(51) International Patent Classification 7:
C12N 15/53, 90/2, 15/86, C12P 7/64,
C12N 5/10, C11B 1/00, A61K 31/20,
31/23, 7/00, A23K 1/00, A23L 1/30 //
(C12P 7/64, C12R 1:91)

(11) International Publication Number:
WO 00/20603

(43) International Publication Date:
13 April 2000 (13.04.00)

(21) International Application Number:
PCT/US99/22692

(22) International Filing Date:
29 September 1999 (29.09.99)

(30) Priority Data:
60/103,109 5 October 1998 (05.10.98) US

(71) Applicant (for all designated States except US):
ABBOTT LABORATORIES [US/US]; 100 Abbott Park Road, Abbott
Park, IL 60064-3500 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only):
MUKERJI, Pradip [US/US]; 1069 Arcaro Drive, Gahanna, OH 43230 (US),
HUANG, Yung-Sheng [CA/US]; 2422 Danvers Court,
Upper Arlington, OH 43220 (US), PARKER–BARNES, Jennifer, H. [US/US]; 1311 Belcross Drive, New Albany,
OH 43034 (US), DAS, Tapas [IN/US]; 936 Linkfield Drive,
Worthington, OH 43085 (US).

(74) Agents: WARD, Michael, R. et al.; Limbach & Limbach
L.L.P., 2001 Ferry Building, San Francisco, CA 94111-4262
(US).

(54) Title: ALTERED FATTY ACID BIOSYNTHESIS IN INSECT CELLS USING DELTA FIVE DESATURASE

(57) Abstract

The present invention relates to a fatty acid \(\Delta^5 \)-desaturase able to
catalyze the conversion of dihomo-gamma-linolenic acid to arachidonic acid. Nucleic acid sequences encoding a \(\Delta^5 \)-desaturase, nucleic acid sequences which encode thereto, DNA constructs comprising a
\(\Delta^5 \)-desaturase gene, recombinant host insect or animal expressing increased
levels of a \(\Delta^5 \)-desaturase, purified \(\Delta^5 \)-desaturase proteins and
antisera (polyclonal and monoclonal) to the purified \(\Delta^5 \)-desaturase
proteins are described. Methods for desaturating a fatty acid at the \(\Delta^5 \)
position and for producing arachidonic acid by expressing increased
levels of a \(\Delta^5 \) desaturase are disclosed. Methods of purifying the
oils and preparing the oils for food products are also disclosed. Fatty
acids, and oils containing them, which have been desaturated by a
\(\Delta^5 \)-desaturase produced by recombinant host microorganism or
animals are provided. Pharmaceutical compositions, infant formulas or
dietary supplements containing fatty acids which have been desaturated
by a \(\Delta^5 \)-desaturase produced by a recombinant host microorganism or
animal are also described.
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MK</td>
<td>The former Yugoslavia</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
INTRODUCTION

Field of the Invention

This invention relates to modulating levels of enzymes and/or enzyme components relating to production of long chain poly-unsaturated fatty acids (PUFAs) and Δ5 desaturases in insects or animals.

Background

Two main families of polyunsaturated fatty acids (PUFAs) are the ω3 fatty acids, exemplified by eicosapentaenoic acid (EPA), and the ω6 fatty acids, exemplified by arachidonic acid (ARA). PUFAs are important components of the plasma membrane of the cell, where they may be found in such forms as phospholipids. PUFAs are necessary for proper development, particularly in the developing infant brain, and for tissue formation and repair. PUFAs also serve as precursors to other molecules of importance in human beings and animals, including the prostacyclins, eicosanoids, leukotrienes and prostaglandins.

Four major long chain PUFAs of importance include docosahexaenoic acid (DHA) and EPA, which are primarily found in different types of fish oil, gamma-linolenic acid (GLA), which is found in the seeds of a number of plants, including evening primrose (Oenothera biennis), borage (Borago officinalis) and black currants (Ribes nigrum), and stearidonic acid (SDA), which is found in marine oils and plant seeds. Both GLA and another important long chain PUFA, arachidonic acid (ARA), are found in filamentous fungi. ARA can be purified from animal tissues including liver and adrenal gland. GLA, ARA, EPA and SDA are themselves, or are dietary precursors to, important long chain fatty acids involved in prostaglandin synthesis, in treatment of heart disease, and in development of brain tissue.
Polyunsaturated fatty acids have a number of pharmaceutical and medical applications including treatment of heart disease, cancer and arthritis.

For DHA, a number of sources exist for commercial production including a variety of marine organisms, oils obtained from cold water marine fish, and egg yolk fractions. For ARA, microorganisms including the genera *Mortierella, Entomophthora, Phytium* and *Porphyridium* can be used for commercial production. Commercial sources of SDA include the genera *Trichodesma* and *Echium*. Commercial sources of GLA include evening primrose, black currants and borage. However, there are several disadvantages associated with commercial production of PUFAs from natural sources. Natural sources of PUFAs, such as animals and plants, tend to have highly heterogeneous oil compositions. The oils obtained from these sources therefore can require extensive purification to separate out one or more desired PUFAs or to produce an oil which is enriched in one or more PUFA. Natural sources also are subject to uncontrollable fluctuations in availability. Fish stocks may undergo natural variation or may be depleted by overfishing. Fish oils have unpleasant tastes and odors, which may be impossible to economically separate from the desired product, and can render such products unacceptable as food supplements. Animal oils, and particularly fish oils, can accumulate environmental pollutants. Weather and disease can cause fluctuation in yields from both fish and plant sources. Cropland available for production of alternate oil-producing crops is subject to competition from the steady expansion of human populations and the associated increased need for food production on the remaining arable land. Crops which do produce PUFAs, such as borage, have not been adapted to commercial growth and may not perform well in monoculture. Growth of such crops is thus not economically competitive where more profitable and better established crops can be grown. Large scale fermentation of organisms such as *Mortierella* is also expensive. Natural animal tissues contain low amounts of ARA and are difficult to process. Microorganisms such as *Porphyridium* and *Mortierella* are difficult to cultivate on a commercial scale.
Dietary supplements and pharmaceutical formulations containing PUFAs can retain the disadvantages of the PUFA source. Supplements such as fish oil capsules can contain low levels of the particular desired component and thus require large dosages. High dosages result in ingestion of high levels of undesired components, including contaminants. Unpleasant tastes and odors of the supplements can make such regimens undesirable, and may inhibit compliance by the patient. Care must be taken in providing fatty acid supplements, as overaddition may result in suppression of endogenous biosynthetic pathways and lead to competition with other necessary fatty acids in various lipid fractions in vivo, leading to undesirable results. For example, Eskimos having a diet high in ω3 fatty acids have an increased tendency to bleed (U.S. Pat. No. 4,874,603).

A number of enzymes are involved in PUFA biosynthesis. Linolenic acid (LA, 18:2 Δ9, 12) is produced from oleic acid (18:1 Δ9) by a Δ12-desaturase. GLA (18:3 Δ6, 9, 12) is produced from linoleic acid (LA, 18:2 Δ9, 12) by a Δ6-desaturase. ARA (20:4 Δ5, 8, 11, 14) production from dihomogamma-linolenic acid (DGLA, 20:3 Δ8, 11, 14) is catalyzed by a Δ5-desaturase. However, animals cannot desaturate beyond the Δ9 position and therefore cannot convert oleic acid (18:1 Δ9) into linolenic acid (18:2 Δ912). Likewise, α-linoleic acid (ALA, 18:3 Δ9, 12, 15) cannot be synthesized by mammals. Other eukaryotes, including fungi and plants, have enzymes which desaturate at positions Δ12 and Δ15. The major poly-unsaturated fatty acids of animals therefore are either derived from diet and/or from desaturation and elongation of linoleic acid (18:2 Δ9, 12) or α-linolenic acid (18:3 Δ9, 12, 15). Therefore it is of interest to obtain genetic material involved in PUFA biosynthesis from species that naturally produce these fatty acids and to express the isolated material in a microbial or animal system which can be manipulated to provide production of commercial quantities of one or more PUFAs. Thus there is a need for fatty acid desaturases, genes encoding them, and recombinant methods of producing them. A need further exists for oils containing higher relative
proportions of and/or enriched in specific PUFAs. A need also exists for reliable economical methods of producing specific PUFAs.

In particular, there is a need to express PUFAs in a baculovirus expression system using cultured insect cells such as *Spodoptera frugiperda* (Sf9), army fallworm. The lipid composition of Sf9 cells has been well characterized and are known to contain low proportions of polyunsaturated fatty acids. As such, production of PUFAs in insect cells would provide a good source of purified Δ5 desaturases for use in enzyme studies and antibody production as well as a good source of PUFAs for use in various oils, nutritional supplements, cosmetic agents and the like.

Summary of the Invention

Novel compositions and methods are provided for preparation of polyunsaturated long chain fatty acids or PUFAs. The compositions include nucleic acids encoding a Δ5-desaturase and/or polypeptides having Δ5-desaturase activity, the polypeptides, and probes for isolating and detecting the same. The methods involve growing a host microorganism or animal which contains and expresses one or more transgenes encoding a Δ5-desaturase and/or a polypeptide having Δ5-desaturase activity. Expression of the desaturase polypeptide provides for a relative increase in Δ5-desaturated PUFA, or metabolic progeny therefrom, as a result of altered concentrations of enzymes and substrates involved in PUFA biosynthesis. The invention finds use for example in the large scale production of PUFA containing oils which include, for example, ARA, EPA and/or DHA.

The invention is also directed to methods of producing purified Δ5 desaturase in an insect cell culture system. The purified protein can be used as an antigen for the production of polyclonal and monoclonal antibodies. These antibodies find use in methods of purifying the Δ5 desaturases and in methods of detecting levels of Δ5 desaturase polypeptide in complex solutions.
The purified Δ5 desaturase protein also finds use in studies of the Δ5 desaturase enzyme including X-ray crystal structures for structure-function studies. Once the purified protein has been studied in some detail, the enzyme can be modified by genetic engineering techniques to improve enzymatic activity and to alter substrate specificities.

In a preferred embodiment, a nucleic acid sequence comprising a Δ5-desaturase depicted in Figure 3A-D (SEQ ID NO: 1), a polypeptide encoded by the nucleic acid, and a purified or isolated polypeptide depicted in Figure 3A-D (SEQ ID NO: 2), and an isolated nucleic acid encoding the polypeptide of Figure 3A-D (SEQ ID NO: 2) are provided. Another embodiment of the invention is an isolated nucleic acid sequence which encodes a polypeptide, wherein said polypeptide desaturates a fatty acid molecule at carbon 5 from the carboxyl end of the molecule. The nucleic acid is preferably derived from a eukaryotic cell, such as a fungal cell, or a fungal cell of the genus Mortierella, or of the genus/species Mortierella alpina. Also preferred is an isolated nucleic acid comprising a sequence which anneals to a nucleotide sequence depicted in Figure 3A-3D (SEQ ID NO: 1), and a nucleic acid which encodes an amino acid sequence depicted in Figure 3A-D (SEQ ID NO: 2). In particular, the nucleic acid encodes an amino acid sequence depicted in Figure 3A-D (SEQ ID NO: 2) which is selected from the group consisting of amino acid residues 30-38, 41-44, 171-175, 203-212, and 387-394. In an additional embodiment, the invention provides an isolated or purified polypeptide which desaturates a fatty acid molecule at carbon 5 from the carboxyl end of the molecule. Also provided is an isolated nucleic acid sequence which hybridizes to a nucleotide sequence depicted in Figure 3A-D (SEQ ID NO 1), an isolated nucleic acid sequence having at least about 50% identity to Figure 3A-D (SEQ ID NO 1).

The present invention further includes a nucleic acid construct comprising a nucleotide sequence depicted in a Figure 3A-D (SEQ ID NO: 1) linked to a heterologous nucleic acid; a nucleic acid construct comprising a nucleotide sequence depicted in a Figure 3A-D (SEQ ID NO: 1) operably linked to a promoter; and a nucleic acid construct comprising a nucleotide sequence
depicted in a Figure 3A-D (SEQ ID NO: 1) operably linked to a promoter which is functional in a microbial cell. In a preferred embodiment, the microbial cell is a yeast cell, and the nucleotide sequence is derived from a fungus, such as a fungus of the genus *Mortierella*, particularly a fungus of the species *Mortierella alpina*.

In another embodiment of the invention, a nucleic acid construct is provided which comprises a nucleotide sequence which encodes a polypeptide comprising an amino acid sequence which corresponds to or is complementary to an amino acid sequence depicted in Figure 3A-D (SEQ ID NO: 2), wherein the nucleotide sequence is operably linked to a promoter which is functional in a host cell, and wherein the nucleotide sequence encodes a polypeptide which desaturates a fatty acid molecule at carbon 5 from the carboxyl end of a fatty acid molecule. Additionally, provided by the invention is a nucleic acid construct comprising a nucleotide sequence which encodes a functionally active Δ5-desaturase, where the desaturase includes an amino acid sequence which corresponds to or is complementary to all of or a portion of an amino acid sequence depicted in a Figure 3A-D (SEQ ID NO: 2), wherein the nucleotide sequence is operably linked to a promoter functional in a host cell.

The invention also includes a host cell comprising a nucleic acid construct of the invention. In a preferred embodiment, a recombinant host cell is provided which comprises at least one copy of a DNA sequence which encodes a functionally active *Mortierella alpina* fatty acid desaturase having an amino acid sequence as depicted in Figure 3A-D (SEQ ID NO: 2), wherein the cell or an ancestor of the cell was transformed with a vector comprising said DNA sequence, and wherein the DNA sequence is operably linked to a promoter. The host cell is either eukaryotic or prokaryotic. Preferred eukaryotic host cells are those selected from the group consisting of a mammalian cell, an insect cell, a fungal cell, and an algae cell. A preferred algae is a marine algae. Most preferred is an insect cell. Most preferred insect cells include fall army worm cells, *Spodoptera frugiperda* (Sf9 and Sf21 cells) and cabbage looper moth, *Trichoplusia ni* (Hi Five Cells).
Preferred prokaryotic cells include those selected from the group consisting of a bacteria, a cyanobacteria, cells which contain a bacteriophage, and/or a virus. The DNA sequence of the recombinant host cell preferably contains a promoter which is functional in the host cell.

The host cells of the invention which contain the DNA sequences of the invention are enriched for fatty acids, such as 20:3 fatty acids. In a preferred embodiment, the host cells are enriched for 20:4 fatty acids as compared to an untransformed host cell which is devoid of said DNA sequence, and/or enriched for 20:5 fatty acids compared to an untransformed host cell which is devoid of said DNA sequence. In yet another preferred embodiment, the invention provides a recombinant host cell which comprises a fatty acid selected from the group consisting of a dihomo-γ-linolenic acid, n-6 eicosatrienoic acid, 20:3n-6 acid and 20:3 (8,11,14) acid.

The present invention also includes method for production of arachidonic acid in an insect cell culture, where the method comprises growing an insect cell culture having a plurality of insect cells which contain one or more nucleic acids encoding a polypeptide which converts dihomo-γ-linolenic acid to arachidonic acid, wherein the nucleic acid is operably linked to a promoter, under conditions whereby said one or more nucleic acids are expressed, whereby arachidonic acid is produced in the microbial cell culture. In several preferred embodiments of the invention, the polypeptide is an enzyme which desaturates a fatty acid molecule at carbon 5 from the carboxyl end of the fatty acid molecule; the nucleic acid is derived from a Mortierella sp.; and the substrate for said polypeptide is exogenously supplied. Preferred insect cells include *spodoptera frugipera* (Sf9 and Sf 21). Preferred mammalian cells include an avian cell, a preferred fungal cell is a yeast, and the preferred algae cell is a marine algae cell. The preferred prokaryotic cells include those selected from the group consisting of a bacteria, a cyanobacteria, cells which contain a bacteriophage, and/or a virus. The nucleic acid sequence encoding the polypeptide of the microbial cell preferably contains a promoter which is functional in the host cell which optionally is an inducible promoter for example
by components of the culture broth. The preferred microbial cells used in the
methods are yeast cells, such as *Saccharomyces* cells.

In another embodiment of the invention, a recombinant yeast cell is
provided which converts greater than about 5% of 20:3 fatty acid substrate to a
20:4 fatty acid product.

Also provided is an oil comprising one or more PUFA. The amount of
said one or more PUFAs is approximately 0.3-30% arachidonic acid (ARA),
approximately 0.2-30% dihomo-γ-linolenic acid (DGLA), and approximately
0.2-30% γ-linolenic acid (GLA). A preferred oil of the invention is one in
which the ratio of ARA:DGLA:GLA is approximately 1.0:19:0:30 to
6.0:1.0:0.2. Another preferred embodiment of the invention is a pharmaceutical
composition comprising the oils in a pharmaceutically acceptable carrier.
Further provided is a nutritional composition comprising the oils of the
invention. The nutritional compositions of the invention preferably are
administered to a mammalian host parenterally or internally. A preferred
composition of the invention for internal consumption is an infant formula. In a
preferred embodiment, the nutritional compositions of the invention are in a
liquid form or a solid form.

The present invention also includes a method for desaturating a fatty
acid, where the method comprises culturing a recombinant microbial cell of the
invention under conditions suitable for expression of a polypeptide encoded by
the nucleic acid, wherein the host cell further comprises a fatty acid substrate of
the polypeptide. In a preferred embodiment, a fatty acid desaturated by the
methods is provided, including an oil comprising the fatty acid.

The present invention is also directed to purified nucleotide and peptide
sequences presented in SEQ ID NO:1-34. The present invention is further
directed toward methods of using the sequences presented in SEQ ID NO:1-34
as probes to identify related sequences, as components of expression systems
and as components of systems useful for producing transgenic oil.
The present invention is further directed to methods of obtaining altered long chain poly unsaturated fatty acid biosystems by growing transgenic microbes which encode transgene expression products which desaturate a fatty acid molecule at carbon 5 from the carboxyl end of the fatty acid molecule.

The present invention is further directed to formulas, dietary supplements or dietary substitutes in the form of a liquid or a solid containing the long chain fatty acids of the invention. These formulas, supplements and substitutes may be administered to a human or an animal.

The formulas, supplements of the invention may further comprise at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electro dialysed whey, electro dialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

The formulas of the present invention may further include at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

The present invention is further directed to a method of treating a patient having a condition caused by insufficient intake or production of polyunsaturated fatty acids comprising administering to the patient a dietary substitute of the invention in an amount sufficient to effect treatment of the patient.

The present invention is further directed to cosmetic and pharmaceutical compositions of the material of the invention.

The present invention is also directed to an isolated nucleotide sequence comprising a nucleotide sequence selected from the group consisting of: SEQ ID NO:13; SEQ ID NO:15; SEQ ID NO:17; SEQ ID NO:19; SEQ ID NO:21; SEQ ID NO:22; SEQ ID NO:22; SEQ ID NO:24; SEQ ID NO:25; SEQ ID NO:26 and SEQ ID NO:27.
The present invention is also directed to an isolated peptide sequence comprising a peptide sequence selected from the group consisting of: SEQ ID NO:14; SEQ ID NO:16; SEQ ID NO:18; SEQ ID NO:20; SEQ ID NO:28; SEQ ID NO:29; SEQ ID NO:30; SEQ ID NO:31; SEQ ID NO:32; SEQ ID NO:33 and SEQ ID NO:34.

The present invention is further directed to transgenic oils in pharmaceutically acceptable carriers. The present invention is further directed to nutritional supplements, cosmetic agents and infant formulae containing transgenic oils.

The present invention is further directed to a method for obtaining altered long chain polyunsaturated fatty acid biosynthesis comprising the steps of: growing a microbe having cells which contain a transgene which encodes a transgene expression product which desaturates a fatty acid molecule at carbon 5 from the carboxyl end of said fatty acid molecule, wherein the transgene is operably associated with an expression control sequence, under conditions whereby the transgene is expressed, whereby long chain polyunsaturated fatty acid biosynthesis in the cells is altered.

The present invention is further directed to the use of chain polyunsaturated fatty acid selected from the group consisting of ARA, DGLA and EPA.

The present invention is further directed toward pharmaceutical compositions comprising at least one nutrient selected from the group consisting of a vitamin, a mineral, a carbohydrate, a sugar, an amino acid, a free fatty acid, a phospholipid, an antioxidant, and a phenolic compound.
Brief Description of the Drawings

Figure 1 shows possible pathways for the synthesis of arachidonic acid (20:4 Δ5, 8, 11, 14) and stearidonic acid (18:4 Δ6, 9, 12, 15) from palmitic acid (C₁₆) from a variety of organisms, including algae, *Mortierella* and humans. These PUFAs can serve as precursors to other molecules important for humans and other animals, including prostacyclins, leukotrienes, and prostaglandins, some of which are shown.

Figure 2 shows possible pathways for production of PUFAs in addition to ARA, including EPA and DHA, for a variety of organisms.

Figure 3A-D shows the DNA sequence of the *Mortierella alpina* Δ5-desaturase and the deduced amino acid sequence.

Figure 4 shows the deduced amino acid sequence of the PCR fragment (see Example 1)

Figure 5A and 5B show alignments of the protein sequence of the Δ5-desaturase with Δ6-desaturases.

Figure 6A and 6B show the effect of the timing of substrate addition relative to induction on conversion of substrate to product in SC334 containing the Δ5-desaturase gene.

Figure 7A and 7B show the effect of inducer concentration on Δ5-desaturase expression in SC334.

Figure 8A and 8B show the effect of induction temperature on Δ5-desaturase activity in SC334.

Figure 9A and 9B show the effect of host strain on the conversion of substrate to product in strains expressing the Δ5-desaturase gene at 15°C.

Figure 10A and 10B show the effect of host strain on the conversion of substrate to product in strains expressing the Δ5-desaturase gene at 30°C.
Figure 11 shows the effect of a host strain expressing choline transferase as well as the Δ5-desaturase gene on the conversion of substrate to product.

Figure 12A and 12B show the effect of media composition and temperature on the conversion of substrate to product in two host strains expressing the Δ5-desaturase gene.

Figure 13 shows alignment of the protein sequence of Ma 29 and contig 253538a.

Figure 14 shows alignment of the protein sequence of Ma 524 and contig 253538a.

Brief Description of the Sequence Listings

SEQ ID NO: 1 shows a DNA sequence of the *Mortierella alpina* Δ5-desaturase.

SEQ ID NO: 2 shows an amino acid sequence of *Mortierella alpina* Δ5-desaturase.

SEQ ID NO: 3 shows the deduced amino acid sequence of the *M. alpina* PCR fragment (see Example 1).

SEQ ID NO: 4 - SEQ ID NO: 7 show the deduced amino acid sequences of various Δ6-desaturases.

SEQ ID NO: 8 and SEQ ID NO: 9 show PCR primer sequences for Δ6-desaturases

SEQ ID NO: 10 shows a primer for reverse transcription of total RNA.

SEQ ID NO: 11 and SEQ ID NO: 12 show amino acid motifs for desaturase sequences.

SEQ ID NO: 13 and SEQ ID NO: 14 show the nucleotide and amino acid sequence of a *Dictyostelium discoideum* desaturase sequence.
SEQ ID NO: 15 and SEQ ID NO: 16 show the nucleotide and amino acid sequence of a *Phaeodactylum tricornutum* desaturase sequence.

SEQ ID NO: 17-20 show the nucleotide and deduced amino acid sequence of a *Schizochytrium* cDNA clone.

SEQ ID NO: 21-27 show nucleotide sequences for human desaturases.

SEQ ID NO: 28 - SEQ ID NO: 34 show peptide sequences for human desaturases.

Detailed Description of the Invention

In order to ensure a complete understanding of the invention, the following definitions are provided:

Δ5-Desaturase: Δ5 desaturase is an enzyme which introduces a double bond between carbons 5 and 6 from the carboxyl end of a fatty acid molecule.

Δ6-Desaturase: Δ6-desaturase is an enzyme which introduces a double bond between carbons 6 and 7 from the carboxyl end of a fatty acid molecule.

Δ9-Desaturase: Δ9-desaturase is an enzyme which introduces a double bond between carbons 9 and 10 from the carboxyl end of a fatty acid molecule.

Δ12-Desaturase: Δ12-desaturase is an enzyme which introduces a double bond between carbons 12 and 13 from the carboxyl end of a fatty acid molecule.

Fatty Acids: Fatty acids are a class of compounds containing a long hydrocarbon chain and a terminal carboxylate group. Fatty acids include the following:

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>12:0</th>
<th>16:0</th>
<th>16:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>lauric acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palmitic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palmitoleic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty Acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:0 stearic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:1 oleic acid</td>
<td>Δ9-18:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:2 Δ5,9 taxoleic acid</td>
<td>Δ5,9-18:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:2 Δ6,9 6,9-octadecadienoic acid</td>
<td>Δ6,9-18:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:2 linoleic acid</td>
<td>Δ9,12-18:2 (LA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:3 Δ6,9,12 gamma-linolenic acid</td>
<td>Δ6,9,12-18:3 (GLA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:3 Δ5,9,12 pinolenic acid</td>
<td>Δ5,9,12-18:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:3 alpha-linolenic acid</td>
<td>Δ9,12,15-18:3 (ALA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:4 stearidonic acid</td>
<td>Δ6,9,12,15-18:4 (SDA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:0 Arachidic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:1 Eicosenic Acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:0 behenic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:1 erucic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:2 Docosadienoic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:4 ω6 arachidonic acid</td>
<td>Δ5,8,11,14-20:4 (ARA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:3 ω6 ω6-eicosatrienoic dihomo-gamma linolenic</td>
<td>Δ8,11,14-20:3 (DGLA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:5 ω3 Eicosapentanoic (Timnodonic acid)</td>
<td>Δ5,8,11,14,17-20:5 (EPA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:3 ω3 ω3-eicosatrienoic</td>
<td>Δ11,16,17-20:3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:4 ω3 ω3-eicosatetraenoic</td>
<td>Δ8,11,14,17-20:4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:5 ω3 Docasapentaenoic</td>
<td>Δ7,10,13,16,19-22:5 (ω3DPA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:6 ω3 Docosahexaenoic (cervonic acid)</td>
<td>Δ4,7,10,13,16,19-22:6 (DHA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24:0 Lignoceric acid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taking into account these definitions, the present invention is directed to novel DNA sequences, DNA constructs, methods and compositions are provided which permit modification of the poly-unsaturated long chain fatty acid content of, for example, microbial cells or animals. Host cells are manipulated to express a sense or antisense transcript of a DNA encoding a polypeptide(s) which catalyzes the conversion of DGLA to ARA. The substrate(s) for the expressed enzyme may be produced by the host cell or may be exogenously supplied. To achieve expression, the transformed DNA is
operably associated with transcriptional and translational initiation and
termination regulatory regions that are functional in the host cell. Constructs
comprising the gene to be expressed can provide for integration into the genome
of the host cell or can autonomously replicate in the host cell. For production
of ARA, the expression cassettes generally used include a cassette which
provides for Δ5-desaturase activity, particularly in a host cell which produces or
can take up DGLA. Production of ω6-type unsaturated fatty acids, such as
ARA, is favored in a host microorganism or animal which is substantially free
of ALA. The host is selected or obtained by removing or inhibiting activity of a
Δ15 desaturase or a desaturase involved in the omega-3 pathway (see Figure 2).
The endogenous desaturase activity can be affected by providing an expression
cassette for an antisense Δ15 or ω3 transcript, by disrupting a target Δ15- or ω3-
desaturase gene through insertion, substitution and/or deletion of all or part of
the target gene, or by adding a Δ15- or ω3-desaturase inhibitor. Production of
LA also can be increased by providing expression cassettes for Δ9 and/or Δ12-
desaturases where their respective enzymatic activities are limiting.

INSECT CELL PRODUCTION OF FATTY ACIDS

Insect cell production of fatty acids has several advantages over
purification from natural sources such as fish or plants. Many insect cells are
known with greatly simplified lipid compositions compared with those of higher
organisms, making purification of desired components easier. Insect cell fatty
acid production is not subject to fluctuations caused by external variables such
as weather and food supply. Insect cell produced fatty acids are substantially
free of contamination by environmental pollutants. Additionally, insect cells
can provide PUFAs in particular forms which may have specific uses.
Additionally, insect cell lipid production can be manipulated by controlling
culture conditions, notably by providing particular substrates for microbially
expressed enzymes, or by addition of compounds which suppress undesired
biochemical pathways. In addition to these advantages, production of fatty
acids from recombinant microbes provides the ability to alter the naturally occurring microbial fatty acid profile by providing new synthetic pathways in the host or by suppressing undesired pathways, thereby increasing levels of desired PUFAs, or conjugated forms thereof, and decreasing levels of undesired PUFAs.

PRODUCTION OF FATTY ACIDS IN ANIMALS

Production of fatty acids in animals also presents several advantages. Expression of desaturase genes in animals can produce greatly increased levels of desired PUFAs in animal tissues, making recovery from those tissues more economical. For example, where the desired PUFAs are expressed in the breast milk of animals, methods of isolating PUFAs from animal milk are well established. In addition to providing a source for purification of desired PUFAs, animal breast milk can be manipulated through expression of desaturase genes, either alone or in combination with other human genes, to provide animal milks with a PUFA composition substantially similar to human breast milk during the different stages of infant development. Humanized animal milks could serve as infant formulas where human nursing is impossible or undesired, or in cases of malnourishment or disease.

Depending upon the host cell, the availability of substrate, and the desired end product(s), several polypeptides, particularly desaturases, are of interest. By “desaturase” is intended a polypeptide which can desaturate one or more fatty acids to produce a mono- or poly-unsaturated fatty acid or precursor thereof of interest. Of particular interest are polypeptides which can catalyze the conversion of DGLA to produce ARA which includes enzymes which desaturate at the Δ5 position. By “polypeptide” is meant any chain of amino acids, regardless of length or post-translational modification, for example, glycosylation or phosphorylation. Considerations for choosing a specific polypeptide having desaturase activity include the pH optimum of the polypeptide, whether the polypeptide is a rate limiting enzyme or a component thereof, whether the desaturase used is essential for synthesis of a desired poly-unsaturated fatty acid, and/or co-factors required by the polypeptide. The
expressed polypeptide preferably has parameters compatible with the biochemical environment of its location in the host cell. For example, the polypeptide may have to compete for substrate with other enzymes in the host cell. Analyses of the K_m and specific activity of the polypeptide in question therefore are considered in determining the suitability of a given polypeptide for modifying PUFA production in a given host cell. The polypeptide used in a particular situation is one which can function under the conditions present in the intended host cell but otherwise can be any polypeptide having desaturase activity which has the desired characteristic of being capable of modifying the relative production of a desired PUFA.

For production of ARA, the DNA sequence used encodes a polypeptide having Δ_5-desaturase activity. In particular instances, this can be coupled with an expression cassette which provides for production of a polypeptide having Δ_6-desaturase activity and the host cell can optionally be depleated of any Δ_15-desaturase activity present, for example by providing a transcription cassette for production of antisense sequences to the Δ_15-desaturase transcription product, by disrupting the Δ_15-desaturase gene, or by using a host cell which naturally has, or has been mutated to have, low Δ_15-desaturase activity. Inhibition of undesired desaturase pathways also can be accomplished through the use of specific desaturase inhibitors such as those described in U.S. Patent No. 4,778,630. The choice of combination of cassettes used can depend in part on the PUFA profile of the host cell. Where the host cell Δ_5-desaturase activity is limiting, overexpression of Δ_5-desaturase alone generally will be sufficient to provide for enhanced ARA production in the presence of an appropriate substrate such as DGLA. ARA production also can be increased by providing expression cassettes for Δ_9- or Δ_{12}-desaturase genes when the activities of those desaturases are limiting. A scheme for the synthesis of arachidonic acid ($20:4 \Delta^{5,8,11,14}$) from palmitic acid (C16) is shown in Figure 1. A key enzyme in this pathway is a Δ_5-desaturase which converts DH-γ-linolenic acid (DGLA, eicosatrienoic acid) to ARA. Conversion of α-linolenic acid (ALA) to
stearidonic acid by a Δ6-desaturase is also shown. Production of PUFAs in addition to ARA, including EPA and DHA is shown in Figure 2.

SOURCES OF POLYPEPTIDES HAVING DESATURASE ACTIVITY

A source of polypeptides having desaturase activity and oligonucleotides encoding such polypeptides are organisms which produce a desired polyunsaturated fatty acid. As an example, microorganisms having an ability to produce ARA can be used as a source of Δ5-desaturase activity. Such microorganisms include, for example, those belonging to the genera *Mortierella, Conidiobolus, Pythium, Phytophthora, Penicillium, Porphyridium, Coidosporium, Mucor, Fusarium, Aspergillus, Rhodotorula*, and *Entomophthora*. Within the genus *Porphyridium*, of particular interest is *Porphyridium cruentum*. Within the genus *Mortierella*, of particular interest are *Mortierella elongata, Mortierella exigua, Mortierella hygrophila, Mortierella ramanniana*, var. angulispora, and *Mortierella alpina*. Within the genus *Mucor*, of particular interest are *Mucor circinelloides* and *Mucor javanicus*.

DNAs encoding desired desaturases can be identified in a variety of ways. As an example, a source of the desired desaturase, for example genomic or cDNA libraries from *Mortierella*, is screened with detectable enzymatically- or chemically-synthesized probes, which can be made from DNA, RNA, or non-naturally occurring nucleotides, or mixtures thereof. Probes may be enzymatically synthesized from DNAs of known desaturases for normal or reduced-stringency hybridization methods. Oligonucleotide probes also can be used to screen sources and can be based on sequences of known desaturases, including sequences conserved among known desaturases, or on peptide sequences obtained from the desired purified protein. Oligonucleotide probes based on amino acid sequences can be degenerate to encompass the degeneracy of the genetic code, or can be biased in favor of the preferred codons of the source organism. Oligonucleotides also can be used as primers for PCR from reverse transcribed mRNA from a known or suspected source; the PCR product can be the full length cDNA or can be used to generate a probe to obtain the
desired full length cDNA. Alternatively, a desired protein can be entirely sequenced and total synthesis of a DNA encoding that polypeptide performed.

Once the desired genomic or cDNA has been isolated, it can be sequenced by known methods. It is recognized in the art that such methods are subject to errors, such that multiple sequencing of the same region is routine and is still expected to lead to measurable rates of mistakes in the resulting deduced sequence, particularly in regions having repeated domains, extensive secondary structure, or unusual base compositions, such as regions with high GC base content. When discrepancies arise, resequencing can be done and can employ special methods. Special methods can include altering sequencing conditions by using: different temperatures; different enzymes; proteins which alter the ability of oligonucleotides to form higher order structures; altered nucleotides such as ITP or methylated dGTP; different gel compositions, for example adding formamide; different primers or primers located at different distances from the problem region; or different templates such as single stranded DNAs. Sequencing of mRNA also can be employed.

For the most part, some or all of the coding sequence for the polypeptide having desaturase activity is from a natural source. In some situations, however, it is desirable to modify all or a portion of the codons, for example, to enhance expression, by employing host preferred codons. Host preferred codons can be determined from the codons of highest frequency in the proteins expressed in the largest amount in a particular host species of interest. Thus, the coding sequence for a polypeptide having desaturase activity can be synthesized in whole or in part. All or portions of the DNA also can be synthesized to remove any destabilizing sequences or regions of secondary structure which would be present in the transcribed mRNA. All or portions of the DNA also can be synthesized to alter the base composition to one more preferable in the desired host cell. Methods for synthesizing sequences and bringing sequences together are well established in the literature. In vitro mutagenesis and selection, site-directed mutagenesis, or other means can be employed to obtain mutations of naturally occurring desaturase genes to
produce a polypeptide having desaturase activity *in vivo* with more desirable physical and kinetic parameters for function in the host cell, such as a longer half-life or a higher rate of production of a desired polyunsaturated fatty acid.

Mortierella alpina Desaturase

Of particular interest is the *Mortierella alpina* Δ5-desaturase which has 446 amino acids; the amino acid sequence is shown in Figure 3. The gene encoding the *Mortierella alpina* Δ5-desaturase can be expressed in transgenic microorganisms or animals to effect greater synthesis of ARA from DGLA. Other DNAs which are substantially identical to the *Mortierella alpina* Δ5-desaturase DNA, or which encode polypeptides which are substantially identical to the *Mortierella alpina* Δ5-desaturase polypeptide, also can be used. By substantially identical is intended an amino acid sequence or nucleic acid sequence exhibiting in order of increasing preference at least 60%, 80%, 90% or 95% homology to the *Mortierella alpina* Δ5-desaturase amino acid sequence or nucleic acid sequence encoding the amino acid sequence. For polypeptides, the length of comparison sequences generally is at least 16 amino acids, preferably at least 20 amino acids, or most preferably 35 amino acids. For nucleic acids, the length of comparison sequences generally is at least 50 nucleotides, preferably at least 60 nucleotides, and more preferably at least 75 nucleotides, and most preferably, 110 nucleotides. Homology typically is measured using sequence analysis software, for example, the Sequence Analysis software package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wisconsin 53705, MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), and MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). Such software matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine, and glutamine; serine and threonine;
lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132, 1982), or on the basis of the ability to assume similar polypeptide secondary structure (Chou and Fasman, *Adv. Enzymol.* 47: 45-148, 1978).

Other Desaturases

Encompassed by the present invention are related desaturases from the same or other organisms. Such related desaturases include variants of the disclosed Δ5-desaturase naturally occurring within the same or different species of *Mortierella*, as well as homologues of the disclosed Δ5-desaturase from other species. Also included are desaturases which, although not substantially identical to the *Mortierella alpina* Δ5-desaturase, desaturate a fatty acid molecule at carbon 5 from the carboxyl end of a fatty acid molecule. Related desaturases can be identified by their ability to function substantially the same as the disclosed desaturases; that is, are still able to effectively convert DGLA to ARA. Related desaturases also can be identified by screening sequence databases for sequences homologous to the disclosed desaturase, by hybridization of a probe based on the disclosed desaturase to a library constructed from the source organism, or by RT-PCR using mRNA from the source organism and primers based on the disclosed desaturase. Such desaturases include those from humans, *Dictyostelium discoideum* and *Phaeodactylum tricornutum*.

The regions of a desaturase polypeptide important for desaturase activity can be determined through routine mutagenesis, expression of the resulting mutant polypeptides and determination of their activities. Mutants may include deletions, insertions and point mutations, or combinations thereof. A typical functional analysis begins with deletion mutagenesis to determine the N- and C-terminal limits of the protein necessary for function, and then internal deletions, insertions or point mutants are made to further determine regions necessary for function. Other techniques such as cassette mutagenesis or total synthesis also
can be used. Deletion mutagenesis is accomplished, for example, by using exonucleases to sequentially remove the 5' or 3' coding regions. Kits are available for such techniques. After deletion, the coding region is completed by ligating oligonucleotides containing start or stop codons to the deleted coding region after 5' or 3' deletion, respectively. Alternatively, oligonucleotides encoding start or stop codons are inserted into the coding region by a variety of methods including site-directed mutagenesis, mutagenic PCR or by ligation onto DNA digested at existing restriction sites. Internal deletions can similarly be made through a variety of methods including the use of existing restriction sites in the DNA, by use of mutagenic primers via site directed mutagenesis or mutagenic PCR. Insertions are made through methods such as linker-scanning mutagenesis, site-directed mutagenesis or mutagenic PCR. Point mutations are made through techniques such as site-directed mutagenesis or mutagenic PCR.

Chemical mutagenesis also can be used for identifying regions of a desaturase polypeptide important for activity. A mutated construct is expressed, and the ability of the resulting altered protein to function as a desaturase is assayed. Such structure-function analysis can determine which regions may be deleted, which regions tolerate insertions, and which point mutations allow the mutant protein to function in substantially the same way as the native desaturase. All such mutant proteins and nucleotide sequences encoding them are within the scope of the present invention.

EXPRESSION OF DESATURASE GENES

Once the DNA encoding a desaturase polypeptide has been obtained, it is placed in a vector capable of replication in a host cell, or is propagated in *vitro* by means of techniques such as PCR or long PCR. Replicating vectors can include plasmids, phage, viruses, cosmids and the like. Desirable vectors include those useful for mutagenesis of the gene of interest or for expression of the gene of interest in host cells. The technique of long PCR has made *in vitro* propagation of large constructs possible, so that modifications to the gene of interest, such as mutagenesis or addition of expression signals, and propagation
of the resulting constructs can occur entirely *in vitro* without the use of a replicating vector or a host cell.

For expression of a desaturase polypeptide, functional transcriptional and translational initiation and termination regions are operably linked to the DNA encoding the desaturase polypeptide. Expression of the polypeptide coding region can take place *in vitro* or in a host cell. Transcriptional and translational initiation and termination regions are derived from a variety of nonexclusive sources, including the DNA to be expressed, genes known or suspected to be capable of expression in the desired system, expression vectors, chemical synthesis, or from an endogenous locus in a host cell.

Expression In Vitro

In vitro expression can be accomplished, for example, by placing the coding region for the desaturase polypeptide in an expression vector designed for *in vitro* use and adding rabbit reticulocyte lysate and cofactors; labeled amino acids can be incorporated if desired. Such *in vitro* expression vectors may provide some or all of the expression signals necessary in the system used. These methods are well known in the art and the components of the system are commercially available. The reaction mixture can then be assayed directly for the polypeptide, for example by determining its activity, or the synthesized polypeptide can be purified and then assayed.

Expression In A Host Cell

Expression in a host cell can be accomplished in a transient or stable fashion. Transient expression can occur from introduced constructs which contain expression signals functional in the host cell, but which constructs do not replicate and rarely integrate in the host cell, or where the host cell is not proliferating. Transient expression also can be accomplished by inducing the activity of a regulatable promoter operably linked to the gene of interest, although such inducible systems frequently exhibit a low basal level of expression. Stable expression can be achieved by introduction of a construct
that can integrate into the host genome or that autonomously replicates in the
host cell. Stable expression of the gene of interest can be selected for through
the use of a selectable marker located on or transfected with the expression
construct, followed by selection for cells expressing the marker. When stable
expression results from integration, integration of constructs can occur
randomly within the host genome or can be targeted through the use of
constructs containing regions of homology with the host genome sufficient to
target recombination with the host locus. Where constructs are targeted to an
endogenous locus, all or some of the transcriptional and translational regulatory
regions can be provided by the endogenous locus.

When increased expression of the desaturase polypeptide in the source
organism is desired, several methods can be employed. Additional genes
encoding the desaturase polypeptide can be introduced into the host organism.
Expression from the native desaturase locus also can be increased through
homologous recombination, for example by inserting a stronger promoter into
the host genome to cause increased expression, by removing destabilizing
sequences from either the mRNA or the encoded protein by deleting that
information from the host genome, or by adding stabilizing sequences to the
mRNA (USPN 4,910,141).

When it is desirable to express more than one different gene, appropriate
regulatory regions and expression methods, introduced genes can be propagated
in the host cell through use of replicating vectors or by integration into the host
genome. Where two or more genes are expressed from separate replicating
vectors, it is desirable that each vector has a different means of replication.
Each introduced construct, whether integrated or not, should have a different
means of selection and should lack homology to the other constructs to maintain
stable expression and prevent reassortment of elements among constructs.
Judicious choices of regulatory regions, selection means and method of
propagation of the introduced construct can be experimentally determined so
that all introduced genes are expressed at the necessary levels to provide for
synthesis of the desired products.
INTRODUCTION OF CONSTRUCTS INTO HOST CELLS

Constructs comprising the gene of interest may be introduced into a host cell by standard techniques. These techniques include transformation, protoplast fusion, lipofection, transfection, transduction, conjugation, infection, biolistic impact, electroporation, microinjection, scraping, or any other method which introduces the gene of interest into the host cell. Methods of transformation which are used include lithium acetate transformation (Methods in Enzymology, Vol. 194, p. 186-187, 1991). For convenience, a host cell which has been manipulated by any method to take up a DNA sequence or construct will be referred to as “transformed” or “recombinant” herein.

The subject host will have at least have one copy of the expression construct and may have two or more, depending upon whether the gene is integrated into the genome, amplified, or is present on an extrachromosomal element having multiple copy numbers. Where the subject host is a yeast, four principal types of yeast plasmid vectors can be used: Yeast Integrating plasmids (YIps), Yeast Replicating plasmids (YRps), Yeast Centromere plasmids (YCps), and Yeast Episomal plasmids (YEps). YIps lack a yeast replication origin and must be propagated as integrated elements in the yeast genome.

YRps have a chromosomally derived autonomously replicating sequence and are propagated as medium copy number (20 to 40), autonomously replicating, unstably segregating plasmids. YCps have both a replication origin and a centromere sequence and propagate as low copy number (10-20), autonomously replicating, stably segregating plasmids. YEps have an origin of replication from the yeast 2μm plasmid and are propagated as high copy number, autonomously replicating, irregularly segregating plasmids. The presence of the plasmids in yeast can be ensured by maintaining selection for a marker on the plasmid. Of particular interest are the yeast vectors pYES2 (a YEplasmid available from Invitrogen, confers uracil prototrophy and a GAL1 galactose-inducible promoter for expression), pRS425-pG1 (a YEplasmid obtained from Dr. T. H. Chang, Ass. Professor of Molecular Genetics, Ohio State University,

The transformed host cell can be identified by selection for a marker contained on the introduced construct. Alternatively, a separate marker construct may be introduced with the desired construct, as many transformation techniques introduce many DNA molecules into host cells. Typically, transformed hosts are selected for their ability to grow on selective media.

Selective media may incorporate an antibiotic or lack a factor necessary for growth of the untransformed host, such as a nutrient or growth factor. An introduced marker gene therefor may confer antibiotic resistance, or encode an essential growth factor or enzyme, and permit growth on selective media when expressed in the transformed host. Selection of a transformed host also can occur when the expressed marker protein can be detected, either directly or indirectly. The marker protein may be expressed alone or as a fusion to another protein. The marker protein can be detected by its enzymatic activity; for example β galactosidase can convert the substrate X-gal to a colored product, and luciferase can convert luciferin to a light-emitting product. The marker protein can be detected by its light-producing or modifying characteristics; for example, the green fluorescent protein of *Aequorea victoria* fluoresces when illuminated with blue light. Antibodies can be used to detect the marker protein or a molecular tag on, for example, a protein of interest. Cells expressing the marker protein or tag can be selected, for example, visually, or by techniques such as FACS or panning using antibodies. For selection of yeast transformants, any marker that functions in yeast may be used. Desirably, resistance to kanamycin and the amino glycoside G418 are of interest, as well as ability to grow on media lacking uracil, leucine, lysine or tryptophan.

The Δ5-desaturase-mediated production of PUFAs can be performed in either prokaryotic or eukaryotic host cells. Prokaryotic cells of interest include *Eschericia, Bacillus, Lactobacillus, cyanobacteria* and the like. Eukaryotic
cells include mammalian cells such as those of lactating animals, avian cells such as of chickens, and other cells amenable to genetic manipulation including insect, fungal, and algae cells. The cells may be cultured or formed as part or all of a host organism including an animal. Viruses and bacteriophage also may be used with the cells in the production of PUFAs, particularly for gene transfer, cellular targeting and selection. In a preferred embodiment, the host is any microorganism or animal which produces DGLA and/or can assimilate exogenously supplied DGLA, and preferably produces large amounts of DGLA. Examples of host animals include mice, rats, rabbits, chickens, quail, turkeys, bovines, sheep, pigs, goats, yaks, etc., which are amenable to genetic manipulation and cloning for rapid expansion of the transgene expressing population. For animals, a Δ5-desaturase transgene can be adapted for expression in target organelles, tissues and body fluids through modification of the gene regulatory regions. Of particular interest is the production of PUFAs in the breast milk of the host animal.

Expression In Insect Cells

Production of PUFAs in insect cells can be conducted using baculovirus expression vectors harboring a Δ5-desaturase transgene as detailed in the Example section below. Examples of host systems include *Spodoptera frugiperda* (Sf9 and Sf21 cells) and cabbag lopper moth *Trichoplusia ni* (Hi Five Cells).

Use of the baculovirus expression system in transgenic insect cells offers a number of advantages in PUFA production. Baculovirus expression systems are high level gene expression systems capable of post translational modifications similar to mammalian cells. The expression system allows for genetic manipulation with relative ease in comparison to mammalian cell transfections. By using site-specific transposition and eliminating the potential mix of parental and nonrecombinant baculoviruses, there is no need for multiple rounds of plaque purification. This greatly reduces the time it takes to identify and purify a recombinant virus. This system also offers the advantage of
supporting coexpression of gene products encoded by different recombinant baculovirus vectors in a single infection.

Expression in Algae Cells

Methods for producing hybrid and transgenic strains of algae, such as marine algae, which contain and express a desaturase transgene also are provided. For example, transgenic marine algae may be prepared as described in USPN 5,426,040. As with the other expression systems described above, the timing, extent of expression and activity of the desaturase transgene can be regulated by fitting the polypeptide coding sequence with the appropriate transcriptional and translational regulatory regions selected for a particular use. Of particular interest are promoter regions which can be induced under preselected growth conditions. For example, introduction of temperature sensitive and/or metabolite responsive mutations into the desaturase transgene coding sequences, its regulatory regions, and/or the genome of cells into which the transgene is introduced can be used for this purpose.

The transformed host cell is grown under appropriate conditions adapted for a desired end result. For host cells grown in culture, the conditions are typically optimized to produce the greatest or most economical yield of PUFAs, which relates to the selected desaturase activity. Media conditions which may be optimized include: carbon source, nitrogen source, addition of substrate, final concentration of added substrate, form of substrate added, aerobic or anaerobic growth, growth temperature, inducing agent, induction temperature, growth phase at induction, growth phase at harvest, pH, density, and maintenance of selection. Microorganisms of interest, such as yeast and algae are preferably grown in selected medium. For yeast, complex media such as peptone broth (YPD) or a defined media such as a minimal media (contains amino acids, yeast nitrogen base, and ammonium sulfate, and lacks a component for selection, for example uracil) are preferred. Desirably, substrates to be added are first dissolved in ethanol. Where necessary, expression of the polypeptide of interest may be induced, for example by including or adding galactose to induce expression from a GAL promoter.
Expression In Animals And Animal Cells

Expression in cells of a host animal can likewise be accomplished in a transient or stable manner. Transient expression can be accomplished via known methods, for example infection or lipofection, and can be repeated in order to maintain desired expression levels of the introduced construct (see Ebert, PCT publication WO 94/05782). Stable expression can be accomplished via integration of a construct into the host genome, resulting in a transgenic animal. The construct can be introduced, for example, by microinjection of the construct into the pronuclei of a fertilized egg, or by transfection, retroviral infection or other techniques whereby the construct is introduced into a cell line which may form or be incorporated into an adult animal (U.S. Patent No. 4,873,191; U.S. Patent No. 5,530,177; U.S. Patent No. 5,565,362; U.S. Patent No. 5,366,894; Wilmut et al. (1997) Nature 385:810). The recombinant eggs or embryos are transferred to a surrogate mother (U.S. Patent No. 4,873,191; U.S. Patent No. 5,530,177; U.S. Patent No. 5,565,362; U.S. Patent No. 5,366,894; Wilmut et al. (supra)).

After birth, transgenic animals are identified, for example, by the presence of an introduced marker gene, such as for coat color, or by PCR or Southern blotting from a blood, milk or tissue sample to detect the introduced construct, or by an immunological or enzymological assay to detect the expressed protein or the products produced therefrom (U.S. Patent No. 4,873,191; U.S. Patent No. 5,530,177; U.S. Patent No. 5,565,362; U.S. Patent No. 5,366,894; Wilmut et al. (supra)). The resulting transgenic animals may be entirely transgenic or may be mosaics, having the transgenes in only a subset of their cells. The advent of mammalian cloning, accomplished by fusing a nucleated cell with an enucleated egg, followed by transfer into a surrogate mother, presents the possibility of rapid, large-scale production upon obtaining a "founder" animal or cell comprising the introduced construct; prior to this, it was necessary for the transgene to be present in the germ line of the animal for propagation (Wilmut et al. (supra)).
Expression in a host animal presents certain efficiencies, particularly where the host is a domesticated animal. For production of PUFAs in a fluid readily obtainable from the host animal, such as milk, the desaturase transgene can be expressed in mammary cells from a female host, and the PUFA content of the host cells altered. The desaturase transgene can be adapted for expression so that it is retained in the mammary cells, or secreted into milk, to form the PUFA reaction products localized to the milk (PCT publication WO 95/24488). Expression can be targeted for expression in mammary tissue using specific regulatory sequences, such as those of bovine α-lactalbumin, α-casein, β-casein, γ-casein, κ-casein, β-lactoglobulin, or whey acidic protein, and may optionally include one or more introns and/or secretory signal sequences (U.S. Patent No. 5,530,177; Rosen, U.S. Patent No. 5,565,362; Clark et al., U.S. Patent No. 5,366,894; Garner et al., PCT publication WO 95/23868).

Expression of desaturase transgenes, or antisense desaturase transcripts, adapted in this manner can be used to alter the levels of specific PUFAs, or derivatives thereof, found in the animals milk. Additionally, the Δ5-desaturase transgene can be expressed either by itself or with other transgenes, in order to produce animal milk containing higher proportions of desired PUFAs or PUFA ratios and concentrations that resemble human breast milk (Prieto et al., PCT publication WO 95/24494).

PURIFICATION OF Δ5 DESATURASES

Recombinant Δ5 desaturase may be purified from cell lysates and extracts, or from conditioned culture medium, by various combinations of, or individual application of salt fractionation, ion exchange chromatography, size exclusion chromatography and hydrophobic interaction chromatography. Insect cell produced Δ5 desaturase is a particularly good source of the purified enzyme. The purified Δ5 desaturase may be used for the production of monoclonal and polyclonal antibodies.

In addition, recombinant Δ5 desaturase can be separated from other cellular proteins by use of an immuno-affinity column made with monoclonal or
polyclonal antibodies specific for full length Δ5 desaturase or polypeptide fragments of Δ5 desaturase.

Δ5 DESATURASE ANTIBODIES

Monospecific antibodies to Δ5 desaturase are purified from mammalian antisera containing antibodies reactive against Δ5 desaturase or are prepared as monoclonal antibodies reactive with Δ5 desaturase, using procedures well known in the art such as the technique of Kohler and Milstein, Nature 256: 495-497 (1975). Monospecific antibody as used herein is defined as a single antibody species with homogenous binding characteristics for Δ5 desaturase.

Homogenous binding as used herein refers to the ability of the antibody species to bind to a specific antigen or epitope, such as those associated with the Δ5 desaturase, as described above. Δ5 desaturase specific antibodies are raised by immunizing animals such as mice, rats, guinea pigs, rabbits, goats, horses and the like, with an appropriate concentration of Δ5 desaturase either with or without an immune adjuvant.

Polyclonal Antibodies

Preimmune serum is collected prior to the first immunization. Each animal receives between about 0.1 μg and about 1000 μg of Δ5 desaturase associated with an acceptable immune adjuvant. Such acceptable adjuvants include, but are not limited to, Freund’s complete, Freund’s incomplete, alum-precipitate, water in oil emulsion containing Corynebacterium parvum and tRNA. The initial immunization consists of the Δ5 desaturase protein in, preferably, Freund’s complete adjuvant at multiple sites either subcutaneously (SC), intraperitoneally (IP) or both. Each animal is bled at regular intervals, preferably weekly, to determine antibody titer. The animals may or may not receive booster injections following the initial immunization. Those animals receiving booster injections are generally given an equal amount of Δ5 desaturase in Freund’s incomplete adjuvant by the same route. Booster injections are given at about three week intervals until the maximal titers are obtained. At about 7 days after each booster immunization or about weekly
after a single immunization, the animals are bled, the serum collected, and
 aliquots are stored at about -20° C.

Monoclonal Antibodies

Monoclonal antibodies (mAb) reactive with Δ5 desaturase are prepared
by immunizing inbred mice, preferably Balb/c, with purified Δ5 desaturase.
The mice are immunized by the IP or SC route with about 1 µg to about 100 µg,
preferably about 10 µg, of Δ5 desaturase in about 0.5 ml buffer or saline
incorporated in an equal volume of an acceptable adjuvant, as discussed above.
Freund’s complete adjuvant is preferred. The mice receive an initial
immunization on day 0 and are rested for about 3 to about 30 weeks.
Immunized mice are given one or more booster immunizations of about 1 to
about 100 µg of Δ5 desaturase in a buffer solution such as phosphate buffered saline by the intravenous (IV) route. Lymphocytes, from antibody positive
mice, preferably splenic lymphocytes, are obtained by removing spleens from
immunized mice by standard procedures known in the art. Hybridoma cells are
produced by mixing the splenic lymphocytes with an appropriate fusion partner,
preferably myeloma cells, under conditions which will allow the formation of
stable hybridomas. Fusion partners may include, but are not limited to: mouse
myelomas P3/NS1/Ag 4-1; MPC-11; S-104 and Sp 2/0, with Sp 2/0 being
preferred.

The antibody producing cells and myeloma cells are fused in
polyethylene glycol, about 1000 mol. wt., at concentrations from about 30% to
about 50%. Fused hybridoma cells are selected by growth in hypoxanthine,
thymidine and aminopterin supplemented Dulbecco’s Modified Eagles Medium
(DMEM) by procedures known in the art. Supernatant fluids are collect from
growth positive wells on about days 14, 18 and 21 and are screened for Δ5
desaturase antibody production by an immunoassay such as solid phase
immunoradioassay (SPIRA) using Δ5 desaturase as the antigen. The culture
fluids are also tested in the Ouchterlony precipitation assay to determine the
isotype of the mAb. Hybridoma cells from antibody positive wells are cloned

Monoclonal antibodies are produced in vivo by injection of pristane primed Balb/c mice, approximately 0.5 ml per mouse, with about 2 x 10^6 to about 6 x 10^6 hybridoma cells about 4 days after priming. Ascites fluid is collected at approximately 8-12 days after cell transfer and the monoclonal antibodies are purified by techniques known in the art.

In vitro production of anti-Δ5 desaturase mAb is carried out by growing the hybridoma in DMEM containing about 2% fetal calf serum to obtain sufficient quantities of the specific mAb. The mAb are purified by techniques known in the art.

Antibody titers of ascites or hybridoma culture fluids are determined by various serological or immunological assays which include, but are not limited to, precipitation, passive agglutination, enzyme-linked immunosorbent antibody (ELISA) technique and radioimmunoassay (RIA) techniques. Similar assays are used to detect the presence of Δ5 desaturases in body fluids or tissue and cell extracts.

It is readily apparent to those skilled in the art that the above described methods for producing monospecific antibodies may be utilized to produce antibodies specific for Δ5 desaturase polypeptide fragments, or full-length Δ5 desaturase polypeptide.

Δ5 desaturase antibody affinity columns are made by adding the antibodies to Affigel-10 (Biorad), a gel support which is pre-activated with N-hydroxysuccinimide esters such that the antibodies form covalent linkages with the agarose gel bead support. The antibodies are then coupled to the gel via amide bonds with the spacer arm. The remaining activated esters are then quenched with 1M ethanolamine HCl (pH 8). The column is washed with water followed by 0.23M glycine HCl (pH 2.6) to remove any non-conjugated antibody or extraneous protein. The column is then equilibrated in phosphate
buffered saline (pH 7.3) and the cell culture supernatants or cell extracts containing Δ5 desaturase or Δ5 desaturase fragments are slowly passed through the column. The column is then washed with phosphate buffered saline until the optical density (A280) falls to background, then the protein is eluted with 0.23M glycine-HCl (pH 2.6). The purified Δ5 desaturase protein is then dialyzed against phosphate buffered saline.

PURIFICATION OF FATTY ACIDS

The fatty acids desaturated in the Δ5 position may be found in the host microorganism or animal as free fatty acids or in conjugated forms such as acylglycerols, phospholipids, sulfolipids or glycolipids, and may be extracted from the host cell through a variety of means well-known in the art. Such means may include extraction with organic solvents, sonication, supercritical fluid extraction using for example carbon dioxide, and physical means such as presses, or combinations thereof. Of particular interest is extraction with methanol and chloroform. Where desirable, the aqueous layer can be acidified to protonate negatively charged moieties and thereby increase partitioning of desired products into the organic layer. After extraction, the organic solvents can be removed by evaporation under a stream of nitrogen. When isolated in conjugated forms, the products may be enzymatically or chemically cleaved to release the free fatty acid or a less complex conjugate of interest, and can then be subject to further manipulations to produce a desired end product. Desirably, conjugated forms of fatty acids are cleaved with potassium hydroxide.

If further purification is necessary, standard methods can be employed. Such methods may include extraction, treatment with urea, fractional crystallization, HPLC, fractional distillation, silica gel chromatography, high speed centrifugation or distillation, or combinations of these techniques. Protection of reactive groups, such as the acid or alkenyl groups, may be done at any step through known techniques, for example alkylation or iodination. Methods used include methylation of the fatty acids to produce methyl esters. Similarly, protecting groups may be removed at any step. Desirably,
purification of fractions containing ARA, DHA and EPA may be accomplished by treatment with urea and/or fractional distillation.

USES OF FATTY ACIDS

There are several uses for fatty acids of the subject invention. Probes based on the DNAs of the present invention may find use in methods for isolating related molecules or in methods to detect organisms expressing desaturases. When used as probes, the DNAs or oligonucleotides must be detectable. This is usually accomplished by attaching a label either at an internal site, for example via incorporation of a modified residue, or at the 5' or 3' terminus. Such labels can be directly detectable, can bind to a secondary molecule that is detectably labeled, or can bind to an unlabelled secondary molecule and a detectably labeled tertiary molecule; this process can be extended as long as is practical to achieve a satisfactorily detectable signal without unacceptable levels of background signal. Secondary, tertiary, or bridging systems can include use of antibodies directed against any other molecule, including labels or other antibodies, or can involve any molecules which bind to each other, for example a biotin-streptavidin/avidin system. Detectable labels typically include radioactive isotopes, molecules which chemically or enzymatically produce or alter light, enzymes which produce detectable reaction products, magnetic molecules, fluorescent molecules or molecules whose fluorescence or light-emitting characteristics change upon binding. Examples of labelling methods can be found in USPN 5,011,770. Alternatively, the binding of target molecules can be directly detected by measuring the change in heat of solution on binding of probe to target via isothermal titration calorimetry, or by coating the probe or target on a surface and detecting the change in scattering of light from the surface produced by binding of target or probe, respectively, as may be done with the BIAcore system.

PUFAs produced by recombinant means find applications in a wide variety of areas. Supplementation of humans or animals with PUFAs in various forms can result in increased levels not only of the added PUFAs, but of their
metabolic progeny as well. For example, where the inherent Δ5-desaturase pathway is dysfunctional in an individual, treatment with ARA can result not only in increased levels of ARA, but also of downstream products of ARA such as prostaglandins (see Figure 1). Complex regulatory mechanisms can make it desirable to combine various PUFAs, or to add different conjugates of PUFAs, in order to prevent, control or overcome such mechanisms to achieve the desired levels of specific PUFAs in an individual.

FATTY ACID COMPOSITIONS

The present invention also includes fatty acid compositions such as nutritional compositions. Such compositions, for purposes of the present invention, include any food or preparation for human consumption including for enteral or parenteral consumption, which when taken into the body (a) serve to nourish or build up tissues or supply energy and/or (b) maintain, restore or support adequate nutritional status or metabolic function.

The nutritional composition of the present invention comprises at least one oil or acid produced in accordance with the present invention and may either be in a solid or liquid form. Additionally, the composition may include edible macronutrients, vitamins and minerals in amounts desired for a particular use. The amount of such ingredients will vary depending on whether the composition is intended for use with normal, healthy infants, children or adults having specialized needs such as those which accompany certain metabolic conditions (e.g., metabolic disorders).

Examples of macronutrients which may be added to the composition include but are not limited to edible fats, carbohydrates and proteins. Examples of such edible fats include but are not limited to coconut oil, soy oil, and mono- and diglycerides. Examples of such carbohydrates include but are not limited to glucose, edible lactose and hydrolyzed starch. Additionally, examples of proteins which may be utilized in the nutritional composition of the invention include but are not limited to soy proteins, electrodialysed whey, electrodialysed skim milk, milk whey, or the hydrolysates of these proteins.
With respect to vitamins and minerals, the following may be added to the nutritional compositions of the present invention: calcium, phosphorus, potassium, sodium, chloride, magnesium, manganese, iron, copper, zinc, selenium, iodine, and Vitamins A, E, D, C, and the B complex. Other such vitamins and minerals may also be added.

The components utilized in the nutritional compositions of the present invention will of semi-purified or purified origin. By semi-purified or purified is meant a material which has been prepared by purification of a natural material or by synthesis.

Examples of nutritional compositions of the present invention include but are not limited to infant formulas, dietary supplements, and rehydration compositions. Nutritional compositions of particular interest include but are not limited to those utilized for enteral and parenteral supplementation for infants, specialist infant formulae, supplements for the elderly, and supplements for those with gastrointestinal difficulties and/or malabsorption.

Nutritional Compositions

A typical nutritional composition of the present invention will contain edible macronutrients, vitamins and minerals in amounts desired for a particular use. The amounts of such ingredients will vary depending on whether the formulation is intended for use with normal, healthy individuals temporarily exposed to stress, or to subjects having specialized needs due to certain chronic or acute disease states (e.g., metabolic disorders). It will be understood by persons skilled in the art that the components utilized in a nutritional formulation of the present invention are of semi-purified or purified origin. By semi-purified or purified is meant a material that has been prepared by purification of a natural material or by synthesis. These techniques are well known in the art (See, e.g., Code of Federal Regulations for Food Ingredients and Food Processing; Recommended Dietary Allowances, 10th Ed., National Academy Press, Washington, D.C., 1989).
In a preferred embodiment, a nutritional formulation of the present invention is an enteral nutritional product, more preferably an adult or child enteral nutritional product. Accordingly in a further aspect of the invention, a nutritional formulation is provided that is suitable for feeding adults, who are experiencing stress. The formula comprises, in addition to the PUFAs of the invention; macronutrients, vitamins and minerals in amounts designed to provide the daily nutritional requirements of adults.

The macronutritional components include edible fats, carbohydrates and proteins. Exemplary edible fats are coconut oil, soy oil, and mono- and diglycerides and the PUFA oils of this invention. Exemplary carbohydrates are glucose, edible lactose and hydrolyzed cornstarch. A typical protein source would be soy protein, electrodialysed whey or electrodialysed skim milk or milk whey, or the hydrolysates of these proteins, although other protein sources are also available and may be used. These macronutrients would be added in the form of commonly accepted nutritional compounds in amount equivalent to those present in human milk or an energy basis, i.e., on a per calorie basis.

Methods for formulating liquid and enteral nutritional formulas are well known in the art and are described in detail in the examples.

The enteral formula can be sterilized and subsequently utilized on a ready-to-feed (RTF) basis or stored in a concentrated liquid or a powder. The powder can be prepared by spray drying the enteral formula prepared as indicated above, and the formula can be reconstituted by rehydrating the concentrate. Adult and infant nutritional formulas are well known in the art and commercially available (e.g., Similac®, Ensure®, Jevity® and Alimentum® from Ross Products Division, Abbott Laboratories). An oil or acid of the present invention can be added to any of these formulas in the amounts described below.

The energy density of the nutritional composition when in liquid form, can typically range from about 0.6 Kcal to 3.0 Kcal per ml. When in solid or powdered form, the nutritional supplement can contain from about 1.2 to more than 9 Kcals per gm, preferably 3 to 7 Kcals per gram. In general, the
osmolality of a liquid product should be less than 700 mOsm and more preferably less than 660 mOsm.

The nutritional formula would typically include vitamins and minerals, in addition to the PUFAs of the invention, in order to help the individual ingest the minimum daily requirements for these substances. In addition to the PUFAs listed above, it may also be desirable to supplement the nutritional composition with zinc, copper, and folic acid in addition to antioxidants. It is believed that these substances will also provide a boost to the stressed immune system and thus will provide further benefits to the individual. The presence of zinc, copper or folic acid is optional and is not required in order to gain the beneficial effects on immune suppression. Likewise a pharmaceutical composition can be supplemented with these same substances as well.

In a more preferred embodiment, the nutritional contains, in addition to the antioxidant system and the PUFA component, a source of carbohydrate wherein at least 5 weight % of said carbohydrate is an indigestible oligosaccharide. In yet a more preferred embodiment, the nutritional composition additionally contains protein, taurine and carnitine.

The PUFAs, or derivatives thereof, made by the disclosed method can be used as dietary substitutes, or supplements, particularly infant formulas, for patients undergoing intravenous feeding or for preventing or treating malnutrition. Typically, human breast milk has a fatty acid profile comprising from about 0.15 % to about 0.36 % as DHA, from about 0.03 % to about 0.13 % as EPA, from about 0.30 % to about 0.88 % as ARA, from about 0.22 % to about 0.67 % as DGLA, and from about 0.27 % to about 1.04 % as GLA.

Additionally, the predominant triglyceride in human milk has been reported to be 1,3-di-oleoyl-2-palmitoyl, with 2-palmitoyl glycerides reported as better absorbed than 2-oleoyl or 2-linoleoyl glycerides (USPN 4,876,107). Thus, fatty acids such as ARA, DGLA, GLA and/or EPA produced by the invention can be used to alter the composition of infant formulas to better replicate the PUFA composition of human breast milk. In particular, an oil composition for use in a pharmacologic or food supplement, particularly a breast milk substitute or
supplement, will preferably comprise one or more of ARA, DGLA and GLA. More preferably the oil will comprise from about 0.3 to 30% ARA, from about 0.2 to 30% DGLA, and from about 0.2 to about 30% GLA.

In addition to the concentration, the ratios of ARA, DGLA and GLA can be adapted for a particular given end use. When formulated as a breast milk supplement, or substitute an oil composition which contains two or more of ARA, DGLA and GLA will be provided in a ratio of about 1:19:30 to about 6:1:0.2, respectively. For example, the breast milk of animals can vary in ratios of ARA:DGLA:DGL ranging from 1:19:30 to 6:1:0.2, which includes intermediate ratios which are preferably about 1:1:1, 1:2:1, 1:1:4. When produced together in a host cell, adjusting the rate and percent of conversion of a precursor substrate such as GLA and DGLA to ARA can be used to precisely control the PUFA ratios. For example, a 5% to 10% conversion rate of DGLA to ARA can be used to produce an ARA to DGLA ratio of about 1:19, whereas a conversion rate of about 75% to 80% can be used to produce an ARA to DGLA ratio of about 6:1. Therefore, whether in a cell culture system or in a host animal, regulating the timing, extent and specificity of desaturase expression as described can be used to modulate the PUFA levels and ratios. Depending on the expression system used, e.g., cell culture or an animal expressing oil(s) in its milk, the oils also can be isolated and recombined in the desired concentrations and ratios. Amounts of oils providing these ratios of PUFA can be determined following standard protocols. PUFAs, or host cells containing them, also can be used as animal food supplements to alter an animal’s tissue or milk fatty acid composition to one more desirable for human or animal consumption.

For dietary supplementation, the purified PUFAs, or derivatives thereof, may be incorporated into cooking oils, fats or margarines formulated so that in normal use the recipient would receive the desired amount. The PUFAs may also be incorporated into infant formulas, nutritional supplements or other food products, and may find use as anti-inflammatory or cholesterol lowering agents.
Pharmaceutical Compositions

The present invention also encompasses a pharmaceutical composition comprising one or more of the acids and/or resulting oils produced in accordance with the methods described herein. More specifically, such a pharmaceutical composition may comprise one or more of the acids and/or oils as well as a standard, well-known, non-toxic pharmaceutically acceptable carrier, adjuvant or vehicle such as, for example, phosphate buffered saline, water, ethanol, polyols, vegetable oils, a wetting agent or an emulsion such as a water/oil emulsion. The composition may be in either a liquid or solid form. For example, the composition may be in the form of a tablet, capsule, ingestible liquid or powder, injectible, or topical ointment or cream.

Possible routes of administration include, for example, oral, rectal and parenteral. The route of administration will, of course, depend upon the desired effect. For example, if the composition is being utilized to treat rough, dry, or aging skin, to treat injured or burned skin, or to treat skin or hair affected by a disease or condition, it may perhaps be applied topically.

The dosage of the composition to be administered to the patient may be determined by one of ordinary skill in the art and depends upon various factors such as weight of the patient, age of the patient, immune status of the patient, etc.

With respect to form, the composition may be, for example, a solution, a dispersion, a suspension, an emulsion or a sterile powder which is then reconstituted.

Cosmetic Compositions

Additionally, the composition of the present invention may be utilized for cosmetic purposes. It may be added to pre-existing cosmetic compositions such that a mixture is formed or may be used as a sole composition.
The topical compositions into which PUFAs are formulated comprise a cosmetic or dermatological composition and can be provided in all conventional pharmaceutical dosage forms for topical application and the physiologically acceptable vehicle, diluent or carrier and therefore can be any standard vehicle or medium for a cosmetic or dermatological composition. The subject compositions can be formulated as an aqueous solution, or an oily suspension, or a dispersion of the lotion or serum type, or as an emulsion having a liquid or semi-liquid consistency of the milk type, obtained by dispersion of a fatty phase into an aqueous phase (O/W) or vice-versa (W/O), or as a suspension or emulsion having a soft consistency of the aequous gel or cream type, or as microcapsules or microparticles, or as vesicular dispersions of ionic and/or non-ionic type. These compositions are formulated according to the usual techniques.

The amounts of the different constituents of the compositions are those conventionally employed in the fields under consideration.

The subject compositions constitute, in particular, cleansing, protection, treatment or care creams for the face, for the hands, for the major anatomical folds or for the body (for example day creams, night creams, makeup removal creams, foundation creams or anti-sun or sunscreen creams), fluid foundations, makeup removal milks, protection or care body milks, anti-sun or sunscreen milks, or lotions, gels or foams for caring for the skin, such as cleansing lotions, anti-sun lotions, artificial tanning lotions, and the like.

When the composition is an emulsion, the proportion of the fatty phase can range from 5% to 80% by weight and preferably from 5% to 50% by weight with respect to the total weight of the composition. The oils, waxes, emulsifiers and coemulsifiers formulated into the composition in the emulsion form are those conventional in the cosmetics field. The emulsifier and the coemulsifier are advantageously present in such compositions in a proportion ranging from 0.3% to 30% by weight and preferably from 0.5% to 20% by weight with respect to the total weight of the composition. The emulsion can, in addition, contain lipid vesicles.
The subject cosmetic or dermatological compositions can also contain adjuvants and additives usual in the cosmetics or dermatological field, such as hydrophilic or lipophilic gelling agents, hydrophilic or lipophilic additives, preservatives, antioxidants, solvents, fragrances, fillers, screening agents, odor absorbers and colorants. The amounts of these different adjuvants and additives are those conventional in these fields and, for example, range from 0.01% to 10% of the total weight of the composition. These adjuvants and additives, depending on their nature, can be introduced into the fatty phase, into the aqueous phase and/or into lipid spherules.

Exemplary oils and waxes include mineral oils (liquid petrolatum), vegetable oils (liquid fraction of karite butter, sunflower oil), animal oils (perhydrosqualene), synthetic oils (Purcellin oil), silicone oils or waxes (cyclomethicone) and fluorinated oils (perfluoropolyethers), beeswax or carnauba or paraffin wax. Fatty alcohols and fatty acids (stearic acid) can be added to these oils.

Exemplary emulsifiers include, for example, glycerol stearate, polysorbate 60 and the PEG-6/PEG-31/glycol stearate mixture marketed under the trademark Tefose® 63 by Gattefosse.

Exemplary hydrophilic gelling agents according to the invention include the carboxyvinyl polymers (carbomer), acrylic copolymers, such as acrylate/alkyl acrylate copolymers, polyacrylamides, polysaccharides, such as hydroxypropylcellulose, natural gums and clays, and exemplary lipophilic gelling agents include the modified clays, such as bentones, or metal salts of fatty acids, such as aluminum stearates.

Insofar as they do not interfere or interact with the activity of the melatonin, the compositions of the present invention can contain other active ingredients suitable, in particular, for the prevention and/or for the treatment of skin conditions/afflictions.

The compositions according to the invention are particularly well suited for preventing or treating oxidative stress of the skin and/or or its adnexa, in
apticular related to UV irradiation, to aging, to inflammation, to alopecia, and the like.

Administration of the Pharmaceutical Compositions

Pharmaceutical compositions may be utilized to administer the PUFA component to an individual. Suitable pharmaceutical compositions may comprise physiologically acceptable sterile aqueous or non-aqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile solutions or dispersions for ingestion. Examples of suitable aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propyleneglycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. It may also be desirable to include isotonic agents, for example sugars, sodium chloride and the like. Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

Suspensions, in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth or mixtures of these substances, and the like.

Solid dosage forms such as tablets and capsules can be prepared using techniques well known in the art. For example, PUFAs of the invention can be tableted with conventional tablet bases such as lactose, sucrose, and cornstarch in combination with binders such as acacia, cornstarch or gelatin, disintegrating agents such as potato starch or alginic acid and a lubricant such as stearic acid or magnesium stearate. Capsules can be prepared by incorporating these excipients into a gelatin capsule along with the antioxidants and the PUFA
component. The amount of the antioxidants and PUFA component that should be incorporated into the pharmaceutical formulation should fit within the guidelines discussed above.

As used in this application, the term "treat" refers to either preventing, or reducing the incidence of, the undesired occurrence. For example, to treat immune suppression refers to either preventing the occurrence of this suppression or reducing the amount of such suppression. The terms "patient" and "individual" are being used interchangeably and both refer to an animal. The term "animal" as used in this application refers to any warm-blooded mammal including, but not limited to, dogs, humans, monkeys, and apes. As used in the application the term "about" refers to an amount varying from the stated range or number by a reasonable amount depending upon the context of use. Any numerical number or range specified in the specification should be considered to be modified by the term about.

"Dose" and "serving" are used interchangeably and refer to the amount of the nutritional or pharmaceutical composition ingested by the patient in a single setting and designed to deliver effective amounts of the antioxidants and the structured triglyceride. As will be readily apparent to those skilled in the art, a single dose or serving of the liquid nutritional powder should supply the amount of antioxidants and PUFAs discussed above. The amount of the dose or serving should be a volume that a typical adult can consume in one sitting. This amount can vary widely depending upon the age, weight, sex or medical condition of the patient. However as a general guideline, a single serving or dose of a liquid nutritional produce should be considered as encompassing a volume from 100 to 600 ml, more preferably from 125 to 500 ml and most preferably from 125 to 300 ml.

Food Products

The PUFAs of the present invention may also be added to food even when supplementation of the diet is not required. For example, the composition may be added to food of any type including but not limited to margarines,
modified butters, cheeses, milk, yogurt, chocolate, candy, snacks, salad oils, cooking oils, cooking fats, meats, fish and beverages.

Pharmaceutical Applications

Administration

For pharmaceutical use (human or veterinary), the compositions are generally administered orally but can be administered by any route by which they may be successfully absorbed, e.g., parenterally (i.e. subcutaneously, intramuscularly or intravenously), rectally or vaginally or topically, for example, as a skin ointment or lotion. The PUFAs of the present invention may be administered alone or in combination with a pharmaceutically acceptable carrier or excipient. Where available, gelatin capsules are the preferred form of oral administration. Dietary supplementation as set forth above also can provide an oral route of administration. The unsaturated acids of the present invention may be administered in conjugated forms, or as salts, esters, amides or prodrugs of the fatty acids. Any pharmaceutically acceptable salt is encompassed by the present invention; especially preferred are the sodium, potassium or lithium salts. Also encompassed are the N-alkylpolyhydroxamine salts, such as N-methyl glucamine, found in PCT publication WO 96/33155. The preferred esters are the ethyl esters. As solid salts, the PUFAs also can be administered in tablet form. For intravenous administration, the PUFAs or derivatives thereof may be incorporated into commercial formulations such as Intralipids. The typical normal adult plasma fatty acid profile comprises 6.64 to 9.46% of ARA, 1.45 to 3.11% of DGLA, and 0.02 to 0.08% of GLA. These PUFAs or their metabolic precursors can be administered, either alone or in mixtures with other PUFAs, to achieve a normal fatty acid profile in a patient. Where desired, the individual components of formulations may be individually provided in kit form, for single or multiple use. A typical dosage of a particular fatty acid is from 0.1 mg to 20 g, or even 100 g daily, and is preferably from 10 mg to 1, 2, 5 or 10 g daily as required, or molar equivalent amounts of derivative forms thereof. Parenteral nutrition compositions comprising from about 2 to about 30 weight percent fatty acids calculated as triglycerides are
encompassed by the present invention; preferred is a composition having from about 1 to about 25 weight percent of the total PUFA composition as GLA (USPN 5,196,198). Other vitamins, and particularly fat-soluble vitamins such as vitamin A, D, E and L-carnitine can optionally be included. Where desired, a preservative such as α-tocopherol may be added, typically at about 0.1% by weight.

Suitable pharmaceutical compositions may comprise physiologically acceptable sterile aqueous or non-aqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectible solutions or dispersions. Examples of suitable aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propyleneglycol, polyethylenegycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate. Proper fluidity can be maintained, for example, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants. It may also be desirable to include isotonic agents, for example sugars, sodium chloride and the like. Besides such inert diluents, the composition can also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.

Suspensions in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metaphosphate, bentonite, agar-agar and tragacanth, or mixtures of these substances and the like.

An especially preferred pharmaceutical composition contains diacetyltartaric acid esters of mono- and diglycerides dissolved in an aqueous medium or solvent. Diacetyltartaric acid esters of mono- and diglycerides have an HLB value of about 9-12 and are significantly more hydrophilic than existing antimicrobial lipids that have HLB values of 2-4. Those existing hydrophobic lipids cannot be formulated into aqueous compositions. As disclosed herein, those lipids can now be solubilized into aqueous media in combination with
diacetyl tartaric acid esters of mono- and diglycerides. In accordance with this embodiment, diacetyl tartaric acid esters of mono- and diglycerides (e.g., DATEM-C12:0) is melted with other active antimicrobial lipids (e.g., 18:2 and 12:0 monoglycerides) and mixed to obtain a homogeneous mixture. Homogeneity allows for increased antimicrobial activity. The mixture can be completely dispersed in water. This is not possible without the addition of diacetyl tartaric acid esters of mono- and diglycerides and premixing with other monoglycerides prior to introduction into water. The aqueous composition can then be admixed under sterile conditions with physiologically acceptable diluents, preservatives, buffers or propellants as may be required to form a spray or inhalant.

Treatment of Diseases and Disorders

The present invention also encompasses the treatment of numerous disorders with fatty acids. Supplementation with PUFAs of the present invention can be used to treat restenosis after angioplasty. Symptoms of inflammation, rheumatoid arthritis, and asthma and psoriasis can be treated with the PUFAs of the present invention. Evidence indicates that PUFAs may be involved in calcium metabolism, suggesting that PUFAs of the present invention may be used in the treatment or prevention of osteoporosis and of kidney or urinary tract stones.

The PUFAs of the present invention can be used in the treatment of cancer. Malignant cells have been shown to have altered fatty acid compositions; addition of fatty acids has been shown to slow their growth and cause cell death, and to increase their susceptibility to chemotherapeutic agents. GLA has been shown to cause reexpression on cancer cells of the E-cadherin cellular adhesion molecules, loss of which is associated with aggressive metastasis. Clinical testing of intravenous administration of the water soluble lithium salt of GLA to pancreatic cancer patients produced statistically significant increases in their survival. PUFA supplementation may also be useful for treating cachexia associated with cancer.
The PUFAs of the present invention can also be used to treat diabetes (USPN 4,826,877; Horrobin et al., Am. J. Clin. Nutr. Vol. 57 (Suppl.), 732S-737S). Altered fatty acid metabolism and composition has been demonstrated in diabetic animals. These alterations have been suggested to be involved in some of the long-term complications resulting from diabetes, including retinopathy, neuropathy, nephropathy and reproductive system damage. Primrose oil, which contains GLA, has been shown to prevent and reverse diabetic nerve damage.

The PUFAs of the present invention can be used to treat eczema, reduce blood pressure and improve math scores. Essential fatty acid deficiency has been suggested as being involved in eczema, and studies have shown beneficial effects on eczema from treatment with GLA. GLA has also been shown to reduce increases in blood pressure associated with stress, and to improve performance on arithmetic tests. GLA and DGLA have been shown to inhibit platelet aggregation, cause vasodilation, lower cholesterol levels and inhibit proliferation of vessel wall smooth muscle and fibrous tissue (Brenner et al., Adv. Exp. Med. Biol. Vol. 83, p. 85-101, 1976). Administration of GLA or DGLA, alone or in combination with EPA, has been shown to reduce or prevent gastro-intestinal bleeding and other side effects caused by non-steroidal anti-inflammatory drugs (USPN 4,666,701). GLA and DGLA have also been shown to prevent or treat endometriosis and premenstrual syndrome (USPN 4,758,592) and to treat myalgic encephalomyelitis and chronic fatigue after viral infections (USPN 5,116,871).

Further uses of the PUFAs of this invention include use in treatment of AIDS, multiple sclerosis, acute respiratory syndrome, hypertension and inflammatory skin disorders. The PUFAs of the inventions also can be used for formulas for general health as well as for geriatric treatments.

Veterinary Applications

It should be noted that the above-described pharmaceutical and nutritional compositions may be utilized in connection with animals, as well as humans, as animals experience many of the same needs and conditions as
human. For example, the oil or acids of the present invention may be utilized in animal feed supplements.

The following examples are presented by way of illustration, not of limitation.

5

Examples

Example 1 Isolation of a Δ5-desaturase Nucleotide Sequence from *Mortierella alpina*

Example 2 Expression of *M. alpina* Δ5-desaturase Clones in Baker's Yeast

Example 3 Initial Optimization of Culture Conditions

Example 4 Distribution of PUFA's in Yeast Lipid Fractions

Example 5 Further Yeast Culture Optimization

Example 6 Expression of *M. alpina* Δ5 desaturase in insect cells

Example 7 Identification of Homologues to *M. alpina* Δ5 and Δ6 desaturases

Example 8 Identification of *M. alpina* Δ5 and Δ6 homologues in other PUFA-producing organisms

Example 9 Identification of *M. alpina* Δ5 and Δ6 homologues in other PUFA-producing organisms

Example 10 Human Desaturase Sequences

Example 11 Production of Oil in Microorganisms

Example 12 Further Processing of Oil Produced by Microorganisms

Example 13 Further Purification of Oil Produced by Microorganisms

Example 14 Manufacture of Transgenic Oil Nutritional Products

Example 15 Nutritional Compositions
Example 1

Isolation of a Δ5-desaturase Nucleotide Sequence from Mortierella alpina

Mortierella alpina produces arachidonic acid (ARA, 20:4) from the precursor 20:3 by a Δ5-desaturase. A nucleotide sequence encoding the Δ5-desaturase from *Mortierella alpina* was obtained through PCR amplification using *M. alpina* 1st strand cDNA and degenerate oligonucleotide primers corresponding to amino acid sequences conserved between Δ6-desaturases from *Synechocystis* and *Spirulina*. The procedure used was as follows:

Total RNA was isolated from a 3 day old PUFA-producing culture of *Mortierella alpina* using the protocol of Hoge *et al.* (1982) *Experimental Mycology* 6:225-232. The RNA was used to prepare double-stranded cDNA using BRL's lambda-ZipLox system, following the manufacturer's instructions. Several size fractions of the *M. alpina* cDNA were packaged separately to yield libraries with different average-sized inserts. The "full-length" library contains approximately 3 x 10^6 clones with an average insert size of 1.77 kb. The "sequencing-grade" library contains approximately 6 x 10^5 clones with an average insert size of 1.1 kb.

5μg of total RNA was reverse transcribed using BRL Superscript RTase and the primer TSyn (5'-CCAAGCTTCTGAGAGCAGCTCTTTTTTTT), SEQ ID NO:10. Degenerate oligonucleotides were designed to regions conserved between the two cyanobacterial Δ6-desaturase sequences. The specific primers used were D6DESAT-F3 (SEQ ID NO:8) (5'-CUACUACUACAYCAYACOTAYACOAAYAT-3') and D6DESAT-R3 (SEQ ID NO:9) (5'-CAUCUAUCUAUGGAAOARSTGRTG-3'), where Y=C+T, R=A+G, and O=I+C. PCR amplification was carried out in a 25μl volume containing: template derived from 40 ng total RNA, 2 pM each primer, 200 μM each deoxyribonucleotide triphosphate, 60 mM Tris-Cl, pH 8.5, 15 mM (NH₄)₂SO₄, 2 mM MgCl₂. Samples were subjected to an initial denaturation step of 95 degrees (all temperatures Celsius) for 5 minutes, then held at 72 degrees while 0.2 U of Taq polymerase were added. PCR thermocycling
conditions were as follows: 94 degrees for 1 min., 45 degrees for 1.5 min., 72 degrees for 2 min. PCR was continued for 35 cycles. PCR using these primers on the M. alpina first-strand cDNA produced a 550 bp reaction product. Comparison of the deduced amino acid sequence of the M. alpina PCR fragment SEQ ID NO:3 revealed regions of homology with Δ6-desaturases (see Figure 5). However, there was only about 28% identity over the region compared.

The PCR product was used as a probe to isolate corresponding cDNA clones from a M. alpina library. The longest cDNA clone, Ma29, was designated pCGN5521 and has been completely sequenced on both strands. The cDNA is contained as a 1481 bp insert in the vector pZL1 (Bethesda Research Laboratories) and, beginning with the first ATG, contains an open reading frame encoding 446 amino acids. The reading frame contains the sequence deduced from the PCR fragment. The sequence of the cDNA insert was found to contain regions of homology to Δ6-desaturases (see Figure 5). For example, three conserved "histidine boxes" (that have been observed in membrane-bound desaturases (Okuley et al., (1994) The Plant Cell 6:147-158)) were found to be present in the Mortierella sequence at amino acid positions 171-175, 207-212, and 387-391 (see Figure 3). However, the typical "HXXHH" amino acid motif for the third histidine box for the Mortierella desaturase was found to be QXXHH, SEQ ID NO:11-12. Surprisingly, the amino-terminus of the encoded protein, showed significant homology to cytochrome b5 proteins. Thus, the Mortierella cDNA clone appears to represent a fusion between a cytochrome b5 and a fatty acid desaturase. Since cytochrome b5 is believed to function as the electron donor for membrane-bound desaturase enzymes, it is possible that the N-terminal cytochrome b5 domain of this desaturase protein is involved in its function. This may be advantageous when expressing the desaturase in heterologous systems for PUFA production.
Example 2

Expression of *M. alpina* Desaturase Clones in Baker's Yeast

Yeast Transformation

Lithium acetate transformation of yeast was performed according to standard protocols (Methods in Enzymology, Vol. 194, p. 186-187, 1991). Briefly, yeast were grown in YPD at 30°C. Cells were spun down, resuspended in TE, spun down again, resuspended in TE containing 100 mM lithium acetate, spun down again, and resuspended in TE/lithium acetate. The resuspended yeast were incubated at 30°C for 60 minutes with shaking. Carrier DNA was added, and the yeast were aliquoted into tubes. Transforming DNA was added, and the tubes were incubated for 30 min. at 30°C. PEG solution (35% (w/v) PEG 4000, 100 mM lithium acetate, TE pH 7.5) was added followed by a 50 min. incubation at 30°C. A 5 min. heat shock at 42°C was performed, the cells were pelleted, washed with TE, pelleted again and resuspended in TE. The resuspended cells were then plated on selective media.

Desaturase Expression in Transformed Yeast

The cDNA clones from *Mortierella alpina* were screened for desaturase activity in baker's yeast. A canola Δ15-desaturase (obtained by PCR using 1st strand cDNA from *Brassica napus* cultivar 212/86 seeds using primers based on the published sequence (Arondel et al. Science 258:1353-1355)) was used as a positive control. The Δ15-desaturase gene and the gene from cDNA clone Ma29 was inserted into the expression vector pYES2 (Invitrogen), resulting in plasmids pCGR-2 and pCGR-4, respectively. These plasmids were transfected into *S. cerevisiae* yeast strain 334 and expressed after induction with galactose and in the presence of substrates that allowed detection of specific desaturase activity. The control strain was *S. cerevisiae* strain 334 containing the unaltered pYES2 vector. The substrates used, the products produced and the indicated desaturase activity were: DGLA (conversion to ARA would indicate Δ5-desaturase activity), linolenic acid (conversion to GLA would indicate Δ6-desaturase activity; conversion to ALA would indicate Δ15-desaturase activity),
oleic acid (an endogenous substrate made by *S. cerevisiae*, conversion to linolenic acid would indicate Δ12-desaturase activity, which *S. cerevisiae* lacks), or ARA (conversion to EPA would indicate Δ17-desaturase activity). The results are provided in Table 1 below.

5

Lipid Extraction

The lipid fractions were extracted as follows: Cultures were grown for 48-52 hours at 15°C. Cells were pelleted by centrifugation, washed once with sterile ddH₂O, and repelletted. Pellets were vortexed with methanol; chloroform was added along with tritridecanoin (as an internal standard). The mixtures were incubated for at least one hour at room temperature or at 4°C overnight. The chloroform layer was extracted and filtered through a Whatman filter with one gram of anhydrous sodium sulfate to remove particulates and residual water. The organic solvents were evaporated at 40°C under a stream of nitrogen. The extracted lipids were then derivatized to fatty acid methyl esters (FAME) for gas chromatography analysis (GC) by adding 2 ml of 0.5 N potassium hydroxide in methanol to a closed tube. The samples were heated to 95°C to 100°C for 30 minutes and cooled to room temperature. Approximately 2 ml of 14% boron trifluoride in methanol was added and the heating repeated. After the extracted lipid mixture cooled, 2 ml of water and 1 ml of hexane were added to extract the FAME for analysis by GC. The percent conversion was calculated by dividing the product produced by the sum of (the product produced and the substrate added) and then multiplying by 100. To calculate the oleic acid percent conversion, as no substrate was added, the total linolenic acid produced was divided by the sum of (oleic acid and linolenic acid produced), then multiplying by 100.
Table 1

M. alpina Desaturase Expression in Baker's Yeast

<table>
<thead>
<tr>
<th>CLONE</th>
<th>TYPE OF ENZYME ACTIVITY</th>
<th>% CONVERSION OF SUBSTRATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCGR-2 (canola Δ15 desaturase)</td>
<td>Δ6</td>
<td>0 (18:2 to 18:3ω6)</td>
</tr>
<tr>
<td></td>
<td>Δ15</td>
<td>16.3 (18:2 to 18:3ω3)</td>
</tr>
<tr>
<td></td>
<td>Δ5</td>
<td>2.0 (20:3 to 20:4ω6)</td>
</tr>
<tr>
<td></td>
<td>Δ17</td>
<td>2.8 (20:4 to 20:5ω3)</td>
</tr>
<tr>
<td></td>
<td>Δ12</td>
<td>1.8 (18:1 to 18:2ω6)</td>
</tr>
<tr>
<td>pCGR-4 (M. alpina Ma29)</td>
<td>Δ6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Δ5</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>Δ17</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Δ12</td>
<td>3.3</td>
</tr>
</tbody>
</table>

The Δ15-desaturase control clone exhibited 16.3% conversion of the substrate. The pCGR-4 clone expressing the Ma29 cDNA converted 15.3% of the 20:3 substrate to 20:4ω6, indicating that the gene encodes a Δ5-desaturase. The background (non-specific conversion of substrate) was between 0-3% in these cases. We also found substrate inhibition of the activity by using different concentrations of the substrate. When substrate was added to 100 μM, the percent conversion to product dropped compared to when substrate was added to 25 μM (see below). Additionally, by varying the DGLA substrate concentrations, between about 5 μM to about 200 μM percent conversion of DGLA to ARA ranged from about 5% to 75% with the *M. alpina* Δ5-desaturase.

These data show that desaturases with different substrate specificities can be expressed in a heterologous system and used to produce poly-unsaturated long chain fatty acids.
Table 2 represents fatty acids of interest as a percent of the total lipid extracted from the yeast host *S. cerevisiae* 334 with the indicated plasmid. No glucose was present in the growth media. Affinity gas chromatography was used to separate the respective lipids. GC/MS was employed to verify the identity product(s). The expected product for the *B. napus* Δ15-desaturase, α-linolenic acid, was detected when its substrate, linolenic acid, was added exogenously to the induced yeast culture. This finding demonstrates that yeast expression of a desaturase gene can produce functional enzyme and detectable amounts of product under the current growth conditions. Both exogenously added substrates were taken up by yeast, although slightly less of the longer chain PUFA, dihomo-γ-linolenic acid (20:3), was incorporated into yeast than linolenic acid (18:2) when either was added in free form to the induced yeast cultures. Arachidonic acid was detected as a novel PUFA in yeast when dihomo-γ-linolenic acid was added as the substrate to *S. cerevisiae* 334 (pCGR-4). This identifies pCGR-4 (MA29) as the Δ5-desaturase from *M. alpina*. Prior to this, no isolation and expression of a Δ5-desaturase from any source has been reported.
Table 2
Fatty Acid as a Percentage of Total Lipid Extracted from Yeast

<table>
<thead>
<tr>
<th>Plasmid in Yeast (enzyme)</th>
<th>18:2 Incorporated</th>
<th>α-18:3 Produced</th>
<th>γ-18:3 Produced</th>
<th>20:3 Incorporated</th>
<th>20:4 Produced</th>
<th>18:1 Present</th>
<th>18:2 Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>pYES2 (control)</td>
<td>66.9</td>
<td>0</td>
<td>0</td>
<td>58.4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>pCGR-2 (Δ15)</td>
<td>60.1</td>
<td>5.7</td>
<td>0</td>
<td>50.4</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>pCGR-4 (Δ5)</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>32.3</td>
<td>5.8</td>
<td>0.8</td>
<td>0</td>
</tr>
</tbody>
</table>

100 µM substrate added

* 18:1 is an endogenous fatty acid in yeast

Key To Tables
18:1 = oleic acid
18:2 = linolenic acid
α-18:3 = α-linolenic acid
γ-18:3 = γ-linolenic acid
18:4 = stearidonic acid
20:3 = dihomo-γ-linolenic acid
20:4 = arachidonic acid
Example 3

Optimization of Culture Conditions

Table 3A shows the effect of exogenous free fatty acid substrate concentration on yeast uptake and conversion to fatty acid product as a percentage of the total yeast lipid extracted. In all instances, low amounts of exogenous substrate (1-10 μM) resulted in low fatty acid substrate uptake and product formation. Between 25 and 50 μM concentration of free fatty acid in the growth and induction media gave the highest percentage of fatty acid product formed, while the 100 μM concentration and subsequent high uptake into yeast appeared to decrease or inhibit the desaturase activity. The feedback inhibition of high fatty acid substrate concentration was well illustrated when the percent conversion rates of the respective fatty acid substrates to their respective products were compared in Table 3B. In all cases, 100 μM substrate concentration in the growth media decreased the percent conversion to product. The effect of media composition was also evident when glucose was present in the growth media for the Δ5-desaturase, since the percent of substrate uptake was decreased at 25 μM (Table 3A). However, the percent conversion by Δ5-desaturase increased by 18% and the percent product formed remained the same in the presence of glucose in the growth media.
Table 3A

Effect of Added Substrate on the Percentage of Incorporated Substrate and Product Formed in Yeast Extracts

<table>
<thead>
<tr>
<th>Plasmid in Yeast</th>
<th>pCGR-2 (Δ15)</th>
<th>pCGR-4 (Δ5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>substrate/product</td>
<td>18:2 →α-18:3</td>
<td>20:3/20:4</td>
</tr>
<tr>
<td>1 μM sub.</td>
<td>ND</td>
<td>0.5/1.7</td>
</tr>
<tr>
<td>10 μM sub.</td>
<td>ND</td>
<td>3.3/4</td>
</tr>
<tr>
<td>25 μM sub.</td>
<td>ND</td>
<td>5.1/6.1</td>
</tr>
<tr>
<td>25 μM0 sub.</td>
<td>36.6/7.20</td>
<td>9.3/5.40</td>
</tr>
<tr>
<td>50 μM sub.</td>
<td>53.1/6.50</td>
<td>ND</td>
</tr>
<tr>
<td>100 μM sub.</td>
<td>60.1/5.70</td>
<td>32.3/5.80</td>
</tr>
</tbody>
</table>

Table 3B

Effect of Substrate Concentration in Media on the Percent Conversion of Fatty Acid Substrate to Product in Yeast Extracts

<table>
<thead>
<tr>
<th>Plasmid in Yeast</th>
<th>pCGR-2 (Δ15)</th>
<th>pCGR-4 (Δ5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>substrate/product</td>
<td>18:2 →α-18:3</td>
<td>20.3→20:4</td>
</tr>
<tr>
<td>1 μM sub.</td>
<td>ND</td>
<td>77.3</td>
</tr>
<tr>
<td>10 μM sub.</td>
<td>ND</td>
<td>54.8</td>
</tr>
<tr>
<td>25 μM sub.</td>
<td>ND</td>
<td>54.2</td>
</tr>
<tr>
<td>25 μM0 sub.</td>
<td>16.4</td>
<td>36.7</td>
</tr>
<tr>
<td>50 μM sub.</td>
<td>10.90</td>
<td>ND</td>
</tr>
<tr>
<td>100 μM sub.</td>
<td>8.70</td>
<td>15.20</td>
</tr>
</tbody>
</table>

◊ no glucose in media
* Yeast peptone broth (YPD)
* 18:1 is an endogenous yeast lipid
 sub. is substrate concentration
 ND (not done)

Table 4 shows the amount of fatty acid produced by a recombinant desaturase from induced yeast cultures when different amounts of free fatty acid substrate were used. Fatty acid weight was determined since the total amount of lipid varied dramatically when the growth conditions were changed, such as the presence of glucose in the yeast growth and induction media. To better determine
the conditions when the recombinant desaturase would produce the most PUFA product, the quantity of individual fatty acids were examined. The absence of glucose reduced the amount of arachidonic acid produced by Δ5-desaturase by half. For Δ5-desaturase the amount of total yeast lipid was decreased by almost half in the absence of glucose.

Table 4
Fatty Acid Produced in μg from Yeast Extracts

<table>
<thead>
<tr>
<th>Plasmid in Yeast (enzyme)</th>
<th>pCGR-4 (Δ5)</th>
<th>pCGR-7 (Δ12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>20.4</td>
<td>18.2*</td>
</tr>
<tr>
<td>1 μM sub.</td>
<td>8.3</td>
<td>ND</td>
</tr>
<tr>
<td>10 μM sub.</td>
<td>19.2</td>
<td>ND</td>
</tr>
<tr>
<td>25 μM sub.</td>
<td>31.2</td>
<td>115.7</td>
</tr>
<tr>
<td>25 μM 0 sub.</td>
<td>16.8</td>
<td>39</td>
</tr>
</tbody>
</table>

◊ no glucose in media

sub. is substrate concentration

ND (not done)

*18:1, the substrate, is an endogenous yeast lipid

Example 4

Distribution of PUFAs in Yeast Lipid Fractions

Table 5 illustrates the uptake of free fatty acids and their new products formed in yeast lipids as distributed in the major lipid fractions. A total lipid extract was prepared as described above. The lipid extract was separated on TLC plates, and the fractions were identified by comparison to standards. The bands were collected by scraping, and internal standards were added. The fractions were then saponified and methylated as above, and subjected to gas chromatography. The gas chromatograph calculated the amount of fatty acid by comparison to a standard. It would appear that the substrates are accessible in the phospholipid form to the desaturases.
Table 5

Fatty Acid Distribution in Various Yeast Lipid Fractions in µg

<table>
<thead>
<tr>
<th>Fatty acid fraction</th>
<th>Phospholipid</th>
<th>Diglyceride</th>
<th>Free Fatty Acid</th>
<th>Triglyceride</th>
<th>Cholesterol Ester</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC (pCGR-4) substrate 20:3</td>
<td>15.1</td>
<td>1.9</td>
<td>22.9</td>
<td>12.6</td>
<td>3.3</td>
</tr>
<tr>
<td>SC (pCGR-4) product 20:4</td>
<td>42.6</td>
<td>0.9</td>
<td>6.8</td>
<td>4.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

SC = S. cerevisiae (plasmid)

Example 5

Further Yeast Culture Optimization

The growth and induction conditions for optimal activities of desaturases in Saccharomyces cerevisiae were evaluated. Various culture conditions that were manipulated for optimal activity were: i) induction temperature, ii) concentration of inducer, iii) timing of substrate addition, iv) concentration of substance, v) sugar source, vi) growth phase at induction. These studies were done using Δ5-desaturase gene from Mortierella alpina (MA 29). In addition, the effect of changing host strain on expression of the Δ5-desaturase gene was also determined.

As described above, the best rate of conversion of substrate to ARA was observed at a substrate concentration of 1 µM, however, the percentage of ARA in the total fatty acids was highest at 25 µM substrate concentration. To determine if the substrate needed to be modified to a readily available form before it could be utilized by the desaturase, the substrate was added either 15 hours before induction or concomitant with inducer addition (indicated as after, in Figure 6A). As it can be seen in Figure 6A, addition of substrate before induction did not have a significant effect on the activity of Δ5-desaturase. In fact, addition of substrate along with the inducer was slightly better for expression/activity of Δ5-desaturase, as ARA levels in the total fatty acids were higher. However, the rate of conversion of substrate to product was slightly lower.
The effect of inducer concentration of expression/activity of Mortierella Δ5-desaturase was examined by inducing SC334/pCGR5 with 0.5 or 2% (w/v) of galactose. As shown in Figures 7A and 7B, expression of Δ5-desaturase was higher when induced with 0.5% galactose. Furthermore, rate of conversion of substrate to product was also better when SC334/pCGR5 was induced with 0.5% galactose vs 2% galactose.

To determine the effect of temperature on Δ5-desaturase activity, the SC334 host strain, transformed with pCGR5 (SC334/pCGR5) was grown and induced at 15°C, 25°C, 30°C and 37°C. The quantity of ARA (20:4n6) produced in SC334/pCGR5 cultures, supplemental with substrate 20:3n6, was measured by fatty acid analysis. Figure 8A depicts the quantity of 20:3n6 and 20:4n6, expressed as percentage of total fatty acids. Figure 8B depicts the rate of conversion of substrate to product. Growth and induction of SC334/pCGR5 at 25°C, was the best for the expression of Δ5-desaturase as evidenced by the highest levels of arachidonic acid in the total fatty acids. Additionally the highest rate of conversion of substrate to product also occurred at 25°C. Growth and induction at 15°C gave the lowest expression of ARA, whereas at 37°C gave the lowest conversion of substrate to product.

The effect of yeast strain on expression of the Δ5-desaturase gene was studied in 5 different host strains; INVSC1, INVSC2, YTC34, YTC41, and SC334, at 15°C and 30°C. At 15°C, SC334 has the highest percentage of ARA in total fatty acids, suggesting higher activity of Δ5-desaturase in SC334. The rate of conversion of substrate to product, however is lowest in SC334 and highest in INVSC1 (Fig. 9A and B). At 30°C, the highest percentage of product (ARA) in total fatty acids was observed in INVSC2, although the rate of conversion of substrate to product in INVSC2 was slightly lower than INVSC1 (Fig. 10A and B).

ARA, the product of Δ5-desaturase, is stored in the phospholipid faction (Example 4). Therefore the quantity of ARA produced in yeast is limited by the amount that can be stored in the phospholipid fraction. If ARA could also be stored in other fractions such as the triglyceride fraction, the quantity of ARA produced in yeast might be increased. To test this hypothesis, the Δ5-desaturase
gene was expressed in the yeast host strain DBY746 (obtained from the Yeast Genetic Stock Centre, 1021 Donner Laboratory, Berkeley, CA 94720. The genotype of strain DBY746 is Mat\alpha, his3-Δ1, leu2-3, leu2-112, ura3-32, trp1-289, gal). The DBY746 yeast strain has an endogenous gene for choline transferase. The presence of this enzyme might enable the DBY746 strain to convert excess phospholipids into triglycerides fraction. Results in Fig. 11 show no increase in the conversion of substrate to product as compared to SC334, which does not have the gene for choline transferase.

To study the effect of media on expression of \(\Delta5 \)-desaturase, pCGR4/SC334 was grown in four different media at two different temperatures (15°C and 30°C) and in two different host strains (SC334 and INVSC1). The composition of the media was as follows:

Media A: mm-Ura, + 2% galactose + 2% glucose.

Media B: mm-Ura, + 20% galactose + 2% Glucose + 1M sorbitol (pH5.8)

Media C: mm-Ura, + 2% galactose + 2% raffinose

Media D: mm-Ura, + 2% galactose +2% raffinose + 1M sorbitol (pH5.8)

mm=minimal media

Results show that the highest conversion rate of substrate to product at 15°C in SC334 was observed in media A. The highest conversion rate overall for \(\Delta5 \)-desaturase in SC334 was at 30°C in media D. The highest conversion rate of \(\Delta5 \)-desaturase in INVSC1 was also at 30°C in media D (Figures 12A and 12B).

These data show that a DNA encoding a desaturase that can convert DGLA to ARA can be isolated from *Mortierella alpina* and can be expressed in a heterologous system and used to produce poly-unsaturated long chain fatty acids. Exemplified is the production of ARA from the precursor DGLA by expression of a \(\Delta5 \)-desaturase in yeast.
Example 6

Expression Of M. alpina Δ5 Desaturases In Insect Cells

Insect cells were used as another eukaryotic host for expression of the M. alpina Δ5-desaturase. The baculovirus expression system involves the use of insect cells to express a gene, in this case the M. alpina Δ5-desaturase, which has been cloned into a baculovirus expression vector. Insect cells are known to have no endogenous PUFA desaturase activities. Therefore, this system is suitable for expression and characterization of the recombinant desaturases.

The fragment containing the Δ5-desaturase gene (pCGR4, see Example 2) was PCR amplified using Expand High Fidelity PCR System (Boehringer Mannheim, Corp., Indianapolis, IN) and a set of primers containing appropriate restriction sites. The upstream primer designated RO651 (5’-ATACCGGAATTCCGCCACCATTGGGAACGGACCAAGGAAAAAC), SEQ ID NO: 35 corresponded to the sense strand of Δ5 cDNA and contained an EcoRI site 5’ upstream of the ATG. The downstream primer RO652 (5’-TATCCGCTCGAGCTACTCTTCCTTTGGGACGGAG), SEQ ID NO: 36 corresponded to the antisense strand at the 3’ end of the Δ5 cDNA, and included an XhoI site immediately downstream of the translational termination codon. The PCR reaction, in a final volume of 100 μl, was carried out for 30 cycles in temperature conditions of 45 seconds at 94°C, 45 seconds at 55°C and 2 min at 72°C. The Δ5 PCR amplified product was analyzed by agarose-gel electrophoresis, gel purified, digested with EcoRI and XhoI, and then ligated into pFastBac1 baculovirus donor plasmid (Gibco-BRL, Gaithersburg, MD) which was restricted with the same enzymes. The respective baculovirus clone was designated as pJPB5 for the Δ5-desaturase. This pFastBac1 vector contains an expression cassette which has a polyhedrin promoter, a SV40 polyadenylation signal, and a gentamycin resistance marker.

The initial transformation was done in XL1 blue cells (Invitrogen, Carlsbad, CA). Positive clones were then transformed into E. coli DH10Bac (Gibco-BRL, Gaithersburg, MD) which contains the baculovirus genome. The positive clones were selected by blue white screening in which white colonies
contain the recombinant bacmid. White colonies were then selected for bacmid DNA isolation. DNA was isolated using a Qiagen plasmid isolation kit (Qiagen Inc., Valencia, CA), specific for DNA over 135 kb long. The recombinant DNA bacmid was analyzed on a 0.6% agarose gel to confirm the presence of the high molecular weight DNA. PCR analysis, using pUC/M13 primers (forward 5'-TGTAAGACGGGTCGACGCGCCAGT SEQ ID NO: 37 and reverse 5'-GAAACAGCTATGACCATTG) SEQ ID NO: 38 was also performed to confirm the correct insert size for the desaturase cDNA within the bacmid.

The Sf9 insect cells (Spodoptera frugiperda) were used for the recombinant bacmid DNA transfection. These cells were grown in serum free media SF900 (Gibco BRL, Gaithersburg, MD). Transfection was carried out according to the CellFECTIN protocol (Gibco-BRL, Gaithersburg, MD). The recombinant virus was recovered by collecting the supernatant at 72 hours post-transfection. A Plaque assay was performed on the supernatant to determine the titer of recovered recombinant virion particles. A recombinant viral stock was made for the expression studies. All infections with the recombinant virus were done during the mid-logarithmic growth phase of the Sf9's and infected at 5 MOI (Multiplicity of Infection). To analyze the activity of the expressed D5-desaturase gene, the Sf9 cells were plated at a concentration of 1x10^6 cells/well in a 6-well tissue culture plate and infected with 100ul of the virus stock (approximately 5 MOI). The substrate, dihydro-gamma-linolenic acid (DGLA, C20:3n-6) was supplemented at the time of infection, at a concentration of 25 μM. A mock infected Sf9, as well as cells infected with a recombinant virus containing the GusA reporter gene, were used as negative controls in each experiment. The medium was collected 48 hours post infection and saved. The cells were collected and submitted for lipid analysis.

For fatty acid analysis, cell pellets were vortexed with 6 ml of methanol, followed by the addition of 12 ml of chloroform and tridecanoin (as internal standard). The mixtures were incubated for at least one hour at room temperature or at 4°C overnight. The chloroform layer was extracted and filtered through a Whatman filter with one gram of anhydrous sodium sulfate to remove particulates and residual water. The organic solvents were evaporated at 400°C under a stream of nitrogen. The extracted lipids were derivatized to fatty acid methyl esters
(FAME) for gas chromatography analysis (GC) by adding 2 ml of 0.5N potassium hydroxide in methanol to a closed tube. The samples were heated at 95 to 100°C for 30 minutes and cooled to room temperature. Approximately 2 ml of the 14% boron trifluoride in methanol was added and the heating repeated. After the extracted lipid mixture cooled, 2 ml of water and 1 ml of hexane were added to extract the FAME for GC analysis. The percent conversion was calculated by dividing the product produced by the sum of (the product produced and the substrate) and then multiplying by 100.

The fatty acid synthesis in insect cells infected with recombinant virus containing D5 cDNA is summarized in Table 6. The conversion of the added substrate, DGLA, to Arachidonic acid (AA, 20:4n-6) was monitored. AA, and other fatty acids containing longer carbon chains, were detected in the presence of the recombinant fungal D5-desaturase enzyme. The quantity of arachidonic acid (AA, 20:4n-6) produced by the D5-desaturase was 1.4% of the total fatty acid versus the control which expressed only 0.175%. This resulted in a 23% conversion of DGLA to AA.

These data indicate that the *M. alpina* D5-desaturase can be expressed in another eukaryotic host (insect cells) in a biologically active form as demonstrated by the production of AA as well as the accumulation of fatty acids with longer carbon chains.

Table 6

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>Δ5</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>*20:3n-6</td>
<td>27.4</td>
<td>26.3</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>(23%) 1.40</td>
<td>0.175</td>
</tr>
<tr>
<td>20:4n-3</td>
<td>0.090</td>
<td>0.08</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>0.200</td>
<td>0.13</td>
</tr>
<tr>
<td>22:5n-3</td>
<td>0.027</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Example 7

Identification of Homologues to *M. alpina* Δ5 and Δ6 desaturases

A nucleic acid sequence that encodes a putative Δ5 desaturase was identified through a TBLASTN search of the est databases through NCBI using amino acids 100-446 of Ma29 as a query. The truncated portion of the Ma29 sequence was used to avoid picking up homologies based on the cytochrome b5 portion at the N-terminus of the desaturase. The deduced amino acid sequence of an est from *Dictyostelium discoideum* (accession # C25549) shows very significant homology to Ma29 and lesser, but still significant homology to Ma524. The DNA sequence is presented as SEQ ID NO:13. The amino acid sequence is presented as SEQ ID NO:14.

Example 8

Identification of *M. alpina* Δ5 and Δ6 homologues in other PUFA-producing organisms

To look for desaturases involved in PUFA production, a cDNA library was constructed from total RNA isolated from Phaeodactylum tricornutum. A plasmid-based cDNA library was constructed in pSPORT1 (GIBCO-BRL) following manufacturer's instructions using a commercially available kit (GIBCO-BRL). Random cDNA clones were sequenced and nucleic acid sequences that encode putative Δ5 or Δ6 desaturases were identified through BLAST search of the databases and comparison to Ma29 and Ma524 sequences.

One clone was identified from the *Phaeodactylum* library with homology to Ma29 and Ma524; it is called 144-011-B12. The DNA sequence is presented as SEQ ID NO:15. The amino acid sequence is presented as SEQ ID NO:16.
Example 9

Identification of M. alpina Δ5 and Δ6 homologues in other PUFA-producing organisms

To look for desaturases involved in PUFA production, a cDNA library was constructed from total RNA isolated from *Schizochytrium* species. A plasmid-based cDNA library was constructed in pSPORT1 (GIBCO-BRL) following manufacturer's instructions using a commercially available kit (GIBCO-BRL). Random cDNA clones were sequenced and nucleic acid sequences that encode putative Δ5 or Δ6 desaturases were identified through BLAST search of the databases and comparison to Ma29 and Ma524 sequences.

One clone was identified from the *Schizochytrium* library with homology to Ma29 and Ma524; it is called 81-23-C7. This clone contains a ~1 kb insert. Partial sequence was obtained from each end of the clone using the universal forward and reverse sequencing primers. The DNA sequence from the forward primer is presented as SEQ ID NO:17. The peptide sequence is presented as SEQ ID NO:18. The DNA sequence from the reverse primer is presented as SEQ ID NO:19. The amino acid sequence from the reverse primer is presented as SEQ ID NO:20.

Example 10

Human Desaturase Gene Sequences

Human desaturase gene sequences potentially involved in long chain polyunsaturated fatty acid biosynthesis were isolated based on homology between the human cDNA sequences and *Mortierella alpina* desaturase gene sequences. The three conserved "histidine boxes" known to be conserved among membrane-bound desaturases were found. As with some other membrane-bound desaturases the final HXXHH histidine box motif was found to be QXXHH. The amino acid sequence of the putative human desaturases exhibited homology to *M. alpina* Δ5, Δ6, Δ9, and Δ12 desaturases.
The *M. alpina* Δ5 desaturase and Δ6 desaturase cDNA sequences were used to search the LifeSeq database of Incyte Pharmaceuticals, Inc., Palo Alto, California 94304. The Δ5 desaturase sequence was divided into fragments; 1) amino acid no. 1-150, 2) amino acid no. 151-300, and 3) amino acid no. 301-446. The Δ6 desaturase sequence was divided into three fragments; 1) amino acid no. 1-150, 2) amino acid no. 151-300, and 3) amino acid no. 301-457. These polypeptide fragments were searched against the database using the "tblastn" algorithm. This algorithm compares a protein query sequence against a nucleotide sequence database dynamically translated in all six reading frames (both strands).

The polypeptide fragments 2 and 3 of *M. alpina* Δ5 and Δ6 have homologies with the CloneID sequences as outlined in Table 6. The CloneID represents an individual sequence from the Incyte LifeSeq database. After the "tblastn" results have been reviewed, Clone Information was searched with the default settings of Stringency of >=50, and Productscore <=100 for different CloneID numbers. The Clone Information Results displayed the information including the ClusterID, CloneID, Library, HitID, Hit Description. When selected, the ClusterID number displayed the clone information of all the clones that belong in that ClusterID. The Assemble command assembles all of the CloneID which comprise the ClusterID. The following default settings were used for GCG (Genetics Computer Group, University of Wisconsin Biotechnology Center, Madison, Wisconsin 53705) Assembly:

Word Size: 7
Minimum Overlap: 14
Stringency: 0.8
Minimum Identity: 14
Maximum Gap: 10
Gap Weight: 8
Length Weight: 2
GCG Assembly Results displayed the contigs generated on the basis of sequence information within the CloneID. A contig is an alignment of DNA sequences based on areas of homology among these sequences. A new sequence (consensus sequence) was generated based on the aligned DNA sequences within a contig. The contig containing the CloneID was identified, and the ambiguous sites of the consensus sequence was edited based on the alignment of the CloneIDs (see SEQ ID NO:21 - SEQ ID NO:25) to generate the best possible sequence. The procedure was repeated for all six CloneID listed in Table 6. This produced five unique contigs. The edited consensus sequences of the 5 contigs were imported into the Sequencher software program (Gene Codes Corporation, Ann Arbor, Michigan 48 105). These consensus sequences were assembled. The contig 2511785 overlaps with contig 3506132, and this new contig was called 2535 (SEQ ID NO:27). The contigs from the Sequencher program were copied into the Sequence Analysis software package of GCG.

Each contig was translated in all six reading frames into protein sequences. The *M. alpina* Δ5 (MA29) and Δ6 (MA524) sequences were compared with each of the translated contigs using the FastA search (a Pearson and Lipman search for similarity between a query sequence and a group of sequences of the same type (nucleic acid or protein)). Homology among these sequences suggest the open reading frames of each contig. The homology among the *M. alpina* Δ5 and Δ6 to contigs 2535 and 3854933 were utilized to create the final contig called 253538a. Figure 13 is the FastA match of the final contig 253538a and MA29, and Figure 14 is the FastA match of the final contig 253538a and MA524. The DNA sequences for the various contigs are presented in SEQ ID NO:21 -SEQ ID NO:27. The various peptide sequences are shown in SEQ ID NO:28 - SEQ ID NO:34.

Although the open reading frame was generated by merging the two contigs, the contig 2535 shows that there is a unique sequence in the beginning of this contig which does not match with the contig 3854933. Therefore, it is possible that these contigs were generated from independent desaturase like human genes.
The contig 253538a contains an open reading frame encoding 432 amino acids. It starts with Gln (CAG) and ends with the stop codon (TGA). The contig 253538a aligns with both *M. alpina* Δ5 and Δ6 sequences, suggesting that it could be either of the desaturases, as well as other known desaturases which share homology with each other. The individual contigs listed in Table 6, as well as the intermediate contig 2535 and the final contig 253538a can be utilized to isolate the complete genes for human desaturases.

Uses of the human desaturases

These human sequences can be expressed in yeast and plants utilizing the procedures described in the preceding examples. For expression in mammalian cells and transgenic animals, these genes may provide superior codon bias. These human sequences can also be used to identify related desaturase sequences.

<table>
<thead>
<tr>
<th>Sections of the Desaturases</th>
<th>Clone ID from LifeSeq Database</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>151-300 Δ5</td>
<td>3808675</td>
<td>Fatty acid desaturase</td>
</tr>
<tr>
<td>301-446 Δ5</td>
<td>354535</td>
<td>Δ6</td>
</tr>
<tr>
<td>151-300 Δ6</td>
<td>3448789</td>
<td>Δ6</td>
</tr>
<tr>
<td>151-300 Δ6</td>
<td>1362863</td>
<td>Δ6</td>
</tr>
<tr>
<td>151-300 Δ6</td>
<td>2394760</td>
<td>Δ6</td>
</tr>
<tr>
<td>301-457 Δ6</td>
<td>3350263</td>
<td>Δ6</td>
</tr>
</tbody>
</table>

Example 10

Production of Oil in Microorganisms

The sequences presented in the Sequence Listing including sequences that are homologous to these sequences as well as those sequences that are related to these sequences may be cloned into an appropriate vector using procedures described herein and detailed in the previous examples. Such host cells can be utilized for the production of lipids and/or fats.

Extraction of lipids or fats from host cells follows the general procedure described by Folch, et al., *J.Biol. Chem.* 226: 497 1957 which is hereby incorporated by reference. Host cells are grown under appropriate conditions and
harvested. Harvested cells are homogenized mechanically with 20ml/g of a mixture of chloroform-methanol, 2:1 (v/v). In order to minimize oxidation, and anti-oxidant is added to the extraction solvent. If the oil is to be utilized for human consumption, vitamin E (α-tocopherol) is utilized as the anti-oxidant. After extraction, the solvent containing the lipid extract is washed with 0.2 volume of 0.58% NaCl. The mixture is thoroughly mixed and then transferred to a separating funnel. The mixed material is allowed to settle and two phases are separated out on standing. The bottom phase is collected and the solvent removed under vacuum. The residue contains the total tissue lipids.

Yeast Strains Rich in Lipids

Under some circumstances, vectors will be transformed into yeast strains rich in lipids. In these strains, a high percentage of the cell lipids is often stored in fat droplets containing mostly the triglycerides. For these cells, simply breaking the cell wall by mechanical, pressure or enzymatic means will release the fat droplet. Once released, the fat is extracted with hexane for further processing.

Example 12

Further Processing of Oil Produced by Microorganisms

Further processing of oil produced by microorganisms is necessary to produce an edible food product. The refining process includes the following four steps.

1. Degumming: Degumming is utilized to remove phosphatides co-extracted with the oil, which tend to separate from the oil as a sludge during storage. Two steps are utilized: (1) phosphatides are precipitated with water and then (2) with a mild acid. The particles are removed by centrifugation.
2. *Alkali Refining*: This step is to utilized to further reduce the phosphatide content and also the free fatty acid content of the oil. In this step, the oil is first contacted with small volume of concentrated phosphoric acid in a mixer to precipitate phosphatides. The acidified mixture is then contacted with an aqueous solution of sodium hydroxide to neutralize the free fatty acids as well as any excess phosphoric acid to form a soapy phase. The soap is removed by centrifugation.

3. *Adsorptive Bleaching*: After the alkali-refining step, the crude oil often contains traces of soap and chlorophyllloid compounds. The later gives an undesirable green color to the oil and should be removed. An acid-catalyzed clay or active carbon is utilized to remove these compounds.

4. *Deodorization*: The final refining step is deodorization. Deodorization is utilized to remove compounds from the oil that impart undesirable odors and tastes typical of the host organism. The step involves steam distillation of the odor and flavor compounds and other volatile compounds such as free fatty acids from the oil. The oil is heated to 225-260°C under very low pressure to exclude air and the volatile compounds are removed. Deodorization can remove tocopherols to some extent. As the transgenic oil is more unsaturated than non-transgenic oil, additional amount of antioxidant(s) may be supplemented to protect the oil from oxidation.

Example 13

Further Purification of Oil Produced by Microorganisms

Under certain circumstances, further purification and enriching of long-chain polyunsaturated fatty acids from transgenic microorganisms is needed. Such further processing steps include the following:

1. *Fractionation*: Oils are mixtures of triglycerides with different fatty acid compositions. Based on their different melting points, the triglycerides may be separated into different portions. Thermo-mechanical separation processes include
distillation and crystallization. Distillation is generally commercially unsuitable, because the triglyceride mixtures have low vapor pressures and are unstable at high temperature. Crystallization (winterization) uses low temperature to separate solid triglyceride fraction from the liquid fraction. The liquid fraction is usually more unsaturated than the solid fraction. This method is a mild procedure especially suitable for triglyceride containing the polyunsaturated fatty acids.

2. Urea fractionation: Saturated fatty acids generally more readily form stable complexes than do unsaturated fatty acids with urea. The procedure can be used to enrich polyunsaturated fatty acids.

3. HPLC separation: HPLC using a reverse phase column can separate triglyceride molecules according to combined chain length of the fatty acid residues as well as the degree of unsaturation. Using this method, the highly unsaturated triglyceride molecules are eluted out the column for separation.

4. Supercritical fluid chromatography (SFC) or supercritical fluid extraction (SFC): SFC is a method whereby a highly compressed gas at a temperature and pressure above its critical temperature and pressure as a supercritical fluid is used to elute analytes from a chromatographic column. Triglycerides are separated by SFC according to the combined chain length of the fatty acid residues using columns coated with relatively non-polar stationary phase, or according to the degree of unsaturation by using a more polar stationary phase. Generally, the triglyceride molecules are separated (1) according to their carbon numbers and (2) according to unsaturation within each carbon number group. In order words, the most unsaturated molecules have the strongest retention to the stationary phase and are eluted out the column last.

Example 14

Manufacture of Transgenic Oil Nutritional Products
Once purified, transgenic oil is incorporated into various food products. The incorporation of transgenic oil into food products involves the following steps: (1) Preparation of slurry mix; (2) blending and (3) standardization:

I. Preparation of slurry mix:

5 Basically, three different slurries are prepared before the final blending.

A. Protein-in-fat slurry (PIF)

Add the indicated amounts of oil blend (containing the transgenic canola oil and other oils at a designated ratio) to a kettle and heat at 120-140°F under moderate agitation. This is followed by the addition of DEK Premix, vitamin A, and soy lecithin, and Milei 75L WPC. Maintain the PIF at 120-140°F under moderate agitation until use.

B. Carbohydrate/mineral slurry (CHO/MIN)

15 Heat the required amount of water to 140-160°F with high agitation. Add in order the indicated amounts of TM premix, Gum Arabic, and Fibrin 300, respectively. Allow each addition to be completely dispersed under high agitation before the next ingredient is added.

20 Add in order the indicated amounts of different mineral salts, dry blend of Gellan Gum and sucrose, and fructooligosaccharides and maltrins. Allow slurry to mix under high agitation until dispersed completely. Maintain the CHO/MIN slurry at 140-160°F under moderate agitation until use.

C. Protein-in-water slurry (PIW)

25 Add the indicated amount of water to a kettle and heat to 140-160°F. Add the Alanates, mix under high agitation until protein is completely dispersed,
then slow the agitation to moderate speed. Maintain PIW under moderate agitation at 130-150°F for at least half hour before blending.

II. Blending:

5 Weigh the indicated amount of PIF slurry and add to the PIW slurry, and mix under moderate agitation for 5 min. Add the CHO/MIN to the blend, and adjust to the designated pH value with 1N KOH. Thereafter, deaerate the mix by vacuum, heat the mixture to 160-180°F, and emulsify mix at 900-1100 psig in a homogenizer. The mix goes through the UHT treatment, homogenized and pass the mix through a holding tube, and then cool mix to 34-45°F and store until standardization.

III. Standardization:

Add indicated amount water, vitamin solution, flavor solution, and color solution to the batch. Allow to mix thoroughly. Transfer into can, sterilize and store until use.

Example 15

Nutritional Compositions

20 The PUFAs of the previous examples can be utilized in various nutritional supplements, infant formulations, nutritional substitutes and other nutrition solutions.
I. INFANT FORMULATIONS

A. Isomil® Soy Formula with Iron.

Usage: As a beverage for infants, children and adults with an allergy or sensitivity to cow's milk. A feeding for patients with disorders for which lactose should be avoided: lactase deficiency, lactose intolerance and galactosemia.

Features:

- Soy protein isolate to avoid symptoms of cow's-milk-protein allergy or sensitivity
- Lactose-free formulation to avoid lactose-associated diarrhea
- Low osmolality (240 mOsm/kg water) to reduce risk of osmotic diarrhea.
- Dual carbohydrates (corn syrup and sucrose) designed to enhance carbohydrate absorption and reduce the risk of exceeding the absorptive capacity of the damaged gut.
- 1.8 mg of Iron (as ferrous sulfate) per 100 Calories to help prevent iron deficiency.
- Recommended levels of vitamins and minerals.
- Vegetable oils to provide recommended levels of essential fatty acids.
- Milk-white color, milk-like consistency and pleasant aroma.

Ingredients: (Pareve) 85% water, 4.9% corn syrup, 2.6% sugar (sucrose), 2.1% soy oil, 1.9% soy protein isolate, 1.4% coconut oil, 0.15% calcium citrate, 0.11% calcium phosphate tribasic, potassium citrate, potassium phosphate monobasic, potassium chloride, mono- and diglycerides, soy lecithin, carrageenan, ascorbic acid, L-methionine, magnesium chloride, potassium phosphate dibasic, sodium chloride, choline chloride, taurine, ferrous sulfate, inositol, alpha-tocopheryl acetate, zinc sulfate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, potassium iodide, phylloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin,
B. **Isomil® DF Soy Formula For Diarrhea.**

Usage: As a short-term feeding for the dietary management of diarrhea in infants and toddlers.

Features:

- First infant formula to contain added dietary fiber from soy fiber specifically for diarrhea management.
- Clinically shown to reduce the duration of loose, watery stools during mild to severe diarrhea in infants.
- Nutritionally complete to meet the nutritional needs of the infant.
- Soy protein isolate with added L-methionine meets or exceeds an infant's requirement for all essential amino acids.
- Lactose-free formulation to avoid lactose-associated diarrhea.
- Low osmolality (240 mOsm/kg water) to reduce the risk of osmotic diarrhea.
- Dual carbohydrates (corn syrup and sucrose) designed to enhance carbohydrate absorption and reduce the risk of exceeding the absorptive capacity of the damaged gut.
- Meets or exceeds the vitamin and mineral levels recommended by the Committee on Nutrition of the American Academy of Pediatrics and required by the Infant Formula Act.
- 1.8 mg of iron (as ferrous sulfate) per 100 Calories to help prevent iron deficiency.
- Vegetable oils to provide recommended levels of essential fatty acids.

Ingredients: (Parve) 86% water, 4.8% corn syrup, 2.5% sugar (sucrose), 2.1% soy oil, 2.0% soy protein isolate, 1.4% coconut oil, 0.77% soy fiber, 0.12% calcium citrate, 0.11% calcium phosphate tribasic, 0.10% potassium citrate, potassium chloride, potassium phosphate monobasic, mono- and diglycerides, soy lecithin, carrageenan, magnesium chloride, ascorbic acid, L-methionine, potassium
phosphate dibasic, sodium chloride, choline chloride, taurine, ferrous sulfate, m-inositol, alpha-tocopheryl acetate, zinc sulfate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, potassium iodide, phylloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin.

C. **Isomil® SF Sucrose-Free Soy Formula With Iron.**

Usage: As a beverage for infants, children and adults with an allergy or sensitivity to cow's-milk protein or an intolerance to sucrose. A feeding for patients with disorders for which lactose and sucrose should be avoided.

Features:

- Soy protein isolate to avoid symptoms of cow's-milk-protein allergy or sensitivity.
- Lactose-free formulation to avoid lactose-associated diarrhea (carbohydrate source is Polycose® Glucose Polymers).
- Sucrose free for the patient who cannot tolerate sucrose.
- Low osmolality (180 mOsm/kg water) to reduce risk of osmotic diarrhea.
- 1.8 mg of iron (as ferrous sulfate) per 100 Calories to help prevent iron deficiency.
- Recommended levels of vitamins and minerals.
- Vegetable oils to provide recommended levels of essential fatty acids.
- Milk-white color, milk-like consistency and pleasant aroma.

Ingredients: (Pareve) 75% water, 11.8% hydrolized cornstarch, 4.1% soy oil, 4.1% soy protein isolate, 2.8% coconut oil, 1.0% modified cornstarch, 0.38% calcium phosphate tribasic, 0.17% potassium citrate, 0.13% potassium chloride, mono- and diglycerides, soy lecithin, magnesium chloride, ascorbic acid, L-methionine, calcium carbonate, sodium chloride, choline chloride, carrageenan, taurine, ferrous sulfate, m-inositol, alpha-tocopheryl acetate, zinc sulfate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, vitamin A palmitate,
thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, potassium iodide, phyloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin.

D. **Isomil® 20 Soy Formula With Iron Ready To Feed,**

20 Cal/fl oz.

Usage: When a soy feeding is desired.

Ingredients: (Pareve) 85% water, 4.9% corn syrup, 2.6% sugar (sucrose), 2.1% soy oil, 1.9% soy protein isolate, 1.4% coconut oil, 0.15% calcium citrate, 0.11% calcium phosphate tribasic, potassium citrate, potassium phosphate monobasic, potassium chloride, mono- and disglycerides, soy lecithin, carrageenan, ascorbic acid, L-methionine, magnesium chloride, potassium phosphate dibasic, sodium chloride, choline chloride, taurine, ferrous sulfate, m-inositol, alpha-tocopheryl acetate, zinc sulfate, L-carnitine, niacinamide, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, potassium iodide, phyloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin.

E. **Similac® Infant Formula**

Usage: When an infant formula is needed: if the decision is made to discontinue breastfeeding before age 1 year, if a supplement to breastfeeding is needed or as a routine feeding if breastfeeding is not adopted.

Features:

- Protein of appropriate quality and quantity for good growth; heat-denatured, which reduces the risk of milk-associated enteric blood loss.
- Fat from a blend of vegetable oils (doubly homogenized), providing essential linoleic acid that is easily absorbed.
- Carbohydrate as lactose in proportion similar to that of human milk.
- Low renal solute load to minimize stress on developing organs.
- Powder, Concentrated Liquid and Ready To Feed forms.
Ingredients: Water, nonfat milk, lactose, soy oil, coconut oil, mono- and diglycerides, soy lecithin, ascorbic acid, carrageenan, choline chloride, taurine, m-inositol, alpha-tocopheryl acetate, zinc sulfate, niacinamide, ferrous sulfate, calcium pantothenate, cupric sulfate, vitamin A palmitate, thiamine chloride hydrochloride, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, phylloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin.

F. Similac® NeoCare Premature Infant Formula With Iron

Usage: For premature infants' special nutritional needs after hospital discharge. Similac NeoCare is a nutritionally complete formula developed to provide premature infants with extra calories, protein, vitamins and minerals needed to promote catch-up growth and support development.

Features:

- Reduces the need for caloric and vitamin supplementation. More calories (22 Cal/fl oz) then standard term formulas (20 Cal/fl oz).

- Highly absorbed fat blend, with medium-chain triglycerides (MCT oil) to help meet the special digestive needs of premature infants.

- Higher levels of protein, vitamins and minerals per 100 Calories to extend the nutritional support initiated in-hospital.

- More calcium and phosphorus for improved bone mineralization.

Ingredients: Corn syrup solids, nonfat milk, lactose, whey protein concentrate, soy oil, high-oleic safflower oil, fractionated coconut oil (medium-chain triglycerides), coconut oil, potassium citrate, calcium phosphate tribasic, calcium carbonate, ascorbic acid, magnesium chloride, potassium chloride, sodium chloride, taurine, ferrous sulfate, m-inositol, choline chloride, ascorbyl palmitate, L-carnitine, alpha-tocopheryl acetate, zinc sulfate, niacinamide, mixed tocopherols, sodium citrate, calcium pantothenate, cupric sulfate, thiamine chloride hydrochloride, vitamin A palmitate, beta carotene, riboflavin, pyridoxine hydrochloride, folic acid, manganese sulfate, phylloquinone, biotin, sodium selenite, vitamin D₃ and cyanocobalamin.
G. Similac Natural Care Low-Iron Human Milk Fortifier Ready To Use, 24 Cal/fl oz.

Usage: Designed to be mixed with human milk or to be fed alternatively with human milk to low-birth-weight infants.

Ingredients: Water, nonfat milk, hydrolyzed cornstarch, lactose, fractionated coconut oil (medium-chain triglycerides), whey protein concentrate, soil oil, coconut oil, calcium phosphate tribasic, potassium citrate, magnesium chloride, sodium citrate, ascorbic acid, calcium carbonate, mono-and diglycerides, soy lecithin, carrageenan, choline chloride, m-inositol, taurine, niacinamide, L-carnitine, alpha tocopheryl acetate, zinc sulfate, potassium chloride, calcium pantothenate, ferrous sulfate, cupric sulfate, riboflavin, vitamin A palmitate, thiamine chloride hydrochloride, pyridoxine hydrochloride, biotin, folic acid, manganese sulfate, phylloquinone, vitamin D₃, sodium selenite and cyanocobalamin.

Various PUFAs of this invention can be substituted and/or added to the infant formulae described above and to other infant formulae known to those in the art.

II. NUTRITIONAL FORMULATIONS

A. ENSURE®

Usage: ENSURE is a low-residue liquid food designed primarily as an oral nutritional supplement to be used with or between meals or, in appropriate amounts, as a meal replacement. ENSURE is lactose- and gluten-free, and is suitable for use in modified diets, including low-cholesterol diets. Although it is primarily an oral supplement, it can be fed by tube.

Patient Conditions:
- For patients on modified diets
- For elderly patients at nutrition risk
- For patients with involuntary weight loss
- For patients recovering from illness or surgery
• For patients who need a low-residue diet

Ingredients:

Water, Sugar (Sucrose), Maltodextrin (Corn), Calcium and Sodium Caseinates, High-Oleic Safflower Oil, Soy Protein Isolate, Soy Oil, Canola Oil, Potassium Citrate, Calcium Phosphate Tribasic, Sodium Citrate, Magnesium Chloride, Magnesium Phosphate Dibasic, Artificial Flavor, Sodium Chloride, Soy Lecithin, Choline Chloride, Ascorbic Acid, Carrageenan, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Gellan Gum, Niacinamide, Calcium Pantothenate, Manganese Sulfate, Cupric Sulfate, Vitamin A Palmitate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, Folic Acid, Sodium Molybdate, Chromium Chloride, Biotin, Potassium Iodide, Sodium Selenate.

B. ENSURE® BARS

Usage: ENSURE BARS are complete, balanced nutrition for supplemental use between or with meals. They provide a delicious, nutrient-rich alternative to other snacks. ENSURE BARS contain <1 g lactose/bar, and Chocolate Fudge Brownie flavor is gluten-free. (Honey Graham Crunch flavor contains gluten.)

Patient Conditions:

• For patients who need extra calories, protein, vitamins and minerals
• Especially useful for people who do not take in enough calories and nutrients
• For people who have the ability to chew and swallow
• Not to be used by anyone with a peanut allergy or any type of allergy to nuts.

Ingredients:

Honey Graham Crunch -- High-Fructose Corn Syrup, Soy Protein Isolate, Brown Sugar, Honey, Maltodextrin (Corn), Crisp Rice (Milled Rice, Sugar [Sucrose], Salt [Sodium Chloride] and Malt), Oat Bran, Partially Hydrogenated Cottonseed and Soy Oils, Soy Polysaccharide, Glycerine, Whey Protein Concentrate, Polydextrose, Fructose, Calcium Caseinate, Cocoa Powder, Artificial
Flavors, Canola Oil, High-Oleic Safflower Oil, Nonfat Dry Milk, Whey Powder, Soy Lecithin and Corn Oil. Manufactured in a facility that processes nuts.

Vitamins and Minerals:

Calcium Phosphate Tribasic, Potassium Phosphate Dibasic, Magnesium Oxide, Salt (Sodium Chloride), Potassium Chloride, Ascorbic Acid, Ferric Orthophosphate, Alpha-Tocopheryl Acetate, Niacinamide, Zinc Oxide, Calcium Pantothenate, Copper Gluconate, Manganese Sulfate, Riboflavin, Beta-Carotene, Pyridoxine Hydrochloride, Thiamine Mononitrate, Folic Acid, Biotin, Chromium Chloride, Potassium Iodide, Sodium Selenate, Sodium Molybdate, Phylloquinone, Vitamin D₃ and Cyanocobalamin.

Protein:

Honey Graham Crunch - The protein source is a blend of soy protein isolate and milk proteins.

| Soy protein isolate | 74% |
| Milk proteins | 26% |

Fat:

Honey Graham Crunch - The fat source is a blend of partially hydrogenated cottonseed and soybean, canola, high oleic safflower, and corn oils, and soy lecithin.

Partially hydrogenated cottonseed and soybean oil	76%
Canola oil	8%
High-oleic safflower oil	8%
Corn oil	4%
Soy lecithin	4%

Carbohydrate:

Honey Graham Crunch - The carbohydrate source is a combination of high-fructose corn syrup, brown sugar, maltodextrin, honey, crisp rice, glycerine, soy polysaccharide, and oat bran.
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-fructose corn syrup</td>
<td>24%</td>
</tr>
<tr>
<td>Brown sugar</td>
<td>21%</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>12%</td>
</tr>
<tr>
<td>Honey</td>
<td>11%</td>
</tr>
<tr>
<td>Crisp rice</td>
<td>9%</td>
</tr>
<tr>
<td>Glycerine</td>
<td>9%</td>
</tr>
<tr>
<td>Soy polysaccharide</td>
<td>7%</td>
</tr>
<tr>
<td>Oat bran</td>
<td>7%</td>
</tr>
</tbody>
</table>

C. ENSURE® HIGH PROTEIN

Usage: ENSURE HIGH PROTEIN is a concentrated, high-protein liquid food designed for people who require additional calories, protein, vitamins, and minerals in their diets. It can be used as an oral nutritional supplement with or between meals or, in appropriate amounts, as a meal replacement. ENSURE HIGH PROTEIN is lactose- and gluten-free, and is suitable for use by people recovering from general surgery or hip fractures and by patients at risk for pressure ulcers.

Patient Conditions

- For patients who require additional calories, protein, vitamins, and minerals, such as patients recovering from general surgery or hip fractures, patients at risk for pressure ulcers, and patients on low-cholesterol diets

Features

- Low in saturated fat
- Contains 6 g of total fat and < 5 mg of cholesterol per serving
- Rich, creamy taste
- Excellent source of protein, calcium, and other essential vitamins and minerals
- For low-cholesterol diets
- Lactose-free, easily digested
Ingredients:

Vanilla Supreme: Water, Sugar (Sucrose), Maltodextrin (Corn), Calcium and Sodium Caseinates, High-Oleic Safflower Oil, Soy Protein Isolate, Soy Oil, Canola Oil, Potassium Citrate, Calcium Phosphate Tribasic, Sodium Citrate, Magnesium Chloride, Magnesium Phosphate Dibasic, Artificial Flavor, Sodium Chloride, Soy Lecithin, Choline Chloride, Ascorbic Acid, Carrageenan, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Gellan Gum, Niacinamide, Calcium Pantothenate, Manganese Sulfate, Cupric Sulfate, Vitamin A Palmitate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, Folio Acid, Sodium Molybdate, Chromium Chloride, Biotin, Potassium Iodide, Sodium Selenate, Phylloquinone, Vitamin D.3 and Cyanocobalamin.

Protein:

The protein source is a blend of two high-biologic-value proteins: casein and soy.

- Sodium and calcium caseinates: 85%
- Soy protein isolate: 15%

Fat:

The fat source is a blend of three oils: high-oleic safflower, canola, and soy.

- High-oleic safflower oil: 40%
- Canola oil: 30%
- Soy oil: 30%

The level of fat in ENSURE HIGH PROTEIN meets American Heart Association (AHA) guidelines. The 6 grams of fat in ENSURE HIGH PROTEIN represent 24% of the total calories, with 2.6% of the fat being from saturated fatty acids and 7.9% from polyunsaturated fatty acids. These values are within the AHA guidelines of ≤ 30% of total calories from fat, < 10% of the calories from saturated fatty acids, and ≤ 10% of total calories from polyunsaturated fatty acids.

Carbohydrate:

ENSURE HIGH PROTEIN contains a combination of maltodextrin and sucrose. The mild sweetness and flavor variety (vanilla supreme, chocolate royal,
wild berry, and banana), plus VARI-FLAVORSO® Flavor Pacs in pecan, cherry, strawberry, lemon, and orange, help to prevent flavor fatigue and aid in patient compliance.

Vanilla and other nonchocolate flavors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td>Maltodextrin</td>
</tr>
</tbody>
</table>

Chocolate

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Sucrose</td>
</tr>
<tr>
<td></td>
<td>Maltodextrin</td>
</tr>
</tbody>
</table>

D. ENSURE ® LIGHT

Usage: ENSURE LIGHT is a low-fat liquid food designed for use as an oral nutritional supplement with or between meals. ENSURE LIGHT is lactose- and gluten-free, and is suitable for use in modified diets, including low-cholesterol diets.

Patient Conditions:

- For normal-weight or overweight patients who need extra nutrition in a supplement that contains 50% less fat and 20% fewer calories than ENSURE
- For healthy adults who don't eat right and need extra nutrition

Features:

- Low in fat and saturated fat
- Contains 3 g of total fat per serving and < 5 mg cholesterol
- Rich, creamy taste
- Excellent source of calcium and other essential vitamins and minerals
- For low-cholesterol diets
- Lactose-free, easily digested
Ingredients:

French Vanilla: Water, Maltodextrin (Corn), Sugar (Sucrose), Calcium Caseinate, High-Oleic Safflower Oil, Canola Oil, Magnesium Chloride, Sodium Citrate, Potassium Citrate, Potassium Phosphate Dibasic, Magnesium Phosphate Dibasic, Natural and Artificial Flavor, Calcium Phosphate Tribasic, Cellulose Gel, Choline Chloride, Soy Lecithin, Carrageenan, Salt (Sodium Chloride), Ascorbic Acid, Cellulose Gum, Ferrous Sulfate, Alpha-Tocopherol Acetate, Zinc Sulfate, Niacinamide, Manganese Sulfate, Calcium Pantothenate, Cupric Sulfate, Thiamine Chloride Hydrochloride, Vitamin A Palmitate, Pyridoxine Hydrochloride, Riboflavin, Chromium Chloride, Folic Acid, Sodium Molybdate, Biotin, Potassium Iodide, Sodium Selenate, Phylloquinone, Vitamin D₃ and Cyanocobalamin.

Protein:

The protein source is calcium caseinate.

Calcium caseinate 100%

Fat

The fat source is a blend of two oils: high-oleic safflower and canola.

High-oleic safflower oil 70%
Canola oil 30%

The level of fat in ENSURE LIGHT meets American Heart Association (AHA) guidelines. The 3 grams of fat in ENSURE LIGHT represent 13.5% of the total calories, with 1.4% of the fat being from saturated fatty acids and 2.6% from polyunsaturated fatty acids. These values are within the AHA guidelines of ≤ 30% of total calories from fat, < 10% of the calories from saturated fatty acids, and ≤ 1 0% of total calories from polyunsaturated fatty acids.

Carbohydrate

ENSURE LIGHT contains a combination of maltodextrin and sucrose. The chocolate flavor contains corn syrup as well. The mild sweetness and flavor variety (French vanilla, chocolate supreme, strawberry swirl), plus VARI-
FLAVORS® Flavor Pops in pecan, cherry, strawberry, lemon, and orange, help to prevent flavor fatigue and aid in patient compliance.

Vanilla and other nonchocolate flavors

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>51%</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>49%</td>
</tr>
</tbody>
</table>

Chocolate

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>47.0%</td>
</tr>
<tr>
<td>Corn Syrup</td>
<td>26.5%</td>
</tr>
<tr>
<td>Maltodextrin</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

Vitamins and Minerals

An 8-fl-oz serving of ENSURE LIGHT provides at least 25% of the RDIs for 24 key vitamins and minerals.

Caffeine

Chocolate flavor contains 2.1 mg caffeine/8 fl oz.

E. ENSURE PLUS®

Usage: ENSURE PLUS is a high-calorie, low-residue liquid food for use when extra calories and nutrients, but a normal concentration of protein, are needed. It is designed primarily as an oral nutritional supplement to be used with or between meals or, in appropriate amounts, as a meal replacement. ENSURE PLUS is lactose- and gluten-free. Although it is primarily an oral nutritional supplement, it can be fed by tube.

Patient Conditions:

- For patients who require extra calories and nutrients, but a normal concentration of protein, in a limited volume
- For patients who need to gain or maintain healthy weight
Features

- Rich, creamy taste
- Good source of essential vitamins and minerals

Ingredients

Vanilla: Water, Corn Syrup, Maltodextrin (Corn), Corn Oil, Sodium and Calcium Caseinates, Sugar (Sucrose), Soy Protein Isolate, Magnesium Chloride, Potassium Citrate, Calcium Phosphate Tribasic, Soy Lecithin, Natural and Artificial Flavor, Sodium Citrate, Potassium Chloride, Choline Chloride, Ascorbic Acid, Carrageenan, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopherol Acetate, Niacinamide, Calcium Pantothenate, Manganese Sulfate, Cupric Sulfate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, Vitamin A Palmitate, Folic Acid, Biotin, Chromium Chloride, Sodium Molybdate, Potassium Iodide, Sodium Selenite, Phyloquinone, Cyanocobalamin and Vitamin D₃.

Protein

The protein source is a blend of two high-biologic-value proteins: casein and soy.

Sodium and calcium caseinates 84%
Soy protein isolate 16%

Fat

The fat source is corn oil.

Corn oil 100%

Carbohydrate

ENSURE PLUS contains a combination of maltodextrin and sucrose. The mild sweetness and flavor variety (vanilla, chocolate, strawberry, coffee, buffer pecan, and eggnog), plus VARI-FLAVORS® Flavor Pacs in pecan, cherry, strawberry, lemon, and orange, help to prevent flavor fatigue and aid in patient compliance.

Vanilla, strawberry, butter pecan, and coffee flavors
Corn Syrup 39%
Maltodextrin 38%
Sucrose 23%

Chocolate and eggnog flavors

5 Corn Syrup 36%
Maltodextrin 34%
Sucrose 30%

Vitamins and Minerals

An 8-fl-oz serving of ENSURE PLUS provides at least 15% of the RDIs for 25 key Vitamins and minerals.

Caffeine

Chocolate flavor contains 3.1 mg Caffeine/8 fl oz. Coffee flavor contains a trace amount of caffeine.

F. ENSURE PLUS® HN

Usage: ENSURE PLUS HN is a nutritionally complete high-calorie, high-nitrogen liquid food designed for people with higher calorie and protein needs or limited volume tolerance. It may be used for oral supplementation or for total nutritional support by tube. ENSURE PLUS HN is lactose- and gluten-free.

Patient Conditions:

- For patients with increased calorie and protein needs, such as following surgery or injury
- For patients with limited volume tolerance and early satiety

Features

- For supplemental or total nutrition
- For oral or tube feeding
• 1.5 CaVmL
• High nitrogen
• Calorically dense

Ingredients

Vanilla: Water, Maltodextrin (Corn), Sodium and Calcium Caseinates, Corn Oil, Sugar (Sucrose), Soy Protein Isolate, Magnesium Chloride, Potassium Citrate, Calcium Phosphate Tribasic, Soy Lecithin, Natural and Artificial Flavor, Sodium Citrate, Choline Chloride, Ascorbic Acid, Taurine, L-Carnitine, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Niacinamide, Carrageenan, Calcium Pantothenate, Manganese Sulfate, Cupric Sulfate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, Vitamin A Palmitate, Folic Acid, Biotin, Chromium Chloride, Sodium Molybdate, Potassium Iodide, Sodium Selenite, Phyloquinone, Cyanocobalamin and Vitamin D₃.

G. **ENSURE® POWDER**

Usage: ENSURE POWDER (reconstituted with water) is a low-residue liquid food designed primarily as an oral nutritional supplement to be used with or between meals. ENSURE POWDER is lactose- and gluten-free, and is suitable for use in modified diets, including low-cholesterol diets.

Patient Conditions:

• For patients on modified diets
• For elderly patients at nutrition risk
• For patients recovering from illness/surgery
• For patients who need a low-residue diet

Features

• Convenient, easy to mix
• Low in saturated fat
• Contains 9 g of total fat and < 5 mg of cholesterol per serving
• High in vitamins and minerals
• For low-cholesterol diets
• Lactose-free, easily digested

Ingredients: Corn Syrup, Maltodextrin (Corn), Sugar (Sucrose), Corn Oil, Sodium and Calcium Caseinates, Soy Protein Isolate, Artificial Flavor, Potassium Citrate, Magnesium Chloride, Sodium Citrate, Calcium Phosphate Tribasic, Potassium Chloride, Soy Lecithin, Ascorbic Acid, Choline Chloride, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Niacinamide, Calcium Pantothenate, Manganese Sulfate, Thiamine Chloride Hydrochloride, Cupric Sulfate, Pyridoxine Hydrochloride, Riboflavin, Vitamin A Palmitate, Folic Acid, Biotin, Sodium Molybdate, Chromium Chloride, Potassium Iodide, Sodium Selenate, Phylloquinone, Vitamin D₃ and Cyanocobalamin.

Protein

The protein source is a blend of two high-biologic-value proteins: casein and soy.

- Sodium and calcium caseinates 84%
- Soy protein isolate 16%

Fat

The fat source is corn oil.

- Corn oil 100%

Carbohydrate

ENSURE POWDER contains a combination of corn syrup, maltodextrin, and sucrose. The mild sweetness of ENSURE POWDER, plus VARI-

FLAVORS® Flavor Pacs in pecan, cherry, strawberry, lemon, and orange, helps to prevent flavor fatigue and aid in patient compliance.

Vanilla

- Corn Syrup 35%
Maltodextrin 35%
Sucrose 30%

H. ENSURE® PUDDING

Usage: ENSURE PUDDING is a nutrient-dense supplement providing balanced nutrition in a nonliquid form to be used with or between meals. It is appropriate for consistency-modified diets (e.g., soft, pureed, or full liquid) or for people with swallowing impairments. ENSURE PUDDING is gluten-free.

Patient Conditions:

- For patients on consistency-modified diets (e.g., soft, pureed, or full liquid)
- For patients with swallowing impairments
- **Features**
 - Rich and creamy, good taste
 - Good source of essential vitamins and minerals
 - Convenient-needs no refrigeration
- Gluten-free

Nutrient Profile per 5 oz: Calories 250, Protein 10.9%, Total Fat 34.9%, Carbohydrate 54.2%

Ingredients:

20 **Vanilla:** Nonfat Milk, Water, Sugar (Sucrose), Partially Hydrogenated Soybean Oil, Modified Food Starch, Magnesium Sulfate, Sodium Stearoyl Lactylate, Sodium Phosphate Dibasic, Artificial Flavor, Ascorbic Acid, Zinc Sulfate, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Choline Chloride, Niacinamide, Manganese Sulfate, Calcium Pantothenate, FD&C Yellow #5, Potassium Citrate, Cupric Sulfate, Vitamin A Palmitate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, FD&C Yellow #6, Folic Acid, Biotin, Phylloquinone, Vitamin D3 and Cyanocobalamin.

Protein
The protein source is nonfat milk.

Nonfat milk 100%

Fat

The fat source is hydrogenated soybean oil.

5 Hydrogenated soybean oil 100%

Carbohydrate

ENSURE PUDDING contains a combination of sucrose and modified food starch. The mild sweetness and flavor variety (vanilla, chocolate, butterscotch, and tapioca) help prevent flavor fatigue. The product contains 9.2 grams of lactose per serving.

Vanilla and other nonchocolate flavors

Sucrose 56%
Lactose 27%
Modified food starch 17%

Chocolate

Sucrose 58%
Lactose 26%
Modified food starch 16%

I. ENSURE® WITH FIBER

Usage: ENSURE WITH FIBER is a fiber-containing, nutritionally complete liquid food designed for people who can benefit from increased dietary fiber and nutrients. ENSURE WITH FIBER is suitable for people who do not require a low-residue diet. It can be fed orally or by tube, and can be used as a nutritional supplement to a regular diet or, in appropriate amounts, as a meal replacement. ENSURE WITH FIBER is lactose- and gluten-free, and is suitable for use in modified diets, including low-cholesterol diets.
Patient Conditions

- For patients who can benefit from increased dietary fiber and nutrients

Features

- New advanced formula-low in saturated fat, higher in vitamins and minerals
- Contains 6 g of total fat and < 5 mg of cholesterol per serving
- Rich, creamy taste
- Good source of fiber
- Excellent source of essential vitamins and minerals
- For low-cholesterol diets
- Lactose- and gluten-free

Ingredients

Vanilla: Water, Maltodextrin (Corn), Sugar (Sucrose), Sodium and Calcium Caseinates, Oat Fiber, High-Oleic Safflower Oil, Canola Oil, Soy Protein Isolate, Corn Oil, Soy Fiber, Calcium Phosphate Tribasic, Magnesium Chloride, Potassium Citrate, Cellulose Gel, Soy Lecithin, Potassium Phosphate Dibasic, Sodium Citrate, Natural and Artificial Flavors, Choline Chloride, Magnesium Phosphate, Ascorbic Acid, Cellulose Gum, Potassium Chloride, Carrageenan, Ferrous Sulfate, Alpha-Tocopheryl Acetate, Zinc Sulfate, Niacinamide, Manganese Sulfate, Calcium Pantothenate, Cupric Sulfate, Vitamin A Palmitate, Thiamine Chloride Hydrochloride, Pyridoxine Hydrochloride, Riboflavin, Folic Acid, Chromium Chloride, Biotin, Sodium Molybdate, Potassium Iodide, Sodium Selenate, Phyloquinone, Vitamin D₃ and Cyanocobalamin.

Protein

The protein source is a blend of two high-biologic-value proteins- casein and soy.

Sodium and calcium caseinates 80%
Soy protein isolate 20%
Fat

The fat source is a blend of three oils: high-oleic safflower, canola, and corn.

<table>
<thead>
<tr>
<th>Oil</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-oleic safflower</td>
<td>40%</td>
</tr>
<tr>
<td>Canola</td>
<td>40%</td>
</tr>
<tr>
<td>Corn</td>
<td>20%</td>
</tr>
</tbody>
</table>

The level of fat in ENSURE WITH FIBER meets American Heart Association (AHA) guidelines. The 6 grams of fat in ENSURE WITH FIBER represent 22% of the total calories, with 2.01% of the fat being from saturated fatty acids and 6.7% from polyunsaturated fatty acids. These values are within the AHA guidelines of ≤ 30% of total calories from fat, < 10% of the calories from saturated fatty acids, and ≤ 10% of total calories from polyunsaturated fatty acids.

Carbohydrate

ENSURE WITH FIBER contains a combination of maltodextrin and sucrose. The mild sweetness and flavor variety (vanilla, chocolate, and butter pecan), plus VARI-FLAVORS® Flavor Pacs in pecan, cherry, strawberry, lemon, and orange, help to prevent flavor fatigue and aid in patient compliance.

Vanilla and other nonchocolate flavors

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltodextrin</td>
<td>66%</td>
</tr>
<tr>
<td>Sucrose</td>
<td>25%</td>
</tr>
<tr>
<td>Oat Fiber</td>
<td>7%</td>
</tr>
<tr>
<td>Soy Fiber</td>
<td>2%</td>
</tr>
</tbody>
</table>

Chocolate

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltodextrin</td>
<td>55%</td>
</tr>
<tr>
<td>Sucrose</td>
<td>36%</td>
</tr>
<tr>
<td>Oat Fiber</td>
<td>7%</td>
</tr>
<tr>
<td>Soy Fiber</td>
<td>2%</td>
</tr>
</tbody>
</table>
Fiber

The fiber blend used in ENSURE WITH FIBER consists of oat fiber and soy polysaccharide. This blend results in approximately 4 grams of total dietary fiber per 8-fl-oz can. The ratio of insoluble to soluble fiber is 95:5.

The various nutritional supplements described above and known to others of skill in the art can be substituted and/or supplemented with the PUFAs of this invention.

J. Oxepa™ Nutritional Product

Oxepa is low-carbohydrate, calorically dense enteral nutritional product designed for the dietary management of patients with or at risk for ARDS. It has a unique combination of ingredients, including a patented oil blend containing eicosapentaenoic acid (EPA from fish oil), γ-linolenic acid (GLA from borage oil), and elevated antioxidant levels.

Caloric Distribution:

- Caloric density is high at 1.5 Cal/mL (355 Cal/8 fl oz), to minimize the volume required to meet energy needs.
- The distribution of Calories in Oxepa is shown in Table 7.

<table>
<thead>
<tr>
<th>Table 7. Caloric Distribution of Oxepa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories per 8 fl oz.</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Calories</td>
</tr>
<tr>
<td>Fat (g)</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
</tr>
<tr>
<td>Protein (g)</td>
</tr>
<tr>
<td>Water (g)</td>
</tr>
</tbody>
</table>

Fat:

- Oxepa contains 22.2 g of fat per 8-fl oz serving (93.7 g/L).
- The fat source is a oil blend of 31.8% canola oil, 25% medium-chain triglycerides (MCTs), 20% borage oil, 20% fish oil, and 3.2 % soy lecithin. The typical fatty acid profile of Oxepa is shown in Table 8.
- Oxepa provides a balanced amount of polyunsaturated, monounsaturated, and saturated fatty acids, as shown in Table 10.
Medium-chain triglycerides (MCTs) -- 25% of the fat blend -- aid gastric emptying because they are absorbed by the intestinal tract without emulsification by bile acids.

The various fatty acid components of Oxepa™ nutritional product can be substituted and/or supplemented with the PUFAs of this invention.

<table>
<thead>
<tr>
<th>Table 8. Typical Fatty Acid Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Total Fatty Acids</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Caproic (6:0)</td>
</tr>
<tr>
<td>Caprylic (8:0)</td>
</tr>
<tr>
<td>Capric (10:0)</td>
</tr>
<tr>
<td>Palmitic (16:0)</td>
</tr>
<tr>
<td>Palmitoleic (16:1n-7)</td>
</tr>
<tr>
<td>Stearic (18:0)</td>
</tr>
<tr>
<td>Oleic (18:1n-9)</td>
</tr>
<tr>
<td>Linoleic (18:2n-6)</td>
</tr>
<tr>
<td>α-Linolenic (18:3n-3)</td>
</tr>
<tr>
<td>γ-Linolenic (18:3n-6)</td>
</tr>
<tr>
<td>Eicosapentaenoic (20:5n-3)</td>
</tr>
<tr>
<td>n-3-Docosapentaenoic (22:5n-3)</td>
</tr>
<tr>
<td>Docosahexaenoic (22:6n-3)</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>

* Fatty acids equal approximately 95% of total fat.

<table>
<thead>
<tr>
<th>Table 9. Fat Profile of Oxepa.</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total calories from fat</td>
</tr>
<tr>
<td>Polysaturated fatty acids</td>
</tr>
<tr>
<td>Monounsaturated fatty acids</td>
</tr>
<tr>
<td>Saturated fatty acids</td>
</tr>
<tr>
<td>n-6 to n-3 ratio</td>
</tr>
<tr>
<td>Cholesterol</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Carbohydrate:

* The carbohydrate content is 25.0 g per 8-fl-oz serving (105.5 g/L).
• The carbohydrate sources are 45% maltodextrin (a complex carbohydrate) and 55% sucrose (a simple sugar), both of which are readily digested and absorbed.

• The high-fat and low-carbohydrate content of Oxepa is designed to minimize carbon dioxide (CO₂) production. High CO₂ levels can complicate weaning in ventilator-dependent patients. The low level of carbohydrate also may be useful for those patients who have developed stress-induced hyperglycemia.

• Oxepa is lactose-free.

Dietary carbohydrate, the amino acids from protein, and the glycerol moiety of fats can be converted to glucose within the body. Throughout this process, the carbohydrate requirements of glucose-dependent tissues (such as the central nervous system and red blood cells) are met. However, a diet free of carbohydrates can lead to ketosis, excessive catabolism of tissue protein, and loss of fluid and electrolytes. These effects can be prevented by daily ingestion of 50 to 100 g of digestible carbohydrate, if caloric intake is adequate. The carbohydrate level in Oxepa is also sufficient to minimize gluconeogenesis, if energy needs are being met.

Protein:

• Oxepa contains 14.8 g of protein per 8-fl-oz serving (62.5 g/L).

• The total calorie/nitrogen ratio (150:1) meets the need of stressed patients.

• Oxepa provides enough protein to promote anabolism and the maintenance of lean body mass without precipitating respiratory problems. High protein intakes are a concern in patients with respiratory insufficiency. Although protein has little effect on CO₂ production, a high protein diet will increase ventilatory drive.

• The protein sources of Oxepa are 86.8% sodium caseinate and 13.2% calcium caseinate.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by
reference to the same extent as if each individual publication or patent application was specifically and individually indicated as incorporated by reference.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.
CLAIMS

1. A transgenic insect cell comprising a nucleotide sequence which encodes a polypeptide wherein the sequence of the polypeptide comprises a sequence selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 of SEQ ID NO:2.

2. An oil or fraction thereof isolated from the insect cell of claim 1.

3. A method of treating or preventing malnutrition comprising administering said oil of claim 2 to a patient in need of said treatment or prevention in an amount sufficient to effect said treatment or prevention.

4. A pharmaceutical composition comprising said oil or fraction of claim 2 and a pharmaceutically acceptable carrier.

5. The pharmaceutical composition of claim 4, wherein said pharmaceutical composition is in the form of a solid or a liquid.

6. The pharmaceutical composition of claim 4, wherein said pharmaceutical composition is in a capsule or tablet form.

7. The pharmaceutical composition of claim 4 further comprising at least one nutrient selected from the group consisting of a vitamin, a mineral, a carbohydrate, a sugar, an amino acid, a free fatty acid, a phospholipid, an antioxidant, and a phenolic compound.

8. A nutritional formula comprising said oil or fraction thereof of claim 2.

9. The nutritional formula of claim 8, wherein said nutritional formula is selected from the group consisting of an infant formula, a dietary supplement, and a dietary substitute.
10. The nutritional formula of claim 9, wherein said infant formula, dietary supplement or dietary supplement is in the form of a liquid or a solid.

11. An infant formula comprising said oil or fraction thereof of claim 2.

12. The infant formula of claim 11 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electro dialysed whey, electro dialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

13. The infant formula of claim 12 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

14. A dietary supplement comprising said oil or fraction thereof of claim 2.

15. The dietary supplement of claim 14 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electro dialysed whey, electro dialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

16. The dietary supplement of claim 15 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

17. The dietary supplement of claim 16, wherein said dietary supplement is administered to a human or an animal.

18. A dietary substitute comprising said oil or fraction thereof of claim 2.
19. The dietary substitute of claim 18 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electrodialysed whey, electrodialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

20. The dietary substitute of claim 19 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

21. The dietary substitute of claim 20, wherein said dietary substitute is administered to a human or animal.

22. A method of treating a patient having a condition caused by insufficient intake or production of polyunsaturated fatty acids comprising administering to said patient said dietary substitute of claim 21 in an amount sufficient to effect said treatment.

23. The method of claim 22, wherein said dietary substitute is administered enterally or parenterally.

24. A cosmetic comprising said oil or fraction thereof of claim 2.

25. The cosmetic of claim 24, wherein said cosmetic is applied topically.

26. The pharmaceutical composition of claim 4, wherein said pharmaceutical composition is administered to a human or an animal.

27. An animal feed comprising said oil or fraction thereof of claim 2.

28. A method for producing an oil or fraction thereof comprising growing one or more transgenic insect cells under suitable conditions whereby said cells express a transgenic polypeptide wherein the sequence of said polypeptide comprises a sequence...
selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 of SEQ ID NO:2.

29. An oil or fraction thereof produced from the method of claim 28.

30. A method of treating or preventing malnutrition comprising administering said oil of claim 29 to a patient in need of said treatment or prevention in an amount sufficient to effect said treatment or prevention.

31. A pharmaceutical composition comprising said oil or fraction of claim 29 and a pharmaceutically acceptable carrier.

32. The pharmaceutical composition of claim 31, wherein said pharmaceutical composition is in the form of a solid or a liquid.

33. The pharmaceutical composition of claim 31, wherein said pharmaceutical composition is in a capsule or tablet form.

34. The pharmaceutical composition of claim 31 further comprising at least one nutrient selected from the group consisting of a vitamin, a mineral, a carbohydrate, a sugar, an amino acid, a free fatty acid, a phospholipid, an antioxidant, and a phenolic compound.

35. A nutritional formula comprising said oil or fraction thereof of claim 29.

36. The nutritional formula of claim 35, wherein said nutritional formula is selected from the group consisting of an infant formula, a dietary supplement, and a dietary substitute.

37. The nutritional formula of claim 36, wherein said infant formula, dietary supplement or dietary supplement is in the form of a liquid or a solid.

38. An infant formula comprising said oil or fraction thereof of claim 29.

39. The infant formula of claim 38 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy
oil, canola oil, mono- and diglycerides, glucose, edible lactose, electrodialysed whey, electrodialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

40. The infant formula of claim 39 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

41. A dietary supplement comprising said oil or fraction thereof of claim 29.

42. The dietary supplement of claim 41 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electrodialysed whey, electrodialysed skim milk, milk whey, soy protein, and other protein hydrolysates.

43. The dietary supplement of claim 42 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

44. The dietary supplement of claim 43, wherein said dietary supplement is administered to a human or an animal.

45. A dietary substitute comprising said oil or fraction thereof of claim 29.

46. The dietary substitute of claim 45 further comprising at least one macronutrient selected from the group consisting of coconut oil, soy oil, canola oil, mono- and diglycerides, glucose, edible lactose, electrodialysed whey, electrodialysed skim milk, milk whey, soy protein, and other protein hydrolysates.
47. The dietary substitute of claim 46 further comprising at least one vitamin selected from the group consisting of Vitamins A, C, D, E, and B complex; and at least one mineral selected from the group consisting of calcium, magnesium, zinc, manganese, sodium, potassium, phosphorus, copper, chloride, iodine, selenium, and iron.

48. The dietary substitute of claim 47, wherein said dietary substitute is administered to a human or animal.

49. A method of treating a patient having a condition caused by insufficient intake or production of polyunsaturated fatty acids comprising administering to said patient said dietary substitute of claim 52 in an amount sufficient to effect said treatment.

50. The method of claim 49, wherein said dietary substitute or said dietary supplement is administered enterally or parenterally.

51. A cosmetic comprising said oil or fraction thereof of claim 29.

52. The cosmetic of claim 51, wherein said cosmetic is applied topically.

53. The pharmaceutical composition of claim 31, wherein said pharmaceutical composition is administered to a human or an animal.

54. An animal feed comprising said oil or fraction thereof of claim 19.

55. A baculovirus vector comprising a nucleotide sequence which encodes a polypeptide wherein the sequence of the polypeptide comprises a sequence selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 of SEQ ID NO:2.

56. An insect cell comprising the vector of claim 55.

57. The cell of claim 56 wherein said insect is of the genus Spodoptera.

58. The cell of the claim 57 wherein said insect is of the species Frugiperda.
59. The cell of claim 57 wherein said insect is of the genus *Trichoplusia*.

60. The cell of claim 59 wherein said insect is of the species *ni*.

61. A method for producing an oil or fraction thereof comprising growing one or more transgenic insect cells under suitable conditions where said cells express a transgenic polypeptide wherein the sequence of said polypeptide comprises a sequence selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 of SEQ ID NO:2.

62. The method according to claim 52 including the step of extracting said insect cells with an organic solvent.

63. The method according to claim 51 wherein said oil includes phosphatides and said phosphatides are removed by precipitation with water and with mild acid.

64. The method according to claim 53 wherein said oil is treated with phosphoric acid to precipitate said phosphatides.

65. The method of claim 54 wherein said phosphoric acid is neutralized with sodium hydroxide.

66. The method of claim 54 wherein said oil is treated with acid catalyzed clay or activated carbon.

67. The method of claim 54 including the further step of deodorizing said oil by subjecting said oil to steam distillation.

68. A method for producing a Δ5 desaturase polypeptide comprising growing one or more transgenic insect cells under suitable conditions where said cells express a transgenic polypeptide wherein the sequence of said polypeptide comprises a sequence selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 or SEQ ID NO:2.
69. Isolated and purified Δ5 desaturase protein purified by the method of claim 68.

70. Antibodies directed to the protein of claim 69.

71. The antibodies of claim 70 wherein said antibodies are polyclonal antibodies.

72. The antibodies of claim 70 wherein said antibodies are polyclonal antibodies.

73. A method for production of arachidonic acid comprising growing one or more transgenic insect cells under suitable conditions where said cells express a transgenic polypeptide wherein the sequence of said polypeptide comprises a sequence selected from the group consisting of residues 30-38, 41-44, 171-175, 203-212 and 387-394 of SEQ ID No:2.

74. Isolated and purified arachidonic acid purified by the method of claim 73.

75. A nutritional supplement comprising the arachidonic acid of claim 74.
FIG. 3B
FIG. 3C
FIG. 3D

AGAAAAAAG CGCCGAATGA AGTATGGCCC CTTTTTCTC CAAGAATGGC AAAAGGAGAT
CAAGTGGACA TTCTCTATGA AGA
FIG. 4
FIG. 5A
FIG. 5B
FIG. 13A
FIG. 13B
FIG. 14A
SEQUENCE LISTING

5 <110> Mukerji, Pradip
 Huang, Yung-Sheng
 Parker-Barnes, Jennifer M.
 Das, Tapas

10 <120> DELTA FIVE DESATURASES AND ALTERED FATTY ACID
 BIOSYNTHESIS AND PRODUCTS PRODUCED THEREFROM

130 <130> CGAB-400A

15 <140>
141 <141>
150 <150> U.S. 60/103,109
151 <151> 1998-10-05

20 <160> 38

210 <210> 1
211 <211> 1483
212 <212> DNA
213 <213> Mortierella alpina

400 <400> 1

30 gcttcctcctg gtctcacttc cattttgcct tattgacttc tgagcaagat ttaaagcctt cccttcccaac

35 gggactctgg cagcacttctg ggaagatcct gggccctatc acaaccaagata 120

cgaaccttcttgtgctcttt gcgcggggtg gatcagatctc tttacgagctct cacaagagaaaaat 180

tctgtggcctg tcgggacttct cccttggcttg acgctgctctt gatgactttctcttg 240

40 gattatcac gctcttgaggt cttgagatgc cattataaag 300

tgcagaagat ttaaagccttt cccttcccaac

gagacagctg cattgactttctg cccttggcttg acgctgctctt gatgactttctcttg 420

45 gggacagatctc gctcttgaggt cttgagatgc cattataaag 480

tgcagaagat ttaaagccttt cccttcccaac

gatcagatctc tttacgagctct cacaagagaaaaat 540

50 gctcttttcttg ctctggtctgt cattgactttctg cccttggcttg acgctgctctt gatgactttctcttg 600

cccactggtc tggaaagctg gtctccctgg cagaagcttgt ctttaagcctt cccttcccaac

gatcagatctc tttacgagctct cacaagagaaaaat 660

55 tccagcagtt cttactggtc atggtcgtctg 720

tcagctggtc tgcactgtctg 780

tgtaaaccaac ttcctggtcgtctg 840

tatcagctggtc tgcactgtctg 900

60 ccagcttcatc tgggactgtgc atggtcgtctg 960

gatcagctggtc tgcactgtctg 1020

65 ccagcttcatc tgggactgtgc atggtcgtctg 1080

tgagagttt ccagcttcatc tgggactgtgc atggtcgtctg 1140

tatcagctggtc tgcactgtctg 1200
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Met</td>
<td>Gly Thr Asp Glu Gly Lys Thr Phe Thr Trp Glu Glu Leu Ala Ala</td>
</tr>
<tr>
<td>5</td>
<td>His</td>
<td>Asn Thr Lys Asp Leu Leu Leu Ala Ile Arg Gly Arg Val Tyr</td>
</tr>
<tr>
<td>10</td>
<td>Asp Val</td>
<td>Thr Lys Phe Leu Ser Arg His Pro Gly Gly Val Asp Thr Leu</td>
</tr>
<tr>
<td>15</td>
<td>Leu Leu</td>
<td>Gly Ala Gly Arg Asp Val Thr Pro Val Phe Glu Met Tyr His</td>
</tr>
<tr>
<td>20</td>
<td>Ala Phe</td>
<td>Gly Ala Ala Asp Ala Ile Met Lys Tyr Tyr Val Gly Thr</td>
</tr>
<tr>
<td>25</td>
<td>Leu Val</td>
<td>Ser Asn Glu Leu Pro Ile Phe Pro Glu Pro Thr Val Phe His</td>
</tr>
<tr>
<td>30</td>
<td>Lys Thr</td>
<td>Ile Lys Thr Arg Val Glu Gly Tyr Phe Thr Asp Arg Asn Ile</td>
</tr>
<tr>
<td>35</td>
<td>Asp Pro</td>
<td>Lys Asn Arg Pro Glu Ile Trp Gly Arg Tyr Ala Leu Ile Phe</td>
</tr>
<tr>
<td>40</td>
<td>Gly Ser</td>
<td>Leu Ile Ala Ser Tyr Tyr Ala Gin Leu Phe Val Pro Phe Val</td>
</tr>
<tr>
<td>45</td>
<td>Val Glu</td>
<td>Arg Thr Trp Leu Gin Val Val Phe Ala Ile Ile Met Gly Phe</td>
</tr>
<tr>
<td>50</td>
<td>Ala Cys</td>
<td>Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe</td>
</tr>
<tr>
<td>55</td>
<td>Ser Val</td>
<td>Thr His Asn Pro Thr Val Lys Ile Leu Gly Ala Thr His</td>
</tr>
<tr>
<td>60</td>
<td>Asp Phe</td>
<td>Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Glu His Met</td>
</tr>
<tr>
<td>65</td>
<td>Leu Gly</td>
<td>His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val</td>
</tr>
<tr>
<td>70</td>
<td>Ser Thr</td>
<td>Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp</td>
</tr>
<tr>
<td></td>
<td>Phe Val</td>
<td>Asn His Ile Asn Gin His Met Phe Val Pro Phe Leu Tyr Gly</td>
</tr>
<tr>
<td></td>
<td>Leu Ala</td>
<td>Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe</td>
</tr>
<tr>
<td></td>
<td>Val Lys</td>
<td>Thr Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His</td>
</tr>
</tbody>
</table>
Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu
275 280 285
290 295 300

Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe
305 310 315 320

Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln
325 330 335

Ala Asn His Val Val Gly Val Gln Trp Pro Leu Pro Asp Glu Asn
340 345 350

Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln
355 360 365

Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu
370 375 380

Asn Tyr Gln Ala Val His Leu Pro Asn Val Ser Gln His His
385 390 395 400

Tyr Pro Asp Ile Leu Ala Ile Lys Thr Tyr Cys Ser Glu Tyr Lys
405 410 415

Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His
420 425 430

Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Gly Glu
435 440 445

<210> 3
<211> 186
<212> PRT
<213> Mortierella alpina
<400> 3

Leu His His Thr Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val Ser
1 5 10 15

Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp Phe
20 25 30

Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly Leu
35 40 45

Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe Val
50 55 60

Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His Thr
65 70 75 80

Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu Ile
85 90 95

Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe Thr
100 105 110

Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln Ala
115 120 125

Asn Tyr Val Val Glu Glu Val Gln Trp Pro Leu Pro Asp Glu Asn Gly
130 135 140

Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln Asp
145 150 155 160
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe 320</td>
</tr>
<tr>
<td>325</td>
<td>Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser 330</td>
</tr>
<tr>
<td>340</td>
<td>Gln Ala Val Cys Gly Asn Leu Ala Ile Val Phe Ser Leu Asn His 345</td>
</tr>
<tr>
<td>350</td>
<td>Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe 360</td>
</tr>
<tr>
<td>370</td>
<td>Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe 375</td>
</tr>
<tr>
<td>385</td>
<td>Ala Asn Trp Phe Thr Gly Leu Asn Tyr Gln Ile Glu His His Leu 390</td>
</tr>
<tr>
<td>400</td>
<td>405</td>
</tr>
<tr>
<td>420</td>
<td>Glu Thr Leu Cys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met 425</td>
</tr>
<tr>
<td>430</td>
<td>435</td>
</tr>
<tr>
<td>440</td>
<td>Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys 445</td>
</tr>
<tr>
<td>450</td>
<td>Ala Ala Ser Lys Met Gly Lys Ala Gln 455</td>
</tr>
</tbody>
</table>

<210> 5
<211> 446
<212> PRT
<213> 5
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met Ala Ala Gln Ile Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn 10</td>
</tr>
<tr>
<td>20</td>
<td>His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 25</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>Lys Ser Leu Ala Gly Glu Val Thr Asp Ala Phe Val Ala Phe His 55</td>
</tr>
<tr>
<td>60</td>
<td>Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65</td>
</tr>
<tr>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>80</td>
<td>Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Val Tyr Arg Lys Leu 85</td>
</tr>
<tr>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>100</td>
<td>Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile 105</td>
</tr>
<tr>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>120</td>
<td>Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val 125</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>140</td>
<td>Tyr Gly Val Leu Phe Cys Glu Gly Val Leu Val His Leu Phe Ser Gly 145</td>
</tr>
<tr>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>160</td>
<td>Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 175</td>
</tr>
</tbody>
</table>
Leu Trp Leu Phe Ser Ala Trp Ala Phe Val Leu Phe Ala Pro Val Ile
50 55 60
Phe Pro Val Arg Leu Leu Gly Cys Met Val Leu Ala Ile Ala Leu Ala
65 70 75 80
Ala Phe Ser Phe Asn Val Gly His Asp Ala Asn His Asn Ala Tyr Ser
85 90 95
Ser Asn Pro His Ile Asn Arg Val Leu Gly Met Thr Tyr Asp Phe Val
100 105 110
Gly Leu Ser Ser Phe Leu Trp Arg Tyr Arg His Asn Tyr Leu His His
115 120 125
Thr Tyr Thr Asn Ile Leu Gly His Asp Val Glu Ile His Gly Asp Gly
130 135 140
Ala Val Arg Met Ser Pro Glu Gln Glu His Val Gly Ile Tyr Arg Phe
145 150 155 160
Gln Gln Phe Tyr Ile Trp Gly Leu Tyr Leu Phe Ile Pro Phe Tyr Trp
165 170 175
Phe Leu Tyr Asp Val Tyr Leu Val Leu Asn Lys Gly Lys Tyr His Asp
180 185 190
His Lys Ile Pro Pro Phe Gln Pro Leu Glu Ala Ser Leu Leu Gly
195 200 205
Ile Lys Leu Leu Trp Leu Gly Tyr Val Phe Gly Leu Pro Leu Ala Leu
210 215 220
Gly Phe Ser Ile Pro Glu Val Leu Ile Gly Ala Ser Val Thr Tyr Met
225 230 235 240
Thr Tyr Gly Ile Val Val Cys Thr Ile Phe Met Leu Ala His Val Leu
245 250 255
Glu Ser Thr Glu Phe Leu Thr Pro Asp Gly Glu Ser Gly Ala Ile Asp
260 265 270
Asp Glu Trp Ala Ile Cys Gln Ile Arg Thr Ala Asn Phe Ala Thr
275 280 285
Asn Asn Pro Phe Trp Asn Trp Phe Cys Gly Leu Asn His Gln Val
290 295 300
Thr His His Leu Phe Pro Asn Ile Cys His Ile His Tyr Pro Gln Leu
305 310 315 320
Glu Asn Ile Ile Lys Asp Val Cys Glu Gly Phe Gly Val Glu Tyr Lys
325 330 335
Val Tyr Pro Thr Phe Lys Ala Ala Ile Ala Ser Asn Tyr Arg Trp Leu
340 345 350
Glu Ala Met Gly Lys Ala Ser
355

<210> 7
<211> 365
<212> PRT
<213>
<400> 7
Met Thr Ser Thr Thr Ser Lys Val Thr Phe Gly Lys Ser Ile Gly Phe
1 5 10 15
Arg Lys Glu Leu Asn Arg Arg Val Asn Ala Tyr Leu Glu Ala Glu Asn
20 25 30
Ile Ser Pro Arg Asp Asn Pro Pro Met Tyr Leu Lys Thr Ala Ile Ile
35 40 45
Leu Ala Trp Val Val Ser Ala Trp Thr Phe Val Val Phe Gly Pro Asp
50 55 60
Val Leu Trp Met Lys Leu Leu Gly Cys Ile Val Leu Gly Phe Gly Val
65 70 75 80
Ser Ala Val Gly Phe Asn Ile Ser His Asp Gly Asn His Gly Gly Tyr
85 90 95
Ser Lys Tyr Gln Trp Val Asn Tyr Leu Ser Gly Leu Thr His Asp Ala
100 105 110
Ile Gly Val Ser Ser Tyr Leu Trp Lys Phe Arg His Asn Val Leu His
115 120 125
His Thr Tyr Thr Asn Ile Leu Gly His Asp Val Glu Ile His Gly Asp
130 135 140
Glu Leu Val Arg Met Ser Pro Ser Met Glu Tyr Arg Trp Tyr His Arg
145 150 155 160
Tyr Gln His Trp Phe Ile Trp Phe Val Tyr Pro Phe Ile Pro Tyr Tyr
165 170 175
Trp Ser Ile Ala Asp Val Gln Thr Met Leu Phe Lys Arg Gln Tyr His
180 185 190
Asp His Glu Ile Pro Ser Pro Thr Trp Val Asp Ile Ala Thr Leu Leu
195 200 205
 Ala Phe Lys Ala Phe Gly Val Ala Val Phe Leu Ile Ile Pro Ile Ala
210 215 220
Val Gly Tyr Ser Pro Leu Glu Ala Val Ile Gly Ala Ser Ile Val Tyr
225 230 235 240
Met Thr His Gly Leu Val Ala Cys Val Val Phe Met Leu Ala His Val
245 250 255
Ile Glu Pro Ala Glu Phe Leu Asp Pro Asp Asn Leu His Ile Asp Asp
260 265 270
Glu Trp Ala Ile Ala Gln Val Lys Thr Thr Val Asp Phe Ala Pro Asn
275 280 285
Asn Thr Ile Ile Asn Trp Tyr Val Gly Leu Asn Tyr Gln Thr Val
290 295 300
His His Leu Phe Pro His Ile Cys His Ile His Tyr Pro Lys Ile Ala
305 310 315 320
Pro Ile Leu Ala Glu Val Cys Glu Phe Gly Val Asn Tyr Ala Val
325 330 335
His Gln Thr Phe Phe Gly Ala Leu Ala Ala Asn Tyr Ser Trp Leu Lys
340 345 350
Lys Met Ser Ile Asn Pro Glu Thr Lys Ala Ile Glu Gln
355 360 365
cuacucuac uacaycayc ntyacnaay at

caucaucaucaunggraana rrtgrtg

ccaagcttct gcaggagtc tttttttttttttttt

His Xaa Xaa His His

Gln Xaa Xaa His His
WO 00/20603

10

PCT/US99/22692

<210> 13
<211> 746
<212> DNA
<213> Dictyostelium discoideum

5 <400> 13

cgtatgtcac tccattccaa actggtcatc ggtatcataa atatccacac atttacgcctc 60
cacctcctca tgtgatttac acactcaaat atgcagctca agattgggaat gttttttgaa 120
agatggttaa aaatgtgtga atctgtgtat tggcgccccc aatattccct gaggccgcttt 180
acgctcatgg taaatgtgtc tttgggattc ttctcttccttc ctctctcctc gggtatatctaa 240
gctttacaga tttgattgtc tttttctcctcctccttc tttttggtc ttggtatcctac 300
caataatatt ccaatgcgatctctccgcgtc agaatctccaa aatgttttgttttacccctgaa 360
gaccagatgg accatcctca atcaatgaa atttgggcaat cttctctctc ctctctaactc 420
agattatggtg tctaggttcta tctctttgta cccttttttag tgtgcctttta aatcatacaag 480
tggtcctaca tttatattcctc ctaatgctc ttcaggtcta cccacaaatt ctggcataagg 540
taaagagaatt tggtaaagaa ctaacacatt cttacagcatt taaaaccaac cttctctgaag 600
catgattgct cacacattat acatcttaac aatgcggtaa tgaatcagtag tgttaaaaa 660
aacacagct ccctaaagatgattatagta aataaatctaa aaaccaaatat tttttttttt 720
acacacgta atattaataa atacaa 746

<210> 14
<211> 227
<212> PRT
<213> Dictyostelium discoideum

<400> 14

30 Tyr Val Thr Pro Phe Gin Thr Arg Ser Trp Tyr His Lys Tyr Gin
 5 10 15
1 Arg Thr Gin Asp Thr Glu Ala Phe Val Leu Tyr Gly Lys Asp Arg
 20 25 30 35 40 45
35 Ala Ile Arg Val Ser Val Ala Thr Asp Ser Lys Ala Ala Tyr
 50 55 60
40 Val Ile Gly Lys Leu Ser Phe Val Phe Arg Phe Ile Leu Pro
 65 70 75 80 85 90
45 Leu Arg Tyr His Ser Phe Thr Asp Leu Ile Cys Tyr Phe Leu Ile
 95 105
50 Ala Glu Phe Val Phe Gly Trp Tyr Leu Thr Ile Asn Phe Gin Val
 110 115 120
55 Ser His Val Ala Glu Asp Leu Lys Phe Ala Thr Pro Glu Arg
 125 130 135
60 Pro Asp Glu Pro Ser Gin Ile Asn Glu Asp Trp Ala Ile Leu Gin
 140 145 150
65 Leu Lys Thr Thr Gin Asp Tyr Gly His Ser Leu Cys Thr Phe
 155 160 165
70 Phe Phe Ser Gly Ser Leu Asn His Glu Val Val His Leu Phe
 170 175 180
75 Pro Ser Ile Ala Gin Asp Phe Tyr Pro Gin Leu Val Pro Ile Val
 185 190 195
55 Asn Phe Thr Glu Ile Met Ser His Ile Asn Tyr Leu Lys Met Phe
 200 205 210
60 Met Gly Asn Phe Gin Tyr Leu Val Lys Leu Ala Ser Lys
 215 220 225

Asp Asp Xaa

65
<210> 15
<211> 494
<212> Nucleic acid
<213> Phaedactyllum tricornuturn

<400> 15

70 ttttgggaggt ntccaaattg accacggant nggcaagttt nacggtcggta aangctttt 60
cccccacaagc ctttctgctg cttgtctcgtg ggtggctccc agtaccaagt cgacccacac 120

ttatctccca gctcggcccgg acacaaactg gcaagacac acgcagctgtg cgaatgtgcc 180
tgcaaggagt ggggtgtcaca gtaccaagaa gggcaccccg tggacgggac catggaagtctg 240

ttgccaccatt tgggaccgctt ggcgccggcag acctctcttt gcccttctgg attttgtacgg caacgggacc 300
gccatgtaat cgtgctctgtg gacgatgcaaa ggtttccagcg acatctacac acaccaactc 360

acacaactag tgtaacctgtct atagaatctcg gttctgaccc ctaccctttg tcactttgccttg 420
ggataggggt agaggtaggggg acggctggggt ccccccagggg aattctcttgta ccggtaacctg 480
gccgcatgtaa aagt 494

20

<210> 16

<211> 87

<212> PRT

<213> Phaedactylum tricornuturn

<400> 16

25

Phe Trp Lys Xaa Pro Ser Xaa Pro Arg Xaa Xaa Gln Val Xaa Gly
1 5 10 15
Ala Glu Xaa Gly Phe Pro Pro Lys Pro Phe Val Asp Trp Phe Cys
20 25 30

Gly Gly Phe Glu Tyr Gln Val Asp His His Leu Phe Pro Ser Leu
35 40 45
Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val Glu Ser Phe
50 55 60

Cys Lys Gly Trp Gly Val Glu Tyr His Glu Ala Asp Leu Val Asp
65 70 75

Gly Thr Met Gly Val Leu His His Leu Gly Ser Val Ala Gly Glu
80 85

Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met

<210> 17

<211> 520

<212> PRT

<213> Homo sapiens

<400> 17

50

ggatgagatt cgtctgtgctg gctggtgcctg atgaaaagcgt catggtgctg 60
tttggctgata cgccgggctga cggcgctgtg atgtcttctgg gcggcctggctgc 120
attacatttt ttccttcgatt cgccgtaagtt caacccacctt ggcgcgtggag caacccggag 180
gactagtcgct cttggtctgctg tcagcggccgg accacactgtg gacacatccg accaagtctg 240
gtattttctcag atgggtgtgct gtcacccctca actttcagat cgacagaccac cttttccctca 300
ggcggccgata cttccggtcctt aagcagatcag gcgcggcgctg cgaggccctc ttcgaagggcc 360
acggtctccgat ttcctctcata cgacggccgtg cttcaccacac tcctctttgccgtt 420
tctacttttc ggtccggatcc gttggcgacg ccaagcgcgta ctagcccttt ttccttagacc 480
ttaattttt tacccacccc atgtttctgtc ttcctccggc 520
<210> 18
<211> 153
<212> PRT
<213> Homo sapiens

5

<400> 18

Met Glu Phe Val Trp Ile Ala Val Arg Tyr Ala Thr Trp Phe Lys
1 5 10 15
Arg His Gly Cys Ala Trp Val His Ala Gly Ala Val Val Gly His
20 25 30
Val Leu Val Arg Leu Trp Ser Arg Leu His Leu His Phe Ser Ala
35 40 45
Val Arg Arg Lys Ser His Pro Phe Ala Arg Glu Gln Pro Gly Glu
50 55 60
Ser Ala Ala Leu Ala Arg Val Arg Ala Asp His Thr Val Asn Ile
65 70 75
Ser Thr Lys Ser Trp Phe Val Thr Trp Trp Met Ser Asn Leu Asn
80 85 90
Phe Gln Ile Glu His His Leu Phe Pro Thr Ala Pro Gln Phe Arg
95 100 105
Phe Lys Glu Ile Ser Pro Arg Val Gln Ala Leu Phe Lys Arg His
110 115 120
Gly Leu Pro Tyr Tyr Thr Met Pro Tyr Thr Ser Ala Val Ser Thr
125 130 135
Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly Asp Ala
140 145 150
Lys Arg Asp

30

<210> 19
<211> 429
<212> DNA
<213> Homo sapiens

35

<400> 19

agcgcggccg ccaagcagttcc gccggcgagca aactatcaag gaaggtact ttgacccttc 60
gtcctccgcac atgaagctacc ggcgtgctgca gattgtgttt ctctctggtc tttctttttg 120
gtctgatggc cagtttctcac cctctcggct ctcttctcggc aagctgctca ggcggcatctc 180
tcaggggtcgc tgcggctggttaaactgacg aagtgccgact gggcgctgta cttggtctcat 240
tttggctgacct gccggctttc attcgcgcctt gtttgctgga tgacgctgcct gcctgaggctgctca 300
tttgaggaa aaccagcaac gccacacac ccagcagcgc aacggtgtcag gcacagctgt 360
agtctccgca acctgtgccttatgtgccccctacac gacgagcgcgtgcgtgcccac aggtcgggacc 420

55

<210> 20
<211> 125
<212> PRT
<213> Homo sapiens

55

<400> 20

Arg Val Arg Pro Arg Val Arg Glu Gln Leu Ile Lys Glu Gly
1 5 10 15
Tyr Phe Asp Pro Ser Leu Pro His Met Thr Tyr Arg Val Val Gly
20 25 30
Ile Val Val Leu Phe Val Leu Ser Phe Thr Leu Met Gly Gln Ser
35 40 45
Ser Pro Leu Ala Ala Leu Leu Gly Ile Val Ser Gly Ile Ser
50 55 60
Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly
65 70 75
Phe Thr Gly Val Ile Trp Leu Asp Arg Arg Leu Cys Gly Phe Phe
<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
</tr>
<tr>
<td>Cys</td>
<td>Gly</td>
<td>Met</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>His</td>
<td>Tyr</td>
<td>Trp</td>
</tr>
<tr>
<td>Lys</td>
<td>Asn</td>
<td>Gln</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Lys</td>
<td>His</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td>Asn</td>
<td>Arg</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>His</td>
<td>Asp</td>
<td>Val</td>
<td>95</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Asn</td>
<td>Arg</td>
</tr>
<tr>
<td>Val</td>
<td>Glu</td>
<td>Arg</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th><210></th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td><211></td>
<td>1219</td>
<td>DNA</td>
</tr>
<tr>
<td><213></td>
<td>Homo sapiens</td>
<td></td>
</tr>
<tr>
<td><400></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

```
gcacccgac ccgcgcgggg agatctctggc aagatatatca gagataaagt ccttgagtaa 60
acctgatccc aatggtatg atgattataat ttgatgtggt cttacccaggt tggttgctatt 120
ttacatagta aaagaccttgg actggaataag ggtctatatttt tggggcctagt ggttgccag 180
ttgcatattac cactcaatgct ctctggctat tgtcagagatt gcccacatgct ctgcttttgg 240
cacgctgcaa acaatgtggct atgccttggt ttggaatgttt gctaatctctt ctattgggatt 300
tccataatcca atatctttaa agaggtatatc catggtatcat cattcggattct ttggagctga 360
tyygcttcat gtagatattc ctacggtttt tgtcaggttg gccgtttcag tcctggtcag 420
aaagtttata ttggtttttc ttcgctcttt ctcttatgccc ttcggacccc tttcctccaa 480
cctccacca attacagttac tggaagttata cattacgccg tcaccaggtca ttttgacat 540
nttttattttt gccataaatc cctattctcag atgtggccagt cattttttact 600
tggccctgggt ttgaccccaat tttctggaca ttttatagct gacgattaca ttttatattta 660
gggctatgaa attacatttca attatgggcc ttcgaatatta cttacctctca atgctgggatta 720
tccataatgaa cattcagatt ccctacaagct cctctgaaaa atgctttcag tgcggagagaa 780
aatagcagct gtaactatgc acaacctccc tctaatcact cttctggataa aagatctgta 840
tgatttttgt agtggtagata ctaaagtccct ctcactcagga aagaaaaaggg acaaaaaaggg 900
agagatgggt ctgcagtaaat tctcattagtt gccaaggggg tctctttcct aacatcatta 960
tgatcataatg gataatttttt gattacacagct tgaatctcgag aagcttcctct 1020
gccacaatatt cagatgaaga gtcgggtgat accaaagagt gaattcgtctt cattatatcgt 1080
cacccggtact ctgctacgct cagtttactc cagaggaacaagcttgtaggtcg ctatcattcag 1140
tccatcgagata gttttcctct cttctgtcata tttttataaga atacatattaca aagaatcctct 1200
aaaaagctat ttcggcaggg 1219
```
<210> 22
<211> DNA
<212> Homo sapiens

5

<400> 22

```
ttaccttcta ctgcgegttc ttctctcactt atgtgccact attggggtcg aagatctcttctact 60
ggctcttctttctcacgatcg gcacactgg tttgttgag ggaccccact gcacaggacttc 120
gaacactatt ccctcgaacata tggatcatga cccgcaacagt gactggttctt ccacccgct 180
cagggccaca tgcacatgctca ccctcactgcc tggctcagac cagccgtctca 240
cctccagacc gaagcagacc tttttcccaat gatgcctcga cacaattacc acaaggtggc 300
tccctctgtgc cagcttctgt gcccatagca ttggcatagag taccagctcag agccctctgt 360
gtcatccgctc ccgcaacata tccactctatc aagggctgca gggcaacgtt gcctagatgc 420
catacttcac caataaacaac aggccaccttg ccagccctgg aagggcagag gggagactct 480
gcaccaagg gagcgaggag cttgcagggac aagcccaactc tagttaata ctcagagggg 540
gttggtttgt ggggacatca gccctctgact ccaactcctc cctttttact ctcagccacat 600
gttctaatag ccagaattggg gggctgacac aagatctcct agagggaagag actc 655
```

30

<210> 23
<211> DNA
<212> Homo sapiens

35

<400> 23

```
gttctttact ttggcataac gccctcttggt ccttgcttacct 60
tctcgagccca aagctggatg gcctgcaacat gattatggcc acctgtctgt ctacagaaaa 120
cccaaggtga acacccctgt ccacaacttc gtcagctgct gcacctggcc acctaaaggg gggcctctgct 180
acacccctgt ccacaacttc gtcagctgct gcacctggcc acctaaaggg gggcctctgct 180
ccgagctgta cagatgtcga cgggttctgt gggcgaat gcagcagcct cgagtacgc 300
```

50

<210> 24
<211> DNA
<212> Homo sapiens

55

<400> 24

```
cagggaacctt cccgctgtct ccctgcttctt gcacaggtgg gcctgctcag cgggtcggg 60
gacccgtcttg taggtgacag cggagcaggc cacaacatca cagatctgcac cggcggctcag 120
cagggctctt cagcgccactgc gggcgcagg atgcacagt cctctctttcttctctgct 180
ggttttcccaact cttcagaggg cttgtggaga aagtatataga aacttctctct gattggagaa 240
gctctctcag aaccgacggc cttgggacca accaagata aagactgtagc aagatctcctgc 300
cggggtggat ggggctagcg gcggctgcat gcggctgctgc aagggcacta cttctctct 360
gctcgcatttc tctgcttgctgc gatgggtcag cctgctcctc ctttggggtct 420```
tttgggaagt ccttttgcct ctttcctctc tgtgcgggtgc tgtcctagtgc agtccagggc 480
caagctgctg ggctgcagca taacattttggg caacetgctgg gcttcagcact ctcacaattgc 540
aacagcatgc taaatccgatt tgtgatttggc catcggataag ggggccccgca cagttgggtgg 600
aacagcatgc aacctcagcct cattggcagag ccaacctctct ttcgcacaag cccgacatctc 660
aacatcaatc cttctctcttc tgcctcgtggg aagacccctct ctggtgagact ttggaacacagc 720
agaaaaaat atatgcgcgta caaccaacaag cagcarataact ttttcttaat tggggccccca 780
gctcgtgctg cttttctctct cccgtagttat atttttcttt ttggttaccca gccaagagacag 840
tgggttgact tgtgcttgata cagcaacaag cagatacgatg aagccggctg ttcatttgctc 900
acgccaaatg cttctaaa 918

<210> 25
<211> 1686
<212> DNA
<213> Homo sapiens

<400> 25

gccactttaa ggtgctcctct gccaaacttggt ggaaatcatacg ccactccag ccaacagcaca 60
agcctaaacat cttcacaacag gatcccgagtg tgaacatgcgt gcacgtgtttt gttctggggtc 120
aatggccagcc catcgactca gcgaaagaag aagctgaataa ctgtccctaca aatccgagcg 180
acgaaatacct cttctcgtatt ggccgcgggcc tgcgtcactcc ccatttagtt cagctcagaca 240
tctatgacat cagttacgct cagaagaact ggtgaccaggt gcgtctggcc ggtcacactct 300
acatcctggt cttctcaaccc tacatccctct tctacggtcat ccggtgccct ctctctctctct 360
tcactacccat caggtttcctg gagaagacgct gtttgggttg ggccgtcagc aagatcataca 420
tgcgtcatgga gttgcagct gcggctcact cgcgactgttt gcagtagcag ccgacagcca 480
cctgcacaagt ggacagctgc ttctctcaacag acggtttcctg ttgacacaccc aactccaggc 540
ttgaccaaca cctcttcccc accatgcgccc gcacacactt caacaagact gccecgctgg 600
tgaaagacct atgtggcaaac aatcggcattt aacccacgac ggcgccccgtct gttgggccc 660
trgtgggacat ctaagaacct cttggaaagt cttgggagac ctcgacgca ctggctcctct 720
acaacagtg gccacgccc cggccgaccc tggggaaggc gttcgagtgg aggtagtggcc 780
agaggaagttg gccgttcttttg ttctgtgagg gcggcagagc gcgggtgtat gacacgccctc 840
cggaccctat gttggtactt ttcctctcccc ttcctctcctc ttcctctcctc ctcctctcccctcc 900
atagaacct tgcctcagag gagctggcct ctcctcagcgg tggcagctac gcagtgcagcc 960
tccgctgcct cctactgccct cttcttcagag gcgacagacag gcggccacgc gggttcggtctc 1020
ttgcttcacct ccaacctctcg ccctacaaga tgggagagag cccgcgcttc admggtctgtg 1080
cctgtagct ccctctctcgac gcgctcctac tagggcctac cccgccttttg gttctttcaga 1140
tgctctcttg ggctcagagct gcggtcctca gtcgggcggag gcggcgctgc ctcgccggcctc 1200
gcgttcacctc ctctcagagct gcctcaagtcc ttcacccctctct catagaggag cctgctttctg 1260
tacaagctgc ggtgctccct cctctcagct gcgtaagctgc cccgggccct ctttaagagtc 1320
gcagctcggt taagtaccgg aggctctctct taagatgtcct aggccccggcc gcccggcggcc 1500
acagccagc ccaaccttgg gcctctggaag agctctccac cccatcacta agagtctctgt 1560
acctgggct ctacacgggcc caacctccac gcctccccca aattgagctct gtagcctttgg 1620
acaacaggggg gagctccctcg tctctttgtga ctcaacgagagcgatggccca cgttcagggga 1680
gggccgggct gcgctctgagg ctcacgccac cctcagcatt ttctctcagag tggctcctagg 1740
tccaagatctc aggaccaatc tggaccccttc ccacagctgct ctttagcagc tggccaggtc 1800
cagcccaactc cttgcccatatt gccgcacaggg gacgtgctggcc ctg 1843

<210> 27
<211> DNA
<212> Homo sapiens
<400> 27

cagggaccta cccgcgccta ctttacgctcg gacgaggtgg cccacgctc aggtgcgcag 60
gagccgggctc tagtgatgca gcggaaaggt ctcacatcct gcgcgtctcc ccccggccagt 120
ccagggggct cccggcctcct cagacccacgc gccggcaggg cggcggcggg aacgcacaggt 180
gcctttgccta tcaacacatgg cttctttggag aagatagatgga acttctctctct cttggagaga 240
tgcttcacag cttcgccagc ctttgggctc tctgttagctg cttttttggt gtcgctctgc 420
tttggagacgt ctttttttgc cttctctctct cttttttttc ctttggagagc gttttttttc 480
gcgcacaaggt gcggatgcag atcgtgattg gcacccgtttg cgtctcagcc aacaactcagcag 540
tggtaacaccc tttgccccata ctttttttgc cttgttaacag ttcgaggtc tttgtaatgg 600
tggatattt cccaccccgc ccacactctc cccatcaacctg ccacccagctt gtagcctttc 660
gttgacagtgc tcgacatggt ttgctctggcg gaaatggcagc ccatgagata cggcaagaag 720
aacagtaaat accctccctctta ctttttttttc tttgttagtg cttttttttc cttttttttc 780
gttgctattg ccctggcttg cactgatcag attctatagc ccatgatgtg ccataaaagaa 840
tgggtgaccgc gctgcgtggg ccacactcaac ttatgctcttc cttctctctct 900
tttgctcaatttt ctaattttttc cttttttttc cttttttttc ggggggagcc 960
tggtagtttct cggtagacacc ctagataacc attcgtcatgg aaggtgtgca cggacgcttc 1020
getgacagtct caggactgcc gttgacagccacctggttaa ctttctttcct 1080
ggctggttccgctgatgctttaa tccgtctcctgattttcactt cccacccctg 1140
cggcgagatcc tcaacacggt cggccggctgc cggagcctgt cggatgctcc ctttgggctta 1200
gaatggcagc aagacgctctc ggctgagggg cttgctgacc tcataggttc ctttaggaag 1260
tttggagctttt cggacgctgg ccactcctgc cacaatggta cccagacccc cggacgaccc 1320
gttggaggttg ggtgcagttg cggatggtgc cagaggaagttggttttt cttcttgaggg 1380
gttgactgaga gggaggggtgtagctgtac ggcaggaaggg aaggtgtggct ctgctctctct 1440
His Asn Glu His Asp Phe Pro Asn Ile Pro Gly Lys Ser Leu
245 250 255
Pro Leu Val Arg Lys Ile Ala Ala Glu Tyr Tyr Asp Asn Leu Pro
260 265 270
His Tyr Asn Ser Trp Ile Lys Val Leu Tyr Asp Phe Val Met Asp
275 280 285
Asp Thr Ile Ser Pro Tyr Ser Arg Met Lys Arg His Gln Lys Gly
290 295 300
Glu Met Val Leu Glu Xaa Ile Ser Leu Val Pro Lys Gly Phe
305 310 315
Ser Lys Thr Leu Asp Asp Lys Met Glu Phe Leu His Tyr Xaa
320 325 330
Xaa Asp Gln Xaa Cys Ser Glu Ala Pro Leu Ala Gln Phe Gln Ser
335 340 345
Lys Ser Ser Val Ile Pro Arg Ser Glu Ser Gly Phe Xaa Thr Val
350 355 360
Ser Leu Thr Leu Tyr Cys Ser Val Ser Leu Thr Gly Asn Leu Xaa
365 370 375
Leu Val Tyr Tyr Arg His Xaa Gly Cys Phe Thr His Val Cys His
380 385 390
Phe Ile Ser Ile Ser Phe Lys Leu Ser Lys Ser Tyr Phe Ala Arg
400 405 410

<210> 29
<211> 218
<212> PRT
<213> Homo sapiens

<400> 29

Tyr Leu Leu Arg Pro Leu Leu Pro His Leu Cys Ala Thr Ile Gly
1 5 10 15
Ala Glu Ser Phe Leu Gly Leu Phe Phe Ile Val Arg Phe Leu Glu
20 25 30
Ser Asn Trp Phe Val Trp Val Thr Gln Met Asn His Ile Pro Met
35 40 45
His Ile Asp His Arg Asn Met Asp Trp Val Ser Thr Gln Leu
50 55 60
Gln Ala Thr Cys Asn Val His Lys Ser Ala Phe Asn Asp Trp Phe
65 70 75
Ser Gly His Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr
80 85 90
Met Pro Arg His Asn Tyr His Lys Val Ala Pro Leu Val Gln Ser
95 100 105
Leu Cys Ala Lys His Gly Ile Glu Tyr Gln Ser Lys Pro Leu Leu
110 115 120
Ser Ala Phe Ala Asp Ile Ile His Ser Leu Lys Gly Ser Gly Gln
125 130 135
Leu Trp Leu Asp Ala Tyr Leu His Gln Xaa Gln Gln Pro Cys
140 145 150
Pro Val Trp Lys Arg Arg Lys Thr Leu Glu Pro Arg Gln Arg
155 160 165
Gly Ala Xaa Gly Thr Met Pro Leu Xaa Phe Asn Thr Gln Arg Gly
170 175 180
Leu Gly Leu Gly Thr Xaa Ser Leu Xaa Leu Lys Leu Leu Pro Phe
185 190 195
Ile Phe Xaa Pro Gln Phe Xaa Asp Pro Lys Trp Gly Val Asp Thr
200 205 210
Glu Val Pro Arg Arg Glu Gly Ala
215

<210> 30
<211> 71
<212> PRT
<213> Homo sapiens

<400> 30
Val Phe Tyr Phe Gly Asn Gly Trp Ile Pro Thr Leu Ile Thr Ala
1  5  10  15
Phe Val Leu Ala Thr Ser Gln Ala Glu Ala Gly Trp Leu Gln His
5  20  25  30
Asp Tyr Gly His Leu Ser Val Tyr Arg Lys Pro Lys Trp Asn His
20  35  40  45
Leu Val His Lys Phe Val Ile Gly His Leu Lys Gly Ala Ser Ala
35  50  55  60
Asn Trp Trp Asn His Arg His Phe Gln His His Ala Lys Pro Asn
60  65  70  75
Leu Gly Glu Trp Gln Pro Ile Glu Tyr Gly Lys Xaa
70  80  85

<210> Homo sapiens

Gln Gly Pro Thr Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln
1  5  10  15
Arg Ser Gly Cys Glu Gly Arg Trp Leu Val Ile Asp Arg Lys Val
5  20  25  30
Tyr Asn Ile Ser Glu Phe Thr Arg His Pro Gly Gly Ser Arg
10  35  40  45
Val Ile Ser His Tyr Ala Gly Glu Asp Ala Thr Asp Pro Phe Val
20  50  55  60
 Ala Phe His Ile Asn Lys Gly Leu Val Lys Lys Tyr Met Asn Ser
25  65  70  75
Leu Leu Ile Gly Glu Leu Ser Pro Glu Gin Pro Ser Phe Glu Pro
30  80
Thr Lys Asn Lys Glu Leu Thr Asp Glu Phe Arg Glu Leu Arg Ala
35  95 100 105
Thr Val Glu Arg Met Gly Leu Met Lys Ala Asn His Val Phe
40 110 115 120
Leu Leu Tyr Leu Leu His Ile Leu Leu Leu Asp Gly Ala Ala
45 125 130 135
Leu Thr Leu Trp Val Phe Gly Thr Ser Phe Leu Pro Phe Leu Leu
50 140 145 150
Cys Ala Val Leu Leu Ser Ala Val Gin Ala Glu Ala Glu Trp
55 150
Gln His Asp Phe Gly His Leu Ser Val Phe Ser Thr Ser Lys Trp
60 160 165
Asn His Leu Leu His His Phe Val Ile Gly His Leu Lys Gly Ala
65 170 175 180
Pro Ala Ser Trp Trp His Asn Met His Phe Gin His His Ala Lys
70 180 190 195
Pro Asn Cys Phe Arg Lys Asp Pro Asp Ile Asn Met His Pro Phe
75 200 205 210
Phe Phe Ala Leu Gly Lys Ile Leu Ser Val Glu Leu Gly Lys Gin
80 215 220 225
Lys Lys Lys Tyr Met Pro Tyr Asn His Gln His Xaa Tyr Phe
85 230 235 240
Leu Ile Gly Pro Pro Ala Leu Leu Pro Leu Tyr Phe Gln Trp Tyr
90 240 245 250
Ile Phe Tyr Phe Val Ile Gin Arg Lys Trp Val Asp Leu Ala
95 250 255 260
Trp Ile Ser Lys Gin Glu Tyr Asp Glu Ala Gly Leu Pro Leu Ser
100 265 270 275
Thr Ala Asn Ala Ser Lys
105 280 285 290
300

<210> Homo sapiens
<400> 32

His Leu Lys Gly Ala Ser Ala Asn Trp Trp Asn His Arg His Phe
1  5 15
Gln His His Ala Lys Pro Asn Ile Phe His Lys Asp Pro Asp Val
20  25 30
Asn Met Leu His Val Phe Val Leu Gly Glu Trp Gln Pro Ile Glu
35  40 45
Tyr Gly Lys Lys Leu Lys Tyr Leu Pro Tyr Asn His Gln His
50  55 60
Glu Tyr Phe Phe Leu Ile Gly Pro Pro Leu Ile Pro Met Tyr
65  70 75
Phe Gln Tyr Gln Ile Ile Met Thr Met Ile Val His Lys Asn Trp
80  85 90
Val Asp Leu Ala Trp Ala Val Ser Tyr Tyr Ile Arg Phe Phe
95  100 105
Thr Tyr Ile Pro Phe Tyr Gly Ile Leu Gly Ala Leu Leu Phe Leu
110 115 120
Asn Phe Ile Arg Phe Leu Glu Ser His Trp Phe Val Trp Val Thr
125 130 135
Gln Met Asn His Ile Val Met Gln Glu Asp Gln Glu Ala Tyr Arg
140 145 150
Asp Trp Phe Ser Ser Glu Leu Thr Ala Thr Cys Asn Val Glu Gln
155 160 165
Ser Phe Phe Asp Asp Trp Phe Ser Gly His Leu Asn Phe Gln Ile
170 175 180
Glu His His Leu Phe Pro Thr Met Met Pro Arg Asn His Phe Thr Leu His
185 190 195
ILE Ala Pro Leu Val Lys Ser Leu Cys Ala Lys His Gly Ile Glu
200 205 210
Tyr Glu Glu Lys Pro Leu Arg Ala Leu Leu Asp Ile Ile Arg
215 220 225
Ser Leu Lys Ser Gly Lys Leu Trp Leu Asp Ala Tyr Leu His
230 235 240
Lys Xaa Ser His Ser Pro Arg Asp Thr Val Gly Lys Gly Cys Arg
245 250 255
Trp Gly Asp Gly Glu Arg Asn Gly Asp Leu Leu Phe Xaa Gly Val
260 265 270
Ser Glu Arg Leu Val Tyr Ala Leu Leu Thr Asp Pro Met Leu Asp
275 280 285
Leu Ser Pro Phe Leu Leu Ser Phe Thr Ser His Leu Pro His
290 295 300
Ser Thr Leu Pro Ser Thr Asp Leu Pro Ser Leu Ser Arg Gln Pro
305 310 315
Ser Ala Met Ala Leu Pro Val Pro Ser Pro Phe Phe Gln Gly
320 325 330
Ala Glu Arg Trp Pro Pro Gly Val Leu Ser Tyr Leu His Ser
335 340 345
Leu Pro Leu Lys Met Gly Asp Gln Arg Ser Met Gly Leu Ala
350 355 360
Cys Glu Ser Pro Leu Ala Ala Trp Ser Leu Gly Ile Thr Pro Ala
365 370 375
Leu Val Leu Gln Met Leu Leu Gly Phe Ile Gly Ala Gly Pro Ser
380 385 390
Arg Ala Gly Trp Pro Leu Thr Leu Pro Ala Thr Leu His Ser Pro Xaa
400 405 410
Arg Leu Pro Leu Val His Pro Phe Ile Glu Arg Pro Ala Leu Leu
415 420 425
Gln Ser Ser Gly Leu Pro Pro Ala Ala Arg Leu Ser Thr Arg Gly
430 435 440
Leu Ser Xaa Asp Val Glu Gly Pro Arg Ala Asp Thr Leu Pre Xaa Ser
445 450 455
Pro Asn Leu Gly Pro Trp Lys Ser Ser Pro Pro His His Xaa Ser
460 465 470
Ala Leu Thr Leu Gly Phe His Gly Pro His Ser Thr Ala Ser Pro
475 480 485
Thr Xaa Ala Cys Asp Leu Gly Thr Lys Gly Val Pro Arg Leu
490 495 500
Leu Xaa Leu Ser Arg Gly Ser Gly His Val Gln Gly Gly Ala Gly
<table>
<thead>
<tr>
<th>505</th>
<th>510</th>
<th>515</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>520</td>
<td>525</td>
<td>530</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>His</td>
</tr>
<tr>
<td>535</td>
<td>540</td>
<td>545</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
</tr>
<tr>
<td>550</td>
<td>555</td>
<td>560</td>
</tr>
<tr>
<td>Lys</td>
<td>Ile</td>
<td>Leu</td>
</tr>
<tr>
<td>565</td>
<td>570</td>
<td>575</td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Asp</td>
</tr>
<tr>
<td>619</td>
<td>624</td>
<td>629</td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Tyr</td>
</tr>
<tr>
<td>634</td>
<td>639</td>
<td>644</td>
</tr>
<tr>
<td>Phe</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>659</td>
<td>664</td>
<td>669</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>684</td>
<td>689</td>
<td>694</td>
</tr>
<tr>
<td>Gly</td>
<td>Asn</td>
<td>Gly</td>
</tr>
<tr>
<td>709</td>
<td>714</td>
<td>719</td>
</tr>
<tr>
<td>Trp</td>
<td>Ile</td>
<td>Pro</td>
</tr>
<tr>
<td>734</td>
<td>739</td>
<td>744</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>759</td>
<td>764</td>
<td>769</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>784</td>
<td>789</td>
<td>794</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>814</td>
<td>819</td>
</tr>
<tr>
<td>Tyr</td>
<td>Pro</td>
<td>Tyr</td>
</tr>
<tr>
<td>834</td>
<td>839</td>
<td>844</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>859</td>
<td>864</td>
<td>869</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>884</td>
<td>889</td>
<td>894</td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>909</td>
<td>914</td>
<td>919</td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>934</td>
<td>939</td>
<td>944</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>959</td>
<td>964</td>
<td>969</td>
</tr>
<tr>
<td>Ser</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>984</td>
<td>989</td>
<td>994</td>
</tr>
<tr>
<td>Thr</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>1009</td>
<td>1014</td>
<td>1019</td>
</tr>
<tr>
<td>Val</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>1029</td>
<td>1034</td>
<td>1039</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>1049</td>
<td>1054</td>
<td>1059</td>
</tr>
<tr>
<td>Thr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>1069</td>
<td>1074</td>
<td>1079</td>
</tr>
<tr>
<td>Asn</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>1089</td>
<td>1094</td>
<td>1099</td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>1109</td>
<td>1114</td>
<td>1119</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>1129</td>
<td>1134</td>
<td>1139</td>
</tr>
<tr>
<td>Tyr</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>1149</td>
<td>1154</td>
<td>1159</td>
</tr>
<tr>
<td>Asp</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>1169</td>
<td>1174</td>
<td>1179</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>1189</td>
<td>1194</td>
<td>1199</td>
</tr>
<tr>
<td>Gly</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>1209</td>
<td>1214</td>
<td>1219</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>1229</td>
<td>1234</td>
<td>1239</td>
</tr>
<tr>
<td>Val</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>1249</td>
<td>1254</td>
<td>1259</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>1269</td>
<td>1274</td>
<td>1279</td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>1289</td>
<td>1294</td>
<td>1299</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>1309</td>
<td>1314</td>
<td>1319</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>1329</td>
<td>1334</td>
<td>1339</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>1349</td>
<td>1354</td>
<td>1359</td>
</tr>
<tr>
<td>Asp</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>1369</td>
<td>1374</td>
<td>1379</td>
</tr>
<tr>
<td>Ala</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>1389</td>
<td>1394</td>
<td>1399</td>
</tr>
<tr>
<td>Thr</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td>1409</td>
<td>1414</td>
<td>1419</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>1429</td>
<td>1434</td>
<td>1439</td>
</tr>
<tr>
<td>Lys</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>1449</td>
<td>1454</td>
<td>1459</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>1469</td>
<td>1474</td>
<td>1479</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>1489</td>
<td>1494</td>
<td>1499</td>
</tr>
<tr>
<td>Gly</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>1509</td>
<td>1514</td>
<td>1519</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>1529</td>
<td>1534</td>
<td>1539</td>
</tr>
<tr>
<td>Gly</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>1549</td>
<td>1554</td>
<td>1559</td>
</tr>
</tbody>
</table>
Val Ala Leu Ser Tyr Leu His Ser Leu Pro Leu Lys Met Gly Gly
400 405 410
Asp Gln Arg Ser Met Gly Leu Ala Cys Glu Ser Pro Leu Ala Ala
415 420 425
Trp Ser Leu Gly Ile Thr Pro Ala Leu Val Leu Gln Met Leu Leu
430 435 440
Gly Phe Ile Gly Ala Gly Pro Ser Arg Ala Gly Pro Leu Thr Leu
445 450 455
Pro Ala Trp Leu His Ser Pro Xaa Arg Leu Pro Leu Val His Pro
460 465 470
Phe Ile Glu Arg Pro Ala Leu Leu Gln Ser Ser Gly Leu Pro Pro
475 480 485
Ala Ala Arg Leu Ser Thr Arg Gly Leu Ser Xaa Asp Val Glu Gly
490 495 500
Pro Arg Pro Ala Gly Thr Ala Ser Pro Asn Leu Gly Pro Trp Lys
505 510 515
Ser Pro Pro Pro His His Xaa Ser Ala Leu Thr Leu Gly Phe His
520 525 530
Gly Pro His Ser Thr Ala Ser Pro Thr Xaa Ala Cys Asp Leu Gly
535 540 545
Thr Lys Gly Gly Val Pro Arg Leu Leu Xaa Leu Ser Arg Gly Ser
550 555 560
Gly His Val Gln Gly Ala Gly Ala Gly Trp Pro Gly Gly Ser Ala His
565 570 575
Pro Pro Ala Phe Pro Gln Gly Val Leu Arg Ser Lys Ile Leu Glu
580 585 590
Gln Ser Asp Pro Ser Pro Lys Ala Leu Ser Ala Gly Glu Cys
595 600 605
Gln Pro Ile Pro Gly His Leu Ala Pro Gly Asp Val Gly Pro Xaa
610 615 620

<210> 34
<211> 757
<212> PRT
<213> Homo sapiens

<400> 34

Gln Gly Pro Thr Pro Arg Tyr Phe Thr Trp Asp Glu Val Ala Gln
1 5 10 15
Arg Ser Gly Cys Gly Arg Trp Leu Val Ile Asp Arg Lys Val
20 25 30
Tyr Asn Ile Ser Gly Phe Thr Arg Arg His Pro Gly Gly Ser Arg
35 40 45
Val Ile Ser His Tyr Ala Gly Asp Ala Thr Asp Pro Phe Val
50 55 60
Ala Phe His Ile Asn Lys Gly Leu Val Lys Tyr Met Asn Ser
55 60 70 75
Leu Leu Ile Gly Glu Leu Ser Pro Glu Gln Pro Ser Phe Glu Pro
80 85 90
Thr Lys Asn Lys Glu Leu Thr Asp Glu Phe Arg Glu Leu Arg Ala
95 100 105
Thr Val Glu Arg Met Gly Leu Met Lys Ala Asn His Val Phe
110 115 120
Leu Leu Tyr Leu Leu His Ile Leu Leu Asp Gly Ala Ala Trp
125 130 135
Leu Thr Leu Trp Val Phe Gly Thr Ser Phe Leu Pro Phe Leu Leu
140 145 150
Cys Ala Val Leu Leu Ser Ala Val Glu Ala Ala Gly Ala Gly Trp
155 160 165
Leu Gln His Asp Tyr Gly His Leu Ser Val Tyr Arg Lys Pro Lys
170 175 180
Trp Asn His Leu Val His Lys Phe Val Ile Gly His Lys Gly
185 190 195
Ala Ser Ala Asn Trp Trp Asn His Arg His Phe Glu His His Ala
200 205 210
Lys Pro Asn Ile Phe His Lys Asp Pro Asp Val Asn Met Leu His
215 220 225
Val Phe Val Leu Gly Glu Trp Gln Pro Ile Gly Tyr Gly Lys Lys
230
<table>
<thead>
<tr>
<th>Line</th>
<th>Sequence</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leu Leu Lys Tyr Leu Pro Tyr Asn His</td>
<td>230</td>
<td>235</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Leu Ile Gly Pro Leu Leu Ile Pro</td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>Ile Ile Met Thr Met Ile Val His Lys Asn Trp Val Asp Leu Ala</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Trp Ala Val Ser Tyr Tyr Ile Arg Phe</td>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>3</td>
<td>Phe Tyr Gly Ile Leu Gly Ala Leu Leu Phe Leu Asn Phe Ile Arg</td>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Phe Leu Glu Ser His Trp Phe Val Trp Val Thr Gln Met Asn His</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Ile Val Met Glu Ile Asp Gln Glu Ala Tyr Arg Asp Trp Phe Ser</td>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Ser Gln Leu Thr Ala Thr Cys Asn Val Glu Gln Ser Phe Asn</td>
<td>335</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Asp Trp Phe Ser Gly His Leu Asn Phe Gln Ile Glu His Leu</td>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>4</td>
<td>Phe Pro Thr Met Pro Arg His Asn Leu His Lys Ile Ala Pro Leu</td>
<td>365</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Val Lys Ser Leu Cys Ala Lys His Gly Ile Glu Tyr Gln Glu Lys</td>
<td>380</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Pro Leu Leu Arg Ala Leu Leu Asp Ile Ile Arg Ser Leu Lys Lys</td>
<td>395</td>
<td>400</td>
<td>405</td>
</tr>
<tr>
<td>5</td>
<td>Ser Gly Lys Leu Trp Leu Asp Ala Tyr Leu His Lys Xaa Ser His</td>
<td>410</td>
<td>415</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Ser Pro Arg Asp Thr Val Gly Lys Gly Cys Arg Trp Gly Asp Gly</td>
<td>425</td>
<td>430</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>Gin Arg Asn Asp Gin Gly Leu Leu Phe Xaa Gin Val Ser Glu Arg Leu</td>
<td>445</td>
<td>450</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Val Tyr Ala Leu Leu Thr Asp Pro Met Leu Asp Leu Ser Pro Phe</td>
<td>460</td>
<td>465</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Leu Leu Ser Phe Pro Ser Ser Leu His Leu Pro His Thr Leu Pro</td>
<td>475</td>
<td>480</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Ser Trp Asp Leu Pro Ser Leu Ser Arg Gin Pro Ser Ala Met Ala</td>
<td>490</td>
<td>495</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Leu Pro Val Pro Pro Ser Pro Phe Pro Gin Gly Ala Glu Arg Trp Met</td>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>6</td>
<td>Pro Pro Gly Val Ala Leu Ser Tyr Leu His Ser Leu Pro Leu Lys</td>
<td>515</td>
<td>520</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>Met Gly Gly Asp Gin Arg Ser Met Gly Leu Ala Cys Glu Ser Pro</td>
<td>530</td>
<td>535</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>Leu Ala Ala Trp Ser Leu Gly Ile Thr Pro Ala Leu Val Leu Gin</td>
<td>545</td>
<td>550</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Met Leu Leu Gly Phe Ile Gly Ala Gly Pro Ser Arg Ala Gly Pro</td>
<td>560</td>
<td>565</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>Leu Thr Leu Pro Ala Trp Leu His Ser Pro Xaa Arg Leu Pro Leu</td>
<td>575</td>
<td>580</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>Val His Pro Phe Ile Glu Arg Pro Ala Leu Leu Gin Ser Ser Gly</td>
<td>590</td>
<td>595</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Leu Pro Pro Ala Ala Arg Leu Ser Thr Arg Gly Leu Ser Xaa Asp</td>
<td>605</td>
<td>610</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>Val Gin Gly Pro Pro Ala Gly Thr Ala Ser Pro Asn Leu Gly</td>
<td>620</td>
<td>625</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>Pro Trp Lys Ser Pro Pro Pro His Ser Xaa Ser Ala Leu Thr Leu</td>
<td>635</td>
<td>640</td>
<td>645</td>
</tr>
<tr>
<td></td>
<td>Gly Phe His Gly Pro His Ser Thr Ala Ser Pro Thr Xaa Ala Cys</td>
<td>650</td>
<td>655</td>
<td>660</td>
</tr>
<tr>
<td>7</td>
<td>Asp Leu Gly Thr Lys Gly Val Pro Arg Leu Leu Xaa Leu Ser</td>
<td>665</td>
<td>670</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>Arg Gly Ser Gly His Val Gln Gly Gly Ala Gly Trp Pro Gly Gin</td>
<td>680</td>
<td>685</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>Ser Ala His Pro Pro Ala Phe Pro Gln Gly Val Leu Arg Ser Lys</td>
<td>695</td>
<td>700</td>
<td>705</td>
</tr>
<tr>
<td></td>
<td>Ile Leu Glu Gin Ser Asp Ser Ser Pro Lys Ala Leu Ser Lea</td>
<td>710</td>
<td>715</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>Gly Gin Cys Gin Pro Ile Pro Gly His Leu Ala Pro Gly Asp Val</td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td>Gly Pro Xaa</td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Gly Pro Xaa</td>
<td>755</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/53 C12N9/02 C12N15/86 C12P7/64 C12N5/10
C11B1/00 A61K31/20 A61K31/23 A61K7/00 A23K1/00
A23L1/30 //C12P7/64,C12R1:91

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N C12P A61K C11B A23K A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>WO 98 46765 A (THURMOND JENNIFER ;CALGENE LLC (US); ABBOTT LAB (US); KNUTZON DEBO) 22 October 1998 (1998-10-22) abstract see examples page 30</td>
<td>1-75</td>
</tr>
<tr>
<td>X</td>
<td>WO 96 21037 A (MARTEK BIOSCIENCES CORP ;KYLE DAVID J (US)) 11 July 1996 (1996-07-11) see claims abstract</td>
<td>74,75</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier document but published on or after the international filing date
  "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A" document member of the same patent family

Date of the actual completion of the international search
16 February 2000

Patent family members are listed in annex.

Date of mailing the international search report
22/02/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3018

Authorized officer
Lejeune, R

Form PCT/ISA/01 (second sheet) (July 1992)

page 1 of 2
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passage</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1, 2</td>
</tr>
</tbody>
</table>
**INTERNATIONAL SEARCH REPORT**

**Box I**  Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **X** Claims No.: because they relate to subject matter not required to be searched by this Authority, namely:
   
   **Remark:** Although claims 3, 22, 23, 30, 49, 50 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. **☐** Claims No.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. **☐** Claims No.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II**  Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **☐** As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. **☐** As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. **☐** As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims No.:

4. ** ☐** No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims No.:

**Remark on Protest**

- **☐** The additional search fees were accompanied by the applicant's protest.
- **☐** No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 7114798 A</td>
<td>11-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7114898 A</td>
<td>11-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 994924 A</td>
<td>30-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 994926 A</td>
<td>30-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9846764 A</td>
<td>22-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 713567 B</td>
<td>02-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4854296 A</td>
<td>24-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9607179 A</td>
<td>11-11-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2209513 A</td>
<td>11-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1175976 A</td>
<td>11-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 800584 T</td>
<td>06-05-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0800584 A</td>
<td>15-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 972829 A</td>
<td>02-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10512444 T</td>
<td>02-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 973085 A</td>
<td>03-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 321208 A</td>
<td>24-11-1997</td>
</tr>
</tbody>
</table>