(54) 发明名称
一种催化降解六氯苯的方法

(57) 摘要
本发明公开了一种催化降解六氯苯的方法，该方法为：一、将催化剂装填于固定床反应器中，对催化剂进行还原处理；二、将六氯苯蒸汽和预热的氢气混合均匀得到混合气，待还原处理结束后向固定床反应器中通入混合气，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体；三、将苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中冷凝，使苯转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中用氨水吸收氯化氢，将未反应的氢气经压缩机压缩后返回循环使用。采用本发明的方法催化加氢降解六氯苯时不需添加溶剂，并且副产物苯和氯化铵，能够达到污染物的零排放，是一种高效降解六氯苯的绿色工艺。
1. 一种催化降解六氯苯的方法，其特征在于，该方法包括以下步骤；

步骤一，将催化剂装填于固定床反应器中，在室温下向装填有催化剂的固定床反应器中通入氮气至固定床反应器中的空气排净，然后向固定床反应器中通入氢气稀释的还原性气体，以 0.1℃/min 至 2℃/min 的升温速率将固定床反应器的温度升至 280℃～450℃，保温 2h～10h 后对催化剂进行还原处理；所述催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分和助剂，催化剂中活性组分的百分含量为 0.05%～3%，助剂的质量百分含量为 0.01%～2.5%，所述活性组分由 Ag，Pt，Pd，Rh 或 Ru，所述助剂为 Na，K，Mg，Ba，Sn 或 Fe；氯气稀释的还原性气体中还原性气体的体积百分含量为 3%～10%；氯气稀释的还原性气体的流量与催化剂的质量之比为（3～20）：1，其中流量的单位为 ml/min，质量的单位为 g；

步骤二，将六氯苯蒸汽和预热至 150℃～260℃的氢气混合均匀得到混合气，待步骤一中所述还原处理结束后停止通入氢气稀释的还原性气体，同时向固定床反应器中通入所述混合气，在反应温度为 280℃～450℃的条件下，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体；

步骤三，将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用。

2. 根据权利要求 1 所述的一种催化降解六氯苯的方法，其特征在于，步骤一中所述催化剂中活性组分的质量百分含量为 0.1%～1.5%，助剂的质量百分含量为 0.05%～1.5%。

3. 根据权利要求 2 所述的一种催化降解六氯苯的方法，其特征在于，所述催化剂中活性组分的质量百分含量为 0.2%～0.4%，助剂的质量百分含量为 0.2%～1.0%。

4. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤一中所述 Al₂O₃ 载体为 Al₂O₃ 载体的粒度为 0.5mm～3mm，比表面积为 150m²/g～280m²/g。

5. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤一中所述还原性气体为氢气。

6. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤二中所述六氯苯蒸汽和氢气的摩尔比为 1：（5～100），所述六氯苯蒸汽的质量空速为 0.05g/gcat/hr～0.6g/gcat/hr。

7. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤二中所述六氯苯蒸汽在固定床反应器中的停留时间为 1min～10min。

8. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤二中所述反应温度为 320℃～400℃。

9. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤二中所述冷凝器的冷凝温度为 -30℃～0℃。

10. 根据权利要求 1、2 或 3 所述的一种催化降解六氯苯的方法，其特征在于，步骤三中所述氨水的体积为六氯苯蒸汽体积的 6.5～13 倍。
一种催化降解六氯苯的方法

技术领域
[0001] 本发明属于催化加氢技术领域，具体涉及一种催化降解六氯苯的方法。

背景技术
[0002] 芳香氯化物在工业上有着非常广泛的应用，但又是危害人类健康的有毒物质，由于其结构稳定性高，在自然界中难以降解，因此世界各国的研究人员都在努力探索含氯有机污染物的高效脱毒方法。

[0003] 六氯苯是12种持久性有机污染物（POPs）之一。六氯苯具有完全对称的结构，而且氯取代数多，毒性大，降解非常困难。据调查，国内每年在化工生产过程中至少产生600吨六氯苯，被封存的六氯苯废物存在泄漏和扩散的风险，对周边生态环境安全存在巨大隐患。六氯苯通常是采用简单的焚烧法处理，焚烧过程中可能产生二噁英，对环境造成较大的危害。因此积极寻求高效环保的六氯苯处理方法具有非常重要的意义。

[0004] 董玉环等人制备了一种新型双负载双金属催化剂：PVP-PdC12-MnXm/MontK10-PEG400，采用氢转移法对水相中的六氯苯进行催化脱氯，反应条件温和，能够使六氯苯转化率达到100%，但是催化剂制备过于复杂，难以大量生产，反应后分离困难，贵金属回收困难，反应时间相对较长，由于六氯苯在水相中的溶解度低，所以单位时间内六氯苯的处理量也少。

[0005] 肖勇等人论述了近年来六氯苯降解及去除方法的研究进展，国内外学者们主要通过以下方法展开了对六氯苯降解的研究，如：光催化氧化、微生物降解、辐照法、电化学法和催化加氢法，这些方法对六氯苯的降解都有一定的作用，然而多数方法仍然停留在实验室和理论研究阶段，由于各方面原因和困难，目前还没有能够适合实际应用的方法。

[0006] 中国专利201010281630.2发明了一种磷化镍催化剂用于氯苯类化合物加氢脱氯的方法，采用固定床反应器实现了3个氯以下的氯苯类化合物的连续脱氯反应，催化剂设计后提高了转化率，取得较好的结果，然而Ni催化剂在一定的不安全性，催化剂的稳定性还有待考察。另外，六氯苯的稳定性较高，该催化剂不一定适合六氯苯的催化加氢脱氯反应。

发明内容
[0007] 本发明要解决的技术问题在于针对上述现有技术的不足，提供一种催化降解六氯苯的方法。采用该方法催化降解六氯苯，处理量大，六氯苯完全转化，六氯苯的摩尔转化率为100%，产物苯和氯化氢的选择性均为100%，产物分离纯化操作简单且能耗低，并且产品中不掺杂毒害离子，催化加氢降解六氯苯时不需要添加溶剂，并且副产苯和氯化铵，能够达到污染物的零排放，是一种高效降解六氯苯的绿色工艺。

[0008] 为解决上述技术问题，本发明采用的技术方案是：一种催化降解六氯苯的方法，其特征在于，该方法包括以下步骤：

[0009] 步骤一、将催化剂装填于固定床反应器中，在室温下向装填有催化剂的固定床反
应器内通入氨气至固定床反应器中的空气排净，然后向固定床反应器中通入氨气稀释的还原性气体，以0.1℃/min～2℃/min的升温速率将固定床反应器的温度升至280℃～450℃，保温2h～10h对催化剂进行还原处理；所述催化剂是将Al₂O₃载体、负载于Al₂O₃载体上的活性组分和助剂，催化剂中活性组分的质量百分含量为0.05%～3%，助剂的质量百分含量为0.01%～2.5%；所述活性组分为Pt、Pd、Ag、Ru或Rh，所述助剂为Na、K、Mg、Ba、Sn或Fe；氮气稀释的还原性气体于还原性气体的体积百分含量为3%～10%；氮气稀释的还原性气体的流量与催化剂的质量之比为(3～20):1，其中流量的单位为ml/min，质量的单位为g。

【0010】步骤二，将六氨苯蒸汽和预热至150℃～260℃的氢气混合均匀得到混合气，待步骤一中所述还原处理结束后，停止通入氨气稀释的还原性气体，同时向固定床反应器中通入所述混合气，在反应温度为280℃～450℃的条件下，在催化剂上进行催化加氢脱氨反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体。

【0011】步骤三，将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷却器中进行冷却，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用。

【0012】上述的一种催化降解六氨苯的方法，步骤一中所述催化剂中活性组分的质量百分含量为0.1%～1.5%，助剂的质量百分含量为0.05%～1.5%。

【0013】上述的一种催化降解六氨苯的方法，所述催化剂中活性组分的质量百分含量为0.2%～0.4%，助剂的质量百分含量为0.2%～1.0%。

【0014】上述的一种催化降解六氨苯的方法，步骤一中所述Al₂O₃载体为γ-Al₂O₃，Al₂O₃载体的粒径为0.5mm～3mm，比表面积为150m²/g～280m²/g。

【0015】上述的一种催化降解六氨苯的方法，步骤一中所述还原性气体为氢气。

【0016】上述的一种催化降解六氨苯的方法，步骤二中所述六氨苯蒸汽和氢气的摩尔比为1:(5～100)，所述六氨苯蒸汽的质量空速为0.05g/gcat/hr～0.6g/gcat/hr。

【0017】上述的一种催化降解六氨苯的方法，步骤二中所述六氨苯蒸汽在固定床反应器中的停留时间为1min～10min。

【0018】上述的一种催化降解六氨苯的方法，步骤二中所述反应温度为320℃～400℃。

【0019】上述的一种催化降解六氨苯的方法，步骤三中所述冷凝器的冷凝温度为-30℃～0℃。

【0020】上述的一种催化降解六氨苯的方法，步骤三中所述氨水的体积为六氨苯蒸汽体积的6.5～13倍。

【0021】本发明采用的催化剂的制备方法为：

【0022】步骤一，将活性组分的前驱体和助剂的前驱体溶解于无机酸中并混合均匀，得到溶液A，调节溶液A的pH值为0.1～4.0；所述活性组分的前驱体为活性组分的盐酸盐或活性组分的硝酸盐，助剂的前驱体为助剂的盐酸盐、助剂的硝酸盐或助剂的硫酸盐；所述无机酸为质量浓度为5%～10%的盐酸、质量浓度为5%～10%的硝酸或质量浓度为5%～10%的硫酸。

【0023】步骤二，将Al₂O₃载体置于处理液中，在50℃～98℃下浸泡0.5h～4h；所述处理
液为柠檬酸水溶液、柠檬酸钠水溶液、氯化氢溶液或氢氧化钾水溶液。处理液的
质量浓度为 0.1%～10%。
[0024] 步骤二、将步骤一中经浸泡后的 Al₂O₃ 载体取出并置于步骤一调节 pH 值后的溶
液 A 中，然后在 40℃～80℃的加热条件下搅拌 8h～15h 后烘干，得到样品；
[0025] 步骤三、将步骤二中所述样品置于马弗炉中，在温度为 400℃～600℃的条件下焙
烧 2h～12h，得到降解六氯苯的催化剂。
[0026] 本发明与现有技术相比具有以下优点：
[0027] 1、本发明的方法可以有效地降解六氯苯，通过催化加氢脱氯使六氯苯完全转化为
苯和氯化氢，再用氯气吸收副产物氯化氢，从而副产氯化铵。采用的催化剂单次寿命达 400h
以上，催化剂可再生，再生 30 次后仍然具有较高的催化活性。
[0028] 2、本发明采用固定床反应器，能够连续催化加氢降解六氯苯，反应条件温和且易
于控制。
[0029] 3、采用本发明方法催化降解六氯苯，处理量大，六氯苯完全转化，六氯苯的摩尔转
化率为 100%，产物苯和氯化氢的选择性均为 100%，产物分离纯化操作简单且能耗低，并
且产品中不掺杂放射性。
[0030] 4、采用本发明的方法催化加氢降解六氯苯时不需要添加溶剂，并且副产苯和氯化
铵，能够达到污染物的零排放，是一种高效降解六氯苯的绿色工艺。
[0031] 下面通过实施例，对本发明技术方案做进一步的详细说明。

具体实施方式
[0032] 本发明所采用的催化剂及其制备方法通过以下实施例 1 至实施例 13 进行描述；
[0033] 实施例 1
[0034] 本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pt 和助剂 Na；所
述催化剂中活性组分 Pt 的质量百分含量为 0.1%，助剂 Na 的质量百分含量为 2.5%；所
述 Al₂O₃ 载体为 Y-Al₂O₃，Al₂O₃ 载体的粒径为 3mm，比表面积为 150m²/g。
[0035] 催化剂的制备方法包括以下步骤：
[0036] 步骤一、将含铂 0.1g 的氯化铂和含钠 2.5g 的氯化钠溶解于质量浓度为 5%的盐酸
中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.1；
[0037] 步骤二、将 97.4g Al₂O₃ 载体置于质量浓度为 0.01%的柠檬酸水溶液中，在 50℃下
浸泡 4h；
[0038] 步骤三、将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶
液 A 中，然后在 80℃的加热条件下搅拌 8h 后烘干，得到样品；
[0039] 步骤四、将步骤三中所述样品置于马弗炉中，在温度为 400℃的条件下焙烧 12h，
得到降解六氯苯的催化剂。
[0040] 实施例 2
[0041] 本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Ru 和助剂 Fe；所
述催化剂中活性组分的质量百分含量为 3%，助剂的质量百分含量为 0.01%；所述 Al₂O₃
载体为 Y-Al₂O₃，Al₂O₃ 载体的粒径为 0.5mm，比表面积为 280m²/g。
[0042] 催化剂的制备方法包括以下步骤：
步骤一，将含钯 3g 的氯化钯和含镍 0.01g 的硝酸钯溶解于质量浓度为 10% 的盐酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 2.0；

步骤二，将 96.99g Al₂O₃ 载体置于质量浓度为 10% 的柠檬酸钠水溶液中，在 98℃下浸泡 0.5h；

步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 40℃的加热条件下搅拌 15h 后烘干，得到样品；

步骤四，将步骤三中所述样品置于马弗炉中，在温度为 600℃的条件下焙烧 2h，得到降解六氯苯的催化剂。

实施例 3

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Ag 和助剂 Mg；所述催化剂中活性组分的质量百分含量为 0.3%，助剂的质量百分含量为 0.05%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 1mm，比表面积为 200m²/g。催化剂的制备方法包括以下步骤：

步骤一，将含钯 0.3g 的氯化钯和含镍 0.05g 的碳酸镁溶解于质量浓度为 10% 的硫酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 3.0；

步骤二，将 99.65g Al₂O₃ 载体置于质量浓度为 5% 的氢氧化钠水溶液中，在 90℃下浸泡 1h；

步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 50℃的加热条件下搅拌 12h 后烘干，得到样品；

步骤四，将步骤三中所述样品置于马弗炉中，在温度为 500℃的条件下焙烧 6h，得到降解六氯苯的催化剂。

实施例 4

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pd 和助剂 K；所述催化剂中活性组分的质量百分含量为 0.3%，助剂的质量百分含量为 0.9%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 1mm，比表面积为 240m²/g。催化剂的制备方法包括以下步骤：

步骤一，将含钯 0.3g 的二氯化钯和含钾 0.9g 的氯化钾溶解于质量浓度为 5% 的硝酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.2；

步骤二，将 98.8g Al₂O₃ 载体置于质量浓度为 0.02% 的氢氧化钾水溶液中，在 65℃下浸泡 3h；

步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 65℃的加热条件下搅拌 12h 后烘干，得到样品；

步骤四，将步骤三中所述样品置于马弗炉中，在温度为 650℃的条件下焙烧 4h，得到降解六氯苯的催化剂。

实施例 5

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pd 和助剂 Fe；所述催化剂中活性组分的质量百分含量为 0.5%，助剂的质量百分含量为 0.1%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 200m²/g。催化剂的制备方法包括以下步骤：
步骤一，将含钯 0.5g 的氯化钯和含铁 0.1g 的氯化亚铁溶解于质量浓度为 7% 的盐酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.3；
步骤二，将 99.4g Al₁₂O₃ 载体置于质量浓度为 0.1% 的氨水中，在 80℃下浸泡 1h；
步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 75℃的加热条件下搅拌 10h 后烘干，得到样品；
步骤四，将步骤三中所述样品置于马弗炉中，在温度为 500℃的条件下焙烧 5h，得到降解六氯苯的催化剂。

实施例 6
本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pt 和助剂 Na；所述催化剂中活性组分的质量百分含量为 0.8%，助剂的质量百分含量为 0.05%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 0.8mm，比表面积为 280m²/g。

催化剂的制备方法包括以下步骤：
步骤一，将含钯 0.8g 的氯化钯和含钠 0.05g 的碳酸钠溶解于质量浓度为 5% 的硫酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.5；
步骤二，将 99.15g Al₂O₃ 载体置于质量浓度为 0.15% 的柠檬酸钠水溶液中，在 70℃下浸泡 2h；
步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 70℃的加热条件下搅拌 11h 后烘干，得到样品；
步骤四，将步骤三中所述样品置于马弗炉中，在温度为 450℃的条件下焙烧 6h，得到降解六氯苯的催化剂。

实施例 7
本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pt 和助剂 Sn；所述催化剂中活性组分的质量百分含量为 1.0%，助剂的质量百分含量为 0.1%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 215m²/g。

催化剂的制备方法包括以下步骤：
步骤一，将含钯 1.0g 的氯化亚铁和含锡 0.1g 的氯化锡溶解于质量浓度为 8% 的硫酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 1.0；
步骤二，将 98.9g Al₂O₃ 载体置于质量浓度为 0.02% 的氢氧化钠水溶液中，在 70℃下浸泡 2h；
步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶液 A 中，然后在 70℃的加热条件下搅拌 11h 后烘干，得到样品；
步骤四，将步骤三中所述样品置于马弗炉中，在温度为 600℃的条件下焙烧 7h，得到降解六氯苯的催化剂。

实施例 8
本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pd 和助剂 Ba；所述催化剂中活性组分的质量百分含量为 0.3%，助剂的质量百分含量为 0.2%；所述 Al₂O₃ 载体为 γ-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 190m²/g。

催化剂的制备方法包括以下步骤：
步骤一，将含钯 0.3g 的氯化钯和含钡 0.2g 的碳酸钡溶解于质量浓度为 10%
硝酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.8；

步骤二、将 99.5g Al₂O₃ 载体置于质量浓度为 0.05％的柠檬酸水溶液中，在 70℃下浸泡 2h；

步骤三，将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶
液 A 中，然后在 70℃的加热条件下搅拌 11h 后烘干，得到样品。

步骤四、将步骤三中所述样品置于马弗炉中，在温度为 530℃的条件下烧 8h，得到降解六氯苯的催化剂。

实施例 9

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Rh 和助剂 K；
所述催化剂中活性组分的质量百分含量为 1.5％，助剂的质量百分含量为 1.5％；所述 Al₂O₃
载体为 Y-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 220m²/g。

催化剂的制备方法包括以下步骤：

步骤一、将含铑 1.5g 的三氯化铑和含钾 1.5g 的硝酸钾溶解于质量浓度为 8％的硝
酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.7；

步骤二、将 97g Al₂O₃ 载体置于质量浓度为 0.03％的柠檬酸水溶液中，在 70℃下浸
泡 2h；

步骤三、将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶
液 A 中，然后在 70℃的加热条件下搅拌 11h 后烘干，得到样品。

步骤四、将步骤三中所述样品置于马弗炉中，在温度为 540℃的条件下烧 6h，得到降解六氯苯的催化剂。

实施例 10

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pd 和助剂 Na；
所述催化剂中活性组分的质量百分含量为 0.2％，助剂的质量百分含量为 0.6％；所述 Al₂O₃
载体为 Y-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 220m²/g。

催化剂的制备方法包括以下步骤：

步骤一、将含钯 0.2g 的氯化钯和含钠 0.6g 的硝酸钠溶解于质量浓度为 8％的盐
酸中并混合均匀，得到溶液 A，调节溶液 A 的 pH 值为 0.7；

步骤二、将 99.2g Al₂O₃ 载体置于质量浓度为 0.03％的柠檬酸钠水溶液中，在 70℃下浸
泡 2h；

步骤三、将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶
液 A 中，然后在 70℃的加热条件下搅拌 11h 后烘干，得到样品。

步骤四、将步骤三中所述样品置于马弗炉中，在温度为 540℃的条件下烧 6h，得到降解六氯苯的催化剂。

实施例 11

本实施例的催化剂包括 Al₂O₃ 载体，负载于 Al₂O₃ 载体上的活性组分 Pt 和助剂 K；
所述催化剂中活性组分的质量百分含量为 0.4％，助剂的质量百分含量为 1.0％；所述 Al₂O₃
载体为 Y-Al₂O₃，Al₂O₃ 载体的粒径为 2mm，比表面积为 220m²/g。

催化剂的制备方法包括以下步骤：

步骤一、将含铂 0.4g 的氯化亚铂和含钾 1.0g 的硝酸钾溶解于质量浓度为 8％的硝
酸中并混合均匀, 得到溶液 A, 调节溶液 A 的 pH 值为 0.7；

【0107】 步骤二, 将 98.6g Al₂O₃ 载体置于质量浓度为 0.03% 的柠檬酸水溶液中, 在 70℃ 下浸 泡 2h；

【0108】 步骤三, 将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶 液 A 中, 然后在 70℃ 的加热条件下搅拌 11h 后烘干, 得到样品；

【0109】 步骤四, 将步骤三中所述样品置于马弗炉中, 在温度为 540℃ 的条件下焙烧 6h, 得 到降解六氯苯的催化剂。

【0110】 实施例 12

【0111】 本实施例的催化剂包括 Al₂O₃ 载体, 负载于 Al₂O₃ 载体上的活性组分 Pd 和助剂 K; 所 述催化剂中活性组分的质量百分含量为 0.05%, 助剂的质量百分含量为 0.1%; 所述 Al₂O₃ 载体为 Y -Al₂O₃, Al₂O₃ 载体的粒径为 2nm, 比表面积为 220m²/g。

【0112】 催化剂的制备方法包括以下步骤:

【0113】 步骤一, 将含钯 0.05g 的二氯化钯和含铜 0.1g 的硝酸铜溶解于质量浓度为 5% 的 硝酸中并混合均匀, 得到溶液 A, 调节溶液 A 的 pH 值为 4.0；

【0114】 步骤二, 将 99.85g Al₂O₃ 载体置于质量浓度为 10% 的柠檬酸钠水溶液中, 在 70℃ 下浸泡 2h；

【0115】 步骤三, 将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶 液 A 中, 然后在 70℃ 的加热条件下搅拌 11h 后烘干, 得到样品；

【0116】 步骤四, 将步骤三中所述样品置于马弗炉中, 在温度为 540℃ 的条件下焙烧 6h, 得 到降解六氯苯的催化剂。

【0117】 实施例 13

【0118】 本实施例的催化剂包括 Al₂O₃ 载体, 负载于 Al₂O₃ 载体上的活性组分 Pt 和助剂 Sn； 所述催化剂中活性组分的质量百分含量为 0.1%, 助剂的质量百分含量为 0.2%; 所述 Al₂O₃ 载体为 Y -Al₂O₃, Al₂O₃ 载体的粒径为 2nm, 比表面积为 215m²/g。

【0119】 催化剂的制备方法包括以下步骤:

【0120】 步骤一, 将含钯 0.1g 的氯化亚钯和含锡 0.2g 的氯化锡溶解于质量浓度为 8% 的硫 酸中并混合均匀, 得到溶液 A, 调节溶液 A 的 pH 值为 1.0；

【0121】 步骤二, 将 99.7g Al₂O₃ 载体置于质量浓度为 10% 的氢氧化钠水溶液中, 在 70℃ 下多 泡 2h；

【0122】 步骤三, 将步骤二中经浸泡后的 Al₂O₃ 载体取出并置于步骤一中调节 pH 值后的溶 液 A 中, 然后在 70℃ 的加热条件下搅拌 11h 后烘干, 得到样品；

【0123】 步骤四, 将步骤三中所述样品置于马弗炉中, 在温度为 600℃ 的条件下焙烧 7h, 得 到降解六氯苯的催化剂。

【0124】 本发明的催化降解六氯苯的方法通过以下实施例 14 至实施例 20 进行描述；

【0125】 实施例 14

【0126】 本实施例采用的催化剂为实施例 1,2 或 3 制备的催化剂, 催化降解方法如下；

【0127】 步骤一, 将 6g 催化剂装填于高径比为 4:1 的固定床反应器中, 在室温下向装填有 催化剂的固定床反应器中通入氢气至固定床反应器中的空气排净, 然后向固定床反应器中 通入氢气稀释的还原性气体 (氢气), 以 1℃/min 的升温速率将固定床反应器的温度升至
360℃，保温 5h 对催化剂进行还原处理；氨气稀释的还原性气体中还原性气体的体积百分含量为 5%；所述氨气稀释的还原性气体的流量为 50mL/min；

[0128] 步骤二，将六氯苯蒸汽和预热至 200℃的氨气混合均匀得到混合气，待步骤一中所述还原处理结束后停止通入氨气稀释的还原性气体，同时向固定床反应器中通入所述混合气，在反应温度为 360℃的条件下，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氨气的混合气体；所述六氯苯蒸汽和氨气的摩尔比为 1:10；所述六氯苯蒸汽的质量空速为 0.3g/g.cat/hr，所述六氯苯蒸汽在固定床反应器中的停留时间为 5min；

[0129] 步骤三，将步骤二中所述苯蒸汽、氯化氢气体和未反应的氨气的混合气体送入冷凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氨气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氨气经压缩机压缩后返回步骤二中循环使用；所述冷凝器的冷凝温度为 -20℃，所述氨水的体积为六氯苯蒸汽体积的 10 倍。

[0130] 表 1 实施例 14 催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化铵时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>100%</td>
<td>100%</td>
<td>0.49</td>
<td>2.03</td>
</tr>
<tr>
<td>实施例 2</td>
<td>100%</td>
<td>100%</td>
<td>0.48</td>
<td>1.99</td>
</tr>
<tr>
<td>实施例 3</td>
<td>100%</td>
<td>100%</td>
<td>0.50</td>
<td>1.85</td>
</tr>
</tbody>
</table>

[0132] 将本实施例采用的催化剂再生后反复使用，再生 30 次后催化剂降解结果见表 2。催化剂的再生方法为：将催化剂加氢脱氯反应结束后将固定床反应器降至室温，然后向固定床反应器中通入用氮气，待固定床反应器中充满氮气通入用氨气稀释的空气或用氨气稀释的氧气，稀释浓度（即空气或氧气所占的体积百分比）为 1%～10%，用氨气稀释的空气或用氨气稀释的氧气的流量（mL/min）与催化剂装填量（g）的比值为 2～10:1，同时以 0.5℃/min～5℃/min 的升温速率将固定床反应器升温至 400℃～550℃，保温 3h～8h 后冷却，完成催化剂的再生。

[0133] 表 2 催化剂再生 30 次后的催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

[0135] 实施例 15

[0136] 本实施例采用的催化剂为实施例 4、5 或 6 制备的催化剂，催化降解方法如下：

[0137] 步骤一，将 7g 催化剂装填于高径比为 5:1 的固定床反应器中，室温下向装填有
催化剂的固定床反应器中通入氨气至固定床反应器中的空气排净，然后向固定床反应器中
通入氨气稀释的还原性气体（氢气），以 0.5°C/min 的升温速率将固定床反应器的温度升
至 320°C，保温 8h 对催化剂进行还原处理：氨气稀释的还原性气体中还原性气体的体积百
分含量为 5%；所述氨气稀释的还原性气体的流量为 70ml/min。

步骤二、将步骤一中所述还原处理结束后停止通入氨气稀释的还原性气体，同时向固定床反应器中通入所述混合
气，在反应温度为 320°C 的条件下，在催化剂上进行催化加氢脱氢反应，得到苯蒸汽、氯化氢
气体和未反应的氢气的混合气体；所述六氯苯蒸汽和氢气的摩尔比为 1:50；所述六氯苯蒸汽
的体积空速为 0.2g/gcat/hr；所述六氯苯蒸汽在固定床反应器中的停留时间为 7min；

步骤三、将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷
凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和
未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩
后返回步骤二中循环使用；所述冷凝器的冷凝温度为 -30°C；所述氨水的体积为六氯苯蒸汽
体积的 13 倍。

表 3 实施例 15 催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化氨时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 4</td>
<td>100%</td>
<td>100%</td>
<td>0.38</td>
<td>1.58</td>
</tr>
<tr>
<td>实施例 5</td>
<td>100%</td>
<td>100%</td>
<td>0.39</td>
<td>1.65</td>
</tr>
<tr>
<td>实施例 6</td>
<td>100%</td>
<td>100%</td>
<td>0.36</td>
<td>1.49</td>
</tr>
</tbody>
</table>

将本实施例采用的催化剂再生后反复使用，再生 30 次后催化降解结果见表 4。催
化剂按照实施例 14 中所述再生方法进行再生。

表 4 催化剂再生 30 次后的催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

实施例 16

本实施例采用的催化剂为实施例 7、8 或 9 制备的催化剂，催化降解方法如下：

步骤一、将 8g 催化剂装填于直径为 5:1 的固定床反应器中，在室温下向装填有
催化剂的固定床反应器中通入氨气至固定床反应器中的空气排净，然后向固定床反应器中
通入氨气稀释的还原性气体（氢气），以 0.5°C/min 的升温速率将固定床反应器的温度升
至 380°C，保温 8h 对催化剂进行还原处理；氨气稀释的还原性气体中还原性气体的体积百
分含量为10% ; 所述氨气稀释的还原性气体的流量为160ml/min ;

步骤二、将六氯苯蒸汽和预热至220℃的氢气混合均匀得到混合气, 待步骤一中所述还原处理结束后停止通入氨气稀释的还原性气体, 同时向固定床反应器中通入所述混合气, 在反应温度为380℃的条件下, 在催化剂上进行催化加氢脱氨反应, 得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体; 所述六氯苯蒸汽和氢气的摩尔比为1:20 ; 所述六氯苯蒸汽的质量空速为0.4g/gcat/hr ; 所述六氯苯蒸汽在固定床反应器中的停留时间为2min ;

步骤三、将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝, 使混合气体中的苯蒸汽转化为液态, 然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中, 用氨水吸收氯化氢气体, 最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用 ; 所述冷凝器的冷凝温度为0℃ ; 所述氨水的体积为六氯苯蒸汽体积的6.5倍。

表5 实施例16 催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化氢时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例7</td>
<td>100%</td>
<td>100%</td>
<td>0.88</td>
<td>3.40</td>
</tr>
<tr>
<td>实施例8</td>
<td>100%</td>
<td>100%</td>
<td>0.84</td>
<td>3.50</td>
</tr>
<tr>
<td>实施例9</td>
<td>100%</td>
<td>100%</td>
<td>0.90</td>
<td>3.58</td>
</tr>
</tbody>
</table>

表6 催化剂再生 30次后的催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例7</th>
<th>实施例8</th>
<th>实施例9</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

实施例17

本实施例采用的催化剂为实施例10,11,12制备的催化剂, 催化降解方法如下 ;

步骤一、将6g 催化剂装填于高径比为3:1 的固定床反应器中, 在室温下向装填有催化剂的固定床反应器中通入氨气至固定床反应器中的空气排出, 然后向固定床反应器中通入氨气稀释的还原性气体 (氢气) , 以 2℃/min 的升温速率将固定床反应器的温度升至400℃, 保温2h 对催化剂进行还原处理; 氨气稀释的还原性气体中还原性气体的体积百分含量为8% ; 所述氨气稀释的还原性气体的流量为60ml/min ;

步骤二、将六氯苯蒸汽和预热至200℃的氢气混合均匀得到混合气, 待步骤一中所述还原处理结束后停止通入氨气稀释的还原性气体, 同时向固定床反应器中通入所述混合
气，在反应温度为400℃的条件下，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体；所述六氯苯蒸汽和氢气的摩尔比为1:100；所述六氯苯蒸汽的质量空速为0.4g/gcat/hr；所述六氯苯蒸汽在固定床反应器中的停留时间为1min；
[0159] 步骤三、将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用；所述冷凝器的冷却温度为0℃，所述氨水的体积为六氯苯蒸汽体积的7倍。
[0160] 表7 实施例17 催化降解结果
[0161]
<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化氢时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例10</td>
<td>100%</td>
<td>100%</td>
<td>0.64</td>
<td>2.70</td>
</tr>
<tr>
<td>实施例11</td>
<td>100%</td>
<td>100%</td>
<td>0.67</td>
<td>2.61</td>
</tr>
<tr>
<td>实施例12</td>
<td>100%</td>
<td>100%</td>
<td>0.71</td>
<td>2.80</td>
</tr>
</tbody>
</table>
[0162] 将本实施例采用的催化剂再生后反复使用，再生30次后催化降解结果见表8。催化剂按照实施例14中所述再生方法进行再生。
[0163] 表8 催化剂再生30次后的催化降解结果
[0164]
<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例10</th>
<th>实施例11</th>
<th>实施例12</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
[0165] 实施例18
[0166] 本实施例采用的催化剂为实施例2、5或9制备的催化剂，催化降解方法如下：
[0167] 步骤一、将7g催化剂装填于高径比为4:1的固定床反应器中，在室温下向装填有催化剂的固定床反应器中通入氨气至固定床反应器中的空气排净，然后向固定床反应器中通入氨气稀释的还原性气体（氢气），以2℃/min的升温速率将固定床反应器的温度升至330℃，保温10h对催化剂进行还原处理；氨气稀释的还原性气体中还原性气体的体积百分含量为3%；所述氨气稀释的还原性气体的流量为21mL/min；
[0168] 步骤二、将六氯苯蒸汽和预热至180℃的氢气混合均匀得到混合气，待步骤一中所述还原处理结束后停止通入氢气稀释的还原性气体，同时向固定床反应器中通入所述混合气，在反应温度为330℃的条件下，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体；所述六氯苯蒸汽和氢气的摩尔比为1:80；所述六氯苯蒸汽的质量空速为0.3g/gcat/hr；所述六氯苯蒸汽在固定床反应器中的停留时间为3min；
步骤三一将步骤二所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用；所述冷凝器的冷凝温度为-10℃；所述氨水的体积为六氯苯蒸汽体积的13倍。

表9 实施例18催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化氢时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例2</td>
<td>100%</td>
<td>100%</td>
<td>0.56</td>
<td>2.35</td>
</tr>
<tr>
<td>实施例5</td>
<td>100%</td>
<td>100%</td>
<td>0.58</td>
<td>2.30</td>
</tr>
<tr>
<td>实施例9</td>
<td>100%</td>
<td>100%</td>
<td>0.61</td>
<td>2.48</td>
</tr>
</tbody>
</table>

将本实施例采用的催化剂再生后反复使用，再生30次后催化降解结果见表10。催化剂按照实施例14中所述再生方法进行再生。

表10 催化剂再生30次后的催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例2</th>
<th>实施例5</th>
<th>实施例9</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

本实施例采用的催化剂为实施例1、7或13制备的催化剂，催化降解方法如下：

步骤一，将9g催化剂装于高径比为3：5.1的固定床反应器中，在室温下向装填有催化剂的固定床反应器中通入氢气至固定床反应器中的空气排净，然后向固定床反应器中通入氯气稀释的还原性气体（氢气），以2℃/min的升温速率将固定床反应器的温度升至450℃，保温4h对催化剂进行还原处理；氯气稀释的还原性气体中还原性气体的体积百分含量为8%；所述氯气稀释的还原性气体的流量为100mL/min；

步骤二，将六氯苯蒸汽和预热至260℃的氢气混合均匀得到混合气，待步骤一中所述还原处理结束后停止通入氯气稀释的还原性气体，同时向固定床反应器中通入所述混合气，在反应温度为450℃的条件下，在催化剂上进行催化加氢脱氯反应，得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体；所述六氯苯蒸汽和氢气的摩尔比为1：25；所述六氯苯蒸汽的质量空速为0.6g/gcat/hr；所述六氯苯蒸汽在固定床反应器中的停留时间为5min；

步骤三，将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝，使混合气体中的苯蒸汽转化为液态，然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中，用氨水吸收氯化氢气体，最后将未反应的氢气经压缩机压缩
后返回步骤二中循环使用;所述冷凝器的冷凝温度为 -10°C;所述氨水的体积为六氯苯蒸汽体积的 10 倍。

表 11 实施例 19 催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率 (g/h)</th>
<th>氯化氢时空收率 (g/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>100%</td>
<td>100%</td>
<td>1.40</td>
<td>6.01</td>
</tr>
<tr>
<td>实施例 7</td>
<td>100%</td>
<td>100%</td>
<td>1.51</td>
<td>5.85</td>
</tr>
<tr>
<td>实施例 13</td>
<td>100%</td>
<td>100%</td>
<td>1.35</td>
<td>6.12</td>
</tr>
</tbody>
</table>

将本实施例采用的催化剂再生后反复使用, 再生 30 次后催化降解结果见表 12。催化剂按照实施例 14 中所述再生方法进行再生。

表 12 催化剂再生 30 次后的催化降解结果

<table>
<thead>
<tr>
<th>催化剂</th>
<th>实施例 1</th>
<th>实施例 7</th>
<th>实施例 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

实施例 20

本实施例采用的催化剂为实施例 3、6 或 10 提备的催化剂, 催化降解方法如下:

步骤一, 将 5g 催化剂装填于高径比为 5:1 的固定床反应器中, 在室温下向装填有催化剂的固定床反应器中通入氢气至固定床反应器中的空气排净, 然后向固定床反应器中通入氯气稀释的还原性气体 (氢气), 以 0.1°C/min 的升温速率将固定床反应器的温度升至 280°C, 保温 5h 对催化剂进行还原处理; 氮气稀释的还原性气体中还原性气体的体积百分含量为 10%; 所述氮气稀释的还原性气体的流量为 50mL/min;

步骤二, 将六氯苯蒸汽和预热至 150°C 的氢气混合均匀得到混合气, 待步骤一中所述还原处理结束后停止通入氮气稀释的还原性气体, 同时向固定床反应器中通入所述混合气, 在反应温度为 280°C 的条件下, 在催化剂上进行催化加氢脱氯反应, 得到苯蒸汽、氯化氢气体和未反应的氢气的混合气体; 所述六氯苯蒸汽和氢气的摩尔比为 1:5; 所述六氯苯蒸汽的质量空速为 0.05g/gcat/hr; 所述六氯苯蒸汽在固定床反应器中的停留时间为 10min;

步骤三, 将步骤二中所述苯蒸汽、氯化氢气体和未反应的氢气的混合气体送入冷凝器中进行冷凝, 使混合气体中的苯蒸汽转化为液态, 然后将混合气体中的氯化氢气体和未反应的氢气送入吸收塔中, 用氨水吸收氯化氢气体, 最后将未反应的氢气经压缩机压缩后返回步骤二中循环使用; 所述冷凝器的冷凝温度为 -20°C; 所述氨水的体积为六氯苯蒸汽体积的 8 倍。

表 13 实施例 20 催化降解结果
<table>
<thead>
<tr>
<th></th>
<th>催化剂</th>
<th>六氯苯转化率</th>
<th>苯和氯化氢选择性</th>
<th>苯时空收率</th>
<th>氯化铵时空收率</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 3</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td>0.06</td>
<td>0.28</td>
</tr>
<tr>
<td>实施例 6</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td>0.07</td>
<td>0.31</td>
</tr>
<tr>
<td>实施例 10</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td>0.05</td>
<td>0.25</td>
</tr>
</tbody>
</table>

将本实施例采用的催化剂再生后反复使用，再生 30 次后催化降解结果见表 14。催化剂按照实施例 14 中所述再生方法进行再生。

表 14 催化剂再生 30 次后的催化降解结果

<table>
<thead>
<tr>
<th></th>
<th>催化剂</th>
<th>实施例 3</th>
<th>实施例 6</th>
<th>实施例 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>六氯苯转化率</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>苯和氯化氢选择性</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

以上所述，仅是本发明的较佳实施例，并非对本发明做任何限制，凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化，均仍属于本发明技术方案的保护范围内。