0O 03/083663 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

9 October 2003 (09.10.2003) PCT WO 03/083663 A2

(51) International Patent Classification’: GO6F 12/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US03/07710 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
. - GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(22) International Filing Date: 13 March 2003 (13.03.2003) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(25) Filing Language: English MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,

(26) Publication Language: English VC, VN, YU, ZA, 7ZM, ZW.
(30) Priority Data: 84) Desi s onal): ARIPO GH, GM
10/104.815 22 March 2002 (22.03.2002) Us (84) Designated States (regional): patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(71) Applicant: INTEL CORPORATION [US/US]; (a Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(72)

(74

Delaware Corporation), 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

Inventors; HAMMARLUND, Per; 2601 NE 2nd Drive,
Hillsboro, OR 97124 (US). VENKATRAMAN, K.S.;
7219 SE Langwood Street, Hillsboro, OR 97123 (US).
BAKTHA, Aravindh; 14362 NW Falconridge Lane,
Portland, OR 97229 (US). UPTON, Michael; 1410 NW
24th Avenue, Portland, OR 97210 (US).

Agent: MALLIE, Michael, J.; Blakely, Sokoloff Taylor
& Zafman, 12400 Wilshire Boulevard, 7th Floor, Los An-
geles, CA 90025 (US).

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: USE OF A CONTEXT IDENTIFIER IN CACHE MEMORY

(57) Abstract: A context identifier is used in a cache memory apparatus. The context identifier may be written into the tag of a
cache line or may be written as an addition to the tag of a cache line, during a cache write operation. During a cache read operation,
the context identifier of an issued instruction may be compared with the context identifier in the cache line’s tag. The cache line’s
data block may be transferred if the context identifiers and the tags match.

10

15

20

WO 03/083663 PCT/US03/07710

USE OF A CONTEXT IDENTIFIER IN CACHE MEMORY

FIELD OF THE INVENTION

This invention relates to computer technology. More particularly, this invention

relates to improving the performance of cache memory in a computing device.

BACKGROUND OF THE INVENTION

The use of one or more cache memory systems within a computer’s memory
hierarchy is a well-known technique to increase the performance of a computer (see e.g.,
Handy, Jim; The Cache Memory Book; Academic Press, 1998). FIG. 1 illustrates a typical
cache memory array 100. Cache memory array 100 includes cache lines 110. Each cache
line includes a tag 120 and a data block 130. Example cache line 140 includes tag 150 and
data block 160. Reference numeral 170 illustrates that example tag 150 is a portion of
main memory address 170. Main memory address 170 is the main memory address
corresponding to data block 160.

Processors transfer instructions and operands back and forth between the execution
core of the processor and the computer’s memory hierarchy during memory transfers.
Examples of memory transfers are loading instructions/operands from the memory
hierarchy to the processor and storing instructions/operands from the processor to the
memory hierarchy. During a memory transfer, the processor generates a main memory
address. A portion of the main memory address is compared with the entries in tag 120
during a cache look-up to determine whether cache array 100 contains an entry
corresponding to the memory transfer. As demonstrated by the relationship between tag
150 and main memory address 170, the process of a cache look-up is accelerated by

requiring the processor to compare only a portion of each main memory address with each

1

10

15

20

WO 03/083663 PCT/US03/07710

entry in the tag. Typically, cache memory uses a portion of each linear address generated
by the processor to index data stored in cache array 100.

A thread is a part of a computer program that can execute independently of other
parts of the computer program. The performance of a processor can be enhanced if
multiple threads are executed concurrently on the processor. Concurrent execution of
multiple threads is possible if the dependencies among the various instructions of the
multiple threads are detected and properly managed.

FIG. 2 illustrates how many Intel® processors use a virtual memory environment
to allow a large linear address space to be supported by a small amount of physical
memory (e.g., random access memory). During a memory transfer, a processor generates
a linear address 210. Linear address 210 comprises a directory field 220, a table field 225,
and an offset field 230. The base of the page directory 235 is contained in control register
CR3 240. The directory entry 220 of linear address 210 provides an offset to the value
contained in control register CR3 240. The page directory contains a page table base
pointer 245. Table field 225 provides an offset that is combined with page table base
pointer 245 to identify the base of the page that contains the physical address 255. Offset
field 230 is combined with the page table entry to identify the physical address 255.

FIG. 3 illustrates a shortcoming associated with performing cache look-ups with
only a partial main memory address. A processor (not shown) generates linear addresses
304 and 306 in response to load instructions LDO and LD1. 305 and 307 illustrate the
portion of each address that is used to perform a cache look-up. While 305 and 307
appear to be identical, they are only a portion of 304 and 306 respectively. 304 and 306
map to two different physical addresses because each address has a different entry in their
respective directory fields (320 and 325) and offset fields (330 and 335). An additional

2

10

15

20

WO 03/083663 PCT/US03/07710

complication is introduced when, as in FIG. 3, a processor supports concurrent execution
of multiple threads. Thread 0 and Thread 1 can have different values for the bases of their
respective page directories (340 and 345). Thus, even if 304 and 306 were the same, they

would map to two different physical addresses.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not by way of limitation, in the
figures of the accompanying drawings in which like reference numerals refer to similar
elements.

Figure 1 is a diagram of a prior art cache memory array.

Figure 2 is a conceptual illustration of mapping a linear address to a physical
address.

Figure 3 is a conceptual illustration of two similar tags that map to two different
physical addresses.

Figure 4A is a diagram of one embodiment of a cache memory array using a
context identifier.

Figure 4B is a conceptual illustration of one embodiment of a context identifier.

Figure 5 is a simplified block diagram of one embodiment of a context identifier
generator and related control circuitry.

Figure 6 is a block diagram of one embodiment of a cache memory system.

Figure 7 is a block diagram of one embodiment of a cache memory system.

10

15

20

WO 03/083663 PCT/US03/07710

DETAILED DESCRIPTION

Use of a context identifier in cache memory is described herein. In the following
description, numerous specific details are provided in order to provide a thorough
understanding of embodiments of the invention. One skilled in the relevant art will
recognize, however, that the invention can be practiced without one or more of the specific
details, or with other methods, components, materials, etc. In other instances, well-known
structures, materials, or operations are not shown or described in detail to avoid obscuring
aspects of the invention.

Reference throughout this specification to “one embodiment” or “an embodiment”
means that a particular feature, structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the present invention. Thus, the
appearances of the phrases “in one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

Cache memory systems index cache lines with a portion of a linear address called a
tag. A processor generates the linear address during a memory transfer operation. A
portion of the linear address is compared with the tags during a cache look-up. Many
Intel® processors provide a mechanism to ensure that an apparent match between a partial
address and a tag is a true match. This mechanism is called the hit/miss determinator. The
hit/miss determinator operates in parallel with the cache look-up process of cache
memory. The hit/miss determinator converts a linear address associated with an issued
instruction to the corresponding physical address and compares that physical address with

4

10

15

20

WO 03/083663 PCT/US03/07710

the full address associated with the tag that matches the partial linear address. The
hit/miss determinator is much slower than cache memory because it must translate linear
addresses into physical addresses and because it performs comparisons of complete
addresses. If the hit/miss determinator detects that cache memory has produced a false
match, it corrects the mistakes made by cache memory. The process of detecting and
responding to errors introduced by a false match in cache memory can degrade processor
performance.

FIG. 4A illustrates one embodiment of a cache memory array incorporating a
context identifier. Cache memory array 400 includes a number of cache lines 410. Each
cache line 410 includes context identifier 405, tag 420, and data block 430. Thus, cache
line 440A includes context identifier 415A and tag 450A. Similarly, cache line 440B
includes context identifier 415B and tag 450B. Two different threads generated context
identifiers 415A and 415B.

Linear addresses 470A and 470B correspond to tags 450A and 450B. In figures
4A and 4B, linear addresses contain context identifiers to illustrate how context identifiers
can be used to distinguish between similar linear addresses. Context identifiers are not
part of a linear address, however, and are generated separately from the linear addresses.

Cache memory systems implemented according to the prior art conduct cache
look-ups by comparing a partial linear address generated by a processor (not shown) with
each tag 420 in cache array 400. If the processor generated a partial linear address of 123,
then that address would match both tag 450A and tag 450B. As stated above, a hit/miss
determinator ultimately determines which cache line, if either, matches the main memory

address generated by the processor. Prior art systems incur a performance penalty when

10

15

20

WO 03/083663 PCT/US03/07710

the hit/miss determinator manages and corrects false matches between a partial linear
address and a tag 420.

FIG. 4B illustrates the use of context identifiers to reduce the frequency of a false
match between a partial linear address generated by the processor and a tag 420. Linear
addresses 470A and 470B are associated with cache lines 440A and 440B of FIG. 4A.
Address 475 is generated by a processor in response to an issued instruction. Address 475
includes context identifier 480 and partial linear address 485. A prior art cache might
have identified a false match between 475 and 470B because partial linear address 485
matches tag 450B. In one embodiment, context identifier 480 is compared with context
identifier 415B. Also, in one embodiment partial linear address 485 is compared with tag
450B. Thus, cache array 400 will not find a false match between 475 and 470B because
context identifier 480 does not match context identifier 415B.

FIG. 5 illustrates one embodiment of a portion of a page miss handler (PMH). In
one embodiment, PMH 500 generates and controls the assignment of context identifiers.
PMH 500 includes context identifier generator 510, comparator 520, context identifier
multiplexer 530, and inverter 540. In one embodiment, context identifier generator 510
generates a one bit binary number corresponding to a currently executing thread. In
alternate embodiments of the invention, context identifier generator 510 generates a binary
number with more than one bit. Comparator 520 compares the addresses of the bases of
the page directories used by two threads that are executing on a processor. In a different
embodiment, the context identifier comprises two or more bits.

According to one embodiment, PMH 500 determines whether or not the same
context identifier is assigned to the instructions of two different threads. For the

embodiment shown in FIG. 5, PMH 500 assigns a first context identifier to a first thread

10

15

20

WO 03/083663 PCT/US03/07710

that executes on the processor. For example, if Thread 0 is the first thread to execute on
the processor, the processor may assign 0 as Thread 0’s context identifier. The context
identifier is not required to match the thread number. Thus, Thread 0 may have a context
identifier of either 1 or 0. In alternate embodiments of the invention, a processor executes
more than two threads of instructions and context identifiers of more than one bit are used.

If a second thread begins to execute on the processor (e.g., Thread 1), PMH 500
determines whether to assign the instructions of the second thread a different context
identifier than was assigned to the instructions of Thread 0. It is possible that Thread 0
and Thread 1 are using the same pages in main memory. If so, then it is desirable to
assign the same context identifier to the instructions of the two threads because a false
match between a tag and a linear address is less likely when the linear address is known to
map to the same page as the tag. Comparator 520 determines whether Thread 0 and
Thread 1 are using the same pages in main memory by comparing the bases of the page
directories used by the two threads.

If Thread 0 and Thread 1 are using the same address as the base for their respective
page directories, multiplexer 530 will select the same context identifier for Thread 1 as it
selected for Thread 0. Conversely, if comparator 520 indicates that Thread 0 and Thread 1
are not using the same address for the bases of their page directories, multiplexer 530
selects the output of inverter 540 as the context identifier for Thread 1. Determining
whether two threads share the same context identifier can be implemented in a different
manner. For example, in an embodiment of the invention, the operating system
determines whether two threads share the same context identifier and explicitly tells the
processor the correct context identifier to associate with a thread. In yet another

embodiment of the invention, a predictor that studies the memory access patterns of the

10

15

20

WO 03/083663 PCT/US03/07710

threads predicts the context identifier. According to one embodiment, a user may instruct
PHM 500 to always select the same value for the instructions of two different threads or to
always select a different context identifier value for the instructions of two different
threads. Also, some embodiments make use of additional criteria besides the address of
the base directory, to determine whether two threads share the same context identifier.

In alternate embodiment of the invention, more than two threads are present in the
processor. For an embodiment where n threads are present in the processor, the context
identifiers are extended to an encoding scheme that allows for n different context
identifiers to be specified. A person of ordinary skill in the art will see that when an n bit
context identifier is used, the n bits are placed in the cache in the same way that a single
bit is placed in the cache. Also, a person of ordinary skill in the art will see that
comparing n bit context identifiers to each other can be done in nearly the same way as
comparing two single bit context identifiers.

An embodiment of the invention with multiple threads uses a pool of unused
context identifiers. When a thread changes its page table base (CR3), it compares the new
value to the value of the page table base used by other active threads or any valid page
table base of a context identifier in the pool. If there is a match, it takes the value of the
context identifier of the thread that produced the match. If there is not a match with
another active thread, it takes an unused context identifier from the pool. Context
identifiers are returned to the unused pool when either a thread changes its page base
value, or the last line of cache with a given context identifier is deallocated. The latter
arrangement allows a thread to hit on data that a previous thread brought in. A person of
ordinary skill in the art will see that many schemes for predicting the value of a context

identifier for a thread can be used.

10

15

20

WO 03/083663 PCT/US03/07710

FIG. 6 illustrates a read from a cache memory system having a context identifier.
Cache array 610 includes cache lines 605. Each cache line 605 includes a context
identifier 610A, a tag 610B, and a data block 610C. Cache array 610 is coupled to cache
controller 620. Cache controller 620 controls access to the data contained in cache array
610.

Cache controller 620 is coupled to hit/miss determinator 670 and comparators 675
and 680. The operation of hit/miss determinator 670 and comparators 675 and 680 is
discussed below. In one embodiment, comparator 675 is coupled to AGU 630 as well as
AND gate 685. AGU 630 generates linear addresses for issued instructions that require a
memory transfer (e.g., LOAD and STORE instructions). In one embodiment, comparator
680 is coupled to AND gate 685 and PMH 640 through multiplexer 650. PMH 640
contains control logic used to determine which context identifier is assigned to which
issued instruction.

A read cycle is typically initiated by an issued LOAD instruction (LD) 660. LD
660 is sent to PMH 640 and AGU 630. PMH 640 determines, among other things, which
thread is the source of LD 660. PMH 640 assigns a context identifier to LD 660 based, in
part, on which thread is the source of LD 660. PMH 640 issues a context identifier
associated with LD 660 to comparator 680 through multiplexer 650. Similarly, AGU 630
issues a partial linear address to comparator 675.

Comparators 675 and 680 use the partial linear address and LD 660’s context
identifier to determine whether cache array 610 contains the information that LD 660
requires. If cache array 610 contains the required information a cache hit results. If cache

array 610 does not contain the required information a cache miss results.

10

15

20

WO 03/083663 PCT/US03/07710

A cache hit requires that a particular cache line contain a context identifier that
matches LD 660’s context identifier and a tag that matches the partial linear address
corresponding to LD 660. Comparators 675 and 680 compare the tag field and the context
identifier field of each cache line with LD 660’s context identifier and partial linear
address. According to one embodiment, there are as many comparators as there are cache
lines so that comparisons can be done in a single parallel operation. If a single cache line
contains a context identifier and a tag that matches LD 660’s context identifier and partial
linear address, then AND gate 685 signals a cache hit. The possibility exists, however,
that the cache hit is based on a false match because comparator 675 compares only a
portion of LD 660’s address with each tag in cache array 610A.

Hit/miss determinator 670 detects whether a cache hit is based on a false match.
Hit/miss determinator receives the full linear address of the location in main memory from
which LD 660 requires an instruction/operand. According to one embodiment, hit/miss
determinator 670 translates the linear address conveyed to it by the AGU to a physical
address. Hit/miss determinator 670 determines the physical address corresponding to the
tag matching LD 660’s partial linear address. Hit/miss determinator 670 compares both
complete physical addresses to determine whether the cache hit is based on a false match.

FIG. 7 illustrates a write to cache memory using a context identifier. Cache array
710 includes a number of cache lines 705. Each cache line 705 includes a context
identifier 710A, a tag 710B, and a data block 710C. Cache array 710 is coupled to cache
controller 720. Cache controller 720 performs a number of functions including
determining into which cache line a block of data will be written. Cache controller 720 is

coupled to AGU 730 and PMH 740 through mulitplexer750.

10

10

15

20

WO 03/083663 PCT/US03/07710

Issued instruction 760 is sent from the processor (not shown) to PMH 740 and
AGU 730. In one embodiment, AGU 730 generates a linear address when issued
instruction 760 requires a memory transfer. AGU 730 is generally part of the processor’s
execution core. In other embodiments AGU 730 may generate a physical address. In one
embodiment, PMH 740 generates at least two context identifiers and the control signals
that control multiplexer 750. In other embodiments, PMH 740 may generate any number
of context identifiers.

A write cycle is typically initiated by an issued store instruction (ST) (e.g., ST
760). ST 760 is sent to PMH 740 and AGU 730. PMH 740 determines which thread is
the source of ST 760. PMH 740 further determines which context identifier to assign to
ST 760. According to one embodiment, PMH 740 has three modes of operation: OFF,
NON-SHARED, and ADAPTIVE. If PMH 740 is operating in the OFF mode, then PHM
740 may write the same value for each context identifier. A cache line is shared by the
instructions of two or more threads if the threads have the same context identifier as the
context identifier stored in the cache line.

When operating in the NON-SHARED mode, PMH 740 may assign a context
identifier that is particular to the thread that contains the issued instruction. In one
embodiment, the ADAPTIVE mode allows PMH 740 to dynamically determine whether
to assign the same or different context identifiers for instructions originating from
different threads. In one embodiment, if the threads share the same address for the base of
their page directories, then PMH 740 dynamically assigns the same context identifier for
the instructions contained in the threads. If not, in an embodiment, then PMH 740
dynamically assigns different context identifiers to the instructions contained in the

threads.

11

10

15

20

WO 03/083663 PCT/US03/07710

In one embodiment, PMH 740 considers whether the computer is in multi-t&eaded
mode and whether paging is enabled when determining whether to write the same context
identifier for the instructions of two different threads. Any number of criteria may be used
to determine the value of a context identifier that is assigned to an issued instruction.
Further, the context identifier generator and related control logic can be located in a
number of places within an electronic system and need not be contained in the PMH or
similar unit.

PMH 740 sends a context identifier appropriate for ST 760 to cache controller 720,
through multiplexer 750. AGU 730 generates a linear address corresponding to the main
memory location to which ST 760A seeks to store data. AGU 730 provides cache
controller 720 and hit/miss determinator 770 with the linear address corresponding to ST
760. Cache controller 720 applies a cache line replacement policy to determine which
cache line will be used to store data for ST 760. Cache line replacement policies are well
known in the art (see e.g., Handy, Jim; The Cache Memory Book; Academic Press, 1998
for a more detailed description of cache line replacement policies).

After selecting an appropriate cache line, cache controller 720 writes the context
identifier to the context identifier field 780A of the selected cache line 780. Cache
controller 720 writes a portion of ST 760’s linear address to the tag field 780B of cache
line 780. In one embodiment, the tag comprises bits 23 to 12 of a 32 bit linear address.
There are many combinations of address bits that may be used for the tag. The cache
controller writes the data associated with ST 760 into data block field 780C of selected
cache line 780.

Cache management can be controlled by instructions from an electronically

accessible medium, which may be used to program a computer (or other electronic

12

10

15

20

WO 03/083663 PCT/US03/07710

devices) to perform a process described herein. The electronically accessible medium may
include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, magneto-optical
disks, ROMs, RAMs, EPROMs, EEPRPOMs, magnet or optical cards, flash memory, or
other type of media / machine-readable medium suitable for storing electronic instructions.
Moreover, the instructions may also be downloaded as a computer program product,
wherein the program may be transferred from a remote computer to a requesting computer
by way of data signals embodied in a carrier wave or other propagation medium via a
communications link (e.g., a modem or a network connection).

The above description of illustrated embodiments of the invention is not intended
to be exhaustive or to limit the invention to the precise forms disclosed. While specific
embodiments of, and examples for, the invention are described herein for illustrative
purposes, various equivalent modifications are possible within the scope of the invention,
as those skilled in the relevant art will recognize.

These modifications can be made to the invention in light of the above detailed
description. The terms used in the following claims should not be construed to limit the
invention to the specific embodiments disclosed in the specification and the claims.

Rather, the scope of the invention is to be determined entirely by the follc;wing claims,

which are to be construed in accordance with established doctrines of claim interpretation.

13

10

15

20

25

WO 03/083663 PCT/US03/07710

CLAIMS

What is claimed is:
1. A method comprising:

storing a context identifier associated with a tag in a cache memory;

generating an address that is associated with an issued instruction;

comparing an address portion with the tag, to determine if the address matches the
tag; and

comparing a context identifier associated with the issued instruction with the
context identifier stored in the cache memory, to determine if the context identifier

associated with the issued instruction matches the context identifier stored in the cache.

2. The method of claim 1 further comprising:
transmitting a data block from the cache memory to a processor if the address
portion matches the tag and if the context identifier associated with the issued instruction

matches the context identifier stored in the cache memory.

3. The method of claim 1 further comprising:

replacing a data block of a cache line in the cache memory that is selected by a
replacement policy with a data block as specified by the address if the address portion
does not match the tag; and

storing the context identifier in the cache line.
4. The method of claim 1 further comprising:
replacing a data block of a cache line in cache memory that is selected by a

replacement policy with a data block as specified by the address if the address portion

14

10

15

20

25

WO 03/083663 PCT/US03/07710

does match the tag and the context identifier associated with the instruction does not
match the context identifier stored with the tag; and

storing the context identifier in the cache line.

5. A method comprising:

comparing an address of a base of a page directory used by a first thread with an
address of a base of a page directory used by a second thread, to determine if the address
of the base of the page directory used by the first thread matches the address of the base of
the page directory used by the second thread;

assigning a context identifier to both the first thread and the second thread if the
address of the base of the page directory used by the first thread matches the address of the
base of the page directory used by the second thread; and

assigning a different context identifier to the first thread and the second thread if
the address of the base of the page directory used by the first thread does not match the

address of the base of the page directory used by the second thread.

6. The method of claim 5 further comprising:

storing the address of the base of the page directory of the first thread in a first
register;

storing the address of the base of the page directory of the second thread in a
second register;

reading the first register to determine the address of the base of a page directory of
the first thread; and

reading the second register to determine the address of the base of the page

directory of the second thread.

15

10

15

20

25

WO 03/083663 PCT/US03/07710

7. The method of claim 6 wherein the first register and the second register are the

same register.

8. The method of claim 5 wherein the same context identifier is assigned to the first

thread and the second thread.

9. The method of claim 5 wherein a different context identifier is assigned to the first

thread and the second thread.

10. An apparatus comprising:

a context identifier generator for generating context identifiers;

a control unit coupled to the context identifier generator to assign context
identifiers to cache lines; and

a cache coupled to the control unit having a plurality of cache slots to store a
plurality of cache lines, each of the cache lines including at least a context identifier, a tag,

and a data block.

11. The apparatus of claim 10 wherein the control unit further comprises:

one or more registers to store the addresses of one or more bases of one or more
page directories; and

a comparator coupled to the register to compare the address of a base of a page
directory used by a first thread with the address of a base of a page directory used by a

second thread.

12. The apparatus of claim 11 further comprising a multiplexer coupled to the

comparator and with the context identifier generator to select context identifiers.

16

10

15

20

25

WO 03/083663 PCT/US03/07710

13. The apparatus of claim 12 wherein each context identifier comprises one or more
bits corresponding to a page directory base pointer that is a physical address of a base of a

page directory.

14. The apparatus of claim 13 wherein the context identifier comprises one or more

bits of the tag.

15. An apparatus comprising:

an address generating unit (AGU) to generate addresses in response to an
instruction issued by a processor;

a cache to store a plurality of cache lines, each of the plurality of cache lines
including at least a context identifier, a tag, and a data block;

at least one comparator coupled to the AGU and coupled to the cache to compare
an address portion generated by the AGU with each of the tags in each of the plurality of
cache lines;

a control unit to generate two or more context identifiers and to select one of the
two or more context identifiers; and

at least one comparator coupled to the control unit and coupled to the cache to
compare the context identifier selected by the control unit with each of the context

identifiers in each of the plurality of the cache lines.

16. The control unit of claim 15 further comprising:

a first register to store an address of a base of a page directory associated with a
first thread of executing computer instructions;

a second register to store an address of a base of a page directory associated with a

second thread of executing computer instructions;

17

10

15

20

25

WO 03/083663 PCT/US03/07710

a comparator coupled to the first register and the second register to compare the
value stored in the first register with the value stored in the second register;

a context identifier generator to generate at least two context identifiers; and

a multiplexer coupled to the context identifier generator and the comparator to

select one of the at least two context identifiers.

17. The control unit of claim 16 wherein:

the multiplexer is to select a first context identifier if the address of the base of the
page directory associated with the first thread of executing computer instructions matches
the address of the base of the page directory associated with the second thread of
executing computer instructions; and

the multiplexer is to select a second context identifier if the address of the base of
the page directory associated with the first thread of executing computer instructions does
not match the address of the base of the page directory associated with the second thread

of executing computer instructions.

18. An article comprising a machine readable medium storing information representing
a processor, the processor comprising:

a context identifier generator for generating context identifiers;

a control unit coupled to the context identifier generator to assign context
identifiers to cache lines; and

a cache coupled to the control unit having a plurality of cache slots to store a
plurality of cache lines, each of the cache lines including at least a context identifier, a tag,

and a data block.

19. The article of claim 18 further comprising:

18

10

15

20

WO 03/083663 PCT/US03/07710

one or more registers to store the addresses of one or more bases of one or more
page directories; and

a comparator coupled to the register to compare the address of a base of a page
directory used by a first thread with the address of a base of a page directory used by a

second thread

20. The article of claim 19 further comprising a multiplexer coupled to the comparator

and with the context identifier generator to select context identifiers.

21. An article comprising a machine readable medium storing information representing
a processor, the processor comprising:

a cache memory to store a plurality of cache lines, each cache line having an
associated tag and an associated context identifier; and

comparison logic to compare a request tag and a request context identifier to said
associated tag and said associated context identifier for each one of said plurality of cache

lines.

22. The article comprising a machine readable medium storing information
representing a processor of claim 21, wherein said associated context identifier comprises

a thread identifier.

23. The article comprising a machine readable medium storing information
representing a processor of claim 21 wherein in a first mode, said associated context
identifier comprises a thread identifier, and wherein in a second mode, said associated

context identifier is a predicted context identifier.

19

10

15

20

25

WO 03/083663 PCT/US03/07710

24, The article comprising a machine readable medium storing information
representing a processor of claim 23 wherein in said second mode, said predicted context
identifier is determined, at least in part, by comparing a base of a page directory used by a
first thread with a base of a page directory used by a second thread, to determine if the
base of the page directory used by the first thread matches the base of the page directory
used by the second thread.

25. The article comprising a machine readable medium storing information
representing a processor of claim 21, wherein said comparison logic is to generate a hit

signal only if a context identifier match and a tag match occurs.

26. An apparatus comprising:

a cache memory to store a plurality of cache lines, each cache line having an
associated tag and an associated context identifier; and

comparison logic to compare a request tag and a request context identifier to said

associated tag and said associated context identifier for each of said plurality of cache

lines.

217. The apparatus of claim 26 wherein said associated context identifier comprises a
thread identifier.

28. The apparatus of claim 26 wherein in a first mode, said associated context

identifier comprises a thread identifier, and wherein in a second mode, said associated

context identifier is a predicted context identifier.

29. The apparatus of claim 28 wherein in said second mode, said predicted context

identifier is determined, at least in part, by comparing a base of a page directory used by a

20

10

15

WO 03/083663 PCT/US03/07710

first thread with a base of a page directory used by a second thread, to determine if the
base of the page directory used by the first thread matches the base of the page directory
used by the second thread.

30. The apparatus of claim 29 wherein in said second mode, said predicted context
identifier is determined, at lgast in part, by comparing a base of a page directory used by a
first thread with a base of a page directory used by a second thread and a base of a page
directory used by a third thread, to determine if the base of the page directory used by the
first thread matches the base of the page directory used by either the second or the third

threads.

31. The apparatus of claim 26 wherein said comparison logic is to generate a hit signal

only if a context identifier match and a tag match occurs.

21

PCT/US03/07710

WO 03/083663

1/8

(Uy Joud)

‘ osL L Ol
_mmvn~r<< |

091 0Gl1

061 H .
aodvaogv««+0049VvVvAO49dYV veel

V y

Y

3oo|g ejeq be|
00t oclt 0cl

<-—0vl

N

oLl

PCT/US03/07710

WO 03/083663

2/8

062

%

(My soud)
¢ Old

Svc Gee

H / *m_mo

A
—

GGC —>

IPPV [B91SAUd

Aju3 Iq1bd [Aju3 Jig "bd

abed

“IPPV €U L

a|qe] abed AoyoanQq abed

jesyo | eigey | 1a |«

b

0ec Gce 0ce

aoedg
ssalppy Jeaun

]34

PCT/US03/07710

WO 03/083663

3/8

1145

« £ Ol
G9/8 = £4D
Bl _’ A!ln O
B) a
"IJppy Jeaun] g
sbed aiqe ebed Kiopaug abey ! .
L0€ M 90¢
aa veZL | 00 = ;
aoedg 5
» + SSaIppY Jeaul 5
Gee gee .
oal
0 — o [gr05=.cu0 g
| g
< —l ‘Iln O M
- - S0E — g boEg
) b
abed ﬁ s|qe abed Kioyanq sbeyd "Ippy Jeaun v
v
ag veel | W |
aoedg
4 A SSalppy Jesul
0€€ 0z

| peasy)

0 peaiyl

PCT/US03/07710

WO 03/083663

4/8

adaeeiodd «— gosy

agezZLIvY <«—— VOV

vy Old

YOSy
0]¢) 4 mo—mv
% v asiy
dogvadodgdv«..d208VAO8V 142 I
1 VSiv
d08Vvadd8V.«.xVE0OAVEOd A 0
A A A
\4 Y \
)oolg ejeq be | ai
oey ocy

Sov

aovy

\ Vovy

-— Ol¥y

PCT/US03/07710

WO 03/083663

5/8

aasz @09

2 [0]2) 4

asiy

gy Old

13[07A %

gdeCLb)VV -——

11214 08y

g9

Sly

EZUILNWY+—— YOIV

I

VGLy

PCT/US03/07710
6/8

WO 03/083663

005
(HWd) J8ipueH
ssi|\ abed
ovs
0 0LS
JoUUBP| IXBU0Y ——— '
Jojelauan)
I laynuap|
Xajuo9
0€s — 1LL.£YD
_ Jojesedwo)
4 ——0L.€49
0zs

PCT/US03/07710

WO 03/083663

7/8

HH |yde)

589

JojeuiualeQ
SSINAMH

619 —
\

029

049

019

. 09 —» HWNJ
9 O Qi peaiyy
089 _
+ 1 = Qi 8o
ojesedwod | N (@ avol
dl Xsjuod + 0 = QI XeoD
059
(nov) nun
Jojeiedwo)) be|) uonessuag |
ssalppy
J 099
Jajjouo) syoed /
| Hﬁ 0€9

|

xo0lg ejeq

be)

al

-—G09

!

o019

ﬂ

8019

J
AN

vol9

PCT/US03/07710

WO 03/083663

8/8

Jojeuiwislag
SSINAH

\

0LL

0eL

- >

(NOVY) Iun
uoljelsauan)

ssalppy

(1) ®1018

Z '9Ol4

| pealyl Qi xauod

HWd

"

_ ovL

0L —»

0LL

Jajjonuo) ayoen

N N

0 peaiyl Q) pejuod

0082

g08.

300|d Bled

Be |

ai

!

o0LL

!

g01.

0S.

- 08.

v08.

H_‘I S0L

VOLL

AN

094

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

