
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0026546A1

US 20160026546A1

Ljubuncic et al. (43) Pub. Date: Jan. 28, 2016

(54) HARDWARE-ASSISTED APPLICATION (57) ABSTRACT
CHECKPONTING AND RESTORING

(71) Applicant: Intel Corporation, Santa Clara, CA Technologies for hardware-assisted application checkpoint
(US) ing include a computing device having a processor with hard

ware checkpoint Support. In response to encountering a
(72) Inventors: Igor Ljubuncic, Yokneam Ilit (IL); Ravi checkpoint event during execution of an application, the com

A. Giri, Bangalore (IN) puting device saves the execution state of the application to
nonvolatile storage using the hardware checkpoint Support.
The computing device may also restore the execution state

(21) Appl. No.: 14/340,039 using the hardware checkpoint Support. The hardware check
point Support may save part orall of the virtual memory space

(22) Filed: Jul. 24, 2014 of the application in a manner transparent to the executing
process. The hardware checkpoint Support may be invoked
using one or more system hooks such as system calls or

Publication Classification processor instructions. The computing device may monitor
for checkpoint events using hardware event monitors of the

(51) Int. Cl. processor, chipset, or other components of the computing
G06F II/4 (2006.01) device. The computing device may store execution state in a

(52) U.S. Cl. dedicated flash memory cache. Other embodiments are
CPC G06F 11/1469 (2013.01) described and claimed.

100

COMPUTING DEVICE

PROCESSOR
120

CHECKPOINT SUPPORT

EVENT MONITOR

EVENT
MONITOR

130
MEMORY

132
DATA STORAGE

COMM 134
CIRCUITRY

Patent Application Publication Jan. 28, 2016 Sheet 1 of 2 US 2016/0026546 A1

100

COMPUTING DEVICE

120
PROCESSOR

CHECKPOINT SUPPORT

EVENT MONITOR

130
MEMORY

EVENT
MONITOR

132

etc. COMM. 134
CIRCUITRY

FIG. 1

200 100

COMPUTING DEVICE
202

APPLICATION

204

CHECKPOINT INTERFACE
MODULE 206

EVENT MONITORMODULE

208

TIMER MODULE

210

CHECKPOINT SUPPORT
MODULE

FIG. 2

US 2016/0026546 A1 Jan. 28, 2016 Sheet 2 of 2 Patent Application Publication

009

(S)NOILVOITddV = LnOEXE

US 2016/0026546 A1

HARDWARE-ASSISTED APPLICATION
CHECKPONTING AND RESTORING

BACKGROUND

0001. Many large-scale computing environments such as
high-performance computing and cloud computing environ
ments may incorporate long-running and highly dependent
processes. Crashes or other errors occurring in the course of
Such long-running processes may cause the loss of applica
tion state and thus may require large amounts of computa
tional work to be repeated. Accordingly, crashes in large
scale computing environments may be quite costly and time
consuming.
0002 Some typical computing environments support soft
ware-based application checkpointing. Application check
pointing allows the computing environment to store periodic
Snapshots of the state of a running application. The applica
tion may be resumed or replayed starting from the State of a
saved checkpoint, which may allow for quicker or less-ex
pensive crash recovery. Typical checkpointing solutions are
purely software-based. Thus, Software checkpointing Support
may have to be specifically re-engineered for each Supported
application and/or operating system. Software virtualization
Solutions such as hypervisors and virtual machine monitors
also typically Support creating and restoring Snapshots of
virtual machines, which may provide similar functionality.

BRIEF DESCRIPTION OF THE DRAWINGS

0003. The concepts described herein are illustrated by way
of example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale.
Where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements.
0004 FIG. 1 is a simplified block diagram of at least one
embodiment of a computing device for hardware-assisted
application checkpointing and restoring;
0005 FIG. 2 is a simplified block diagram of at least one
embodiment of an environment that may be established by the
computing device of FIG. 1; and
0006 FIG. 3 is a simplified flow diagram of at least one
embodiment of a method for hardware-assisted process
checkpointing and restoring that may be executed by the
computing device of FIGS. 1 and 2.

DETAILED DESCRIPTION OF THE DRAWINGS

0007 While the concepts of the present disclosure are
Susceptible to various modifications and alternative forms,
specific embodiments thereof have been shown by way of
example in the drawings and will be described herein in
detail. It should be understood, however, that there is no intent
to limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover
all modifications, equivalents, and alternatives consistent
with the present disclosure and the appended claims.
0008 References in the specification to “one embodi
ment,” “an embodiment,” “an illustrative embodiment, etc.,
indicate that the embodiment described may include a par
ticular feature, structure, or characteristic, but every embodi
ment may or may not necessarily include that particular fea
ture, structure, or characteristic. Moreover, such phrases are
not necessarily referring to the same embodiment. Further,

Jan. 28, 2016

when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to effect
Such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described. Addi
tionally, it should be appreciated that items included in a list
in the form of “at least one of A, B, and C can mean (A); (B):
(C): (A and B); (A and C); (B and C); or (A, B, and C).
Similarly, items listed in the form of “at least one of A, B, or
C” can mean (A); (B); (C); (A and B); (A and C); (B and C):
or (A, B, and C).
0009. The disclosed embodiments may be implemented,
in some cases, in hardware, firmware, Software, or any com
bination thereof. The disclosed embodiments may also be
implemented as instructions carried by or stored on one or
more transitory or non-transitory machine-readable (e.g.,
computer-readable) storage media, which may be read and
executed by one or more processors. A machine-readable
storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or trans
mitting information in a form readable by a machine (e.g., a
Volatile or non-volatile memory, a media disc, or other media
device).
0010. In the drawings, some structural or method features
may be shown in specific arrangements and/or orderings.
However, it should be appreciated that Such specific arrange
ments and/or orderings may not be required. Rather, in some
embodiments. Such features may be arranged in a different
manner and/or order than shown in the illustrative figures.
Additionally, the inclusion of a structural or method feature in
a particular figure is not meant to imply that Such feature is
required in all embodiments and, in some embodiments, may
not be included or may be combined with other features.
0011 Referring now to FIG. 1, in an illustrative embodi
ment a computing device 100 includes a processor with hard
ware checkpoint support. The computing device 100 executes
one or more applications and, in response to detecting a
checkpoint event, saves an application checkpoint using the
hardware checkpoint Support. Checkpoint events may be gen
erated by hardware event monitors included in the processor,
chipset, or other components of the computing device 100.
The application checkpoints may be stored in a dedicated
cache memory of the computing device 100 to improve per
formance. The computing device 100 may also restore the
application checkpoint using the hardware checkpoint Sup
port of the processor and resume executing the application.
Hardware checkpointing Support may allow for improved
checkpointing performance, reliability, and Scalability com
pared to software-only implementations. Additionally,
because hardware checkpointing may be transparent to
executing applications, checkpointing Support may be pro
vided for existing applications without requiring re-engineer
ing Such as code modifications or recompilations.
0012. The computing device 100 may be embodied as any
type of computation or computer device capable of perform
ing the functions described herein, including, without limita
tion, a computer, a multiprocessor system, a server, a rack
mounted server, a blade server, a Smartphone, a tablet
computer, a laptop computer, a notebook computer, a mobile
computing device, a wearable computing device, a network
appliance, a web appliance, a distributed computing system,
a processor-based system, and/or a consumer electronic
device. As shown in FIG. 1, the computing device 100 illus
tratively includes a processor 120, an input/output Subsystem

US 2016/0026546 A1

126, a memory 130, a data storage device 132, and commu
nication circuitry 134. Of course, the computing device 100
may include other or additional components, such as those
commonly found in a computer (e.g., various input/output
devices), in other embodiments. Additionally, in some
embodiments, one or more of the illustrative components
may be incorporated in, or otherwise form a portion of
another component. For example, the memory 130, or por
tions thereof, may be incorporated in the processor 120 in
Some embodiments.

0013 The processor 120 may be embodied as any type of
processor capable of performing the functions described
herein. For example, the processor 120 may be embodied as a
single or multi-core processor(s), digital signal processor,
microcontroller, or other processor or processing/controlling
circuit. The processor 120 illustratively includes hardware
checkpoint Support 122 and a hardware event monitor 124.
The hardware checkpoint support 122 may be embodied as
any hardware component, microcode, firmware, or other
component of the processor 120 capable of saving the execu
tion state of a currently executing application. For example,
the hardware checkpoint support 122 may be embodied as
one or more dedicated processor instructions and associated
memory management functions of the processor 120 that
causes all or part of the virtual memory space of the current
application to be saved to nonvolatile storage. The hardware
event monitor 124 may be embodied as any hardware com
ponent, microcode, firmware, or other component of the pro
cessor 120 capable of notifying software executed by the
processor 120 of system events occurring within the proces
Sor 120. Such as memory access events or cache access events.
For example, the hardware event monitor 124 may be embod
ied as one or more performance counters, performance moni
toring units, cache monitoring units, or other hardware
counters of the processor 120.
0014. The memory 130 may be embodied as any type of
Volatile or non-volatile memory or data storage capable of
performing the functions described herein. In operation, the
memory 130 may store various data and Software used during
operation of the computing device 100 Such as operating
systems, applications, programs, libraries, and drivers. The
memory 130 is communicatively coupled to the processor
120 via the I/O subsystem 126, which may be embodied as
circuitry and/or components to facilitate input/output opera
tions with the processor 120, the memory 130, and other
components of the computing device 100. For example, the
I/O subsystem 126 may be embodied as, or otherwise include,
memory controller hubs, input/output control hubs, firmware
devices, communication links (i.e., point-to-point links, bus
links, wires, cables, light guides, printed circuit board traces,
etc.) and/or other components and Subsystems to facilitate the
input/output operations. The I/O subsystem 126 further
includes a hardware event monitor 128. Similar to the hard
ware event monitor 124 of the processor 120, the hardware
event monitor 128 may be embodied as any hardware com
ponent, microcode, firmware, or other component of the I/O
subsystem 126 that is capable of notifying software executed
by the processor 120 of system events occurring within the
computing device 100. Such as I/O events, memory access
events, network access events, or other system events. For
example, the hardware event monitor 128 may be embodied
as one or more performance counters, performance monitor
ing units, or other hardware counters of the I/O subsystem
126. In some embodiments, the I/O subsystem 126 may form

Jan. 28, 2016

a portion of a system-on-a-chip (SoC) and be incorporated,
along with the processor 120, the memory 130, and other
components of the computing device 100, on a single inte
grated circuit chip.
0015 The data storage device 132 may be embodied as
any type of device or devices configured for short-term or
long-term storage of data such as, for example, memory
devices and circuits, memory cards, hard disk drives, Solid
state drives, or other data storage devices. In use, as described
below, the data storage device 132 may store application
checkpointing data such as saved execution states or other,
similar data. The communication circuitry 134 of the com
puting device 100 may be embodied as any communication
circuit, device, or collection thereof, capable of enabling
communications between the computing device 100 and
remote devices over a network (not shown). The communi
cation circuitry 134 may be configured to use any one or more
communication technology (e.g., wired or wireless commu
nications) and associated protocols (e.g., Ethernet, Blue
tooth R. Wi-Fi R, WiMAX, etc.) to effect such communica
tion.
0016. In some embodiments, the computing device 100
may also include a checkpoint cache 136. Similar to the data
storage device 132, the checkpoint cache 136 may be embod
ied as any type of device or devices configured for short-term
or long-term storage of data Such as, for example, memory
devices and circuits, memory cards, hard disk drives, Solid
state drives, or other data storage devices. For example, in
some embodiments the checkpoint cache 136 may be embod
ied as a relatively small amount of flash memory storage. The
checkpoint cache 136 may store application checkpointing
data Such as saved execution states or other similar data.
0017. In some embodiments, the computing device 100
may also include one or more peripheral devices 138. The
peripheral devices 138 may include any number of additional
input/output devices, interface devices, and/or other periph
eral devices. For example, in some embodiments, the periph
eral devices 138 may include a display, touchscreen, graphics
circuitry, keyboard, mouse, speaker system, and/or other
input/output devices, interface devices, and/or peripheral
devices.

0018 Referring now to FIG. 2, in an illustrative embodi
ment, the computing device 100 establishes an environment
200 during operation. The illustrative environment 200
includes an application 202, a checkpoint interface module
204, and a checkpoint support module 210. The various mod
ules of the environment 200 may be embodied as hardware,
firmware, software, or a combination thereof
0019. The application 202 may be embodied as any pro
gram, process, task, or other executable component of the
computing device 100. For example, the application 202 may
be embodied as a process, a thread, a native code application,
a managed code application, a virtualized application, a vir
tual machine, or any other similar application. In some
embodiments, the application 202 may be compiled to target
the processor 120 specifically; that is, the application 202
may include code to access the hardware checkpoint Support
122 such as specialized processor instructions. During execu
tion, the application 202 maintains and modifies an execution
state that may include data such as, for example, virtual
memory contents, processor register state, processor flags,
process tables, file descriptors, file handles, or other data
structures relating to the current state of the application 202.
Although illustrated as a single application 202, it should be

US 2016/0026546 A1

understood that the environment 200 may include one or
more applications 202 executing contemporaneously.
0020. The checkpoint interface module 204 is configured
to detect and handle occurrences of checkpoint events
encountered during execution of the application 202. Check
point events may include system events such as events gen
erated by the hardware event monitors 124, 128 or timer
events. In response to detecting checkpoint events, the check
point interface module 204 may call one or more system
hooks to cause the computing device 100 to save a check
point, restore a checkpoint, or perform other checkpointing
operations. System hooks may include, for example, system
calls or processor instructions. In some embodiments, those
functions may be performed by one or more Sub-modules,
such as an event monitor module 206 or a timer module 208.
0021. The checkpoint support module 210 is configured to
save the execution state of the application 202 in response to
the checkpoint interface module 204 detecting and handling a
checkpoint event. The checkpoint support module 210 is also
configured to restore the execution State of the application
202. The checkpoint support module 210 uses the hardware
checkpoint support 122 of the processor 120 to save and/or
restore the execution state. In some embodiments, the execu
tion state of the application 202 may be stored in the check
point cache 136. The checkpoint interface module 204 and/or
the checkpoint support module 210 may be embodied as one
or more libraries, operating system drivers, or operating sys
tem components of the computing device 100. Additionally
or alternatively, the checkpoint interface module 204 and/or
the checkpoint support module 210 may be embodied as one
or more components of a virtualization framework of the
computing device 100 Such as a hypervisor or virtual machine
monitor (VMM).
0022 Referring now to FIG. 3, in use, the computing
device 100 may execute a method 300 for hardware-assisted
application checkpointing and restoring. The method 300
begins in block 302, in which the computing device 100
initializes a checkpointing framework. The checkpointing
framework may include any hardware, firmware, or Software
functionality used to save and restore application check
points. During initialization, the computing device 100 may
perform any initialization routines or other processes
required to activate the hardware checkpoint Support 122, as
well as any required software initialization routines. For
example, the computing device 100 may initialize interrupt
vectors, timers, or other system hooks used to invoke the
hardware checkpoint Support 122.
0023. In block 304, the computing device 100 executes
one or more applications 202 that may be managed by the
checkpointing framework. As described above, the applica
tions 202 may be embodied as any process, thread, managed
code, or other task executed by the computing device 100. In
Some embodiments, the applications 202 may be embodied as
virtualized applications, for example as applications or oper
ating systems executed by a hypervisor of the computing
device 100. During execution, the applications 202 may per
form calculations, update regions of the memory 130, or
perform any other operations typical of a computer applica
tion.

0024. In block306, the computing device 100 monitors for
checkpoint events during execution of the applications 202. A
checkpoint event may be embodied as any hardware or soft
ware event that triggers a checkpointing operation. The com
puting device 100 may use any technique to monitor for

Jan. 28, 2016

checkpoint events, including polling for events, handling
interrupts, registering callback functions or event listeners, or
other techniques. The checkpoint event may be embodied as
a hardware event such as an interrupt, a memory access, oran
I/O operation; as a software event such as a modification of a
data structure in memory; as a user-generated event such as an
application programming interface (API) call, or as any other
event. In some embodiments, in block 308, the computing
device 100 may monitor the hardware event monitors 124,
128 for checkpoint events. For example, the computing
device 100 may monitor the hardware event monitor 124 for
accesses to a last-level cache of the processor 120. As another
example, the computing device 100 may monitor the hard
ware event monitor 128 for writes to one or more predefined
memory address ranges or for network I/O events. Addition
ally or alternatively, in some embodiments, in block 310 the
computing device 100 may monitor one or more checkpoint
timers to determine whether any timers have elapsed. Thus, in
addition to system-event-based checkpointing, in some
embodiments the computing device 100 may perform time
based checkpointing.
0025. In block 312, the computing device 100 determines
whether a checkpoint event has been detected. If not, the
method 300 branches ahead to block 324, described below. If
a checkpoint event has been detected, the method 300
advances to block 314.

0026. In block 314, the computing device 100 executes a
system hook to save the execution state of a currently execut
ing application 202. The system hook may be embodied as
any technique usable to invoke the hardware checkpoint Sup
port 122 of the processor 120. Different software executing
on the same computing device 100 may execute different
system hooks. For example, the system hook executed may
depend on whether the software has been designed to take
advantage of the hardware checkpoint Support 122. Addition
ally or alternatively, the system hook executed may depend on
the relative performance characteristics of different system
hooks, or on any other criteria. In some embodiments, in
block 316, the computing device 100 may execute a system
call to save the execution state. The system call may be
embodied as any operating system or driver routine allowing
an application or library executed by the computing device
100 to request saving the execution state. For example, the
system call may be embodied as a predefined software inter
rupt (e.g., INT 0x80) or a virtual system call (e.g., a Linux
VSyscall). Additionally or alternatively to executing a system
call, in some embodiments, in block 318 the computing
device 100 may execute a processor instruction to cause the
processor 120 to save the execution state. In some embodi
ments, that processor instruction may be executed by the
checkpoint interface module 204. Additionally or alterna
tively, in Some embodiments that processor instruction may
be directly executed by the application 202, for example when
other software of the computing device 100 has not been
compiled to target the processor 120 or otherwise does not
recognize the hardware checkpoint Support 122.
0027. After executing the system hook, in block 320 the
computing device 100 saves the execution state of the appli
cation 202 using the hardware checkpoint Support 122. As
described above, the execution state of the application 202
may include any data related to the current state of the appli
cation 202. Thus, to save the execution state, the computing
device 100 may copy part or all of the virtual address space of
the application 202 to nonvolatile storage Such as the data

US 2016/0026546 A1

storage device 132. For example, the computing device 100
may store the stack, the heap, the allocated pages, the process
table, or other parts of the memory 130. The computing
device 100 may use data compression, copy-on-write, or
other techniques to reduce the amount of storage space
required to save the application state. In some embodiments,
the computing device 100 may also store metadata related to
the current state of the application202 that is not stored within
the virtual address space of the application 202. The comput
ing device 100 may also store state data associated with the
processor 120 such as register state or processor flags. By
using the hardware checkpoint Support 122, the execution
state of the application 202 may be stored transparently to the
application 202. In some embodiments, in block 322 the
computing device 100 may save the application state to the
checkpoint cache 136. As described above, saving the appli
cation state to the checkpoint cache 136 may improve perfor
mance of the checkpointing process. After saving the execu
tion state, the method 300 loops back to block 304 to continue
executing the applications 202.
0028 Referring back to block 312, if no checkpoint event

is detected, the method 300 branches to block 324, in which
the computing device 100 determines whether to restore the
execution state of an application 202. The computing device
100 may restore the execution state in response to, for
example, an API request to restore execution state, a system
event, a timer expiration, or any other appropriate restore
event. If the computing device 100 determines not to restore
application state, the method 300 loops back to block 304 to
continue executing the applications 202. If the computing
device 100 determines to restore the execution state, the
method 300 advances to block 326.

0029. In block 326, the computing device 100 executes a
system hook to load the saved execution state of the requested
application 202 into the memory 130. Similar to saving the
execution state, the system hook for loading the execution
state may be embodied as any technique usable to invoke the
hardware checkpoint support 122 of the processor 120. Dif
ferent software executing on the same computing device 100
may execute different system hooks. For example, the system
hook executed may depend on whether the software has been
designed to take advantage of the hardware checkpoint Sup
port 122. Additionally or alternatively, the system hook
executed may depend on the relative performance character
istics of different system hooks, or on any other criteria. In
some embodiments, in block 328, the computing device 100
may execute a system call to load the execution state. As
described above, the system call may be embodied as any
operating system or driver routine allowing an application or
library executed by the computing device 100 to request
loading the execution state. For example, the system call may
be embodied as a predefined software interrupt (e.g., INT
0x80) or a virtual system call (e.g., a Linux VSyscall). Addi
tionally or alternatively to executing a system call, in some
embodiments, in block 330 the computing device 100 may
execute a processor instruction to cause the processor 120 to
load the execution state. In some embodiments, that processor
instruction may be executed by the checkpoint interface mod
ule 204. Additionally or alternatively, in some embodiments
that processor instruction may be directly executed by the
application 202, for example when other software of the
computing device 100 has not been compiled to target the
processor 120 or otherwise does not recognize the hardware
checkpoint Support 122.

Jan. 28, 2016

0030. In block 332, the computing device 100 loads the
execution state of the application 202 into the memory 130
using the hardware checkpoint Support 122. To load the
execution state, the computing device 100 may copy data
from nonvolatile storage such as the data storage device 132
into the virtual memory space of the application 202. For
example, the computing device 100 may load data indicative
of the saved execution state of the application 202 such as the
stack, the heap, the process table, the allocated pages, or other
parts of the memory 130. As described above, the computing
device 100 may use data compression, copy-on-write, or
other techniques to reduce the amount of storage space
required to load the execution State. In some embodiments,
the computing device 100 may also load metadata related to
the saved state of the application 202. The computing device
100 may also restore state data associated with the processor
120 such as register state or processor flags. In some embodi
ments, in block 334 the computing device 100 may load the
execution state from the checkpoint cache 136. Loading the
application state from the checkpoint cache 136 may improve
performance of the checkpointing process.
0031. After loading the execution state, in block 336 the
computing device 100 resumes execution of the application
202 from the saved execution state. By using the hardware
checkpoint Support 122, execution of the application 202 may
be resumed transparently to the application 202; in other
words, the application 202 may not be aware that it was
loaded from a saved checkpoint. After resuming the applica
tion 202, the method 300 loops back to block 304 to continue
executing the applications 202.

EXAMPLES

0032 Illustrative examples of the technologies disclosed
herein are provided below. An embodiment of the technolo
gies may include any one or more, and any combination of
the examples described below.
0033 Example 1 includes a computing device for hard
ware-assisted application checkpointing, the computing
device comprising a processor comprising hardware check
point Support to responsively save an execution state of an
application executed by the processor, a checkpoint interface
module to monitor for an occurrence of a checkpoint event
during execution of the application; and a checkpoint Support
module to cause the hardware checkpoint Support to save the
execution state of the application in response to the occur
rence of the checkpoint event during execution of the appli
cation, wherein the execution state is indicative of a virtual
memory state of the application.
0034 Example 2 includes the subject matter of Example 1,
and further including a hardware event monitor, wherein to
monitor for the occurrence of the checkpoint event comprises
to receive a checkpoint event generated by the hardware event
monitor.

0035 Example 3 includes the subject matter of any of
Examples 1 and 2, and wherein the checkpoint event com
prises a write to a predefined memory address range, or a
network I/O event.

0036) Example 4 includes the subject matter of any of
Examples 1-3, and wherein the processor further comprises
the hardware event monitor.

0037 Example 5 includes the subject matter of any of
Examples 1-4, and wherein the checkpoint event comprises a
last-level cache access.

US 2016/0026546 A1

0038 Example 6 includes the subject matter of any of
Examples 1-5, and whereinto encounter the checkpoint event
comprises to monitor for the occurrence of a timer event.
0039 Example 7 includes the subject matter of any of
Examples 1-6, and further including a cache memory,
wherein to save the execution state of the application com
prises to save the execution state of the application to the
cache memory.
0040. Example 8 includes the subject matter of any of
Examples 1-7, and wherein the cache memory comprises a
nonvolatile cache memory.
0041. Example 9 includes the subject matter of any of
Examples 1-8, and wherein the checkpoint Support module is
further to cause the hardware checkpoint support to load the
saved execution state of the application into a virtual memory
space of the application; and the processor is further to
resume execution of the application from the saved execution
state in response to loading of the saved execution state.
0042 Example 10 includes the subject matter of any of
Examples 1-9, and further including a cache memory,
wherein to load the saved execution state comprises to load
the saved execution state from the cache memory.
0043. Example 11 includes the subject matter of any of
Examples 1-10, and wherein the cache memory comprises a
nonvolatile cache memory.
0044 Example 12 includes the subject matter of any of
Examples 1-11, and wherein the checkpoint interface module
is further to execute a system hook to invoke the hardware
checkpoint support in response to the occurrence of the
checkpoint event.
0045 Example 13 includes the subject matter of any of
Examples 1-12, and wherein to execute the system hook
comprises to execute a system call.
0046 Example 14 includes the subject matter of any of
Examples 1-13, and wherein to execute the system hook
comprises to execute a processor instruction.
0047. Example 15 includes the subject matter of any of
Examples 1-14, and wherein to execute the system hook
comprises to generate a hardware interrupt.
0048 Example 16 includes the subject matter of any of
Examples 1-15, and wherein the application comprises a pro
cess, a thread, a virtual machine, or a virtualized application.
0049. Example 17 includes a method for hardware-as
sisted application checkpointing, the method comprising
executing an application by a computing device having a
processor including hardware checkpoint Support configured
to responsively save an execution state of an executed appli
cation; encountering, by the computing device, an occurrence
of a checkpoint event while executing the application; and
saving, by the computing device, an execution state of the
application using the hardware checkpoint Support of the
processor in response to encountering the occurrence of the
checkpoint event, wherein the execution state is indicative of
a virtual memory state of the application.
0050 Example 18 includes the subject matter of Example
17, and wherein encountering the occurrence of the check
point event comprises receiving a checkpoint event generated
by a hardware event monitor of the computing device.
0051 Example 19 includes the subject matter of any of
Examples 17 and 18, and wherein the checkpoint event com
prises a write to a predefined memory address range, or a
network I/O event.
0052 Example 20 includes the subject matter of any of
Examples 17-19, and wherein receiving the checkpoint event

Jan. 28, 2016

generated by the hardware event monitor comprises receiving
a checkpoint event generated by a hardware event monitor of
a processor of the computing device.
0053 Example 21 includes the subject matter of any of
Examples 17-20, and wherein the checkpoint event com
prises a last-level cache access.
0054 Example 22 includes the subject matter of any of
Examples 17-21, and wherein encountering the occurrence of
the checkpoint event comprises encountering a timer event.
0055 Example 23 includes the subject matter of any of
Examples 17-22, and wherein saving the execution state of
the application comprises saving the execution state of the
application to a cache memory of the computing device.
0056. Example 24 includes the subject matter of any of
Examples 17-23, and wherein saving the execution state of
the application to the cache memory comprises saving the
execution state to a nonvolatile cache memory of the comput
ing device.
0057 Example 25 includes the subject matter of any of
Examples 17-24, and further including loading, by the com
puting device, the saved execution state of the application into
a virtual memory space of the application using the hardware
checkpoint Support of the processor, and resuming, by the
computing device, execution of the application from the
saved execution state in response to loading the saved execu
tion state.

0.058 Example 26 includes the subject matter of any of
Examples 17-25, and wherein loading the saved execution
state comprises loading the saved execution state from a
cache memory of the computing device.
0059 Example 27 includes the subject matter of any of
Examples 17-26, and wherein loading the saved execution
state from the cache memory comprises loading the execution
state from a nonvolatile cache memory of the computing
device.

0060 Example 28 includes the subject matter of any of
Examples 17-27, and further including executing, by the
computing device, a system hook to invoke the hardware
checkpoint Support in response to encountering the occur
rence of the checkpoint event.
0061 Example 29 includes the subject matter of any of
Examples 17-28, and wherein executing the system hook
comprises executing a system call.
0062) Example 30 includes the subject matter of any of
Examples 17-29, and wherein executing the system hook
comprises executing a processor instruction.
0063 Example 31 includes the subject matter of any of
Examples 17-30, and wherein executing the system hook
comprises generating a hardware interrupt.
0064. Example 32 includes the subject matter of any of
Examples 17-31, and wherein executing the application com
prises executing a process, a thread, a virtual machine, or a
virtualized application.
0065. Example 33 includes a computing device compris
ing a processor, and a memory having stored therein a plu
rality of instructions that when executed by the processor
cause the computing device to perform the method of any of
Examples 17-32.
0.066 Example 34 includes one or more machine readable
storage media comprising a plurality of instructions stored
thereon that in response to being executed result in a comput
ing device performing the method of any of Examples 17-32.

US 2016/0026546 A1

0067 Example 35 includes a computing device compris
ing means for performing the method of any of Examples
17-32.

0068 Example 36 includes a computing device for hard
ware-assisted application checkpointing, the computing
device having a processor including hardware checkpoint
Support configured to responsively save an execution state of
an executed application, the computing device comprising
means for executing an application by the computing device;
means for encountering, by the computing device, an occur
rence of a checkpoint event while executing the application;
and means for saving, by the computing device, an execution
state of the application using the hardware checkpoint Sup
port of the processor in response to encountering the occur
rence of the checkpoint event, wherein the execution state is
indicative of a virtual memory state of the application.
0069. Example 37 includes the subject matter of Example
36, and wherein the means for encountering the occurrence of
the checkpoint event comprises means for receiving a check
point event generated by a hardware event monitor of the
computing device.
0070. Example 38 includes the subject matter of any of
Examples 36 and 37, and wherein the checkpoint event com
prises a write to a predefined memory address range, or a
network I/O event.

0071 Example 39 includes the subject matter of any of
Examples 36-38, and wherein the means for receiving the
checkpoint event generated by the hardware event monitor
comprises means for receiving a checkpoint event generated
by a hardware event monitor of a processor of the computing
device.

0072 Example 40 includes the subject matter of any of
Examples 36-39, and wherein the checkpoint event com
prises a last-level cache access.
0073. Example 41 includes the subject matter of any of
Examples 36-40, and wherein the means for encountering the
occurrence of the checkpoint event comprises means for
encountering a timer event.
0074 Example 42 includes the subject matter of any of
Examples 36-41, and wherein the means for saving the execu
tion state of the application comprises means for saving the
execution state of the application to a cache memory of the
computing device.
0075 Example 43 includes the subject matter of any of
Examples 36-42, and wherein the means for saving the execu
tion state of the application to the cache memory comprises
means for saving the execution state to a nonvolatile cache
memory of the computing device.
0076 Example 44 includes the subject matter of any of
Examples 36-43, and further including means for loading, by
the computing device, the saved execution state of the appli
cation into a virtual memory space of the application using the
hardware checkpoint Support of the processor; and means for
resuming, by the computing device, execution of the applica
tion from the saved execution state in response to loading the
saved execution state.

0077. Example 45 includes the subject matter of any of
Examples 36–44, and wherein the means for loading the saved
execution state comprises means for loading the saved execu
tion state from a cache memory of the computing device.
0078 Example 46 includes the subject matter of any of
Examples 36-45, and wherein the means for loading the saved

Jan. 28, 2016

execution state from the cache memory comprises means for
loading the execution state from a nonvolatile cache memory
of the computing device.
0079. Example 47 includes the subject matter of any of
Examples 36-46, and further including means for executing,
by the computing device, a system hook to invoke the hard
ware checkpoint Support in response to encountering the
occurrence of the checkpoint event.
0080 Example 48 includes the subject matter of any of
Examples 36-47, and wherein the means for executing the
system hook comprises means for executing a system call.
I0081 Example 49 includes the subject matter of any of
Examples 36-48, and wherein the means for executing the
system hook comprises means for executing a processor
instruction.
I0082 Example 50 includes the subject matter of any of
Examples 36-49, and wherein the means for executing the
system hook comprises means for generating a hardware
interrupt.
I0083. Example 51 includes the subject matter of any of
Examples 36-50, and wherein the means for executing the
application comprises means for executing a process, a
thread, a virtual machine, or a virtualized application.

1. A computing device for hardware-assisted application
checkpointing, the computing device comprising:

a processor comprising hardware checkpoint Support to
responsively save an execution state of an application
executed by the processor,

a checkpoint interface module to monitor for an occurrence
of a checkpoint event during execution of the applica
tion; and

a checkpoint Support module to cause the hardware check
point Support to save the execution state of the applica
tion in response to the occurrence of the checkpoint
event during execution of the application, wherein the
execution state is indicative of a virtual memory state of
the application.

2. The computing device of claim 1, further comprising a
hardware event monitor, wherein to monitor for the occur
rence of the checkpoint event comprises to receive a check
point event generated by the hardware event monitor.

3. The computing device of claim 2, wherein the processor
further comprises the hardware event monitor.

4. The computing device of claim 1, further comprising a
cache memory, wherein to save the execution state of the
application comprises to save the execution state of the appli
cation to the cache memory.

5. The computing device of claim 1, wherein:
the checkpoint Support module is further to cause the hard

ware checkpoint Support to load the saved execution
state of the application into a virtual memory space of
the application; and

the processor is further to resume execution of the appli
cation from the saved execution state in response to
loading of the saved execution state.

6. The computing device of claim 5, further comprising a
cache memory, wherein to load the saved execution state
comprises to load the saved execution state from the cache
memory.

7. The computing device of claim 1, wherein the check
point interface module is further to execute a system hook to
invoke the hardware checkpoint Support in response to the
occurrence of the checkpoint event.

US 2016/0026546 A1

8. The computing device of claim 7, wherein to execute the
system hook comprises to execute a processor instruction.

9. The computing device of claim 7, wherein to execute the
system hook comprises to generate a hardware interrupt.

10. The computing device of claim 1, wherein the applica
tion comprises a process, a thread, a virtual machine, or a
virtualized application.

11. A method for hardware-assisted application check
pointing, the method comprising:

executing an application by a computing device having a
processor including hardware checkpoint Support con
figured to responsively save an execution state of an
executed application;

encountering, by the computing device, an occurrence of a
checkpoint event while executing the application; and

saving, by the computing device, an execution State of the
application using the hardware checkpoint Support of
the processorin response to encountering the occurrence
of the checkpoint event, wherein the execution state is
indicative of a virtual memory state of the application.

12. The method of claim 11, wherein encountering the
occurrence of the checkpoint event comprises receiving a
checkpoint event generated by a hardware event monitor of
the computing device.

13. The method of claim 12, wherein receiving the check
point event generated by the hardware event monitor com
prises receiving a checkpoint event generated by a hardware
event monitor of a processor of the computing device.

14. The method of claim 11, wherein saving the execution
state of the application comprises saving the execution state
of the application to a cache memory of the computing device.

15. The method of claim 11, further comprising executing,
by the computing device, a system hook to invoke the hard
ware checkpoint Support in response to encountering the
occurrence of the checkpoint event.

16. The method of claim 11, wherein executing the appli
cation comprises executing a process, a thread, a virtual
machine, or a virtualized application.

Jan. 28, 2016

17. One or more computer-readable storage media com
prising a plurality of instructions that in response to being
executed cause a computing device to:

execute an application by the computing device, wherein
the computing device has a processor including hard
ware checkpoint Support configured to responsively
save an execution state of an executed application;

encounter an occurrence of a checkpoint event while
executing the application; and

save an execution State of the application using the hard
ware checkpoint Support of the processor in response to
encountering the occurrence of the checkpoint event,
wherein the execution state is indicative of a virtual
memory state of the application.

18. The one or more computer-readable storage media of
claim 17, wherein to encounter the occurrence of the check
point event comprises to receive a checkpoint event generated
by a hardware event monitor of the computing device.

19. The one or more computer-readable storage media of
claim 18, wherein to receive the checkpoint event generated
by the hardware event monitor comprises to receive a check
point event generated by a hardware event monitor of a pro
cessor of the computing device.

20. The one or more computer-readable storage media of
claim 17, wherein to save the execution state of the applica
tion comprises to save the execution state of the application to
a cache memory of the computing device.

21. The one or more computer-readable storage media of
claim 17, further comprising a plurality of instructions that in
response to being executed cause the computing device to
execute a system hook to invoke the hardware checkpoint
Support in response to encountering the occurrence of the
checkpoint event.

22. The one or more computer-readable storage media of
claim 17, wherein to execute the application comprises to
execute a process, a thread, a virtual machine, or a virtualized
application.

