databases contains only
local changes made by user sessions and applications at the secondary database, not
changes made by an apply process. Therefore, no further configuration is necessary for
these propagations.
[0342] This configuration prevents change cycling in the following way:

e Changes that originated at a secondary database are never propagated back to that
secondary database.
e Changes that originated at the primary database are never propagated back to the

primary database.

54

WO 2004/013725 PCT/US2003/023747

e All changes made to the shared data at any database in the environment are
propagated to every other database in the environment.
[0343] So, in this environment, no changes are lost, and all databases are

synchronized.

PRIMARY DATABASE SHARING DATA WITH SEVERAL EXTENDED
SECONDARY DATABASES

[0344] In this environment, one primary database shares data with several secondary
databases, but the secondary databases have other secondary databases connected to
them, which will be called remote secondary databases. This environment is an extension
of the environment described in "Primary Database Sharing Data with Several Secondary
Databases".
[0345] A remote secondary database does not share data directly with the primary
database, but instead shares data indirectly with the primary database through a secondary
database. So, the shared data exists at the primary database, at each secondary database,
and at each remote secondary database. Changes made at any of these databases are
captured and propagated to all of the other databases. Figure 23 illustrates an environment
with one primary database and multiple extended secondary databases.
[0346] In such an environment, users can avoid change cycling in the following way:
[0347] Configure the primary database in the same way that it is configured in the
example described in "Primary Database Sharing Data with Several Secondary
Databases".
[0348] Configure each remote secondary database similar to the way that each
secondary database is configured in the example described in "Primary Database Sharing
Data with Several Secondary Databases". The only difference is that the remote
secondar}; databases share data directly with secondary databases, not the primary
database.
[0349] At each secondary database, configure one apply process to apply changes
from the primary database with a redo tag value that is equivalent to the hexadecimal
value '00' . This value is the default tag value for an apply process.
[0350] At each secondary database, configure one apply process to apply changes
from each of its remote secondary databases with a redo tag value that is unique for the
remote secondary database.
[0351] Configure the capture process at each secondary database to capture all

changes to the shared data in the redo log, regardless of the tag value for the changes.

55

WO 2004/013725 PCT/US2003/023747

[0352] Configure one propagation from the queue at each secondary database to the
queue at the primary database. The propagation should use a rule set with rules that
instruct the propagation to propagate all LCRs in the queue at the secondary database to
the queue at the primary database, except for changes that originated at the primary
database. Users do this by adding a condition to the rules that evaluates to TRUE only if
the tag in the LCR does not equal ' 00 ' . For example, enter a condition similar to the
following for row LCRs:

:dml.get tag()!=HEXTORAW('00")
[0353] Configure one propagation from the queue at each secondary database to the
queue at each remote secondary database. Each propagation should use a rule set with
rules that instruct the propagation to propagate all LCRs in the queue at the secondary
database to the queue at the remote secondary database, except for changes that originated
at the remote secondary database. Users do this by adding a condition to the rules that
evaluates to TRUE only if the tag in the LCR does not equal the tag value for the remote
secondary database. For example, if the tag value of a remote secondary database is
equivalent to the hexadecimal value' 19 ', then enter a condition similar to the following
for row LCRs:

:dml.get tag()!=HEXTORAW ('19")
[0354] By configuring the environment in this way, users prevent change cycling, and

no changes originating at any database are lost.

IN MEMORY STREAMING WITH DISK BACKUP AND RECOVERY OF

MESSAGES CAPTURED FROM A DATABASE REDO STREAM
[0355] A database is used to store and organize information on a persistent electronic
data storage medium, for example, a floppy disk, a hard disk or tape, in a consistent and
recoverable manner. A database also generates a stream of redo and undo information for
every change it makes to the storage medium. The redo/undo stream is used primarily for
recovering the database to a consistent point after a crash.
[0356] However, as explained above, the redo and undo information may be used for
other purposes. For example, the redo logs may be used to create a replica of a database
(or selected objects within the database) and to maintain the replica consistent with the
original copy. One reason for creating a replica could be for purposes of backup in case
the original is destroyed. Another reason for creating a replica is to allow the data to be
accessed faster by creating replicas "closer" to the users who will be querying or

modifying it.

56

WO 2004/013725 PCT/US2003/023747

[0357] To create areplica, an initial copy is made of the original and from that point
onwards any changes made to the original are transported and applied to the replica. The
changes could be transported directly or via intermediate sites. The transportation is
typically done by electronically transferring data over a data network or in some cases by
physically carrying the storage medium over. Similarly, any changes made to the replica
are transported and applied to the original. If discrepancies appear due to simultaneous
modification of a data item on different sites, the discrepancy needs to be resolved by
conflict resolution functions built into the database or provided by the database
administrator.

[0358] Creating and updating a replica based on changes made to an original database
object is merely one example of how changes may be "applied". However, the
application of a change may involve any type of aqtion, or may initiate a long chain of
actions. For example, the application of a change may involve generation of a message to
subscribers who are interested in the database object that was changed.

[0359] A database system is merely one example of a system in which changes are
made and logged. The techniques described herein are not limited to any particular type
of change-generating system. However, for the purpose of explanation, examples will be
given in which the both the system that initially generates the changes, and the system at
which the changes are applied, are databases.

[0360] For the purpose of explanation, the system on which a change is initially made
is referred to as the source site, and the system on which the change is applied is referred
to as the destination site. However, it should be noted that a change may be applied by
the same system within which the change was initially made. Under these circumstances,
the source site and the destination site are the same site.

[0361] Typically, changes made to a database object are stored on persistent storage
medium before the changes are applied at the destination site. The storage could be done
on the source site, an intermediate site, the destination site, or all of the above.
Unfortunately, storing the changes persistently prior to applying the changes tends to
hinder the performance of the apply operation. The reduced performance is due to the fact
that, ever since computers have been invented, persistent storage mediums have been
typically 10-100 times slower than transient storage mediums in storing and retrieving
data.

[0362] To avoid the delay imposed by durably storing the changes prior to applying

them, the techniques described hereafter allow for the changes to be stored in a transient

57

WO 2004/013725 PCT/US2003/023747

storage medium, such as RAM memory, between the time at which they are generated at
the source site and the time at which they are applied at the destination site.

[0363] According to one embodiment, in which the source and destination sites are
database systems, changes are captured by reading the redo/undo stream of the source
database system and storing the changes in transient storage. The change data is then
transported to the transient storage on another database system where it is either applied,
transported forward to yet another database system, or both.

[0364] The contents of the transient storage are organized in a first-in first-out (FIFO)
manner. For the purpose of explanation, the portion of memory used to store the change
data in this manner shall be referred to hereafter as a "FIFO buffer". Modern computers
are equipped with multiple processing units (or CPUs). For the purpose of explanation,
the CPUs assigned to the tasks of capturing changes, propagating changes, and applying
changes shall be referred to as the capture engine, the propagation engine and the apply
engine, respectively.

[0365] Referring to FIG. 24, it is a block diagram illustrating the in-memory
streaming of change information from a source site 2400 to a destination site 2402
through one intermediary site 2404. As mentioned above, there may be zero or several
intermediary sites. Thus, an embodiment in which there is one intermediary site 2404 is
merely illustrated for the purpose of explanation.

[0366] As illustrated in FIG. 24, an update to an original table at the source site 2400
causes data that reflects the change to be inserted into a log file. A capture engine reads
the log file and generates change data that is streamed to the volatile memory 2410 of the
source site. From the volatile memory 2410 of the source site, a propagation engine (not
shown) propagates the change data to the volatile memory 2414 of the intermediary site
2404. From the volatile memory 2414 of the intermediary site 2404, a propagation
engine (not shown) propagates the change data to the volatile memory 2412 of the
destination site 2402. The change data is then read from the volatile memory 2412 at the
destination site 2402 by an apply engine, and applied at the destination site 2402. In the
scenario illustrated in FIG. 24, the change data is applied by modifying a replica, located
at the destination site 2402, based on the update that was made to the original table
located at the source site.

[0367] Frequently, the sequence in which changes are applied should be based on the
sequence in which the changes were initially made. According to one embodiment, the
following measures are taken by the various components illustrated in FIG. 24 to ensure

that the order of the changes is not lost:

58

WO 2004/013725 PCT/US2003/023747

e Each change in the redo stream is assigned a unique and increasing number,
referred to herein as the change sequence number (or CSN).
e The capture engine adds changes into the FIFO buffer in the CSN order.
e The propagation engine maintains the CSN order while transporting changes.
e The apply engine uses this sequence to determine the order in which to apply
changes.
[0368] Because the change data is not stored to persistent memory between the time
that the change data is generated, and the time at which the change data is consumed by
the apply process, the performance of the illustrated replication operation is significantly
improved. However, the failure to store the change data to persistent memory during the
replication operation has certain recovery ramifications, which shall be addressed

hereafter.

USING THE CSN TO ACHIEVE "EXACTLY ONCE" BEHAVIOR
[0369] Unfortunately, information that is stored in transient memory may be
peﬁnanently erased from that memory when a failure occurs. Such information loss may
have a disastrous effect in systems that require changes to be applied exactly once at the
destination site. Specifically, if no precautions are taken, neither the capture engine nor
the apply engine would know which changes were sent-but-not-yet-applied before the
failure. Thus, there is great danger that the capture engine will resend and the apply
engine will reapply changes that had already been applied. Conversely, there is a danger
that the capture engine will not resend and the apply engine will never apply changes that
had been sent but not yet applied before the failure.
[0370] According to one embodiment, in addition to ensuring a correct apply order,
the CSN is used to ensure that changes are applied exactly once after a failure. According
to one embodiment, exactly once behavior is achieved by causing the apply engine to
persistently record the original CSN of the most recently applied change. This value,
illustrated in FIG. 24 as the LAST-APPLIED CSN, is continuously updated by the apply
engine as new changes are applied. Because the LAST-APPLIED CSN is stored on
nonvolatile memory, it will be available after a failure, even when the failure involves the
site at which the LAST-APPLIED CSN is stored. As shall be described in greater detail
hereafter, the ability to discover the LAST-APPLIED CSN after a failure ensures that the
apply engine does not re-apply previously applied changes.
[0371] According to one embodiment, in addition to storing the LAST-APPLIED
CSN, the apply engine periodically informs the propagation engine of the current LAST-

59

WO 2004/013725 PCT/US2003/023747

APPLIED CSN. Messages used to communicate this information are referred to herein as
acknowledgements, or "ACKs". Referring to FIG. 24, an ACK is sent from the
destination site 2402 to the intermediary site 2404, and from the intermediary site 2404 to
the source site 2400.

[0372] While the source site 2400 is informed about the LAST-APPLIED CSN in this
manner, by the time the source site 2400 receives an ACK, the LAST-APPLIED CSN
value identified in the ACK will typically be outdated. In other words, the apply engine
will already have applied changes beyond the change associated with the LAST-
APPLIED CSN value indicated in the ACK message by the time the ACK message is
received by the source site 2400.

[0373] Although outdated, the LAST-APPLIED CSN value received at the source site
2400 is still valuable in that the source site 2400 knows that all changes up to that CSN
value are guaranteed to have been applied by the apply engine. Therefore, according to
one embodiment, at infrequent intervals, the source site 2400 persistently stores the CSN
value that it has most recently received in an ACK message. The most recent CSN stored
in this manner is referred to herein as the LAST ACK CSN, because it is the last CSN to
be (1) received at the site in an ACK message, and (2) persistently stored at that site. To
avoid the overhead associated with frequent disk accesses, the frequency with which the
LAST ACK CSN is stored to persistent storage may be significantly lower than the
frequency at which ACK messages are received. Thus, the LAST ACK CSN that is
persistently stored may not actually be the CSN received in the most recent ACK
message.

[0374] In the event of a failure, the source site 2400 need only resend changes with
CSN values greater than the LAST ACK CSN value stored at the source site.
Specifically, if the capturing database crashes, the contents of the FIFO buffer 2410 are
lost. In this case, the capture engine re-enqueues changes into the FIFO buffer 2410
starting from the LAST ACK CSN recorded at the source site 2400. Thus, the capture
engine will resend (1) all changes that were previously sent but not-yet-applied, and
potentially (2) some changes that were previously sent and applied. However, the
number of changes that fall in the second category will typically be very small, since it
will only include those changes that were applied and whose CSN ins greater than the
LAST ACK CSN stored at the source site.

[0375] According to one embodiment, one or more of the intermediary sites between
a source site and the destination site are configured to store a LAST ACK CSN in a

manner similar to the source site. Specifically, in addition to forwarding upstream any

60

WO 2004/013725 PCT/US2003/023747

ACK messages that they receive, at infrequent intervals the propagation engines involved
in forwarding the ACKs persistently record the CSNs contained in the ACKs. For
example, in FIG. 24, intermediary site 2404 is shown to persistently store a LAST ACK
CSN.

[0376] In an embodiment where the LAST ACK CSN is stored at an intermediary
site, the LAST ACK CSN is used to limit the work that has to be done in response to the
failure of the intermediary site. Specifically, if the intermediary site 2404 crashes, then
the intermediary site 2404 reads the LAST ACK CSN stored at the intermediary site
2404, and requests the immediately adjacent upstream site (in this case, the source site
2400) to resend only those changes that represent times after the LAST ACK CSN.
[0377] As mentioned above, it may happen that a site may end up repropagating
changes which have already been applied. According to one embodiment, it is the
responsibility of downstream sites to ignore the changes associated with such duplicate
CSNs by remembering the highest CSN that they have propagated and/or applied. For
example, assume that source site 2400 crashes after source site 2400 (1) records a LAST
ACK CSN of 30, and (2) propagates to intermediary site 2404 a change with CSN 50.
Assume further that the change with CSN 50 is eventually propagated to and applied at
destination site 2402.

[0378] In this scenario, when the source site 2400 is restarted, the source site 2400
will begin resending changes starting after CSN 30. Thus, intermediary site 2404 will
receive changes associated with CSN 31 to CSN 50 after those changes have already been
propagated and applied. However, since intermediary site 2404 keeps track of the CSN
of the last change that it has propagated, intermediary site 2404 knows not to repropagate
the changes associated with CSN 31 to CSN 50.

[0379] As another example, assume that intermediary site 2404 crashes after
intermediary site 2404 (1) records a LAST ACK CSN of 30, and (2) propagates to
destination site 2402 a change with CSN 50. Assume further that the change with CSN
50 is applied at destination site 2402.

[0380] In this scenario, when the intermediary site 2404 is restarted, the intermediary
site 2400 will request the source site 2400 to resend changes starting after CSN 30.
Intermediary site 2414 will receive and resend to destination site 2402 changes associated
with CSN 31 to 50 after those changes have already been applied. However, since
destination site 2402 keeps track of the LAST APPLIED CSN, destination site 2402
knows not to reapply the changes associated with CSN 31 to CSN 50.

61

WO 2004/013725 PCT/US2003/023747

[0381] According to one embodiment, if the destination database is not able to apply
the changes as fast as they are coming in and memory is running short, then the
destination database can dedicate a separate group of CPUs to spill the changes to
persistent storage and free up the memory for these changes. These CPUs are referred to
herein as the "spill engine". Changes are spilled in increasing order of CSN and a spilled
CSN is ACKed to the propagation engine as if it has been applied. Under these
circumstances, the apply engine looks at changes in the persistent queue first (if the
persistent queue is not empty) and then applies changes from the FIFO buffer once the

persistent queue is empty.

PROCESS FAILURE RECOVERY
[0382] Under some failure scenarios, not all information in volatile memory is lost.
For example, in the system shown in FIG. 24, the capture engine may fail without losing
all data stored in the volatile memory of source site 2400. To quickly recover from such
failures, a LAST PROCESSED CSN may be maintained in volatile memory. The LAST
PROCESSED CSN stored by an engine indicates the CSN of the change most recently
processed by that engine. For example, the capture process on source site 2400 may store
a LAST PROCESSED CSN that indicates the CSN of the change that the apply engine
most recently placed in FIFO buffer 2410. Similarly, a propagation engine on
intermediary site 2404 may store a LAST PROCESSED CSN that indicates the CSN of
the change most recently propagated to destination site 2402.
[0383] In the event that an engine fails without losing the corresponding LAST
PROCESSED CSN, the LAST PROCESSED CSN (which will generally be more current
than the LAST ACK CSN) may be used to determine where the engine should begin
working when restarted. For example, when restarted, the capture engine of source site
2400 may inspect the LAST PROCESSED CSN to determine which changes have
already been enqueued in FIFO buffer 2410.

"EXACTLY ONCE" BEHAVIOR AND TRANSACTIONS
[0384] In some environments, the changes that are captured, propagated and applied
may belong to transactions. A transaction is a set of operations that are "made
permanent” as a single atomic operation. In environments where changes belong to
transactions, the changes for various transactions may be interleaved with each other

relative to the CSN order. For example, the changes for a first transaction TX1 may be

62

WO 2004/013725 PCT/US2003/023747

assigned the CSNs of 10, 11, 15 and 17, while the changes for a second transaction TX2
may be assigned the CSNs of 12, 13, 14, 16, 18 and 20.

[0385] In most systems, the entire transaction will be assigned a CSN that indicates
when the transaction is considered to have been completed. The "time of completion"
number assigned to a transaction, referred to herein as the "commit CSN", is typically the
CSN associated with the last change made in the transaction. For example, the commit
CSN of the transaction TX1 is 17, while the commit CSN of transaction TX2 is 20.
[0386] According to one embodiment, the LAST APPLIED CSN that is persistently
stored by the apply engine is the commit CSN of the last transaction committed by the
apply engine, and not simply the CSN of the last change applied by the apply engine.
Thus, in this context, the LAST APPLIED CSN may be referred to as the LAST
COMMITTED CSN. By persistently maintaining only the LAST COMMITTED CSN,
rather than the CSN of the latest change, the frequency at which the persistently stored
information has to be updated is significantly reduced.

[0387] Thus, when the apply engine completes execution of TX1, the apply engine
would update the LAST COMMITTED CSN to reflect the CSN of 17. However, the
apply engine would not update the LAST COMMITTED CSN to 18 after applying the
change of TX2 associated with CSN 18. Rather, the LAST COMMITTED CSN would
only be changed from 17 once TX2 is completely applied, at which time the LAST
COMMITTED CSN will be changed to 20.

[0388] In an embodiment that durably maintains a LAST COMMITTED CSN in this
manner, the LAST COMMITTED CSN reflects the commit time of the last transaction
that has been completely applied by the apply engine. In addition to the LAST
COMMITTED CSN, the apply engine may maintain in volatile memory, for each
transaction that has not yet been completely applied, a HIGHEST-SO-FAR CSN. The
HIGHEST-SO-FAR CSN for a transaction is the CSN of the latest change that the apply
engine has applied for that transaction. Thus, while the apply engine would not update
the LAST COMMITTED CSN to 18 after applying the change of TX2 associated with
CSN 18, the apply engine would update the HIGHEST-SO-FAR CSN for TX2 to 18 after
applying the change of TX2 associated with CSN 18.

[0389] Based on the LAST APPLIED CSN and HIGHEST-SO-FAR CSN, the apply
engine can readily identify and discard any duplicates of already-applied changes.
Specifically, the apply engine discards already-applied changes by discarding: (1) those

changes that belong to transactions that have commit CSNs less than or equal to the

63

WO 2004/013725 PCT/US2003/023747

LAST COMMITTED CSN, and (2) those changes that have CSNis that are less than or
equal to the HIGHEST-SO-FAR CSN of the transaction to which the changes belong.
[0390] For example, assume that LAST COMMITTED CSN is 17. If the apply
engine receives a change associated with TX1 and CSN 15, then the apply engine will
discard the change because the commit CSN of TX1 is not greater than the LAST
COMMITTED CSN (i.e. 17). On the other hand, if the commit CSN of TX2 is 20, and
the apply engine receives the change associated with TX2 and CSN 12, then the apply
engine will compare 12 to the HIGHEST-SO-FAR CSN of TX2. If HIGHEST-SO-FAR
CSN of TX2 is equal to or greater than 12, then the apply engine will discard the change
associated with CSN 12. On the other hand, if the HIGHEST-SO-FAR CSN of TX2 is
less than 12, then the apply engine will apply the change.

OLDEST CSN
[0391] According to one embodiment, when the changes that are being applied are
part of transactions, the ACK message sent upstream by the apply engine includes an
OLDEST CSN value, rather than a LAST APPLIED CSN. The OLDEST CSN is the
oldest change CSN of all uncommitted transactions. According to one embodiment, the
OLDEST CSN value is persistently stored by the apply engine, and periodically
communicated upstream using ACK messages.
[0392] The oldest change CSN for a transaction will typically be the CSN associated
with the first change made by the transaction. To maintain the OLDEST CSN up-to-date,
the apply engine “raises” the OLDEST CSN when the transaction associated with the
current OLDEST CSN is fully applied. For example, consider the follow three
transactions:
[0393] TX1 with changes at CSN 12, 13, 17, 20
[0394] TX2 with changes at CSN 11, 14, 15, 18, 19 and 23
[0395] TX3 with changes at CSN 16, 21, 22, 24 and 25.
[0396] If TX1, TX2 and TX3 are the only uncommitted transactions for which the
apply received changes; then the OLDEST CSN will be 11 (the oldest change CSN from
any of the uncommitted transactions). Assume that the apply ‘engine first finishes
applying TX1. At that point, the LAST COMMITTED CSN would be changed to 20, but
the OLDEST CSN does not change, because TX1 was not the transaction associated with
the OLDEST CSN.
[0397] Ifthe apply engine then finishes applying TX2, then the OLDEST CSN would

be updated to 16; since the only uncommitted transaction would be TX3, and the oldest

64

WO 2004/013725 PCT/US2003/023747

change CSN of TX3 is 16. At this point, the LAST COMMITTED CSN would also be
changed to 23.

[0398] By maintaining the OLDEST CSN in this manner, all changes associated with
change CSNs below the OLDEST CSN are guaranteed to have been applied. Thus, in the
case of a failure, it is safe for the apply engine to read the persistently stored OLDEST
CSN, and to request the upstream components to resend the change information starting
at the OLDEST CSN.

OUT-OF-ORDER APPLICATION OF TRANSACTIONS
[0399] In the description given above, it was assumed that transactions are applied in
the sequence of their commit CSN. Thus, if a change is for a transaction with a CSN
higher than the LAST COMMITTED CSN, it could be assumed that the change has not
yet been applied. However, according to one embodiment, the apply engine is able to
apply changes in parallel, and in a sequence that guarantees consistency without
guarantying that all transactions will be applied in the sequence of their commit CSN.
[0400] For example, assume that transactions TX1, TX2 and TX3 have commit CSNs
of 17, 20 and 25, respectively. According to one embodiment, if TX3 does not depend on
TX2, then the apply engine may commit TX1 and TX3 prior to committing TX2. When
TX3 commits, the LAST COMMITTED CSN would be updated to 25. However, TX2
has not yet been committed. Therefore, if a crash occurs, then the changes associated
with TX2 will be discarded after the crash, even though those changes were not
committed before the crash.
[0401] On the other hand, assume that there is no crash after TX3 is applied. Rather,
assume that the apply engine goes on to apply TX2, and then a crash occurs. After TX2
is applied, the LAST COMMITTED CSN would be updated to 20, since 20 is the
committed CSN of the last transaction (TX2) to be applied. Based on a LAST
COMMITTED CSN of 20 and the fact that TX3 has a commit CSN of 25, the apply
engine would reapply TX3 after the crash, even though TX3 had already been fully
applied before the crash.
[0402] Thus, in environments where the transactions may be applied out of commit
CSN order, the LAST COMMITTED CSN may not provide sufficient information for the
apply engine to determine whether a change should be applied or discarded. Thus,
according to one embodiment where transactions may be applied out of sequence, a LOW
WATERMARK CSN and an OLDEST CSN are maintained. The meaning and use of

each of these values shall be described in greater detail hereafier.

65

WO 2004/013725 PCT/US2003/023747

LOW WATERMARK CSN
[0403] According to one embodiment, the LOW WATERMARK CSN is the CSN
such that all transactions that have a commit CSN lower than or equal to the LOW
WATERMARK CSN are guaranteed to have been applied. In systems where transactions
are always applied in CSN commit order, the LOW WATERMARK CSN is the same as
the LAST COMMITTED CSN. However, in systems where transactions are not always
applied in CSN commit order, it is possible for the LOW WATERMARK CSN to be less
than the commit CSN of the most recently applied transaction.
[0404] To maintain the LOW WATERMARX CSN up-to-date, the apply engine
“raises” the LOW WATERMARK CSN when (1) the apply engine finishes applying a
transaction that has a commit CSN that is above the current LOW WATERMARK CSN,
and (2) no unapplied transaction has a commit CSN lower than the commit CSN of the
transaction that has just been applied.
[0405] For example, assume that transactions TX1, TX2 and TX3 have commit CSNs
of 17, 20 and 25, respectively. Assume that (1) TX1 has been applied, (2) the current
LOW WATERMARK CSN is 17, and (3) the apply engine applies TX3 before TX2.
When TX3 is fully applied, the LOW WATERMARK CSN is not updated because an
unapplied transaction (TX2) has a lower commit CSN than the commit CSN of TX3.
After TX2 is applied, the LOW WATERMARK CSN is updated to 25, since all

transactions with commit times at or below 25 have been applied.

ABOVE-MARK APPLIED TRANSACTIONS
[0406] The already-applied transactions with commit CSNs above the LOW
WATERMARK are referred to herein as the ABOVE-MARK APPLIED transactions. In
the example given above, when TX3 was fully applied before TX2, TX3 became an
ABOVE-MARK APPLIED transaction. According to one embodiment, in addition to the
LOW WATERMARK CSN, the apply engine persistently stores information about the
ABOVE-MARK APPLIED transactions. According to one implementation, the
information about the ABOVE-MARK APPLIED transactions is maintained in a hash

table in volatile memory, and the hash table is backed up on persistent storage.

66

WO 2004/013725 PCT/US2003/023747

USING THE LOW WATERMARK, OLDEST CSN, AND ABOVE-MARK

INFORMATION TO DETERMINE WHETHER TO DISCARD CHANGES
[0407] In an embodiment that maintains on persistent storage a LOW
WATERMARK CSN, information about ABOVE-MARK APPLIED transactions, and an
OLDEST CSN, the apply engine discards already-applied changes by discarding: (1)
those changes that are associated with CSNs that are lower than the OLDEST CSN, (2)
those changes that belong to transactions that have commit CSNs less than the LOW
WATERMARK CSN, (3) those changes that have CSNs that are less than or equal to the
HIGHEST-SO-FAR CSN of the transaction to which the changes belong, and (4) those
changes that belong to ABOVE-MARK APPLIED transactions.
[0408] For example, assume that the LOW WATERMARK CSN is 18, and TX3
(with a commit time of 25) is an ABOVE-MARK APPLIED transaction. Under these
conditions, the apply engine discards any change that is associated with a transaction with
a commit CSN lower than 18. Similarly, even though many changes associated with TX3
may be associated with CSNs above the LOW WATERMARK CSN of 18, all changes
associated with TX3 will all be discarded because TX3 is an ABOVE-MARK APPLIED
transaction. On the other hand, if the apply engine receives a change associated with an
uncommitted transaction TX2, and the change has a CSN of 12, then the apply engine
will compare 12 to the HIGHEST-SO-FAR CSN of TX2. If HIGHEST-SO-FAR CSN
of TX2 is equal to or greater than 12, then the apply engine will discard the change
associated with CSN 12. On the other hand, if the HIGHEST-SO-FAR CSN of TX2 is
less than 12, then the apply engine will apply the change.
[0409] As the apply engine continues to apply transactions, the LOW
WATERMARK value will rise. As the LOW WATERMARK CSN rises, it may pass the
commit CSNs of transactions that had previously been ABOVE-MARK APPLIED
transactions. According to one embodiment, the hash table used to track the ABOVE-
MARK APPLIED transactions is periodically pruned to remove all information for
previous ABOVE-MARK APPLIED transactions that have commit CSNs that the LOW
WATERMARK CSN has subsequently risen above.
[0410] In embodiments that maintain an OLDEST CSN, the ACK messages convey
the OLDEST CSN to the upstream entity. For example, referring again to FIG. 24, the
ACK message that is periodically sent from the destination site 2402 to the intermediary
site 2404 contains the current OLDEST CSN. The intermediary site 2404 periodically
saves this information and forwards it in an ACK message to the source site 2400. The

source site 2400 also periodically stores this information to persistent storage.

67

WO 2004/013725 PCT/US2003/023747

FLOWCHART FOR APPLY ENGINE
[0411] Referring to FIG. 25, it is a flowchart illustrating steps performed by an apply
engine, according to an embodiment of the invention, that uses a persistently stored LOW
WATERMARK, a persistently stored OLDEST CSN, persistently stored data that
identifies ABOVE-MARK APPLIED transactions, and non-persistently stored HIGHEST
SO FAR CSNs, to achieve exactly-once behavior.
[0412] At step 2502, the apply engine receives an item. The item has a CSN, and
belongs to a transaction. At step 2503, the apply engine determines whether the item has
a CSN that is less than the OLDEST CSN. If the item has a CSN that is less than the
OLDEST CSN, then the item is discarded at step 2510. On the other hand, if the item has
a CSN that is equal to or greater than the OLDEST CSN, then control proceeds to step
2504.
[0413] At step 2504, the apply engine determines whether the item belongs to a
transaction that has a commit time that is less than or equal to the current LOW
WATERMARK. If the item belongs to a transaction that has a commit time that is below
the current LOW WATERMARK, then the item is discarded at step 2510. On the other
hand, if the CSN belongs to a transaction that has a commit time that is greater than the
current LOW WATERMARK, then control proceeds to step 2506.
[0414] At step 2506, the apply engine determines whether the item belongs to an
ABOVE-MARK APPLIED transaction. If the item belongs to an ABOVE-MARK
APPLIED transaction, then at step 2510 the item is discarded. If the item does not belong
to an ABOVE-MARK APPLIED transaction, then control proceeds to step 2508.
[0415] At step 2508, the apply engine determines whether the CSN of the item is less
than or equal to the HIGHEST-SO-FAR CSN for the transaction to which the item
belongs. If the CSN of the item is less than or equal to the HIGHEST-SO-FAR CSN for
the transaction to which the item belongs, then the item is discarded at step 2510. If the
CSN of the item is greater than the HIGHEST-SO-FAR CSN for the transaction to which
the item belongs, then the item is applied at step 2512.
[0416] After the item is applied, at step 2514 the apply engine updates the HIGHEST-
SO-FAR CSN for the transaction. At step 2516, the apply engine determines whether the
transaction to which the item belongs has been completely applied. If the transaction to
which the item belongs has been completely applied, then control proceeds to step 2518.
If the transaction to which the item belongs has not been completely applied, then the
processing of the item is done (step 2524).

68

WO 2004/013725 PCT/US2003/023747

[0417] At step 2518, the apply engine determines whether the LOW WATERMARK
needs to be updated. If there are no unapplied transactions with commit CSNs below the
commit CSN of the transaction that has just been applied, then the LOW WATERMARK
is updated. Control passes to step 2520.

[0418] At step 2520, the OLDEST CSN is updated, if appropriate. Specifically, if the
transaction that has just been applied contained the oldest not-yet-applied change, then
the OLDEST CSN is updated to reflect the oldest change CSN of the remaining unapplied
transactions.

[0419] At step 2522, the ABOVE-MARK APPLIED transaction information is
updated if appropriate. Specifically, if the transaction that was just applied was above the
current LOW WATERMARK, and in step 2518 the LOW WATERMARK was not raised
to or above the commit time of the transaction, then the transaction is an ABOVE-MARK
APPLIED transaction, and the ABOVE-MARK APPLIED transaction information is
updated to include the transaction. After the ABOVE-MARK APPLIED transaction
information is updated, the processing of the item is done (step 2524).

[0420] While the foregoing example is given in the context of an apply engine that
makes changes at a destination site based on change information received from another
site, the techniques described herein are not limited to any particular context. For
example, the "items" received by an apply engine may be any form of information that
needs to be handled exactly once. Further, the actual steps performed by the apply engine
to "apply" the items will vary from implementation to implementation. For example, the
"items" may be orders for individual items, the "transactions" may correspond to purchase
orders that include a set of item orders, and the "application" of the items may involve

generating bills for the purchase orders.

REPLICATING DDL USING INFORMATION SHARING SYSTEM 100
[0421] As discussed above, there are many situations in which it is advantageous to
maintain several copies of a database object. Many of the examples given above describe
how information sharing system 100 may be used to ensure that the data contained in
each replica remains consistent with the data that is contained in all other replicas of the
same database object. Specifically, information sharing system 100 may be use to
propagate and apply, to the sites at which each of the other replicas resides, changes made
to any one of the replicas.
[0422] In addition to maintaining the consistency of the data contained within replicas

of an object, information sharing system 100 may be used to maintain the consistency of

69

WO 2004/013725 PCT/US2003/023747

the structure of the replicas themselves. Specifically, Data Definition Language (DDL)
statements are database commands that define, alter the structure of, and drop database
objects, such as tables. When a DDL statement is executed against one replica of an
object, the structure of that replica will be altered, and will no longer be consistent with
the structure of the other replicas of the same object. According to one embodiment,
information sharing system 100 is used to propagate and apply DDL statements to other
replicas in a manner that allows the structure of the other replicas to be maintained
consistent with the altered replica.

[0423] Further, information sharing system 100 may be used to automate the initial
creation of replicas. For example, assume that a user issues a DDL statement to create a
table T1 in database A. According to one embodiment of the invention, a record of this
DDL statement is generated and stored in the redo log of database A. A capture process
that is configured to mine the redo log of database A may capture the DDL statement
from the redo log and generate an event based on the DDL statement. The event may
then be stored in a staging area, and eventually propagated to one or more other
databases. At each of those other databases, an apply engine may be configured to
"apply" the event by issuing a corresponding DDL statement within those databases. The
execution of those DDL statements will cause the creation of replicas of table T1 to be
created in each of the databases.

[0424] It should be noted that replicating DDL in this manner does not require any
quiescing among the information sharing systems, and that there are no restrictions on the
activity that can be done on the information sharing systems. Specifically, replicating
DDL in this manner does not require suspension of user activity on the objects/systems

irrespective of the complexity or nature of the DDL.

GENERATING INFORMATION ABOUT DDL OPERATIONS
[0425] In asystem that does not generate redo information for a DDL operation, there
may still be redo information that is generated as a result of the DDL operation. For
example, assume that a DDL operation caused the creation of a table within a database.
The creation of the table may involve the DML operations of inserting one or more rows
of data into existing system tables that are used to store metadata about the various tables
of the database. In response to the changes made to the data within those system tables,
DML redo information may be generated. However, trying to reconstruct the specific
DDL operation that caused the changes to the contents of the system tables, based solely

on the redo information generated in response to the updates to those system tables,

70

WO 2004/013725 PCT/US2003/023747

would be extremely difficult, if not impossible. Thus, generating specific information
about those DDL operations provides a significant benefit in situations where
asynchronous replication of the DDL operations is desired.

[0426] According to one embodiment, the redo information that is generated for DDL
operations includes dependency information (i.e. the objects that are dependent/affected
by the DDL). In general, such dependency information cannot be reconstructed from the
DML redo generated as a result of the DDL operation.

[0427] In the example given above, the database in which the DDL operation was
initially performed (the "source" database) is configured to generate redo information for
the DDL operation. Because redo was generated for the DDL operation, the DDL
operation is able to be accurately captured by a capture process that mines the redo log of
the source database. Because the DDL operation is accurately captured, it can be
accurately applied at the desired target databases. According to one embodiment, the
redo information generated for the DDL operation includes, among other things, a string
that reflects the DDL statement that was executed by the source database.

[0428] Storing specific information about the DDL operations within a redo log is
merely one example of how DDL operations may be recorded within the source database.
The replication techniques described herein are not limited to any particular DDL
operation recordation technique. As long as a precise description of the DDL operation
can be reconstructed, information sharing system 100 may be used to asynchronously

propagate and apply the DDL change to other database systems.

MULTI-DIRECTIONAL DDL REPLICATION
[0429] Information sharing system 100 may be used to perform DDL replication
between any of the systems that use information sharing system 100 to share information.
Consequently, bi-directional and multi-directional DDL replication is possible. For
example, information sharing system 100 may be configured to replicate DDL between
five database systems such that a DDL statement executed at any one of the five database
systems will result in a corresponding DDL statement being executed at the other four
database systems.
[0430] In such a five-way replication scenario, a table created at a first database
system may have a column added to it at a second database system, and have another
column dropped from it at a third database system. As each of these changes is made,
corresponding changes are made at each of the other four database systems. Specifically,

the creation of the table at the first database system may cause the creation of replicas of

71

WO 2004/013725 PCT/US2003/023747

the table at each of the other four database systems. The subsequent addition of a column
at the second database system will cause a corresponding column to be added to the
replicas of the table each of the other four database systems. The subsequent dropping of
a column at the third database system will cause the corresponding column to be dropped
at the replicas of the table at each of the other four database systems. While all of these
DDL operations are being replicated among the various databases, activity (including
DDL and DML operations) can continue to occur on the databases, and even on the tables
that are the targets of the DDL operations, without any restriction.

[0431] In the five-way replication scenario given above, all DDL changes are
propagated to and executed at each of the database systems in exactly the same way that
the changes were executed within the database system in which they originated.
However, this need not be the case. As explained in detail above, the operation of each of
the components involved in the replication process, including the capture engine, the
propagation engine, and the apply engine, may be customized by registering rules with
the rules engine. Those rules may specify, at fine levels of granularity, how each of the
components is to operate. For example, the rules may specify a selection criteria, where
only those DDL changes that satisfy the selection criteria are captured, propagated and/or
applied. Further, those rules may specify transformations to be performed on the DDL
change information, where the transformation may be applied during the capture,

propagation and/or application of the DDL changes.

DDL REPLICATION OF OBJECTS OTHER THAN TABLES
[0432] In the examples given above, the replicated DDL operations are operations
involving a table. However, information sharing system 100 may be used to replicate any
form of DDL operation. For example, information sharing system 100 may be used to
create a new user in one or more database systems in response to a user being added to a
particular database system. Similarly, information sharing system 100 may be used to
create new permissions in one or more database systems in response to a user being added
to a particular database system.
[0433] Other types of database objects that are created and/or altered by DLL
commands include, but are not limited to views, triggers, procedures, indexes, sequences,
synonyms, rollback segments, outlines, database links, materialized views, materialized
view logs, etc. The techniques described herein may be used to replicate the DDL used to

create or alter any of these types of objects. As mentioned above, there is no restriction

72

WO 2004/013725 PCT/US2003/023747

on database activity while DDL is being replicated for any of these other types of

database objects.

APPLYING REPLICATED DDL CHANGES
[0434] Consider a scenario in which (1) a first set of DML changes are made to an
object, then (2) a DDL operation is performed on the object, and then (3) a second set of
DML changes are made to the object. If both the DML changes and the DDL changes to
the object are being replicated, then it is important that the destination apply the first set
of DML changes before the DDL change to the replica, and the second set of DML
changes after the DDL change to the replica.
[0435] According to one embodiment, a mechanism is provided for tracking the
dependencies between the DML changes and the DDL changes. For example, in the
scenario presented above, the DDL operation depends on the first set of DML changes,
and the second set of DML changes depends on the DDL operation. By tracking this
dependency information, and conveying the dependency information to the destination
site where the DML and DDL changes are replicated, the destination site can ensure that
the changes are performed in the proper sequence.
[0436] Significantly, the DDL performed on one database object may have an effect
on another database object. Under these circumstances, the second object is said to have
a dependency on the first object. DML operations performed on the second object may
be affected by DDL operations performed on the first object. Therefore, the dependency
tracking mechanism uses information about the dependencies between objects to
determine the dependency between DDL and DML operations. The destination site uses
this information to ensure that the DDL and DML operations are applied at the
destination site in the correct sequence, as dictated by the dependency relationships. In
addition, this dependency information may be used to determine which other actions may
be performed concurrently with a DDL operation. For example, a database server may be
configured to execute operations, such as replicated DDL and DML operations, in

parallel, as long as there is no dependency between the operations.

XML SCHEMA FOR CHANGE INFORMATION
[0437] Inmany of the examples given above, information sharing system 100 is used
to share information about changes made within one "source" system with one or more

"destination" systems. The structure of the records used to convey the change

73

WO 2004/013725 PCT/US2003/023747

information may vary from implementation to implementation. The techniques described
herein to not depend on any particular structure for the records.

[0438] According to one embodiment, the various pieces of change information (see
the section entitled "LOGICAL CHANGE RECORDS") are stored in a structure that
conforms to an XML schema. In one embodiment, the structure of an LCR conforms to
the following XML schema:

schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/streams/schemas/lcr"
xmlns:lcr="http://xmlns.oracle.com/streams/schemas/lcr"
xmlns:xdb="http://xmlns.oracle.com/xdb"

version="1.0">

<simpleType name = "short_name">
<restriction base = "string"s>

<maxLength value="30"/>

</restrictions>

</simpleType>

<simpleType name = "long_name">
<restriction base = "string">

<maxLength value="4000"/>

</restrictions

</simpleTypes

<simpleType name = "db_name">
<restriction base = "string"s>

<maxLength value="128"/>

</restriction>
</simpleType>
<!-- Default session parameter is used if format is not specified -->

<complexType name="datetime format"s>

<sequence>
<element name = "value" type = "string"/s>
<element name = "format" type = "string" minOccurs="0"/>
</sequence>
</complexType>

<complexType name="anydata">
<choices»

<element name="varchar2" type = "string" xdb:SQLType="VARCHAR2"/>

74

WO 2004/013725 PCT/US2003/023747

<!-- Represent char as varchar2. xdb:CHAR blank pads upto 2000 bytes! -
->

<element name=Vchar" type = "string" xdb:SQLType="VARCHAR2"/>

<element name="nchar" type = "string" xdb:SQLType="NVARCHAR2"/>

<element name="nvarchar2" type = "string" xdb:SQLType="NVARCHAR2"/>

<element name="number" type = "double" xdb:SQLType="NUMBER"/>

<element name="raw" type = "hexBinary" xdb:SQLType="RAW"/>

<element name="date" type = "lcr:datetime format"/>
<element name="timestamp" type = "lcr:datetime_ format"/>
<element name="timestamp tz" type = "lcr:datetime_ format'/>
<element name="timestamp_ ltz" type = "lcr:datetime format"/>
<!-- Interval YM should be according to format allowed by SQL -->
<element name="interval_ ym" type = "string"/>
<!-- Interval DS should be according to format allowed by SQL -->
<element name="interval_ds" type = "string"/>
</choices>
</complexType>

<complexType name="column_value"s>

<sequences>
<element name = "column name" type = "lcr:long_name"/>
<element name = "data" type = "lcr:anydata"/>
<element name = "lob_information" type = "string" minOccurs="0"/>
<element name = "lob_offset" type = "nonNegativeInteger™"

minOccurs="0"/>
<element name = "lob_operation size" type = "nonNegativeInteger"

minOccurs="0"/>

</sequences>
</complexType>
<element name = "ROW_LCR">
<complexType>
<sequences
<element name = "source_ database name" type = "lcr:db_name"/>
<element name = "command_type" type = "string"/>
<element name = "object_owner" type = "lcr:short_name"/>
<element name = "object_name" type = "lcr:short name"/>
<element name = "tag" type = "hexBinary" xdb:SQLType="RAW"

minOccurs="0"/>
<element name = "transaction_id" type = "string" minOccurs="0"/>

<element name

"scn" type = "double" xdb:SQLType="NUMBER"
minOccurs="0"/>

<element name = "old_values" minOccurs = "0">
<complexType>

<sequences>

75

WO 2004/013725 PCT/US2003/023747

<element name = "old_value" type="lcr:column value" maxOccurs
= "unbounded"/>
</sequence>
</complexType>

</element>

<element name = "new_values" minOccurs = "0">
<complexType>
<seguences
<element naﬁe = "new_value" type="lcr:column_value" maxOccurs =
"unbounded"/ >
</sequence>
</complexType>
</element>
</sequence>
</complexType>

</element>

<element name = "DDL_LCR'">
<complexType>
<sequence>
<element name = "source_database_name" type = "lcr:db_name"/>
<element name = "command type" type = "string"/s>
<element name = "current_schema" type = "lcr:short name"/>
<element name = "ddl_text" type = "string'/>
<element name = "object_type" type = "string"
minOccurs = "0"/>
<element name = "object_ owner" type = "lcr:short_ name"
minOccurs = "0"/>
<element name = "object_name" type = "lcr:short_name"
minOccurs = "0"/>
<element name = "logon_user" type = "lcr:short_name"
minOccurs = "0"/>
<element name = "base_table_owner" type = "lcr:short_name"
minOccurs = "0"/>
<element name = "base_table name" type = "lcr:short_name"
minOccurs = "0"/>
<element name = "tag" type = "hexBinary" xdb:SQLType="RAW"
minOccurs = "0"/>
<element name = "transaction_id" type = "string"
minOccurs = "Q"/>
<element name = "scn" type = "double" xdb:SQLType="NUMBER"
minOccurs = "0"/>
</sequences>

</complexType>

76

WO 2004/013725 PCT/US2003/023747

</element>

</schema>

[0439] This exemplary XML schema contains sections for each of various types of
change information. For example, the section immediately following the tag <element
name = "DDL_LCR"> specifies the structure of a record associated with a DDL change,
according to an embodiment of the invention. Similarly, the section immediately
following the tag <element name = "ROW_LCR"> specifies the structure of a record
associated with a DML change to a row of a table, according to an embodiment of the

invention.

HARDWARE OVERVIEW
[0440] Figure 26 is a block diagram that illustrates a computer system 2600 upon
which an embodiment of the invention may be implemented. Computer system 2600
includes a bus 2602 or other communication mechanism for communicating information,
and a processor 2604 coupled with bus 2602 for processing information. Computer
system 2600 also includes a main memory 2606, such as a random access memory
(RAM) or other dynamic storage device, coupled to bus 2602 for storing information and
instructions to be executed by processor 2604. Main memory 2606 also may be used for
storing temporary variables or other intermediate information during execution of
instructions to be executed by processor 2604, Computer system 2600 further includes a
read only memory (ROM) 2608 or other static storage device coupled to bus 2602 for
storing static information and instructions for processor 2604. A storage device 2610,
such as a magnetic disk or optical disk, is provided and coupled to bus 2602 for storing
information and instructions.
[0441] Computer system 2600 may be coupled via bus 2602 to a display 2612, such
as a cathode ray tube (CRT), for displaying information to a computer user. An input
device 2614, including alphanumeric and other keys, is coupled to bus 2602 for
communicating information and command selections to processor 2604. Another type of
user input device is cursor control 2616, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command selections to processor 2604
and for controlling cursor movement on display 2612. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that

allows the device to specify positions in a plane.

77

WO 2004/013725 PCT/US2003/023747

[0442] The invention is related to the use of computer system 2600 for implementing
the techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 2600 in response to processor 2604
executing one or more sequences of one or more instructions contained in main memory
2606. Such instructions may be read into main memory 2606 from another computer-
readable medium, such as storage device 2610. Execution of the sequences of
instructions contained in main memory 2606 causes processor 2604 to perform the
process steps described herein. In alternative embodiments, hard-wired circuitry may be
used in place of or in combination with software instructions to implement the invention.
Thus, embodiments of the invention are not limited to any specific combination of
hardware circuitry and software.

[0443] The term “computer-readable medium” as used herein refers to any medium
that participates in providing instructions to processor 2604 for execution. Such a
medium may take many forms, including but not limited to, non-volatile media, volatile
media, and transmission media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 2610. Volatile media includes dynamic memory,
such as main memory 2606. Transmission media includes coaxial cables, copper wire
and fiber optics, including the wires that comprise bus 2602. Transmission media can
also take the form of acoustic or light waves, such as those generated during radio-wave
and infra-red data communications.

[0444] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from
which a computer can read.

[0445] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 2604 for execution. For
example, the instructions may initially be carried on a magnetic disk of a remote
computer. The remote computer can load the instructions into its dynamic memory and
send the instructions over a telephone line using a modem. A modem local to computer
system 2600 can receive the data on the telephone line and use an infra-red transmitter to
convert the data to an infra-red signal. An infra-red detector can receive the data carried
in the infra-red signal and appropriate circuitry can place the data on bus 2602. Bus 2602

carries the data to main memory 2606, from which processor 2604 retrieves and executes

78

WO 2004/013725 PCT/US2003/023747

the instructions. The instructions received by main memory 2606 may optionally be
stored on storage device 2610 either before or after execution by processor 2604.

[0446] Computer system 2600 also includes a communication interface 2618 coupled
to bus 2602. Communication interface 2618 provides a two-way data communication
coupling to a network link 2620 that is connected to a local network 2622. For example,
communication interface 2618 may be an integrated services digital network (ISDN) card
or amodem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 2618 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 2618 sends and receives electrical, electromagnetic or optical signals that carry
digital data information sharing system 100 representing various types of information.
[0447] Network link 2620 typically provides data communication through one or
more networks to other data devices. For example, network link 2620 may provide a
connection through local network 2622 to a host computer 2624 or to data equipment
operated by an Internet Service Provider (ISP) 2626. ISP 2626 in turn provides data
communication services through the world wide packet data communication network now
commonly referred to as the “Internet” 2628. Local network 2622 and Internet 2628 both
use electrical, electromagnetic or optical signals that carry digital data information
sharing system 100. The signals through the various networks and the signals on network
link 2620 and through communication interface 2618, which carry the digital data to and
from computer system 2600, are exemplary forms of carrier waves transporting the
information.

[0448] Computer system 2600 can send messages and receive data, including
program code, through the network(s), network link 2620 and communication interface
2618. In the Internet example, a server 2630 might transmit a requested code for an
application program through Internet 2628, ISP 2626, local network 2622 and
communication interface 2618.

[0449] The received code may be executed by processor 2604 as it is received, and/or
stored in storage device 2610, or other non-volatile storage for later execution. In this
manner, computer system 2600 may obtain application code in the form of a carrier wave.
[0450] In the foregoing specification, embodiments of the invention have been
described with reference to numerous specific details that may vary from implementation
to implementation. Thus, the sole and exclusive indicator of what is the invention, and is

intended by the applicants to be the invention, is the set of claims that issue from this

79

WO 2004/013725 PCT/US2003/023747

application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

80

WO 2004/013725 PCT/US2003/023747

CLAIMS

‘What is claimed is:

2.

A method for sharing information, the method comprising the steps of:

an explicit capture process adding a first set of one or more information items to a
staging area by making an explicit call through an API associated with the
staging area;

an implicit capture process automatically adding a second set of one or more
information items to said staging area based on events that occur in a
system associated with said implicit capture process; and

a consumer process consuming information items that are stored in said staging

arca.

The method of Claim 1 where the step of automatically adding a

second set of one or more information items is performed by a capture

process that inserts information items into the staging area based on the

content of log files generated within a database system.

3.

The method of Claim 2 wherein the staging area is managed by said database

system.

The method of Claim 2 wherein:
the log identifies changes made within said database system; and
the set of one or more information items includes records that reflect a set of said

changes.

The method of Claim 4 wherein:
the set of said changes is a subset of all changes reflected in said logs; and
the capture process selects which changes to reflect in said records based on rules

that are indicated in metadata stored within said database system.

The method of Claim 1 wherein:
the explicit capture process, the implicit capture process and the consuming

process are components in an information sharing system; and

81

WO 2004/013725 PCT/US2003/023747

the method further comprises the steps of:
the information sharing system receiving rules data that specifies one or
more rules that indicate how at least one of said components is to
operate; and
registering said rules data by storing, within said information sharing
system, metadata that represents said one or more rules;
said at least one component reading said metadata and operating in a

manner specified in said metadata.

7. The method of Claim 6 wherein the rules data includes rules that indicate how

said at least one component is to transform said information items.

8. The method of Claim 6 wherein:
the information sharing system includes a database system;
the step of registering said rules data includes storing, within the database system,
metadata that represents said one or more rules; and

said at least one component is a process that executes within said database system.

9. The method of Claim 1 further comprising the steps of:
the implicit capture process storing, within each information item of said second
set of one or more information items, a tag value that indicates that the
information item to corresponds to an event that occurred in said system;
and
using said tag values to avoid a cycle that would otherwise cause said event to be

re-applied within said system.

10. The method of Claim 9 further comprising the steps of:

propagating the information item from said staging area to a second system;

making a change in said second system by applying the event associated with the
information item in said second system;

wherein the second system is configured to propagate changes in said second
system to said first system; and

wherein the step of using said tag values to avoid a cycle includes, based on the
tag value in said information item, preventing said change from being

propagated to said first system.

82

WO 2004/013725 PCT/US2003/023747

11.

12.

13.

14.

15.

The method of Claim 1 wherein:
said system is a first system; and
the an implicit capture process executes in a second system that is remote relative

to said first system.

The method of Claim 11 wherein:

the method ﬁﬂher comprises the step of communicating a log from the first
system to the second system; and

the implicit capture process generating said second set of information items based

on information contained in said log.

The method of Claim 12 wherein:

the first system is a first database system;

the second system is a second database system;

the log is a redo log generated by the first database system; and

the second set of information items identifies changes that were made in said first

database system.

The method of Claim 13 wherein:

the staging area resides in said second database system; and

the method further comprises the step of using an apply process to read said.
second set of information items from said staging area and to make
changes in said second database system based on said second set of

information items.

A method for sharing information, the method comprising the steps of:

an capture process automatically adding a set of one or more information items to
said staging area based on events that occur in a first system associated
with said capture process; and

the capture process storing, within each information item of said set of one or
more information items, a tag value that indicates that the information item
corresponds to an event that occurred in said first system;

propagating an information item from said staging area to a second system;

33

WO 2004/013725 PCT/US2003/023747

making a change in said second system by applying in said second system the
event associated with the information item;

wherein the second system is configured to propagate changes in said second
system to said first system; and

using said tag values to avoid a cycle by preventing said change from being
propagated to said first system, based on the tag value in said information

item.

16. A method for sharing information, the method comprising the steps of:

an capture process automatically performing the steps of
inspecting redo log files generated in a first database system;
adding a set of one or more information items to a staging area based on

events that are indicated in said redo log files; and

a consuming process automatically processing information items from said
staging area by reading information items in said staging area and causing
changes to be made in a second database system based on events that are

indicated in said redo log files.

17. The method of Claim 16 wherein the step of causing changes to be made in said
second database includes maintaining in said second database system replicas of one or
more database objects in said first database system, wherein said one or more database

objects are a subset of replicable objects in said first database system.

18. The method of Claim 16 wherein the step of causing changes includes the steps
of:
constructing a database command to cause said changes; and

submitting said database command to said second database system.

19. The method of Claim 16 wherein the first database system is a

different type of database system than said second database system.
20. The method of Claim 16 further comprising the steps of:

receiving subscription data that indicates subscribers and information in which the

subscribers are interested;

84

WO 2004/013725 PCT/US2003/023747

21.

of:

22,

23.

a second consuming process automatically reading information items from said
staging area and, based on said subscription data, notifying subscribers that

are interested in events associated with the information items.
A method for sharing information, the method comprising the steps

registering a set of capture rules within a database system;

registering a set of propagation rules within said database system;

based on said set of capture rules, deteﬁnining which events that occur within said
database system are to be captured;

capturing said events by storing information about said events in a staging area;

based on said set of propagation rules, determining how to propagate information
from said staging area; and

propagating information from said staging area based on said set of propagation

rules.

The method of Claim 21 wherein further comprising the steps of:

registering a set of apply rules;

receiving said information propagated from said staging area; and

applying said information received from said staging area based on said set of

apply rules.

The method of Claim 21 wherein the step of capturing said events includes

reading logs generated by said database system, and selectively storing in said staging

area information about events identified in said logs.

24.

25.

The method of Claim 21 wherein:

the step of propagation includes propagating said information to a second staging
area; and

the method further includes the step of applying changes identified in said second

staging area to a second database system.

The method of Claim 24 further wherein:
the method further comprises the step of registering a set of apply rules; and
the step of applying changes is performed based on said set of apply rules.

85

WO 2004/013725 PCT/US2003/023747

26.

27.

28.

The method of Claim 24 further wherein:
the method further comprises the step of registering a user procedure; and

the step of applying changes is performed based on said user procedure.

A method for sharing information, the method comprising the steps of:

a capture process adding a first set of one or more information items to a staging
area;

an apply process automatically reading information items from said staging area
and selectively consuming said information items; and

an explicit dequeue process consuming an information item from said staging area

by making a explicit call to an API associated with said staging area.

A method for responding to a change made in a system, the method

comprising the steps of:

29.

30.

assigning a change time to said change;

generating a record of said change, wherein the step of generating said record is
performed asynchronously relative to when the change is made;

reading said record of said change, wherein the step of reading said record is
performed asynchronously relative to when the record is generated;

executing a flashback query, wherein the flashback query processes data from said
system at an access time that is based on said change time; and

determining an action to perform in response to said change based on results of

said flashback query.

The method of Claim 28 wherein:
said system is a database system;
the step of generating a record is performed based on information read from a log

file that is generated by said database system.

The method of Claim 28 wherein:

the step of generating said record is performed by a capture process that causes
said record to be stored in said staging area; and

the step of reading said record is performed by a consuming process that

consumes records stored in said staging area.

86

WO 2004/013725 PCT/US2003/023747

31. A method for achieving exactly-once handling of sequence of items, the method
comprising the steps of:
for each item in the sequence of items that arrives at a destination site from
another site, performing the steps of
reading a sequence number associated with the item;
determining whether the item has already been processed based on
whether a set of conditions is satisfied;
wherein said set of conditions includes a condition that requires a
comparison between the sequence number associated with the item
and a persistently stored watermark value; and
processing said item only if said set of conditions is satisfied;
as the items are processed at the destination site, based on the sequence numbers
associated with said items, repeatedly updating said persistently stored
watermark value to indicate which items have been processed; and
periodically sending a message from said destination site to said other site,
wherein said message indicates which items have been processed at said

destination site.

32. The method of Claim 31 wherein:
the items correspond to pieces of transactions; and
the watermark value indicates a commit time of a transaction whose changes have

been completely applied at the destination site.

33, The method of Claim 32 wherein the watermark value indicates a commit time of

a transaction whose changes have been most recently applied by an apply engine.

34. The method of Claim 32 wherein the watermark value indicates a commit time,
!
where all transactions with commit times at or below said watermark value are

guaranteed to have been applied by an apply engine.

35. The method of Claim 32 wherein the step of repeatedly updating a persistently
stored watermark value includes repeatedly updating the persistently stored watermark
value to reflect the commit time of the most recent transaction to be fully applied at said

destination site.

-87-

WO 2004/013725 PCT/US2003/023747

36. The method of Claim 31 wherein:
the items correspond to pieces of transactions; and
the step of periodically sending a message includes periodically sending a
message that indicates an oldest change time of a transaction whose

changes have not been completely applied at the destination site.

37. The method of Claim 36 further comprising the step of repeatedly updating a
persistently stored OLDEST CSN value to reflect the oldest change time of the oldest

transaction that has not yet been fully applied at said destination site.

38. The method of Claim 37 further comprising the step of, in response to a failure at
the destination site, reading the persistently stored OLDEST CSN value and requesting
items to be resent to the destination site based on the persistently stored OLDEST CSN

value.

39. The method of Claim 31 further comprising the step of, in response to a failure at
the destination site, reading the persistently stored watermark value and requesting items

to be resent to the destination site based on the persistently stored watermark value.

40. The method of Claim 31 wherein:
the other site is a source site; and
the method further comprises the steps of:
said source site periodically storing to persistent storage information
received in said message; and
after a failure at said source site, said source site performing the steps of
reading said information from persistent storage; and

resending items to said destination site based on said information.

41. The method of Claim 31 wherein:
the other site is an intermediary site that receives said items from a third site; and
the method further comprises the steps of:
said intermediary site periodically storing to persistent storage information

received in said message; and

-88-

WO 2004/013725 PCT/US2003/023747

after a failure at said intermediary site, said intermediary site performing
the steps of
reading said information from persistent storage; and
requesting said third site to resend items to said intermediary site

based on said information.

42. The method of Claim 41 wherein the intermediary site periodically sends said

information to said third site.

43. The method of Claim 31, wherein:
the items include pieces of a first transaction and pieces of a second transaction,
where the first transaction committed before the second transaction; and
the step of repeatedly updating said persistently stored watermark value includes
the steps of
if the destination site finishes applying the second transaction before the
destination site finishes applying the first transaction, then the
destination site persistently stores information to indicate that the
second transaction is fully applied, without changing said
persistently stored water mark; and
if the destination site finishes applying the first transaction before the
destination site finishes applying the second transaction, and all
transactions with commit times below said first transaction have
been fully applied, then updating said persistently stored water
mark based on a sequence number associated with said first

transaction.

44. The method of Claim 31 wherein:
the items identify changes made by transactions performed in a first database; and
the destination site processes said items by causing said changes to be reflected in

a second database that is different from said first database.
45, The method of Claim 44 wherein the step of causing said changes to be reflected

includes constructing a set of one or more database commands based on the changes

associated with a particular transaction that was executed in said first database, and

-89-

WO 2004/013725 PCT/US2003/023747

executing said set of one or more database commands as a transaction in said second

database.

46. A method for responding to DDL operations associated with a database object, the
method comprising the steps of:
in response to execution of a DDL statement associated with a database object,
generating a record that indicates changes made by said DDL statement;
and

based on said record, performing an action that is asynchronous relative to

execution of said DDL statement.

47. The method of Claim 46 wherein:
said record includes dependency information;
the method includes the further steps of
using said dependency information to determine which other actions are
dependent on said action; and
performing said action concurrently with other actions that are not

dependent on said action.

48. The method of Claim 46 wherein:

the step of performing an action includes causing a corresponding change to be

made; and

said corresponding change is made relative to a replica of said database object.

49. The method of Claim 48 wherein the step of causing a corresponding change is

performed without quiescing any database involved in replication of the database object.

50. The method of Claim 48 wherein the step of causing a corresponding change is

performed without restricting user activity in any database involved in replication of the

database object.

51. The method of Claim 48 wherein the execution of said DDL statement causes

creation of said database object, and said corresponding change causes creation of said

replica.

-90-

WO 2004/013725 PCT/US2003/023747

52. The method of Claim 48 wherein execution of the DDL statement changes how
the database object is structured, and said corresponding change to causes an alteration in

a structure of said replica.

53. The method of Claim 48 wherein the step of generating a record includes storing

information in a redo log.

54. The method of Claim 53 wherein the step of causing a corresponding change to be
made includes the steps of:
reading the information from the redo log;
based on the information from the redo log, generating change data that indicates
how said database object was altered; and

applying said change data to said replica.

55. The method of Claim 54 wherein the step of generating the change data is

performed asynchronously relative to execution of said DDL statement.

56. The method of Claim 53 wherein:
the redo log includes information that identifies changes made to data within said
database object; and
the method further includes the steps of changing data contained in said replica

based on information from said redo log.

57. The method of Claim 54 further comprising the step of storing the change data in

a staging area, prior to applying said change data to said replica.

58. The method of Claim 57 further comprising the step of reading said change data
from said staging area and propagating said change data to a site at which said replica is

located.

59. The method of Claim 54 wherein the step of generating change data is performed

by a capture engine based on a rule set that has been registered by a user.

60. The method of Claim 58 wherein the step of propagating said change data is

performed by a propagation engine based on a rule set that has been registered by a user.

-91-

WO 2004/013725 PCT/US2003/023747

61.

The method of Claim 54 wherein the step of applying said change data is

performed by an apply engine based on a rule set that has been registered by a user.

62.

63.

64.

65.

The method of Claim 48 wherein:

the database object is a user object that establishes a new user of a database
system,;

execution of the DDL statement creates the user object; and

the step of causing a corresponding change to be made includes creating a replica
user object in another database system to establish said new user to be a

new user of said other database system.

The method of Claim 48 wherein:

the database object is a set of one or more permissions for a database system;
execution of the DDL statement creates the one or more permissions; and

the step of causing a corresponding change to be made includes creating a replica

of said one or more permissions in another database system.

The method of Claim 48 wherein:

the DDL statement is executed in a first database;

the replica resides in a second database; and

the method further comprises the steps of _

in response to execution of a second DDL statement associated with said replica,
generating a second record that indicates changes made by said second
DDL statement; and

based on said record, causing a second corresponding change to be made, wherein
said second corresponding change is made relative to said database object

in said first database.

The method of Claim 48 wherein:

the database object is a type of database object selected from a set that consists of
a view, a trigger, a procedure, an index, a sequence, a synonym, a rollback
segment, an outline, a database link, a materialized view and a
materialized view log;

execution of the DDL statement creates the selected type of database object; and

-92-

WO 2004/013725 PCT/US2003/023747

the step of causing a corresponding change to be made includes creating a replica

of said type of database object in another database system.

66. The method of Claim 46 wherein:
the DDL statement is executed in a first database system; and
the step of performing an action includes sending a message to a second database

system that is different from said first database system.
67. A computer-readable medium having stored thereon instructions which, when

executed by one or more processors, cause the processors o perform the method recited

in any one of Claims 1-66.

-93-

WO 2004/013725 PCT/US2003/023747

1/24

122

118

116

CONSUMING
PROCESS

PROPAGATION
PROCESS

CAPTURE
PROCESS

| STAGING STAGING
AREA AREA

CAPTURE STAGING CONSUMING
PROCESS AREA PROCESS

CONSUMING CAPTURE

PROCESS PROCESS

FIG. 1

WO 2004/013725 PCT/US2003/023747

2/24

Capture LCRs . Queue
Process [CR

LCR
User Message
User Message
LCR
User Message
LCR
LCR

Log
Changes

Database Objects

|

& G

User Changes
FIG. 3

Source Destination
Queue Queue
LCR User Message
User Message Propagate | LCR
LCR Events User Message
LCR — LCR
LCR LCR
User Message .

FIG. 4

PCT/US2003/023747

WO 2004/013725

G "9l4

LBl PUB YIOA MBN

ul sananp uoieunsaq

9L} 10J BNANY) 89N0S «

T

Sjuang ajebedoid

P — N ‘Buoy Buoy ul
E— anany) 92.n0s 8y} 10}
N anany uoleunsa(q «
SjUaAT cof
ananp 81e6Ea0s :S1.ananp Siy|
> _”
welpy ur <
<+ aseqeje(uoneunsaqg —
N ananp
™
TN
g — N N
< obeaiyn u
— SJuang gSeqeje(J ajelpalliouf
9nang ajebedold
YI0A Mo Ul

aseqe)Rq LoieUSaq

ananp

N

N
buoy buoH ur

aseqeje(392.1n0s

PCT/US2003/023747

WO 2004/013725

4/24

L "9l 9 94

. 497

. da1

. a6essaj Jas abessaj 1asM

da1 dJ1 da1

41 | sjueng qJ1 abessapy 19sNn

abessay 18SM | ajebedold HJ1 00eSSajy 19s)

497 80eSSayy 495 Y97

abessap 189S 497 497

onanp ananp anang
sabessajy sabessajy sabessajy sabessayy
10 SHJT 10 ST 10 SHOT 10 SHJT

sabessayy SaWnNsuo? sabessayy saanpoid | |sebessayy sawnsuo) sabessayy Saanpoid
@ uoneayday Jasn 9 uoeajjddy 1asn g uonealddy 19sn v uoneaddy Jesn

WO 2004/013725 PCT/US2003/023747

5/24
LCRs or
Messages
Queue > App/y
LCR Process
LCR y
User Message Apply Messages | Row
ij(s:zr Message Changes g LCRs
User Message Message DML
igg Handler Handler
- Procedure Procedure DDL
. LCRs
. Y
DDL
Y Handler
Database Objects Procedure
FIG. 8
Dequeue
(ueue Events | Transformation
During Dequeue
Continue Dequeue
of Transformed
Events
Apply
Process
Apply Transformed
Events
Database Objects

FIG. 9

PCT/US2003/023747

WO 2004/013725

6/24

N

0l 9ld

Aema)en

-

8199190

aseqeeq

mmmqsmm/
286-%(

sabueyy
Ajddy

T

-

- o
Ajddy
SITEYE]
ananbaq
S89INI8S
snoauabols)sH —
ananp
mmgﬁmn/

ajaelp \

PCT/US2003/023747

WO 2004/013725

7/24

AN

s108/90
aseqeje(d

sabueyn

Addy

$59904d
Ajddy

LL 94

-

Sjuang

ananbaq

ananp

ajaelg

88&37

ST
Buiurejuo)
safessajy
19S[) ananbu3

uoineajddy
198N

<

sabueln
199

ajaelg-uoy

WO 2004/013725 PCT/US2003/023747

8/24

User Application A User Application B
Produces Messages Consumes Messages
A
m m
Messages Oracle Database W
LCRs or
LCRs Messages
Capture | Queue | Apply
Process LCR Process Row
[CR LCRs
Changes User Message Changes | |Messages
User Message
LCR
User Message|| | Message DML DDL
[CR PHancger PHancger |CRs
Changes LCB rocequre rocedure '
. DDL
— Handler
Database Objects Procedure

T i
& G

User Changes

FIG. 12

WO 2004/013725 PCT/US2003/023747

9/24
User Application C
Produces Messages
LCRs or
Messages
\Oracle Database

v

Capture| LCRS | Queue
Process ICR
User Message Propagate
Changes |LCR Events
LCR 20
LCR
User Message
Changes :
Database Objects

A

|
G ST

User Changes

FIG. 13A

WO 2004/013725

10/24

PCT/US2003/023747

User Application D
Consumes Messages
LCRs or
Messages
\ Oracle Database /
/
LCRs or
Queue Messages
User Message ———>{" Apply
LCR Process
User Message Row
O— igﬁ Changes lMessages LCRs
L] '
. Message DML
Handler | | Handler | | P2
Procedure| |Procedure| | S
DDL
Database Objects Handler

\

FIG. 13B

WO 2004/013725

11/24

PCT/US2003/023747

Event
| | Rulesand
? O E%i%se ©) Evaluation
~ Contexts
Client (4;;)
: True, False,
or Unknown
Optional
Action Action Context
FIG. 14
Rule
Set
Capture , Aoply
Process Propagation sboly

FIG. 15

WO 2004/013725 PCT/US2003/023747

12/24

Transformation

Enqueue
Transformed
LCRs

| Queue

Capture
Process

Capture
Changes

Log
Changes
' Databas; Objects
] L
G G
User Changes

FIG. 16

PCT/US2003/023747

WO 2004/013725

13/24

ananp
uoneunsaq

Ll "9I4

ajebedoid

ananbaq bulng
LOIBLLIOJSURI]

ananp
90.110S

WO 2004/013725

14/24

PCT/US2003/023747

Propagate Locally
Captured LCRs

«—0)

Propagate Locally
Captured LCRs

20
Propagate
Locally
Captured
LCRs
< mult2.net)
gequlgue LCRs Enqueue
iinet | |Quewe | ICRs
Dequeve LCRs . |——— | | [capture
Sent from b — [Pré)cess
mult1.net - ?
l Capture
Changes
Apply Process for mult1.net Changes
V Apply Changes Sent from mult1.net ---
Apply Process for mult3.net Changes
Apply Changes Sent from mult3.net l
Y
Database Objects

r
)

User Changes

FIG. 18A

WO 2004/013725

15/24

PCT/US2003/023747

®

< mult1.net
N—
Dequ}gue LCRs Enqueue
igne | |Quous | LCAS
Dequeug LCRs | [capture
Sent from _— | Process
mult2.net - I
l Capture
Changes
Apply Process for mult2.net Changes
v Apply Changes Sent from mult2.net ---
Apply Process for mult3.net Changes
Apply Changes Sent from mult3.net l
Y
Database Objects
— T A

|
G

User Changes

FIG. 188

WO 2004/013725 PCT/US2003/023747

16/24
(B=
Propagate
Locally
Captured
LCRs
(mult3.net)

lS)equ'gue LCRs Fnquee

m%.r et | |Queue LCRs

Dequeue LCRs ' [Canture

Sent from | — ~ 5 opcess

mult1.net N ?

l Capture

Changes
C)= Apply Process for mult1.net Changes
Y Apply Changes Sent from mult1.net --+
© ™| Apply Process for mult2.net Changes
Apply Changes Sent from mult2.net l
Y
Database Objects
o L@D
User Changes

FIG. 18C

PCT/US2003/023747

WO 2004/013725

SHO1
painide)
Ajjeao7
a)ebedoid

17/24

<l

61 9l4

sabuey” 1asf %.W_%
Y

$198lq0 9seqejeq
(.00, s be1) (o0, s Ber)| 1
Jaurginuw jsurgiinw
wolj wolf —--Jaurgynu woJy Juas sabuey) Ajddy
sabuel?) sabuey) :
Ajddy Aiddy| | [s86UBYQ 18U gl uioy JusS Sabuey] Ajddy
piogey—{ |- pi028Y| |--jaurzynw wouy juag sabueyd Addy I
bo7 19U zZynuw wody Juas sabueyy Aiddy
opay = r
- (TINN S! bel
m sabuel?) 18Uy WwoJj
-~ J9s[] pJ0I? usS SHJ1
15[pi0994 anenba(g
| §s890/d
sbe, TN ypm | OMOBD [syoy | _———| eu'gyw woy
sabueys ainjde) onanbuj onang JusS SYJ1
ananba(g
jour Ly v

SHIT
painyde)
A|[eao7
ajebedold

WO 2004/013725

5

Secondary
Database

18/24

PCT/US2003/023747

>

Secondary
Database

V

Primary
Database

L

Secondary
Database

N

FiG. 20

WO 2004/013725

PCT/US2003/023747

19/24

. Propagate All Locally| |Propagate All Locally ;

A o W L%RS Capiured LCRs fo | | Captured LCRs to | | esctflg'ﬁré%m
9”2 i ot ps2.net, Except ps3.net, Except s3.net
ps2.net |\ 1cRs withTag = 2°| |LCRs with Tag = 3°| | P°°

\ Primary Database ps1.net

Dequeue LCRs Sent Capture Changes
From ps4.net Enqueue LCRs with Any Tag
Dequelie Queue (Including Tags) (Including a NULL Tag)
LCRs Sent Capture |
from ps3.net N Process
Dequeue —
[CRs Semt | ——— ’ze,fgn’gegsef |
fromps2.net | __ (Tag is NULL) ! = d
: ~
Apply Process for ps2.net Changes
yAbply Changes Sent from ps2.net-| ﬁgg?yrd-- _ﬁggg,r ar ﬁgﬁgf d
Apply Process for ps3.net Changes| | |Changes| | Changes| Changes
T | |from from | from
'App/y Changes Sent from ps3.net ps2.net| | ps3net| psd.net
Apply Process for ps4.net Changes (Tag is (Tag is (Tag is
Apply Changes Sent from ps4.net-$ v12) 37) | 4)
Database Objects
\ 1
-
Propagate all Locally Receive LCRs
Captured LCRs to ps4.net | User Changes Sent from
Except LCRs with Tag= "4~ ps4.net

FIG. 21

WO 2004/013725 PCT/US2003/023747

20/24

— Secondary Database ps2.net >
— y p

Queue Enqueue Capture Changes
LCRs Capture < with NULL Tag
R Process
Dequeue _—
LCRs Sent |—/————
from psi.nefl ——— | Record User Changes
v (Tag is NULL) "} —
Apply Process for ps1.net Changes| |
0g
Apply Changes Sent from ps1.net-{ --Record
Changes
from
ps1.net
\ (Tag is 00°)
Database Objects
I
i)
Receive LCRS User Changes Propagate Locally
From Primary Captured LCRs
Database fo ps1.net

FIG. 22

WO 2004/013725

Secondary
Database

Secondary
Database

Secondary
Database

Primary
Database

Secondary
Database

Secondary
Database

FIG. 23

Secondary
Database

Secondary
Database

PCT/US2003/023747

Secondary
Database

Secondary
Database

PCT/US2003/023747

WO 2004/013725

22/24

ve "9ld

AHONAN

 TIIY70A
" -NON

| AHOWAN
' 1LY T0N

NS Yo Yo |
aqirddy| |vard34 N EMER] _“
ISYT ISVT 181 || 907 | [wnioio||| |
......... L0zre
@E@ @Eﬁ@

vy _m
viva | vIva |, viva |
JFONYHI JONVHI JONVHI :
................. (&.@.i //E& //EN

J4/S NOILYNILSId 1S ALYIGTNHTLNI 3U/S 394N0S
\-p0rg \-00v2

2082~

WO 2004/013725

2502~

RECEIVE ITEM

CSN LESS
THAN OLDEST

BELONGS 70
ABOVE-MARK
APPLIE?D XN

BELONGS 70 TXN
COMMITTED BEFORE OR
AT LOW WélTERMARK

23/24

PCT/US2003/023747

YES

A

DISCARD ITEM

] /'2570

A

2522~

NO TXN COMPLETELY

ADD TXN'TO
ABOVE-MARK
APPLIED TXN LIST
IF APPROPRIATE

2524~

DONE

A

LESS THAN OR
EQUAL TO HIGHEST
SO FAR CS?N FOR TXN

2512

APPLY [TEM

\ / /2514

UPDATE
HIGHEST SO FAR
CSN FOR TXN

APP%/ED

2518

UPDATE LOW
WATERMARK
IF APPROPRIATE

/ 2520
UPDATE OLDEST

FIG. 25

CSN IF
APPROPRIATE

PCT/US2003/023747

WO 2004/013725

24/24

1SOH

¥292-.

r 029¢

MHOMIIN\ MNIT

¢c9¢
9¢9¢

8¢9¢

01) HHOMIIN

YIAHTS
0692~

92 ‘91
m_ FOVAHIIN] w
m NOLLYOINAAIOY | |10SSTI04d W
819z 1092 m
' 2092~ |
w sng =
| [30130 AHONAN | |
. | F9vH0is Nod NYA |
0192~ 8092~ \-9092
g T

104INOJ
H3S4NJ

\-9192

EN)/E(Y
1NdNI

1192

AY1dSId

\-2192

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

