

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012320554 B2

(54) Title
RNAi for the control of fungi and oomycetes by inhibiting saccharopine dehydrogenase gene

(51) International Patent Classification(s)
C12N 15/113 (2010.01) **C12N 15/82** (2006.01)
A01H 5/00 (2006.01)

(21) Application No: **2012320554** (22) Date of Filing: **2012.10.03**

(87) WIPO No: **WO13/050410**

(30) Priority Data

(31) Number (32) Date (33) Country
61/661,062 **2012.06.18** **US**
11356013.0 **2011.10.04** **EP**

(43) Publication Date: **2013.04.11**
(44) Accepted Journal Date: **2017.11.09**

(71) Applicant(s)
Bayer Intellectual Property GmbH

(72) Inventor(s)
Delebarre, Thomas;Dorme, Cecile;Essigmann, Bernd;Schmitt, Frederic;Villalba, Francois;Paget, Eric

(74) Agent / Attorney
Griffith Hack, GPO Box 4164, Sydney, NSW, 2001, AU

(56) Related Art
WO 2006070227 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/050410 A1

(43) International Publication Date

11 April 2013 (11.04.2013)

(51) International Patent Classification:

C12N 15/113 (2010.01) A01H 5/00 (2006.01)
C12N 15/82 (2006.01)

(21) International Application Number:

PCT/EP2012/069521

(22) International Filing Date:

3 October 2012 (03.10.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

11356013.0 4 October 2011 (04.10.2011) EP
61/661,062 18 June 2012 (18.06.2012) US

(71) Applicant: BAYER INTELLECTUAL PROPERTY GMBH [DE/DE]; Alfred-Nobel Strasse 10, 40789 Monheim (DE).

(72) Inventors: DELEBARRE, Thomas; Chemin du Plain Vallon, F-69300 Caluire-et-Cuire (FR). DORME, Cécile; 48 rue Saint Gervais, F-69008 Lyon (FR). ESSIGMANN, Bernd; 12 rue de la Roche, F-69370 Saint-Didier-au-Mont-d'Or (FR). SCHMITT, Frédéric; Les Oréades, 229 route d'Ars, F-01600 Saint-Didier-de-Formans (FR). VILLALBA, François; 34 avenue Gabriel Péri, F-69250 Albigny-sur-Saône (FR). PAGET, Eric; 123 avenue du Général De Gaulle, F-69300 Caluire-et-Cuire (FR).

(74) Agent: GUITTON, Carole; BAYER S.A.S., Patents & Licensing Department, 14 impasse Pierre Baizet, CS 99163, F-69263 Lyon cedex 09 (FR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2013/050410 A1

(54) **Title:** RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE

(57) **Abstract:** The present invention relates to control of plant pathogens, particularly fungi or oomycetes, by inhibiting one or more biological functions, particularly by inhibiting saccharopine dehydrogenase gene(s) using RNA interference. The invention provides methods and compositions using RNA interference of plant pathogens target genes for such control. The invention is also directed to methods for making transgenic plants tolerant to said plant pathogens, and to transgenic plants and seeds generated thereof.

RNAi for the control of fungi and oomycetes by inhibiting saccharopine dehydrogenase gene

The present invention relates to control of plant pathogens and pests, particularly fungi or oomycetes, by inhibiting one or more biological functions, particularly by inhibiting fungi saccharopine dehydrogenase gene involved in the α -amino adipate pathway for lysine biosynthesis and their oomycetes homologs using RNA interference.

5 The invention provides methods and compositions using RNA interference of fungi or oomycetes target genes for such control. The invention is also directed to methods for making transgenic plants tolerant to said fungi or oomycetes, and to transgenic plants and seeds generated thereof.

10

The technology used in the context of the present invention is RNA interference or RNAi.

The expression in an organism of a sequence homologous to a target-gene capable of inducing the formation of small double-stranded RNA (dsRNA) makes it possible, very specifically, to extinguish this gene and to observe the phenotype that results therefrom (Xiao *et al.*, 2003).

15 The dsRNA triggers the specific degradation of a homologous RNA only in the region of identity with the dsRNA (Zamore *et al.*, 2000; Tang *et al.*, 2003). The dsRNA is an RNA molecule which contains a double-stranded sequence, generally of at least 19 base pairs (bp) including a sense strand and an antisense strand. The dsRNA molecules are also characterized by the very large degree of complementarity between the two complementary RNA strands. The dsRNA is degraded into RNA
20 fragments of generally 18 to 25 nucleotides (siRNA) and the cleavage sites on the target RNA are evenly spaced apart by 18 to 25 nucleotides. The small siRNAs resulting therefrom exhibit a very high degree of identity with respect to the target RNA; however, mismatches of 3 to 4 nucleotides between the siRNA and the corresponding portion of the target RNA nevertheless make it possible for the system to operate (Tang *et al.*, 2003). It has thus been suggested that these fragments of 18 to 25
25 nucleotides constitute RNA guides for recognition of the target (Zamore *et al.*, 2000). These small RNAs have also been detected in extracts prepared from Schneider 2 cells of *Drosophila melanogaster* which had been transfected with dsRNAs before cell lysis (Hammond *et al.*, 2000). The guiding role of the fragments of 18 to 25 nucleotides in the cleavage of the mRNAs is supported by the observation that these fragments of 19 to 25 nucleotides isolated from dsRNA are capable of being
30 involved in the degradation of mRNA (Zamore *et al.*, 2000). Sizable homologous RNA molecules also accumulate in plant tissues which undergo the PTGS phenomenon (Post Transcriptional Gene Silencing, Hamilton and Baulcombe, 1999). These small RNAs can regulate gene expression at three different levels:

- transcription (TGS for Transcriptional Gene Silencing),
- messenger RNA degradation (PTGS for Post Transcriptional Gene Silencing),
- miRNA pathway
- translation.

Regulation involving messenger RNA degradation appears to exist in all eukaryotes, whereas regulation at the transcriptional level has only been described in mammals, plants, drosophila and *C. elegans*. As regards the regulation of translation, it has been characterized in *C. elegans* and drosophila and appears also to exist in mammals (Hannon, 2002) and plants (Ruiz Ferrer and Voinnet, 2009).

5 In the literature, reference is made to RNAi, to PTGS, to cosuppression or to quelling (reserved for fungi) when referring to this phenomenon, depending on the organisms in which it is studied.

RNAi has in particular proved that it is effective when double-stranded RNA (dsRNA) is injected into the nematode *Caenorhabditis elegans* (Fire *et al.* 1998; Montgomery *et al.*, 1998; WO99/32619).

10 Inhibition of the expression of an insect target gene was also observed when this insect is fed with bacteria expressing small double-stranded RNAs corresponding to said insect target gene (WO 01/37654).

More recently, pharmaceutical compositions comprising dsRNA substantially complementary to at least part of a gene suspected to be involved in the human papilloma virus (HPV) infection together with a pharmaceutically acceptable carrier have been disclosed to treating said HPV infection 15 (WO2009/0247607).

The introduction of dsRNA was carried out in plants in order to induce silencing of an endogenous target gene (Hamilton *et al.*, 1998, WO99/15682), to induce resistance to RNA viruses by means of the use of a transgene expressing a dsRNA having substantial identity with respect to the viral genes (Waterhouse *et al.*, 1998; Pandolfini *et al.*, 2003, WO98/36083, WO99/15682, US 5,175,102), but also

20 to induce resistance to nematodes (Chuang and Meyerowitz, 2000, WO01/96584) or alternatively to the bacterium *Agrobacterium* (WO00/26346, Escobar *et al.*, 2001). More recently, it has been shown that plants expressing dsRNA having substantial identity against a fungal gene essential to the growth of the fungus or to its pathogenicity may also induced resistance to this fungus (WO05/071091).

25 Nevertheless, since that time, only few preliminary results and no commercial examples exist on RNAi-mediated resistance or tolerance to phytopathogenic fungi where the double-stranded (dsRNA) or small interfering (siRNA) molecules are expressed in the plant, or applied as part of an external composition to the seed, the plant or to the fruit of the plant or to soil or to inert substrate wherein the plant is growing or wherein it is desired to grow.

30 Among others, one difficulty is to find an appropriate target gene, whose inhibition by dsRNA or siRNA induces a good level of fungi tolerance, up to a level suitable for a commercial use, without deleterious effect on the plant expressing said dsRNA or siRNA or on which a composition comprising said dsRNA or siRNA is applied.

35 Stärkel C. attempted in her Ph. D. thesis [“Host induced gene silencing – strategies for the improvement of resistance against *Cercospora beticola* in sugar beet (*B. vulgaris* L.) and against *Fusarium graminearum* in wheat (*T. aestivum* L.) and maize (*Z. mays* L.)”, defended in June 2011] to inhibit the growth of *Fusarium graminearum* by transforming wheat with silencing constructs targeting the homoaconitase gene, an essential gene in the lysine biosynthesis pathway. Nevertheless, no 40 transgenic wheat plants could be generated. Moreover, the attempt to delete or silence the

homoaconitase gene in *Fusarium graminearum* by transformation of the fungus with a construct designed for the inducible silencing of the homoaconitase gene were also unsuccessful.

5 The present inventors have surprisingly demonstrated that inhibition of fungus or oomycetes saccharopine dehydrogenase gene, which is involved in the α -amino adipate (AAA) pathway, via RNAi methodology causes cessation of infection, growth, development, reproduction and/or pathogenicity, and eventually results in the death of the organism.

10 This new target for the RNAi technology is particularly suitable, considering that AAA pathway is specifically found in some plant pathogens, including higher fungi, and not in plants, humans and animals.

15 Among the 20 common proteinogenic amino acids, L-lysine is the only one known to have a biosynthetic pathway which differs in plants and in higher fungi. In plants and bacteria, L-lysine is obtained through the diaminopimelate (DAP) pathway. In higher fungi and euglenoids, L-lysine is obtained through the the α -amino adipate (AAA) pathway. Saccharopine dehydrogenase, homocitrate synthase, homoaconitase, homoisocitrate dehydrogenase, α -Aminoadipate aminotransferase, α -Aminoadipate reductase and saccharopine reductase are enzymes involved in the α -amino adipate pathway for the biosynthesis of L-lysine.

20 None of the enzymes involved in these two distinct pathways (DAP and AAA pathways) are common (Xu et al., 2006; Bhattacharjee, J. K., 1985; Bhattacharjee, J. K., 1992; Vogel, H. J., 1965). As an example, fungi saccharopine dehydrogenase is involved in the Lysine biosynthesis, when the lysine-ketoglutarate from plant, sometimes also called saccharopine dehydrogenase, is responsible for lysine catabolism (Houmard et al., 2007). For humans and animals, L-lysine is an essential amino acid which can only be obtained from protein in the diet. Additionally, enzymes involved in the fungal AAA 25 pathway are unique to lysine synthesis (Umbargar, H. E., 1978; Bhattacharjee, J. K., 1992).

The presence of a specific α -amino adipate (AAA) pathway in higher fungi, which is not present nor in plant nor in humans or animals, leads to consider the enzymes involved in said AAA pathway as particularly attractive targets for the control of plant pathogens, particularly for fungal pathogens.

30 Interestingly, although lysine has been reported to be synthesized in oomycetes via the diaminopimelic pathway (Born and Blanchard, 1999), genes homologous to fungus genes of AAA pathway have been found in oomycetes, which may indicate that both pathways might be present in oomycetes. The inventors have shown that dsRNA against oomycete saccharopine dehydrogenase gene substantially reduced the growth of said oomycete, and that plants expressing dsRNA against 35 oomycete saccharopine dehydrogenase genes could be less susceptible to said oomycete infection.

40 The presence of the AAA pathway for lysine biosynthesis has been demonstrated and studied for example in *Saccharomyces cerevisiae* (Broquist, H. P., 1971, Bhattacharjee, J. K., 1992), the human pathogenic fungi *Candida albicans* (Garrad, R. C. and Bhattacharjee, J. K., 1992), and the plant

pathogen *Magnaporthe grisea* (Umbarger, H. E., 1978). The saccharopine dehydrogenase enzymes involved in the AAA pathway have been intensively studied and compared in different organisms, and their technical features, including their nucleotides and aminoacids sequences, kinetics, substrate specificity, function, 3D- structure, as well as the way to purify and characterize them, are well known from the skilled man (see Xu et al., 2001, the content of which is incorporated herein by way of reference). Numerous genes from different fungi or oomycetes and their sequence data are disclosed and available in searchable public database, such as genBank.

Randall, T.A. et al. (2005) reports a list of genes of AAA pathway from the oomycete *Phytophthora infestans*, identified by their accession numbers and the sequence data thereof, incorporated herein by reference, are available in searchable public database (s) (Randall, T.A., 2005, MPMI, 18, 229-243; see in particular table 8 p 239).

In one embodiment, the present invention provides a dsRNA molecule comprising
1) a first strand comprising a sequence substantially identical to at least 18 contiguous nucleotides of a fungus or oomycete gene and ii) a second strand comprising a sequence substantially complementary to the first strand, wherein said fungus or oomycete gene is a saccharopine dehydrogenase gene.

As used herein, "RNAi" or "RNA interference" refers to the process of sequence- specific gene silencing, mediated by double-stranded RNA (dsRNA). As used herein, "dsRNA" or "dsRNA molecule" refers to RNA that is partially or completely double stranded. Double stranded RNA is also referred to small or short interfering RNA (siRNA), short interfering nucleic acid (siNA), short interfering RNA, micro-RNA (miRNA), circular interfering RNA (ciRNA), short hairpin RNA (shRNA) and the like.

As used herein, taking into consideration the substitution of uracil for thymine when comparing RNA and DNA sequences, the term "substantially identical" or "essentially homologous" as applied to dsRNA means that the nucleotide sequence of one strand of the dsRNA is at least about 80%, at least 85% identical to 18 or more contiguous nucleotides of the target gene, more preferably at least about 90 % identical to 18 or more contiguous nucleotides of the target gene, and most preferably at least about 95%, 96%, 97%, 98% or 99% identical or absolutely identical to 18 or more contiguous nucleotides of the target gene. 18 or more nucleotides means a portion, being at least about 18, 20, 21 , 22, 23, 24, 25, 50, 100, 200, 300, 400, 500, 1000, 1500, or 2000 consecutive bases or up to the full length of the target gene.

As used herein, "complementary" polynucleotides are those that are capable of base pairing according to the standard Watson-Crick complementarity rules. Specifically, purines will base pair with pyrimidines to form a combination of guanine paired with cytosine (G:C) and adenine paired with either thymine (A:T) in the case of DNA, or adenine paired with uracil (A:U) in the case of RNA. It is understood that two polynucleotides may hybridize to each other even if they are not completely

complementary to each other, provided that each has at least one region that is substantially complementary to the other. As used herein, the term "substantially complementary" means that two nucleic acid sequences are complementary over at least 80% of their nucleotides. Preferably, the two nucleic acid sequences are complementary over at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 5 more or all of their nucleotides. Alternatively, "substantially complementary" means that two nucleic acid sequences can hybridize under high stringency conditions. As used herein, the term "substantially identical" or "corresponding to" means that two nucleic acid sequences have at least 80% sequence identity. Preferably, the two nucleic acid sequences have at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% of sequence identity.

10

Also as used herein, the terms "nucleic acid" and "polynucleotide" refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. When dsRNA is produced synthetically, less common bases, such as inosine, 5-methylcytosine, 6-methyladenine, hypoxanthine and others can also be used for antisense, dsRNA, 15 and ribozyme pairing. For example, polynucleotides that contain C-5 propyne analogues of uridine and cytidine have been shown to bind RNA with high affinity and to be potent antisense inhibitors of gene expression. Other modifications, such as modification to the phosphodiester backbone, locked nucleic acid or the 2'-hydroxy in the ribose sugar group of the RNA can also be made.

20 Accordingly to the invention, the first strand and second strand may have identical sizes. Alternatively, the size of the first strand may be greater than that of the second strand. By way of example, the size of the first strand can be about 200 nucleotides greater than the size of the second strand. In another aspect of the invention, the size of second strand is greater than that of the first strand.

25 Accordingly to the invention, the dsRNA molecule comprises a first strand comprising a sequence substantially identical to at least 18 contiguous nucleotides of a fungus or oomycete saccharopine dehydrogenase gene.

In a particular embodiment, the invention provides a dsRNA molecule comprising 30 1) a first strand comprising a sequence substantially identical to at least 18 contiguous nucleotides of a fungus or oomycete gene and ii) a second strand comprising a sequence substantially complementary to the first strand, wherein said fungus or oomycete gene is selected from the list consisting of:

- 35 a) a polynucleotide comprising a sequence as set forth in SEQ ID N0: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43;
- b) a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID N0: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44;
- c) a polynucleotide having at least 70% sequence identity, preferably at least 80%, more preferably at 40 least 90%, even more preferably at least 95% to a polynucleotide having a sequence as set forth in SEQ ID N0: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43;

d) a polynucleotide encoding a polypeptide having at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, to a polypeptide having a sequence as set forth in SEQ ID N0: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44;

5 e) a polynucleotide hybridizing under stringent conditions to a polynucleotide having a sequence as set forth in SEQ ID N0: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43; and

f) a polynucleotide hybridizing under stringent conditions to a polynucleotide encoding a polypeptide having at least 70% sequence identity to a polypeptide having a sequence as set forth in SEQ ID N0:

10 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44.

In accordance with the present invention, the term "identity" is to be understood to mean the number of amino acids/nucleotides corresponding with the amino acids/nucleotides of other protein/nucleic acid, expressed as a percentage. Identity is preferably determined by comparing the Seq. ID disclosed 15 herein with other protein/nucleic acid with the help of computer programs. If sequences that are compared with one another have different lengths, the identity is to be determined in such a way that the number of amino acids, which have the shorter sequence in common with the longer sequence, determines the percentage quotient of the identity. Preferably, identity is determined by means of the computer program ClustalW, which is well known and available to the public (Thompson et al., 1994).

20 ClustalW is made publicly available on
<http://www.ebi.ac.uk/tools/clustalW2/index.html>.

Preferably, Version 2.1 of the ClustalW computer program is used to determine the identity between 25 proteins according to the invention and other proteins. In doing so, the following parameters must be set: KTUPLE=1, TOPDIAG=5, WINDOW=5, PAIRGAP=3, GAPOEN=10, GAPEXTEND=0.05, GAPDIST=8, MAXDIV=40, MATRIX=GONNET, ENDGAPS(OFF), NOPGAP, NOHGAP.

Preferably, Version 2.1 of the ClustalW computer program is used to determine the identity between the nucleotide sequence of the nucleic acid molecules according to the invention, for example, and the nucleotide sequence of other nucleic acid molecules. In doing so, the following parameters must be set:

30 KTUPLE=2, TOPDIAGS=4, PAIRGAP=5, DNAMATRIX:IUB, GAPOEN=10, GAPEXT=5, MAXDIV=40, TRANSITIONS: unweighted.

In accordance with the present invention, the term 'hybridizing under stringent conditions' refers to 35 polynucleotides or nucleic acid sequences which hybridize with a reference nucleic acid sequence at a level significantly greater than the background noise. The background noise may be associated with the hybridization of other DNA sequences present, in particular of other cDNAs present in a cDNA library. The level of the signal generated by the interaction between the sequence capable of selectively hybridizing and the sequences defined by the sequence IDs above according to the invention is generally 10 times, preferably 100 times, greater than that of the interaction of the other 40 DNA sequences generating the background noise. The level of interaction can be measured, for

example, by labeling the probe with radioactive elements such as ^{32}P . The selective hybridization is generally obtained by using very severe conditions for the medium (for example 0.03 M NaCl and 0.03 M sodium citrate at approximately 50°C-60°C). The hybridization can of course be carried out according to the usual methods of the state of the art (in particular Sambrook et al., 2001, Molecular Cloning: A Laboratory Manual, third edition).

5 In a particular embodiment of the invention, the dsRNA molecule is applied on the plant pathogen, particularly fungi or oomycete, and/or on the plant or crop to be protected. The present invention therefore also relates to a composition comprising an effective and non-phytotoxic amount of a dsRNA molecule as defined herein.

10 dsRNA molecules accordingly to the invention may be made by classical chemical synthesis, by means of *in vitro* transcription or produced in organisms like animals cells, bacteria, yeasts, or plants by heterologous expression (Aalto A.P. et al, 2007 RNA. 13(3):422-9.)

15 The present invention therefore relates to a micro-organism producing a dsRNA molecule as herein defined.

20 The present invention also relates to a genetic construct which comprises at least one DNA sequence as well as heterologous regulatory element(s) in the 5' and optionally in the 3' positions, characterized in that the DNA sequence is able to form a dsRNA molecule as herein defined.

The present invention also relates to a cloning and/or expression vector, characterized in that it contains at least one genetic construct as herein defined.

25 The expression "effective and non-phytotoxic amount" means an amount of composition according to the invention which is sufficient to control or destroy the pathogen present or liable to appear on the crops and which does not entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the pathogen to be controlled, the type of crop, the climatic conditions and the compounds included in the composition according to the invention. This 30 amount can be determined by systematic field trials, which are within the capabilities of a person skilled in the art.

35 Thus, according to the invention, there is provided a composition comprising, as an active ingredient, an effective amount of a dsRNA molecule as herein defined and an agriculturally acceptable support, carrier, filler and/or surfactant.

According to the invention, the term "support" denotes a natural or synthetic organic or inorganic compound with which the active compound of formula (I) is combined or associated to make it easier to apply, notably to the parts of the plant. This support is thus generally inert and should be 40 agriculturally acceptable. The support can be a solid or a liquid. Examples of suitable supports include

clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports can also be used.

- 5 The composition according to the invention can also comprise additional components such as, but not limited to, surfactant, protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents. More generally, the active compounds can be combined with any solid or liquid additive, which complies with the usual formulation techniques.
- 10 In general, the composition according to the invention can contain from 0.05 to 99% by weight of active compound, preferably 10 to 70% by weight.

Compositions according to the invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil 15 in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure), gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble 20 concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ULV) liquid, ultra low volume (ULV) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder. These compositions include not only 25 compositions which are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a spraying or dusting device, but also concentrated commercial compositions which must be diluted before application to the crop.

The compounds according to the invention can also be mixed with one or more phytopharmaceutical or plant growth promoting compound, such as a fungicide, herbicide, insecticide, nematicide, acaricide, molluscicide, resistance inducer, safeners, signal compounds, biologicals, pheromone active 30 substance or other compounds with biological activity. The mixtures thus obtained have a broadened spectrum of activity. The mixtures with other fungicide compounds are particularly advantageous.

In a particular embodiment of the invention, the dsRNA is introduced or produced into the plant to be protected. After introduction or production into the plant, the dsRNA may further be processed into 35 relatively small fragments (siRNAs) and can subsequently become distributed throughout the plant. Alternatively, the dsRNA is introduced or produced into the plant using a regulatory element or promoter that results in expression of the dsRNA in a tissue, temporal, spatial or inducible manner and may further be processed into relatively small fragments by a plant cell containing the RNAi processing machinery.

The invention therefore relates to a genetic construct or chimeric gene which is able to produce the dsRNA of the invention inside a plant cell. Said genetic construct or chimeric gene comprises at least one DNA sequence as well as well as heterologous regulatory element(s) in the 5' and optionally in the 3' positions which are able to function in a plant, characterized in that the DNA sequence(s) is 5 (are) able to form a dsRNA molecule as herein defined once expressed in the plant.

In a particular embodiment, the genetic construct or chimeric gene comprises:

- a promoter regulatory sequence that is functional in plant cells, operably linked to
- a DNA sequence which, when it is transcribed, generates an RNA molecule comprising at least a 10 sense sequence and an antisense sequence which are at least partially complementary, said sense sequence comprising a sequence substantially identical to at least 18 contiguous nucleotides of a target gene (i.e in the meaning of the invention a saccharopine dehydrogenase gene), and said antisense sequence comprising a sequence substantially complementary to the sense sequence, and
- optionally a terminator regulatory sequence.

15

In said embodiment, the DNA sequence according to the invention may have more particularly two aspects; in the first, it comprises two nucleotide sequences, which are sense and antisense, separated by a spacer nucleotide sequence or an intron that does not exhibit any homology with the target gene. The sequence cloned in the sense and antisense orientation is that whose expression in the pathogen 20 is intended to inhibit. The transcription of this DNA sequence thus gives a large single-stranded RNA corresponding to the sense/spacer-intron/antisense construct. This long RNA transcript can be detected by RT-PCR. Since the sense and antisense sequences are homologous, they will pair, and the spacer or intron which separates them plays the role of a loop for folding. A dsRNA is then obtained over all the homologous regions. The dsRNA is subsequently specifically degraded by an 25 enzymatic complex called "DICER". The degradation of the dsRNAs then forms siRNAs ("siRNA" in the figure), small double-stranded RNAs having a size of between 19 and 25 bases. These are then the siRNAs which, by pairing with the transcribed RNAs derived from the target gene will lead to their degradation via the RNA silencing machinery enzymatic machinery.

30

In the second aspect, the DNA sequence comprises two nucleotide sequences, which are sense and antisense, of different sizes, the loop structure corresponding to the part of the nucleotide sequence that does not exhibit any homology with the other nucleotide sequence. The nucleotide sequence cloned in the sense orientation is essentially homologous to the sequence of the target gene whose expression it is intended to inhibit. The antisense nucleotide sequence is essentially homologous to the complementary strand of the sequence of said target gene. The transcription of this DNA 35 sequence thus gives a large single-stranded RNA corresponding to the sense/antisense construct. This long RNA transcript can be detected by RT-PCR. The homologous sense/antisense sequences are paired. A dsRNA is then obtained over all the homologous regions. The dsRNA is subsequently specifically degraded by an enzymatic complex called "DICER". The degradation of the dsRNAs then forms siRNAs ("siRNA" in the figure), small doubled-stranded RNAs having a size of between 18 and

25 bases. These are then the siRNAs which, by pairing with the target RNAs, will lead to their degradation via the RNA silencing machinery plant's enzymatic machinery.

In another particular embodiment, the genetic construct comprises:

5 - two promoter regulatory sequences that are functional in plant cells, wherein the first promoter regulatory sequence is operably linked to a DNA sequence which, when it is transcribed, generates an RNA molecule comprising at least a sense sequence, and the second promoter regulatory sequence is operably linked to a DNA sequence which, when it is transcribed, generates an RNA molecule comprising at least an antisense sequence partially complementary to the sense sequence, and

10 wherein said sense sequence comprises a sequence substantially identical to at least 18 contiguous nucleotides of the target gene, and

- optionally terminator regulatory sequence(s).

In this particular embodiment, the genetic construct may be comprised as two chimeric genes, one comprising the first promoter regulatory sequence operably linked to the first DNA sequence which, 15 when it is transcribed, generates an RNA molecule comprising at least a sense sequence substantially identical to at least 18 contiguous nucleotides of the target gene, and optionally a terminator regulatory sequence, and the second chimeric genes comprising the second promoter regulatory sequence operably linked to the second DNA sequence which, when it is transcribed, generates an RNA molecule comprising at least an antisense sequence partially complementary to the sense 20 sequence, and optionally a terminator regulatory sequence.

These two chimeric genes are preferably introduced into the plant cell conjointly, but not necessary, in order to favorize the hybridization of the two RNA single strands to form the dsRNA.

Alternatively, the genetic construct may be comprised as a construct comprising:

25 - a first promoter, operably linked to

- a double strand DNA sequence wherein one strand when it is transcribed under the control of the first promoter, generates an RNA molecule comprising at least a sense sequence substantially identical to at least 18 contiguous nucleotides of the target gene, and optionally a terminator regulatory sequence, and wherein the second strand, when it is transcribed under the control of the 30 second promoter, generates an RNA molecule comprising at least an antisense sequence partially complementary to the sense sequence, and optionally a terminator regulatory sequence, and

- a second promoter, in the opposite direction that the first one.

First and second promoter regulatory sequences may be different or identical, preferably different.

35 The invention further relates to a cloning and/or expression vector for transforming a plant, characterized in that it contains at least one chimeric gene or genetic construct as defined herein.

40 The present invention further relates to a transgenic plant cell containing the dsRNA molecule of the invention and as herein defined.

The present invention therefore relates to a transgenic plant cell containing the genetic construct or chimeric gene of the invention as herein defined.

In a particular embodiment of the invention, the transgenic plant cell is a soybean, oilseed, rice or 5 potato plant cell.

The present invention further relates to a transgenic plant, seed or part thereof, comprising a transgenic plant cell according to the invention.

10 In a particular embodiment of the invention, the transgenic plant, seed or part thereof, is a soybean, oilseed, rice or potato plant, seed or part thereof.

According to the invention, the expression "chimeric gene" or "expression cassette" is intended to mean a nucleotide sequence comprising, functionally linked to one another in the direction of 15 transcription, a regulatory promoter sequence that is functional in plants, a sequence encoding a protein or an RNA chain, and, optionally, a terminator that is functional in plant cells. The term "chimeric gene" or "expression cassette" is generally intended to mean a gene for which certain elements are not present in the native gene, but have been substituted for elements present in the native gene or have been added.

20 According to the invention, the terms "chimeric gene" or "expression cassette" may also correspond to the case where all the elements of the gene are present in the native gene, and alternatively, the term "gene" may correspond to a chimeric gene.

The expression "chimeric gene" or "expression cassette" may also correspond to the case where the 25 sequence encoding a protein or a RNA chain is not directly linked to a promoter, but is part, for example, of a polycistronic construct comprising several coding sequences under the control of the same promoter. In that case, each coding sequences under the control of the promoter is designed as a "chimeric gene" or "expression cassette".

According to the invention, the expression "functionally linked to one another" means that said 30 elements of the elemental chimeric gene are linked to one another in such a way that their function is coordinated and allows the expression of the coding sequence. By way of example, a promoter is functionally linked to a coding sequence when it is capable of ensuring the expression of said coding sequence. The construction of the chimeric gene according to the invention and the assembly of its various elements can be carried out using techniques well known to those skilled in the art, in 35 particular those described in Sambrook et al. (2001, Molecular Cloning : A Laboratory Manual (third edition), Nolan C. ed., New York: Cold Spring Harbor Laboratory Press). The choice of the regulatory elements constituting the chimeric gene depends essentially on the plant and on the type of cell in which they must function, and those skilled in the art are capable of selecting regulatory elements that are functional in a given plant.

According to the invention, the term "promoter regulatory sequence" is intended to mean any promoter regulatory sequence of a gene that is naturally expressed in plants, in particular a promoter that is expressed especially in the leaves of plants, for instance promoters referred to as constitutive of bacterial, viral or plant origin, or else promoters referred to as light-dependent, such as that of a plant

5 ribulose-biscarboxylase/oxygenase (RuBisCO) small subunit gene, or any known suitable promoter that can be used. Among the promoters of plant origin, mention will be made of the histone promoters as described in application EP 0 507 698, or the rice actin promoter (US 5,641,876). Among the promoters of a plant virus gene, mention will be made of that of the cauliflower mosaic virus (CaMV 19S or 35S) or of the cassava vein mosaic virus (CsVMV: WO97/48819) or the circovirus promoter
10 (AU 689 311). Use may also be made of a promoter regulatory sequence specific for particular regions or tissues of plants, and more particularly seed-specific promoters (Datla, R. *et al.*, 1997, Biotechnology Ann. Rev., 3, 269-296), especially the napin (EP 255 378), phaseolin, glutenin, helianthinin (WO 92/17580), albumin (WO 98/45460) and oleosin (WO 98/45461) promoters. An inducible promoter can also be used, it can be advantageously chosen from the promoters of
15 phenylalanine ammonia lyase (PAL), of HMG-CoA reductase (HMG), of chitinases, of glucanases, of proteinase inhibitors (PI), of genes of the PR1 family, of nopaline synthase (nos) or of the vspB gene (US 5 670 349), the HMG2 promoter (US 5 670 349), the apple beta-galactosidase (ABG1) promoter or the apple amino cyclopropane carboxylate synthase (ACC synthase) promoter (WO 98/45445).

20 The term "terminator regulatory sequence" is intended to mean any sequence that is functional in plant cells or plants, also comprising polyadenylation sequences, whether they are of bacterial origin, for instance the nos or ocs terminator of *Agrobacterium tumefaciens*, of viral origin, for instance the CaMV 35S terminator, or else of plant origin, for instance a histone terminator as described in application EP 0 633 317.

25 The selection step for identifying the transformed cells and/or plants having integrated the construct according to the invention can be carried out by virtue of the presence of a selectable gene present in the construct according to the invention or in the plasmid used for the transformation of the cells or of the plants and comprising said construct. The selectable gene may be in the form of a chimeric gene
30 comprising the following elements, functionally linked in the direction of transcription: a promoter regulatory sequence that is functional in plant cells, a sequence encoding a selectable marker, and a terminator regulatory sequence that is functional in plant cells.

35 Among the selectable markers that can be used, mention may be made of markers containing genes for resistance to antibiotics, such as, for example, that of the hygromycin phosphotransferase gene (Gritz *et al.*, 1983, Gene 25: 179-188), of the neomycin phosphotransferase II gene inducing resistance to kanamycin (Wirtz *et al.*, 1987, DNA, 6(3): 245-253), or of the aminoglycoside
40 3"-adenyltransferase gene, but also markers containing genes for tolerance to herbicides, such as the bar gene (White *et al.*, NAR 18: 1062, 1990) for tolerance to bialaphos, the EPSPS gene (US 5,188,642) for tolerance to glyphosate or else the HPPD gene (WO 96/38567) for tolerance to

isoxazoles. Mention may also be made of genes encoding readily identifiable enzymes, such as the GUS enzyme, GFP protein or genes encoding pigments or enzymes regulating pigment production in the transformed cells. Such selectable marker genes are in particular described in patent applications WO 91/02071, WO 95/06128, WO 96/38567, and WO 97/04103.

5

The present invention further relates to a method of making a transgenic plant cell or plant capable of expressing a dsRNA that inhibits a fungus or oomycete saccharopine dehydrogenase gene, wherein said method comprises the steps of transforming a plant cell with a chimeric gene or genetic construct according to the invention.

10 The method may further comprise the step of selecting the plant cell which has been transformed.

In a particular embodiment of the invention, the invention relates to a method of making a transgenic plant cell or plant capable of expressing a dsRNA that inhibits fungus or oomycete saccharopine dehydrogenase gene, wherein said method comprises the steps of transforming a plant cell with a 15 chimeric gene or genetic construct according to the invention, and wherein said plant cell is a soybean, oilseed, rice or potato plant cell or said plant is a soybean, oilseed, rice or potato plant.

The present invention also relates to the transformed plants or part thereof, and to plants or part thereof which are derived by cultivating and/or crossing the above regenerated plants, and to the 20 seeds of the transformed plants.

The present invention also relates to the end products such as the meal, oil, fiber which are obtained from the plants, part thereof, or seeds of the invention.

To obtain the cells or plants according to the invention, those skilled in the art can use one of the 25 numerous known methods of transformation.

One of these methods consists in bringing the cells or tissues of the host organisms to be transformed into contact with polyethylene glycol (PEG) and the vectors of the invention (Chang and Cohen, 1979, Mol. Gen. Genet. 168(1), 111-115; Mercenier and Chassy, 1988, Biochimie 70(4), 503-517).

Electroporation is another method, which consists in subjecting the cells or tissues to be transformed 30 and the vectors of the invention to an electric field (Andreasen and Evans, 1988, Biotechniques 6(7), 650-660; Shigekawa and Dower, 1989, Aust. J. Biotechnol. 3(1), 56-62). Another method consists in directly injecting the vectors into the cells or the tissues by microinjection (Gordon and Ruddle, 1985, Gene 33(2), 121-136). Advantageously, the "biolistic" method may be used. It consists in bombarding cells or tissues with particles onto which the vectors of the invention are adsorbed (Bruce *et al.*, 1989,

35 Proc. Natl. Acad. Sci. USA 86(24), 9692-9696; Klein *et al.*, 1992, Biotechnology 10(3), 286-291; US Patent No. 4,945,050). Preferably, the transformation of plant cells or tissues can be carried out using bacteria of the *Agrobacterium* genus, preferably by infection of the cells or tissues of said plants with *A. tumefaciens* (Knopf, 1979, Subcell. Biochem. 6, 143-173; Shaw *et al.*, 1983, Gene 23(3): 315-330) or *A. rhizogenes* (Bevan and Chilton, 1982, Annu. Rev. Genet. 16: 357-384; Tepfer and Casse-Delbart, 40 Microbiol. Sci. 4(1), 24-28). Preferably, the transformation of plant cells or tissues with

Agrobacterium tumefaciens is carried out according to the protocol described by Hiei *et al.*, (1994, Plant J. 6(2): 271-282). Those skilled in the art will choose the appropriate method according to the nature of the host organisms to be transformed.

5 The plants according to the invention contain transformed plant cells as defined above. In particular, the transformed plants can be obtained by regeneration of the transformed plant cells described above. The regeneration is obtained by any appropriate method, which depends on the nature of the species.

10 The invention also comprises parts of these plants, and the progeny of these plants. The term "part of these plants" is intended to mean any organ of these plants, whether above ground or below ground. The organs above ground are the stems, the leaves and the flowers comprising the male and female reproductive organs. The organs below ground are mainly the roots, but they may also be tubers. The term "progeny" is intended to mean mainly the seeds containing the embryos derived from the reproduction of these plants with one another. By extension, the term "progeny" applies to all the 15 seeds formed at each new generation derived from crosses between the transformed plants according to the invention. Progeny and seeds can also be obtained by vegetative multiplication of said transformed plants. The seeds according to the invention can be coated with an agrochemical composition comprising at least one active product having an activity selected from fungicidal, herbicidal, insecticidal, nematicidal, bactericidal or virucidal activities.

20 The invention further relates to a method for controlling a plant pathogen, particularly a fungus or an oomycete, comprising providing to said pathogen a dsRNA molecule according to the invention and as herein defined.

25 In a particular embodiment of the invention, the method relates to a method for controlling a plant pathogen, particularly a fungus or an oomycete, comprising providing to said pathogen a dsRNA according to the invention and as herein defined, or a composition comprising said dsRNA, wherein said plant pathogen is *Magnaporthe grisea*, *Phytophthora infestans*, *Sclerotinia sclerotiorum* or *Phakopsora pachyrhizi*.

30 In a particular embodiment of the invention, the method relates to a method for controlling a plant pathogen, particularly a fungus or an oomycete, comprising providing to said pathogen a dsRNA molecule according to the invention and as herein defined, or a composition comprising said dsRNA, wherein said plant is a soybean, oilseed, rice or potato plant.

35 The invention further relates to a method for controlling a plant, crop or seed pathogen, particularly a fungus or an oomycete, characterized in that an agronomically effective and substantially non-phytotoxic quantity of dsRNA molecule according to the invention or composition according to the invention is applied as seed treatment, foliar application, stem application, drench or drip application 40 (chemigation) to the seed, the plant or to the fruit of the plant or to soil or to inert substrate (e.g.

inorganic substrates like sand, rockwool, glasswool; expanded minerals like perlite, vermiculite, zeolite or expanded clay), Pumice, Pyroclastic materials or stuff, synthetic organic substrates (e.g. polyurethane) organic substrates (e.g. peat, composts, tree waste products like coir, wood fibre or chips, tree bark) or to a liquid substrate (e.g. floating hydroponic systems, Nutrient Film Technique, 5 Aeroponics) wherein the plant is growing or wherein it is desired to grow.

The invention therefore relates to a method for controlling a plant pathogen, particularly a fungus or oomycete, characterized in that an effective quantity of a dsRNA molecule according to the invention or a composition according to the invention is applied to the soil where plants grow or are capable of 10 growing, to the leaves and/or the fruit of plants or to the seeds of plants.

In a particular embodiment of the invention, the invention relates to a method for controlling a plant pathogen, particularly a fungus or oomycete, characterized in that an effective quantity of a dsRNA molecule according to the invention or a composition according to the invention is applied to the soil 15 where plants grow or are capable of growing, to the leaves and/or the fruit of plants or to the seeds of plants, wherein said plant pathogen is Magnaporthe grisea, Phytophthora infestans, Sclerotinia sclerotinum or Phakopsora pachyrhizi.

In a particular embodiment of the invention, the invention relates to a method for controlling a plant 20 pathogen, particularly a fungus or oomycete, characterized in that an effective quantity of a dsRNA molecule according to the invention or a composition according to the invention is applied to the soil where plants grow or are capable of growing, to the leaves and/or the fruit of plants or to the seeds of plants, wherein said plant is a soybean, oilseed, rice or potato plant.

25 The expression "are applied to the plants to be treated" is understood to mean, for the purposes of the present invention, that the pesticide composition which is the subject of the invention can be applied by means of various methods of treatment such as:

- spraying onto the aerial parts of the said plants a liquid comprising one of the said compositions,
- dusting, the incorporation into the soil of granules or powders, spraying, around the said plants and in the case of trees injection or daubing,
- coating or film-coating the seeds of the said plants with the aid of a plant-protection mixture comprising one of the said compositions.

The method according to the invention can either be a curing, preventing or eradicating method.

35 In this method, a composition used can be prepared beforehand by mixing the two or more active compounds according to the invention.

According to an alternative of such a method, it is also possible to apply simultaneously, successively or separately compounds (A) and (B) so as to have the conjugated (A)/(B) effects, of distinct compositions each containing one of the two or three active ingredients (A) or (B).

The dose of active dsRNA compound usually applied in the method of treatment according to the invention is generally and advantageously

- for foliar treatments: from 0.0001 to 10,000 g/ha, preferably from 0.0001 to 1000 g/ha, more preferably from 0.001 to 300g/ha; in case of drench or drip application, the dose can even be reduced, especially while using inert substrates like rockwool or perlite;
- for seed treatment: from 0.0001 to 200 g per 100 kilogram of seed, preferably from 0.001 to 150 g per 100 kilogram of seed;
- for soil treatment: from 0.0001 to 10,000 g/ha, preferably from 0.001 to 5,000 g/ha.

10 When the dsRNA of the invention is mixed with another active phytopharmaceutical or plant growth promoting compound compound, said phytopharmaceutical or plant growth promoting compound is used in the dose usually applied.

Said phytopharmaceutical or plant growth promoting compound may be a fungicide, herbicide, insecticide, nematicide, acaricide, molluscicide, resistance inducer, safeners, or signal compounds.

15 The dose of phytopharmaceutical active compound usually applied in the method of treatment according to the invention is generally and advantageously from 10 to 800 g/ha, preferably from 50 to 300 g/ha for applications in foliar treatment. The dose of active substance applied is generally and advantageously from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed in the case of seed treatment.

20 The doses herein indicated are given as illustrative Examples of method according to the invention. A person skilled in the art will know how to adapt the application doses, notably according to the nature of the plant or crop to be treated.

Under specific conditions, for example according to the nature of the pathogen, phytopathogenic fungus or oomycete to be treated or controlled, a lower dose can offer adequate protection. Certain 25 climatic conditions, resistance or other factors like the nature of the pathogen or the degree of infestation, for example, of the plants with these pathogens, can require higher doses of combined active ingredients. The optimum dose usually depends on several factors, for example on the type of pathogen to be treated, on the type or level of development of the infested plant or plant material, on the density of vegetation or alternatively on the method of application.

30 Without it being limiting, the crop treated with the pesticide composition or combination according to the invention is, for example, grapevine, cereals, vegetables, lucerne, soybean, market garden crops, turf, wood, tree or horticultural plants.

The method of treatment according to the invention can also be useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants

35 pricking out. This method of treatment can also be useful to treat roots. The method of treatment according to the invention can also be useful to treat the over-ground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruit of the concerned plant, and in general every material which is susceptible to fungal infection (e.g due to storage like hay)

40 The invention further relates to a method of controlling a plant pathogen, particularly a fungus or an

oomycete, comprising providing in the host plant of said plant pathogen a transformed plant cell according to the invention.

The invention further relates to a method of controlling a plant pathogen, particularly a fungus or an oomycete, comprising providing in the host plant of said plant pathogen a transformed plant cell containing a dsRNA as herein defined.

The invention further relates to a method of controlling a plant pathogen, particularly a fungus or an oomycete, comprising transforming the plant with a genetic construct according to the invention.

The invention further relates to a method of controlling a plant pathogen, particularly a fungus or an

10 oomycete, comprising the following steps:

- i) transforming a plant cell with a chimeric gene according to the invention;
- ii) placing the cells thus transformed under conditions that allow the transcription of said construct,
- iii) having the cells into contact with the pathogen.

15

In a particular embodiment of the invention, methods according to the invention are controlling a plant pathogen selected from Magnaporthe grisea, Phytophthora infestans, Sclerotinia sclerotinum or Phakopsora pachyrhizi.

In a particular embodiment of the invention, methods according to the invention are controlling a plant 20 pathogen wherein the plant is a soybean, oilseed, rice or potato plant.

The invention further relates to a method for inhibiting the expression of a plant pathogen, particularly fungus or oomycete, saccharopine dehydrogenase gene, comprising the following steps:

- i) transforming a plant cell with a chimeric gene according to the invention;
- ii) placing the cells thus transformed under conditions that allow the transcription of said construct,
- iii) having the cells into contact with the pathogen.

In a particular embodiment of the invention, the method according to the invention is inhibiting a fungal 30 or oomycete saccharopine dehydrogenase gene, wherein the fungus or oomycete is Magnaporthe grisea, Phytophthora infestans, Sclerotinia sclerotinum or Phakopsora pachyrhizi.

In a particular embodiment of the invention, the method according to the invention inhibites a fungal or oomycete saccharopine dehydrogenase gene, said method comprises the following steps:

- i) transforming a plant cell with a chimeric gene according to the invention;
- ii) placing the cells thus transformed under conditions that allow the transcription of said construct,

iii) having the cells into contact with the pathogen;
wherein the plant is a soybean, oilseed, rice or potato plant.

According to the invention all plants and plant parts can be treated. By plants is meant all plants and

5 plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by

10 bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.

15 Among the plants that can be protected by the method according to the invention, mention may be made of major field crops like corn, soybean, cotton, *Brassica* oilseeds such as *Brassica napus* (e.g. canola), *Brassica rapa*, *B. juncea* (e.g. mustard) and *Brassica carinata*, rice, wheat, sugarbeet, sugarcane, oats, rye, barley, millet, triticale, flax, vine and various fruits and vegetables of various botanical taxa such as *Rosaceae* sp. (for instance pip fruit such as apples and pears, but also stone fruit such as apricots, cherries, 20 almonds and peaches, berry fruits such as strawberries), *Ribesioideae* sp., *Juglandaceae* sp., *Betulaceae* sp., *Anacardiaceae* sp., *Fagaceae* sp., *Moraceae* sp., *Oleaceae* sp., *Actinidiaceae* sp., *Lauraceae* sp., *Musaceae* sp. (for instance banana trees and plantings), *Rubiaceae* sp. (for instance coffee), *Theaceae* sp., *Sterculiceae* sp., *Rutaceae* sp. (for instance lemons, oranges and grapefruit); *Solanaceae* sp. (for instance tomatoes, potatoes, peppers, eggplant), *Liliaceae* sp., *Compositiae* sp. (for instance lettuce, artichoke and 25 chicory - including root chicory, endive or common chicory), *Umbelliferae* sp. (for instance carrot, parsley, celery and celeriac), *Cucurbitaceae* sp. (for instance cucumber – including pickling cucumber, squash, watermelon, gourds and melons), *Alliaceae* sp. (for instance onions and leek), *Cruciferae* sp. (for instance white cabbage, red cabbage, broccoli, cauliflower, brussel sprouts, pak choi, kohlrabi, radish, horseradish, cress, Chinese cabbage), *Leguminosae* sp. (for instance peanuts, peas and beans beans - such as 30 climbing beans and broad beans), *Chenopodiaceae* sp. (for instance mangold, spinach beet, spinach, beetroots), *Malvaceae* (for instance okra), *Asparagaceae* (for instance asparagus); horticultural and forest crops; ornamental plants; as well as genetically modified homologues of these crops.

35 The method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants) are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other 40 gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology

or RNA interference – RNAi - technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate,

5 vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier 10 harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

15 At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, 20 those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be employed for protecting plants against attack by the 25 abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.

As already mentioned above, it is possible to treat all plants and their parts in accordance with the invention. In a preferred embodiment, wild plant species and plant cultivars, or those obtained by

30 conventional biological breeding methods, such as crossing or protoplast fusion, and also parts thereof, are treated. In a further preferred embodiment, transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated. The terms "parts" or "parts of plants" or "plant parts" have been explained above. More preferably, plants of the plant cultivars which are 35 commercially available or are in use are treated in accordance with the invention. Plant cultivars are understood to mean plants which have new properties ("traits") and have been obtained by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be cultivars, varieties, bio- or genotypes.

The method of treatment according to the invention can be used in the treatment of genetically

40 modified organisms (GMOs), e.g. plants or seeds. Genetically modified plants (or transgenic plants)

are plants of which a heterologous gene has been stably integrated into genome. The expression "heterologous gene" essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by

5 downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, cosuppression technology, RNA interference – RNAi – technology or microRNA – miRNA - technology). A heterologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

10 Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), the treatment according to the invention may also result in superadditive ("synergistic") effects. Thus, for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, 15 increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.

20 At certain application rates, the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted microorganisms. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi. Plant-strengthening (resistance-inducing) substances are to be understood as meaning,

25 in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms. In the present case, unwanted microorganisms are to be understood as meaning phytopathogenic fungi, bacteria and viruses. Thus, the substances according to the invention can be 30 employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.

Plants and plant cultivars which are preferably to be treated according to the invention include all

35 plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).

Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses

40 and/or viroids.

Examples of nematode or insect resistant plants are described in e.g. U.S. Patent Applications 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396, 12/497,221, 12/644,632, 12/646,004, 12/701,058, 5 12/718,059, 12/721,595, 12/638,591.

Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen 10 nutrients, limited availability of phosphorus nutrients, shade avoidance.

Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, 15 increased germination efficiency and accelerated maturation. Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging 20 resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.

Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and 25 resistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of 30 genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility 35 may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and US 6,229,072). However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as 40 genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the

tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 91/02069).

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.

Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene

10 encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium *Salmonella typhimurium* (Science 1983, 221, 370-371), the CP4 gene of the bacterium *Agrobacterium* sp. (Curr. Topics Plant Physiol.

1992, 7, 139-145), the genes encoding a Petunia EPSPS (Science 1986, 233, 478-481), a Tomato EPSPS (J. Biol. Chem. 1988, 263, 4280-4289), or an Eleusine EPSPS (WO 01/66704). It can also be

15 a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO 02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl

transferase enzyme as described in for example WO 02/036782, WO 03/092360, WO 2005/012515

20 and WO 2007/024782. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolerance are

described in e.g. U.S. Patent Applications 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468,205,

25 11/760,570, 11/762,526, 11/769,327, 11/769,255, 11/943801 or 12/362,774. Plants comprising other genes that confer glyphosate tolerance, such as decarboxylase genes, are described in e.g. U.S. Patent Applications 11/588,811, 11/185,342, 12/364,724, 11/185,560 or 12/423,926.

Other herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can

30 be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition, e.g. described in U.S. Patent Application 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from *Streptomyces* species). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Patents 5,561,236; 5,648,477; 5,646,024; 5,273,894; 5,637,489; 5,276,268; 5,739,082; 5,908,810 and 7,112,665.

Further herbicide-tolerant plants are also plants that are made tolerant to the herbicides inhibiting the enzyme hydroxyphenylpyruvatedioxygenase (HPPD). HPPD is an enzyme that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD

40 enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO

99/24585, WO 99/24586, WO 09/144079, WO 02/046387, or US 6,768,044. Tolerance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolerance of

5 plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 04/024928. Further, plants can be made more tolerant to HPPD-inhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and

10 WO 2008/150473.

Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinoyxylthiobenzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confer

15 tolerance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (Weed Science 2002, 50, 700-712), but also, in U.S. Patents 5,605,011, 5,378,824, 5,141,870, and 5,013,659. The production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described in U.S. Patents 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and WO 96/33270. Other imidazolinone-tolerant

20 plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 2007/024782 and U.S. Patent Application 61/288958.

Other plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, 25 selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 97/41218, for sugar beet in US 5,773,702 and WO 99/057965, for lettuce in US 5,198,599, or for sunflower in WO 01/065922.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made 30 resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.

An "insect-resistant transgenic plant", as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:

- 1) an insecticidal crystal protein from *Bacillus thuringiensis* or an insecticidal portion thereof, such as the insecticidal crystal proteins listed by Crickmore et al. (1998, *Microbiology and Molecular Biology Reviews*, 62: 807-813), updated by Crickmore et al. (2005) at the *Bacillus thuringiensis* toxin nomenclature, online at: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions thereof, e.g., proteins of the Cry protein classes Cry1Ab, Cry1Ac, Cry1B, Cry1C, Cry1D, Cry1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof (e.g. EP-

A 1 999 141 and WO 2007/107302), or such proteins encoded by synthetic genes as e.g. described in and U.S. Patent Application 12/249,016 ; or

- 2) a crystal protein from *Bacillus thuringiensis* or a portion thereof which is insecticidal in the presence of a second other crystal protein from *Bacillus thuringiensis* or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Nat. Biotechnol. 2001, 19, 668-72; Applied Environm. Microbiol. 2006, 71, 1765-1774) or the binary toxin made up of the Cry1A or Cry1F proteins and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618); or
- 3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from *Bacillus thuringiensis*, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON89034 (WO 2007/027777); or
- 4) a protein of any one of 1) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation, such as the Cry3Bb1 protein in corn events MON863 or MON88017, or the Cry3A protein in corn event MIR604; or
- 5) an insecticidal secreted protein from *Bacillus thuringiensis* or *Bacillus cereus*, or an insecticidal portion thereof, such as the vegetative insecticidal (VIP) proteins listed at:
20 http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, e.g., proteins from the VIP3Aa protein class; or
- 6) a secreted protein from *Bacillus thuringiensis* or *Bacillus cereus* which is insecticidal in the presence of a second secreted protein from *Bacillus thuringiensis* or *B. cereus*, such as the binary toxin made up of the VIP1A and VIP2A proteins (WO 94/21795); or
- 25 7) a hybrid insecticidal protein comprising parts from different secreted proteins from *Bacillus thuringiensis* or *Bacillus cereus*, such as a hybrid of the proteins in 1) above or a hybrid of the proteins in 2) above; or
- 8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102; or
- 30 9) a secreted protein from *Bacillus thuringiensis* or *Bacillus cereus* which is insecticidal in the presence of a crystal protein from *Bacillus thuringiensis*, such as the binary toxin made up of VIP3 and Cry1A or Cry1F (U.S. Patent Applications 61/126083 and 61/195019), or the binary

toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).

10) a protein of 9) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to
5 expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)

Of course, an insect-resistant transgenic plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any

10 one of the above classes 1 to 10, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.

An "insect-resistant transgenic plant", as used herein, further includes any plant containing at least

15 one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest, as described e.g. in WO 2007/080126, WO 2006/129204, WO 2007/074405, WO 2007/080127 and WO 2007/035650.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be

20 obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include:

1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants as described in WO 00/04173, WO 2006/045633, EP-A 1 807 519, or EP-A 2 018 431.

25 2) plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.

30 3) plants which contain a stress tolerance enhancing transgene coding for a plant-functional enzyme of the nicotineamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphorybosyltransferase as described e.g. in EP-A 1 794 306, WO 2006/133827, WO 2007/107326, EP-A 1 999 263, or WO 2007/107326.

Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which

35 may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as:

1) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amyopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications. Said transgenic plants synthesizing a modified starch are disclosed, for example, in EP-A 0 571 427, WO 95/04826, EP-A 0 719 338, WO 96/15248, WO 96/19581, WO 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO 98/27212, WO 98/40503, WO 99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185, WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 04/056999, WO 05/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, WO 2008/017518, WO 2008/080630, WO 2008/080631, EP 07090007.1, WO 2008/090008, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, US 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 97/20936, WO 2010/012796, WO 2010/003701,

2) transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP-A 0 663 956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,4-glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO 97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alternan, as disclosed in e.g. WO 00/47727, WO 00/73422, EP 06077301.7, US 5,908,975 and EP-A 0 728 213,

30 3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP-A 2006-304779, and WO 2005/012529.

35 4) transgenic plants or hybrid plants, such as onions with characteristics such as 'high soluble solids content', 'low pungency' (LP) and/or 'long storage' (LS), as described in U.S. Patent Applications 12/020,360 and 61/054,026.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as cotton plants,

with altered fiber characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:

a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549.

5 b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219.

c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333.

10 d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485.

e) Plants, such as cotton plants, wherein the timing of the plasmodesmatal gating at the basis of the fiber cell is altered, e.g. through downregulation of fiber-selective β -1,3-glucanase as described in WO 2005/017157, or as described in WO 2009/143995.

15 f) Plants, such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic 20 transformation, or by selection of plants contain a mutation imparting such altered oil profile characteristics and include:

a) Plants, such as oilseed rape plants, producing oil having a high oleic acid content as described e.g. in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947

25 b) Plants such as oilseed rape plants, producing oil having a low linolenic acid content as described in US 6,270,828, US 6,169,190, or US 5,965,755

c) Plant such as oilseed rape plants, producing oil having a low level of saturated fatty acids as described e.g. in US 5,434,283 or U.S. Patent Application 12/668303

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed rape or 30 related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered seed shattering characteristics and include plants such as oilseed rape plants with delayed or reduced seed shattering as described in U.S. Patent Application 61/135,230, WO 2009/068313 and WO

2010/006732.

Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as Tobacco plants, with altered post-translational protein modification patterns, for example as described in WO 2010/121818 and WO 2010/145846.

5 Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are the subject of petitions for non-regulated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such petitions are granted or are still pending. At any time this information is readily available from APHIS
10 (4700 River Road, Riverdale, MD 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/not_reg.html). On the filing date of this application the petitions for nonregulated status that were pending with APHIS or granted by APHIS were those which contains the following information:

- Petition: the identification number of the petition. Technical descriptions of the transformation events can be found in the individual petition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this petition number. These descriptions are herein incorporated by reference.
- Extension of Petition: reference to a previous petition for which an extension is requested.
- Institution: the name of the entity submitting the petition.

20 – Regulated article: the plant species concerned.

- Transgenic phenotype: the trait conferred to the plants by the transformation event.
- Transformation event or line: the name of the event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
- APHIS documents: various documents published by APHIS in relation to the Petition and which can be requested with APHIS.

25 Additional particularly useful plants containing single transformation events or combinations of transformation events are listed for example in the databases from various national or regional regulatory agencies (see for example http://gmoinfo.jrc.it/gmp_browse.aspx and <http://www.agbios.com/dbase.php>).

30 Particularly useful transgenic plants which may be treated according to the invention are plants containing transformation events, or a combination of transformation events, and that are listed for example in the databases for various national or regional regulatory agencies including Event 1143-14A (cotton, insect control, not deposited, described in WO 2006/128569); Event 1143-51B (cotton, insect control, not deposited, described in WO 2006/128570); Event 1445 (cotton, herbicide tolerance, not deposited, described in US-A 2002-120964 or WO 02/034946); Event 17053 (rice, herbicide

tolerance, deposited as PTA-9843, described in WO 2010/117737); Event 17314 (rice, herbicide tolerance, deposited as PTA-9844, described in WO 2010/117735); Event 281-24-236 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, described in WO 2005/103266 or US-A 2005-216969); Event 3006-210-23 (cotton, insect control - herbicide tolerance, deposited as PTA-6233, 5 described in US-A 2007-143876 or WO 2005/103266); Event 3272 (corn, quality trait, deposited as PTA-9972, described in WO 2006/098952 or US-A 2006-230473); Event 40416 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11508, described in WO 2011/075593); Event 43A47 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-11509, described in WO 10 2011/075595); Event 5307 (corn, insect control, deposited as ATCC PTA-9561, described in WO 2010/077816); Event ASR-368 (bent grass, herbicide tolerance, deposited as ATCC PTA-4816, described in US-A 2006-162007 or WO 2004/053062); Event B16 (corn, herbicide tolerance, not deposited, described in US-A 2003-126634); Event BPS-CV127-9 (soybean, herbicide tolerance, deposited as NCIMB No. 41603, described in WO 2010/080829); Event CE43-67B (cotton, insect control, deposited as DSM ACC2724, described in US-A 2009-217423 or WO 2006/128573); Event 15 CE44-69D (cotton, insect control, not deposited, described in US-A 2010-0024077); Event CE44-69D (cotton, insect control, not deposited, described in WO 2006/128571); Event CE46-02A (cotton, insect control, not deposited, described in WO 2006/128572); Event COT102 (cotton, insect control, not deposited, described in US-A 2006-130175 or WO 2004/039986); Event COT202 (cotton, insect control, not deposited, described in US-A 2007-067868 or WO 2005/054479); Event COT203 (cotton, 20 insect control, not deposited, described in WO 2005/054480); Event DAS40278 (corn, herbicide tolerance, deposited as ATCC PTA-10244, described in WO 2011/022469); Event DAS-59122-7 (corn, insect control - herbicide tolerance, deposited as ATCC PTA 11384, described in US-A 2006-070139); Event DAS-59132 (corn, insect control - herbicide tolerance, not deposited, described in WO 2009/100188); Event DAS68416 (soybean, herbicide tolerance, deposited as ATCC PTA-10442, 25 described in WO 2011/066384 or WO 2011/066360); Event DP-098140-6 (corn, herbicide tolerance, deposited as ATCC PTA-8296, described in US-A 2009-137395 or WO 2008/112019); Event DP-305423-1 (soybean, quality trait, not deposited, described in US-A 2008-312082 or WO 2008/054747); Event DP-32138-1 (corn, hybridization system, deposited as ATCC PTA-9158, described in US-A 2009-0210970 or WO 2009/103049); Event DP-356043-5 (soybean, herbicide tolerance, deposited as 30 ATCC PTA-8287, described in US-A 2010-0184079 or WO 2008/002872); Event EE-1 (brinjal, insect control, not deposited, described in WO 2007/091277); Event FI117 (corn, herbicide tolerance, deposited as ATCC 209031, described in US-A 2006-059581 or WO 98/044140); Event GA21 (corn, herbicide tolerance, deposited as ATCC 209033, described in US-A 2005-086719 or WO 98/044140); Event GG25 (corn, herbicide tolerance, deposited as ATCC 209032, described in US-A 2005-188434 35 or WO 98/044140); Event GHB119 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8398, described in WO 2008/151780); Event GHB614 (cotton, herbicide tolerance, deposited as ATCC PTA-6878, described in US-A 2010-050282 or WO 2007/017186); Event GJ11 (corn, herbicide tolerance, deposited as ATCC 209030, described in US-A 2005-188434 or WO 98/044140); Event GM RZ13 (sugar beet, virus resistance, deposited as NCIMB-41601, described in WO 2010/076212); 40 Event H7-1 (sugar beet, herbicide tolerance, deposited as NCIMB 41158 or NCIMB 41159, described

in US-A 2004-172669 or WO 2004/074492); Event JOPLIN1 (wheat, disease tolerance, not deposited, described in US-A 2008-064032); Event LL27 (soybean, herbicide tolerance, deposited as NCIMB41658, described in WO 2006/108674 or US-A 2008-320616); Event LL55 (soybean, herbicide tolerance, deposited as NCIMB 41660, described in WO 2006/108675 or US-A 2008-196127); Event 5 LLcotton25 (cotton, herbicide tolerance, deposited as ATCC PTA-3343, described in WO 03/013224 or US-A 2003-097687); Event LLRICE06 (rice, herbicide tolerance, deposited as ATCC-23352, described in US 6,468,747 or WO 00/026345); Event LLRICE601 (rice, herbicide tolerance, deposited as ATCC PTA-2600, described in US-A 2008-2289060 or WO 00/026356); Event LY038 (corn, quality trait, deposited as ATCC PTA-5623, described in US-A 2007-028322 or WO 2005/061720); Event 10 MIR162 (corn, insect control, deposited as PTA-8166, described in US-A 2009-300784 or WO 2007/142840); Event MIR604 (corn, insect control, not deposited, described in US-A 2008-167456 or WO 2005/103301); Event MON15985 (cotton, insect control, deposited as ATCC PTA-2516, described in US-A 2004-250317 or WO 02/100163); Event MON810 (corn, insect control, not deposited, described in US-A 2002-102582); Event MON863 (corn, insect control, deposited as ATCC 15 PTA-2605, described in WO 2004/011601 or US-A 2006-095986); Event MON87427 (corn, pollination control, deposited as ATCC PTA-7899, described in WO 2011/062904); Event MON87460 (corn, stress tolerance, deposited as ATCC PTA-8910, described in WO 2009/111263 or US-A 2011-0138504); Event MON87701 (soybean, insect control, deposited as ATCC PTA-8194, described in US-A 2009-130071 or WO 2009/064652); Event MON87705 (soybean, quality trait - herbicide 20 tolerance, deposited as ATCC PTA-9241, described in US-A 2010-0080887 or WO 2010/037016); Event MON87708 (soybean, herbicide tolerance, deposited as ATCC PTA9670, described in WO 2011/034704); Event MON87754 (soybean, quality trait, deposited as ATCC PTA-9385, described in WO 2010/024976); Event MON87769 (soybean, quality trait, deposited as ATCC PTA-8911, described in US-A 2011-0067141 or WO 2009/102873); Event MON88017 (corn, insect control - 25 herbicide tolerance, deposited as ATCC PTA-5582, described in US-A 2008-028482 or WO 2005/059103); Event MON88913 (cotton, herbicide tolerance, deposited as ATCC PTA-4854, described in WO 2004/072235 or US-A 2006-059590); Event MON89034 (corn, insect control, deposited as ATCC PTA-7455, described in WO 2007/140256 or US-A 2008-260932); Event 30 MON89788 (soybean, herbicide tolerance, deposited as ATCC PTA-6708, described in US-A 2006-282915 or WO 2006/130436); Event MS11 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-850 or PTA-2485, described in WO 01/031042); Event MS8 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A 2003-188347); Event NK603 (corn, herbicide tolerance, deposited as ATCC PTA-2478, described in US-A 2007-292854); Event PE-7 (rice, insect control, not deposited, described in WO 35 2008/114282); Event RF3 (oilseed rape, pollination control - herbicide tolerance, deposited as ATCC PTA-730, described in WO 01/041558 or US-A 2003-188347); Event RT73 (oilseed rape, herbicide tolerance, not deposited, described in WO 02/036831 or US-A 2008-070260); Event T227-1 (sugar beet, herbicide tolerance, not deposited, described in WO 02/44407 or US-A 2009-265817); Event T25 (corn, herbicide tolerance, not deposited, described in US-A 2001-029014 or WO 01/051654); Event 40 T304-40 (cotton, insect control - herbicide tolerance, deposited as ATCC PTA-8171, described

in US-A 2010-077501 or WO 2008/122406); Event T342-142 (cotton, insect control, not deposited, described in WO 2006/128568); Event TC1507 (corn, insect control - herbicide tolerance, not deposited, described in US-A 2005-039226 or WO 2004/099447); Event VIP1034 (corn, insect control - herbicide tolerance, deposited as ATCC PTA-3925., described in WO 03/052073), Event 32316 (corn,insect control-herbicide tolerance,deposited as PTA-11507, described in WO 2011/084632), Event 4114 (corn,insect control-herbicide tolerance,deposited as PTA-11506, described in WO 2011/084621).

10 The composition according to the invention can also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.

15

Among the diseases of plants or crops that can be controlled by the methods according to the invention, mention can be made of :

Powdery mildew diseases such as :

Blumeria diseases, caused for example by *Blumeria graminis* ;
20 Podosphaera diseases, caused for example by *Podosphaera leucotricha* ;
Sphaerotheca diseases, caused for example by *Sphaerotheca fuliginea* ;
Uncinula diseases, caused for example by *Uncinula necator* ;

Rust diseases such as :

Gymnosporangium diseases, caused for example by *Gymnosporangium sabinae* ;
25 Hemileia diseases, caused for example by *Hemileia vastatrix* ;
Phakopsora diseases, caused for example by *Phakopsora pachyrhizi* or *Phakopsora meibomiae* ;
Puccinia diseases, caused for example by *Puccinia recondite*, *Puccinia graminis* or *Puccinia striiformis* ;
30 Uromyces diseases, caused for example by *Uromyces appendiculatus* ;

Oomycete diseases such as :

Albugo diseases caused for example by *Albugo candida* ;
Bremia diseases, caused for example by *Bremia lactucae* ;
Peronospora diseases, caused for example by *Peronospora pisi* or *P. brassicae* ;
35 Phytophthora diseases, caused for example by *Phytophthora infestans* ;
Plasmopara diseases, caused for example by *Plasmopara viticola* ;
Pseudoperonospora diseases, caused for example by *Pseudoperonospora humuli* or *Pseudoperonospora cubensis* ;
Pythium diseases, caused for example by *Pythium ultimum* ;
40 Leafspot, leaf blotch and leaf blight diseases such as :

Alternaria diseases, caused for example by *Alternaria solani* ;
Cercospora diseases, caused for example by *Cercospora beticola* ;
Cladosporum diseases, caused for example by *Cladosporium cucumerinum* ;
Cochliobolus diseases, caused for example by *Cochliobolus sativus* (Conidiaform:
5 Drechslera, Syn: *Helminthosporium*) or *Cochliobolus miyabeanus* ;
Colletotrichum diseases, caused for example by *Colletotrichum lindemuthianum* ;
Cycloconium diseases, caused for example by *Cycloconium oleaginum* ;
Diaporthe diseases, caused for example by *Diaporthe citri* ;
Elsinoe diseases, caused for example by *Elsinoe fawcettii* ;
10 Gloeosporium diseases, caused for example by *Gloeosporium laeticolor* ;
Glomerella diseases, caused for example by *Glomerella cingulata* ;
Guignardia diseases, caused for example by *Guignardia bidwellii* ;
Leptosphaeria diseases, caused for example by *Leptosphaeria maculans* ; *Leptosphaeria nodorum* ;
Magnaporthe diseases, caused for example by *Magnaporthe grisea* ;
15 Mycosphaerella diseases, caused for example by *Mycosphaerella graminicola* ; *Mycosphaerella*
arachidicola ; *Mycosphaerella fijiensis* ;
Phaeosphaeria diseases, caused for example by *Phaeosphaeria nodorum* ;
Pyrenophora diseases, caused for example by *Pyrenophora teres*, or *Pyrenophora tritici*
repentis;
20 Ramularia diseases, caused for example by *Ramularia collo-cygni* , or *Ramularia areola* ;
Rhynchosporium diseases, caused for example by *Rhynchosporium secalis* ;
Septoria diseases, caused for example by *Septoria apii* or *Septoria lycoperdisi* ;
Typhula diseases, caused for example by *Typhula incarnata* ;
Venturia diseases, caused for example by *Venturia inaequalis* ;
25 Root, Sheath and stem diseases such as :
Corticium diseases, caused for example by *Corticium graminearum* ;
Fusarium diseases, caused for example by *Fusarium oxysporum* ;
Gaeumannomyces diseases, caused for example by *Gaeumannomyces graminis* ;
Rhizoctonia diseases, caused for example by *Rhizoctonia solani* ;
30 Sarocladium diseases caused for example by *Sarocladium oryzae* ;
Sclerotium diseases caused for example by *Sclerotium oryzae* ;
Tapesia diseases, caused for example by *Tapesia acuformis* ;
Thielaviopsis diseases, caused for example by *Thielaviopsis basicola* ;
Ear and panicle diseases such as :
35 Alternaria diseases, caused for example by *Alternaria spp.* ;
Aspergillus diseases, caused for example by *Aspergillus flavus* ;
Cladosporium diseases, caused for example by *Cladosporium spp.* ;
Claviceps diseases, caused for example by *Claviceps purpurea* ;
Fusarium diseases, caused for example by *Fusarium culmorum* ;
40 Gibberella diseases, caused for example by *Gibberella zaeae* ;

Monographella diseases, caused for example by *Monographella nivalis* ;
Smut and bunt diseases such as :
Sphacelotheca diseases, caused for example by *Sphacelotheca reiliana* ;
Tilletia diseases, caused for example by *Tilletia caries* ;
5 Urocystis diseases, caused for example by *Urocystis occulta* ;
Ustilago diseases, caused for example by *Ustilago nuda* ;
Fruit rot and mould diseases such as :
Aspergillus diseases, caused for example by *Aspergillus flavus* ;
Botrytis diseases, caused for example by *Botrytis cinerea* ;
10 Penicillium diseases, caused for example by *Penicillium expansum* ;
Rhizopus diseases caused by example by *Rhizopus stolonifer*

Sclerotinia diseases, caused for example by *Sclerotinia sclerotiorum* ;
Verticillium diseases, caused for example by *Verticillium alboatrum* ;
15 Seed and soilborne decay, mould, wilt, rot and damping-off diseases :
Alternaria diseases, caused for example by *Alternaria brassicicola*
Aphanomyces diseases, caused for example by *Aphanomyces euteiches*
Ascochyta diseases, caused for example by *Ascochyta lenti*
Aspergillus diseases, caused for example by *Aspergillus flavus*
20 Cladosporium diseases, caused for example by *Cladosporium herbarum*
Cochliobolus diseases, caused for example by *Cochliobolus sativus*
(Conidiaform: *Drechslera*, *Bipolaris* Syn: *Helminthosporium*);
Colletotrichum diseases, caused for example by *Colletotrichum coccodes*;
Fusarium diseases, caused for example by *Fusarium culmorum*;
25 Gibberella diseases, caused for example by *Gibberella zeae*;
Macrophomina diseases, caused for example by *Macrophomina phaseolina*
Monographella diseases, caused for example by *Monographella nivalis*;
Penicillium diseases, caused for example by *Penicillium expansum*
Phoma diseases, caused for example by *Phoma lingam*
30 Phomopsis diseases, caused for example by *Phomopsis sojae*;
Phytophthora diseases, caused for example by *Phytophthora cactorum*;
Pyrenopthora diseases, caused for example by *Pyrenopthora graminea*
Pyricularia diseases, caused for example by *Pyricularia oryzae*;
Pythium diseases, caused for example by *Pythium ultimum*;
35 Rhizoctonia diseases, caused for example by *Rhizoctonia solani*;
Rhizopus diseases, caused for example by *Rhizopus oryzae*
Sclerotium diseases, caused for example by *Sclerotium rolfsii*;
Septoria diseases, caused for example by *Septoria nodorum*;
Typhula diseases, caused for example by *Typhula incarnata*;
40 Verticillium diseases, caused for example by *Verticillium dahliae* ;

Canker, broom and dieback diseases such as :

Nectria diseases, caused for example by *Nectria galligena* ;

Blight diseases such as :

Monilinia diseases, caused for example by *Monilinia laxa* ;

5 Leaf blister or leaf curl diseases such as :

Exobasidium diseases caused for example by *Exobasidium vexans*

Taphrina diseases, caused for example by *Taphrina deformans* ;

Decline diseases of wooden plants such as :

Esca diseases, caused for example by *Phaemoniella clamydospora* ;

10 Eutypa dyeback, caused for example by *Eutypa lata* ;

Ganoderma diseases caused for example by *Ganoderma boninense* ;

Rigidoporus diseases caused for example by *Rigidoporus lignosus*

Diseases of Flowers and Seeds such as

15 Botrytis diseases caused for example by *Botrytis cinerea* ;

Diseases of Tubers such as

Rhizoctonia diseases caused for example by *Rhizoctonia solani* ;

Helminthosporium diseases caused for example by *Helminthosporium solani* ;

20

Club root diseases such as

Plasmodiophora diseases, cause for example by *Plasmodiophora brassicae*.

Diseases caused by Bacterial Organisms such as

25 Xanthomonas species for example *Xanthomonas campestris* pv. *oryzae* ;

Pseudomonas species for example *Pseudomonas syringae* pv. *lachrymans* ;

Erwinia species for example *Erwinia amylovora*.

30

Legend of the figures

Fig 1 : Measurement of *Phytophthora infestans* growth inhibition in the presence of dsRNA targeting the saccharopine dehydrogenase messenger RNA.

Fig 2 : Analysis of saccharopine dehydrogenase mRNA level by qRT PCR.

35

Sequence listing:

SEQ ID N¹: Saccharopine dehydrogenase (LYS1) from *Aspergillus clavatus*.
SEQ ID N²: Protein encoded by the above nucleic acid sequence.
SEQ ID N³: Saccharopine dehydrogenase (LYS1) from *Aspergillus fumigatus*.
SEQ ID N⁴: Protein encoded by the above nucleic acid sequence.

5 **SEQ ID N⁵:** Saccharopine dehydrogenase (LYS1) from *Botrytis cinerea*.
SEQ ID N⁶: Protein encoded by the above nucleic acid sequence.
SEQ ID N⁷: Saccharopine dehydrogenase (LYS1) from *Fusarium graminearum*.
SEQ ID N⁸: Protein encoded by the above nucleic acid sequence.
SEQ ID N⁹: Saccharopine dehydrogenase (LYS1) from *Fusarium oxysporum*.

10 **SEQ ID N¹⁰:** Protein encoded by the above nucleic acid sequence.
SEQ ID N¹¹: Saccharopine dehydrogenase (LYS1) from *Fusarium verticillioides*.
SEQ ID N¹²: Protein encoded by the above nucleic acid sequence.
SEQ ID N¹³: Saccharopine dehydrogenase (LYS1) from *Fusarium verticillioides*.
SEQ ID N¹⁴: Protein encoded by the above nucleic acid sequence.

15 **SEQ ID N¹⁵:** Saccharopine dehydrogenase (LYS1) from *Mycosphaerella fijiensis*.
SEQ ID N¹⁶: Polypeptide encoded by the above nucleic acid sequence.
SEQ ID N¹⁷: Saccharopine dehydrogenase (LYS1) from *Magnaporthe grisea*.
SEQ ID N¹⁸: Protein encoded by the above nucleic acid sequence.
SEQ ID N¹⁹: Saccharopine dehydrogenase (LYS1) from *Moniliophthora perniciosa*.

20 **SEQ ID N²⁰:** Protein encoded by the above nucleic acid sequence.
SEQ ID N²¹: Saccharopine dehydrogenase (LYS1) from *Puccinia graminis*.
SEQ ID N²²: Protein encoded by the above nucleic acid sequence.
SEQ ID N²³: Saccharopine dehydrogenase (LYS1) from *Phytophthora infestans*.
SEQ ID N²⁴: Protein encoded by the above nucleic acid sequence.

25 **SEQ ID N²⁵:** Saccharopine dehydrogenase (LYS1) (from *Phytophthora ramorum*).
SEQ ID N²⁶: Protein encoded by the above nucleic acid sequence.
SEQ ID N²⁷: Saccharopine dehydrogenase (LYS1) from *Phytophthora sojae*.
SEQ ID N²⁸: Protein encoded by the above nucleic acid sequence.
SEQ ID N²⁹: Saccharopine dehydrogenase (LYS1) from *Pyrenophora tritici-repentis*.

30 **SEQ ID N³⁰:** Protein encoded by the above nucleic acid sequence.
SEQ ID N³¹: Saccharopine dehydrogenase (LYS1) from *Sclerotinia sclerotiorum*.
SEQ ID N³²: Protein encoded by the above nucleic acid sequence.
SEQ ID N³³: Saccharopine dehydrogenase (LYS1) from *Trichoderma reesei*.
SEQ ID N³⁴: Protein encoded by the above nucleic acid sequence.

35 **SEQ ID N³⁵:** Saccharopine dehydrogenase (LYS1) from *Ustilago maydis*.
SEQ ID N³⁶: Protein encoded by the above nucleic acid sequence.
SEQ ID N³⁷: Saccharopine dehydrogenase (LYS1) from *Verticillium albo-atrum*.
SEQ ID N³⁸: Protein encoded by the above nucleic acid sequence.
SEQ ID N³⁹: Saccharopine dehydrogenase (LYS1) from *Mycosphaerella graminicola*.

40 **SEQ ID N⁴⁰:** Protein encoded by the above nucleic acid sequence.

2012320554 11 Oct 2017

SEQ ID N°41: Saccharopine dehydrogenase (LYS1) from *Fusarium moniliform*.
 SEQ ID N°42: Protein encoded by the above nucleic acid sequence.
 SEQ ID N°43: Saccharopine dehydrogenase (LYS1) from *Claviceps purpurea*.
 SEQ ID N°44: Protein encoded by the above nucleic acid sequence.

5 SEQ ID N°45: Primer SACdh_Pi_T7_F
 SEQ ID N°46: Primer SACdh_Pi_T7_R
 SEQ ID N°47: Primer Actin forward
 SEQ ID N°48: Primer Actin reverse
 SEQ ID N°49: Primer β -Tub forward
 0 SEQ ID N°50: Primer β -Tub reverse
 SEQ ID N°51: Primer SACdh forward
 SEQ ID N°52: Primer SACdh reverse
 SEQ ID N°53: Primer pBINB33-1
 SEQ ID N°54: Primer pBINB33-2
 5 SEQ ID N°55: Primer SacdhPI R
 SEQ ID N°56: Primer SacdhPI F
 SEQ ID N°57: Primer LYS1 Pot 117-F
 SEQ ID N°58: Primer LYS1 Pot 117-R

0 In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

5 It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

0 The various aspects of the invention will be understood more fully by means of the experimental examples below.

All the methods or operations described below are given by way of example and correspond to a choice, made among the various methods available for achieving the same result. This choice has no effect on the quality of the result, and, consequently, any appropriate method can be used by those skilled in the art to achieve the same result. In particular, and unless otherwise specified in the examples, all the recombinant DNA techniques employed are carried out according to the standard protocols described in Sambrook and Russel (2001, Molecular cloning: A laboratory manual, Third edition, Cold Spring Harbor Laboratory Press, NY) in Ausubel *et al.* (1994, Current Protocols in 35 Molecular Biology, Current protocols, USA, Volumes 1 and 2), and in Brown (1998, Molecular Biology LabFax, Second edition, Academic Press, UK). Standard materials and methods for plant molecular biology are described in Croy R.D.D. (1993, Plant Molecular Biology LabFax, BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications (UK)). Standard materials and methods for PCR (Polymerase Chain Reaction) are also described in Dieffenbach and Dveksler (1995, PCR 40 Primer: A laboratory manual, Cold Spring Harbor Laboratory Press, NY) and in McPherson *et al.* (2000, PCR - Basics: From background to bench, First edition, Springer Verlag, Germany).

45

Ref biblio:

- Bevan, 1984, Nucl Acids Res 12: 8711-8721

- Bhattacharjee, J. K., 1985, *Crit. Rev. Microbiol.* 12, 131–151
- Bhattacharjee, J. K., 1992, in *Handbook of Evolution of Metabolic Function*, Mortlock, R. P., ed., CRC Press, Boca Raton, FL, pp. 47–80
- Born T.L. and Blanchard J.S., 1999, *Curr. Opin. Chem. Biol.*, 3:607-613
- 5 - Broquist, H. P., 1971, *Methods Enzymol.* 17, 112–129
- Chuang and Meyerowitz, 2000, PNAS, 97: 4985-4990
- Ehmann et al., 1999, *biochemistry*, 38,6171-6177
- Escobar et al., 2001, *Proc. Natl. Acad. Sci. USA.*, 98(23): 13437-13442
- Fire et al. 1998, *Nature* 391: 806-811
- 10 - Garrad, R. C. and Bhattacharjee, J. K., 1992, *J. Bacteriol.* 174, 7379–7384
- Gielen et al, 1984, *EMBO Journal* 3, 835-846
- Hamilton and Baulcombe, 1999, *Science* 286: 950-952
- Hamilton et al., 1998, *Plant J.* 15: 737-746
- Hammond et al., 2000, *Nature* 404: 293-296
- 15 - Hannon, 2002, *Nature*, 418 (6894): 244-51
- Herrera-Estrella et al, 1983 *Nature*, 303, 209-213
- Hofgen and Willmitzer, 1990, *Plant Science* 66, 221-230
- Houmard et al., 2007, *Plant Biotechnology Journal* 5, 605-614
- Montgomery et al., 1998, PNAS 95: 15502-15507
- 20 - Pandolfini et al., 2003, *Biotechnol.*, 25; 3(1): 7
- Pietrzak et al, 1986 *Nucleic Acids Res.* 14, 5858
- Thompson et al., *Nucleic Acids Research* 22 (1994), 4673-4680
- Umbarger, H. E., 1978, *Annu. Rev. Biochem.* 47, 533–606
- Randall, T.A., 2005, *MPMI*, 18, 229-243
- 25 - Rocha-Sosa et al., 1989, *EMBO J.* 8, 23-29
- Ruiz Ferrer and Voinnet, *Annu. Rev. Plant Biol.* 2009. 60:485–510
- Sambrook et al., 2001, *Molecular Cloning: A Laboratory Manual*, third edition, ISBN978-087969577-4
- Silué et al. *Physiol. Mol. Plant Pathol.*, 53 239-251, 1998
- Stärkel C., Ph. D. thesis “Host induced gene silencing – strategies for the improvement of resistance
- 30 against *Cercospora beticola* in sugar beet (B. vulgaris L.) and against *Fusarium graminearum* in wheat (T. aestivum L.) and maize (Z. mays L.)”, defended in June 2011, XP002668931, retrieved from internet (2012-02-07) on <http://ediss.sub.uni-hamburg.de/volltexte/2011/5286/pdf/Dissertation.pdf>
- Tang et al., 2003 *Gene Dev.*, 17(1): 49-63
- Villalba et al. *Fungal Genetics and Biology* 45, 68-75, 2008
- 35 - Vogel, H. J., 1965, in *Handbook of Evolving Genes and Proteins*, Bryson, V., ed., Academic Press, New York, pp. 25–40
- Waterhouse et al., 1998, PNAS 95: 13959-13964,
- Wesley et al. *The Plant Journal* (2001); 27(6), 581-590

- Xiao *et al.*, 2003, Plant Mol Biol., 52(5): 957-66
- Xu *et al.*, 2006, Cell Biochemistry and Biophysics, vol 46, 43-64
- Zamore *et al.*, 2000, Cell, 101: 25-33,

5 Examples

Example 1: *In vitro* cultivation of *Magnaporthe Grisea*

Assays were carried out using the *Magnaporthe grisea* wild-type strain P1.2 originated from the collection of the phytopathology laboratory of the CIRAD (Centre de coopération internationale en recherche agronomique pour le développement) in Montpellier. Conditions for culturing, the composition of the rice-10 agar medium, maintenance, and sporulation as well as protoplasts preparations are described by Silué *et al.* (1998).

Example 2 : *Magnaporthe grisea* transfection with dsRNA targeting saccharopine dehydrogenase and measurement of growth inhibition

15 The *Magnaporthe grisea* saccharopine dehydrogenase (SACdh) gene sequence Lys-1 (MGG_01359.6: 1426 bp) was obtained from the Broad Institute (<http://www.broadinstitute.org/>). A region of about 325 bp was selected for dsRNA, comprising the nucleotides 301 through 626, was synthesized by the Geneart company and cloned into the plasmid .

For transfection, ds RNA of saccharopine dehydrogenase from *Magnaporthe grisea* was produced using 20 the MEGAscript RNAi Kit (Ambion) according to the manufacturers' instructions. Different amounts (200µg to 2µg of ds RNA) were treated with transfection agent Lipofectamin RNAi max (Invitrogen) following manufacturers' instructions. Lipofectamin-ds RNA complexes were added to 2,5 x 10⁶ *Magnaporthe grisea* protoplast in a microtiterplate with TB3 media (Villalba *et al.*, 2008), and growth was monitored for 5-7 days at a OD of 600 nm using a Infinite M1000 (Tecan) microplate reader..

25 Growth of *Magnaporthe grisea* protoplasts treated with ds RNA of saccharopine dehydrogenase comparing to untreated control was monitored at several time points and showed a significant difference in growth.

Example 3 : In vitro cultivation *Phytophthora infestans* and zoospores preparation.

30 *Phytophthora infestans* strain PT78 was cultivated *in vitro* in 9cm petri dishes on pea agar medium (125g/l boiled and crushed peas, 20 g/l agar agar, carbenicillin 100mg/l) at 21°C in the dark. Every 15 days, new medium was inoculated with four 5mm cubic plugs of mycelium.

To release the zoospores, 12 ml of ice cold water were put on a 10 days old culture and the culture 35 was placed at 4°C for 2 hours. The supernatant was then collected without dwasturbing the mycelium and filtered through a 100 µm sieve to remove hyphal fragments. The zoospores were placed on ice and counted with a haemocytometer.

Example 4 : *Phytophthora infestans* transfection with dsRNA targeting saccharopine dehydrogenase and measurement of growth inhibition

The *Phytophthora infestans* saccharopine dehydrogenase gene sequence Lys-1 (PITG_03530 : 3020 bp) was obtained from the *P. infestans* database of the Broad Institute. A region about 500 bp offering the best siRNA according to the BLOCKit RNAi designer software (Invitrogen) and comprising the nucleotides 2251 through 2750, was synthesized by the Geneart company and cloned into the plasmid

5 0920357_SacDH_Pi_pMA..

Synthesis of dsRNA was carried out using the Megascript RNAi kit (Ambion) following the manufacturer's protocol and using as a template a PCR product amplified from the plasmid 0920357_SacDH_Pi_pMA. The forward primer used was SACdh_Pi_T7_F: 5'

TAATACGACTCACTATAGGGTTGCAGGAGAGCGCAGAAAGC and the reverse primer was

10 SACdh_Pi_T7_R : TAATACGACTCACTATAGGGTCAGTTGGAGTCCCGTGGTGT.

dsRNA were then precipitated with 100% ethanol and sodium acetate 3M, pH5.2, washed 2 times with 70 % ethanol and the pellets were resuspended in RNase free water.

The transfection mixes were prepared in a 48 well plate by adding sequentially V8 medium (5% of V8

juice (Campbell Foods Belgium), pH5), the appropriate amount of dsRNA and 10 μ l of lipofectamine

15 RNAi max (Invitrogen) in a final volume of 200 μ l. The transfection mixture was incubated during 15

min at room temperature..

Zoospores were diluted in V8 medium to a concentration of 5×10^4 zoospores/ml. Then, 800 μ L of the zoospores solution were added in each well of the plate. The final concentration of zoospores was 4×10^5 zoospores / ml.

20 Three controls were added on each plate: V8 medium, V8 medium + zoospores, V8 medium + zoospores + lipofectamine. The plates were incubated at 21°C, in the dark.

The growth of the fungus was followed by measuring the absorbance at 620 nm in a plate reader (Infinite 1000, Tecan) over 8 days. The percentage of growth inhibition was calculated using the following formula: $100 - (\text{OD}_{\text{dsRNA}} \times 100 / \text{OD}_{\text{control lipofectamine}})$. The growth of the fungi was reduced in the

25 presence of dsRNA directed against saccharopine dehydrogenase in a concentration dependant manner (100nM and 200nM respectively) as shown in Figure 1

Example 5 : Quantitative PCR analysis of *P. infestans* saccharopine dehydrogenase messenger RNA:

30 To yield sufficient RNA for cDNA synthesis and real-time RT-PCR, several wells of the 48 wells plate were pooled for one concentration of dsRNA tested : 10 wells for 72h time point, 6 wells for 96h time point, 3 wells for 120h time point.

After 72h, 96h and 120h of treatment with the dsRNA, the mycelia were collected. The samples were centrifuged to remove the medium. The samples were frozen in liquid nitrogen and then lyophilized

35 overnight.

Before RNA extraction, the mycelium was grinded. Total RNA was extracted using the RNeasy Plant mini kit (Qiagen) following the manufacturer's protocol. DNA contamination of the RNA samples was removed by DNase digestion (DNA free, Ambion). Integrity of the RNA was tested on the 2100 Bioanalyzer (RNA 6000 nano kit, Agilent) following the protocol supplied by the manufacturer. The

40 cDNA were synthesized from 2 μ g of total RNA by oligo dT priming using the kit Thermoscript RT-PCR

system (Invitrogen) following the manufacturer's protocol. The cDNA were precipitated with 100 %EtOH and sodium acetate 3M, pH5.2, washed 2 times with 70 % EtOH and the pellets were resuspended in 10 μ L of RNase free water. The cDNA were diluted a hundred fold for the qPCR test. Primer pairs were designed for each gene sequence by using the Primer Express 3 software (Applied Biosystems). Real time RT-PCR was performed on a 7900 Real Time PCR system (Applied Biosystems) with Power SYBR green PCR master mix (Applied Biosystems) following the manufacturer's protocol. Q-PCR was performed as follows : 95°C for 10 min, 45 cycles at 95°C for 15s and 60°C 1min, followed by a dissociation stage at 95°C for 15s, 60°C for 1min and 95°C for 15s. The actin and β -tubuline genes were used as endogenous controls. The relative expression of genes was calculated with the $2\Delta\Delta Ct$ method. The figure 2 shows a significant reduction of the level of the saccharopine dehydrogenase messenger RNA and this reduction correlates with growth inhibition.

Table 1: Sequence of qPCR primers :

Primer name	Forward primer sequence	Reverse primer sequence
actin	CGACTCTGGTGACGGTGTGT	GCGTGAGGAAGAGCGTAACC
β -Tub	CCGCCAGACAATTCGT	CCTTGGCCCAGTTGTTACCA
SACdh	TGGGTGGTTTCCAAGGTCTTC	AAAGGCACCAAGCCACTGAA

15

Example 6 : Construction of transformation vectors containing the *Phytophthora infestans* Saccharopine Dehydrogenase gene.

a) Preparation of the plant expression vector IR 47-71

The plasmid pBinAR is a derivative of the binary vector plasmid pBin19 (Bevan, 1984) which was constructed as follows: A fragment of a length of 529 bp which comprised the nucleotides 6909-7437 of the 35S promoter of the cauliflower mosaic virus was isolated as EcoR I/Kpn I fragment from the plasmid pDH51 (Pietrzak et al, 1986) and ligated between the EcoR I and Kpn I restriction sites of the polylinker of pUC18. In this manner, the plasmid pUC18-35S was formed. Using the restriction endonucleases Hind III and Pvu II, a fragment of a length of 192 bp which included the polyadenylation signal (3' terminus) of the Octopin Synthase gene (gene 3) of the T-DNA of the Ti plasmid pTiACH δ (Gielen et al, 1984) (nucleotides 11 749-11 939) was isolated from the plasmid pAGV40 (Herrera-Estrella et al, 1983). Following addition of Sph I linkers to the Pvu II restriction site, the fragment was ligated between the Sph I and Hind III restriction sites of pUC18-35S. This gave the plasmid pA7. Here, the entire polylinker comprising the 35S promoter and Ocs terminator was removed using EcoR I and Hind III and ligated into the appropriately cleaved vector pBin19. This gave the plant expression vector pBinAR (Hofgen and Willmitzer, 1990).

The promoter of the patatin gene B33 from Solanum tuberosum (Rocha-Sosa et al., 1989) was, as Dra I fragment (nucleotides -1512 - +14), ligated into the Ssf I-cleaved vector pUC19 whose ends had been blunted using T4-DNA polymerase. This gave the plasmid pUC19-B33. From this plasmid, the B33 promoter was removed using EcoR I and Sma I and ligated into the appropriately restricted vector pBinAR. This gave the plant expression vector pBinB33. To facilitate further cloning steps, the MCS

(Multiple Cloning Site) was extended. To this end, two complementary oligonucleotides were synthesized, heated at 95°C for 5 minutes, slowly cooled to room temperature to allow good fixation (annealing) and cloned into the Sal I and Kpn I restriction sites of pBinB33. The oligonucleotides used for this purpose had the following sequence:

5 pBINB33-1: 5'-TCG ACA GGC CTG GAT CCT TAA TTA AAC TAG TCT CGA GGA GCT CGG TAC-3'
pBINB33-2: 5'-CGA GCT CCT CGA GAC TAG TTT AAT TAA GGA TCC AGG CCT G-3'

The plasmid obtained was named IR 47-71.

b) Preparation of the plant expression vectors pEPA248 and pEPA262 comprising a nucleic acid

10 sequences for the *Phytophthora infestans* Saccharopine Dehydrogenase gene.

The saccharopine dehydrogenase sequence (PITG_03530: 3020 bp) was obtained from the *P. infestans* ORF Prot V1 database. A region about 500 bp offering the best siRNA according to the BLOCKit RNAi designer software (Invitrogen), was synthesized by the Geneart company.

A 300 bp fragment was amplified by PCR from this sequence DNA with the primers SacdhPI R (5'-

15 agaggtaccaagcttgcgtagctgg-3') and SacdhPI F (5'-tatctcgagtctagacaacgcattggttac-3'). The amplified fragment was cloned into pCRII-Topo (Invitrogen) to obtain the plasmid pEPA250. According to Wesley *et al.* (2001), the sequence of interest was cloned in pHannibal vector to give plasmid pEPA241. Then the dsRNA expression cassette was sub-cloned into different binary (plant expression) vectors pART27 (Gleave AP, PMB 20, (1992), 1203-1207) and IR 47 to produce the plant

20 expression vectors pEPA248 and pEPA262, respectively.

Vector pEPA248 and pEPA262 were introduced into respectively GV3101 and C58C1RIF (pGV2260) agrobacteria cells by electroporation (Rocha-Sosa *et al.* (1989)), in order to further transform potato plants.

25

Example 7: Construction of transformation vectors targeting the *Sclerotinia sclerotiorum* Saccharopine Dehydrogenase gene *lys1*.

The 351bp of a region of the *S. sclerotiorum* *Lys1* coding sequence (saccharopine dehydrogenase

SS1G_06166.1) was synthesized by the Geneart company (pEPA293), and flanked by internal (*Xba*I,

30 *Hind*III) and external (*Xho*I, *Kpn*I) restriction sites designed to perform a two-step cloning into the pHannibal vector (Wesley *et al.*, 2001). The intermediate plasmid harbored two inverted copies of the *Lys1* gene fragment spaced by the pHannibal *PdK* intron and regulated by the cauliflower mosaic virus (CaMV) 35S promoter and the OCS terminator.

The entire DNA cassette was then excised with *Not*I and inserted into the pART27 binary vector

35 (Gleave, 1992), giving the final plasmid pEPA307 with a plant selection cassette based on kanamycin resistance (nptII gene regulated by the *Nos* promoter and terminator).

The same *Not*I cassette was also inserted in a binary vector (pFCO31) with a plant selection marker based on an HPPD inhibitors resistance, to be used in Soybean transformation. The final plasmid can then transform plants with a T-DNA comprising in between the Right and Left borders, our cassette of

interest and an HPPD gene regulated by a CsVMV promoter, a chloroplast transit peptide sequence and a 3'Nos terminator.

Example 8 : Construction of transformation vectors targeting the *Phakopsora pachirizi*

5 **Saccharopine Dehydrogenase gene *lys1*.**

The 364bp of a region of a *Phakopsora pachirizi Lys1* E.S.T. (saccharopine dehydrogenase PHAPC_EH247326.1) was synthesized by the Geneart company (pCED42), and flanked by internal (*Xba*I, *Hind*III) and external (*Xho*I, *Kpn*I), restriction sites designed to perform a two-step cloning into the pHannibal vector (Wesley et al., 2001). The intermediate plasmid harbored two inverted copies of 10 the *Lys1* gene fragment spaced by the pHannibal *PdK* intron and regulated by the cauliflower mosaic virus (CaMV) 35S promoter and the OCS terminator.

The entire DNA cassette was then excised with *Not*I and inserted into the pART27 binary vector (Gleave, 1992), giving the final plasmid pCED45 with a plant selection cassette based on kanamycin resistance (nptII gene regulated by the *Nos* promoter and terminator).

15 The same *Not*I cassette was also inserted in a binary vector (pFCO31) with a plant selection marker based on an HPPD inhibitors resistance, to be used in Soybean transformation. The final plasmid (pCED87) can then transform plants with a T-DNA comprising inbetween the Right and Left borders, our cassette of interest and an HPPD gene regulated by a CsVMV promoter, a chloroplast transit peptide sequence and a 3'Nos terminator.

20 **Example 9: Transformation of potato plants with plant expression vectors comprising nucleic acid molecules coding for hairpin saccharopine dehydrogenase construct pEPA262**

Potato plants were transformed via Agrobacterium using the plant expression vector pEPA262, which comprises a coding nucleic acid sequence for saccharopine dehydrogenase under the control of the 25 promoter of the patatin gene B33 from *Solanum tuberosum* as described by Rocha-Sosa et al. (1989). The transgenic potato plants transformed with the plasmid pEPA262, were named "537 ES".

Molecular analysis of the events of "537 ES" was performed using standart PCR methods (Sambrook et al.) to detect the presence of the nucleic acid sequence for saccharopine dehydrogenase using the following primers SacDH PI F: 5'-TATCTCGAGTCTAGACAACGCCATTGGTTAC-3' and SacDH PI R: 30 5'-AGAGGTACCAAGCTTGCCTAGCTGG-3'. Further selection was accomplished either by Northen blotting or by expression analysis of the the nucleic acid sequence for saccharopine dehydrogenase via RT-Q PCR leading to a selection of different events. The oligonucleotides used for this purpose had the following sequence: LYS1_Pot 117-F: 5'-TCA ATA GAA GCG AAC GCG TAA A-3' and LYS1_Pot 117-R: 5'-GTT CGG GAT CTG CTC GAT GT-3'

35

Example 10: Agrobacterium-mediated transformation of *Arabidopsis thaliana*.

The pART27 derived plasmids was introduced into *Agrobacterium tumefaciens* strain LBA4404 (Invitrogen Electromax) by electroporation. The obtained bacterial strains were then used for the floral

dip infiltration of the *A. thaliana* Col-0 or Wassileskija plants as described by Clough & Bent (Plant 1998).

Example 11: Agrobacterium-mediated transformation of *Glycine max*.

5 The pFCO31 derived plasmids were introduced into *Agrobacterium tumefaciens* strain LBA4404 (Invitrogen Electromax) by electroporation. The obtained bacterial strains were then used for Soybean transformation as described below.

Soybean seeds are sterilized for 24h with Chlorine gas (Cl2). Seeds are then placed in Petri dishes and soaked in sterile deionized water for 20 hours prior to inoculation, in the dark, at room 10 temperature. An overnight culture grown at 28 °C and 200rpm agitation of *Agrobacterium tumefaciens* in 200ml of YEP (5 g/L Yeast extract, 10 g/L Peptone, 5 g/L NaCl2. pH to 7.0) containing the appropriate antibiotic is centrifugated at 4000rpm, 4 °C, 15min. The pellet is resuspended in 40 to 50mL of infection medium to a final OD600nm between 0.6 and 1 and stored on ice. Soaked seeds are dissected, under sterile conditions, using a #15 scalpel blade to separate the cotyledons and 15 remove the primary leaves attached to them. Each cotyledon is kept as explant for inoculation. About 100 explants are prepared and subsequently inoculated together, for 30 minutes in the *Agrobacterium* inoculum, with occasional agitation. Cocultivation is performed in classical Petri dishes containing 4 papers filter (Whatman ® grade 1) and 4 mL of Cocultivation medium (1/10X B5 major salts, 1/10X B5 minor salts, 2.8 mg/L Ferrous, 3.8 mg/L NaEDTA, 30 g/L Sucrose, 3.9 g/L MES (pH 5.4). Filter 20 sterilized 1X B5 vitamins, GA3 (0.25 mg/L), BAP (1.67 mg/L), Cysteine (400 mg/L), Dithothriitol (154.2 mg/L), and 200µM acetosyringone). Explants are placed on co-cultivation plates (9 per plate), adaxial (flat) side down and sealed with a single vertical string of tape (Leucopore ®) and further incubated for 5 days, at 24°C, in a 18:6 photoperiod. At the end of cocultivation, the explants are placed (6 per plate) on the Shoot Initiation Medium (1X B5 major salts, 1X B5 minor salts, 28 mg/L 25 Ferrous, 38 mg/L NaEDTA, 30 g/L Sucrose, 0.56 g/L MES, and 8 g/L agar (pH 5.6). Filter sterilized 1X B5 vitamins, BAP (1.67 mg/L), Timentin (50 mg/L), Cefotaxime (50 mg/L), Vancomycin (50 mg/L) and Tembotriione (0.1 mg/L), inclined at 45 °, with the cotyledonary node area imbedded in the medium 30 and upwards. The Shoot Initiation step lasts 1 month (24°C 16/8 photoperiod). After one more month, explants with green shoots are transferred on Shoot Elongation Medium (1X MS/B5 medium amended with 1 mg/l zeatin riboside (ZR), 0.1 mg/l IAA, 0.5 mg/l GA3, 3% sucrose, 100 mg/l pyroglutamic acid, 50 mg/l asparagine, 0.56 g/L MES, pH 5.6, solidified with 0.8% agar, ticarcillin (50 mg/l), cefotaxime (50 mg/l) and vancomycin (50 mg/L)), with fresh transfer every 2 weeks. Plantlets that are more than 2cm high are transferred on Rooting medium. Plantlets are cut and placed on rooting medium (1/2 MS major salts, minor salts and vitamins B5, 15 g/L Sucrose, 1mg/L IBA 8 g/L Noble agar , pH 5.7). in an 35 180mL vertical plastic container.

Once the roots are well formed and the apex is strong, plants are placed into soil in the greenhouse and covered with a green plastic box for acclimatization for 5 days on a 36°C heating bed. After 10 days of acclimatization, the plants are transferred into big pots, without heating bed.

Example 12: Asian Soybean Rust (*Phakopsora pachyrhizi*) assay.

Soybean plants expressing dsRNA directed against *Phakopsora pachyrhizi Lys1* were grown in the greenhouse in 7,5 cm pots (28,5 °C, 50% humidity, 14h light). In an incubator, plants were sprayed with a conidia suspension (50ml at 10-15X10⁴ spores/ml obtained from artificially infected soybean

5 plants serving as a source of inoculum, for one tray of dimensions 55X34X5cm containing 15 pots).

Suspension includes Tween20 at 0.033%. To ensure even inoculation multidirectional spraying is necessary. Plants are then incubated for 4 days at ca. 25 °C (daytime) and ca. 20 °C (night) with very high humidity (90% to saturation). After this period plants are transferred back to normal growing conditions. Asian soybean rust development is evaluated at regular intervals to follow kinetics of

10 disease development and severity of symptoms. All experiments with Asian soybean rust are performed in L2 safety level culture chambers or incubators according to HCB requirements.

Example 13: *Sclerotinia sclerotiorum* assay

Development of the Wild-type *S. sclerotiorum* isolate 1980 as well as the pac 1 mutant (Rollins, 2003)

15 fungus was studied on a whole plant assay. *S. sclerotiorum* was stored at 4 °C on potato dextrose agar (PDA, potato 200 g/l, glucose 20 g/l, agar 18 g/l). The fungus was cultured in a Petri dish containing PDA by placing a mycelial plug in the centre and was maintained under static conditions at 21°C for 4 days. 4 weeks old *Arabidopsis* wild-type and transgenic plants were inoculated with 12-mm diameter agar-mycelium plugs excised from the actively growing margin of the fungal colony in the

20 centre of the plant. Inoculated plants were kept in a growth chamber at 21°C with 100% relative humidity under a 12-h light photoperiod with a light intensity of 34 mmol m⁻² s⁻¹ using fluorescent white lights and were monitored every 12 h to observe fungal development. Disease symptoms were monitored by number of infected leaves as well as lengths and widths of lesions.

23 Oct 2017
2012320554

The claims defining the invention are as follows:

1. A dsRNA molecule comprising i) a first strand comprising a sequence substantially identical to at least 18 contiguous nucleotides of a fungus or oomycete saccharopine dehydrogenase gene and ii) a second strand comprising a sequence substantially complementary to the first strand, wherein the fungus or oomycete gene is selected from the group consisting of:
 - a) a polynucleotide comprising a sequence as set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43;
 - b) a polynucleotide encoding a polypeptide having a sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44;
 - c) a polynucleotide having at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, even more preferably at least 95% to a polynucleotide having a sequence as set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43;
 - d) a polynucleotide encoding a polypeptide having at least 70% sequence identity, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, to a polypeptide having a sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44;
 - e) a polynucleotide hybridizing under stringent conditions to a polynucleotide having a sequence as set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43; and
 - f) a polynucleotide hybridizing under stringent conditions to a polynucleotide encoding a polypeptide having at least 70% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44.

2. A composition comprising at least a dsRNA molecule according to claim 1.

3. A composition according to claim 2, further comprising an agriculturally acceptable support, carrier, filler and/or surfactant.
4. A composition according to claim 2 or 3 further comprising a phytopharmaceutical or plant growth promoting compound.
5. A micro-organism producing a dsRNA molecule according to claim 1.
6. A genetic construct which comprises at least one DNA sequence as well as heterologous regulatory element(s) in the 5' and optionally in the 3' positions, wherein the DNA sequence(s) is able to form a dsRNA molecule according to claim 1.
7. A cloning and/or expression vector, containing at least one genetic construct according to claim 6.

2012320554
23 Oct 2017

8. A transgenic plant cell which comprises a dsRNA molecule according to claim 1 or a construct according to claim 6.
9. A transgenic plant, seed or part thereof, comprising a transgenic plant cell according to claim 8.
10. A transgenic plant cell according to claim 8 or transgenic plant, seed or part thereof, according to claim 9 wherein said plant is a soybean, oilseed, rice or potato plant.
11. A method of making a transgenic plant cell capable of expressing a dsRNA that inhibits a fungus or oomycete saccharopine dehydrogenase gene, said method comprising the steps of transforming a plant cell with a genetic construct according to claim 6.
12. A method of controlling a plant pathogen, particularly a fungus or oomycete, comprising providing to said pathogen a dsRNA molecule according to claim 1, or a composition according to any one of claims 2 to 4.
13. A method according to claim 12, wherein an effective quantity of a dsRNA molecule according to claim 1 or a composition according to any one of claims 2 to 4 is applied to the soil where plants grow or are capable of growing, to the leaves and/or the fruit of plants or to the seeds of plants.
14. A method according to claim 12 comprising providing in the host plant of said plant pathogen a transformed plant cell according to claim 8.
15. A method for inhibiting the expression of a plant pathogen gene, comprising the following steps:
 - i) transforming a plant cell with a genetic construct according to claim 6;
 - ii) placing the cells thus transformed under conditions that allow the transcription of said construct; and
 - iii) bringing the cells into contact with the plant pathogen.
16. A method according to any one of claims 11 to 15 wherein said plant pathogen is *Magnaporthe grisea*, *Phytophthora infestans*, *Sclerotinia sclerotinum* or *Phakopsora pachyrhizi*.
17. A method according to any one of claims 11 to 15 wherein said plant is soybean, oilseed, rice or potato.

Figure 1

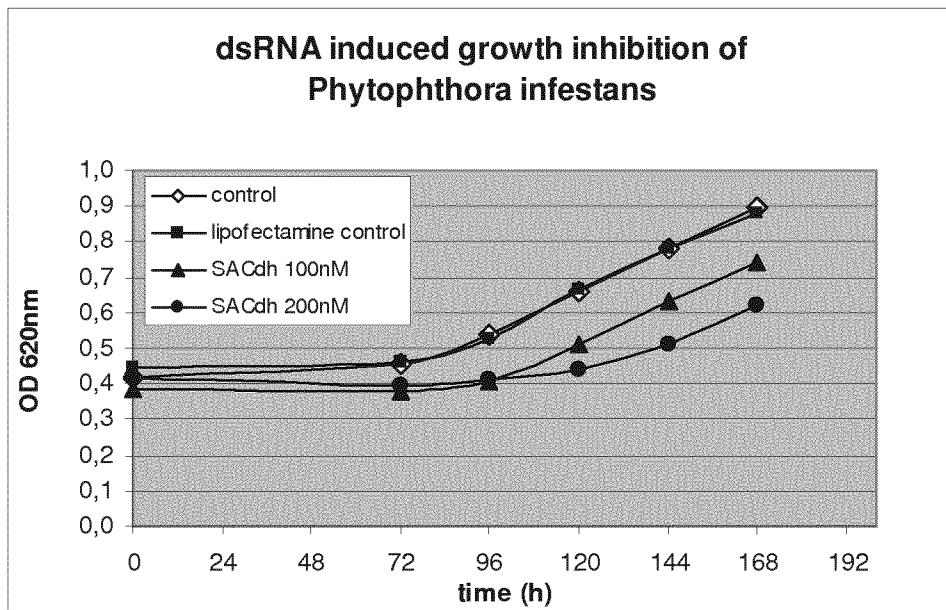
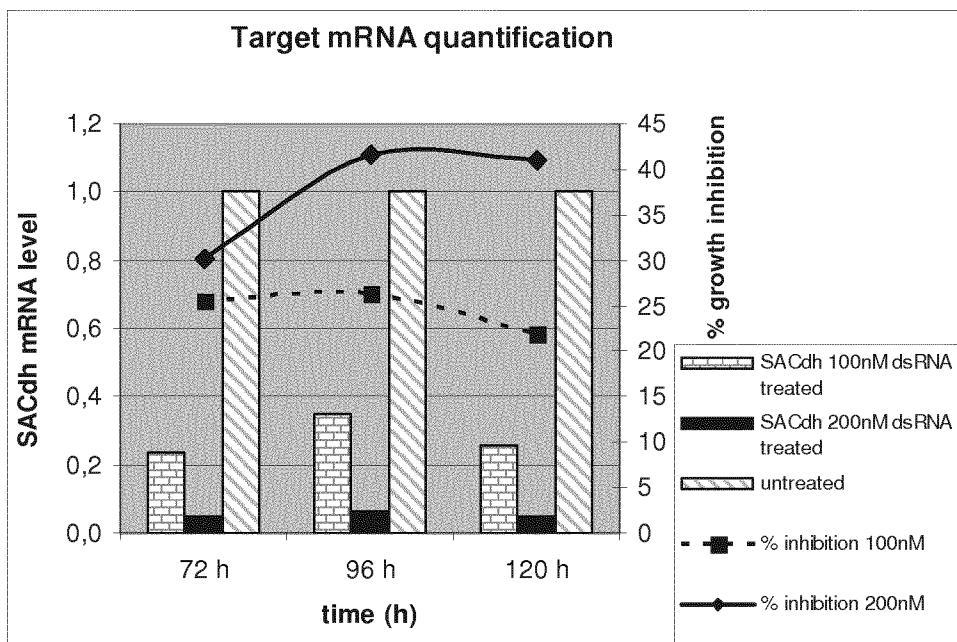



Figure 2

eol f-seql . txt
SEQUENCE LISTING

<110> Bayer Intellectual Property GmbH
 <120> RNAi for the control of fungi and oomycetes by inhibiting
 saccharopine dehydrogenase gene
 <130> BCS 11-4010
 <160> 58
 <170> PatentIn version 3.5
 <210> 1
 <211> 1143
 <212> DNA
 <213> Aspergillus clavatus

<220>
 <221> CDS
 <222> (1)..(1143)
 <223> Lys1

<400> 1 atg tcg agc aac aag att tgg ctg cgc gct gag acc aag ccc gct gaa Met Ser Ser Asn Lys Ile Trp Leu Arg Ala Glu Thr Lys Pro Ala Glu 1 5 10 15	48
gcg cggtctgccttgtactcctaccaca tgc aag gct ctt atg gat gcc Ala Arg Ser Ala Leu Thr Pro Thr Thr Cys Lys Ala Leu Met Asp Ala 20 25 30	96
ggc tac gac gtt act gtc gag cgt tcc aca caa cgc atc ttt gat ggt Gly Tyr Asp Val Thr Val Glu Arg Ser Thr Glu Arg Ile Phe Asp Gly 35 40 45	144
gag gat aac ata ctc tcc tac ctt atc ggc gct ccc ctg gtt gag gaa Glu Asp Asn Ile Leu Ser Tyr Leu Ile Gly Ala Pro Leu Val Glu Glu 50 55 60	192
ggc tca tgg gtc aag gat gcc ccc aag gac gct tac gtc ctg ggt ctc Gly Ser Trp Val Lys Asp Ala Pro Lys Asp Ala Tyr Val Leu Gly Leu 65 70 75 80	240
aag gag ctt ccc gaa gat gac ttc ccc ctc gag cac gtc cac atc tct Lys Glu Leu Pro Glu Asp Asp Phe Pro Leu Glu His Val His Ile Ser 85 90 95	288
ttc gca cac tgc tac aag gaa caa ggt ggc tgg gag aag gtt ctt agc Phe Ala His Cys Tyr Lys Glu Glu Glu Trp Glu Lys Val Leu Ser 100 105 110	336
cgg tgg ccc cgt gga ggc ggc acc ctc ttg gac ttg gag ttc ctc aca Arg Trp Pro Arg Gly Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr 115 120 125	384
gat gat gtt ggt cgc agg gta gct ttc gga tac tct gct ggt tat Asp Asp Val Gly Arg Arg Val Ala Ala Phe Gly Tyr Ser Ala Gly Tyr 130 135 140	432
gca ggc tct gct ctg gcc gtc aag aac tgg gcc ttg caa ttg aca cac Ala Glu Ser Ala Leu Ala Val Lys Asn Trp Ala Trp Glu Leu Thr His 145 150 155 160	480
ccc gag ggc gag cct ctg ccc ggc gag aca ccc tat gag aac caa gat Pro Glu Glu Glu Pro Leu Pro Gly Glu Thr Pro Tyr Glu Asn Glu Asp 165 170 175	528

eol f-seql . txt

ctt ctg atc gcg tcc gtg aag gag tcg ctg gag gtt ggc aag aag cag	576
Leu Leu Ile Ala Ser Val Lys Glu Ser Leu Glu Val Glu Lys Lys Glu	
180 185 190	
tct gga aag tcg ccc aag gtg ctt gtc att gga gct ctt ggc cgt tgc	624
Ser Glu Lys Ser Pro Lys Val Leu Val Ile Glu Ala Leu Glu Arg Cys	
195 200 205	
ggc aag ggt gct gtg cag ctg gcc aag gat gtt ggc att ccc gag tct	672
Gl y Lys Gl y Ala Val Gl n Leu Ala Lys Asp Val Gl y Ile Pro Gl u Ser	
210 215 220	
gat atc atc cag tgg gat att gaa gag acc aag aag ggt gga ccc ttc	720
Asp Ile Ile Gl n Trp Asp Ile Gl u Gl u Thr Lys Lys Gl y Gl y Pro Phe	
225 230 235 240	
cgt gag atc gtt gag gac gtt gat atc ttc gtc aac tgc atc tac ctc	768
Arg Glu Ile Val Gl u Asp Val Asp Ile Phe Val Asn Cys Ile Tyr Leu	
245 250 255	
tcc gcc aag atc cct cct ttc gtc aac gcc gag acc ctc tct act cct	816
Ser Ala Lys Ile Pro Pro Phe Val Asn Ala Gl u Thr Leu Ser Thr Pro	
260 265 270	
aac cgc cgc ttg tct gtc att tgc gac gtg agc gct gac aca acc aac	864
Asn Arg Arg Leu Ser Val Ile Cys Asp Val Ser Ala Asp Thr Thr Asn	
275 280 285	
ccc cac aac cct atc ccc gtc tac tcg atc acc acc acc ttt gat aag	912
Pro His Asn Pro Ile Pro Val Tyr Ser Ile Thr Thr Thr Phe Asp Lys	
290 295 300	
ccc acg gtg cca gtg acc ctg tcc gcc ggc gcc cag ggt ccc cct ctg	960
Pro Thr Val Pro Val Thr Leu Ser Ala Gl y Ala Gl n Gl y Pro Pro Leu	
305 310 315 320	
agc gtg atc agc att gat cat ctc ccc tct ctc ttg ccc cgt gag agc	1008
Ser Val Ile Ser Ile Asp His Leu Pro Ser Leu Leu Pro Arg Gl u Ser	
325 330 335	
tcc gag atg ttc agc gaa gcg ctg ctg cct agc ctg ctg cag ctc aag	1056
Ser Glu Met Phe Ser Glu Ala Leu Leu Pro Ser Leu Leu Gl n Leu Lys	
340 345 350	
gac aga aag aac gct cgc gtc tgg aag cag gcg gag gat ctg ttt aac	1104
Asp Arg Lys Asn Ala Arg Val Trp Lys Gl n Ala Gl u Asp Leu Phe Asn	
355 360 365	
gag aag gtc gct acg ttg ccc gag tcg atg cgc gca taa	1143
Gl u Lys Val Ala Thr Leu Pro Gl u Ser Met Arg Ala	
370 375 380	
<210> 2	
<211> 380	
<212> PRT	
<213> Aspergillus clavatus	
<400> 2	
Met Ser Ser Asn Lys Ile Trp Leu Arg Ala Glu Thr Lys Pro Ala Glu	
1 5 10 15	
Ala Arg Ser Ala Leu Thr Pro Thr Thr Cys Lys Ala Leu Met Asp Ala	
20 25 30	

eol f-seql . txt

Gl y Tyr Asp Val Thr Val Gl u Arg Ser Thr Gl n Arg Ile Phe Asp Gl y
35 40 45

Gl u Asp Asn Ile Leu Ser Tyr Leu Ile Gl y Ala Pro Leu Val Gl u Gl u
50 55 60

Gl y Ser Trp Val Lys Asp Ala Pro Lys Asp Ala Tyr Val Leu Gl y Leu
65 70 75 80

Lys Gl u Leu Pro Gl u Asp Asp Phe Pro Leu Gl u His Val His Ile Ser
85 90 95

Phe Ala His Cys Tyr Lys Gl u Gl n Gl y Gl y Trp Gl u Lys Val Leu Ser
100 105 110

Arg Trp Pro Arg Gl y Gl y Thr Leu Leu Asp Leu Gl u Phe Leu Thr
115 120 125

Asp Asp Val Gl y Arg Arg Val Ala Ala Phe Gl y Tyr Ser Ala Gl y Tyr
130 135 140

Al a Gl y Ser Ala Leu Ala Val Lys Asn Trp Ala Trp Gl n Leu Thr His
145 150 155 160

Pro Gl u Gl y Gl u Pro Leu Pro Gl y Gl u Thr Pro Tyr Gl u Asn Gl n Asp
165 170 175

Leu Leu Ile Ala Ser Val Lys Gl u Ser Leu Gl u Val Gl y Lys Lys Gl n
180 185 190

Ser Gl y Lys Ser Pro Lys Val Leu Val Ile Gl y Ala Leu Gl y Arg Cys
195 200 205

Gl y Lys Gl y Ala Val Gl n Leu Ala Lys Asp Val Gl y Ile Pro Gl u Ser
210 215 220

Asp Ile Ile Gl n Trp Asp Ile Gl u Gl u Thr Lys Lys Gl y Gl y Pro Phe
225 230 235 240

Arg Gl u Ile Val Gl u Asp Val Asp Ile Phe Val Asn Cys Ile Tyr Leu
245 250 255

Ser Ala Lys Ile Pro Pro Phe Val Asn Ala Gl u Thr Leu Ser Thr Pro
260 265 270

Asn Arg Arg Leu Ser Val Ile Cys Asp Val Ser Ala Asp Thr Thr Asn
275 280 285

Pro His Asn Pro Ile Pro Val Tyr Ser Ile Thr Thr Thr Phe Asp Lys
290 295 300

eol f-seql . txt

Pro Thr Val Pro Val Thr Leu Ser Ala Gly Ala Glu Glu Pro Pro Leu
305 310 315 320

Ser Val Ile Ser Ile Asp His Leu Pro Ser Leu Leu Pro Arg Glu Ser
325 330 335

Ser Glu Met Phe Ser Glu Ala Leu Leu Pro Ser Leu Leu Glu Leu Lys
340 345 350

Asp Arg Lys Asn Ala Arg Val Trp Lys Glu Ala Glu Asp Leu Phe Asn
355 360 365

Gl u Lys Val Ala Thr Leu Pro Glu Ser Met Arg Ala
370 375 380

<210> 3

<211> 1125

<212> DNA

<213> Aspergillus fumi gatus

<220>

<221> CDS

<222> (1)..(1125)

<223> Lys1

<400> 3

atg tca agc aat aag atc tgg ttg cgc gcg gaa acc aag cct gcc gag
Met Ser Ser Asn Lys Ile Trp Leu Arg Ala Glu Thr Lys Pro Ala Glu
1 5 10 15

48

gct cgg tct gct ttg acc ccg act acc tgc aag gcc ctt atg gat gct
Ala Arg Ser Ala Leu Thr Pro Thr Cys Lys Ala Leu Met Asp Ala
20 25 30

96

ggc tac gag gtg acc gtg gaa cgt tcc aga cag cgg att ttc gac gtt
Gly Tyr Glu Val Thr Val Glu Arg Ser Arg Glu Arg Ile Phe Asp Val
35 40 45

144

gta cag atc ggc gcc ccc ctc gtc gag gaa ggt tca tgg gta aag gac
Val Glu Ile Glu Ala Pro Leu Val Glu Glu Glu Ser Trp Val Lys Asp
50 55 60

192

gca ccc aaa gat gcc tac atc ctc ggt ctg aag gag ctt ccc gag gac
Ala Pro Lys Asp Ala Tyr Ile Leu Glu Leu Lys Glu Leu Pro Glu Asp
65 70 75 80

240

gat ttt ccg ctt gag cac gta cac atc tcc ttt gcg cac tgc tac aag
Asp Phe Pro Leu Glu His Val His Ile Ser Phe Ala His Cys Tyr Lys
85 90 95

288

caa cag gct ggc tgg gag aag gtc ctc agc cgg tgg ccc cgc gga ggc
Gln Glu Ala Glu Trp Glu Lys Val Leu Ser Arg Trp Pro Arg Glu Glu
100 105 110

336

ggc acc ctc ttg gac ttg gag ttc ctc aca gat gag act gga cgc cga
Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Glu Thr Glu Arg Arg
115 120 125

384

gta gct gct ttt ggg tac tcc gcc ggt tac gca ggt tct gct ttg gcc
Val Ala Ala Phe Gly Tyr Ser Ala Gly Tyr Ala Gly Ser Ala Leu Ala
130 135 140

432

eol f-seql . txt

att aag aac tgg gcc tgg caa ttg acg cat cct gag ggc gag ccg ctt	Ile Lys Asn Trp Ala Trp Glu Leu Thr His Pro Glu Glu Glu Pro Leu	480	
145	150	155	160
cct ggc gag act ccc tac gca aac cag gat ctg ttg att gag tca gtg	Pro Glu Glu Thr Pro Tyr Ala Asn Glu Asp Leu Leu Ile Glu Ser Val	528	
165	170	175	
aag gag tcg ttg gag tct ggc aag aag ctg tcc ggc agg ccg ccc aag	Lys Glu Ser Leu Glu Ser Gly Lys Lys Leu Ser Gly Arg Pro Pro Lys	576	
180	185	190	
gtg ctt gtc att gga gct ctt gga cgc tgt ggc aaa gga gcg gtt cag	Val Leu Val Ile Gly Ala Leu Glu Arg Cys Glu Lys Glu Ala Val Glu	624	
195	200	205	
ctg gcc aag gat gtc ggc att cct gag tcg gat atc atc cag tgg gat	Leu Ala Lys Asp Val Gly Ile Pro Glu Ser Asp Ile Ile Glu Trp Asp	672	
210	215	220	
ata gaa gag acc aag aag ggt ggc ccc ttc aga gag att gtc gag gat	Ile Glu Glu Thr Lys Lys Gly Pro Phe Arg Glu Ile Val Glu Asp	720	
225	230	235	240
gca gac att ttc atc aac tgc atc tac ctc tcc gct aag atc cct cct	Ala Asp Ile Phe Ile Asn Cys Ile Tyr Leu Ser Ala Lys Ile Pro Pro	768	
245	250	255	
ttc gtc aac acc gaa act ctg tct tct cct aac cgc cgc ttg tcc gtc	Phe Val Asn Thr Glu Thr Leu Ser Ser Pro Asn Arg Arg Leu Ser Val	816	
260	265	270	
att tgt gac gtg agc gcc gac aca acc aat ccc aac aat cct atc cct	Ile Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro Ile Pro	864	
275	280	285	
gtc tat tcc atc aca acc act ttc gac aag ccc aca gtc act gtt cct	Val Tyr Ser Ile Thr Thr Phe Asp Lys Pro Thr Val Thr Val Pro	912	
290	295	300	
ctt ccg gaa ctg gcc cag ggc cct cca ttg agc gtg atc agc atc gac	Leu Pro Glu Leu Ala Glu Gly Pro Pro Leu Ser Val Ile Ser Ile Asp	960	
305	310	315	320
cac ctc ccc tcc ctc ctt cct cgt gaa agc tcc gag atg ttc agc gaa	His Leu Pro Ser Leu Leu Pro Arg Glu Ser Ser Glu Met Phe Ser Glu	1008	
325	330	335	
gcc tta ctg ccg agc cta ctg caa ctc aag gat aga aag aac gct cgt	Ala Leu Leu Pro Ser Leu Leu Glu Leu Lys Asp Arg Lys Asn Ala Arg	1056	
340	345	350	
gtc tgg aag caa gca gag gac ttg ttc aac gaa aag gtt gct acc ttg	Val Trp Lys Glu Ala Glu Asp Leu Phe Asn Glu Lys Val Ala Thr Leu	1104	
355	360	365	
ccc gag tcg atg cgc gct taa	Pro Glu Ser Met Arg Ala	1125	
370			

<210> 4
 <211> 374
 <212> PRT
 <213> Aspergillus fumi gatus

<400> 4

eof f-seql . txt

Met Ser Ser Asn Lys Ile Trp Leu Arg Ala Glu Thr Lys Pro Ala Glu
1 5 10 15

Ala Arg Ser Ala Leu Thr Pro Thr Thr Cys Lys Ala Leu Met Asp Ala
20 25 30

Gly Tyr Glu Val Thr Val Glu Arg Ser Arg Gln Arg Ile Phe Asp Val
35 40 45

Val Gln Ile Gly Ala Pro Leu Val Glu Glu Gly Ser Trp Val Lys Asp
50 55 60

Ala Pro Lys Asp Ala Tyr Ile Leu Gly Leu Lys Glu Leu Pro Glu Asp
65 70 75 80

Asp Phe Pro Leu Glu His Val His Ile Ser Phe Ala His Cys Tyr Lys
85 90 95

Gln Gln Ala Gly Trp Glu Lys Val Leu Ser Arg Trp Pro Arg Gly Gly
100 105 110

Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Glu Thr Gly Arg Arg
115 120 125

Val Ala Ala Phe Gly Tyr Ser Ala Gly Tyr Ala Gly Ser Ala Leu Ala
130 135 140

Ile Lys Asn Trp Ala Trp Gln Leu Thr His Pro Glu Gly Glu Pro Leu
145 150 155 160

Pro Gly Glu Thr Pro Tyr Ala Asn Gln Asp Leu Leu Ile Glu Ser Val
165 170 175

Lys Glu Ser Leu Glu Ser Gly Lys Lys Leu Ser Gly Arg Pro Pro Lys
180 185 190

Val Leu Val Ile Gly Ala Leu Gly Arg Cys Gly Lys Gly Ala Val Gln
195 200 205

Leu Ala Lys Asp Val Gly Ile Pro Glu Ser Asp Ile Ile Gln Trp Asp
210 215 220

Ile Glu Glu Thr Lys Lys Gly Gly Pro Phe Arg Glu Ile Val Glu Asp
225 230 235 240

Ala Asp Ile Phe Ile Asn Cys Ile Tyr Leu Ser Ala Lys Ile Pro Pro
245 250 255

Phe Val Asn Thr Glu Thr Leu Ser Ser Pro Asn Arg Arg Leu Ser Val
260 265 270

eol f-seql . txt

Ile Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro Ile Pro
275 280 285

Val Tyr Ser Ile Thr Thr Phe Asp Lys Pro Thr Val Thr Val Pro
290 295 300

Leu Pro Glu Leu Ala Glu Gly Pro Pro Leu Ser Val Ile Ser Ile Asp
305 310 315 320

His Leu Pro Ser Leu Leu Pro Arg Glu Ser Ser Glu Met Phe Ser Glu
325 330 335

Ala Leu Leu Pro Ser Leu Leu Glu Leu Lys Asp Arg Lys Asn Ala Arg
340 345 350

Val Trp Lys Glu Ala Glu Asp Leu Phe Asn Glu Lys Val Ala Thr Leu
355 360 365

Pro Glu Ser Met Arg Ala
370

<210> 5
<211> 1119

<212> DNA

<213> Botrytis cinerea

<220>

<221> CDS

<222> (1)..(1119)

<223> Lys1

<400> 5

atg tct gga act act ctt cac cta cgt tct gag ttg ggc aaa gct ctt	48
Met Ser Gly Thr Thr Leu His Leu Arg Ser Glu Leu Glu Lys Ala Leu	
1 5 10 15	

gag cat cga tcc gct ctt acc ccc acc acc gcc aaa gct ctc atc gat	96
Gl u His Arg Ser Ala Leu Thr Pro Thr Ala Lys Ala Leu Ile Asp	
20 25 30	

gct gga tac aca atc aac gtt gag cgc agt cca gag cgt ata ttc gac	144
Al a Gl y Tyr Thr Ile Asn Val Gl u Arg Ser Pro Gl u Arg Ile Phe Asp	
35 40 45	

gat gaa gag ttc gag aag gtt ggt gct act ctt gtg cca gag aac aca	192
Asp Gl u Gl u Phe Gl u Lys Val Gl y Al a Thr Leu Val Pro Gl u Asn Thr	
50 55 60	

tgg aga caa gca cca aag gat cac att atc att ggg ttg aag gaa ctg	240
Trp Arg Gl n Al a Pro Lys Asp His Ile Ile Gl y Leu Lys Gl u Leu	
65 70 75 80	

ccc gtc gaa gaa ttt cct ctc gag cat gtt cac gta caa ttc gca cat	288
Pro Val Gl u Gl u Phe Pro Leu Gl u His Val His Val Gl n Phe Al a His	
85 90 95	

tgt tat aaa caa cag ggc ggc tgg gac act gtt cta tca cga ttc cct	336
Cys Tyr Lys Gl n Gl n Gl y Gl y Trp Asp Thr Val Leu Ser Arg Phe Pro	
100 105 110	

eol f-seql . txt

cgt gga ggt gga act ctc tta gat ctt gag ttt ttg aca gac gac aga	384
Arg Gly Gly Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Asp Arg	
115 120 125	
ggc aga aga gtt gca gcc ttt gga tac cat gct gga ttt gct ggt gca	432
Gly Arg Arg Val Ala Ala Phe Gly Tyr His Ala Gly Phe Ala Gly Ala	
130 135 140	
gca ttg gca ctc gaa aat tgg gcg tgg caa ctc acc cac cca gca tcc	480
Ala Leu Ala Leu Glu Asn Trp Ala Trp Glu Leu Thr His Pro Ala Ser	
145 150 155 160	
gag ccc ttc cca agt gta tcg agc tac ccc aac gaa gat gaa ttg att	528
Gl u Pro Phe Pro Ser Val Ser Ser Tyr Pro Asn Glu Asp Glu Leu Ile	
165 170 175	
gtg gat gtt aag aag gca atc gca gct gga caa gag aag acc ggc aag	576
Val Asp Val Lys Lys Ala Ile Ala Ala Glu Glu Lys Lys Thr Gly Lys	
180 185 190	
gca cca cga gtt ttg gtt att ggt gca tta ggc aga tgt gga agt gga	624
Ala Pro Arg Val Leu Val Ile Glu Ala Leu Glu Arg Cys Glu Ser Glu	
195 200 205	
gca gtt gac ctc tgc ttg aga gct ggt gtg cca acc gaa aat gtg ttg	672
Ala Val Asp Leu Cys Leu Arg Ala Glu Val Pro Thr Glu Asn Val Leu	
210 215 220	
aag tgg gat atg gcc gag acc gct aag gga ggg cca ttc cca gag atc	720
Lys Trp Asp Met Ala Glu Thr Ala Lys Glu Glu Pro Phe Pro Glu Ile	
225 230 235 240	
gtt gag agt gac atc ttc atc aac tgc ata tat ctc atg tcc aag att	768
Val Glu Ser Asp Ile Phe Ile Asn Cys Ile Tyr Leu Met Ser Lys Ile	
245 250 255	
cca aac ttt gtc gac atg caa agc ctc gat acc cca aac cgc aaa ttg	816
Pro Asn Phe Val Asp Met Glu Ser Leu Asp Thr Pro Asn Arg Lys Leu	
260 265 270	
tca gtc gtc tgc gat gtc agt gct gat acc acc aac ccc aac aac cca	864
Ser Val Val Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro	
275 280 285	
att cca atc tat act gtt gca acc aca ttt tca gag cca act gtt cca	912
Ile Pro Ile Tyr Thr Val Ala Thr Thr Phe Ser Glu Pro Thr Val Pro	
290 295 300	
gtt gag gtc aag gga gaa cca aga tta agt gtc atc agt att gat cac	960
Val Glu Val Lys Glu Glu Pro Arg Leu Ser Val Ile Ser Ile Asp His	
305 310 315 320	
ttg cca agt tta ttg cca aga gag gca agt gag gca ttt agc aag gac	1008
Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Lys Asp	
325 330 335	
tta tta cca agt ttg ttg tct ttg aag gat tgg aga aat act cca gtc	1056
Leu Leu Pro Ser Leu Leu Ser Leu Lys Asp Trp Arg Asn Thr Pro Val	
340 345 350	
tgg gcc aag gca gag aag tta ttc cag gaa aag gtt gct act ttg ccc	1104
Trp Ala Lys Ala Glu Lys Leu Phe Glu Glu Lys Val Ala Thr Leu Pro	
355 360 365	
aag aac gag gca tga	1119
Lys Asn Glu Ala	
370	

eol f-seql . txt

<210> 6
<211> 372
<212> PRT
<213> Botrytis cinerea

<400> 6

Met Ser Gly Thr Thr Leu His Leu Arg Ser Glu Leu Gly Lys Ala Leu
1 5 10 15

Glu His Arg Ser Ala Leu Thr Pro Thr Thr Ala Lys Ala Leu Ile Asp
20 25 30

Ala Gly Tyr Thr Ile Asn Val Glu Arg Ser Pro Glu Arg Ile Phe Asp
35 40 45

Asp Glu Glu Phe Glu Lys Val Gly Ala Thr Leu Val Pro Glu Asn Thr
50 55 60

Trp Arg Gln Ala Pro Lys Asp His Ile Ile Ile Gly Leu Lys Glu Leu
65 70 75 80

Pro Val Glu Glu Phe Pro Leu Glu His Val His Val Gln Phe Ala His
85 90 95

Cys Tyr Lys Gln Gln Gly Gly Trp Asp Thr Val Leu Ser Arg Phe Pro
100 105 110

Arg Gly Gly Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Asp Arg
115 120 125

Gly Arg Arg Val Ala Ala Phe Gly Tyr His Ala Gly Phe Ala Gly Ala
130 135 140

Ala Leu Ala Leu Glu Asn Trp Ala Trp Gln Leu Thr His Pro Ala Ser
145 150 155 160

Gl u Pro Phe Pro Ser Val Ser Ser Tyr Pro Asn Gl u Asp Gl u Leu Ile
165 170 175

Val Asp Val Lys Lys Ala Ile Ala Ala Gly Gln Gl u Lys Thr Gly Lys
180 185 190

Ala Pro Arg Val Leu Val Ile Gly Ala Leu Gly Arg Cys Gly Ser Gly
195 200 205

Ala Val Asp Leu Cys Leu Arg Ala Gly Val Pro Thr Gl u Asn Val Leu
210 215 220

Lys Trp Asp Met Ala Glu Thr Ala Lys Gly Gly Pro Phe Pro Gl u Ile
225 230 235 240

eol f-seql . txt

Val Glu Ser Asp Ile Phe Ile Asn Cys Ile Tyr Leu Met Ser Lys Ile
245 250 255

Pro Asn Phe Val Asp Met Glu Ser Leu Asp Thr Pro Asn Arg Lys Leu
260 265 270

Ser Val Val Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro
275 280 285

Ile Pro Ile Tyr Thr Val Ala Thr Thr Phe Ser Glu Pro Thr Val Pro
290 295 300

Val Glu Val Lys Gly Glu Pro Arg Leu Ser Val Ile Ser Ile Asp His
305 310 315 320

Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Lys Asp
325 330 335

Leu Leu Pro Ser Leu Leu Ser Leu Lys Asp Trp Arg Asn Thr Pro Val
340 345 350

Trp Ala Lys Ala Glu Lys Leu Phe Glu Glu Lys Val Ala Thr Leu Pro
355 360 365

Lys Asn Glu Ala
370

<210> 7
<211> 1173
<212> DNA
<213> Fusarium graminearum

<220>	7	
<221>	CDS	
<222>	(1)..(1173)	
<223>	Lys1	
<400>	7	
atg tct caa tac ccc cac atc ctc ctg cgc gct gag gag aag ccc ctc		48
Met Ser Glu Tyr Pro His Ile Leu Leu Arg Ala Glu Glu Lys Pro Leu		
1 5 10 15		
gag cac cga tct ttc tct ccc tca att atc aag act ctt gtc gac gct		96
Gl u His Arg Ser Phe Ser Pro Ser Ile Ile Lys Thr Leu Val Asp Ala		
20 25 30		
gga tat ccc gtc tct gtc gag cga tca tct aca gac ccc aag ttc aag		144
Gly Tyr Pro Val Ser Val Glu Arg Ser Ser Thr Asp Pro Lys Phe Lys		
35 40 45		
cgc atc ttt gaa gac tcc gag tat gag gct gct ggt gcg cgc ctc gtc		192
Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Gly Ala Arg Leu Val		
50 55 60		
aac gag ggc acc tgg ccc aac gcc gaa gcc gga act ttg att ctg ggc		240
Asn Glu Glu Thr Trp Pro Asn Ala Glu Ala Glu Thr Leu Ile Leu Glu		
65 70 75 80		

eol f-seql . txt

ctc aag gag att ccc gag gaa gac ttt cct ctc aag aac gac cac att	288
Leu Lys Glu Ile Pro Glu Glu Asp Phe Pro Leu Lys Asn Asp His Ile	
85 90 95	
tca ttt gcc cat tgg tac aag aac caa ggt gga tgg gaa aag gtc ctc	336
Ser Phe Ala His Cys Tyr Lys Asn Glu Gly Trp Glu Lys Val Leu	
100 105 110	
ggc cgc ttc cct caa gga agc agc gtt cta tac gat ttg gag ttc ctt	384
Gly Arg Phe Pro Glu Gly Ser Ser Val Leu Tyr Asp Leu Glu Phe Leu	
115 120 125	
gtc gat gag caa gga cgc cga gtt tct gct ttc ggt ttc cac gct gga	432
Val Asp Glu Glu Gly Arg Arg Val Ser Ala Phe Gly Phe His Ala Gly	
130 135 140	
ttc gct ggc gct gcc ctc ggt atc aag act ctt gcc cac cag ctt cag	480
Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ala His Glu Leu Glu	
145 150 155 160	
gac ccc tcc tcc aag ctc ccc tca gtg gag aca ttc acc gat ggt cgt	528
Asp Pro Ser Ser Lys Leu Pro Ser Val Glu Thr Phe Thr Asp Gly Arg	
165 170 175	
gga tac tac cta aac gag gag ctc gtt aac cag atc cga gaa gac	576
Gly Tyr Tyr Leu Asn Glu Glu Leu Val Asn Glu Ile Arg Glu Asp	
180 185 190	
ctt gcc aag gcc gag aag tct ctt gga cgc aag ccc act gct ctc gtc	624
Leu Ala Lys Ala Glu Lys Ser Leu Gly Arg Lys Pro Thr Ala Leu Val	
195 200 205	
ctc ggt gct ctt gga cga tgg ggt aag ggt gcc gtt gac ctg ttc ctc	672
Leu Gly Ala Leu Gly Arg Cys Gly Lys Gly Ala Val Asp Leu Phe Leu	
210 215 220	
aag gct ggc atg ccc gac gag aac atc acc cgc tgg gac ttg aac gag	720
Lys Ala Gly Met Pro Asp Glu Asn Ile Thr Arg Trp Asp Leu Asn Glu	
225 230 235 240	
acc aag gac cga gat ggt cct tat gag gag att gcc cag gcc gat gtc	768
Thr Lys Asp Arg Asp Gly Pro Tyr Glu Glu Ile Ala Glu Ala Asp Val	
245 250 255	
ttc ctt aac gcc atc tac ctt tcc aag ccc atc cct cct ttc atc aac	816
Phe Leu Asn Ala Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn	
260 265 270	
gag gag ctt ctc gcc aag tct ggc cgc aac ttg gct gtt gtt atc gat	864
Gl u Gl u Leu Leu Ala Lys Ser Gly Arg Asn Leu Ala Val Val Ile Asp	
275 280 285	
gtc tcc tgc gac acc acc aac cct cac aac ccc atc ccc atc tac tct	912
Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser	
290 295 300	
atc aac acc aca ttc gag gag ccc acc gtc ccc gtc gag atc aag aac	960
Ile Asn Thr Thr Phe Glu Glu Pro Thr Val Pro Val Glu Ile Lys Asn	
305 310 315 320	
gac cag aac tct ctc cct cta tca gtt att agc atc gac cat ctc ccc	1008
Asp Glu Asn Ser Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro	
325 330 335	
tca atg ctg ccc cgt gag gct agt gag gcc ttt agc gag ggc ctc aag	1056
Ser Met Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Glu Glu Gly Leu Lys	
340 345 350	

eol f-seql . txt

gag tct ctc ctt aca ctc aag gac cgc aag act tcg cga gtg tgg gcc	1104
Gl u Ser Leu Leu Thr Leu Lys Asp Arg Lys Thr Ser Arg Val Trp Al a	
355 360 365	
gac gcc gag aag ctc ttc aac gag aag gtt gct ctg ctt ccc gag tcc	1152
Asp Al a Gl u Lys Leu Phe Asn Gl u Lys Val Al a Leu Leu Pro Gl u Ser	
370 375 380	
ctg cga acc aag aga gtt taa	1173
Leu Arg Thr Lys Arg Val	
385 390	
<210> 8	
<211> 390	
<212> PRT	
<213> <i>Fusarium graminearum</i>	
<400> 8	
Met Ser Gl n Tyr Pro His Ile Leu Leu Arg Al a Gl u Gl u Lys Pro Leu	
1 5 10 15	
Gl u His Arg Ser Phe Ser Pro Ser Ile Ile Lys Thr Leu Val Asp Al a	
20 25 30	
Gly Tyr Pro Val Ser Val Gl u Arg Ser Ser Thr Asp Pro Lys Phe Lys	
35 40 45	
Arg Ile Phe Gl u Asp Ser Gl u Tyr Gl u Al a Al a Gl y Al a Arg Leu Val	
50 55 60	
Asn Gl u Gly Thr Trp Pro Asn Al a Gl u Al a Gl y Thr Leu Ile Leu Gl y	
65 70 75 80	
Leu Lys Gl u Ile Pro Gl u Gl u Asp Phe Pro Leu Lys Asn Asp His Ile	
85 90 95	
Ser Phe Al a His Cys Tyr Lys Asn Gl n Gl y Gl y Trp Gl u Lys Val Leu	
100 105 110	
Gly Arg Phe Pro Gl n Gl y Ser Ser Val Leu Tyr Asp Leu Gl u Phe Leu	
115 120 125	
Val Asp Gl u Gl n Gl y Arg Arg Val Ser Al a Phe Gl y Phe His Al a Gl y	
130 135 140	
Phe Al a Gl y Al a Al a Leu Gl y Ile Lys Thr Leu Al a His Gl n Leu Gl n	
145 150 155 160	
Asp Pro Ser Ser Lys Leu Pro Ser Val Gl u Thr Phe Thr Asp Gl y Arg	
165 170 175	
Gly Tyr Tyr Leu Asn Gl u Gl u Gl u Leu Val Asn Gl n Ile Arg Gl u Asp	
180 185 190	

eol f-seql . txt

Leu Al a Lys Al a Gl u Lys Ser Leu Gl y Arg Lys Pro Thr Al a Leu Val
195 200 205

Leu Gl y Al a Leu Gl y Arg Cys Gl y Lys Gl y Al a Val Asp Leu Phe Leu
210 215 220

Lys Al a Gl y Met Pro Asp Gl u Asn Ile Thr Arg Trp Asp Leu Asn Gl u
225 230 235 240

Thr Lys Asp Arg Asp Gl y Pro Tyr Gl u Gl u Ile Al a Gl n Al a Asp Val
245 250 255

Phe Leu Asn Al a Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn
260 265 270

Gl u Gl u Leu Leu Al a Lys Ser Gl y Arg Asn Leu Al a Val Val Ile Asp
275 280 285

Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser
290 295 300

Ile Asn Thr Thr Phe Gl u Gl u Pro Thr Val Pro Val Gl u Ile Lys Asn
305 310 315 320

Asp Gl n Asn Ser Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro
325 330 335

Ser Met Leu Pro Arg Gl u Al a Ser Gl u Al a Phe Ser Gl u Gl y Leu Lys
340 345 350

Gl u Ser Leu Leu Thr Leu Lys Asp Arg Lys Thr Ser Arg Val Trp Al a
355 360 365

Asp Al a Gl u Lys Leu Phe Asn Gl u Lys Val Al a Leu Leu Pro Gl u Ser
370 375 380

Leu Arg Thr Lys Arg Val
385 390

<210> 9
<211> 591
<212> DNA
<213> Fusari um oxysporum

<220>
<221> CDS
<222> (1)..(591)
<223> Lys1

<400> 9
atg tct gaa tat ccc cac atc cta ctt cgc gct gag gag aag cct ctc
Met Ser Gl u Tyr Pro His Ile Leu Leu Arg Al a Gl u Gl u Lys Pro Leu
1 5 10 15

48

eol f-seql . txt

gag cac cga tct ttc tcc ccc gcc gtt atc aag aca ctc gtc gat gct	96
Gl u His Arg Ser Phe Ser Pro Al a Val Ile Lys Thr Leu Val Asp Al a	
20 25 30	
gga tac ccc att tcc gtc gag cga tcg tcc aca gac ccc aag ttt aag	144
Gl y Tyr Pro Ile Ser Val Gl u Arg Ser Ser Thr Asp Pro Lys Phe Lys	
35 40 45	
cgt atc ttt gag gac tca gag tat gag gct gct ggc gct cgt ctt gtc	192
Arg Ile Phe Gl u Asp Ser Gl u Tyr Gl u Al a Al a Gl y Al a Arg Leu Val	
50 55 60	
gat acg ggt gtc tgg ccc aac gct gag cct ggg aca atc atc ctg ggg	240
Asp Thr Gl y Val Trp Pro Asn Al a Gl u Pro Gl y Thr Ile Ile Leu Gl y	
65 70 75 80	
ctg aag gag ata ccc gag gac ttc ccc ctc aag aat gac cac atc	288
Leu Lys Gl u Ile Pro Gl u Gl u Asp Phe Pro Leu Lys Asn Asp His Ile	
85 90 95	
aca ttc gct cac tgc tac aag aat caa ggg ggc tgg gag aag gta ctc	336
Thr Phe Al a His Cys Tyr Lys Asn Gl n Gl y Gl y Trp Gl u Lys Val Leu	
100 105 110	
ggt cgc tgg gca caa ggc ggc tca gtt ttg tat gac ttg gag ttc ttg	384
Gl y Arg Trp Al a Gl n Gl y Gl y Ser Val Leu Tyr Asp Leu Gl u Phe Leu	
115 120 125	
cac gat tct gaa ggt cgt cgg gtt tcg gcc ttc ggt ttc cac gct ggt	432
His Asp Ser Gl u Gl y Arg Arg Val Ser Al a Phe Gl y Phe His Al a Gl y	
130 135 140	
ttt gca gga gct gcg ctc gga att aag acg ctt gct cac cag ctg cag	480
Phe Al a Gl y Al a Al a Leu Gl y Ile Lys Thr Leu Al a His Gl n Leu Gl n	
145 150 155 160	
gac tcg tct tct aag ctc cct tca gtc gag aca ttc acc gat ggc cgc	528
Asp Ser Ser Ser Lys Leu Pro Ser Val Gl u Thr Phe Thr Asp Gl y Arg	
165 170 175	
gga tac tac ctg aac gag gat gag ctc gtc aac cca gat tcg cga gga	576
Gl y Tyr Tyr Leu Asn Gl u Asp Gl u Leu Val Asn Pro Asp Ser Arg Gl y	
180 185 190	
tct cac caa ggc tga	591
Ser His Gl n Gl y	
195	

<210> 10
 <211> 196
 <212> PRT
 <213> Fusarium oxysporum

<400> 10

Met Ser Gl u Tyr Pro His Ile Leu Leu Arg Al a Gl u Gl u Lys Pro Leu

1 5 10 15
Gl u His Arg Ser Phe Ser Pro Al a Val Ile Lys Thr Leu Val Asp Al a

20 25 30
Gl y Tyr Pro Ile Ser Val Gl u Arg Ser Ser Thr Asp Pro Lys Phe Lys

35 40 45

eol f-seql . txt

Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Glu Ala Arg Leu Val
50 55 60

Asp Thr Gly Val Trp Pro Asn Ala Glu Pro Gly Thr Ile Ile Leu Gly
65 70 75 80

Leu Lys Glu Ile Pro Glu Glu Asp Phe Pro Leu Lys Asn Asp His Ile
85 90 95

Thr Phe Ala His Cys Tyr Lys Asn Glu Gly Gly Trp Glu Lys Val Leu
100 105 110

Gly Arg Trp Ala Glu Gly Ser Val Leu Tyr Asp Leu Glu Phe Leu
115 120 125

His Asp Ser Glu Gly Arg Arg Val Ser Ala Phe Gly Phe His Ala Gly
130 135 140

Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ala His Glu Leu Glu
145 150 155 160

Asp Ser Ser Ser Lys Leu Pro Ser Val Glu Thr Phe Thr Asp Gly Arg
165 170 175

Gly Tyr Tyr Leu Asn Glu Asp Glu Leu Val Asn Pro Asp Ser Arg Gly
180 185 190

Ser His Glu Gly
195

<210> 11
<211> 1104
<212> DNA
<213> Fusarium verticillioides

<220>	11	
<221>	CDS	
<222>	(1)..(1104)	
<223>	Lys1	
 <400> 11		
atg tcg cct gtc gtc att cat ctc cgg acc gag aca aag cct cta gag		48
Met Ser Pro Val Val Ile His Leu Arg Thr Glu Thr Lys Pro Leu Glu		
1 5 10 15		
cgt cgc tct cca ttg tca cct gcg act gct aag gct ttg ctc ggc gct		96
Arg Arg Ser Pro Leu Ser Pro Ala Thr Ala Lys Ala Leu Leu Gly Ala		
20 25 30		
ggc tac aca gtt cga gtt gag gaa tcc ccg gac cgc att tac aag att		144
Gly Tyr Thr Val Arg Val Glu Glu Ser Pro Asp Arg Ile Tyr Lys Ile		
35 40 45		
gac gag ttc aga gat gtt ggg gct gaa atc gta ccc gct ggc tcg tgg		192
Asp Glu Phe Arg Asp Val Gly Ala Glu Ile Val Pro Ala Gly Ser Trp		
50 55 60		

eol f-seql . txt

gtg aat gca ccc aag gag gat att atc ctg gga ttg aag gag att gag	240
Val Asn Ala Pro Lys Glu Asp Ile Ile Leu Gly Leu Lys Glu Ile Glu	
65 70 75 80	
gct aat ggt aca ccg tta ctt cac acc tac att cac ttt gct cat gta	288
Ala Asn Gly Thr Pro Leu Leu His Thr Tyr Ile His Phe Ala His Val	
85 90 95	
ttc aag aag caa agc ggc tgg gct act gag ctg tcc cgc ttc gca aac	336
Phe Lys Lys Glu Ser Gly Trp Ala Thr Glu Leu Ser Arg Phe Ala Asn	
100 105 110	
gct ggt ggc tta cta tat gac ttg gaa ttt ctt acg gac caa gat gga	384
Ala Gly Gly Leu Leu Tyr Asp Leu Glu Phe Leu Thr Asp Glu Asp Gly	
115 120 125	
cgc cgg gta gct gca ttc gga tat tgg gct gga tat gcc ggg acc gct	432
Arg Arg Val Ala Ala Phe Gly Tyr Trp Ala Gly Tyr Ala Gly Thr Ala	
130 135 140	
ctg gca ctc ctg tct tgg gct cac cag ctg ctc aac cct ggc gta ccc	480
Leu Ala Leu Leu Ser Trp Ala His Glu Leu Leu Asn Pro Glu Val Pro	
145 150 155 160	
caa gga ccg gtt ccc gtc ttc gac tct gcc tct gct ttg act gaa ctt	528
Glu Gly Pro Val Pro Val Phe Asp Ser Ala Ser Ala Leu Thr Glu Leu	
165 170 175	
gtc aag ggt aaa gtc gac gct gca cgc tcc gcc aac cac ggc gcg ctc	576
Val Lys Gly Lys Val Asp Ala Ala Arg Ser Ala Asn His Glu Ala Leu	
180 185 190	
cct cga ctg atc gta atc ggt gcc ctg ggc cgc tgc ggc aaa ggt gcc	624
Pro Arg Leu Ile Val Ile Gly Ala Leu Glu Arg Cys Glu Lys Glu Ala	
195 200 205	
atc gca gca gct gag gcc att ggt gtt agt gac att ctg aaa tgg gac	672
Ile Ala Ala Ala Glu Ala Ile Glu Val Ser Asp Ile Leu Lys Trp Asp	
210 215 220	
att gct gag acg agc aag ggt ggc cca ttt cct gaa gtc gcc tcg tct	720
Ile Ala Glu Thr Ser Lys Gly Gly Pro Phe Pro Glu Val Ala Ser Ser	
225 230 235 240	
gat att ttt gtg aac tgc gtc tac cta ggt tcc aac aag att cca ccc	768
Asp Ile Phe Val Asn Cys Val Tyr Leu Glu Ser Asn Lys Ile Pro Pro	
245 250 255	
ttc aca act ttt gaa gca ctc tca gga ccc ggc aga cga ctc cgg gtc	816
Phe Thr Thr Phe Glu Ala Leu Ser Glu Pro Glu Arg Arg Leu Arg Val	
260 265 270	
att tgc gac gtc agt tgc gac ccc aac agc gag aat aac cct gtt ccc	864
Ile Cys Asp Val Ser Cys Asp Pro Asn Ser Glu Asn Asn Pro Val Pro	
275 280 285	
gtc tac tcc agc tac agt tcg ttc gaa aac cgc act gtc cct gct tct	912
Val Tyr Ser Ser Tyr Ser Ser Phe Glu Asn Pro Thr Val Pro Ala Ser	
290 295 300	
gag cat att gat ggt cct gaa ctg cgc atc att gct atc gat cat ctt	960
Glu His Ile Asp Gly Pro Glu Leu Arg Ile Ile Ala Ile Asp His Leu	
305 310 315 320	
cct acc atg gtt gca cgc gag tcg agt gac gag tat tcc tca cta ctt	1008
Pro Thr Met Val Ala Arg Glu Ser Ser Asp Glu Tyr Ser Ser Leu Leu	
325 330 335	

eol f-seql . txt

ctg cca agt ttg ttg act ctg gac cgc cgg gat act gag ggg gtt tgg	1056
Leu Pro Ser Leu Leu Thr Leu Asp Arg Arg Asp Thr Glu Glu Val Trp	
340 345 350	
cag cga gca gaa cg gatc ttt cgc gag aag gtt gca gag ctg ccc tag	1104
Gl n Arg Al a Gl u Arg Ile Phe Arg Gl u Lys Val Al a Gl u Leu Pro	
355 360 365	
<210> 12	
<211> 367	
<212> PRT	
<213> Fusarium verticillioides	
<400> 12	
Met Ser Pro Val Val Ile His Leu Arg Thr Glu Thr Lys Pro Leu Glu	
1 5 10 15	
Arg Arg Ser Pro Leu Ser Pro Al a Thr Al a Lys Al a Leu Leu Gl y Al a	
20 25 30	
Gl y Tyr Thr Val Arg Val Gl u Gl u Ser Pro Asp Arg Ile Tyr Lys Ile	
35 40 45	
Asp Gl u Phe Arg Asp Val Gl y Al a Gl u Ile Val Pro Al a Gl y Ser Trp	
50 55 60	
Val Asn Al a Pro Lys Gl u Asp Ile Ile Leu Gl y Leu Lys Gl u Ile Gl u	
65 70 75 80	
Al a Asn Gl y Thr Pro Leu Leu His Thr Tyr Ile His Phe Al a His Val	
85 90 95	
Phe Lys Lys Gl n Ser Gl y Trp Al a Thr Gl u Leu Ser Arg Phe Al a Asn	
100 105 110	
Al a Gl y Gl y Leu Leu Tyr Asp Leu Gl u Phe Leu Thr Asp Gl n Asp Gl y	
115 120 125	
Arg Arg Val Al a Al a Phe Gl y Tyr Trp Al a Gl y Tyr Al a Gl y Thr Al a	
130 135 140	
Leu Al a Leu Leu Ser Trp Al a His Gl n Leu Leu Asn Pro Gl y Val Pro	
145 150 155 160	
Gl n Gl y Pro Val Pro Val Phe Asp Ser Al a Ser Al a Leu Thr Gl u Leu	
165 170 175	
Val Lys Gl y Lys Val Asp Al a Al a Arg Ser Al a Asn His Gl y Al a Leu	
180 185 190	
Pro Arg Leu Ile Val Ile Gl y Al a Leu Gl y Arg Cys Gl y Lys Gl y Al a	
195 200 205	

eof f-seql . txt

Ile Ala Ala Ala Glu Ala Ile Gly Val Ser Asp Ile Leu Lys Trp Asp
210 215 220

Ile Ala Glu Thr Ser Lys Glu Gly Pro Phe Pro Glu Val Ala Ser Ser
225 230 235 240

Asp Ile Phe Val Asn Cys Val Tyr Leu Glu Ser Asn Lys Ile Pro Pro
245 250 255

Phe Thr Thr Phe Glu Ala Leu Ser Glu Pro Glu Arg Arg Leu Arg Val
260 265 270

Ile Cys Asp Val Ser Cys Asp Pro Asn Ser Glu Asn Asn Pro Val Pro
275 280 285

Val Tyr Ser Ser Tyr Ser Ser Phe Glu Asn Pro Thr Val Pro Ala Ser
290 295 300

Glu His Ile Asp Glu Pro Glu Leu Arg Ile Ile Ala Ile Asp His Leu
305 310 315 320

Pro Thr Met Val Ala Arg Glu Ser Ser Asp Glu Tyr Ser Ser Leu Leu
325 330 335

Leu Pro Ser Leu Leu Thr Leu Asp Arg Arg Asp Thr Glu Glu Val Trp
340 345 350

Gln Arg Ala Glu Arg Ile Phe Arg Glu Lys Val Ala Glu Leu Pro
355 360 365

<210> 13

<211> 1173

<212> DNA

<213> Fusarium verticillioides

<220>

<221> CDS

<222> (1)..(1173)

<223> Lys1

<400> 13

atg tct gaa tat cct cac atc ctt ctt cgc gcc gag gag aag cct ctc
Met Ser Glu Tyr Pro His Ile Leu Leu Arg Ala Glu Glu Lys Pro Leu
1 5 10 15

48

gag cac cga tct ttc tcc ccc gcg gtt atc aag aca ctc gtc gat gct
Glu His Arg Ser Phe Ser Pro Ala Val Ile Lys Thr Leu Val Asp Ala
20 25 30

96

gga tac ccc atc tcc gtc gag cgg tca tcc acc gat ccc aaa ttt agg
Gly Tyr Pro Ile Ser Val Glu Arg Ser Ser Thr Asp Pro Lys Phe Arg
35 40 45

144

cgt atc ttt gag gac tct gaa tat gaa gct gct ggt gct cgt ctt gtc
Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Gly Ala Arg Leu Val
50 55 60

192

eol f-seql . txt

gac acg ggt gtc tgg ccc aac gct gag cct ggg aca atc ata ctc gga	240
Asp Thr Gly Val Trp Pro Asn Ala Glu Pro Gly Thr Ile Ile Leu Gly	
65 70 75 80	
ttg aag gag att ccc gag gag gat ttc cct ctg aag aat gat cac atc	288
Leu Lys Glu Ile Pro Glu Glu Asp Phe Pro Leu Lys Asn Asp His Ile	
85 90 95	
aca ttt gca cac tgc tac aaa aac cag gga ggc tgg gag aag gtt ctc	336
Thr Phe Ala His Cys Tyr Lys Asn Glu Gly Trp Glu Lys Val Leu	
100 105 110	
ggt cgt tgg tct cgc ggc ggg tct act ctg tat gac ttg gag ttt ttg	384
Gly Arg Trp Ser Arg Gly Ser Thr Leu Tyr Asp Leu Glu Phe Leu	
115 120 125	
cat gac gct gaa ggc cga cgt gtt tct gcg ttt ggt ttc cac gca ggc	432
His Asp Ala Glu Gly Arg Arg Val Ser Ala Phe Gly Phe His Ala Gly	
130 135 140	
ttc gcc ggg gct gcg ctt gga ata aag aca ctt tcc cac cag ctg cag	480
Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ser His Glu Leu Glu	
145 150 155 160	
gac ccg tca tct aag ctt ccg tct gtc gag aca ttc acc gat ggc cgc	528
Asp Pro Ser Ser Lys Leu Pro Ser Val Glu Thr Phe Thr Asp Gly Arg	
165 170 175	
gga tat tac ctg aac gaa gat gag ctc gtc aac cag att cgc gag gat	576
Gly Tyr Tyr Leu Asn Glu Asp Glu Leu Val Asn Glu Ile Arg Glu Asp	
180 185 190	
ctc gcc aag gct gag aag gct ctc gga cgc aag ccc act gct ctc gtc	624
Leu Ala Lys Ala Glu Lys Ala Leu Gly Arg Lys Pro Thr Ala Leu Val	
195 200 205	
ctt ggt gct ctt gga cga tgt ggc aag ggt gct gtg gac ctt ttc ctc	672
Leu Gly Ala Leu Gly Arg Cys Gly Lys Gly Ala Val Asp Leu Phe Leu	
210 215 220	
aag gcc ggc atg cct gat gag aac atc acc cgt tgg gac ttg aac gaa	720
Lys Ala Gly Met Pro Asp Glu Asn Ile Thr Arg Trp Asp Leu Asn Glu	
225 230 235 240	
acc aag gac cgt gat gga cct tac gag gaa att gcg aag gct gat gtc	768
Thr Lys Asp Arg Asp Gly Pro Tyr Glu Glu Ile Ala Lys Ala Asp Val	
245 250 255	
ttc ctt aac gcc atc tac ctc tcc aag ccc atc ccc cct ttc atc aac	816
Phe Leu Asn Ala Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn	
260 265 270	
caa gaa ctc ctc gcc aag aag ggt cgc aac ctc gct gta gtc atc gac	864
Gl n Glu Leu Leu Ala Lys Lys Gly Arg Asn Leu Ala Val Val Ile Asp	
275 280 285	
gtt tct tgt gat acc aca aac ccc cac aac ccc atc ccc atc tac tcc	912
Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser	
290 295 300	
atc aac acc acc ttc gag gac ccc acc gtc ccc gtc gag atc aag gac	960
Ile Asn Thr Thr Phe Glu Asp Pro Thr Val Pro Val Glu Ile Lys Asp	
305 310 315 320	
gac cag aac aac ctc ccc ctt tcc gtc atc agc atc gac cac ctt ccc	1008
Asp Glu Asn Asn Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro	
325 330 335	

eol f-seql . txt

tcc atg ctt ccc cgc gag gct agt gag gcc ttt agt gag ggt ctc aag	1056
Ser Met Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Glu Glu Leu Lys	
340 345 350	
gag tct ctg ctt aca ctc aag gat cgc aaa act tcg cggtg tgg gct	1104
Gl u Ser Leu Leu Thr Leu Lys Asp Arg Lys Thr Ser Arg Val Trp Ala	
355 360 365	
gat gct gag aag ctc ttc cat gag aag gtt gct acg ttg ccg gag gag	1152
Asp Ala Glu Lys Leu Phe His Glu Lys Val Ala Thr Leu Pro Glu Glu	
370 375 380	
ttg aga acc aag aac gtt taa	1173
Leu Arg Thr Lys Asn Val	
385 390	
<210> 14	
<211> 390	
<212> PRT	
<213> Fusarium verticillioides	
<400> 14	
Met Ser Glu Tyr Pro His Ile Leu Leu Arg Ala Glu Glu Lys Pro Leu	
1 5 10 15	
Gl u His Arg Ser Phe Ser Pro Ala Val Ile Lys Thr Leu Val Asp Ala	
20 25 30	
Gly Tyr Pro Ile Ser Val Glu Arg Ser Ser Thr Asp Pro Lys Phe Arg	
35 40 45	
Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Gly Ala Arg Leu Val	
50 55 60	
Asp Thr Gly Val Trp Pro Asn Ala Glu Pro Gly Thr Ile Ile Leu Gly	
65 70 75 80	
Leu Lys Glu Ile Pro Glu Glu Asp Phe Pro Leu Lys Asn Asp His Ile	
85 90 95	
Thr Phe Ala His Cys Tyr Lys Asn Glu Gly Glu Trp Glu Lys Val Leu	
100 105 110	
Gly Arg Trp Ser Arg Gly Gly Ser Thr Leu Tyr Asp Leu Glu Phe Leu	
115 120 125	
His Asp Ala Glu Gly Arg Arg Val Ser Ala Phe Gly Phe His Ala Gly	
130 135 140	
Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ser His Glu Leu Glu	
145 150 155 160	
Asp Pro Ser Ser Lys Leu Pro Ser Val Glu Thr Phe Thr Asp Gly Arg	
165 170 175	

eol f-seql . txt

Gly Tyr Tyr Leu Asn Glu Asp Glu Leu Val Asn Glu Ile Arg Glu Asp
180 185 190

Leu Ala Lys Ala Glu Lys Ala Leu Glu Arg Lys Pro Thr Ala Leu Val
195 200 205

Leu Glu Ala Leu Glu Arg Cys Glu Lys Glu Ala Val Asp Leu Phe Leu
210 215 220

Lys Ala Glu Met Pro Asp Glu Asn Ile Thr Arg Trp Asp Leu Asn Glu
225 230 235 240

Thr Lys Asp Arg Asp Glu Pro Tyr Glu Glu Ile Ala Lys Ala Asp Val
245 250 255

Phe Leu Asn Ala Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn
260 265 270

Gln Glu Leu Leu Ala Lys Lys Glu Arg Asn Leu Ala Val Val Ile Asp
275 280 285

Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser
290 295 300

Ile Asn Thr Thr Phe Glu Asp Pro Thr Val Pro Val Glu Ile Lys Asp
305 310 315 320

Asp Gln Asn Asn Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro
325 330 335

Ser Met Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Glu Glu Leu Lys
340 345 350

Glu Ser Leu Leu Thr Leu Lys Asp Arg Lys Thr Ser Arg Val Trp Ala
355 360 365

Asp Ala Glu Lys Leu Phe His Glu Lys Val Ala Thr Leu Pro Glu Glu
370 375 380

Leu Arg Thr Lys Asn Val
385 390

<210> 15
<211> 1223
<212> DNA
<213> Mycosphaerella fijiensis

<220>
<221> CDS
<222> (3)..(1223)
<223> Lys1

eol f-seql . txt

<400>	15		
ga agg tca aca ctt aaa aaa gac tca tat tcc gcg tcg act ata atc			47
Arg Ser Thr Leu Lys Lys Asp Ser Tyr Ser Ala Ser Thr Ile Ile	1 5 10 15		
gta caa gat cag tgt ctc aca atg tcg cct aca gtc ctt cat ttc aga			95
Val Glu Asp Glu Cys Leu Thr Met Ser Pro Thr Val Leu His Phe Arg	20 25 30		
gca gag acc aag cca tta gag cat cgc tcg gca gtc aca ccg aca atc			143
Ala Glu Thr Lys Pro Leu Glu His Arg Ser Ala Val Thr Pro Thr Ile	35 40 45		
gca aag aaa ctt gtc gaa gct ggc tat gaa gtc cac gtc gaa cga tcg			191
Ala Lys Lys Leu Val Glu Ala Glu Tyr Glu Val His Val Glu Arg Ser	50 55 60		
cag ctc agc ata ttc gca gac tcc gag tat gaa ggc act ggt gct aag			239
Glu Leu Ser Ile Phe Ala Asp Ser Glu Tyr Glu Glu Thr Glu Ala Lys	65 70 75		
cta gtg cct act gga tcg tgg aca gag gca ccg aag gag cac att gtc			287
Leu Val Pro Thr Glu Ser Trp Thr Glu Ala Pro Lys Glu His Ile Val	80 85 90 95		
att ggc ttg aag gaa ctc ccc gag gag gac ttt cct ttg aag cat gtt			335
Ile Glu Leu Lys Glu Leu Pro Glu Glu Asp Phe Pro Leu Lys His Val	100 105 110		
cat gtg caa ttt gct cac tgc tac aaa gga caa ggt ggc tgg gac aag			383
His Val Glu Phe Ala His Cys Tyr Lys Glu Glu Glu Trp Asp Lys	115 120 125		
gtt ctc agt aga ttt cca aac ggc aga ggc aca tta ctt gac ctt gaa			431
Val Leu Ser Arg Phe Pro Asn Glu Arg Glu Thr Leu Leu Asp Leu Glu	130 135 140		
ttc ttg gaa gat gag caa gga cga aga gtc gct gca ttt ggc tac cat			479
Phe Leu Glu Asp Glu Glu Glu Arg Arg Val Ala Ala Phe Glu Tyr His	145 150 155		
gcc gga ttt gct ggt gcc gca ctt gct ctc atg gcc tgg tct cac cag			527
Ala Glu Phe Ala Glu Ala Ala Leu Ala Leu Met Ala Trp Ser His Glu	160 165 170 175		
ctc gtg cac ggc aag gac agc cct ctt ccg gga gtg aca cca tac gaa			575
Leu Val His Glu Lys Asp Ser Pro Leu Pro Glu Val Thr Pro Tyr Glu	180 185 190		
aac gaa ggt ctc ctt att tcc gat gtc aag aag gcc atc gaa gct ggc			623
Asn Glu Glu Leu Leu Ile Ser Asp Val Lys Lys Ala Ile Glu Ala Glu	195 200 205		
aag gcc aag ggc ggt tgc ctc cca aga gtg ctc gtt att ggc gga ctc			671
Lys Ala Lys Glu Glu Cys Leu Pro Arg Val Leu Val Ile Glu Glu Leu	210 215 220		
ggc aga tgc ggt cgt ggt gcc gtt gac ctc tgt gtc aag gct ggc gtg			719
Glu Arg Cys Glu Arg Glu Ala Val Asp Leu Cys Val Lys Ala Glu Val	225 230 235		
gaa gac att cta aag tgg gat ctt cca gaa aca agt gcc aaa cca gga			767
Glu Asp Ile Leu Lys Trp Asp Leu Pro Glu Thr Ser Ala Lys Pro Glu	240 245 250 255		
cca tac cag gag atc atc gag tct gac gtg ttt gtc aac tgc atc tac			815
Pro Tyr Glu Glu Ile Ile Glu Ser Asp Val Phe Val Asn Cys Ile Tyr	260 265 270		

eol f-seql . txt

ttg tcg gcc aag atc ccg ccc ttc atc gac cag gca tct ctc gca tcg	863
Leu Ser Ala Lys Ile Pro Pro Phe Ile Asp Glu Ala Ser Leu Ala Ser	
275 280 285	
cca aac cgc aaa ctg tct gtg gtc tgt gat gta tcc tgc gat acc acg	911
Pro Asn Arg Lys Leu Ser Val Val Cys Asp Val Ser Cys Asp Thr Thr	
290 295 300	
aac cca aac aat cct atc cca atc tac gac atc aac acg act ttc gac	959
Asn Pro Asn Asn Pro Ile Pro Ile Tyr Asp Ile Asn Thr Thr Phe Asp	
305 310 315	
aag cca acg gtg cct gtc aag ctc tcc gct gag gcc aat gat ctt ccg	1007
Lys Pro Thr Val Pro Val Lys Leu Ser Ala Glu Ala Asn Asp Leu Pro	
320 325 330 335	
ttg agc gta atc agt atc gac cat ctc cca tcc tta ctg ccg cga gaa	1055
Leu Ser Val Ile Ser Ile Asp His Leu Pro Ser Leu Leu Pro Arg Glu	
340 345 350	
gct tcc gaa gct ttc agc tcc gcg ctg ctg ccc agc ttg ctt caa ttg	1103
Ala Ser Glu Ala Phe Ser Ser Ala Leu Leu Pro Ser Leu Leu Glu Leu	
355 360 365	
aac gac tgg aag aac gca cgt gtt tgg caa caa gcc gag aag ctg ttc	1151
Asn Asp Trp Lys Asn Ala Arg Val Trp Glu Glu Ala Glu Lys Leu Phe	
370 375 380	
aag gac aaa tgc gcc act ctc cca gaa ggc gca atc gat agc cat gcc	1199
Lys Asp Lys Cys Ala Thr Leu Pro Glu Glu Ala Ile Asp Ser His Ala	
385 390 395	
gag ctt ctt gct tcg caa tct tga	1223
Glu Leu Leu Ala Ser Glu Ser	
400 405	
<210> 16	
<211> 406	
<212> PRT	
<213> Mycosphaerella fijiensis	
<400> 16	
Arg Ser Thr Leu Lys Lys Asp Ser Tyr Ser Ala Ser Thr Ile Ile Val	
1 5 10 15	
Glu Asp Glu Cys Leu Thr Met Ser Pro Thr Val Leu His Phe Arg Ala	
20 25 30	
Glu Thr Lys Pro Leu Glu His Arg Ser Ala Val Thr Pro Thr Ile Ala	
35 40 45	
Lys Lys Leu Val Glu Ala Glu Tyr Glu Val His Val Glu Arg Ser Glu	
50 55 60	
Leu Ser Ile Phe Ala Asp Ser Glu Tyr Glu Glu Thr Glu Ala Lys Leu	
65 70 75 80	
Val Pro Thr Glu Ser Trp Thr Glu Ala Pro Lys Glu His Ile Val Ile	
85 90 95	

eof f-seql . txt

Gl y Leu Lys Gl u Leu Pro Gl u Gl u Asp Phe Pro Leu Lys His Val His
100 105 110

Val Gl n Phe Al a His Cys Tyr Lys Gl y Gl n Gl y Gl y Trp Asp Lys Val
115 120 125

Leu Ser Arg Phe Pro Asn Gl y Arg Gl y Thr Leu Leu Asp Leu Gl u Phe
130 135 140

Leu Gl u Asp Gl u Gl n Gl y Arg Arg Val Al a Al a Phe Gl y Tyr His Al a
145 150 155 160

Gl y Phe Al a Gl y Al a Al a Leu Al a Leu Met Al a Trp Ser His Gl n Leu
165 170 175

Val His Gl y Lys Asp Ser Pro Leu Pro Gl y Val Thr Pro Tyr Gl u Asn
180 185 190

Gl u Gl y Leu Leu Ile Ser Asp Val Lys Lys Al a Ile Gl u Al a Gl y Lys
195 200 205

Al a Lys Gl y Gl y Cys Leu Pro Arg Val Leu Val Ile Gl y Gl y Leu Gl y
210 215 220

Arg Cys Gl y Arg Gl y Al a Val Asp Leu Cys Val Lys Al a Gl y Val Gl u
225 230 235 240

Asp Ile Leu Lys Trp Asp Leu Pro Gl u Thr Ser Al a Lys Pro Gl y Pro
245 250 255

Tyr Gl n Gl u Ile Ile Gl u Ser Asp Val Phe Val Asn Cys Ile Tyr Leu
260 265 270

Ser Al a Lys Ile Pro Pro Phe Ile Asp Gl n Al a Ser Leu Al a Ser Pro
275 280 285

Asn Arg Lys Leu Ser Val Val Cys Asp Val Ser Cys Asp Thr Thr Asn
290 295 300

Pro Asn Asn Pro Ile Pro Ile Tyr Asp Ile Asn Thr Thr Phe Asp Lys
305 310 315 320

Pro Thr Val Pro Val Lys Leu Ser Al a Gl u Al a Asn Asp Leu Pro Leu
325 330 335

Ser Val Ile Ser Ile Asp His Leu Pro Ser Leu Leu Pro Arg Gl u Al a
340 345 350

Ser Gl u Al a Phe Ser Ser Al a Leu Leu Pro Ser Leu Leu Gl n Leu Asn
355 360 365

eol f-seql . txt

Asp Trp Lys Asn Al a Arg Val Trp Gl n Gl n Al a Gl u Lys Leu Phe Lys
370 375 380

Asp Lys Cys Al a Thr Leu Pro Gl u Gl y Al a Ile Asp Ser His Al a Gl u
385 390 395 400

Leu Leu Al a Ser Gl n Ser
405

<210> 17
<211> 1098
<212> DNA
<213> Magnaporthe grisea

<220>
<221> CDS
<222> (1) . . (1098)
<223> Lys1

<400> 17
atg tcg tcc att ctg cac ttg cgg tca gag acc aag cca ttg gag cac 48
Met Ser Ser Ile Leu His Leu Arg Ser Gl u Thr Lys Pro Leu Gl u His
1 5 10 15

cgg tcc gcc cta act ccc act acc acc aag gcc ttg att gag gcc ggt 96
Arg Ser Al a Leu Thr Pro Thr Thr Lys Al a Leu Ile Gl u Al a Gl y
20 25 30

tac acc gtc aat gtc gag cgc agt ccc gtc cgc atc ttc gac gac gcc 144
Tyr Thr Val Asn Val Gl u Arg Ser Pro Val Arg Ile Phe Asp Asp Al a
35 40 45

gag ttc gag gct gtt ggc gca acc ctc gtc ccc gag ggc agc tgg gag 192
Gl u Phe Gl u Al a Val Gl y Al a Thr Leu Val Pro Gl u Gl y Ser Trp Gl u
50 55 60

cag att ccc aag gac cac atc gtc att gga ctg aag gag ttg gag gag 240
Gl n Ile Pro Lys Asp His Ile Val Ile Gl y Leu Lys Gl u Leu Gl u Gl u
65 70 75 80

aag gac ttc cct ttg aag cac aca cac atc cag ttc gcc cac tgc tac 288
Lys Asp Phe Pro Leu Lys His Thr His Ile Gl n Phe Al a His Cys Tyr
85 90 95

aag aac caa gga ggc tgg gac aag gtc ctc cgg agg tat cac gat ggc 336
Lys Asn Gl n Gl y Gl y Trp Asp Lys Val Leu Arg Arg Tyr His Asp Gl y
100 105 110

gag gga atg ctc ctc gac att gag ttc ctc gag aag gac ggc cgt cgt 384
Gl u Gl y Met Leu Leu Asp Ile Gl u Phe Leu Gl u Lys Asp Gl y Arg Arg
115 120 125

gtt gct gct ttc ggc tac tgg gcc ggc ttt gcc ggt gcc gcg ctg gcc 432
Val Al a Al a Phe Gl y Tyr Trp Al a Gl y Phe Al a Gl y Al a Al a Leu Al a
130 135 140

ctt cag aac tgg gcc tgg cag ctg acc aac agc ggc gag ccc ctg ccg 480
Leu Gl n Asn Trp Al a Trp Gl n Leu Thr Asn Ser Gl y Gl u Pro Leu Pro
145 150 155 160

agc gtc gag agc cgc cct aac gag gct gcc ttg gtc ggc gac atc aag 528
Ser Val Gl u Ser Arg Pro Asn Gl u Al a Al a Leu Val Gl y Asp Ile Lys
165 170 175

eol f-seql . txt

gag gct ctt gct ggg ggc aag gaa aag gcc ggc agg ctg ccc cgc gtc	576
Gl u Al a Leu Al a Gl y Gl y Lys Gl u Lys Al a Gl y Arg Leu Pro Arg Val	
180 185 190	
atc gtc atc ggt gcc ctg ggc cgc tgc ggt cgt ggt gcc gtc gac atg	624
Ile Val Ile Gl y Al a Leu Gl y Arg Cys Gl y Arg Gl y Al a Val Asp Met	
195 200 205	
tgc aag aag gcc ggc ata ccg gat gag aac atc ctc aag tgg gat atg	672
Cys Lys Lys Al a Gl y Ile Pro Asp Gl u Asn Ile Leu Lys Trp Asp Met	
210 215 220	
gag gag acg gcc ccc ggt gga ccg ttc aag gag att gtc gag agt gac	720
Gl u Gl u Thr Al a Pro Gl y Gl y Pro Phe Lys Gl u Ile Val Gl u Ser Asp	
225 230 235 240	
atc ttt gtc aac tgc atc tac ctg aac aag cag atc ccg ccg ttt gtg	768
Ile Phe Val Asn Cys Ile Tyr Leu Asn Lys Gl n Ile Pro Pro Phe Val	
245 250 255	
acc atg gag tcg ctc aac acg cca gag cgc aag ctc tcc gtc atc aac	816
Thr Met Gl u Ser Leu Asn Thr Pro Gl u Arg Lys Leu Ser Val Ile Asn	
260 265 270	
gac tgc tcg gct gac acg acc aac ccc ttt aac cct gtt ccc gtg tac	864
Asp Cys Ser Al a Asp Thr Thr Asn Pro Phe Asn Pro Val Pro Val Tyr	
275 280 285	
act gtg gcc acg act ttc gac aag ccc act gtg ccg gtc gat ggc ttg	912
Thr Val Al a Thr Thr Phe Asp Lys Pro Thr Val Pro Val Asp Gl y Leu	
290 295 300	
agc cat ggc ccg ccc ctg agc gtt atc agc atc gac cac ctg ccg agt	960
Ser His Gl y Pro Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro Ser	
305 310 315 320	
ctg ctc ccg cg gag gct tcg gag tcg ttc agc aac gac ttg ttg cca	1008
Leu Leu Pro Arg Gl u Al a Ser Gl u Ser Phe Ser Asn Asp Leu Leu Pro	
325 330 335	
tat ctc ctg aag ctg aag gac tgg aag agt gac ccg gtg tgg gct ggc	1056
Tyr Leu Leu Lys Leu Lys Asp Trp Lys Ser Asp Pro Val Trp Al a Gl y	
340 345 350	
gcc gag aag ctg ttc cac gag aag gtc aag acc ctg ccg tag	1098
Al a Gl u Lys Leu Phe His Gl u Lys Val Lys Thr Leu Pro	
355 360 365	

<210> 18
 <211> 365
 <212> PRT
 <213> Magnaporthe grisea

<400> 18

Met Ser Ser Ile Leu His Leu Arg Ser Gl u Thr Lys Pro Leu Gl u His

1 5 10 15

Arg Ser Al a Leu Thr Pro Thr Thr Lys Al a Leu Ile Gl u Al a Gl y

20 25 30

Tyr Thr Val Asn Val Gl u Arg Ser Pro Val Arg Ile Phe Asp Asp Al a

35 40 45

eol f-seql . txt

Gl u Phe Gl u Al a Val Gl y Al a Thr Leu Val Pro Gl u Gl y Ser Trp Gl u
50 55 60

Gl n Ile Pro Lys Asp His Ile Val Ile Gl y Leu Lys Gl u Leu Gl u Gl u
65 70 75 80

Lys Asp Phe Pro Leu Lys His Thr His Ile Gl n Phe Al a His Cys Tyr
85 90 95

Lys Asn Gl n Gl y Gl y Trp Asp Lys Val Leu Arg Arg Tyr His Asp Gl y
100 105 110

Gl u Gl y Met Leu Leu Asp Ile Gl u Phe Leu Gl u Lys Asp Gl y Arg Arg
115 120 125

Val Al a Al a Phe Gl y Tyr Trp Al a Gl y Phe Al a Gl y Al a Al a Leu Al a
130 135 140

Leu Gl n Asn Trp Al a Trp Gl n Leu Thr Asn Ser Gl y Gl u Pro Leu Pro
145 150 155 160

Ser Val Gl u Ser Arg Pro Asn Gl u Al a Al a Leu Val Gl y Asp Ile Lys
165 170 175

Gl u Al a Leu Al a Gl y Gl y Lys Gl u Lys Al a Gl y Arg Leu Pro Arg Val
180 185 190

Ile Val Ile Gl y Al a Leu Gl y Arg Cys Gl y Arg Gl y Al a Val Asp Met
195 200 205

Cys Lys Lys Al a Gl y Ile Pro Asp Gl u Asn Ile Leu Lys Trp Asp Met
210 215 220

Gl u Gl u Thr Al a Pro Gl y Gl y Pro Phe Lys Gl u Ile Val Gl u Ser Asp
225 230 235 240

Ile Phe Val Asn Cys Ile Tyr Leu Asn Lys Gl n Ile Pro Pro Phe Val
245 250 255

Thr Met Gl u Ser Leu Asn Thr Pro Gl u Arg Lys Leu Ser Val Ile Asn
260 265 270

Asp Cys Ser Al a Asp Thr Thr Asn Pro Phe Asn Pro Val Pro Val Tyr
275 280 285

Thr Val Al a Thr Thr Phe Asp Lys Pro Thr Val Pro Val Asp Gl y Leu
290 295 300

Ser His Gl y Pro Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro Ser
305 310 315 320

eol f-seql . txt

Leu Leu Pro Arg Glu Ala Ser Glu Ser Phe Ser Asn Asp Leu Leu Pro
 325 330 335

Tyr Leu Leu Lys Leu Lys Asp Trp Lys Ser Asp Pro Val Trp Ala Glu
 340 345 350

Ala Glu Lys Leu Phe His Glu Lys Val Lys Thr Leu Pro
 355 360 365

<210> 19

<211> 453

<212> DNA

<213> Moniliophthora perniciosa

<220>

<221> CDS

<222> (1)..(453)

<223> Lys1

<400> 19

atg aaa ttc aca ctc cct cgt ctt cga cca ctc acc att gga atc cgc
 Met Lys Phe Thr Leu Pro Arg Leu Arg Pro Leu Thr Ile Gly Ile Arg
 1 5 10 15

cgg gaa gac cct act cga att tgg gaa cga cgg gct cct cta acc ccc
 Arg Glu Asp Pro Thr Arg Ile Trp Glu Arg Arg Ala Pro Leu Thr Pro
 20 25 30

gac tcc gtt tac gag ctt gtc aag gac aag gcg gta caa gtt cat gtc
 Asp Ser Val Tyr Glu Leu Val Lys Asp Lys Ala Val Glu Val His Val
 35 40 45

gaa ggc tgc gac agg agg ata ttc aag gac gag gaa tac ata aag gcc
 Glu Gly Cys Asp Arg Arg Ile Phe Lys Asp Glu Glu Tyr Ile Lys Ala
 50 55 60

ggt gca aca atc cga ccc aac ctg aac gat gca cat gtt gta atg ggc
 Glu Ala Thr Ile Arg Pro Asn Leu Asn Asp Ala His Val Val Met Glu
 65 70 75 80

att aaa gag ccc cca ttg gac aga tta ttg ctt gat cct ctt cct cta
 Ile Lys Glu Pro Pro Leu Asp Arg Leu Leu Asp Pro Leu Pro Leu
 85 90 95

tcc aac acc acg tcg aaa cat gag cga aca tac atg aag ttt tct cat
 Ser Asn Thr Thr Ser Lys His Glu Arg Thr Tyr Met Lys Phe Ser His
 100 105 110

act tgg aaa ggt caa gcc tac aat atg cca tta ctt tct gca ttc tta
 Thr Trp Lys Glu Glu Ala Tyr Asn Met Pro Leu Leu Ser Ala Phe Leu
 115 120 125

aac att cac cca ttc cat ggc gct tat aat gac cca ctg gcc cac act
 Asn Ile His Pro Phe His Glu Ala Tyr Asn Asp Pro Leu Ala His Thr
 130 135 140

aat tgg ata atg aac tcc tga
 Asn Trp Ile Met Asn Ser
 145 150

<210> 20

<211> 150

eol f-seql . txt

<212> PRT

<213> Moni l i ophthora perni ci osa

<400> 20

Met Lys Phe Thr Leu Pro Arg Leu Arg Pro Leu Thr Ile Gly Ile Arg
 1 5 10 15

Arg Glu Asp Pro Thr Arg Ile Trp Glu Arg Arg Ala Pro Leu Thr Pro
 20 25 30

Asp Ser Val Tyr Glu Leu Val Lys Asp Lys Ala Val Gln Val His Val
 35 40 45

Glu Gly Cys Asp Arg Arg Ile Phe Lys Asp Glu Glu Tyr Ile Lys Ala
 50 55 60

Gly Ala Thr Ile Arg Pro Asn Leu Asn Asp Ala His Val Val Met Gly
 65 70 75 80

Ile Lys Glu Pro Pro Leu Asp Arg Leu Leu Leu Asp Pro Leu Pro Leu
 85 90 95

Ser Asn Thr Thr Ser Lys His Glu Arg Thr Tyr Met Lys Phe Ser His
 100 105 110

Thr Trp Lys Gly Gln Ala Tyr Asn Met Pro Leu Leu Ser Ala Phe Leu
 115 120 125

Asn Ile His Pro Phe His Gly Ala Tyr Asn Asp Pro Leu Ala His Thr
 130 135 140

Asn Trp Ile Met Asn Ser
 145 150

<210> 21

<211> 1116

<212> DNA

<213> Pucci ni a grami ni s

<220>

<221> CDS

<222> (1)..(1116)

<223> Lys1

<400> 21

atg tca ggc gat caa cca ctc cta tgg ctg cga tgc gag acc aaa ccg
 Met Ser Gly Asp Gln Pro Leu Leu Trp Leu Arg Cys Glu Thr Lys Pro
 1 5 10 15

48

ttc gag cat cgc tca gca tta act ccc ttg acc gcc aaa aaa ctc atc
 Phe Glu His Arg Ser Ala Leu Thr Pro Leu Thr Ala Lys Lys Leu Ile
 20 25 30

96

gat gct gga ttc aag ctg gta gta gaa cgg gat cct caa cgg ttc ttc
 Asp Ala Gly Phe Lys Leu Val Val Glu Arg Asp Pro Gln Arg Phe Phe
 35 40 45

144

eol f-seql . txt

gct gat gac gaa ttt gca aaa gtc gga tgt gaa ctg gtc gaa cac aac	192
Al a Asp Asp Glu Phe Al a Lys Val Gly Cys Glu Leu Val Glu His Asn	
50 55 60	
tcg tgg ccc aag gct ccc tcc aat gca att atc atc gga ttg aag gag	240
Ser Trp Pro Lys Al a Pro Ser Asn Al a Ile Ile Ile Gly Leu Lys Glu	
65 70 75 80	
ttg cct ccg aat gat gat tcg ccc ctc atc cat acc cat gtc atg ttc	288
Leu Pro Pro Asn Asp Asp Ser Pro Leu Ile His Thr His Val Met Phe	
85 90 95	
ggc cat tgt tac aag caa caa gca ggc tac cag gac atc cta agt cga	336
Gl y His Cys Tyr Lys Gl n Gl n Al a Gl y Tyr Gl n Asp Ile Leu Ser Arg	
100 105 110	
ttc aaa cga ggc ggg gga act ttg ctc gac atg gaa ttc ttg cag gac	384
Phe Lys Arg Gl y Gl y Thr Leu Leu Asp Met Gl u Phe Leu Gl n Asp	
115 120 125	
gag cac acc aaa cgc aga gtg gct gcc ttt ggc ttc cac gcc gga ttc	432
Gl u His Thr Lys Arg Arg Val Al a Al a Phe Gl y Phe His Al a Gl y Phe	
130 135 140	
aat ggc tct gct gtc ggt cta ctt gcg ctt ggg tcg atg tta tcc ggg	480
Asn Gl y Ser Al a Val Gl y Leu Leu Al a Leu Gl y Ser Met Leu Ser Gl y	
145 150 155 160	
gag gga agt ttg aaa gga ttg aag cct ttc aaa gat gaa gac gaa ttg	528
Gl u Gl y Ser Leu Lys Gl y Leu Lys Pro Phe Lys Asp Gl u Asp Gl u Leu	
165 170 175	
att act cga ggg aag aaa gaa ttc gat cga gtg gtc gcc aag cta ggt	576
Ile Thr Arg Gl y Lys Lys Gl u Phe Asp Arg Val Val Al a Lys Leu Gl y	
180 185 190	
cga cat cct aag gcc cta gtg att ggt tca ttg gga cgc tgc ggc tcc	624
Arg His Pro Lys Al a Leu Val Ile Gl y Ser Leu Gl y Arg Cys Gl y Ser	
195 200 205	
gga gct gtt aca ttt ttc aag aaa att gga ttg aac aag gat gac gtc	672
Gl y Al a Val Thr Phe Phe Lys Lys Ile Gl y Leu Asn Lys Asp Asp Val	
210 215 220	
gtt gaa tgg gac atg gca gag act gcc aaa ggt ggc cca ttc caa gaa	720
Val Gl u Trp Asp Met Al a Gl u Thr Al a Lys Gl y Gl y Pro Phe Gl n Gl u	
225 230 235 240	
att ctt gaa gcc gat atc ttc atc aat tgc atc tac ttg agt agc aaa	768
Ile Leu Gl u Al a Asp Ile Phe Ile Asn Cys Ile Tyr Leu Ser Ser Lys	
245 250 255	
atc ccc agc ttt gtc acc cgg gag aca ata gcc gca gca gga gat tct	816
Ile Pro Ser Phe Val Thr Arg Gl u Thr Ile Al a Al a Al a Gl y Asp Ser	
260 265 270	
cgc cag ctg agg gtt gta gtc gat gtg tcc tgt gat acc acc aat ccg	864
Arg Gl n Leu Arg Val Val Asp Val Ser Cys Asp Thr Thr Asn Pro	
275 280 285	
aac aat cct att ccg ata tat gac gtc aac act aca ttc gat tct cca	912
Asn Asn Pro Ile Pro Ile Tyr Asp Val Asn Thr Thr Phe Asp Ser Pro	
290 295 300	
acc gtg cct gtc cag cta gat gct gga ctg cca agc tta gaa gtt tgc	960
Thr Val Pro Val Gl n Leu Asp Al a Gl y Leu Pro Ser Leu Gl u Val Cys	
305 310 315 320	

eol f-seql . txt

tcg ata gat cat ctg cca aca ctt ctg ccc aga gaa gcc tcc gaa caa	1008
Ser Ile Asp His Leu Pro Thr Leu Leu Pro Arg Glu Ala Ser Glu Glu	
325 330 335	
ttt tcg aac gat ctc ctt cct acg ctt ttg caa tta aaa acg ttg gat	1056
Phe Ser Asn Asp Leu Leu Pro Thr Leu Leu Glu Leu Lys Thr Leu Asp	
340 345 350	
caa tct aaa gtt tgg act gaa gca agg gat ttg ttt cac aag atg gtc	1104
Gl n Ser Lys Val Trp Thr Glu Ala Arg Asp Leu Phe His Lys Met Val	
355 360 365	
aat tcc atc tag	1116
Asn Ser Ile	
370	
<210> 22	
<211> 371	
<212> PRT	
<213> Pucci ni a grami ni s	
<400> 22	
Met Ser Gl y Asp Gl n Pro Leu Leu Trp Leu Arg Cys Gl u Thr Lys Pro	
1 5 10 15	
Phe Gl u His Arg Ser Al a Leu Thr Pro Leu Thr Al a Lys Lys Leu Ile	
20 25 30	
Asp Al a Gl y Phe Lys Leu Val Val Gl u Arg Asp Pro Gl n Arg Phe Phe	
35 40 45	
Al a Asp Asp Gl u Phe Al a Lys Val Gl y Cys Gl u Leu Val Gl u His Asn	
50 55 60	
Ser Trp Pro Lys Al a Pro Ser Asn Al a Ile Ile Ile Gl y Leu Lys Gl u	
65 70 75 80	
Leu Pro Pro Asn Asp Asp Ser Pro Leu Ile His Thr His Val Met Phe	
85 90 95	
Gl y His Cys Tyr Lys Gl n Gl n Al a Gl y Tyr Gl n Asp Ile Leu Ser Arg	
100 105 110	
Phe Lys Arg Gl y Gl y Gl y Thr Leu Leu Asp Met Gl u Phe Leu Gl n Asp	
115 120 125	
Gl u His Thr Lys Arg Arg Val Al a Al a Phe Gl y Phe His Al a Gl y Phe	
130 135 140	
Asn Gl y Ser Al a Val Gl y Leu Leu Al a Leu Gl y Ser Met Leu Ser Gl y	
145 150 155 160	
Gl u Gl y Ser Leu Lys Gl y Leu Lys Pro Phe Lys Asp Gl u Asp Gl u Leu	
165 170 175	

eol f-seql . txt

Ile Thr Arg Glu Lys Lys Glu Phe Asp Arg Val Val Ala Lys Leu Glu
180 185 190

Arg His Pro Lys Ala Leu Val Ile Glu Ser Leu Glu Arg Cys Glu Ser
195 200 205

Gl y Ala Val Thr Phe Phe Lys Lys Ile Gl y Leu Asn Lys Asp Asp Val
210 215 220

Val Glu Trp Asp Met Ala Glu Thr Ala Lys Gl y Gl y Pro Phe Glu Glu
225 230 235 240

Ile Leu Glu Ala Asp Ile Phe Ile Asn Cys Ile Tyr Leu Ser Ser Lys
245 250 255

Ile Pro Ser Phe Val Thr Arg Glu Thr Ile Ala Ala Ala Glu Asp Ser
260 265 270

Arg Glu Leu Arg Val Val Val Asp Val Ser Cys Asp Thr Thr Asn Pro
275 280 285

Asn Asn Pro Ile Pro Ile Tyr Asp Val Asn Thr Thr Phe Asp Ser Pro
290 295 300

Thr Val Pro Val Glu Leu Asp Ala Glu Leu Pro Ser Leu Glu Val Cys
305 310 315 320

Ser Ile Asp His Leu Pro Thr Leu Leu Pro Arg Glu Ala Ser Glu Glu
325 330 335

Phe Ser Asn Asp Leu Leu Pro Thr Leu Leu Glu Leu Lys Thr Leu Asp
340 345 350

Gl u Ser Lys Val Trp Thr Glu Ala Arg Asp Leu Phe His Lys Met Val
355 360 365

Asn Ser Ile
370

<210> 23
<211> 3045
<212> DNA
<213> Phytophthora infestans

<220>
<221> CDS
<222> (1)..(3045)
<223> Lys1

<400> 23
atg tcg ggc aag tgt gta ggc atc gtc cgc gag gta tac aac aaa tgg
Met Ser Glu Lys Cys Val Glu Ile Val Arg Glu Val Tyr Asn Lys Trp
1 5 10 15

48

eol f-seql . txt

gag	cgt	cga	gcg	ccg	ctc	aca	ccc	gca	cac	gtt	aag	gag	cta	gtg	gcg	96
Gl u	Arg	Arg	Al a	Pro	Leu	Thr	Pro	Al a	His	Val	Lys	Gl u	Leu	Val	Al a	
20							25					30				
cgt	ggc	gtg	cag	gtg	ctg	gtt	cag	ccg	tcc	acg	gca	cgc	gtc	ttc	tca	144
Arg	Gl y	Val	Gl n	Val	Leu	Val	Gl n	Pro	Ser	Thr	Al a	Arg	Val	Phe	Ser	
35					40						45					
gac	gac	cag	tat	gtt	cgc	gcc	gga	gcc	aca	ctg	tcc	gag	aat	ttg	gcg	192
Asp	Asp	Gl n	Tyr	Val	Arg	Al a	Gl y	Al a	Thr	Leu	Ser	Gl u	Asn	Leu	Al a	
50					55					60						
ccg	gcg	aat	gtc	att	gtg	ggg	gtc	aag	cag	gtg	ccc	gag	ccg	gca	ctg	240
Pro	Al a	Asn	Val	Il e	Val	Gl y	Val	Lys	Gl n	Val	Pro	Gl u	Pro	Al a	Leu	
65					70				75					80		
ctg	gcg	gac	aag	acg	tac	ctc	ttc	ttc	agt	cat	acc	atc	aaa	gcg	cag	288
Leu	Al a	Asp	Lys	Thr	Tyr	Leu	Phe	Phe	Ser	His	Thr	Il e	Lys	Al a	Gl n	
					85				90				95			
ccc	gag	aac	atg	gcg	ctg	ctg	gac	gcc	gtg	cta	cag	cgt	cgc	gtc	acg	336
Pro	Gl u	Asn	Met	Al a	Leu	Leu	Asp	Al a	Val	Leu	Gl n	Arg	Arg	Val	Thr	
							100		105				110			
cta	atc	gac	tac	gaa	tgt	atc	aca	gag	gag	agt	ggt	aag	cgt	ctc	att	384
Leu	Il e	Asp	Tyr	Gl u	Cys	Il e	Thr	Gl u	Gl u	Ser	Gly	Lys	Arg	Leu	Il e	
						115		120				125				
gcc	ttc	ggc	gga	aat	gcc	ggt	cgt	gca	gga	atg	att	gcg	ggc	ttc	cga	432
Al a	Phe	Gl y	Gl y	Asn	Al a	Gl y	Arg	Al a	Gl y	Met	Il e	Al a	Gl y	Phe	Arg	
						130		135			140					
ggt	ctc	gga	gaa	cgt	ctc	atc	aac	atg	gga	atc	tcc	tcg	ccc	ttc	gtc	480
Gl y	Leu	Gl y	Gl u	Arg	Leu	Il e	Asn	Met	Gl y	Il e	Ser	Ser	Pro	Phe	Val	
						145		150			155			160		
aac	atc	gcg	tcc	tcc	tac	atg	tac	gca	gac	tta	gag	cac	gct	aaa	gac	528
Asn	Il e	Al a	Ser	Ser	Tyr	Met	Tyr	Al a	Asp	Leu	Gl u	His	Al a	Lys	Asp	
						165			170				175			
gca	gtg	gaa	gct	gca	ggt	aga	agg	att	cga	aca	gat	ggt	ctg	ccg	ggt	576
Al a	Val	Gl u	Al a	Al a	Gl y	Arg	Arg	Il e	Arg	Thr	Asp	Gl y	Leu	Pro	Gl y	
						180		185				190				
gac	ttg	gcg	cca	atg	aca	ttc	gcc	ttt	act	ggc	aat	ggc	aat	gtg	tct	624
Asp	Leu	Al a	Pro	Met	Thr	Phe	Al a	Phe	Thr	Gl y	Asn	Gl y	Asn	Val	Ser	
						195		200				205				
aaa	gga	gct	cag	gag	atc	ttc	aag	ctc	atg	ccg	cac	gag	atg	gtg	cat	672
Lys	Gl y	Al a	Gl n	Gl u	Il e	Phe	Lys	Leu	Met	Pro	His	Gl u	Met	Val	His	
						210		215			220					
cct	tcg	gaa	cta	cca	aag	ctg	cca	aaa	aac	aat	cgt	att	ctc	tac	ggt	720
Pro	Ser	Gl u	Leu	Pro	Lys	Leu	Pro	Lys	Asn	Asn	Arg	Il e	Leu	Tyr	Gl y	
						225		230			235			240		
aca	gtc	atc	gac	gat	ccg	gcc	tac	ttt	gtt	aag	cct	cag	ccg	ggt	ttc	768
Thr	Val	Il e	Asp	Asp	Pro	Al a	Tyr	Phe	Val	Lys	Pro	Gl n	Pro	Gl y	Phe	
						245			250				255			
acg	ggt	gag	act	acg	aga	gct	cac	tac	tac	cag	aat	cca	cac	caa	tac	816
Thr	Gl y	Gl u	Thr	Thr	Arg	Al a	His	Tyr	Tyr	Gl n	Asn	Pro	His	Gl n	Tyr	
						260		265				270				
gaa	gct	gct	ttc	cat	gaa	aaa	gtg	ttg	cca	tac	acc	tca	atg	ctc	gtc	864
Gl u	Al a	Al a	Phe	His	Gl u	Lys	Val	Leu	Pro	Tyr	Thr	Ser	Met	Leu	Val	
						275		280				285				

eol f-seql . txt

aac	tgt	atg	tac	tgg	gac	gac	cgt	ttt	cca	aga	ttg	gcc	acg	cga	gag	912
Asn	Cys	Met	Tyr	Trp	Asp	Asp	Arg	Phe	Pro	Arg	Leu	Ala	Thr	Arg	Gl u	
290				295						300						
cag	att	cgt	gag	ctt	cgc	aag	tct	ggg	aac	cac	aaa	ttg	ctc	ggg	atc	960
Gl n	Ile	Arg	Gl u	Leu	Arg	Lys	Ser	Gl y	Asn	His	Lys	Leu	Leu	Gl y	Ile	
305				310					315						320	
gct	gat	atc	tcg	tgc	gat	atc	ggc	gga	agt	atc	gag	ttt	ctg	gag	cgt	1008
Al a	Asp	Ile	Ser	Cys	Asp	Ile	Gl y	Gl y	Ser	Ile	Gl u	Phe	Leu	Gl u	Arg	
									330						335	
gct	act	gaa	att	gag	cgt	ccg	ttc	gct	ctg	tac	gac	gtt	gtt	gaa	gat	1056
Al a	Thr	Gl u	Ile	Gl u	Arg	Pro	Phe	Al a	Leu	Tyr	Asp	Val	Val	Gl u	Asp	
								340	345			350				
aaa	atg	cgc	gaa	gat	gga	gac	agc	cga	ggc	ctc	gaa	gga	gac	gac	ggc	1104
Lys	Met	Arg	Gl u	Asp	Gl y	Asp	Ser	Arg	Gl y	Leu	Gl u	Gl y	Asp	Asp	Gl y	
								355	360			365				
att	atg	atg	atg	ggt	gtc	gat	atc	tta	ccg	agt	gaa	ctg	gca	cgc	gag	1152
Ile	Met	Met	Met	Gl y	Val	Asp	Ile	Leu	Pro	Ser	Gl u	Leu	Al a	Arg	Gl u	
								370	375			380				
tcg	agt	cag	cag	ttc	ggt	gac	cgc	ttg	gtc	gga	tac	gtc	acg	gcg	ctg	1200
Ser	Ser	Gl n	Gl n	Phe	Gl y	Asp	Arg	Leu	Val	Gl y	Tyr	Val	Thr	Al a	Leu	
					390					395					400	
tcg	agt	gct	tct	tcg	tcc	aac	gtt	cct	cta	cat	gaa	cag	aaa	gag	ctg	1248
Ser	Ser	Al a	Ser	Ser	Ser	Asn	Val	Pro	Leu	His	Gl u	Gl n	Lys	Gl u	Leu	
								405	410			415				
cct	gct	gag	cta	cgt	gga	gct	tgt	atc	gcc	agc	aat	ggt	gtg	ctt	gca	1296
Pro	Al a	Gl u	Leu	Arg	Gl y	Al a	Cys	Ile	Al a	Ser	Asn	Gl y	Val	Leu	Al a	
								420	425			430				
cct	aaa	tac	gag	tat	atc	cac	cgt	atg	cga	gcc	gag	cgc	gag	cgc	agc	1344
Pro	Lys	Tyr	Gl u	Tyr	Ile	His	Arg	Met	Arg	Al a	Gl u	Arg	Gl u	Arg	Ser	
								435	440			445				
aag	cag	tac	aag	ttc	ttg	gat	gct	caa	caa	cag	gtc	gct	ggg	agt	acg	1392
Lys	Gl n	Tyr	Lys	Phe	Leu	Asp	Al a	Gl n	Gl n	Gl n	Val	Al a	Gl y	Ser	Thr	
								450	455			460				
tgc	gtt	cta	ctg	gag	ggg	cac	ctg	ttt	gat	acc	gga	ctt	att	aac	cag	1440
Cys	Val	Leu	Leu	Gl u	Gl y	His	Leu	Phe	Asp	Thr	Gl y	Leu	Ile	Asn	Gl n	
								465	470			475				
gta	ctc	aac	ctc	att	gaa	gac	cat	gat	ggg	ggt	ttc	cac	ctt	cta	gac	1488
Val	Leu	Asn	Leu	Ile	Gl u	Asp	His	Asp	Gl y	Gl y	Phe	His	Leu	Leu	Asp	
								485	490			495				
tgc	gaa	gta	cgc	cca	aat	gtt	gga	gtc	ggg	gac	agt	ggt	gac	agc	acc	1536
Cys	Gl u	Val	Arg	Pro	Asn	Val	Gl y	Val	Gl y	Asp	Ser	Gly	Asp	Ser	Thr	
								500	505			510				
agt	tcg	aac	gcc	atc	gtg	cag	att	agt	atg	agt	gac	cgt	gaa	gcg	ctg	1584
Ser	Ser	Asn	Al a	Ile	Val	Gl n	Ile	Ser	Met	Ser	Asp	Arg	Gl u	Al a	Leu	
								515	520			525				
gat	gct	atc	atc	acc	aag	atc	cgc	tcc	tta	gct	gag	ctt	act	tct	ggt	1632
Asp	Al a	Ile	Ile	Thr	Lys	Ile	Arg	Ser	Leu	Al a	Gl u	Leu	Thr	Ser	Gl y	
								530	535			540				
gcg	aag	gct	acg	gtc	aca	gaa	cta	ccc	gat	ctg	tgc	ggc	aca	gac	tac	1680
Al a	Lys	Al a	Thr	Val	Thr	Gl u	Leu	Pro	Asp	Leu	Cys	Gl y	Thr	Asp	Tyr	
								545	550			555			560	

eol f-seql . txt

tcc aag acg cga ggt gtc gtg aga aaa gat gca gca gcc aat act atg	Ser Lys Thr Arg Gly Val Val Arg Lys Asp Ala Ala Ala Asn Thr Met	1728
	565 570 575	
gct gaa gta tcg gtc tcc agc ccg aag aag cgg aag gtt gtg tgt ttt	Ala Glu Val Ser Val Ser Pro Lys Lys Arg Lys Val Val Val Cys Phe	1776
	580 585 590	
ggc gct gga ttg gtg gcg tca cca ctt gtg gag tat cta tca aga gag	Gly Ala Gly Leu Val Ala Ser Pro Leu Val Glu Tyr Leu Ser Arg Glu	1824
	595 600 605	
caa gga aac gaa gtt cat gtg gtg tcg ggt att gag agg gaa gta aag	Gln Glu Asn Glu Val His Val Val Ser Gly Ile Glu Arg Glu Val Lys	1872
	610 615 620	
gag atg atg cgc aaa atc tct cgt cga aac atc aag cct cac gta gtg	Gl u Met Met Arg Lys Ile Ser Arg Arg Asn Ile Lys Pro His Val Val	1920
	625 630 635 640	
aac gtc gct gaa gat gct gct gga gtc gac aaa ctt tgc gct gaa gcc	Asn Val Ala Glu Asp Ala Ala Gly Val Asp Lys Leu Cys Ala Glu Ala	1968
	645 650 655	
gat tgc gtt gtg tcg cta ctg cca gcg acc atg cac acg aca att gct	Asp Cys Val Val Ser Leu Leu Pro Ala Thr Met His Thr Thr Ile Ala	2016
	660 665 670	
cag cgc tgc att cag cat gcg act cct ctc gtg acg gct agc tat gtg	Gln Arg Cys Ile Glu His Ala Thr Pro Leu Val Thr Ala Ser Tyr Val	2064
	675 680 685	
tca cca gaa atg aag gag ctg gac gct agg gca aag aag gca ggt att	Ser Pro Glu Met Lys Glu Leu Asp Ala Arg Ala Lys Lys Ala Gly Ile	2112
	690 695 700	
ccg atc ctc tgt gag att ggt ctc gac cct ggt atg gat cac atg agt	Pro Ile Leu Cys Glu Ile Gly Leu Asp Pro Glu Met Asp His Met Ser	2160
	705 710 715 720	
gcc atg aaa gtc att gat gaa gtg aag gcc ctc tcc ggg aag gtc atg	Ala Met Lys Val Ile Asp Glu Val Lys Ala Leu Ser Glu Lys Val Met	2208
	725 730 735	
acc ttc tcg tct gtc tgt ggc ggc ttg cca gct cct gaa gca gcg gac	Thr Phe Ser Ser Val Cys Gly Gly Leu Pro Ala Pro Glu Ala Ala Asp	2256
	740 745 750	
aac gcc att ggt tac aag ttc agt tgg agt ccg cgt ggt gtg ctc acg	Asn Ala Ile Glu Tyr Lys Phe Ser Trp Ser Pro Arg Glu Val Leu Thr	2304
	755 760 765	
gct gca ctg aat gca gcc cag tac cgc aaa gac ggc aaa gtc atc aac	Ala Ala Leu Asn Ala Glu Tyr Arg Lys Asp Glu Lys Val Ile Asn	2352
	770 775 780	
gtg gca ggt gaa gac tta ctc aat aga agc gaa cgc gta aac ttc ttg	Val Ala Glu Glu Asp Leu Leu Asn Arg Ser Glu Arg Val Asn Phe Leu	2400
	785 790 795 800	
ccg gcg ttc aac atc gag cag atc ccg aac cgt aat tcg ctt cct tac	Pro Ala Phe Asn Ile Glu Glu Ile Pro Asn Arg Asn Ser Leu Pro Tyr	2448
	805 810 815	
ggc gat atc tat ggc atc cca gag gca cac tcg ctg tat cgt gga act	Gly Asp Ile Tyr Gly Ile Pro Glu Ala His Ser Leu Tyr Arg Glu Thr	2496
	820 825 830	

eol f-seql . txt

ctg cga tac ggt gga tgc tgt caa att ctg tac cag cta cgc aag ctt	2544
Leu Arg Tyr Gly Gly Cys Cys Glu Ile Leu Tyr Glu Leu Arg Lys Leu	
835 840 845	
ggc ctc ttt gac atg gac cca tcc aaa ccc att cca gcg act tgg ccg	2592
Gly Leu Phe Asp Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp Pro	
850 855 860	
gat ctt ctg acg cag ttg ggt ggt ttc caa ggt ctt cgc gaa gac gcc	2640
Asp Leu Leu Thr Glu Leu Gly Gly Phe Glu Glu Leu Arg Glu Asp Ala	
865 870 875 880	
cat ggg ttc ctt cag tgg ctt ggt gcc ttt gat aaa tca aat cct gtg	2688
His Gly Phe Leu Glu Trp Leu Gly Ala Phe Asp Lys Ser Asn Pro Val	
885 890 895	
gtt aaa gcc ccg tcc atc ctt gac gct ttc tgc gct ctc ctg caa gat	2736
Val Lys Ala Pro Ser Ile Leu Asp Ala Phe Cys Ala Leu Leu Glu Asp	
900 905 910	
aag ttg tcg tac caa cca gga gaa cgc gac atg gcc atc atg cat cat	2784
Lys Leu Ser Tyr Glu Pro Gly Glu Arg Asp Met Ala Ile Met His His	
915 920 925	
gag ttc ggc atc gag tac gag gat ggc aag aag gaa aag cgt acg tca	2832
Glu Phe Gly Ile Glu Tyr Glu Asp Gly Lys Lys Glu Lys Arg Thr Ser	
930 935 940	
aca ttc gtg ggc tac ggg tcc gag aag ggc gac acg atc atg gct aaa	2880
Thr Phe Val Gly Tyr Gly Ser Glu Lys Gly Asp Thr Ile Met Ala Lys	
945 950 955 960	
acg gtt gga tta agt gct gct atc ggc gtc cag ttg atc ttg cag gac	2928
Thr Val Gly Leu Ser Ala Ala Ile Gly Val Glu Leu Ile Leu Glu Asp	
965 970 975	
gca gtt caa ggt cgt ggt gtg ctt acc ccc aca acc ccc gac atc tac	2976
Ala Val Glu Gly Arg Gly Val Leu Thr Pro Thr Thr Pro Asp Ile Tyr	
980 985 990	
ggt cct gca ctg gcc cgt ctc gag gtc gaa ggt gtg cgc ttc att gaa	3024
Gly Pro Ala Leu Ala Arg Leu Glu Val Glu Gly Val Arg Phe Ile Glu	
995 1000 1005	
aaa aca ttc cca cag cat taa	3045
Lys Thr Phe Pro Glu His	
1010	

<210> 24
 <211> 1014
 <212> PRT
 <213> Phytophthora infestans

<400> 24

Met Ser Gly Lys Cys Val Gly Ile Val Arg Glu Val Tyr Asn Lys Trp
 1 5 10 15

Glu Arg Arg Ala Pro Leu Thr Pro Ala His Val Lys Glu Leu Val Ala
 20 25 30

Arg Gly Val Glu Val Leu Val Glu Pro Ser Thr Ala Arg Val Phe Ser
 35 40 45

eol f-seql . txt

Asp Asp Glu Tyr Val Arg Ala Glu Ala Thr Leu Ser Glu Asn Leu Ala
50 55 60

Pro Ala Asn Val Ile Val Glu Val Lys Glu Val Pro Glu Pro Ala Leu
65 70 75 80

Leu Ala Asp Lys Thr Tyr Leu Phe Phe Ser His Thr Ile Lys Ala Glu
85 90 95

Pro Glu Asn Met Ala Leu Leu Asp Ala Val Leu Glu Arg Arg Val Thr
100 105 110

Leu Ile Asp Tyr Glu Cys Ile Thr Glu Glu Ser Gly Lys Arg Leu Ile
115 120 125

Ala Phe Glu Glu Asn Ala Glu Arg Ala Glu Met Ile Ala Glu Phe Arg
130 135 140

Gly Leu Gly Glu Arg Leu Ile Asn Met Gly Ile Ser Ser Pro Phe Val
145 150 155 160

Asn Ile Ala Ser Ser Tyr Met Tyr Ala Asp Leu Glu His Ala Lys Asp
165 170 175

Ala Val Glu Ala Ala Glu Arg Arg Ile Arg Thr Asp Glu Leu Pro Glu
180 185 190

Asp Leu Ala Pro Met Thr Phe Ala Phe Thr Glu Asn Glu Asn Val Ser
195 200 205

Lys Glu Ala Glu Glu Ile Phe Lys Leu Met Pro His Glu Met Val His
210 215 220

Pro Ser Glu Leu Pro Lys Leu Pro Lys Asn Asn Arg Ile Leu Tyr Glu
225 230 235 240

Thr Val Ile Asp Asp Pro Ala Tyr Phe Val Lys Pro Glu Pro Glu Phe
245 250 255

Thr Glu Glu Thr Thr Arg Ala His Tyr Tyr Glu Asn Pro His Glu Tyr
260 265 270

Glu Ala Ala Phe His Glu Lys Val Leu Pro Tyr Thr Ser Met Leu Val
275 280 285

Asn Cys Met Tyr Trp Asp Asp Arg Phe Pro Arg Leu Ala Thr Arg Glu
290 295 300

Glu Ile Arg Glu Leu Arg Lys Ser Glu Asn His Lys Leu Leu Glu Ile
305 310 315 320

eol f-seql . txt

Ala Asp Ile Ser Cys Asp Ile Gly Glu Ser Ile Glu Phe Leu Glu Arg
325 330 335

Ala Thr Glu Ile Glu Arg Pro Phe Ala Leu Tyr Asp Val Val Glu Asp
340 345 350

Lys Met Arg Glu Asp Gly Asp Ser Arg Gly Leu Glu Glu Asp Asp Glu
355 360 365

Ile Met Met Met Gly Val Asp Ile Leu Pro Ser Glu Leu Ala Arg Glu
370 375 380

Ser Ser Gln Gln Phe Gly Asp Arg Leu Val Glu Tyr Val Thr Ala Leu
385 390 395 400

Ser Ser Ala Ser Ser Asn Val Pro Leu His Glu Gln Lys Glu Leu
405 410 415

Pro Ala Glu Leu Arg Gly Ala Cys Ile Ala Ser Asn Glu Val Leu Ala
420 425 430

Pro Lys Tyr Glu Tyr Ile His Arg Met Arg Ala Glu Arg Glu Arg Ser
435 440 445

Lys Gln Tyr Lys Phe Leu Asp Ala Gln Gln Gln Val Ala Glu Ser Thr
450 455 460

Cys Val Leu Leu Glu Gly His Leu Phe Asp Thr Glu Leu Ile Asn Gln
465 470 475 480

Val Leu Asn Leu Ile Glu Asp His Asp Gly Glu Phe His Leu Leu Asp
485 490 495

Cys Glu Val Arg Pro Asn Val Glu Val Glu Asp Ser Glu Asp Ser Thr
500 505 510

Ser Ser Asn Ala Ile Val Gln Ile Ser Met Ser Asp Arg Glu Ala Leu
515 520 525

Asp Ala Ile Ile Thr Lys Ile Arg Ser Leu Ala Glu Leu Thr Ser Glu
530 535 540

Ala Lys Ala Thr Val Thr Glu Leu Pro Asp Leu Cys Glu Thr Asp Tyr
545 550 555 560

Ser Lys Thr Arg Glu Val Val Arg Lys Asp Ala Ala Ala Asn Thr Met
565 570 575

Ala Glu Val Ser Val Ser Ser Pro Lys Lys Arg Lys Val Val Cys Phe
580 585 590

eol f-seql . txt

Gly Ala Gly Leu Val Ala Ser Pro Leu Val Glu Tyr Leu Ser Arg Glu
595 600 605

Gln Glu Asn Glu Val His Val Val Ser Gly Ile Glu Arg Glu Val Lys
610 615 620

Glu Met Met Arg Lys Ile Ser Arg Arg Asn Ile Lys Pro His Val Val
625 630 635 640

Asn Val Ala Glu Asp Ala Ala Gly Val Asp Lys Leu Cys Ala Glu Ala
645 650 655

Asp Cys Val Val Ser Leu Leu Pro Ala Thr Met His Thr Thr Ile Ala
660 665 670

Gln Arg Cys Ile Gln His Ala Thr Pro Leu Val Thr Ala Ser Tyr Val
675 680 685

Ser Pro Glu Met Lys Glu Leu Asp Ala Arg Ala Lys Lys Ala Gly Ile
690 695 700

Pro Ile Leu Cys Glu Ile Gly Leu Asp Pro Glu Met Asp His Met Ser
705 710 715 720

Ala Met Lys Val Ile Asp Glu Val Lys Ala Leu Ser Gly Lys Val Met
725 730 735

Thr Phe Ser Ser Val Cys Gly Gly Leu Pro Ala Pro Glu Ala Ala Asp
740 745 750

Asn Ala Ile Gly Tyr Lys Phe Ser Trp Ser Pro Arg Glu Val Leu Thr
755 760 765

Ala Ala Leu Asn Ala Ala Gln Tyr Arg Lys Asp Gly Lys Val Ile Asn
770 775 780

Val Ala Gly Glu Asp Leu Leu Asn Arg Ser Glu Arg Val Asn Phe Leu
785 790 795 800

Pro Ala Phe Asn Ile Glu Gln Ile Pro Asn Arg Asn Ser Leu Pro Tyr
805 810 815

Gly Asp Ile Tyr Gly Ile Pro Glu Ala His Ser Leu Tyr Arg Gly Thr
820 825 830

Leu Arg Tyr Gly Gly Cys Cys Gln Ile Leu Tyr Gln Leu Arg Lys Leu
835 840 845

Gly Leu Phe Asp Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp Pro
850 855 860

eol f-seql . txt

Asp Leu Leu Thr Glu Leu Gly Gly Phe Gln Glu Leu Arg Glu Asp Ala
865 870 875 880

His Gly Phe Leu Glu Trp Leu Gly Ala Phe Asp Lys Ser Asn Pro Val
885 890 895

Val Lys Al a Pro Ser I I e Leu Asp Al a Phe Cys Al a Leu Leu Gl n Asp
900 905 910

Lys Leu Ser Tyr Glu Pro Gly Glu Arg Asp Met Ala Ile Met His His
915 920 925

Gl u Phe Gl y Ile Gl u Tyr Gl u Asp Gl y Lys Lys Gl u Lys Arg Thr Ser
930 935 940

Thr Phe Val Gly Tyr Glu Ser Glu Lys Gly Asp Thr Ile Met Ala Lys
945 950 955 960

Thr Val Gly Leu Ser Ala Ala Ile Gly Val Glu Leu Ile Leu Glu Asp
965 970 975

Ala Val Gln Glu Arg Gly Val Leu Thr Pro Thr Thr Pro Asp Ile Tyr
980 985 990

G I y Pro A I a Leu A I a Arg Leu G I u Val G I u G I y Val Arg Phe I I e G I u
995 1000 1005

Lys Thr Phe Pro Glu His
1010

<210> 25
<211> 3015
<212> DNA
<213> *Phytophthora ramorum*

```

<220>
<221> CDS
<222> (1)..(3015)
<223> Lys1

<400> 25
gtg ggc atc gtg cgc gag gtg tac aac aag tgg gag cgc cgc gcg ccg
Val Gly Ile Val Arg Glu Val Tyr Asn Lys Trp Glu Arg Arg Ala Pro
1 5 10 15 48

ctc acc ccc gcg cac gtc cgc gag ctc gtg cag cgc ggc gtg cag gtg
Leu Thr Pro Ala His Val Arg Glu Leu Val Glu Arg Gly Val Glu Val
20 25 30 96

ttg gtg cag ccg tct acg gcg cgc gtc ttc tca gac gag cag tac gtg
Leu Val Glu Pro Ser Thr Ala Arg Val Phe Ser Asp Glu Glu Gln Tyr Val
35 40 45 144

cga gcg ggc gcc aag ctg gcc gag gac ctg gcg ccc gcc aat atc atc
Arg Ala Gly Ala Lys Leu Ala Glu Asp Leu Ala Pro Ala Asn Ile Ile
50 55 60 192

```

eol f-seql . txt

gtg	ggc	gtc	aag	cag	gta	ccg	gag	ccg	gcg	ctt	ctg	gcg	gac	aag	aca		240
Val	Gly	Val	Lys	Gln	Val	Pro	Glu	Pro	Ala	Leu	Leu	Ala	Asp	Lys	Thr		
65					70					75					80		
tac	ctc	ttc	ttc	agc	cat	acc	atc	aag	gcg	cag	cct	gag	aac	atg	gcg		288
Tyr	Leu	Phe	Phe	Ser	His	Thr	Ile	Lys	Ala	Gln	Pro	Glu	Asn	Met	Ala		
							85			90					95		
ctc	ctg	gat	gcc	gtg	ctg	cag	cgc	cgc	gtc	acg	ctc	atc	gac	tac	gag		336
Leu	Leu	Asp	Ala	Val	Leu	Gln	Arg	Arg	Val	Thr	Leu	Ile	Asp	Tyr	Glu		
							100			105					110		
tgc	atc	aca	gag	gag	agc	ggc	aag	cgc	ctc	atc	gcc	ttc	gga	ggc	aac		384
Cys	Ile	Thr	Glu	Glu	Ser	Gly	Lys	Arg	Leu	Ile	Ala	Phe	Gly	Gly	Asn		
							115			120					125		
gcg	ggg	cga	gca	gga	atg	atc	gcg	ggc	ttc	cgg	ggg	ctt	ggg	gaa	cgc		432
Ala	Gly	Arg	Ala	Gly	Met	Ile	Ala	Gly	Phe	Arg	Gly	Leu	Gly	Gly	Arg		
							130			135					140		
ctc	atc	aac	atg	ggc	atc	tcc	tcg	ccc	ttt	gtg	aac	gta	gcg	tcg	gcc		480
Leu	Ile	Asn	Met	Gly	Ile	Ser	Ser	Pro	Phe	Val	Asn	Val	Ala	Ser	Ala		
							145			150					155		
tac	atg	ta	tcg	gac	ttg	gag	cac	gca	aaa	gac	gcc	gta	gaa	gct	gcg		528
Tyr	Met	Tyr	Ser	Asp	Leu	Glu	His	Ala	Lys	Asp	Ala	Val	Glu	Ala	Ala		
							165			170					175		
ggc	agg	agg	att	cgg	tcc	gat	gga	ttg	cca	ggc	gag	ctg	gcg	ccc	atg		576
Gly	Arg	Arg	Ile	Arg	Ser	Asp	Gly	Leu	Pro	Gly	Glu	Leu	Ala	Pro	Met		
							180			185					190		
gcc	ttc	gcc	ttc	acg	ggc	aat	ggc	aac	gtg	tcc	aaa	ggg	gcg	cag	gag		624
Ala	Phe	Ala	Phe	Thr	Gly	Asn	Gly	Asn	Val	Ser	Lys	Gly	Ala	Gln	Glu		
							195			200					205		
atc	tcc	aag	ctc	atg	cca	cat	gaa	atg	gtg	cat	ccg	tca	gag	ctg	cca		672
Ile	Phe	Lys	Leu	Met	Pro	His	Glu	Met	Val	His	Pro	Ser	Glu	Leu	Pro		
							210			215					220		
aac	ttg	ccg	aag	aac	aac	cac	atc	ctg	tac	ggc	acc	gtg	gtt	gat	gac		720
Asn	Leu	Pro	Lys	Asn	Asn	His	Ile	Leu	Tyr	Gly	Thr	Val	Val	Asp	Asp		
							225			230					240		
ccg	gcc	ttc	ttt	gtg	aag	ccg	cag	gct	ggc	aac	agc	ggc	acg	gcc	tcg		768
Pro	Ala	Phe	Phe	Val	Lys	Pro	Gln	Ala	Gly	Asn	Ser	Gly	Thr	Ala	Ser		
							245			250					255		
cgc	gca	cac	tac	tac	cag	aac	cca	cac	cag	tac	gac	cct	gcc	ttc	cac		816
Arg	Ala	His	Tyr	Tyr	Gln	Asn	Pro	His	Gln	Tyr	Asp	Pro	Ala	Phe	His		
							260			265					270		
gag	aag	gtg	ctg	ccg	tac	acg	tcc	atg	ttg	gtg	aac	tgc	atg	tac	tgg		864
Gly	Lys	Val	Leu	Pro	Tyr	Thr	Ser	Met	Leu	Val	Asn	Cys	Met	Tyr	Trp		
							275			280					285		
gac	gac	cgt	ttc	ccg	cga	ttg	gtt	acg	cgc	gaa	cag	atc	cgt	gag	ctt		912
Asp	Asp	Arg	Phe	Pro	Arg	Leu	Val	Thr	Arg	Gly	Gln	Ile	Arg	Gly	Leu		
							290			295					300		
cga	ggc	tct	gga	aac	caa	aag	ctg	ctg	ggc	att	gcc	gat	att	tcg	tgc		960
Arg	Gly	Ser	Gly	Asn	Gln	Lys	Leu	Leu	Gly	Ile	Ala	Asp	Ile	Ser	Cys		
							305			310					315		
gat	att	ggc	ggc	agt	gtt	gaa	ttt	ttg	gag	cgc	gcg	acg	gaa	att	gaa		1008
Asp	Ile	Gly	Gly	Ser	Val	Glu	Phe	Leu	Gl	Arg	Ala	Thr	Gl	Ile	Gl		
							325			330					335		

eol f-seql . txt

cgc ccg ttc gcg ctg tac gat gtc gct gaa gac aaa atg cgc gag gat	1056
Arg Pro Phe Ala Leu Tyr Asp Val Ala Glu Asp Lys Met Arg Glu Asp	
340 345 350	
ggc gat agt cga ggg ctc gaa ggg gat aac ggc atc atg atg atg ggg	1104
Gly Asp Ser Arg Gly Leu Glu Gly Asp Asn Gly Ile Met Met Met Gly	
355 360 365	
gtc gat ata ttg cca agc gaa ctt cca cgc gag tct agt caa cag ttc	1152
Val Asp Ile Leu Pro Ser Glu Leu Pro Arg Glu Ser Ser Glu Glu Phe	
370 375 380	
ggc gac cgt ctg gtc gca tac gtg gcg gcg ctg tcg aat gct tcc tca	1200
Gly Asp Arg Leu Val Ala Tyr Val Ala Ala Leu Ser Asn Ala Ser Ser	
385 390 395 400	
tcc agt gtc cca ctt cat gag caa aag gag cta cct gct gag ctc cgt	1248
Ser Ser Val Pro Leu His Glu Glu Lys Glu Leu Pro Ala Glu Leu Arg	
405 410 415	
ggc gcc tgc atc gca agc aaa gga gta ctc gcc cca aaa tac gag tac	1296
Gly Ala Cys Ile Ala Ser Lys Gly Val Leu Ala Pro Lys Tyr Glu Tyr	
420 425 430	
att cac cgt atg cgt gcc gaa cgt gag cgc agt aag cag tac aag ttc	1344
Ile His Arg Met Arg Ala Glu Arg Glu Arg Ser Lys Glu Tyr Lys Phe	
435 440 445	
ctg gat gcg cag cag gaa gtt gcg ggg agc acg tgt att ctg ctt gaa	1392
Leu Asp Ala Glu Glu Val Ala Gly Ser Thr Cys Ile Leu Leu Glu	
450 455 460	
ggt cac ctc ttc gat aca gga ctt atc aac caa gtg ctc aac ctc att	1440
Gly His Leu Phe Asp Thr Gly Leu Ile Asn Glu Val Leu Asn Leu Ile	
465 470 475 480	
gag gac cat gat ggc gga ttc cac ctt gtg gac tgt gaa gtg cgg ccg	1488
Glu Asp His Asp Gly Gly Phe His Leu Val Asp Cys Glu Val Arg Pro	
485 490 495	
aac gtt gct gtc agc gac agt ggc gac tgt acc ata tcg aat gct atc	1536
Asn Val Ala Val Ser Asp Ser Glu Asp Cys Thr Ile Ser Asn Ala Ile	
500 505 510	
gtc cag ata agc atg aac gat cga gct gcg ctg gat gaa att atc tca	1584
Val Glu Ile Ser Met Asn Asp Arg Ala Ala Leu Asp Glu Ile Ile Ser	
515 520 525	
aag gtt cgc tct ctt gct gac ctt acc tcc ggt gcc aag gct act gtc	1632
Lys Val Arg Ser Leu Ala Asp Leu Thr Ser Glu Ala Lys Ala Thr Val	
530 535 540	
act gag ctt ccc gac ttg tgc ggt aca aac tac tcg aag aca cgt ggt	1680
Thr Glu Leu Pro Asp Leu Cys Gly Thr Asn Tyr Ser Lys Thr Arg Gly	
545 550 555 560	
gct gta gta cgg aag gac ggc gct gcc aat acg act acc gac gtg tcg	1728
Ala Val Val Arg Lys Asp Ala Ala Asn Thr Thr Thr Asp Val Ser	
565 570 575	
gtc tca agc cca aag agg cga aag att gta tgc ttt ggc gcc ggg ttg	1776
Val Ser Ser Pro Lys Arg Arg Lys Ile Val Cys Phe Glu Ala Gly Leu	
580 585 590	
gtg gca tcg ccc ctt gtg gag tat ctg tcg cgt gaa caa gtc aac gaa	1824
Val Ala Ser Pro Leu Val Glu Tyr Leu Ser Arg Glu Glu Val Asn Glu	
595 600 605	

eol f-seql . txt

gtt cat gtg gtg tct ggc ctc gag ggt gag gta aag gga att atg cgc	1872
Val His Val Val Ser Gly Leu Glu Gly Glu Val Lys Gly Ile Met Arg	
610 615 620	
aag atc tct cgc cga aac atc aag cct cat gtt gta aac gta gct gaa	1920
Lys Ile Ser Arg Arg Asn Ile Lys Pro His Val Val Asn Val Ala Glu	
625 630 635 640	
gac act gcc gga gtt gac aag ctt tgt gca gaa gct gat tgt gtc gtg	1968
Asp Thr Ala Gly Val Asp Lys Leu Cys Ala Glu Ala Asp Cys Val Val	
645 650 655	
tca ctt ttg cca gcg acc atg cac aca acg att gcc gag cgc tgt att	2016
Ser Leu Leu Pro Ala Thr Met His Thr Thr Ile Ala Glu Arg Cys Ile	
660 665 670	
cag cac gcg aca cca ctt gtg act gca agt tat gtg tct ccg gag atg	2064
Gln His Ala Thr Pro Leu Val Thr Ala Ser Tyr Val Ser Pro Glu Met	
675 680 685	
aaa gag ctg gac tcc aag gca aag caa gct ggc atc cct atc ctc tgt	2112
Lys Glu Leu Asp Ser Lys Ala Lys Gln Ala Glu Ile Pro Ile Leu Cys	
690 695 700	
gaa att ggt ctt gac cct ggc atg gat cac atg agc gcg atg aaa gtt	2160
Gl u Ile Gly Leu Asp Pro Gly Met Asp His Met Ser Ala Met Lys Val	
705 710 715 720	
att gat gag gtg aag gcg cac tct ggg aag atc aag tct ttc tcg tct	2208
Ile Asp Glu Val Lys Ala His Ser Gly Lys Ile Lys Ser Phe Ser Ser	
725 730 735	
gta tgt ggc ggg ctg ccg gcg cct gag gca gcg gac aac gct att ggt	2256
Val Cys Gly Gly Leu Pro Ala Pro Glu Ala Ala Asp Asn Ala Ile Gly	
740 745 750	
tac aag ttc agc tgg agt ccg cgc ggt gtg cta aca gca gcg ctg aat	2304
Tyr Lys Phe Ser Trp Ser Pro Arg Gly Val Leu Thr Ala Ala Leu Asn	
755 760 765	
gca gct caa tac cgc aaa gac gac aaa gtc att aat gtg gcc ggt gaa	2352
Ala Ala Gln Tyr Arg Lys Asp Asp Lys Val Ile Asn Val Ala Glu Glu	
770 775 780 785	
gac ttg cta aac agc agt gag cgc gtg aac ttc ctg cca gcc ttc aac	2400
Asp Leu Leu Asn Ser Ser Glu Arg Val Asn Phe Leu Pro Ala Phe Asn	
785 790 795 800	
att gag cag att cca aac cgt aat tcg ctg ccg tac ggc gat atc tac	2448
Ile Glu Gln Ile Pro Asn Arg Asn Ser Leu Pro Tyr Glu Asp Ile Tyr	
805 810 815	
ggc att ccg gaa gca cac tca ttg tat cgc ggc act ctg cgc tat ggt	2496
Gly Ile Pro Glu Ala His Ser Leu Tyr Arg Glu Thr Leu Arg Tyr Gly	
820 825 830 835	
ggc tgc tgt caa att ttg tac caa cta cgt aag ctc ggc ctc ttc gac	2544
Gly Cys Cys Gln Ile Leu Tyr Glu Leu Arg Lys Leu Glu Leu Phe Asp	
835 840 845	
atg gac cca tcc aag ccc att cca gct act tgg cca gac ctt ctc act	2592
Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp Pro Asp Leu Leu Thr	
850 855 860	
caa tta ggt gga cac caa gac ctt cgt gaa gat gcc agc ggg ttc ctt	2640
Gln Leu Glu Glu His Glu Asp Leu Arg Glu Asp Ala Ser Gly Phe Leu	
865 870 875 880	

eol f-seql . txt

cag tgg ctt ggt gcc ttt gat cgc acc acg cct att gtt aag gca ccg Gl n Trp Leu Gl y Al a Phe Asp Arg Thr Thr Pro Ile Val Lys Al a Pro 885 890 895	2688
tcc gtt ctc gac gct ttc tgt aca ttg ctg cag gac aag tta tcg tac Ser Val Leu Asp Al a Phe Cys Thr Leu Leu Gl n Asp Lys Leu Ser Tyr 900 905 910	2736
cag ccg ggt gaa cgc gac atg gcc atc atg cac cat gaa ttc ggc att Gl n Pro Gl y Gl u Arg Asp Met Al a Ile Met His His Gl u Phe Gl y Ile 915 920 925	2784
gag tac gaa gat ggc aaa agg gaa aaa cgc acg tca acg ttc gtg ggc Gl u Tyr Gl u Asp Gl y Lys Arg Gl u Lys Arg Thr Ser Thr Phe Val Gl y 930 935 940	2832
tat ggc tcc gag aag ggc gac aca atc atg gca aaa act gtc ggc ttg Tyr Gl y Ser Gl u Lys Gl y Asp Thr Ile Met Al a Lys Thr Val Gl y Leu 945 950 955	2880
agt gca gct att ggc gtg cag ctg att ttg cag gac gcc gtc cag ggc Ser Al a Al a Ile Gl y Val Gl n Leu Ile Leu Gl n Asp Al a Val Gl n Gl y 965 970 975	2928
cga ggt gtg cta acc ccg aca acc cct gac atc tac ggc cca gcc ctc Arg Gl y Val Leu Thr Pro Thr Thr Pro Asp Ile Tyr Gl y Pro Al a Leu 980 985 990	2976
gcc cgt ctc gaa gtc gaa ggt gtg cgc ttc atc gag aag Al a Arg Leu Gl u Val Gl u Gl y Val Arg Phe Ile Gl u Lys 995 1000 1005	3015

<210> 26
<211> 1005
<212> PRT
<213> Phytophthora ramorum

<400> 26

Val Gl y Ile Val Arg Gl u Val Tyr Asn Lys Trp Gl u Arg Arg Al a Pro
1 5 10 15

Leu Thr Pro Al a His Val Arg Gl u Leu Val Gl n Arg Gl y Val Gl n Val
20 25 30

Leu Val Gl n Pro Ser Thr Al a Arg Val Phe Ser Asp Gl u Gl n Tyr Val
35 40 45

Arg Al a Gl y Al a Lys Leu Al a Gl u Asp Leu Al a Pro Al a Asn Ile Ile
50 55 60

Val Gl y Val Lys Gl n Val Pro Gl u Pro Al a Leu Leu Al a Asp Lys Thr
65 70 75 80

Tyr Leu Phe Phe Ser His Thr Ile Lys Al a Gl n Pro Gl u Asn Met Al a
85 90 95

Leu Leu Asp Al a Val Leu Gl n Arg Arg Val Thr Leu Ile Asp Tyr Gl u
100 105 110

eof f-seql . txt

Cys Ile Thr Glu Glu Ser Gly Lys Arg Leu Ile Ala Phe Gly Gly Asn
115 120 125

Ala Gly Arg Ala Gly Met Ile Ala Gly Phe Arg Gly Leu Gly Glu Arg
130 135 140

Leu Ile Asn Met Gly Ile Ser Ser Pro Phe Val Asn Val Ala Ser Ala
145 150 155 160

Tyr Met Tyr Ser Asp Leu Glu His Ala Lys Asp Ala Val Glu Ala Ala
165 170 175

Gly Arg Arg Ile Arg Ser Asp Gly Leu Pro Gly Glu Leu Ala Pro Met
180 185 190

Ala Phe Ala Phe Thr Gly Asn Gly Asn Val Ser Lys Gly Ala Glu Glu
195 200 205

Ile Phe Lys Leu Met Pro His Glu Met Val His Pro Ser Glu Leu Pro
210 215 220

Asn Leu Pro Lys Asn Asn His Ile Leu Tyr Gly Thr Val Val Asp Asp
225 230 235 240

Pro Ala Phe Phe Val Lys Pro Glu Ala Gly Asn Ser Gly Thr Ala Ser
245 250 255

Arg Ala His Tyr Tyr Glu Asn Pro His Glu Tyr Asp Pro Ala Phe His
260 265 270

Glu Lys Val Leu Pro Tyr Thr Ser Met Leu Val Asn Cys Met Tyr Trp
275 280 285

Asp Asp Arg Phe Pro Arg Leu Val Thr Arg Glu Glu Ile Arg Glu Leu
290 295 300

Arg Glu Ser Gly Asn Glu Lys Leu Leu Gly Ile Ala Asp Ile Ser Cys
305 310 315 320

Asp Ile Gly Gly Ser Val Glu Phe Leu Glu Arg Ala Thr Glu Ile Glu
325 330 335

Arg Pro Phe Ala Leu Tyr Asp Val Ala Glu Asp Lys Met Arg Glu Asp
340 345 350

Gly Asp Ser Arg Gly Leu Glu Gly Asp Asn Gly Ile Met Met Met Gly
355 360 365

Val Asp Ile Leu Pro Ser Glu Leu Pro Arg Glu Ser Ser Glu Glu Phe
370 375 380

eol f-seql . txt

Gly Asp Arg Leu Val Ala Tyr Val Ala Ala Leu Ser Asn Ala Ser Ser
385 390 395 400

Ser Ser Val Pro Leu His Glu Glu Lys Glu Leu Pro Ala Glu Leu Arg
405 410 415

Gly Ala Cys Ile Ala Ser Lys Gly Val Leu Ala Pro Lys Tyr Glu Tyr
420 425 430

Ile His Arg Met Arg Ala Glu Arg Glu Arg Ser Lys Glu Tyr Lys Phe
435 440 445

Leu Asp Ala Glu Glu Glu Val Ala Gly Ser Thr Cys Ile Leu Leu Glu
450 455 460

Gly His Leu Phe Asp Thr Gly Leu Ile Asn Glu Val Leu Asn Leu Ile
465 470 475 480

Gl u Asp His Asp Gly Gly Phe His Leu Val Asp Cys Gl u Val Arg Pro
485 490 495

Asn Val Ala Val Ser Asp Ser Gly Asp Cys Thr Ile Ser Asn Ala Ile
500 505 510

Val Glu Ile Ser Met Asn Asp Arg Ala Ala Leu Asp Glu Ile Ile Ser
515 520 525

Lys Val Arg Ser Leu Ala Asp Leu Thr Ser Gly Ala Lys Ala Thr Val
530 535 540 545

Thr Glu Leu Pro Asp Leu Cys Gly Thr Asn Tyr Ser Lys Thr Arg Gly
550 555 560

Ala Val Val Arg Lys Asp Ala Ala Ala Asn Thr Thr Thr Asp Val Ser
565 570 575

Val Ser Ser Pro Lys Arg Arg Lys Ile Val Cys Phe Gly Ala Gly Leu
580 585 590

Val Ala Ser Pro Leu Val Glu Tyr Leu Ser Arg Glu Glu Val Asn Glu
595 600 605

Val His Val Val Ser Gly Leu Glu Gly Glu Val Lys Gly Ile Met Arg
610 615 620

Lys Ile Ser Arg Arg Asn Ile Lys Pro His Val Val Asn Val Ala Glu
625 630 635 640

Asp Thr Ala Gly Val Asp Lys Leu Cys Ala Glu Ala Asp Cys Val Val
645 650 655

eol f-seql . txt

Ser Leu Leu Pro Ala Thr Met His Thr Thr Ile Ala Glu Arg Cys Ile
 660 665 670
 675
 Gln His Ala Thr Pro Leu Val Thr Ala Ser Tyr Val Ser Pro Glu Met
 680 685
 690
 Lys Glu Leu Asp Ser Lys Ala Lys Gln Ala Gly Ile Pro Ile Leu Cys
 695 700
 705
 Glu Ile Gly Leu Asp Pro Gly Met Asp His Met Ser Ala Met Lys Val
 710 715 720
 Ile Asp Glu Val Lys Ala His Ser Gly Lys Ile Lys Ser Phe Ser Ser
 725 730 735
 Val Cys Gly Gly Leu Pro Ala Pro Glu Ala Ala Asp Asn Ala Ile Gly
 740 745 750
 Tyr Lys Phe Ser Trp Ser Pro Arg Gly Val Leu Thr Ala Ala Leu Asn
 755 760 765
 770
 Ala Ala Gln Tyr Arg Lys Asp Asp Lys Val Ile Asn Val Ala Gly Glu
 775
 780
 785
 Asp Leu Leu Asn Ser Ser Glu Arg Val Asn Phe Leu Pro Ala Phe Asn
 790 795 800
 Ile Glu Gln Ile Pro Asn Arg Asn Ser Leu Pro Tyr Gly Asp Ile Tyr
 805 810 815
 Gly Ile Pro Glu Ala His Ser Leu Tyr Arg Gly Thr Leu Arg Tyr Gly
 820 825 830
 835
 Gly Cys Cys Gln Ile Leu Tyr Gln Leu Arg Lys Leu Gly Leu Phe Asp
 840 845
 Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp Pro Asp Leu Leu Thr
 850 855 860
 865
 Gln Leu Gly Gly His Gln Asp Leu Arg Glu Asp Ala Ser Gly Phe Leu
 870 875 880
 885
 Gln Trp Leu Gly Ala Phe Asp Arg Thr Thr Pro Ile Val Lys Ala Pro
 890 895
 Ser Val Leu Asp Ala Phe Cys Thr Leu Leu Gln Asp Lys Leu Ser Tyr
 900 905 910
 915
 Gln Pro Gly Glu Arg Asp Met Ala Ile Met His His Glu Phe Gly Ile

eol f-seql . txt

Gl u Tyr Gl u Asp Gl y Lys Arg Gl u Lys Arg Thr Ser Thr Phe Val Gl y
 930 935 940

Tyr Gl y Ser Gl u Lys Gl y Asp Thr Ile Met Al a Lys Thr Val Gl y Leu
 945 950 955 960

Ser Al a Al a Ile Gl y Val Gl n Leu Ile Leu Gl n Asp Al a Val Gl n Gl y
 965 970 975

Arg Gl y Val Leu Thr Pro Thr Thr Pro Asp Ile Tyr Gl y Pro Al a Leu
 980 985 990

Al a Arg Leu Gl u Val Gl u Gl y Val Arg Phe Ile Gl u Lys
 995 1000 1005

<210> 27

<211> 3048

<212> DNA

<213> Phytophthora sojae

<220>

<221> CDS

<222> (1).. (3048)

<223> Lys1

<400> 27

atg acg ggc aag tgc gtg ggc atc gtc cgc gag gtg tac aac aag tgg
 Met Thr Gl y Lys Cys Val Gl y Ile Val Arg Gl u Val Tyr Asn Lys Trp
 1 5 10 15

gag cgg cgc gcg ccg ctc acg ccc gcg cac gtc cgg gag ctc gtg cag
 Gl u Arg Arg Al a Pro Leu Thr Pro Al a His Val Arg Gl u Leu Val Gl n
 20 25 30

cgc ggc atc cag gtg ctg gtg cag ccg tcc acg gcg cgc gtc ttc tcg
 Arg Gl y Ile Gl n Val Leu Val Gl n Pro Ser Thr Al a Arg Val Phe Ser
 35 40 45

gac gag cag tac gtg cgc gcg ggc gcc act ttg tcc gag gac ctg gcg
 Asp Gl u Gl n Tyr Val Arg Al a Gl y Al a Thr Leu Ser Gl u Asp Leu Al a
 50 55 60

ccc gcc aac gtc atc gtg ggc gtc aag cag gtg ccc gag ccg gcg ctg
 Pro Al a Asn Val Ile Val Gl y Val Lys Gl n Val Pro Gl u Pro Al a Leu
 65 70 75 80

ctg gcc gac aag acg tac ctc ttc ttc agc cac acc atc aag gcg cag
 Leu Al a Asp Lys Thr Tyr Leu Phe Phe Ser His Thr Ile Lys Al a Gl n
 85 90 95

ccg gag aac atg gcg ttg ctg gac gcc gtc ctg cag ccg cgc atc acg
 Pro Gl u Asn Met Al a Leu Leu Asp Al a Val Leu Gl n Arg Arg Ile Thr
 100 105 110

ctc gtc gac tac gag tgc atc aca gag gag agc ggc aag cgc ctc atc
 Leu Val Asp Tyr Gl u Cys Ile Thr Gl u Gl u Ser Gl y Lys Arg Leu Ile
 115 120 125

gcc ttc ggg ggc aac gcc ggc cgc gcc ggt atg atc gcg ggc ttc cgg
 Al a Phe Gl y Gl y Asn Al a Gl y Arg Al a Gl y Met Ile Al a Gl y Phe Arg
 130 135 140

eol f-seql . txt

ggg ctt gga gag cgc ctc atc aac atg ggc gtc tcc tcg ccc ttc gtg	480
Gl y Leu Gl y Gl u Arg Leu Ile Asn Met Gl y Val Ser Ser Pro Phe Val	
145 150 155 160	
aac gtc gcg tcc gcc tac atg tac tcg gac ttg gag cac gcc aag gac	528
Asn Val Al a Ser Al a Tyr Met Tyr Ser Asp Leu Gl u His Al a Lys Asp	
165 170 175	
gcg gtg gag gcc gcg ggc aag agg atc cgc tcg gac gga ctg ccg agc	576
Al a Val Gl u Al a Al a Gl y Lys Arg Ile Arg Ser Asp Gl y Leu Pro Ser	
180 185 190	
gag ctg gtg ccc atg acg ttc gca ttc acg ggc aac ggc aat gtg tca	624
Gl u Leu Val Pro Met Thr Phe Al a Phe Thr Gl y Asn Gl y Asn Val Ser	
195 200 205	
aag ggc gcg cag gag atc ttc aag ctt atg ccc cac gag atg gtg cat	672
Lys Gl y Al a Gl n Gl u Ile Phe Lys Leu Met Pro His Gl u Met Val His	
210 215 220	
ccg tcg gag ctg ccc aag cta ccg aag aac aac cgt att ctg tac ggc	720
Pro Ser Gl u Leu Pro Lys Leu Pro Lys Asn Asn Arg Ile Leu Tyr Gl y	
225 230 235 240	
aca gtg atc gac aac ccg gac tac ttc gtc aag ccc cag ccg gga ttc	768
Thr Val Ile Asp Asn Pro Asp Tyr Phe Val Lys Pro Gl n Pro Gl y Phe	
245 250 255	
agc ggc aca ccc tcc cgc gcg cac tac tac cag aac cca cac cag tac	816
Ser Gl y Thr Pro Ser Arg Al a His Tyr Tyr Gl n Asn Pro His Gl n Tyr	
260 265 270	
gag cct gct ttc cac gag aag gtg ctg ccc tac acg tcc atg ctg gtg	864
Gl u Pro Al a Phe His Gl u Lys Val Leu Pro Tyr Thr Ser Met Leu Val	
275 280 285	
aac tgc atg tac tgg gac gac cgc ttc ccg cgg cta gtc acg cga gag	912
Asn Cys Met Tyr Trp Asp Asp Arg Phe Pro Arg Leu Val Thr Arg Gl u	
290 295 300	
cag atc cga gag ctt cga ggc tct ggg aac cat aag ctg ctg ggg atc	960
Gl n Ile Arg Gl u Leu Arg Gl y Ser Gl y Asn His Lys Leu Leu Gl y Ile	
305 310 315 320	
gcg gac att tcg tgc gat att ggc ggc agc gtg gag ttc ttg gag cgc	1008
Al a Asp Ile Ser Cys Asp Ile Gl y Gl y Ser Val Gl u Phe Leu Gl u Arg	
325 330 335	
gcc acg gag atc gaa cga cca ttc gct ctg tac gat gtc gct gaa gac	1056
Al a Thr Gl u Ile Gl u Arg Pro Phe Al a Leu Tyr Asp Val Al a Gl u Asp	
340 345 350	
aag atg cgt gag gac ggc gac agt cga ggc ctt gaa ggc gac gat ggc	1104
Lys Met Arg Gl u Asp Gl y Asp Ser Arg Gl y Leu Gl u Gl y Asp Asp Gl y	
355 360 365	
att atg atg atg ggc gtc gat atc ctg ccg agc gag ttg gcg cgc gag	1152
Ile Met Met Met Gl y Val Asp Ile Leu Pro Ser Gl u Leu Al a Arg Gl u	
370 375 380	
tca agc cag cag ttt ggt gac cgc ttg gtg gga tac gtc acg gcg cta	1200
Ser Ser Gl n Gl n Phe Gl y Asp Arg Leu Val Gl y Tyr Val Thr Al a Leu	
385 390 395 400	
tcg agt gtc act tca tcg aat gta cct ctg cac gag caa aag gag ctg	1248
Ser Ser Val Thr Ser Ser Asn Val Pro Leu His Gl u Gl n Lys Gl u Leu	
405 410 415	

eol f-seql . txt

ccg	gct	gaa	ctg	cgt	ggc	gct	tgt	att	gcc	agc	aaa	ggt	gtt	ttg	gcg	1296
Pro	Ala	Gl u	Leu	Arg	Gly	Ala	Cys	Ile	Ala	Ser	Lys	Gly	Val	Leu	Ala	
420							425						430			
ccc	agg	tac	gag	tac	att	cat	cg	atg	cgt	gcc	gaa	cgt	gag	cgc	agc	1344
Pro	Arg	Tyr	Gl u	Tyr	Ile	His	Arg	Met	Arg	Ala	Gl u	Arg	Gl u	Arg	Ser	
435							440					445				
aag	cag	ttc	aag	ttc	ctg	gat	gct	cag	cag	gag	gtt	gca	ggc	agc	acg	1392
Lys	Gl n	Phe	Lys	Phe	Leu	Asp	Ala	Gl n	Gl n	Gl u	Val	Ala	Gl y	Ser	Thr	
450						455					460					
tgc	ctg	tta	ctg	gaa	gga	cac	ctc	ttt	gat	aca	ggc	ctc	atc	aac	cag	1440
Cys	Leu	Leu	Leu	Gl u	Gly	His	Leu	Phe	Asp	Thr	Gly	Leu	Ile	Asn	Gl n	
465						470				475					480	
gta	ctg	aat	ctc	atc	gag	gac	cac	gat	gga	ggc	ttc	cac	ctc	gtg	gac	1488
Val	Leu	Asn	Leu	Ile	Gl u	Asp	His	Asp	Gly	Gly	Phe	His	Leu	Val	Asp	
						485				490					495	
tgc	gag	gtc	cga	ccg	aac	att	gca	gcc	gga	gac	agc	ggc	ttc	agc	act	1536
Cys	Gl u	Val	Arg	Pro	Asn	Ile	Ala	Ala	Gl y	Asp	Ser	Gly	Phe	Ser	Thr	
						500				505					510	
gtg	tcg	aat	gct	ata	gtc	cag	gtt	agc	atg	agt	gac	cgt	gct	gct	ttg	1584
Val	Ser	Asn	Ala	Ile	Val	Gly	Val	Ser	Met	Ser	Asp	Arg	Ala	Ala	Leu	
						515				520						
gac	gac	att	att	gcg	aag	atc	cgc	tcc	ctt	gcc	gat	ctt	acg	tct	ggt	1632
Asp	Asp	Ile	Ile	Ala	Lys	Ile	Arg	Ser	Leu	Ala	Asp	Leu	Thr	Ser	Gly	
						530				535						
gcc	aag	gcc	atc	gtc	acg	gag	ctt	ccc	gac	ttg	tgc	ggc	acg	aat	tat	1680
Ala	Lys	Ala	Ile	Val	Thr	Gly	Leu	Pro	Asp	Leu	Cys	Gl y	Thr	Asn	Tyr	
						545				550					560	
tcg	aag	act	cgt	ggt	gcc	gtg	gtg	cgc	aag	gat	gct	gct	gct	aat	acg	1728
Ser	Lys	Thr	Arg	Gly	Ala	Val	Val	Arg	Lys	Asp	Ala	Ala	Ala	Asn	Thr	
						565				570					575	
gcg	gcg	gac	gtg	tca	gtc	tcg	agc	ccg	aag	aag	cga	cag	atc	gtg	tgt	1776
Ala	Ala	Asp	Val	Ser	Val	Ser	Ser	Pro	Lys	Lys	Arg	Gl n	Ile	Val	Cys	
						580				585						
ttt	ggc	gct	gga	tta	gtg	gca	tcc	ccg	ctt	gtt	gag	tac	ctg	tct	cgc	1824
Phe	Gly	Ala	Gly	Leu	Val	Ala	Ser	Pro	Leu	Val	Gl u	Tyr	Leu	Ser	Arg	
						595				600						
gag	caa	ggc	aat	gaa	gtg	cac	gtg	gtg	tcc	ggt	atc	gag	ggt	gaa	gtg	1872
Gl u	Gl n	Gl y	Asn	Gl u	Val	His	Val	Val	Ser	Gl y	Ile	Gl u	Gl y	Gl u	Val	
						610				615						
aag	ggg	gtg	atg	cgc	aaa	atc	tct	cgc	cgt	aac	att	aag	cct	cac	gtg	1920
Lys	Gly	Val	Met	Arg	Lys	Ile	Ser	Arg	Arg	Asn	Ile	Lys	Pro	His	Val	
						625				630						640
gtg	aac	gta	gct	gag	gac	ggt	gct	ggc	gtt	gac	aag	ctc	tgt	gca	gaa	1968
Val	Asn	Val	Ala	Gl u	Asp	Gly	Ala	Gly	Val	Asp	Lys	Leu	Cys	Al a	Gl u	
						645				650						655
gcc	gat	tgt	gtt	gtg	tca	cta	tta	cca	gct	aca	atg	cac	aca	acc	atc	2016
Ala	Asp	Cys	Val	Val	Ser	Leu	Leu	Pro	Ala	Thr	Met	His	Thr	Thr	Ile	
						660				665						670
gcc	cag	cgt	tgc	atc	caa	cat	gga	acg	cct	ctc	gtg	act	gca	agc	tac	2064
Ala	Gl n	Arg	Cys	Ile	Gl n	His	Gl y	Thr	Pro	Leu	Val	Thr	Al a	Ser	Tyr	
						675				680						685

eol f-seql . txt

gtg tct ccg gag atg aaa gag ttg gat gcc aaa gcc aag aaa gcc ggc	2112
Val Ser Pro Glu Met Lys Glu Leu Asp Ala Lys Ala Lys Lys Ala Gly	
690 695 700 700 700 700	
att cca ata ctg tgt gaa att ggc ctt gat cct ggc atg gat cac atg	2160
Ile Pro Ile Leu Cys Glu Ile Gly Leu Asp Pro Gly Met Asp His Met	
705 710 715 720 720 720	
agc gct atg aag gtc atc gac gaa gtg aag gct cac tcc gga aag atc	2208
Ser Ala Met Lys Val Ile Asp Glu Val Lys Ala His Ser Gly Lys Ile	
725 730 735 735 735 735	
ctg tca ttt tca tcc gtg tgt ggt gga ctt cca gct cct gaa gct gct	2256
Leu Ser Phe Ser Ser Val Cys Glu Gly Leu Pro Ala Pro Glu Ala Ala	
740 745 750 750 750 750	
gac aac gcc att ggt tac aag ttc agc tgg agt ccg cgc ggc gtg ctt	2304
Asp Asn Ala Ile Gly Tyr Lys Phe Ser Trp Ser Pro Arg Gly Val Leu	
755 760 765 765 765 765	
act gca gca ctg aac gcg gcg caa tac cgc aaa gac ggc aag atc gtc	2352
Thr Ala Ala Leu Asn Ala Glu Tyr Arg Lys Asp Gly Lys Ile Val	
770 775 780 780 780 780	
aac gtc gca ggc gaa gac ttg ctt aac agc agc gaa cct gtg aac ttc	2400
Asn Val Ala Gly Glu Asp Leu Leu Asn Ser Ser Glu Pro Val Asn Phe	
785 790 795 795 800 800	
ttg cct gcg ttt aac atc gag cag atc ccg aac cgt gac tca ctg ccg	2448
Leu Pro Ala Phe Asn Ile Glu Glu Ile Pro Asn Arg Asp Ser Leu Pro	
805 810 815 815 815 815	
taa ggc gag atc tac gtc att cct gag gcg cac tcg ctg tat cgt gga	2496
Tyr Gly Glu Ile Tyr Val Ile Pro Glu Ala His Ser Leu Tyr Arg Gly	
820 825 830 830 830 830	
aca ctg cgc tac gga ggt tgt tgc cga atc ctg tac cag ctg cgc aag	2544
Thr Leu Arg Tyr Gly Gly Cys Cys Arg Ile Leu Tyr Glu Leu Arg Lys	
835 840 845 845 845 845	
ctt ggt ctc ttt gac atg gac ccg tcc aag ccc att cca gct acg tgg	2592
Leu Gly Leu Phe Asp Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp	
850 855 860 860 860 860	
cca gac ctt atc tcc cag ctt ggt gga cac caa ggc ctt cgc gaa gac	2640
Pro Asp Leu Ile Ser Glu Leu Gly Gly His Glu Glu Leu Arg Glu Asp	
865 870 875 875 880 880	
gcc aat gga ttc ctt caa tgg ctc ggt gcc ttc gat cac agc act ccc	2688
Ala Asn Gly Phe Leu Glu Trp Leu Glu Ala Phe Asp His Ser Thr Pro	
885 890 895 895 895 895	
gta gtg cga gcc cca tcc atc ctc gac gca ttc tgc gca ctg ttg cag	2736
Val Val Arg Ala Pro Ser Ile Leu Asp Ala Phe Cys Ala Leu Leu Glu	
900 905 910 910 910 910	
gac aag tta tct tac caa cct gga gaa cgt gat atg gcc atc atg cac	2784
Asp Lys Leu Ser Tyr Glu Pro Glu Glu Arg Asp Met Ala Ile Met His	
915 920 925 925 925 925	
cat gaa ttc ggc atc gag tac gaa gac ggc aag aag gaa aag cgc acg	2832
His Glu Phe Gly Ile Glu Tyr Glu Asp Glu Lys Lys Glu Lys Arg Thr	
930 935 940 940 940 940	
tca acg ttc gtg ggt tac ggc tcc gat aag ggc gac acc atc atg gct	2880
Ser Thr Phe Val Gly Tyr Glu Ser Asp Lys Glu Asp Thr Ile Met Ala	
945 950 955 955 960 960	

eol f-seql . txt

aaa acc gtt ggg ttg agt gca gcg att ggt gtg cag ttg atc ttg cag	2928
Lys Thr Val Gly Leu Ser Ala Ala Ile Gly Val Glu Leu Ile Leu Glu	
965 970 975	
gac gca gtc caa ggc cga ggc ttg ctt aca ccg acg acc cct gac atc	2976
Asp Ala Val Glu Gly Arg Gly Val Leu Thr Pro Thr Thr Pro Asp Ile	
980 985 990	
tac ggg cca gcc ctc gcg cga ctt gag gtt gaa ggt gtt cgc ttc atc	3024
Tyr Glu Pro Ala Leu Ala Arg Leu Glu Val Glu Gly Val Arg Phe Ile	
995 1000 1005	
gaa aag acg ttc ccg cag cct taa	3048
Glu Lys Thr Phe Pro Glu Pro	
1010 1015	
<210> 28	
<211> 1015	
<212> PRT	
<213> Phytophthora sojae	
<400> 28	
Met Thr Glu Lys Cys Val Glu Ile Val Arg Glu Val Tyr Asn Lys Trp	
1 5 10 15	
Glu Arg Arg Ala Pro Leu Thr Pro Ala His Val Arg Glu Leu Val Glu	
20 25 30	
Arg Glu Ile Glu Val Leu Val Glu Pro Ser Thr Ala Arg Val Phe Ser	
35 40 45	
Asp Glu Glu Tyr Val Arg Ala Glu Ala Thr Leu Ser Glu Asp Leu Ala	
50 55 60	
Pro Ala Asn Val Ile Val Glu Val Lys Glu Val Pro Glu Pro Ala Leu	
65 70 75 80	
Leu Ala Asp Lys Thr Tyr Leu Phe Phe Ser His Thr Ile Lys Ala Glu	
85 90 95	
Pro Glu Asn Met Ala Leu Leu Asp Ala Val Leu Glu Arg Arg Ile Thr	
100 105 110	
Leu Val Asp Tyr Glu Cys Ile Thr Glu Glu Ser Glu Lys Arg Leu Ile	
115 120 125	
Ala Phe Glu Glu Asn Ala Glu Arg Ala Glu Met Ile Ala Glu Phe Arg	
130 135 140	
Glu Leu Glu Glu Arg Leu Ile Asn Met Glu Val Ser Ser Pro Phe Val	
145 150 155 160	
Asn Val Ala Ser Ala Tyr Met Tyr Ser Asp Leu Glu His Ala Lys Asp	
165 170 175	

eol f-seql . txt

Ala Val Glu Ala Ala Gly Lys Arg Ile Arg Ser Asp Glu Leu Pro Ser
180 185 190

Glu Leu Val Pro Met Thr Phe Ala Phe Thr Glu Asn Glu Asn Val Ser
195 200 205

Lys Glu Ala Glu Glu Ile Phe Lys Leu Met Pro His Glu Met Val His
210 215 220

Pro Ser Glu Leu Pro Lys Leu Pro Lys Asn Asn Arg Ile Leu Tyr Glu
225 230 235 240

Thr Val Ile Asp Asn Pro Asp Tyr Phe Val Lys Pro Glu Pro Glu Phe
245 250 255

Ser Glu Thr Pro Ser Arg Ala His Tyr Tyr Glu Asn Pro His Glu Tyr
260 265 270

Glu Pro Ala Phe His Glu Lys Val Leu Pro Tyr Thr Ser Met Leu Val
275 280 285

Asn Cys Met Tyr Trp Asp Asp Arg Phe Pro Arg Leu Val Thr Arg Glu
290 295 300

Glu Ile Arg Glu Leu Arg Glu Ser Glu Asn His Lys Leu Leu Glu Ile
305 310 315 320

Ala Asp Ile Ser Cys Asp Ile Glu Glu Ser Val Glu Phe Leu Glu Arg
325 330 335

Ala Thr Glu Ile Glu Arg Pro Phe Ala Leu Tyr Asp Val Ala Glu Asp
340 345 350

Lys Met Arg Glu Asp Glu Asp Ser Arg Glu Leu Glu Glu Asp Asp Glu
355 360 365

Ile Met Met Met Glu Val Asp Ile Leu Pro Ser Glu Leu Ala Arg Glu
370 375 380

Ser Ser Glu Glu Phe Glu Asp Arg Leu Val Glu Tyr Val Thr Ala Leu
385 390 395 400

Ser Ser Val Thr Ser Ser Asn Val Pro Leu His Glu Glu Lys Glu Leu
405 410 415

Pro Ala Glu Leu Arg Glu Ala Cys Ile Ala Ser Lys Glu Val Leu Ala
420 425 430

Pro Arg Tyr Glu Tyr Ile His Arg Met Arg Ala Glu Arg Glu Arg Ser
435 440 445

eol f-seql . txt

Lys Glu Phe Lys Phe Leu Asp Ala Glu Glu Val Ala Glu Ser Thr
450 455 460

Cys Leu Leu Leu Glu Gly His Leu Phe Asp Thr Gly Leu Ile Asn Glu
465 470 475 480

Val Leu Asn Leu Ile Glu Asp His Asp Gly Gly Phe His Leu Val Asp
485 490 495

Cys Glu Val Arg Pro Asn Ile Ala Ala Glu Asp Ser Gly Phe Ser Thr
500 505 510

Val Ser Asn Ala Ile Val Glu Val Ser Met Ser Asp Arg Ala Ala Leu
515 520 525

Asp Asp Ile Ile Ala Lys Ile Arg Ser Leu Ala Asp Leu Thr Ser Gly
530 535 540

Ala Lys Ala Ile Val Thr Glu Leu Pro Asp Leu Cys Gly Thr Asn Tyr
545 550 555 560

Ser Lys Thr Arg Gly Ala Val Val Arg Lys Asp Ala Ala Ala Asn Thr
565 570 575

Ala Ala Asp Val Ser Val Ser Ser Pro Lys Lys Arg Glu Ile Val Cys
580 585 590

Phe Glu Ala Glu Leu Val Ala Ser Pro Leu Val Glu Tyr Leu Ser Arg
595 600 605

Glu Glu Gly Asn Glu Val His Val Val Ser Gly Ile Glu Gly Glu Val
610 615 620 625

Lys Glu Val Met Arg Lys Ile Ser Arg Arg Asn Ile Lys Pro His Val
625 630 635 640

Val Asn Val Ala Glu Asp Glu Ala Glu Val Asp Lys Leu Cys Ala Glu
645 650 655

Ala Asp Cys Val Val Ser Leu Leu Pro Ala Thr Met His Thr Thr Ile
660 665 670

Ala Glu Arg Cys Ile Glu His Glu Thr Pro Leu Val Thr Ala Ser Tyr
675 680 685

Val Ser Pro Glu Met Lys Glu Leu Asp Ala Lys Ala Lys Ala Glu
690 695 700

Ile Pro Ile Leu Cys Glu Ile Glu Leu Asp Pro Glu Met Asp His Met
705 710 715 720

eol f-seql . txt

Ser Ala Met Lys Val Ile Asp Glu Val Lys Ala His Ser Gly Lys Ile
725 730 735

Leu Ser Phe Ser Ser Val Cys Gly Gly Leu Pro Ala Pro Glu Ala Ala
740 745 750

Asp Asn Ala Ile Gly Tyr Lys Phe Ser Trp Ser Pro Arg Gly Val Leu
755 760 765

Thr Ala Ala Leu Asn Ala Ala Gln Tyr Arg Lys Asp Gly Lys Ile Val
770 775 780

Asn Val Ala Gly Glu Asp Leu Leu Asn Ser Ser Glu Pro Val Asn Phe
785 790 795 800

Leu Pro Ala Phe Asn Ile Glu Gln Ile Pro Asn Arg Asp Ser Leu Pro
805 810 815

Tyr Gly Glu Ile Tyr Val Ile Pro Glu Ala His Ser Leu Tyr Arg Gly
820 825 830

Thr Leu Arg Tyr Gly Gly Cys Cys Arg Ile Leu Tyr Gln Leu Arg Lys
835 840 845

Leu Gly Leu Phe Asp Met Asp Pro Ser Lys Pro Ile Pro Ala Thr Trp
850 855 860

Pro Asp Leu Ile Ser Gln Leu Gly Gly His Gln Gly Leu Arg Glu Asp
865 870 875 880

Ala Asn Gly Phe Leu Gln Trp Leu Gly Ala Phe Asp His Ser Thr Pro
885 890 895

Val Val Arg Ala Pro Ser Ile Leu Asp Ala Phe Cys Ala Leu Leu Gln
900 905 910

Asp Lys Leu Ser Tyr Gln Pro Gly Glu Arg Asp Met Ala Ile Met His
915 920 925

His Glu Phe Gly Ile Glu Tyr Glu Asp Gly Lys Lys Glu Lys Arg Thr
930 935 940

Ser Thr Phe Val Gly Tyr Gly Ser Asp Lys Gly Asp Thr Ile Met Ala
945 950 955 960

Lys Thr Val Gly Leu Ser Ala Ala Ile Gly Val Gln Leu Ile Leu Gln
965 970 975

Asp Ala Val Gln Gly Arg Gly Val Leu Thr Pro Thr Thr Pro Asp Ile
980 985 990

eol f-seql . txt

Tyr Gl y Pro Al a Leu Al a Arg Leu Gl u Val Gl u Gl y Val Arg Phe Ile
995 1000 1005

Gl u Lys Thr Phe Pro Gl n Pro
1010 1015

<210> 29
<211> 1164
<212> DNA
<213> Pyrenophora tri tici -repentis

<220>
<221> CDS
<222> (1).. (1164)
<223> Lys1

<400> 29
atg gct ttc ccc aca cta cat gcc cgc gca gag gct aaa cct ctt gaa 48
Met Al a Phe Pro Thr Leu His Al a Arg Al a Gl u Al a Lys Pro Leu Gl u
1 5 10 15

cac cgc tcg tgt ctc aca ccc aca acc gca aag aag ctg ctc gat gct 96
His Arg Ser Cys Leu Thr Pro Thr Al a Lys Lys Leu Leu Asp Al a
20 25 30

ggc tac cct gtc ctc gtc gag cgc tcg ccc aag gac ccc aac tac gcc 144
Gly Tyr Pro Val Leu Val Gl u Arg Ser Pro Lys Asp Pro Asn Tyr Al a
35 40 45

cgt atc ttc aaa gac gac gag ttc gag gag gta ggc gcg acg ctc atc 192
Arg Ile Phe Lys Asp Asp Gl u Phe Gl u Gl u Val Gl y Al a Thr Leu Ile
50 55 60

gag gaa ggc gca tac aag acg gcc ccc aag gac cgc atc atc atc ggc 240
Glu Gl u Gly Al a Tyr Lys Thr Al a Pro Lys Asp Arg Ile Ile Ile Gly
65 70 75 80

cta aag gag ctg cca gag gac aag ttc ccg ctc gag cac aca ttc gta 288
Leu Lys Gl u Leu Pro Gl u Asp Lys Phe Pro Leu Gl u His Thr Phe Val
85 90 95

cac ttt gca cat tgc tac aag cag caa ggc gga tgg gaa aac gta ttg 336
His Phe Al a His Cys Tyr Lys Gl n Gl n Gl y Gl y Trp Gl u Asn Val Leu
100 105 110

gcg agg ttc ccc cgt ggc ggt ggc aca ttg tat gac ctc gag ttc ctg 384
Al a Arg Phe Pro Arg Gl y Gl y Gl y Thr Leu Tyr Asp Leu Gl u Phe Leu
115 120 125

caa gat gag tca ggc agg cgc gtt gct gcc ttt ggc tac cac gcc ggt 432
Gl n Asp Gl u Ser Gl y Arg Arg Val Al a Al a Phe Gl y Tyr His Al a Gl y
130 135 140

ttc gtc ggc gct gct ctt gcc atc aag aca tgg gct tgg caa ctc acc 480
Phe Val Gl y Al a Al a Leu Al a Ile Lys Thr Trp Al a Trp Gl n Leu Thr
145 150 155 160

cat ccc aac ggc gag ccc ctt cct ggt cta gag acc ttc act gag gga 528
His Pro Asn Gl y Gl u Pro Leu Pro Gl y Leu Gl u Thr Phe Thr Gl u Gl y
165 170 175

cgc ggc tac tac aac aac gag agc gag ttg att acc caa ctc aag gaa 576
Arg Gl y Tyr Tyr Asn Asn Gl u Ser Gl u Leu Ile Thr Gl n Leu Lys Gl u
180 185 190

eol f-seql . txt

gat gtc gca gcc ggc gaa aag atc gca gga cac aag ccc agc agt ctg	624
Asp Val Al a Al a Gl y Gl u Lys Ile Al a Gl y His Lys Pro Ser Ser Leu	
195 200 205	
gtg cta ggt gct ctc ggc cgc tgc ggc tct ggt gcc gtc gac ctc ctt	672
Val Leu Gl y Al a Leu Gl y Arg Cys Gl y Ser Gl y Al a Val Asp Leu Leu	
210 215 220	
gag aag att ggc tgc cct gag atc aag aag tgg gat ctt gcc gag acc	720
Gl u Lys Ile Gl y Cys Pro Gl u Ile Lys Lys Trp Asp Leu Al a Gl u Thr	
225 230 235 240	
aag gag cgc gac ggc cca tac ccc gaa att gtc gaa tct gac atc ttc	768
Lys Gl u Arg Asp Gl y Pro Tyr Pro Gl u Ile Val Gl u Ser Asp Ile Phe	
245 250 255	
gtc aac tgc atc tac ctt tcc aag ccc atc ccg cct ttt gtc aac aag	816
Val Asn Cys Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Val Asn Lys	
260 265 270	
gag agt ctc aag tcg cca aac cgc aga ctc agc gtc gtt tgc gat gtc	864
Gl u Ser Leu Lys Ser Pro Asn Arg Arg Leu Ser Val Val Cys Asp Val	
275 280 285	
agc tgt gac act act aac cct cat aac ccc att ccc atc tac gat atc	912
Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Asp Ile	
290 295 300	
aac acc acc ttt gac aag ccc aca gtt gag gtt tct gtc gag ggt gac	960
Asn Thr Thr Phe Asp Lys Pro Thr Val Gl u Val Ser Val Gl u Gl y Asp	
305 310 315 320	
ggt cct aga cta tct gtc atc tcc att gac cac ctt ccc tct gcg ttg	1008
Gl y Pro Arg Leu Ser Val Ile Ser Ile Asp His Leu Pro Ser Al a Leu	
325 330 335	
cct cgt gag tct tca gaa gcc ttt agc aac gct ctg ctg cct agc ttg	1056
Pro Arg Gl u Ser Ser Gl u Al a Phe Ser Asn Al a Leu Leu Pro Ser Leu	
340 345 350	
atg gct ctg aag gac cgc gcg aca acg cct gtg tgg cag ggt gct gag	1104
Met Al a Leu Lys Asp Arg Al a Thr Thr Pro Val Trp Gl n Gl y Al a Gl u	
355 360 365	
aag ctc ttc caa gag aag gtt cag acg ctg ccg ggt ggt gtc ccc gca	1152
Lys Leu Phe Gl n Gl u Lys Val Gl n Thr Leu Pro Gl y Gl y Val Pro Al a	
370 375 380 385	
aag gag gta tag	1164
Lys Gl u Val	
<210> 30	
<211> 387	
<212> PRT	
<213> Pyrenophora tritici-repentis	
<400> 30	
Met Al a Phe Pro Thr Leu His Al a Arg Al a Gl u Al a Lys Pro Leu Gl u	
1 5 10 15	
His Arg Ser Cys Leu Thr Pro Thr Thr Al a Lys Lys Leu Leu Asp Al a	
20 25 30	

eol f-seql . txt

Gly Tyr Pro Val Leu Val Glu Arg Ser Pro Lys Asp Pro Asn Tyr Ala
35 40 45

Arg Ile Phe Lys Asp Asp Glu Phe Glu Glu Val Gly Ala Thr Leu Ile
50 55 60

Glu Glu Gly Ala Tyr Lys Thr Ala Pro Lys Asp Arg Ile Ile Ile Gly
65 70 75 80

Leu Lys Glu Leu Pro Glu Asp Lys Phe Pro Leu Glu His Thr Phe Val
85 90 95

His Phe Ala His Cys Tyr Lys Glu Glu Gly Trp Glu Asn Val Leu
100 105 110

Ala Arg Phe Pro Arg Gly Gly Thr Leu Tyr Asp Leu Glu Phe Leu
115 120 125

Gln Asp Glu Ser Gly Arg Arg Val Ala Ala Phe Gly Tyr His Ala Gly
130 135 140

Phe Val Gly Ala Ala Leu Ala Ile Lys Thr Trp Ala Trp Glu Leu Thr
145 150 155 160

His Pro Asn Gly Glu Pro Leu Pro Gly Leu Glu Thr Phe Thr Glu Gly
165 170 175

Arg Gly Tyr Tyr Asn Asn Glu Ser Glu Leu Ile Thr Gln Leu Lys Glu
180 185 190

Asp Val Ala Ala Gly Glu Lys Ile Ala Gly His Lys Pro Ser Ser Leu
195 200 205

Val Leu Gly Ala Leu Gly Arg Cys Gly Ser Gly Ala Val Asp Leu Leu
210 215 220

Glu Lys Ile Gly Cys Pro Glu Ile Lys Lys Trp Asp Leu Ala Glu Thr
225 230 235 240

Lys Glu Arg Asp Gly Pro Tyr Pro Glu Ile Val Glu Ser Asp Ile Phe
245 250 255

Val Asn Cys Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Val Asn Lys
260 265 270

Glu Ser Leu Lys Ser Pro Asn Arg Arg Leu Ser Val Val Cys Asp Val
275 280 285

Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Asp Ile
290 295 300

eol f-seql . txt

Asn Thr Thr Phe Asp Lys Pro Thr Val Glu Val Ser Val Glu Gly Asp
305 310 315 320

Gly Pro Arg Leu Ser Val Ile Ser Ile Asp His Leu Pro Ser Ala Leu
325 330 335

Pro Arg Glu Ser Ser Glu Ala Phe Ser Asn Ala Leu Leu Pro Ser Leu
340 345 350

Met Ala Leu Lys Asp Arg Ala Thr Thr Pro Val Trp Gln Gly Ala Glu
355 360 365

Lys Leu Phe Gln Glu Lys Val Gln Thr Leu Pro Gly Gly Val Pro Ala
370 375 380

Lys Glu Val
385

<210> 31
<211> 1119
<212> DNA
<213> Sclerotinia sclerotiorum

<220>
<221> CDS
<222> (1)..(1119)
<223> Lys1

<400> 31
atg tct gga act act ctt cac cta cgt tct gag ttg gga aaa gct ctt 48
Met Ser Gly Thr Thr Leu His Leu Arg Ser Glu Leu Gly Lys Ala Leu
1 5 10 15

gag cat aga tca gct ctt acc ccc act aca gcc aaa gct ctc atc gat 96
Glu His Arg Ser Ala Leu Thr Pro Thr Thr Ala Lys Ala Leu Ile Asp
20 25 30

gct gga tac aca att aat gtc gag cgc agc cca gaa cgt ata ttc gac 144
Ala Gly Tyr Thr Ile Asn Val Glu Arg Ser Pro Glu Arg Ile Phe Asp
35 40 45

gat gag gag ttc gag aag gtt gga gct act ctc gtg cca gaa gat aca 192
Asp Glu Glu Phe Glu Lys Val Glu Ala Thr Leu Val Pro Glu Asp Thr
50 55 60

tgg aga caa gca cca aag gat cat att att att ggt ttg aag gaa cta 240
Trp Arg Gln Ala Pro Lys Asp His Ile Ile Ile Gly Leu Lys Glu Leu
65 70 75 80

cct gtc gaa gac ttt ccc ctc gag cat gtc cac gta caa ttc gca cac 288
Pro Val Glu Asp Phe Pro Leu Glu His Val His Val Glu Phe Ala His
85 90 95

tgt tac aaa caa caa ggt ggc tgg gac acc gtt cta tca cga ttt cct 336
Cys Tyr Lys Gln Gln Gly Gly Trp Asp Thr Val Leu Ser Arg Phe Pro
100 105 110

cgc ggc ggc gga act ctc tta gat ctc gaa ttt ttg aca gac gat aaa 384
Arg Gly Gly Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Asp Lys
115 120 125

eol f-seql . txt

ggc aga aga gtt gca gct ttc gga tac cac gct gga ttt gct ggt gca	Gly Arg Arg Val Ala Ala Phe Gly Tyr His Ala Gly Phe Ala Gly Ala	432	
130	135	140	
gca ttg gca ctc gaa act tgg gca tgg caa ctc act cat tca gca tca	Ala Leu Ala Leu Glu Thr Trp Ala Trp Glu Leu Thr His Ser Ala Ser	480	
145	150	155	160
gag cca ttc cca agc gta tca agc tat cct aac gaa gat gag ttg att	Gl u Pro Phe Pro Ser Val Ser Ser Tyr Pro Asn Glu Asp Glu Leu Ile	528	
165	170	175	
gcc gac gta aag aaa gca atc gca gct gga caa gaa aag aca ggc aag	Ala Asp Val Lys Lys Ala Ile Ala Glu Glu Lys Thr Glu Lys	576	
180	185	190	
gca cca cga gtt ttg gtt atc gga gca ttg ggc aga tgt gga agt gga	Ala Pro Arg Val Leu Val Ile Glu Ala Leu Glu Arg Cys Glu Ser Glu	624	
195	200	205	
gca gtt gat ctc tgc ttg aga gcc ggt ttg cca acc gag aat gtc ttg	Ala Val Asp Leu Cys Leu Arg Ala Glu Val Pro Thr Glu Asn Val Leu	672	
210	215	220	
aag tgg gat atg gca gag act gcc aag gga gga cca ttt cca gag att	Lys Trp Asp Met Ala Glu Thr Ala Lys Glu Pro Phe Pro Glu Ile	720	
225	230	235	240
gtc gag agt gac atc ttc att aac tgc ata tac ctc atg tcc aag att	Val Glu Ser Asp Ile Phe Ile Asn Cys Ile Tyr Leu Met Ser Lys Ile	768	
245	250	255	
ccg aac ttt gtc gac atg caa agc ctc gat acc cca aac cgc aaa ttg	Pro Asn Phe Val Asp Met Glu Ser Leu Asp Thr Pro Asn Arg Lys Leu	816	
260	265	270	
tca gtc gtc tgc gac gtc agt gct gat acc aca aat ccc aac aat cca	Ser Val Val Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro	864	
275	280	285	
att cca atc tat acc gtt gcg acc aca ttt tca gag cca act gtc cca	Ile Pro Ile Tyr Thr Val Ala Thr Thr Phe Ser Glu Pro Thr Val Pro	912	
290	295	300	
gtc gag gtc aag gga gac ccc aga cta agc gtc atc agc att gat cac	Val Glu Val Lys Glu Asp Pro Arg Leu Ser Val Ile Ser Ile Asp His	960	
305	310	315	320
tta cca agt cta ttg cca aga gaa gca agc gag gca ttc agc aag gac	Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Lys Asp	1008	
325	330	335	
ttg cta cca agt ttg ttg aca tta aag gac tgg aga agt act cca gtc	Leu Leu Pro Ser Leu Leu Thr Leu Lys Asp Trp Arg Ser Thr Pro Val	1056	
340	345	350	
tgg gcg aag gcc gag aag ttg ttt cag gag aag gtt gcc aca ttg cct	Trp Ala Lys Ala Glu Lys Leu Phe Glu Glu Lys Val Ala Thr Leu Pro	1104	
355	360	365	
aag aag gag gca tga	Lys Lys Glu Ala	1119	
370			

<210> 32
<211> 372

eol f-seql . txt

<212> PRT

<213> Sclerotinia sclerotiorum

<400> 32

Met Ser Gly Thr Thr Leu His Leu Arg Ser Glu Leu Gly Lys Ala Leu
1 5 10 15

Glu His Arg Ser Ala Leu Thr Pro Thr Thr Ala Lys Ala Leu Ile Asp
20 25 30

Ala Gly Tyr Thr Ile Asn Val Glu Arg Ser Pro Glu Arg Ile Phe Asp
35 40 45

Asp Glu Glu Phe Glu Lys Val Gly Ala Thr Leu Val Pro Glu Asp Thr
50 55 60

Trp Arg Gln Ala Pro Lys Asp His Ile Ile Ile Gly Leu Lys Glu Leu
65 70 75 80

Pro Val Glu Asp Phe Pro Leu Glu His Val His Val Glu Phe Ala His
85 90 95

Cys Tyr Lys Gln Gln Gly Gly Trp Asp Thr Val Leu Ser Arg Phe Pro
100 105 110

Arg Gly Gly Gly Thr Leu Leu Asp Leu Glu Phe Leu Thr Asp Asp Lys
115 120 125

Gly Arg Arg Val Ala Ala Phe Gly Tyr His Ala Gly Phe Ala Gly Ala
130 135 140

Ala Leu Ala Leu Glu Thr Trp Ala Trp Gln Leu Thr His Ser Ala Ser
145 150 155 160

Glu Pro Phe Pro Ser Val Ser Ser Tyr Pro Asn Glu Asp Glu Leu Ile
165 170 175

Ala Asp Val Lys Lys Ala Ile Ala Ala Gly Gln Glu Lys Thr Gly Lys
180 185 190

Ala Pro Arg Val Leu Val Ile Gly Ala Leu Gly Arg Cys Gly Ser Gly
195 200 205

Ala Val Asp Leu Cys Leu Arg Ala Gly Val Pro Thr Glu Asn Val Leu
210 215 220

Lys Trp Asp Met Ala Glu Thr Ala Lys Gly Gly Pro Phe Pro Glu Ile
225 230 235 240

Val Glu Ser Asp Ile Phe Ile Asn Cys Ile Tyr Leu Met Ser Lys Ile
245 250 255

eol f-seql . txt

Pro Asn Phe Val Asp Met Glu Ser Leu Asp Thr Pro Asn Arg Lys Leu
260 265 270

Ser Val Val Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn Asn Pro
275 280 285

Ile Pro Ile Tyr Thr Val Ala Thr Thr Phe Ser Glu Pro Thr Val Pro
290 295 300

Val Glu Val Lys Glu Asp Pro Arg Leu Ser Val Ile Ser Ile Asp His
305 310 315 320

Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Lys Asp
325 330 335

Leu Leu Pro Ser Leu Leu Thr Leu Lys Asp Trp Arg Ser Thr Pro Val
340 345 350

Trp Ala Lys Ala Glu Lys Leu Phe Glu Glu Lys Val Ala Thr Leu Pro
355 360 365

Lys Lys Glu Ala
370

<210> 33
<211> 1170
<212> DNA
<213> *Trichoderma reesei*

<220>
<221> CDS
<222> (1)..(1170)
<223> Lys1

<400> 33		
gtt caa cta ttt tcc ccc tca tta tca tac cac aaa aaa caa caa caa		
Val Glu Leu Phe Ser Pro Ser Leu Ser Tyr His Lys Lys Glu Glu Glu		
1 5 10 15		48
tca att cgt gcc aaa atg cct acc gtc atc cat ctg aga gcc gat acc		
Ser Ile Arg Ala Lys Met Pro Thr Val Ile His Leu Arg Ala Asp Thr		
20 25 30		96
aag ccg ttt gag cgt cgc tcg ccg ctg tcc ccc cca acc gcc aag gcc		
Lys Pro Phe Glu Arg Arg Ser Pro Leu Ser Pro Pro Thr Ala Lys Ala		
35 40 45		144
ctc ctc gac gct ggc tac gtc gtc cgc gtt gag cga tct tca gag cgc		
Leu Leu Asp Ala Glu Tyr Val Val Arg Val Glu Arg Ser Ser Glu Arg		
50 55 60		192
atc tac aag gac gaa gag ttc gag gcc gtt ggc gcc gaa ttg gtc cct		
Ile Tyr Lys Asp Glu Glu Phe Glu Ala Val Glu Ala Glu Leu Val Pro		
65 70 75 80		240
gcc gga tca tgg atc aag gct ccc aag gag gac atc atc ctg ggc ctc		
Ala Glu Ser Trp Ile Lys Ala Pro Lys Glu Asp Ile Ile Leu Glu Leu		
85 90 95		288

eol f-seql . txt

aag gag ctg ccc gac gac gac att gac ctg cct cac aca tac atc cac	Lys Glu Leu Pro Asp Asp Asp Ile Asp Leu Pro His Thr Tyr Ile His	336
	100 105 110	
ttc cag cac atc ttc aag aag cag ctc ggc tgg gcg ccc tcc ctg aag	Phe Glu His Ile Phe Lys Lys Glu Leu Gly Trp Ala Pro Ser Leu Lys	384
	115 120 125	
cgc ttt gct cgc gcc ggc ggc acg ctc tac gac ctg gaa ttc ctg act	Arg Phe Ala Arg Ala Gly Gly Thr Leu Tyr Asp Leu Glu Phe Leu Thr	432
	130 135 140	
gag gag aac ggc cgc aga atc gcg gcc ttt ggc tac ttt gct gga tat	Gl u Gl u Asn Gl y Arg Arg Ile Ala Ala Phe Gl y Tyr Phe Ala Gl y Tyr	480
	145 150 155 160	
gcc ggc gcc gcc att gcc ttc atc tcg tgg gct cac cag atc ctc aac	Al a Gl y Al a Al a Ile Al a Phe Ile Ser Trp Ala His Gl n Ile Leu Asn	528
	165 170 175	
ccc ggc gtc ccc cag ccc ccg gtg cct ctg ttc gac agc gcg cct gct	Pro Gl y Val Pro Gl n Pro Pro Val Pro Leu Phe Asp Ser Al a Pro Al a	576
	180 185 190	
ctg gtc gcg cat gtc aag gct gcg ctc gag ccc gcg att cgt gcc aac	Leu Val Al a His Val Lys Ala Al a Leu Gl u Pro Ala Ile Arg Al a Asn	624
	195 200 205	
aac ggc caa ctt ccc cgc gtc att gtg att ggc gct ctg gga cga tgc	Asn Gl y Gl n Leu Pro Arg Val Ile Val Ile Gl y Ala Leu Gl y Arg Cys	672
	210 215 220	
ggc aag gga gcc gtg gac ttt tgc cgc gag gtt ggt ctt cct gag gac	Gl y Lys Gl y Al a Val Asp Phe Cys Arg Gl u Val Gl y Leu Pro Gl u Asp	720
	225 230 235 240	
tcc atc ctc aag tgg gat atg cag gag act gcc aag gga ggg cct ttc	Ser Ile Leu Lys Trp Asp Met Gl n Gl u Thr Ala Lys Gl y Gl y Pro Phe	768
	245 250 255	
gag gaa atc acc act tcc gac atc ttc atc aac tgc gtc tac ctt ggc	Gl u Gl u Ile Thr Thr Ser Asp Ile Phe Ile Asn Cys Val Tyr Leu Gl y	816
	260 265 270	
cct act ccc act cct ccc ttt gtc aca ttc gaa tcg ctt gcg acc cca	Pro Thr Pro Thr Pro Pro Phe Val Thr Phe Gl u Ser Leu Al a Thr Pro	864
	275 280 285	
gag aga cga ctc cgc gtc att gcc gat atc tcg tgt gat ccc aac agc	Gl u Arg Arg Leu Arg Val Ile Ala Asp Ile Ser Cys Asp Pro Asn Ser	912
	290 295 300	
gag aac aac ccg atc ccc ttg tac tcc acc tgg tcc agc ttt gac aag	Gl u Asn Asn Pro Ile Pro Leu Tyr Ser Thr Trp Ser Ser Phe Asp Lys	960
	305 310 315 320	
ccc acg atc ccg aca tcc aag ccc gtt gac ggc cct gag ctg aga atc	Pro Thr Ile Pro Thr Ser Lys Pro Val Asp Gl y Pro Gl u Leu Arg Ile	1008
	325 330 335	
att gcc atc gac cac ctc ccc acc ttg att gcc cgc gag tcc agc gat	Ile Ala Ile Asp His Leu Pro Thr Leu Ile Ala Arg Gl u Ser Ser Asp	1056
	340 345 350	
gag tac tct ggc ctg ctg ccg gcc ctg ctc act ctg gac aag cgg	Gl u Tyr Ser Gl y Leu Leu Pro Ala Leu Leu Thr Leu Asp Lys Arg	1104
	355 360 365	

eol f-seql . txt

gat	act	gag	ggt	gtc	tgg	acg	aga	gcg	gag	aag	aca	tac	aag	gac	aga	1152
Asp	Thr	Gl u	Gl y	Val	Trp	Thr	Arg	Al a	Gl u	Lys	Thr	Tyr	Lys	Asp	Arg	
370				375						380						
gtg	gct	gag	ctg	cct	tag											1170
Val	Al a	Gl u	Leu	Pro												
385																
<210>	34															
<211>	389															
<212>	PRT															
<213>	Trichoderma reesei															
<400>	34															
Val	Gl n	Leu	Phe	Ser	Pro	Ser	Leu	Ser	Tyr	His	Lys	Lys	Gl n	Gl n	Gl n	
1			5						10				15			
Ser	Ile	Arg	Al a	Lys	Met	Pro	Thr	Val	Ile	His	Leu	Arg	Al a	Asp	Thr	
	20				25							30				
Lys	Pro	Phe	Gl u	Arg	Arg	Ser	Pro	Leu	Ser	Pro	Pro	Thr	Al a	Lys	Al a	
	35					40						45				
Leu	Leu	Asp	Al a	Gl y	Tyr	Val	Val	Arg	Val	Gl u	Arg	Ser	Ser	Gl u	Arg	
	50					55				60						
Ile	Tyr	Lys	Asp	Gl u	Gl u	Phe	Gl u	Al a	Val	Gl y	Al a	Gl u	Leu	Val	Pro	
	65				70				75					80		
Al a	Gl y	Ser	Trp	Ile	Lys	Al a	Pro	Lys	Gl u	Asp	Ile	Ile	Leu	Gl y	Leu	
			85					90					95			
Lys	Gl u	Leu	Pro	Asp	Asp	Asp	Ile	Asp	Leu	Pro	His	Thr	Tyr	Ile	His	
			100				105					110				
Phe	Gl n	His	Ile	Phe	Lys	Lys	Gl n	Leu	Gl y	Trp	Al a	Pro	Ser	Leu	Lys	
	115					120					125					
Arg	Phe	Al a	Arg	Al a	Gl y	Gl y	Thr	Leu	Tyr	Asp	Leu	Gl u	Phe	Leu	Thr	
	130				135					140						
Gl u	Gl u	Asn	Gl y	Arg	Arg	Ile	Al a	Al a	Phe	Gl y	Tyr	Phe	Al a	Gl y	Tyr	
	145					150				155				160		
Al a	Gl y	Al a	Al a	Ile	Al a	Phe	Ile	Ser	Trp	Al a	His	Gl n	Ile	Leu	Asn	
				165				170					175			
Pro	Gl y	Val	Pro	Gl n	Pro	Pro	Val	Pro	Leu	Phe	Asp	Ser	Al a	Pro	Al a	
			180					185					190			
Leu	Val	Al a	His	Val	Lys	Al a	Al a	Leu	Gl u	Pro	Al a	Ile	Arg	Al a	Asn	
			195					200					205			

eol f-seql . txt

Asn Gl y Gl n Leu Pro Arg Val Ile Val Ile Gl y Ala Leu Gl y Arg Cys
210 215 220

Gl y Lys Gl y Ala Val Asp Phe Cys Arg Gl u Val Gl y Leu Pro Gl u Asp
225 230 235 240

Ser Ile Leu Lys Trp Asp Met Gl n Gl u Thr Ala Lys Gl y Gl y Pro Phe
245 250 255

Gl u Gl u Ile Thr Thr Ser Asp Ile Phe Ile Asn Cys Val Tyr Leu Gl y
260 265 270

Pro Thr Pro Thr Pro Pro Phe Val Thr Phe Gl u Ser Leu Ala Thr Pro
275 280 285

Gl u Arg Arg Leu Arg Val Ile Ala Asp Ile Ser Cys Asp Pro Asn Ser
290 295 300

Gl u Asn Asn Pro Ile Pro Leu Tyr Ser Thr Trp Ser Ser Phe Asp Lys
305 310 315 320

Pro Thr Ile Pro Thr Ser Lys Pro Val Asp Gl y Pro Gl u Leu Arg Ile
325 330 335

Ile Ala Ile Asp His Leu Pro Thr Leu Ile Ala Arg Gl u Ser Ser Asp
340 345 350

Gl u Tyr Ser Gl y Leu Leu Leu Pro Ala Leu Leu Thr Leu Asp Lys Arg
355 360 365

Asp Thr Gl u Gl y Val Trp Thr Arg Ala Gl u Lys Thr Tyr Lys Asp Arg
370 375 380

Val Ala Gl u Leu Pro
385

<210> 35

<211> 1173

<212> DNA

<213> Ustilago maydis

<220>

<221> CDS

<222> (1)..(1173)

<223> Lys1

<400> 35

atg tct aca agc cgc caa ccc ctc tac ctc cga tgc gag atg aag ccg
Met Ser Thr Ser Arg Gl n Pro Leu Tyr Leu Arg Cys Gl u Met Lys Pro
1 5 10 15

48

gcc gag cac cgt gcc gcg ctc acc cca acc acc gcc aag gca ctc att
Al a Gl u His Arg Al a Al a Leu Thr Pro Thr Thr Ala Lys Al a Leu Ile
20 25 30

96

eol f-seql . txt

gac gct ggg ttc gac atc acg gtc gag tcc gac cct caa cgt atc ttt	144
Asp Ala Gly Phe Asp Ile Thr Val Glu Ser Asp Pro Gln Arg Ile Phe	
35 40 45	
gac gac aaa gag tac acc gag gta ggg tgc aag ctt gcc cct cac aac	192
Asp Asp Lys Glu Tyr Thr Glu Val Glu Cys Lys Leu Ala Pro His Asn	
50 55 60	
acg ttt cac tcc ctg ccc gcc gac atc ccc atc atc ggt ctc aag gag	240
Thr Phe His Ser Leu Pro Ala Asp Ile Pro Ile Ile Gly Leu Lys Glu	
65 70 75 80	
ctt gag gag cct ggt ccg gat ctg cct cac acc cac att cag ttt gct	288
Leu Glu Glu Pro Gly Pro Asp Leu Pro His Thr His Ile Glu Phe Ala	
85 90 95	
cac tgc tac aag aag cag gcc ggt tgg gcg gat gtt ctg ggt cga ttc	336
His Cys Tyr Lys Lys Glu Ala Gly Trp Ala Asp Val Leu Glu Arg Phe	
100 105 110	
aag cgc gga ggc gga aag ctc tac gat ttg gag ttt ttg gag gac aag	384
Lys Arg Glu Glu Lys Leu Tyr Asp Leu Glu Phe Leu Glu Asp Lys	
115 120 125	
aac ggc cgt cgt gta gcc gcg ttt ggt tgg cac gcc ggc ttt gca ggc	432
Asn Glu Arg Arg Val Ala Ala Phe Gly Trp His Ala Glu Phe Ala Glu	
130 135 140	
gct gca ctt ggt ctg ttg gct ttg gct gaa cag gtg caa ggt gaa gac	480
Ala Ala Leu Glu Leu Leu Ala Leu Ala Glu Glu Val Glu Glu Glu Asp	
145 150 155 160	
caa agg ctg ggt gct caa aag gct tac ccc aac gag cag gcg ctc atc	528
Glu Arg Leu Glu Ala Glu Lys Ala Tyr Pro Asn Glu Glu Ala Leu Ile	
165 170 175	
gca cac gcc aag cag cag att gag ttc atc aag aaa tcg cgc tcg gac	576
Ala His Ala Lys Glu Glu Ile Glu Phe Ile Lys Lys Ser Arg Ser Asp	
180 185 190	
ggc aaa gtg aag gcg ctc gtc gtc gga gct ttg gga cga tgt ggt cgt	624
Glu Lys Val Lys Ala Leu Val Val Glu Ala Leu Glu Arg Cys Glu Arg	
195 200 205	
gga gcc att gac ttt ttc gaa aag gcc ggc gtc gct tct gag gac att	672
Glu Ala Ile Asp Phe Phe Glu Lys Ala Glu Val Ala Ser Glu Asp Ile	
210 215 220	
gtc cgc tgg gac atc cag gag acc tca gcc aag cac ggt ccc tac caa	720
Val Arg Trp Asp Ile Glu Glu Thr Ser Ala Lys His Glu Pro Tyr Glu	
225 230 235 240	
gag ctg ctc gac gta gac atc ttt gtc aac tgc atc tac ctc acc tct	768
Glu Leu Leu Asp Val Asp Ile Phe Val Asn Cys Ile Tyr Leu Thr Ser	
245 250 255	
aaa atc ccg cct ttc ctc gac caa cct acg atc caa gcc gct ggt ccc	816
Lys Ile Pro Pro Phe Leu Asp Glu Pro Thr Ile Glu Ala Ala Glu Pro	
260 265 270	
tcg cgt cgt ctc ggc gtc gtc gac gta tcg tgc gac act acc aac	864
Ser Arg Arg Leu Glu Val Val Asp Val Ser Cys Asp Thr Thr Asn	
275 280 285	
ccc aac aac cct ctc ccc atc tac gac atc aac acc acc ttt gac aaa	912
Pro Asn Asn Pro Leu Pro Ile Tyr Asp Ile Asn Thr Thr Phe Asp Lys	
290 295 300	

eol f-seql . txt

cct acc gtc gac gtc aac acg ggc aaa ggt aac ccg agc ttg acc gtc	960
Pro Thr Val Asp Val Asn Thr Glu Lys Glu Asn Pro Ser Leu Thr Val	
305 310 315 320	
atc tcg atc gac cat ctg ccc act ctg ctg cct agg gag agc tcc gag	1008
Ile Ser Ile Asp His Leu Pro Thr Leu Leu Pro Arg Glu Ser Ser Glu	
325 330 335	
ggt ttc agc aac gac ctg ttg ccc agt ctg ttg cag ttg ccc tac gtg	1056
Gly Phe Ser Asn Asp Leu Leu Pro Ser Leu Leu Glu Leu Pro Tyr Val	
340 345 350	
ctc ggt aag gac acc acc aag ctc gac acg ttg gac gaa gga aag gga	1104
Leu Glu Lys Asp Thr Thr Lys Leu Asp Thr Leu Asp Glu Glu Lys Glu	
355 360 365	
gcc gtc tgg cag aga gcc gaa aag ctc ttc cat aag cac ttg gca gag	1152
Ala Val Trp Glu Arg Ala Glu Lys Leu Phe His Lys His Leu Ala Glu	
370 375 380	
gct gag cag cac aca gct tga	1173
Ala Glu Glu His Thr Ala	
385 390	
<210> 36	
<211> 390	
<212> PRT	
<213> Ustilago maydis	
<400> 36	
Met Ser Thr Ser Arg Glu Pro Leu Tyr Leu Arg Cys Glu Met Lys Pro	
1 5 10 15	
Ala Glu His Arg Ala Ala Leu Thr Pro Thr Thr Ala Lys Ala Leu Ile	
20 25 30	
Asp Ala Glu Phe Asp Ile Thr Val Glu Ser Asp Pro Glu Arg Ile Phe	
35 40 45	
Asp Asp Lys Glu Tyr Thr Glu Val Glu Cys Lys Leu Ala Pro His Asn	
50 55 60	
Thr Phe His Ser Leu Pro Ala Asp Ile Pro Ile Ile Glu Leu Lys Glu	
65 70 75 80	
Leu Glu Glu Pro Glu Pro Asp Leu Pro His Thr His Ile Glu Phe Ala	
85 90 95	
His Cys Tyr Lys Lys Glu Ala Glu Trp Ala Asp Val Leu Glu Arg Phe	
100 105 110	
Lys Arg Glu Glu Lys Leu Tyr Asp Leu Glu Phe Leu Glu Asp Lys	
115 120 125	
Asn Glu Arg Arg Val Ala Ala Phe Glu Trp His Ala Glu Phe Ala Glu	
130 135 140	

eol f-seql . txt

Ala Ala Leu Gly Leu Leu Ala Leu Ala Glu Glu Val Glu Gly Glu Asp
145 150 155 160

Gln Arg Leu Gly Ala Glu Lys Ala Tyr Pro Asn Glu Glu Ala Leu Ile
165 170 175

Ala His Ala Lys Gln Gln Ile Glu Phe Ile Lys Lys Ser Arg Ser Asp
180 185 190

Gly Lys Val Lys Ala Leu Val Val Gly Ala Leu Gly Arg Cys Gly Arg
195 200 205

Gly Ala Ile Asp Phe Phe Glu Lys Ala Gly Val Ala Ser Glu Asp Ile
210 215 220

Val Arg Trp Asp Ile Gln Glu Thr Ser Ala Lys His Gly Pro Tyr Gln
225 230 235 240

Glu Leu Leu Asp Val Asp Ile Phe Val Asn Cys Ile Tyr Leu Thr Ser
245 250 255

Lys Ile Pro Pro Phe Leu Asp Gln Pro Thr Ile Gln Ala Ala Gly Pro
260 265 270

Ser Arg Arg Leu Gly Val Val Val Asp Val Ser Cys Asp Thr Thr Asn
275 280 285

Pro Asn Asn Pro Leu Pro Ile Tyr Asp Ile Asn Thr Thr Phe Asp Lys
290 295 300

Pro Thr Val Asp Val Asn Thr Gly Lys Gly Asn Pro Ser Leu Thr Val
305 310 315 320

Ile Ser Ile Asp His Leu Pro Thr Leu Leu Pro Arg Glu Ser Ser Glu
325 330 335

Gly Phe Ser Asn Asp Leu Leu Pro Ser Leu Leu Gln Leu Pro Tyr Val
340 345 350

Leu Gly Lys Asp Thr Thr Lys Leu Asp Thr Leu Asp Glu Gly Lys Gly
355 360 365

Ala Val Trp Gln Arg Ala Glu Lys Leu Phe His Lys His Leu Ala Glu
370 375 380

Ala Glu Gln His Thr Ala
385 390

<210> 37
<211> 1137
<212> DNA

eol f-seql . txt

<213> Verticillium albo-atrum

<220>

<221> CDS

<222> (1).. (1137)

<223> Lys1

<400>	37		
atg tct ggc atc acc cta cac ctc cg	g tcc gag acc aag ccg ctg gag	48	
Met Ser Gly Ile Thr Leu His Leu Arg	Ser Glu Thr Lys Pro Leu Glu		
1 5 10 15			
cac cgc agt gct ctg acc ccc ttc acg	gca tcc gag ctg atc aag gct	96	
His Arg Ser Ala Leu Thr Pro Phe	Thr Ala Ser Glu Leu Ile Lys Ala		
20 25 30			
ggc tac acc ctc aat gtc gag cgc agc	cct gtt cgc atc ttc gac gat	144	
Gly Tyr Thr Leu Asn Val Glu Arg Ser	Pro Val Arg Ile Phe Asp Asp		
35 40 45			
gcc gag ttc gag aag att ggc gcc acc	ctc gtc ccc gag ggt agc tgg	192	
Ala Glu Phe Glu Lys Ile Gly Ala Thr	Leu Val Pro Glu Glu Ser Trp		
50 55 60			
acc gaa gcc ccc caa gac cac atc att	gtt ggc ctc aag gag ctt ctt	240	
Thr Glu Ala Pro Glu Asp His Ile Ile	Val Glu Leu Lys Glu Leu Leu		
65 70 75 80			
gag gag gat ttc cct ctg aag cac gtt	cac gtc cag ttt gcg cac tgc	288	
Gl u Gl u Asp Phe Pro Leu Lys His Val	His Val Glu Phe Ala His Cys		
85 90 95			
tac aag cag cag ggc ggg tgg gag aac	gtc ctg gcc cgc ttc cct cgt	336	
Tyr Lys Glu Glu Gly Trp Glu Asn Val	Leu Ala Arg Phe Pro Arg		
100 105 110			
ggt ggc ggc acc ctc tac gac ctc gaa	ttc ctc gag aag gag gtc gcc	384	
Gly Gly Gly Thr Leu Tyr Asp Leu Glu	Phe Leu Glu Lys Glu Val Ala		
115 120 125			
ccc ggc cgc ttt gcc cga gtc gcc gcc	ttt ggc tgg agc gcc ggt ttc	432	
Pro Glu Arg Phe Ala Arg Val Al a Al a	Al a Phe Glu Trp Ser Al a Glu Phe		
130 135 140			
tct ggt gct gct ctg gct ctc cag aac	tgg gcc tgg cag ctc aac aac	480	
Ser Glu Ala Ala Leu Ala Leu Glu Asn	Trp Al a Trp Glu Leu Asn Asn		
145 150 155 160			
ccc ggc aag ccc ctg cct tcg gtc gag	agc tat ccc aac gag gac gag	528	
Pro Glu Lys Pro Leu Pro Ser Val Glu	Ser Tyr Pro Asn Glu Asp Glu		
165 170 175			
ctc atc act gct gtc aag aag agc att	gcc gag ggc aag gag aag gcc	576	
Leu Ile Thr Ala Val Lys Lys Ser Ile	Al a Glu Glu Lys Glu Lys Ala		
180 185 190			
ggc aag cta ccc cag gtc ctc gtg atc	ggc gcc ctc ggc cgc tgc ggc	624	
Gly Lys Leu Pro Glu Val Leu Val Ile	Gly Al a Leu Glu Arg Cys Glu		
195 200 205			
agc ggt gcc gtc gag ctg tgc cgc cgc	gtc ggc ctg ccc gag gag gag cag	672	
Ser Glu Ala Val Glu Leu Cys Arg Arg	Val Glu Leu Pro Glu Glu Glu Glu		
210 215 220 225			
atc ctc aag tgg gat ctc gag gag acg	aag aag ggc ggc ccc ttc acc	720	
Ile Leu Lys Trp Asp Leu Glu Glu Thr	Lys Lys Glu Gly Pro Phe Thr		
225 230 235 240			

eol f-seql . txt

gag att gtt gag agc gac atc ttt gtc aac tgc atc tac ctc aac agc	768
Gl u Ile Val Gl u Ser Asp Ile Phe Val Asn Cys Ile Tyr Leu Asn Ser	
245 250 255	
aag att ccc aac ttt gtc gac ttt gag tct ctc aag tcg ccc aag agg	816
Lys Ile Pro Asn Phe Val Asp Phe Gl u Ser Leu Lys Ser Pro Lys Arg	
260 265 270	
cag ctg tcc gtc gtc tgc gac gtc tct gct gac acc acc aac ccc aac	864
Gl n Leu Ser Val Val Cys Asp Val Ser Al a Asp Thr Thr Asn Pro Asn	
275 280 285	
aac cct gtc ccc atc tac acc gtc gcc aca acc ttc gac aag ccc aca	912
Asn Pro Val Pro Ile Tyr Thr Val Al a Thr Thr Phe Asp Lys Pro Thr	
290 295 300	
gtg ccc gtc gag gga ctc gag aac ccg ccc ctg agc gtc atc agc att	960
Val Pro Val Gl u Gl y Leu Gl u Asn Pro Pro Leu Ser Val Ile Ser Ile	
305 310 315 320	
gat cac ctt ccc agc ctc ctc ccc cgt gag gcc tcc gag acg tac agc	1008
Asp His Leu Pro Ser Leu Leu Pro Arg Gl u Al a Ser Gl u Thr Tyr Ser	
325 330 335	
aag gac ctg ctg ccg tac ctg ctc acg ctg aag gac cgc aag acg gac	1056
Lys Asp Leu Leu Pro Tyr Leu Leu Thr Leu Lys Asp Arg Lys Thr Asp	
340 345 350	
ccc gtc tgg acg agg gct gag aag ctc ttc aac gac aag gtc gct acg	1104
Pro Val Trp Thr Arg Al a Gl u Lys Leu Phe Asn Asp Lys Val Al a Thr	
355 360 365	
ctg ccg gcc gac ctg cag aag cct gct cag tga	1137
Leu Pro Al a Asp Leu Gl n Lys Pro Al a Gl n	
370 375	
<210> 38	
<211> 378	
<212> PRT	
<213> Verticillium albo-atrum	
<400> 38	
Met Ser Gl y Ile Thr Leu His Leu Arg Ser Gl u Thr Lys Pro Leu Gl u	
1 5 10 15	
His Arg Ser Al a Leu Thr Pro Phe Thr Al a Ser Gl u Leu Ile Lys Al a	
20 25 30	
Gl y Tyr Thr Leu Asn Val Gl u Arg Ser Pro Val Arg Ile Phe Asp Asp	
35 40 45	
Al a Gl u Phe Gl u Lys Ile Gl y Al a Thr Leu Val Pro Gl u Gl y Ser Trp	
50 55 60	
Thr Gl u Al a Pro Gl n Asp His Ile Ile Val Gl y Leu Lys Gl u Leu Leu	
65 70 75 80	
Gl u Gl u Asp Phe Pro Leu Lys His Val His Val Gl n Phe Al a His Cys	
85 90 95	

eof f-seql . txt

Tyr Lys Glu Glu Gly Gly Trp Glu Asn Val Leu Ala Arg Phe Pro Arg
100 105 110

Gly Gly Gly Thr Leu Tyr Asp Leu Glu Phe Leu Glu Lys Glu Val Ala
115 120 125

Pro Gly Arg Phe Ala Arg Val Ala Ala Phe Gly Trp Ser Ala Gly Phe
130 135 140

Ser Gly Ala Ala Leu Ala Leu Glu Asn Trp Ala Trp Glu Leu Asn Asn
145 150 155 160

Pro Gly Lys Pro Leu Pro Ser Val Glu Ser Tyr Pro Asn Glu Asp Glu
165 170 175

Leu Ile Thr Ala Val Lys Lys Ser Ile Ala Glu Gly Lys Glu Lys Ala
180 185 190

Gly Lys Leu Pro Glu Val Leu Val Ile Gly Ala Leu Glu Arg Cys Gly
195 200 205

Ser Gly Ala Val Glu Leu Cys Arg Arg Val Glu Leu Pro Glu Glu Glu
210 215 220

Ile Leu Lys Trp Asp Leu Glu Glu Thr Lys Lys Glu Glu Pro Phe Thr
225 230 235 240

Glut Ile Val Glu Ser Asp Ile Phe Val Asn Cys Ile Tyr Leu Asn Ser
245 250 255

Lys Ile Pro Asn Phe Val Asp Phe Glu Ser Leu Lys Ser Pro Lys Arg
260 265 270

Glut Leu Ser Val Val Cys Asp Val Ser Ala Asp Thr Thr Asn Pro Asn
275 280 285

Asn Pro Val Pro Ile Tyr Thr Val Ala Thr Thr Phe Asp Lys Pro Thr
290 295 300

Val Pro Val Glu Gly Leu Glu Asn Pro Pro Leu Ser Val Ile Ser Ile
305 310 315 320

Asp His Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Thr Tyr Ser
325 330 335

Lys Asp Leu Leu Pro Tyr Leu Leu Thr Leu Lys Asp Arg Lys Thr Asp
340 345 350

Pro Val Trp Thr Arg Ala Glu Lys Leu Phe Asn Asp Lys Val Ala Thr
355 360 365

eol f-seql . txt

Leu Pro Ala Asp Leu Glu Lys Pro Ala Glu
370 375

<210> 39
<211> 1125
<212> DNA
<213> Mycosphaerellaceae graminicola

<220>
<221> CDS
<222> (1)..(1125)
<223> Lys1

<400> 39
atg tct tct tca cca cta act ttg cac atc cgc gcg gaa acc aag ccc 48
Met Ser Ser Ser Pro Leu Thr Leu His Ile Arg Ala Glu Thr Lys Pro
1 5 10 15

ctc gaa cat cgc acc gct gtt ccg ccc aag gtt gcg agg aaa ctt gtc 96
Leu Glu His Arg Thr Ala Val Pro Pro Lys Val Ala Arg Lys Leu Val
20 25 30

gag gcg ggt tac gtg gtc aac gtc gag cgg agt cca ttg agc atc ttc 144
Glu Ala Gly Tyr Val Val Asn Val Glu Arg Ser Pro Leu Ser Ile Phe
35 40 45

ccg gac aac gag tac gaa gga aca gga gct acg ctt gtg ccg act ggt 192
Pro Asp Asn Glu Tyr Glu Glu Thr Gly Ala Thr Leu Val Pro Thr Glu
50 55 60

tct tgg acg gaa gca ccc aag gac cat atc gtt gtg gga ttg aag gag 240
Ser Trp Thr Glu Ala Pro Lys Asp His Ile Val Val Glu Leu Lys Glu
65 70 75 80

ttg ccg gag gag gat ttc gcg ttg gtg cat acg cat gtt cag ttc gca 288
Leu Pro Glu Glu Asp Phe Ala Leu Val His Thr His Val Glu Phe Ala
85 90 95

cat tgc tat aag aat cag ggc gga tgg gag aaa gtc ttg agt cga ttc 336
His Cys Tyr Lys Asn Glu Glu Trp Glu Lys Val Leu Ser Arg Phe
100 105 110

ccg aga ggt gga ggg acg ctg ctt gac ttg gag ttc ctc gaa gat gag 384
Pro Arg Glu Glu Glu Thr Leu Leu Asp Leu Glu Phe Leu Glu Asp Glu
115 120 125

caa gga cga cga gtt gcg gct ttc ggc tac cac gcc gga ttc gca gga 432
Gln Glu Arg Arg Val Ala Ala Phe Glu Tyr His Ala Glu Phe Ala Glu
130 135 140

gca gct ctc tcc ctc atc aca tgg gcc tgg caa ctc gag cac ggc acc 480
Ala Ala Leu Ser Leu Ile Thr Trp Ala Trp Glu Leu Glu His Glu Thr
145 150 155 160

tcc aag ccc gtg cct gga gtc acc gcc tac gag aac gaa aca ctc ctc 528
Ser Lys Pro Val Pro Glu Val Thr Ala Tyr Glu Asn Glu Thr Leu Leu
165 170 175

gtc aac gac gtg aag aaa gcc gtc gag aag ggc aag tcg atc gcc ggc 576
Val Asn Asp Val Lys Lys Ala Val Glu Lys Glu Lys Ser Ile Ala Glu
180 185 190

cac ctt ccg cga gtt ctg gtc atc ggc gct ctc gga cgt tgc ggc cgt 624
His Leu Pro Arg Val Leu Val Ile Glu Ala Leu Glu Arg Cys Glu Arg
195 200 205

eol f-seql . txt

gga gcc gtc gac ctc tgc gtc aaa gct ggt ctg caa gac atc ctc aaa	672
Gly Ala Val Asp Leu Cys Val Lys Ala Gly Leu Glu Asp Ile Leu Lys	
210 215 220	
tgg gac ctg caa gag acc aaa gcc aaa cca ggc ccc tac caa gaa atc	720
Trp Asp Leu Glu Thr Lys Ala Lys Pro Gly Pro Tyr Glu Ile	
225 230 235 240	
atc gag tcc gac gtc ttt gta aac tgc atc tac ctc tcc gcc aaa atc	768
Ile Glu Ser Asp Val Phe Val Asn Cys Ile Tyr Leu Ser Ala Lys Ile	
245 250 255	
cct cca ttc atc gac gca cct tcc ctc gcc tcc ccg acc cgc aaa ctc	816
Pro Pro Phe Ile Asp Ala Pro Ser Leu Ala Ser Pro Thr Arg Lys Leu	
260 265 270	
agc gtc gtc tgt gac gtc tcc tgc gac acc acg aat cca cac aat ccg	864
Ser Val Val Cys Asp Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro	
275 280 285	
att ccg att tac tcc atc aat acg acg ttt gac aag ccc acc gtg cct	912
Ile Pro Ile Tyr Ser Ile Asn Thr Thr Phe Asp Lys Pro Thr Val Pro	
290 295 300	
gtg gaa ctg tcc tca gag gcg aac gat gtg ccg ttg agt gtg att agc	960
Val Glu Leu Ser Ser Glu Ala Asn Asp Val Pro Leu Ser Val Ile Ser	
305 310 315 320	
atc gac cac ttg ccg agt ttg ttg ccg aga gag gcg agc gag gca ttc	1008
Ile Asp His Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe	
325 330 335	
agc gag gca ttg ttg ccg agt ttg ttg gag ttg aag gag agg aag acg	1056
Ser Glu Ala Leu Leu Pro Ser Leu Leu Glu Leu Lys Glu Arg Lys Thr	
340 345 350	
gcg ccg gtg tgg agg cag gag gct aag ttg ttc gag gac aag gtg gct	1104
Ala Arg Val Trp Arg Glu Ala Glu Lys Leu Phe Glu Asp Lys Val Ala	
355 360 365	
agt ctg ccg aag ggt tcg tac	1125
Ser Leu Pro Lys Gly Ser Tyr	
370 375	

<210> 40
 <211> 375
 <212> PRT
 <213> Mycosphaerella graminicola

<400> 40

Met Ser Ser Ser Pro Leu Thr Leu His Ile Arg Ala Glu Thr Lys Pro

1 5 10 15
Leu Glu His Arg Thr Ala Val Pro Pro Lys Val Ala Arg Lys Leu Val

20 25 30
Glu Ala Gly Tyr Val Val Asn Val Glu Arg Ser Pro Leu Ser Ile Phe

35 40 45
Pro Asp Asn Glu Tyr Glu Glu Thr Gly Ala Thr Leu Val Pro Thr Gly

50 55 60

eol f-seql . txt

Ser Trp Thr Glu Ala Pro Lys Asp His Ile Val Val Glu Leu Lys Glu
65 70 75 80

Leu Pro Glu Glu Asp Phe Ala Leu Val His Thr His Val Glu Phe Ala
85 90 95

His Cys Tyr Lys Asn Glu Gly Trp Glu Lys Val Leu Ser Arg Phe
100 105 110

Pro Arg Glu Gly Glu Thr Leu Leu Asp Leu Glu Phe Leu Glu Asp Glu
115 120 125

Gln Glu Arg Arg Val Ala Ala Phe Glu Tyr His Ala Glu Phe Ala Glu
130 135 140

Ala Ala Leu Ser Leu Ile Thr Trp Ala Trp Glu Leu Glu His Glu Thr
145 150 155 160

Ser Lys Pro Val Pro Glu Val Thr Ala Tyr Glu Asn Glu Thr Leu Leu
165 170 175

Val Asn Asp Val Lys Lys Ala Val Glu Lys Glu Lys Ser Ile Ala Glu
180 185 190

His Leu Pro Arg Val Leu Val Ile Glu Ala Leu Glu Arg Cys Glu Arg
195 200 205

Glu Ala Val Asp Leu Cys Val Lys Ala Glu Leu Glu Asp Ile Leu Lys
210 215 220

Trp Asp Leu Glu Glu Thr Lys Ala Lys Pro Glu Pro Tyr Glu Glu Ile
225 230 235 240

Ile Glu Ser Asp Val Phe Val Asn Cys Ile Tyr Leu Ser Ala Lys Ile
245 250 255

Pro Pro Phe Ile Asp Ala Pro Ser Leu Ala Ser Pro Thr Arg Lys Leu
260 265 270

Ser Val Val Cys Asp Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro
275 280 285

Ile Pro Ile Tyr Ser Ile Asn Thr Thr Phe Asp Lys Pro Thr Val Pro
290 295 300

Val Glu Leu Ser Ser Glu Ala Asn Asp Val Pro Leu Ser Val Ile Ser
305 310 315 320

Ile Asp His Leu Pro Ser Leu Leu Pro Arg Glu Ala Ser Glu Ala Phe
325 330 335

eol f-seql . txt

Ser Glu Ala Leu Leu Pro Ser Leu Leu Glu Leu Lys Glu Arg Lys Thr
 340 345 350

Ala Arg Val Trp Arg Glu Ala Glu Lys Leu Phe Glu Asp Lys Val Ala
 355 360 365

Ser Leu Pro Lys Gly Ser Tyr
 370 375

<210> 41
 <211> 1170
 <212> DNA
 <213> Fusarium moniliiforme

<220>
 <221> CDS
 <222> (1)..(1170)
 <223> Lys1

<400> 41
 atg tct gac tat ccc cac att ctc ctt cgc gct gag gag aag cct ctc 48
 Met Ser Asp Tyr Pro His Ile Leu Leu Arg Ala Glu Glu Lys Pro Leu
 1 5 10 15

gag cac cga tct ttc tcc ccc gca att atc aag aca ctc gtt gat gct 96
 Glu His Arg Ser Phe Ser Pro Ala Ile Ile Lys Thr Leu Val Asp Ala
 20 25 30

gga tac ccc att tcc gtc gag cga tcg tct acc gac ccc aag ttc aag 144
 Gly Tyr Pro Ile Ser Val Glu Arg Ser Ser Thr Asp Pro Lys Phe Lys
 35 40 45

cgt atc ttt gag gac tca gaa tat gag gct gct ggt gct cgt ctt gtc 192
 Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Gly Ala Arg Leu Val
 50 55 60

gat acg ggt gtc tgg ccc aac gct gag cct gga aca atc att ctc ggc 240
 Asp Thr Gly Val Trp Pro Asn Ala Glu Pro Glu Thr Ile Ile Leu Gly
 65 70 75 80

cta aaa gag cta cct tct gag gac ttc ccg ctc aag aat gac cac att 288
 Leu Lys Glu Leu Pro Ser Glu Asp Phe Pro Leu Lys Asn Asp His Ile
 85 90 95

aca ttt gca cat tgt tac aag aac caa ggc ggg tgg gag cag gtc ctc 336
 Thr Phe Ala His Cys Tyr Lys Asn Glu Glu Glu Trp Glu Glu Val Leu
 100 105 110

ggt cgc tgg gca cgc ggt ggc agc cgg ctt tac gac ctc gag ttt ctt 384
 Gly Arg Trp Ala Arg Gly Gly Ser Arg Leu Tyr Asp Leu Glu Phe Leu
 115 120 125

gtg gac gaa caa ggt cgg cgt gtt tct gca ttt ggg tac cac gcg ggc 432
 Val Asp Glu Glu Glu Arg Arg Val Ser Ala Phe Gly Tyr His Ala Gly
 130 135 140

ttc gcc ggt gct gcg ctc gga atc aag aca ctc gct cac cag ctg cag 480
 Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ala His Glu Leu Glu
 145 150 155 160

ggc tcg tcc tct aaa ctt cct tct gtc gag aca ttc act gat ggc cgc 528
 Gly Ser Ser Ser Lys Leu Pro Ser Val Glu Thr Phe Thr Asp Glu Arg
 165 170 175

eol f-seql . txt

gga tat tac ttg aac gaa gat gag ctc gtc aac cag att cgt gag gag	576
Gl y Tyr Tyr Leu Asn Gl u Asp Gl u Leu Val Asn Gl n Ile Arg Gl u Asp	
180 185 190	
ctc gct aag gct gaa aag gct ctc gga cgt aag ccc act gct ctc gtc	624
Leu Ala Lys Ala Gl u Lys Ala Leu Gl y Arg Lys Pro Thr Ala Leu Val	
195 200 205	
ctt ggt gct ctt gga cga tgg ggt aag ggt gcc gtc gac ctt ttc ctg	672
Leu Gl y Ala Leu Gl y Arg Cys Gl y Lys Gl y Ala Val Asp Leu Phe Leu	
210 215 220	
aag gcc ggc atg cct gat gac aac att acc cgc tgg gac ttg aac gag	720
Lys Ala Gl y Met Pro Asp Asp Asn Ile Thr Arg Trp Asp Leu Asn Gl u	
225 230 235 240	
act aag gac cgt gat ggc cct tac gag gag atc gcc aag gct gat gtc	768
Thr Lys Asp Arg Asp Gl y Pro Tyr Gl u Gl u Ile Ala Lys Ala Asp Val	
245 250 255	
ttc ctc aac gcc atc tac ctc tcc aag ccc att ccc cct ttc atc aac	816
Phe Leu Asn Ala Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn	
260 265 270	
caa gaa ctc ctt gcc aag caa ggt cgc aac ctc gct gtt gtc atc gac	864
Gl n Gl u Leu Leu Ala Lys Gl n Gl y Arg Asn Leu Ala Val Val Ile Asp	
275 280 285	
gtt tct tgt gac acc aca aac cct cac aac cct atc ccc atc atc tac tcc	912
Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser	
290 295 300	
atc aac acc acc ttt gag gac cca acc gtc ccc gtt gag atc aag gac	960
Ile Asn Thr Thr Phe Gl u Asp Pro Thr Val Pro Val Gl u Ile Lys Asp	
305 310 315 320	
gat cag aac aac ctc ccc cta tcc gtc atc agc att gat cac ctc cct	1008
Asp Gl n Asn Asn Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro	
325 330 335	
tcc atg ctt ccc cgc gag gct agt gag gcc ttt agt gag ggt ctc aag	1056
Ser Met Leu Pro Arg Gl u Ala Ser Gl u Ala Phe Ser Gl u Gl y Leu Lys	
340 345 350	
gag tct ctg ctc aca ctc aag gat cgc gag act tcg cgg gtg tgg act	1104
Gl u Ser Leu Leu Thr Leu Lys Asp Arg Gl u Thr Ser Arg Val Trp Thr	
355 360 365	
gat gct gag aag ctc ttc cat gag aag gtt gcc ctg ttg ccc gag gag	1152
Asp Ala Gl u Lys Leu Phe His Gl u Lys Val Ala Leu Leu Pro Gl u Gl u	
370 375 380	
ttg aga acc aag agt gtt	1170
Leu Arg Thr Lys Ser Val	
385 390	

<210> 42
 <211> 390
 <212> PRT
 <213> Fusarium moniliforme

<400> 42

Met Ser Asp Tyr Pro His Ile Leu Leu Arg Ala Gl u Gl u Lys Pro Leu
 1 5 10 15

eol f-seql . txt

Gl u His Arg Ser Phe Ser Pro Ala Ile Ile Lys Thr Leu Val Asp Ala
20 25 30

Gly Tyr Pro Ile Ser Val Gl u Arg Ser Ser Thr Asp Pro Lys Phe Lys
35 40 45

Arg Ile Phe Gl u Asp Ser Gl u Tyr Gl u Ala Ala Gly Ala Arg Leu Val
50 55 60

Asp Thr Gly Val Trp Pro Asn Ala Gl u Pro Gly Thr Ile Ile Leu Gly
65 70 75 80

Leu Lys Gl u Leu Pro Ser Gl u Asp Phe Pro Leu Lys Asn Asp His Ile
85 90 95

Thr Phe Ala His Cys Tyr Lys Asn Gl n Gly Gly Trp Gl u Gl n Val Leu
100 105 110

Gly Arg Trp Ala Arg Gly Gly Ser Arg Leu Tyr Asp Leu Gl u Phe Leu
115 120 125

Val Asp Gl u Gl n Gly Arg Arg Val Ser Ala Phe Gly Tyr His Ala Gly
130 135 140

Phe Ala Gly Ala Ala Leu Gly Ile Lys Thr Leu Ala His Gl n Leu Gl n
145 150 155 160

Gly Ser Ser Ser Lys Leu Pro Ser Val Gl u Thr Phe Thr Asp Gly Arg
165 170 175

Gly Tyr Tyr Leu Asn Gl u Asp Gl u Leu Val Asn Gl n Ile Arg Gl u Asp
180 185 190

Leu Ala Lys Ala Gl u Lys Ala Leu Gly Arg Lys Pro Thr Ala Leu Val
195 200 205

Leu Gly Ala Leu Gly Arg Cys Gly Lys Gly Ala Val Asp Leu Phe Leu
210 215 220

Lys Ala Gly Met Pro Asp Asp Asn Ile Thr Arg Trp Asp Leu Asn Gl u
225 230 235 240

Thr Lys Asp Arg Asp Gly Pro Tyr Gl u Gl u Ile Ala Lys Ala Asp Val
245 250 255

Phe Leu Asn Ala Ile Tyr Leu Ser Lys Pro Ile Pro Pro Phe Ile Asn
260 265 270

Gl n Gl u Leu Leu Ala Lys Gl n Gly Arg Asn Leu Ala Val Val Ile Asp
275 280 285

eol f-seql . txt

Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser
290 295 300

Ile Asn Thr Thr Phe Glu Asp Pro Thr Val Pro Val Glu Ile Lys Asp
305 310 315 320

Asp Glu Asn Asn Leu Pro Leu Ser Val Ile Ser Ile Asp His Leu Pro
325 330 335

Ser Met Leu Pro Arg Glu Ala Ser Glu Ala Phe Ser Glu Glu Leu Lys
340 345 350

Glu Ser Leu Leu Thr Leu Lys Asp Arg Glu Thr Ser Arg Val Trp Thr
355 360 365

Asp Ala Glu Lys Leu Phe His Glu Lys Val Ala Leu Leu Pro Glu Glu
370 375 380

Leu Arg Thr Lys Ser Val
385 390

<210> 43
<211> 856
<212> DNA
<213> Claviiceps purpurea

<220>
<221> CDS
<222> (3)..(854)
<223> Lys1

<400> 43

ct ggc tac aaa gtt tcc gtg gag cgc tca cca tcg gac ccc gac ttt	47
Gl y Tyr Lys Val Ser Val Glu Arg Ser Pro Ser Asp Pro Asp Phe	
1 5 10 15	

gtc cgc atc ttc caa gac tct gaa tat gag gcg gct gga gct tct ctg	95
Val Arg Ile Phe Glu Asp Ser Glu Tyr Glu Ala Ala Glu Ala Ser Leu	
20 25 30	

gtt ccc act ggc gtg tgg ccc aag gct gcg cca aac act ctg atc gtt	143
Val Pro Thr Glu Val Trp Pro Lys Ala Ala Pro Asn Thr Leu Ile Val	
35 40 45	

ggt ctc aag gag atc ccc gaa gag ggc ttt tct ctc acc aat gac cac	191
Gl y Leu Lys Glu Ile Pro Glu Glu Glu Phe Ser Leu Thr Asn Asp His	
50 55 60	

ctg acc ttt gcc cat tgc tac aag aag caa gct ggc tgg aca cag gtt	239
Leu Thr Phe Ala His Cys Tyr Lys Lys Glu Ala Glu Trp Thr Glu Val	
65 70 75	

ctc gga cgc ttt gtc gca ggc aaa tcg acc ctc tac gac ctg gag ttt	287
Leu Glu Arg Phe Val Ala Glu Lys Ser Thr Leu Tyr Asp Leu Glu Phe	
80 85 90 95	

ctg gtc gat agc act gga aga cgc atc tct gct ttc gga ttc cac gct	335
Leu Val Asp Ser Thr Glu Arg Arg Ile Ser Ala Phe Glu Phe His Ala	
100 105 110	

eol f-seql . txt

ggc ttc acg ggc gct gct ttg gga gtg aag aac tgg gct tgg caa ctg	383
Gl y Phe Thr Gl y Al a Al a Leu Gl y Val Lys Asn Trp Al a Trp Gl n Leu	
115 120 125	
gcc aat cca gcc aag aag ctt ccc gcc gtg tcc aca ttc act gac ggc	431
Al a Asn Pro Al a Lys Lys Leu Pro Al a Val Ser Thr Phe Thr Asp Gl y	
130 135 140	
aag gga tac tat gtg aac gaa acc gag ttg gtg gag caa atc cgc aag	479
Lys Gl y Tyr Tyr Val Asn Gl u Thr Gl u Leu Val Gl u Gl n Ile Arg Lys	
145 150 155	
gat ctc gag gca gga gag aag att ctt ggc cgt aag cca aca gcc ttt	527
Asp Leu Gl u Al a Gl y Gl u Lys Ile Leu Gl y Arg Lys Pro Thr Al a Phe	
160 165 170 175	
gtc ctg gga gct ttg ggt cgc tgc ggc agg ggt gct tgc gat ttg ttc	575
Val Leu Gl y Al a Leu Gl y Arg Cys Gl y Arg Gl y Al a Cys Asp Leu Phe	
180 185 190	
ctc aag gca ggc ttg ccc gaa gag aac atc acc cga tgg gat ttg gcc	623
Leu Lys Al a Gl y Leu Pro Gl u Asn Ile Thr Arg Trp Asp Leu Al a	
195 200 205	
gaa acc cgc gac cgc caa ggc ccg tac gag gag att gct cag cac gat	671
Gl u Thr Arg Asp Arg Gl n Gl y Pro Tyr Gl u Gl u Ile Al a Gl n His Asp	
210 215 220	
atc ttc ctg aac gct atc tat ctc tcc gag ccc atc cca cct ttt gtc	719
Ile Phe Leu Asn Al a Ile Tyr Leu Ser Gl u Pro Ile Pro Pro Phe Val	
225 230 235	
aac aac gag ctt ctt tct aag cct ggc cgc aaa ttg agt gtt gtc ata	767
Asn Asn Gl u Leu Leu Ser Lys Pro Gl y Arg Lys Leu Ser Val Val Ile	
240 245 250 255	
gac gtc tcc tgc gac acc acc aac ccc cac aac ccc atc ccc atc tac	815
Asp Val Ser Cys Asp Thr Asn Pro His Asn Pro Ile Pro Ile Tyr	
260 265 270	
agc atc aac acc acc ttc gac agc ccc acc gtt gcc gtc aa	856
Ser Ile Asn Thr Thr Phe Asp Ser Pro Thr Val Al a Val	
275 280	

<210> 44
 <211> 284
 <212> PRT
 <213> Cl avi ceps purpurea

<400> 44

Gl y Tyr Lys Val Ser Val Gl u Arg Ser Pro Ser Asp Pro Asp Phe Val

1 5 10 15

Arg Ile Phe Gl n Asp Ser Gl u Tyr Gl u Al a Al a Gl y Al a Ser Leu Val

20 25 30

Pro Thr Gl y Val Trp Pro Lys Al a Al a Pro Asn Thr Leu Ile Val Gl y

35 40 45

Leu Lys Gl u Ile Pro Gl u Gl u Gl y Phe Ser Leu Thr Asn Asp His Leu

50 55 60

eol f-seql . txt

Thr Phe Ala His Cys Tyr Lys Lys Glu Ala Gly Trp Thr Glu Val Leu
65 70 75 80

Gly Arg Phe Val Ala Gly Lys Ser Thr Leu Tyr Asp Leu Glu Phe Leu
85 90 95

Val Asp Ser Thr Gly Arg Arg Ile Ser Ala Phe Gly Phe His Ala Gly
100 105 110

Phe Thr Gly Ala Ala Leu Gly Val Lys Asn Trp Ala Trp Glu Leu Ala
115 120 125

Asn Pro Ala Lys Lys Leu Pro Ala Val Ser Thr Phe Thr Asp Gly Lys
130 135 140

Gly Tyr Tyr Val Asn Glu Thr Glu Leu Val Glu Glu Ile Arg Lys Asp
145 150 155 160

Leu Glu Ala Gly Glu Lys Ile Leu Gly Arg Lys Pro Thr Ala Phe Val
165 170 175

Leu Gly Ala Leu Gly Arg Cys Gly Arg Gly Ala Cys Asp Leu Phe Leu
180 185 190

Lys Ala Gly Leu Pro Glu Glu Asn Ile Thr Arg Trp Asp Leu Ala Glu
195 200 205

Thr Arg Asp Arg Glu Gly Pro Tyr Glu Glu Ile Ala Glu His Asp Ile
210 215 220

Phe Leu Asn Ala Ile Tyr Leu Ser Glu Pro Ile Pro Pro Phe Val Asn
225 230 235 240

Asn Glu Leu Leu Ser Lys Pro Gly Arg Lys Leu Ser Val Val Ile Asp
245 250 255

Val Ser Cys Asp Thr Thr Asn Pro His Asn Pro Ile Pro Ile Tyr Ser
260 265 270

Ile Asn Thr Thr Phe Asp Ser Pro Thr Val Ala Val
275 280

<210> 45

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> primer_bind

eol f-seql . txt

<222> (1)..(41)

<400> 45
taatacgact cactataggg ttgcaggaga gcgcagaaag c 41

<210> 46
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(42)

<400> 46
taatacgact cactataggg tcagttggag tccgcgtggt gt 42

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(20)

<400> 47
cgactctggc gacggtgtgt 20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(20)

<400> 48
gcgtgaggaa gagcgtaacc 20

<210> 49
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind

eol f-seql . txt

<222> (1)..(18)

<400> 49
ccggccagac aatttcgt 18

<210> 50
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(20)

<400> 50
ccttggcca gttgttacca 20

<210> 51
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(21)

<400> 51
tgggtggttt ccaaggtctt c 21

<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1)..(20)

<400> 52
aaaggcacca agccactgaa 20

<210> 53
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind

eol f-seql . txt

<222> (1).. (48)

<400> 53
tcgacaggcc tggatcctta attaaactag tctcgaggag ctcggtag 48

<210> 54
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1).. (40)

<400> 54
cgagtcctc gagactagtt taattaagga tccaggcctg 40

<210> 55
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1).. (31)

<400> 55
tatctcgagt ctagacaacg ccattggta c 31

<210> 56
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind
<222> (1).. (25)

<400> 56
agaggtagcca agttgcgtt gctgg 25

<210> 57
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<220>
<221> primer_bind

eol f-seql . txt

<222> (1)..(22)

<400> 57

tcaatagaag cgaacgcgta aa

22

<210> 58

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

<220>

<221> primer_bind

<222> (1)..(20)

<400> 58

gttcgggatc tgctcgatgt

20