Title: ISOLATION AND/OR IDENTIFICATION OF STEM CELLS HAVING ADIPOCYTIC, CHONDROCYTIC AND PANCREATIC DIFFERENTIATION POTENTIAL

Bezeichnung: ISOLIERUNG UND/ODER IDENTIFIZIERUNG VON STAMMMZELLEN MIT ADIPOZYTÄREM, CHON- DROZYTÄREM UND PANKREASZYTÄREM DIFFERENZIERUNGSPOTENTIAL

Abstract: The present invention relates to the use of an antibody that binds to the antigen TNAP, or functional fragments of the antibody, alone or in combination with an antibody that binds to CD56, or functional fragments of the antibody, for the isolation of stem cells having adipocytic, chondrocytic and pancreatic differentiation potential. The invention further relates to a method for isolating stem cells of said kind while using said antibodies.

Zusammenfassung: Die vorliegende Erfindung betrifft die Verwendung eines Antikörpers, der an das Antigen TNAP bindet, oder funktionellen Fragmenten des Antikörpers, alleine oder in Kombination mit einem Antikörper, der an CD56 bindet, oder funktionellen Fragmenten des Antikörpers, zur Isolierung von Stammzellen mit adipozytärem, chondrozitärem und pankreatischem Differenzierungspotential. Ferner betrifft die Erfindung Verfahren zur Isolierung solcher Stammzellen unter Einsatz der genannten Antikörper.
Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential

Die vorliegende Erfindung betrifft die Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential, sowie die Verwendung dieser Stammzellen.

MSC exprimieren eine Reihe von Oberflächenmarkern wie bspw. CD105 (Endoglin, SH2), CD73 (Ecto-5'-'-Nucleotidase, SH3, SH4), CD166 (ALCAM), CD29 (β1-Integrin), CD44 (H-CAM) und CD90 (Thy-1), die z.T. auch auf endothelialen, epithelialen Zellen sowie auf Muskelzellen gefunden werden. MSC lassen sich aber von hämatopoetischen Stammzellen abgrenzen, da MSC die für hämatopoetische Stammzellen spezifischen Marker CD45, CD34 und CD133 nicht exprimieren.

Mesenchymale Stammzellen haben die Eigenschaft, schnell und stabil auf Plastik- oder Glasoberflächen zu adhärieren, und koloniebildende Fibroblasten („colony forming units“ (CFU-F)) zu bilden. Letztere sind jedoch in Bezug auf ihre Proliferations- und Differenzierungsfähigkeiten heterogen.

Mesenchymale Stammzellen mit einem bestimmten Differenzierungspotential sind in der Medizin und Forschung von großem Interesse: Sie können insbesondere aus dem Knochenmark gewonnen werden, sogar aus jenem älterer Menschen, haben eine hohe Teilungsrate und können wie erwähnt in Gewebeszellen mesenchymalen Ursprungs differenzieren. Sie könnten daher bspw. im Rahmen von Stammzelltherapien direkt der Behandlung degenerativer Erkrankungen von Organen wie Knochen, Knorpel, Sehnen, Muskel, Bindegewebe, Blutzellen, etc. dienen.

Die Isolierung von mesenchymalen Stammzellen mit einem ganz bestimmten Differenzierungspotential ist im Stand der Technik bisher nicht möglich oder bekannt. Eine solche Isolierung würde jedoch wie erwähnt den großen Vorteil bieten, dass derart identifizierte Stammzellen gezielt für die Therapie/Behandlung von erkranktem, degeneriertem oder beschädigtem Gewebe eingesetzt werden könnten, in welches sich die derart spezifisch isolierten Stammzellen differenzieren.

Vor diesem Hintergrund besteht ein großes Interesse an mesenchymalen Stammzellen mit einem bestimmten Differenzierungspotential, insbesondere um diese in entsprechenden Verwendungen einzusetzen.

Aufgabe der vorliegenden Erfindung ist daher, neue Wege bereitzustellen, mit denen mesenchymale Stammzellen mit einem bestimmten Differenzierungspotential isoliert werden können.

Erfindungsgemäß wird diese Aufgabe gelöst durch die Verwendung eines Antikörpers, der an das Antigen TNAP (Tissue non-specific Alkaline Phosphatase; Gewebeunspezifische Alkalische Phosphatase) bindet; insbesondere wird die Aufgabe gelöst durch die Verwendung eines Antikörpers, der an das Antigen TNAP bindet, oder funktionellen Fragmenten des Antikörpers, in Kombination mit einem Antikörper, der an CD56 bindet, oder funktionellen Fragmenten des Antikörpers, zur Isolierung von Stammzellen mit adipozytären, chondrozytären und pankreatischem Differenzierungspotential.
Die Aufgabe wird ferner gelöst durch ein Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen mit chondrozytärem, adipozytärem oder pankreatischem Differenzierungspotential, bei welchen die gegen TNAP und gegen CD56 bindenden Antikörper eingesetzt werden.

Ferner betrifft die Erfindung die auf diese Weise isolierten Stammzellen und deren Verwendung, insbesondere in der Therapie.

Damit wird zum ersten Mal ein Werkzeug bereitgestellt, mit welchem mesenchymale Stammzellen gewonnen werden können, die spezifisch ausdifferenzieren. Dies war bisher im Stand der Technik nicht möglich.

Aufgrund der neuen Verwendung und des neuen Verfahrens können also mesenchymale Stammzellen bereitgestellt werden, die bspw. wiederum vorteilhafterweise in der Therapie und Prophylaxe oder aber in der Diagnostik und Forschung eingesetzt werden können. So können die derart isolierten Stammzellen insbesondere zur Behandlung von Krankheiten, die sich durch ein degeneriertes, verletztes oder

In einer Weiterbildung der erfindungsgemäßen Verwendung ist dabei bevorzugt wenn der anti-TNAP-Antikörper ausgewählt ist aus der Gruppe:

- der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie mit der Nr. ACC 2567 produziert wird,

- funktionelle Fragmente des Antikörpers W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie mit der Nr. ACC 2567 produziert wird, und

- ein Antikörper, der an das gleiche Epitop bindet wie der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie mit der Nr. ACC 2567 produziert wird.

In einer bevorzugten Ausführungsform ist der an CD56 bindende Antikörper ausge wählt aus der Gruppe:

- der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie mit der Nr. ACC 2930 produziert wird,

- funktionelle Fragmente des Antikörpers 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird,

- ein Antikörper, der an das gleiche Antigen bindet wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird, und

- ein Antikörper, der an das gleiche Epitop bindet wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird.

Der Antikörper 39D5, der ebenfalls bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen gemäß dem Budapester Vertrag unter der Nr. ACC 2930
hinterlegt worden ist, wurde durch eine Immunisierung von Balb/c Mäusen mit der hämatopoetischen Zelllinie KG-1a gewonnen.

In einer Ausführungsform der erfindungsgemäßen Verwendung ist bevorzugt, wenn zu der Kombination aus einem anti-TNAP und einem gegen CD56 gerichteten Antikörper zusätzlich noch ein gegen CD271 gerichteter Antikörper, oder funktionelle Fragmente des Antikörpers, eingesetzt wird.

Anti-CD271-Antikörper in konjugierter Form sind im Stand der Technik bekannt, und bspw. erhältlich von Miltenyi Biotech, Bergisch Gladbach, Deutschland.

Das CD271 Antigen, das auch als LNGFR ("low-affinity nerve growth factor receptor") oder p75 NTR (Neurotrophin Rezeptor) bekannt ist, gehört zur den Neurotrophin-Rezeptoren mit niedriger Affinität und zu der Superfamilie der Tumornekrosefaktor-Rezeptoren. Ursprünglich wurde CD271 (LNGFR) als Marker von Zellen des Nervensystems beschrieben, da CD271 (LNGFR) im zentralen und peripheren Nervensystem auf autonomen und sensorischen Neuronen gefunden wird. Daneben wird CD271 auch auf Oligodendrozyten, Astrozyten und Schwann'sche Zellen exprimiert. Ferner findet sich CD271 (LNGFR) aber auch auf bestimmten MSC.

Vorliegend sollen die Begriffe „funktionale Fragmente“ oder „funktionelle Fragmente“, wie sie in der Anmeldung verwendet werden, Substanzen bedeuten, die Teile/Abschnitte der offenbarten Antikörper darstellen und die immer noch die funktionellen Eigenschaften, insbesondere die Zell-Bindungseigenschaften der Antikörper zeigen und besitzen, von denen sie abgeleitet sind. Dabei können diese Fragmente entweder als solche oder aber in Kombination mit anderen Fragmenten eingesetzt werden; im Rahmen der vorliegenden Erfindung sind zu letzteren bspw. auch modifizierte W8B2 oder 39D5 Antikörper zu verstehen, die für entsprechende Einsätze und Verwendungen beim Menschen angepasst, bspw. humanisiert wurden.

Vorliegend sind aber auch Fragmente solcher Antikörper, wie bspw. Fab, F(ab)_2 oder scFv Fragmente, und andere Fragmente wie CDR ("complementarity-determining region"), hypervariable Region) als Antikörper im Sinne und Rahmen der vorliegenden Erfindung gemeint, so lange wie sie ihre Funktionalität, d.h. die spezifischen Bindungseigenschaften wie die "ganzen" Antikörper, von denen sie abgeleitet sind, besitzen. Solche Antikörper-Fragmente können bspw. auch rekombinant unter Verwendung im Stand der Technik bekannter Verfahren hergestellt werden.

Daher versteht sich auch, dass die Antikörper W8B2 und 39D5 andererseits auch entsprechend humanisiert werden können, und im Rahmen der hier offenbarten Erfindung für die erfindungsgemäßen Verwendungen und/oder Verfahren, insbesondere auch für eine Stammzelltherapie, eingesetzt werden können.

Ferner können in einer erfindungsgemäßen Verwendung die Antikörper, bspw. in humanisierter Form, oder funktionelle Fragmente davon, auf entsprechende implan-

Wie bereits weiter oben erwähnt, betrifft die vorliegende Erfindung auch ein Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen mit adipozytärem Differenzierungspotential, wobei es die folgenden Schritte aufweist:

a) in-Kontakt-Bringen einer Probe, die mesenchymale Stammzellen enthält, mit einem Antikörper, der an das Antigen TNAP bindet, oder mit funktionellen Fragmenten des Antikörpers,

b) in-Kontakt-Bringen der Probe aus Schritt a) mit einem Antikörper, der an CD56 bindet, oder mit funktionellen Fragmenten des Antikörpers, und

c) Isolieren und/oder Identifizieren von Zellen, an welche der Antikörper, der an das Antigen TNAP bindet, oder funktionelle Fragmente des Antikörpers, nicht aber der Antikörper, der an CD56 bindet, oder funktionelle Fragmente des Antikörpers, gebunden hat.

Mit dieser Ausführungsform des erfindungsgemäßen Verfahrens können also Stammzellen gewonnen werden, die gezielt in Adipozyten differenzieren. Diese wiederum
können für ganz bestimmte Zwecke, sei es in der Forschung oder Medizin, eingesetzt werden.

Ferner betrifft die vorliegende Erfindung ein Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen mit chondrozytärem oder pankreatischem Differenzierungspotential, wobei das Verfahren die folgenden Schritte aufweist:

a) in-Kontakt-Bringen einer Probe, die mesenchymale Stammzellen enthält, mit einem Antikörper, der an das Antigen TNAP bindet, oder mit funktionellen Fragmenten des Antikörpers,

b) in-Kontakt-Bringen der Probe aus Schritt a) mit einem Antikörper, der an CD56 bindet, oder mit funktionellen Fragmenten des Antikörpers, und

c) Isolieren und/oder Identifizieren von Zellen, an welche sowohl der Antikörper, der an das Antigen TNAP bindet, oder funktionelle Fragmente des Antikörpers, als auch der Antikörper, der an CD56 bindet, oder funktionelle Fragmente des Antikörpers, gebunden haben.

Mit dieser Ausführungsform des erfindungsgemäßen Verfahrens können Stammzellen identifiziert und/oder isoliert werden, die ein chondrogenes oder pankreatisches Differenzierungspotential besitzen. Die derart gewonnenen Stammzellen können dann entweder direkt im Rahmen einer Stammzelltherapie (autologe oder allogene Therapie) eingesetzt werden, wo sie in situ in Chondrozyten oder Pankreas-ähnliche Zellen differenzieren, und somit degeneriertes oder beschädigtes Knorpelgewebe oder Pankreasgewebe regenerieren können.

Andererseits können die mit dem erfindungsgemäßen Verfahren gewonnenen mesenchymalen Stammzellen mit chondrogenem/pankreatischem Differenzierungs-
potential auch zunächst in vitro zu Chondrozyten/Pankreas-ähnliche Zellen differenziert werden, und anschließend zur Behandlung von erkranktem oder degeneriertem Gewebe eingesetzt werden.

Insbesondere in den letzten Jahren hat sich die autologe Chondrocyten Transplantation zu einem bevorzugten Eingriff zur Behandlung von (Gelenk-)Knorpeldefekten von Bandscheibe und Knie entwickelt, bei welchen der hyaline Knorpel wiederhergestellt werden sollte. Hierzu werden dem Patienten durch eine Arthroskopie aus einem nicht beschädigten Gelenkanteil Proben entnommen, und die darin enthaltenen Knorpelzellen im Labor auf speziellen Matrices gezüchtet. Das dadurch entstehende Gewebe, also der neue Knorpel, wird dann durch eine gewebeschonende zweite Operation in das erkrankte/degenerierte Gelenk transplantiert.

Bei den erfindungsgemäßen Verfahren ist dabei bevorzugt, wenn der in Schritt a) eingesetzte anti-TNAP-Antikörper ausgewählt ist aus der Gruppe:

- der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie mit der Nr. ACC 2567 produziert wird,

- funktionelle Fragmente des Antikörpers W8B2, und

- Antikörper, die an das gleiche Epitop binden wie der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und
Zellkulturen hinterlegten Hybridomzellenlinie mit der Nr. ACC 2567 produziert wird.

Ferner ist in einer Weiterbildung der erfindungsgemäßen Verfahren bevorzugt, wenn der in Schritt b) eingesetzte an CD56 bindende Antikörper ausgewählt ist aus der Gruppe:

- der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzellenlinie Nr. ACC 2930 produziert wird,

- funktionelle Fragmente des Antikörpers 39D5, und

- Antikörper, die an das gleiche Epitop binden wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzellenlinie Nr. ACC 2930 produziert wird.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist dabei bevorzugt, wenn es den weiteren Schritt c') aufweist:

c') in-Kontakt-Bringen der Probe aus Schritt b) mit einem Antikörper, der an CD271 bindet, oder mit funktionellen Fragmenten des Antikörpers.

Dabei kann bei den erfindungsgemäßen Verfahren gemäß der Erfindung vorgesehen sein, wenn die Schritte a), b) und c') gleichzeitig, aufeinanderfolgend, in gemischter oder in umgekehrter Reihenfolge durchgeführt werden.

Die Erfinder haben in eigenen Versuchen festgestellt, dass unter Verwendung der Antikörper W8B2 und 39D5 in einem Verfahren zur Isolierung/Identifizierung von mesenchymalen Stammzellen eine gezielte Anreicherung von mesenchymalen
Stammzellen mit chondrogenem/adipozytärem oder pankreatischem Differenziierungspotential gewonnen werden könnte.

Die vorliegende Erfindung betrifft ferner die Verwendung von Stammzellen, die mit den erfindungsgemäßen Verfahren isoliert und/oder identifiziert wurden, für die Therapie, Diagnostik oder Forschung.

Ferner ist in einer weiteren Ausführungsform bevorzugt, wenn die mit den erfindungsgemäßen Verfahren isolierten und/oder identifizierten Stammzellen, die und zu Chondrozyten, Adipozyten und Pankreas-ähnlichen Zellen differenziert wurden, zur Therapie und/oder Prophylaxe von degeneriertem oder anfälligen Gewebe eingesetzt werden.

Insbesondere ist bevorzugt, wenn die mit den erfindungsgemäßen Verfahren gewonnenen Stammzellen für die Therapie und/oder Prophylaxe von Knorpel- und/oder Knochenschäden, -degenerationen oder -erkrankungen, insbesondere der Knie und Bandscheiben, oder für rheumatoide Arthritis eingesetzt werden. Rheumatoide Arthritis stellt eine Autoimmunerkrankung dar, und auch bei dieser Krankheit kann die Verwendung von Stammzellen zum Gewebeersatz (also zum so genannten „tissue repair“) zum Einsatz kommen.

Die Erfindung betrifft ferner eine pharmazeutische Zusammensetzung sowie ein Kit, die/das eine Kombination des Antikörpers W882, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie mit der Nr. ACC 2567 produziert wird, oder Fragmenten davon, und des Antikörpers 39DS aufweist, der von der bei der Deutschen Sammlung von Mikroorganismen und
Zellkulturen hinterlegten Hybridomzelllinie Nr. ACC 2930 produziert wird, oder Fragmenten davon.

Ferner betrifft die Erfindung eine pharmazeutische Zusammensetzung, enthaltend Stammzellen, die gemäß den erfindungsgemäßen Verfahren isoliert und/oder identifiziert wurden, sowie zumindest einen pharmazeutisch akzeptierbaren Träger- und/oder Hilfsstoff, und ggf. therapeutisch wirksame Substanzen.

Unter „pharmazeutisch akzeptierbaren Träger- oder Hilfsstoffen“ wird vorliegend jede in der Pharmazie im Zusammenhang mit an einen Patienten zu verabreichende Substanz/Zusammensetzung verstanden, die die Wirksamkeit der Zellen/Antikörper nicht nachteilig beeinflusst, und/oder die pharmakologisch die Anwendung der pharmazeutischen Zusammensetzung unterstützen oder erleichtern kann.

Unter „therapeutisch wirksamer Substanz“ wird vorliegend jede Substanz verstanden, die für die Zwecke einer Behandlung oder Verbesserung eines Krankheitsbildes eines Patienten eingesetzt wird.

Die pharmazeutischen Zusammensetzungen können systemisch verabreicht werden, d.h. bspw. oral, subkutan, intravenös, rektal, parenteral, intramuskulär, intraperitoneal, transdermal, oder topisch, wobei die Verabreichungsart von der Art der Erkrankung, dem Krankheitsbild, sowie dem Zustand der Patienten abhängen wird. Ebenso kann die Verabreichung wiederholt oder einmalig stattfinden, wobei die Verabreichung im ersteren Fall einmal oder mehrmals am Tag, und/oder über einen längeren Zeitraum hinweg erfolgen kann.

Es versteht sich, dass die oben genannten und nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendet werden können, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Die Erfindung wird in der nachstehenden Beschreibung und den beigefügten Figuren näher erläutert.

Es zeigen:

Fig. 1 Charakterisierung der CD56⁺ Knochenmarkszellen.

(A) Das CD56-Epitop NCAM16.2, jedoch nicht das von 39D5, ist auf peripheren Blut-NK-Zellen exprimiert. (B) die CD56-Epitope NCAM16.2 und 39D5 sind auf einem seltenen CD271⁺ Knochenmarks-Subset exprimiert. (C) CD271⁺CD56⁺ und CD271⁺CD56⁺ Knochenmarkszellen sind klonogen. CFU-F, abgeleitet aus 500 FACS-sortierten Zellen, wurden gefärbt und wie beschrieben ausgewertet. Die Daten stellen den Mittelwert der CFU-F-Anzahlen dreier unterschiedlicher Versuche dar (* = p <0,01). (D) Expression selektierter Marker auf kultivierten CD271⁺CD56⁺ und CD271⁺CD56⁺ MSC.

Fig. 2 Phänotyp und Morphologie von CD271⁺brightTNAP⁺CD56⁺ und CD271⁺brightTNAP⁺CD56⁺, abgeleitet aus dem Knochenmark.

Dreifach gefärbte Knochenmarkzellen wurden auf das CD271⁺-Subset eingeschränkt und hinsichtlich der Koexpression von CD56 und aus-
gewählten Markern analysiert. (A) Darstellung von FSC gegen CD271-APC. (B) Darstellung von CD56 gegen die dargestellten Marker auf CD271bright-eingeschränkte Zellen. (C) Darstellung von CD56 gegen TNAP (W8B2) auf CD271bright-Zellen. Die Sortierfenster werden mit R2 und R3 bezeichnet. (D) CFU-F Anzahlen, abgeleitet aus 1.000 FACS-sortierten BM TNAPCD56 und TNAPCD56 Zellen oder 100.000 unfraktionierten Knochenmarkzellen. Die resultierenden CFU-F wurden gefärbt und 12 Tage nach Kultur ausgewertet, und normalisiert auf 1.000 ausplattierte Zellen (p <0,01). (E) Morphologie von TNAPCD56 und TNAPCD56 Knochenmarkellen. Die Subsets wurden sortiert, zytozentrifugiert, und mit May-Grünwald-Giemsa-Lösung gefärbt; anschließend wurden sie mit einem Zeiss Axiovert 200 Mikroskop ausgewertet.

Fig. 3 Differenzierungspotential von MSC, die aus sortierten TNAPCD56 und TNAPCD56 Knochenmarkszellen abgeleitet sind.

Zellen in Dreifachfärbung mit CD271, TNAP (W8B2) und CD56 wurden sortiert und wie beschrieben kultiviert. Expandierte MSC wurden zur osteogenen, adipogenen, chondrogenen, myogenen, neurogenen und pankreatischen Differenzierung induziert und wie beschrieben gefärbt. Die resultierenden Zellen wurden mit einem Zeiss Axiovert 200 Mikroskop fotografiert.

Fig. 4 Phänotyp und Differenzierungsfähigkeit von MSC, abgeleitet aus Einzelzellen.

(A) Knochenmarkszellen, dreifach gefärbt mit CD56-FITC, TNAP-PE und CD271-APC wurden eingegrenzt und wie in Fig. 2C beschrieben sortiert. Die Einzelzellen wurden in 96-Well-Platten sortiert und 12 Tage lang kultiviert. Die entstehenden MSC-Kolonien wurden in T-25 Fla-
schen übertragen und weitere 12 Tage kultiviert; anschließend wurden sie mit den jeweiligen Antikörpern gefärbt. (B) Morphologie der TNAP⁺CD56⁺ abgeleiteten MSC-Klone C1 und C2, und der TNAP⁺CD56⁻-abgeleiteten Klone C12 und C13. (C) Osteogenes, adipogenes und neuronales Differenzierungspotential der MSC, abgeleitet aus einzelnen TNAP⁺CD56⁻ und TNAP⁺CD56⁺ Knochenmarkszellen.

Fig. 5 Tabelle 1: Microarray-Gen-Expressions-Analyse der CD271⁺CD56⁻ und CD271⁺CD56⁺ Knochenmarkszellen.

Fig. 6 Tabelle 2: Phänotyp und Proliferation der MSC-Klone (C1 bis C16) abgeleitet aus einzelnen TNAP⁺CD56⁻ und TNAP⁺CD56⁺ Knochenmarkszellen.

„+++“ bedeutet >100 Durchschnittsfluoreszenzintensität (MFI); „++“ bedeutet 10 – 100 ΔMFI; „+“ bedeutet 3 – 10 ΔMFI; „(+)“ bedeutet 1 – 3 ΔMFI; „-“ bedeutet eine negative Färbung.

Fig. 7 Transfektion von HEK-293 Zellen mit TNAP:

Mit der kodierenden Sequenz von TNAP/ALPL (Homo sapiens alkaline phosphatase, liver/bone/ kidney (ALPL)) transfiizierte HEK-293 Zellen, markiert mit W8B2-APC; die Zellen exprimieren neben TNAP (W8B2-Antigen) (A) auch das Reportergen GFP (B); und
Fig. 8 Über den TNAP-spezifischen Antikörper W8B2 sortierte Knochenmarkzellen, gefärbt für den Nachweis der Alkalischen Phosphatase: W8B2-positive Zellen (A); W8B2-negative Zellen (B).

Beispiele

Material und Methoden

Isolierung von Knochenmarkzellen und mononukleären peripheren Blutzellen

Knochenmark (bone marrow, „BM“) wurde an der Berufsgenossenschaftlichen Klinik aus Oberschenkelschaften von Patienten gewonnen, die künstliche Hüftgelenke erhielten. Peripheres Blut (PB) von gesunden Spendern wurde vom Institut für Transfusionsmedizin des Universitätsklinikums Tübingen erhalten. Mononukleare Zellen aus dem Knochenmark (BMMNC) und mononukleare Zellen aus dem Blut (PBMMNC) wurden mittels Ficoll-Dichtegradienten-Fraktionierung isoliert; und die verbleibenden Erythrocyten in einer Ammoniumchloridlösung lysiert.

Kultur der Primärzellen

Die Ficoll-getrennten und FACS-angereicherten Knochenmarkzellen wurden folgendermaßen kultiviert: 2 × 10^7 unfraktionierte oder 1 × 10^4 sortierte TNAP^CD56^ und TNAP^CD56^ Knochenmarkzellen wurden in Gelatine-beschichteten T-75 oder T-25 Kulturfässen in Anwesenheit von 20 ml oder 6 ml Knockout™ Ersatzmedium (Invitrogen, Karlsruhe, Deutschland) sowie 5 ng/ml rekombinanter humaner Fibroblasten-Wachstumsfaktor (rh-bFGF; CellSystems, Remagen, Deutschland) kultiviert. Nach einer dreitägigen Kultur wurden die nicht-adhäsierenden Zellen entfernt und frisches Medium hinzugefügt. Die adhärenen Zellen wurden kultiviert, bis sie eine 90%-ige Konfluenz erreichten.

Koloniebildender Fibroblast-Assay (CFU-F)

Differenzierung der MSC

Chondogene Differenzierung: 4 × 10^5 MSC wurden 4 Stunden lang bei 37 °C in 20 µl unvollständigem chondrogenem Induktionsmedium (PAA, Pasching, Österreich) kultiviert, das 1 % ITS-Supplemente (Sigma-Aldrich), 175 µM L-Ascorbinsäure (Sigma-Aldrich), 350 µM L-Prolin (Sigma-Aldrich), und 100 nM Dexamethason (Sigma-Aldrich) enthielt. Nach Inkubation wurden 400 µl des vollständigen chondrogenen
Induktionsmediums, das mit 10 ng/ml an TGF-β₃ (Sigma-Aldrich) ergänzt war, hinzugefügt. Die resultierenden Zellpellets wurden 3 Wochen lang kultiviert, mit 4 % PFA fixiert, in Paraffin eingebettet, und in 5 μm dicke Schnitte geschnitten. Die getrockneten und deparaffinisierten Schnitte wurden mit Alcian Blau Lösung (Merck) für 45 min bei Raumtemperatur inkubiert, in 3 % Essigsäure gewaschen, eingebettet und mit einem Zeiss Axiovert 200 Mikroskop fotografiert.

Myogene Differenzierung: 5 \times 10^5 MSC wurden 7 Tage lang auf Gefäßen mit sehr niedriger Adhärenz in DMEM High Glucose (Invitrogen) kultiviert, das mit 100 μM β-Mercaptoethanol ergänzt war. Die resultierenden Cluster wurden in Gelatinebeschichtete 24-Well-Gefäße für 21 bis 28 Tage gegeben, die resultierenden Zellen mit 4 % PFA fixiert (45 min, bei Raumtemperatur), und mit 0,1 % Triton X-100/PBS über 20 min permeabilisiert. Die Zellen wurden über Nacht bei 4 °C mit Kaninchen-anti-humanen Antikörpern gegen Actin der glatten Muskulatur (SMA) (Spring Bioscience, Freemont, Kalifornien, USA) markiert, sowie mit einem Maus-anti-humanen Antikörper gegen Sarcomer-Actinin (anti-alpha-Actinin) (Sigma-Aldrich). Nach dem Waschen wurden die Zellen mit Cy3-konjugierten Ziege-anti-Kaninchen- IgG (Jackson Immuno Research) oder Alexa Fluor488-konjugierten Ziegen-anti-Maus- IgG (Invitrogen) sowie 0,4 μg/ml DAPI gefärbt.

Neuronale Differenzierung: 3,5 \times 10^4 MSC wurden 6 Tage lang in 800 μl NeuroCult® NS-A-Proliferationsmedium (CellSystems) kultiviert, und anschließend 7 Tage lang in dem NeuroCult® NS-A-Differenzierungsmedium (CellSystems). Die Zellen wurden mit 4 % PFA fixiert und mit 0,3 % Triton-X-100/PBS (Sigma-Aldrich) permeabilisiert, und zwar bevor sie über Nacht mit Kaninchen-anti-humanem Antikörper gegen das gliafibrilläre saure Protein (GFAP) oder dem Maus-anti-humanem Antikörper gegen das neuronale Klasse III-β-Tubulin (jeweils von CellSystems) inkubiert wurden. Nach Waschen mit 0,1 % BSA/TBS/Tween-20 (Sigma-Aldrich) wurden die Zellen mit dem Cy3-konjugierten sekundären Schwein-anti-Kaninchen-Antikörper gefärbt (30 min bei Raumtemperatur; Jackson Immuno Research, Cambridge, Großbritannien), oder
mit dem Alexa Fluor®488-konjugierten Ziegen-anti-Maus IgG sekundären Antikörper (Invitrogen), und 0,4 µg/ml DAPI.

Pankreatische Differenzierung: 5 × 10⁵ MSC wurden in 6-Napf-Gefäße mit sehr niedriger Adhärenz (Costar; CellSystems) ausplattiert, und 4 Tage lang in MEM kultiviert, das 1 mM Mono-Thioglycerol, 15 % ES-Cult FBS und 4,5 g/l DMEM High Glucose (CellSystems) enthielt. Die resultierenden Zellcluster wurden anschließend 6 Tage lang in 6-Napf adhärenten Platten (Falcon) in mit ITS-ergänztem, Serum-freiem Medium (CellSystems) kultiviert. Nach Überführen in Poly-L-Ornithin-beschichtete 24-Wellplatten wurden die Zellen 6 Tage lang in einem pankreatischen Proliferationsmedium (CellSystems) kultiviert, das N2-A und B27 Ergänzungsstoffs enthielt, sowie 25 ng/ml rh-bFGF, und dann anschließend für weitere 6 Tage in einem rh-bFGF-freien pankreatischen Differenzierungsmedium (CellSystems) mit 10 mM Nikotinamid. Nach dem Waschen wurden die Zellen mit 4 % PFA fixiert, mit 70 % Ethanol permeabilisiert und mit einem Blockierungspuffer inkubiert, der 0,25 % Triton X-100 und 2 % FBS enthielt. Anschließend wurden sie mit einem polyklonalen Kaninchen-anti-humanen Glucagon-Antikörper (1:75 Verdünnung; Dako Cytomations, Glostrup, Dänemark) oder mit einem polyklonalen Kaninchen-anti-humanen Insulin-Antikörper (1:200 Verdünnung; Anta Cruz Biotechnology) über Nacht markiert und mit einem sekundären Ziegen-anti-Kaninchen IgG-Cy³ (Millipore, Schwalbach, Deutschland) und 0,4 µg/ml DAPI gefärbt.

Generierung der MSC-reaktiven monoklonalen Antikörper W8B2 und 39D5

Der monoklonale Antikörper W8B2 (IgG1; Spezifität für hTNAP) wurde durch Immunisierung von 6 bis 8 Wochen alten weiblichen Balb/c-Mäusen (Charles River WIGA, Sulzfeld, Deutschland) mit der Retinoblastom-Zelllinie WERI-RB-1 gewonnen. Der Antikörper 39D5 (IgG1, CD56) wurde durch Immunisierung mit der hämatopoetischen Zelllinie KG-1a gewonnen.

Immunfluoreszenzanalyse und Zellsortierung
Antikörper: Die folgenden Antikörper wurden eingesetzt: 97C5 (CD10), 46A11 (CD13), 39D5 (CD56), 1G2C2 (CD105), 104D2 (CD117), W6B3C1 (CD133), 28D4 (CD140b), 67D2 (CD164), CUB1 (CD318; CD92P), 24D2 (CD340; HER-2), W3C4E11 (CD349; frizzled-9), HEK-3D6 (unbekannt), W1C3 (unbekannt), W5C4 (unbekannt), W5C5 (unbekannt), W3D5 (unbekannt), und W8B2B10 (TNAP). CD34-PE (Klon 8G12), CD45-PE (Klon HI30), CD56-FITC (Klon NCAM16.2), CD56-PE (Klon NCAM16.2), CD90-APC (SE10), CD63-PE (Klon H5C6), CD73-PE (Klon AD2), und HLA-DR-PE (Klon TÜ36) wurden von Becton Dickinson (Heidelberg, Deutschland) gekauft. Der SSEA-4-reaktive Antikörper MC-813-70 wurde von Chemicon (Hampshire, Großbritannien) erworben. CD271-APC (Klon ME20.4-1.H4) wurde von Miltenyi Biotec erworben. CD105-PE (Klon SN6) wurde von eBioscience Inc. (San Diego, Kalifornien, USA) erworben. CD166-PE wurde von Dr. Gene Lay (BioLegend, San Diego, Kalifornien, USA) erhalten.

Immunofluoreszenzfärbung: Nach Blockierung und spezifischen Bindungen mit 10 mg/ml Polyglobin (10 min, 4 °C) wurden die Zellen 15 min lang mit entweder 20 µl Antikörpern oder 10 µl Fluorochrom-konjugierten Antikörpern inkubiert. Die mit den Konjugaten gefärbten Zellen wurden zweimal gewaschen, in 200 µl FACS Puffer suspendiert und für die Durchflusszytometrie eingesetzt. Die Zellen, die mit den Antikörpern markiert waren, wurden mit 20 µl eines F(ab)_2-Fragment des R-Phycoerythrin (PE)-konjugierten Ziegen-anti-Maus-Antikörpers (Dako Cytomations, Glostrup, Dänemark) 15 min lang gefärbt, zweimal gewaschen und mittels Durchflusszytometrie analysiert. Für die Vielfarbenfärbung wurden die Zellen 15 min lang mit 10 µl eines Anti-CD56-FITC und Anti-CD271-APC und/oder dem erwähnten PE-Konjugat inkubierte. Nach dem Waschen wurden die Zellen für die Durchflusszytometrie eingesetzt. Für eine kombinierte indirekte und direkte Färbung wurden die Zellen zunächst mit dem nicht-konjugierten Antikörper markiert, und anschließend mit 20 µl an 1:25 verdünntem Ziegen-anti-Maus sekundärem Antikörper 15 min lang gefärbt. Die freien Bindestellen des sekundären Antikörpers wurden durch Inkubation der Zellen für 25 min mit 20 µl an einem Maus-IgG-polyklonalen Antikörper (0,05 µg/ml; Southern Biotech, Birmingham, AL) blockiert, bevor sie mit CD271-APC und/oder

Durchflusszytometrische Analysen und Zellsortierung

Die Zellen wurden auf einem FACSaria Zellsortierer (Becton Dickinson) sortiert, oder mit einem FACSCantelII-Flusszytometer (Becton Dickinson) analysiert. Die Daten wurden unter Verwendung der FCS-Express-Software (De Novo Software, Ontario, Kanada) analysiert. Die Einzelzellsortierung in 96-Napfplatten wurde unter Verwendung der ACDU-Vorrichtung durchgeführt.

MACS-Trennung

In ausgewählten Versuchen wurden die Knochenmarkszellen mittels MACS (Miltenyi Biotec) unter Verwendung von CD271-APC und Anti-APC Beads vorsortiert. Die Trennungen wurden gemäß den Empfehlungen des Herstellers durchgeführt.

Gen-Chip-Analyse der sortierten Zellen

Ergebnisse
Der monoklonale Antikörper 39D5 erkennt ein Epitop von CD56, das nicht auf der Oberfläche von peripherem Blut (PB)-abgeleiteten NK-Zellen exprimiert wird. Eine vergleichende Durchflusszytometrie-Analyse zeigte, dass nur der kommerziell erhältliche CD56-spezifische Antikörper NCAM16.2, jedoch nicht der monoklonale Antikörper 39D5, mit 20 ± % der PB-Zellen reagierte (Fig. 1A). Jedoch reagierten beide Antikörper mit einer kleinen Subpopulation von BM CD271bright-Zellen (Fig. 1B). Eine simultane Färbung von BM-Zellen mit 39D5 und NCAM16.2 ergab, dass beide Antikörper die gleiche CD271bright-Population detektierten.

Die CD271bright CD56*-Population ist für CFU-F angereichert

Um das klonogene Potential sortierter CD56* und CD56- Subsets zu bestimmen, wurden CFU-F-Assays durchgeführt. Die Fig. 1C zeigt eine dreifach (± 0,8) angereicherte Effizienz von CD271brightCD56* Zellen im Vergleich zu CD271brightCD56- Zellen und eine 180-fache (± 52) Anreicherung an CFU-F im Vergleich zu den unfraktionierten BM-Zellen. Die Anreicherung war unabhängig von dem analysierten CD56 Epitop. Interessanterweise erzielten die CD271brightCD56* Zellen nicht nur höhere Koloniezahlen (38/500 gegenüber 12/500 plattierten Zellen), sondern waren auch 2- bis 4-fach angereichert in den sehr großen Kolonien (>100 Zellen/Kolonie).

Phänotyp der MSC, die von den sortierten CD271brightCD56*-BM-Zellen abgeleitet waren

CD271brightCD56* und CD271brightCD56- Zellen wurden mittels FACS getrennt, in Gelatine-beschichtete Flaschen in Gegenwart eines Serum-Ersatzmediums (n = 3) kultiviert, mit den angegebenen Antikörpern gefärbt und durchflusszytometrisch analysiert. Fig. 1D zeigt, dass CD10, CD140b, CD318, HER2 (CD340), frizzled-9 (CD349), ebenso wie die Antikörper-definierten Antigene W1C3, W5C4, W5C5 und W3D5 in ähnlicher Weise auf MSC exprimiert waren, die von beiden Fraktionen abgeleitet waren. CD271, SSEA-4 und CD56 waren am dichtesten exprimiert auf CD271brightCD56*-abgeleiteten MSC, wohingegen die TNAP (W8B2-Antigen)-Expression auf CD271brightCD56- abgeleiteten MSC ausgeprägter war. Im Gegensatz zu
primären MSC (Fig. 2B) exprimierten kultivierte MSC de novo CD166 und CD318, und regulierten die CD271-Expression herunter.

genexpressions-Analyse primärer CD271^bright^CD56^+ und CD271^bright^CD56^+ Knochenmarkszellen

Eine Microarray-Analyse des Gesamtgenoms von 10.000 sortierten Knochenmarkszellen wurde durchgeführt, um das Genexpressions-Profil von CD271^bright^CD56^+ und CD271^bright^CD56^+ Knochenmarkszellen zu vergleichen. CD271^bright^CD56^+ Zellen zeigten eine 11- bis 43-fach erhöhte Expression des sekretierten frizzled-verwandten Protein 4, des Speiseröhrenkrebs-bezogenen Gen-4-Proteins, der Carboxypeptidase E, des Plättchen-ableiteten Wachstumsfaktors A, des eukaryotischen Translations-Terminationsfaktors 1 und von CD163 (Fig. 5: Tabelle 1A). Im Gegensatz dazu waren die Gene, die für die Leukozytenimmunglobulin-ähnliche Rezeptorsubfamilie B kodierten, für das Zinkfingerprotein 212, Amphiregulin, HLA-Klasse II DM beta, spondin 2 und HLA-Klasse II DR alpha mit 62- bis 23-fach erniedrigten Leveln in diesem Subset exprimiert (Tabelle 1B), was auf eine hohe Diversität der Genexpressionsprofile in diesen Subsets hindeutet.

phänotyp der CD271^bright^CD56^+ Knochenmarkszellen

Um die Expressionsprofile der Oberflächenmarker auf CD271^bright^CD56^+ und CD271^bright^CD56^+ Zellen zu vergleichen, wurden die Knochenmarkszellen dreifach mit Anti-CD271, Anti-CD56 und einer Reihe von Testantikörpern gefärbt und auf die CD271^bright^Population eingegrenzt (Fig. 2A; Fenster R1). Die Fig. 2B zeigt, dass CD63, CD73, CD140b, CD164 und das W3D5-Antigen mit einem ähnlichen Level auf beiden Zellsubsets exprimiert waren, wohingegen CD45, CD117, CD133, CD318 negativ waren. Im Gegensatz dazu exprimierten CD271^bright^CD56^+ Zellen CD13, CD105, frizzled-9 (CD349), HLA-DR und TNAP (W8B2 Antigen) mit einem reduzierten Level, wohingegen CD166 exklusiv auf diesen Zellen gefunden wurde. Die Tatsache, dass die CD166-Expression auf den Großteil der primären MSC fehlt,
überraschte, da kultivierte MSC bekanntermaßen hohe Level an CD166 exprimieren. Auch das Tumorantigen CDCP1 (CD318) war auf primärem CD271brightCD56- und CD271brightCD56+ Zellen negativ (Fig. 2B), jedoch in kultivierten MSC stark exprimiert (Fig. 1B).

Klonogene Fähigkeit von TNAP+CD56- Knochenmarkszellen

Mit den vorliegenden Ergebnissen konnte gezeigt werden, dass TNAP mit einem hohen Level auf CD271brightCD56- Zellen exprimiert ist und mit einem niedrigeren Level auf CD271brightCD56+ Zell-Subsets (Fig. 2A). Um die klonogene Fähigkeit dieser Subsets zu untersuchen, wurden die Zellen mit den Fenstern R2 und R3 fraktioniert (Fig. 2C). Definierte Zellzahlen wurden in Kulturschalen gegeben, und die resultierenden CFU-F nach einer 12-tägigen Kultivierung ausgezählt. Die Fig. 2D zeigt, dass TNAP+CD56--Zellen zu einer 2- (± 0,4) -fach höheren CFU-F-Anzahl führten als die TNAP+CD56- Zellen. Eine Giemsa-Färbung zeigte, dass die TNAP+CD56- Zellen ein großes und helles Zytoplasma mit Vacuolen enthielten, wohingegen die TNAP+CD56+ Zellen ein kleineres Zytoplasma mit basophilen Körperchen enthielten (Fig. 2E).

Differenzierungsähigkeit von MSC, abgeleitet aus TNAP+CD56--Zellen

Für die Differenzierungssassays wurden unfraktionierte oder sortierte TNAP+CD56-, TNAP+CD56+ Zellen expandiert, bis sie ungefähr 9 bis 10 Zellteilungen unterzogen waren. Eine definierte Anzahl der resultierenden MSC wurde anschließend induziert, um in Zellen der osteogenen, adipogenen, chondrogenen, myogenen, neuronalen und pankreatischen Linien zu differenzieren.

Osteoblastische Differenzierung: Die Kultur von MSC, die aus sortierten Zell-Subsets abgeleitet waren, in einem geeigneten Medium führte zu einem Auftreten von 95 ± 5 % (CD56+) und 70 ± 5 % (CD56-) an alkalische-Phosphatase-positiven Zellen (Fig. 3). Im Gegensatz dazu führten MSC, die von den unfraktionierten Knochenmarkszellen abgeleitet waren, zu lediglich 35 % ± 5 % an alkalische-Phosphatase-positiven Zellen.
Eine Alizarin Rot S-Färbung war in sämtlichen Osteoblastenfraktionen zu beobachten. Jedoch war die Anzahl der Kalziumablagerung in den Osteoblasten, die aus den unfractionierten Zellen abgeleitet waren, um das Zweifache höher.

Adipozyten-Differenzierung: Die Kultivierung der unfractionierten und TNAP⁺CD56⁻-abgeleiteten MSC in Adipozyten-Differenzierungsmedium führte zu einem Auftreten von Oil Red O-einbauenden Adipozyten. Im Gegensatz dazu waren TNAP⁺CD56⁺-abgeleitete MSC nicht in der Lage, Adipozyten zu bilden (Fig. 3). TNAP⁺CD56⁺ MSC zeigten einen $5 \pm 0,5$-fachen Anstieg in Oil Red O-positiven Adipozyten, im Vergleich zu unfractionierten Zellen. Daher ist die Fähigkeit zur Adipozyten-Differenzierung auf das TNAP⁺CD56⁺ Subset beschränkt.

Chondogene Differenzierung: Um das Potential zur Chondrozyten-Differenzierung zu analysieren, wurden MSC, die aus den fraktionierten und unfractionierten Zellen abgeleitet waren, in einem geeigneten Medium kultiviert und die resultierenden Zell-pellets mit Alcian Blau gefärbt. Obgleich eine chondogene Differenzierung in beiden Fraktionen detektiert wurde, waren Pelletschnitte aus TNAP⁺CD56⁺ Zellen $5 (\pm 1,6)$ mal größer als die aus TNAP⁺CD56⁻ Zellen (Fig. 3). Darüber hinaus wurden lebensfähige Chondrozyten beinahe ausschließlich im TNAP⁺CD56⁺ Subset detektiert, wohingegen TNAP⁺CD56⁻ Pellets hauptsächlich apoptotische Zellen enthielten. MSC aus unfractionierten Zellen führten zu heterogenen Pelletgrößen, jedoch durchgehend mit weniger lebensfähigen Zellen. Diese Daten legen nahe, dass eine effektive Chondrogenese auf das TNAP⁺CD56⁺ MSC Subset beschränkt ist.

Myogene Differenzierung: Die Kultur der TNAP⁺CD56⁺-abgeleiteten MSC in einem Medium, das für die Differenzierung in Zellen der gestreiften Muskulatur bestimmt war, führte zu einem Auftreten einer für die gestreifte Muskulatur spezifische α-Actininfärbung in Zellen aller Fraktionen (Fig. 3). Im Gegensatz dazu war der für die glatte Muskulatur spezifische Marker SMA in allen Fraktionen negativ. Undifferenzierte MSC zeigten eine sehr schwache α-Actininfärbung.
Neuronale Differenzierung: MSC, die in einem neuronalen Differenzierungsmedium kultiviert wurden, wurden hinsichtlich GFAP und neuronaler β-Tubulin-III gefärbt. Fig. 3 zeigt eine deutliche Färbung von Zellen, die aus unfraktionierten und aus TNAP+CD56+ und TNAP+CD56+-abgeleiteten MSC abgeleitet waren. In undifferenzierten MSC oder in differenzierten Zellen, die mit Isotyp-spezifischen Kontroll-antikörpern markiert waren, wurde keine Färbung beobachtet.

Pankrätische Differenzierung: Die Kultur von MSC in einem pankrätischen Differenzierungsmedium führte zu einer Glucagon- und Insulin-Färbung Pankreas-ähnlicher Inseln in Zellen sämtlicher Fraktionen (Fig. 3). Jedoch waren die Inseln, die aus TNAP+CD56+ MSC abgeleitet waren, größer, und die Färbungsintensität dieser Marker war deutlich ausgeprägter im Vergleich zu TNAP+CD56+-abgeleiteten oder unfraktionierten MSC. In den undifferenzierten MSC oder in den differenzierten Zellen, die mit einem Isotyp-passenden Kontroll-Antikörper markiert waren, wurde keine Färbung beobachtet.

Einzelzellanalyse der TNAP+CD56+ Klonen

Die Wachstumscharakteristika, der Phänotyp und die Differenzierungsfähigkeit einzelner TNAP+CD56+ und TNAP+CD56- Zellen wurde bestimmt, indem einzelne Zellen in Gelatine-beschichtete 96-Wellkulturplatten sortiert, und in einem Serumfreien Medium kultiviert wurden, bis makroskopisch sichtbare Kolonien (>20 Zellen) auftreten. Die Klonierungseffizienz der sortierten TNAP+CD56+ und TNAP+CD56- Zellen betrug, 11/96 respektive 5/96. Diese ca. zweifach erhöhte Frequenz der CD56+ Zellen steht in Übereinstimmung mit den zweifach höheren Koloniewerten der in Fig. 2D beschriebenen sortierten Zellen.

Die resultierenden Kolonien wurden in T-25 Flaschen überführt und expandiert, bis sie 60 bis 70 % Konfluenz erreichten. Eine Phänotyp-Analyse zeigte, dass sämtliche 16 Klonen negativ für CD45 waren, jedoch CD73, CD90, CD105 und CD166 exprimierten, und sie zeigten ferner eine reduzierte CD271 Expression (Fig. 4A, Fig. 6:

Die Expansion aller 16 einzelnen Zellen über 24 Tage führte zu einem Auftreten spindelförmiger Zellen mit einer Fibroblasten-ähnlichen Morphologie (Fig. 4B). Unter den einzelnen Klonen wurde hinsichtlich des Proliferationspotentials eine starke Heterogenität beobachtet (Fig. 6: Tabelle 2). Obgleich die durchschnittliche Anzahl der Zellen, die von den CD56⁺ Klonen abgeleitet waren, ungefähr zweimal so hoch war wie die von den CD56⁻ Klonen abgeleiteten Zellen (93,5 × 10³ gegenüber 52,8 × 10³ nach einer 24-tägigen Kultur) konnte kein Zusammenhang zwischen den einzelnen Klonen oder den Phänotyp-Profilen detektiert werden (Fig. 6: Tabelle 2).

Die stark proliferierenden Klone C1 und C2 (TNAP⁺CD56⁺) und C12 und C13 (TNAP⁺CD56⁻) wurden auch hinsichtlich ihres osteoblastären, adipozytären und neuronalen Differenzierungspotential analysiert. Aus Fig. 5C ist zu entnehmen, dass lediglich ein CD56⁻ Klon, jedoch keiner der CD56⁺ Klone zur Entstehung von Oil Red O-Färbstoff-einbauenden Adipozyten führte. Alkalische Phosphatase-positive Osteoblasten und neuronales β-Tubulin-III exprimierende Neuronen-ähnliche Zellen wurden von drei von vier Klonen generiert, jedoch nicht durch den CD56⁻ Klon C13 (Fig. 4C). Bemerkenswert war, dass β-Tubulin-III-positive Zellen in den CD56⁺ Klonen 5-10-mal häufiger waren als in den CD56⁻ Klonen.

Transfektion von HEK-293 Zellen mit TNAP
HEK-293 Zellen (erhältlich bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen, DSMZ unter der Nummer DSMZ Nr. ACC 305) wurden mit der kodierenden Sequenz von TNAP/ALPL (Homo sapiens alkaline phosphatase, liver/bone/kidney (ALPL)) transfiziert, die in den Vektor pCMV6-AC-GFP (erhältlich bei der Firma Origene Technologies, Rockville, MD, USA) integriert wurde. Zur Transfektion wurde das Reagenz MegaTran1.0 transcript 1 (ebenfalls OriGene Technologies, Rockville, MD, USA) verwendet. Nach der Inkubation wurden die Zellen gewaschen und mit W8B2-APC markiert. Die durchfluss-zytometrische Analyse (siehe Fig. 7) zeigt, dass ca. 40% der Zellen stark positiv für W8B2 sind: Die Zellen exprimieren neben TNAP (W8B2-Antigen) (Fig. 7A) auch das Reportergen Green-Fluorescent Protein (Grün fluoreszierendes Protein (GFP)) (Fig. 7B).

Nachweis der alkalischen Phosphatase-Aktivität

Knochenmarkzellen wurden mit dem TNAP-spezifischen Antikörper W8B2 markiert (W8B2-APC) und im FACSaria (BD Biosciences, Franklin Lakes, NJ USA) Zellsortiergerät sortiert. Die sortierten Zellen wurden anschließend mit einem kommerziell erhältlichen Kit für den Nachweis der Alkalischen Phosphatase gefärbt (StemTAG AP staining kit; Stem Cell Technologies, Vancouver, CA). Nur W8B2-positive Zellen zeigten eine Reaktion für dieses Enzym (Fig. 8A). W8B2-negative Zellen zeigten keine Reaktion (Fig. 8B).

Mit den vorliegenden Ergebnissen konnte auch gezeigt werden, dass nur die TNAP⁺CD56⁺ Zellen dazu in der Lage waren, effektiv in Chondrozyten zu differenzieren, wie durch die erhöhte Knorpelpelletgröße und die extensive Proteoglykanfärbung gezeigt werden konnte.

Mit der vorliegenden Studie wurden daher Antigene identifiziert, nämlich TNAP und CD56, über welche effektiv MSC mit chondrogenem, adipozytärem oder pankreatischem Differenzierungspotential identifiziert und/oder isoliert werden können.

Patentansprüche

2. Verwendung eines Antikörpers, der an das Antigen TNAP bindet, oder funktionellen Fragmenten des Antikörpers, in Kombination mit einem Antikörper, der an CD56 bindet, oder funktionellen Fragmenten des Antikörpers, zur Isolierung von Stammzellen mit adipozytären, chondrozytären und pankreatischem Differenzierungspotential.

3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der anti-TNAP-Antikörper ausgewählt ist aus der Gruppe:

 - der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelldlinie mit der Nr. ACC 2567 produziert wird,

 - funktionelle Fragmente des Antikörpers W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelldlinie mit der Nr. ACC 2567 produziert wird, und

 - ein Antikörper, der an das gleiche Epitop bindet wie der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelldlinie mit der Nr. ACC 2567 produziert wird.

4. Verwendung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der an CD56 bindende Antikörper ausgewählt ist aus der Gruppe:
der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie mit der Nr. ACC 2930 produziert wird,

- funktionelle Fragmente des Antikörpers 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird,

- ein Antikörper, der an das gleiche Antigen bindet wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird, und

- ein Antikörper, der an das gleiche Epitop bindet wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Zelllinie Nr. ACC 2930 produziert wird.

5. Verwendung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass zu der Kombination aus einem anti-TNAP und einem gegen CD56 gerichteten Antikörper zusätzlich noch ein gegen CD271 gerichteter Antikörper, oder funktionelle Fragmente des Antikörpers, eingesetzt wird.

6. Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen mit adipozytärem Differenzierungspotential, dadurch gekennzeichnet, dass es die folgenden Schritte aufweist:

a) in-Kontakt-Bringen einer Probe, die mesenchymale Stammzellen enthält, mit einem Antikörper, der an das Antigen TNAP bindet, oder mit funktionellen Fragmenten des Antikörpers,
b) in-Kontakt-Bringen der Probe aus Schritt a) mit einem Antikörper, der an CD56 bindet, oder mit funktionellen Fragmenten des Antikörpers, und

c) Isolieren und/oder Identifizieren von Zellen, an welche der Antikörper, der an das Antigen TNAP bindet, oder funktionelle Fragmente des Antikörpers, nicht aber der Antikörper, der an CD56 bindet, oder funktionelle Fragmente des Antikörpers, gebunden hat.

7. Verfahren zur Isolierung und/oder Identifizierung von mesenchymalen Stammzellen mit chondrozytärem Differenzierungspotential, dadurch gekennzeichnet, dass es die folgenden Schritte aufweist:

a) in-Kontakt-Bringen einer Probe, die mesenchymale Stammzellen enthält, mit einem Antikörper, der an das Antigen TNAP bindet, oder mit funktionellen Fragmenten des Antikörpers,

b) in-Kontakt-Bringen der Probe aus Schritt a) mit einem Antikörper, der an CD56 bindet, oder mit funktionellen Fragmenten des Antikörpers, und

c) Isolieren und/oder Identifizieren von Zellen, an welche sowohl der Antikörper, der an das Antigen TNAP bindet, oder funktionelle Fragmente des Antikörpers, als auch der Antikörper, der an CD56 bindet, oder funktionelle Fragmente des Antikörpers, gebunden haben.

8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass es den weiteren Schritt c') aufweist:

c') in-Kontakt-Bringen der Probe aus Schritt b) mit einem Antikörper, der an CD271 bindet, oder mit funktionellen Fragmenten des Antikörpers.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der in Schritt a) eingesetzte anti-TNAP-Antikörper ausgewählt ist aus der Gruppe:

- der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie mit der Nr. ACC 2567 produziert wird,

- funktionelle Fragmente des Antikörpers W8B2, und

- Antikörper, die an das gleiche Epitop binden wie der Antikörper W8B2, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie mit der Nr. ACC 2567 produziert wird.

10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass der in Schritt b) eingesetzte an CD56 bindende Antikörper ausgewählt ist aus der Gruppe:

- der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie Nr. ACC 2930 produziert wird,

- funktionelle Fragmente des Antikörpers 39D5, und

- Antikörper, die an das gleiche Epitop binden wie der Antikörper 39D5, der von der bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen hinterlegten Hybridomzelllinie Dr. ACC 2930 produziert wird.
11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Schritte a), b) und c') gleichzeitig, aufeinanderfolgend oder in umgekehrter Reihenfolge durchgeführt werden.

12. Verwendung von Stammzellen, die mit einem Verfahren nach einem der Ansprüche 6 bis 11 isoliert und/oder identifiziert wurden, für die Therapie oder Diagnostik.

17. Pharmazeutische Zusammensetzung, enthaltend Stammzellen, die gemäß dem Verfahren nach einem der Ansprüche 6 bis 11 isoliert und/oder identifiziert wurden, sowie zumindest einen pharmazeutisch akzeptierbaren Träger, und ggf. therapeutisch wirksame Substanzen.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
In CD 56+ Zellen hochregulierte Gene

<table>
<thead>
<tr>
<th>Gen Symbol</th>
<th>Gen Name</th>
<th>Zugangsnummer</th>
<th>Faltungsänderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFRP4</td>
<td>sekretiertes Frizzled-verwandtes Protein 4</td>
<td>NM_003014</td>
<td>43,18</td>
</tr>
<tr>
<td>ECRG4</td>
<td>Speiseröhrenkrebs-verwandtes Gen 4 Protein</td>
<td>NM_032411</td>
<td>21,06</td>
</tr>
<tr>
<td>CPE</td>
<td>Carboxypeptidase E</td>
<td>NM_001873</td>
<td>15,34</td>
</tr>
<tr>
<td>PDGFA</td>
<td>Plättchen-abgeleiteter Wachstumsfaktor PDGF-A</td>
<td>X06374</td>
<td>13,41</td>
</tr>
<tr>
<td>ETF1</td>
<td>Eukaryotischer Translationsterminationsfaktor 1</td>
<td>NM_004730</td>
<td>11,80</td>
</tr>
<tr>
<td>CD163</td>
<td>CD163 Antigen (CD163)</td>
<td>NM_004244</td>
<td>11,34</td>
</tr>
<tr>
<td>T2BP</td>
<td>TRAF2 bindenden Protein</td>
<td>NM_052864</td>
<td>10,99</td>
</tr>
<tr>
<td>PH-4</td>
<td>durch Hypoxie induzierbarer Faktor Prolyl-4-Hydrolase</td>
<td>NM_177939</td>
<td>10,44</td>
</tr>
<tr>
<td>LGALS13</td>
<td>Lektin, Galaktosidase-bindend, löslich,13, (Galektin 13)</td>
<td>NM_013268</td>
<td>10,21</td>
</tr>
<tr>
<td>TLR8</td>
<td>Toll-ähnlicher Rezeptor 8</td>
<td>NM_016610</td>
<td>8,39</td>
</tr>
<tr>
<td>ITGA10</td>
<td>Integrin, alpha 10</td>
<td>NM_003637</td>
<td>8,36</td>
</tr>
<tr>
<td>TJP1</td>
<td>„Tight-junction“-Protein 1 (Zona occludens 1)</td>
<td>NM_003257</td>
<td>8,06</td>
</tr>
<tr>
<td>DNAJB6</td>
<td>DnaJ (Hsp40) Homolog, Subfamilie B, Mitglied 6</td>
<td>NM_058246</td>
<td>8,04</td>
</tr>
<tr>
<td>LIMD1</td>
<td>LIM Domänen enthaltend 1</td>
<td>NM_014240</td>
<td>7,905</td>
</tr>
<tr>
<td>WIF1</td>
<td>WNT inhibitorischer Faktor 1</td>
<td>NM_007191</td>
<td>7,88</td>
</tr>
<tr>
<td>KUB3</td>
<td>Ku70 bindendens Protein 3</td>
<td>BC033881</td>
<td>7,04</td>
</tr>
<tr>
<td>KLK4</td>
<td>Kallikrein 4</td>
<td>NM_004917</td>
<td>6,93</td>
</tr>
<tr>
<td>UBE2B</td>
<td>Ubiquitin-konjugierendes Enzym E2B</td>
<td>BC001694</td>
<td>6,83</td>
</tr>
</tbody>
</table>
In CD56+ Zellen herunterregulierter Gene

<table>
<thead>
<tr>
<th>Gen Symbol</th>
<th>Gen Name</th>
<th>Gen Zugangsnummer</th>
<th>Faltungsänderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LILRB2</td>
<td>Leukozyten Immunglobulin-ähnlicher Rezeptor, Subfamilie B</td>
<td>NM_005874</td>
<td>-61,98</td>
</tr>
<tr>
<td>ZNF212</td>
<td>Zinkfinger Protein 212</td>
<td>NM_012256</td>
<td>-38,64</td>
</tr>
<tr>
<td>AREG</td>
<td>Amphiregulin (Schwannoma-abgeleiteter Wachstumsfaktor)</td>
<td>NM_001657</td>
<td>-29,66</td>
</tr>
<tr>
<td>HLA-DMB</td>
<td>Haupthistokompatibilitätskomplex, Klasse II, DM beta</td>
<td>NM_002118</td>
<td>-29,61</td>
</tr>
<tr>
<td>SPON2</td>
<td>Spondin 2, extrazelluläres Matrixprotein (SPON2)</td>
<td>NM_12445</td>
<td>-23,59</td>
</tr>
<tr>
<td>HLA-DRA</td>
<td>Haupthistokompatibilitätskomplex, Klasse II, DR alpha</td>
<td>NM_019111</td>
<td>-23,19</td>
</tr>
<tr>
<td>GZMB</td>
<td>Granzym B (Granzym 2, Cytotoxische T-Lymphozyten-assoziierte Serinesterase 1)</td>
<td>NM_004131</td>
<td>-21,20</td>
</tr>
<tr>
<td>CSF2RA</td>
<td>Kolonie-stimulierender Faktor 2-Rezeptor, alpha, niedrige Affinität (Granulozyten-Makrophagen)</td>
<td>NM_172247</td>
<td>-11,41</td>
</tr>
<tr>
<td>FLJ12528</td>
<td>Threonyl-tRNA-Synthetase</td>
<td>NM_025150</td>
<td>-11,32</td>
</tr>
<tr>
<td>HLA-DBP1</td>
<td>Haupthistokompatibilitätskomplex, Klasse II, DP beta1</td>
<td>NM_002121</td>
<td>-11,29</td>
</tr>
<tr>
<td>PLCB2</td>
<td>Phospholipase C, beta 2 (PLCB2)</td>
<td>NM_004573</td>
<td>-8,83</td>
</tr>
<tr>
<td>MAPK1</td>
<td>Mitogen-aktivierte Proteinkinase 1</td>
<td>NM_138957</td>
<td>-8,66</td>
</tr>
<tr>
<td>COPG2</td>
<td>"Coatomer"-Proteinkomplex, Untereinheit gamma 2</td>
<td>NM_012133</td>
<td>-8,64</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>Notch Homolog 1</td>
<td>NM_017617</td>
<td>-8,61</td>
</tr>
<tr>
<td>MRPL23</td>
<td>Mitochondriales ribosomales Protein L23</td>
<td>NM_021134</td>
<td>-7,77</td>
</tr>
<tr>
<td>Septin6</td>
<td>Septin 6 (SEPT6)</td>
<td>NM_015129</td>
<td>-7,75</td>
</tr>
<tr>
<td>GLRA2</td>
<td>Glycinrezeptor, alpha 2</td>
<td>NM_002063</td>
<td>-7,65</td>
</tr>
<tr>
<td>BCL2A1</td>
<td>BCL2-verwandtes Protein A1</td>
<td>NM_004049</td>
<td>-7,14</td>
</tr>
<tr>
<td>PANX1</td>
<td>Pannexin 1 (PANX1)</td>
<td>NM_015368</td>
<td>-6,68</td>
</tr>
<tr>
<td>AF320072</td>
<td>Magenkreb-verwandtes Protein VRG118</td>
<td>AF320072</td>
<td>-6,68</td>
</tr>
<tr>
<td>CD74</td>
<td>CD74 Antigen (invariantes Polypeptid von MHC, Klasse II Antigen-assoziiert)</td>
<td>NM_004355</td>
<td>-6,65</td>
</tr>
<tr>
<td>GDI1</td>
<td>GDP Dissoziationsinhibitor 1</td>
<td>NM_001493</td>
<td>-6,59</td>
</tr>
<tr>
<td>CXCR4</td>
<td>Chemokin (C-X-C Motiv) - Rezeptor 4</td>
<td>NM_003467</td>
<td>-5,03</td>
</tr>
</tbody>
</table>

Fig. 5 (Fortsetzung)
<table>
<thead>
<tr>
<th>Identität des Klons</th>
<th>CD105</th>
<th>CD166</th>
<th>CD90</th>
<th>CD73</th>
<th>CD34</th>
<th>CD45</th>
<th>CD271</th>
<th>CD56</th>
<th>W8B2</th>
<th>FZD9</th>
<th>Zellanzahl nach 24-tägiger Kultur</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD56+ (C1) G11</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>450 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C2) F7</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>450 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C3) B6</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>75 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C4) C4</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
<td>12 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C5) E4</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>12 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C6) B12</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>1 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C7) F10</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>3 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C8) C1</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>7 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C9) C6</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>9 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C10) F6</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>5 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C11) B7</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>4 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C12) E9</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
<td>100 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C13) C4</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>100 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C14) A9</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>(+)</td>
<td>50 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C15) E3</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
<td>(+)</td>
<td>8 X 10^3</td>
</tr>
<tr>
<td>CD56+ (C16) H9</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>(+)</td>
<td>6 X 10^3</td>
</tr>
</tbody>
</table>

Fig. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C12N5/06 GOIN33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 901 063 A (UNIV EBERHARD KARLS [DE]) 19 March 2008 (2008-03-19) page 2 - page 5; claims 1-16; figure 1</td>
<td>1-18</td>
</tr>
</tbody>
</table>

* Further categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

C document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family

Date of the actual completion of the international search: 13 Oktober 2009

Date of mailing of the international search report: 26/10/2009

Name and mailing address of the ISA/Authorized officer:

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Paresce, Donata

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>VOGEL WICHARD ET AL: "Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells" HAEMATOLOGICA, FONDAZIONE FERRATA STORTI, ROME, IT, vol. 88, no. 2, 1 February 2003 (2003-02-01), pages 126-133, XP002531561 ISSN: 0390-6078 page 129 - page 130; table 1</td>
<td>1-3, 7, 9, 12-14, 17</td>
</tr>
<tr>
<td>X</td>
<td>WO 2006/108229 A (ANGIOBLAST SYSTEMS INC [US]; GRONTHOS STAN [AU]; ZANNETTINO ANDREW CHR) 19 October 2006 (2006-10-19) page 3 - page 4; claims 36-45 page 21</td>
<td>1, 12-15, 17</td>
</tr>
</tbody>
</table>

Form PCT/SA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 2008075699 A1</td>
<td>27-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003283240 A1</td>
<td>30-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10242338 A1</td>
<td>18-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1539822 A2</td>
<td>15-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005214873 A1</td>
<td>29-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2604493 A1</td>
<td>19-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101248171 A</td>
<td>20-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1869165 A1</td>
<td>26-12-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008538495 T</td>
<td>30-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070120598 A</td>
<td>24-12-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009074728 A1</td>
<td>19-03-2009</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2009/004614

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
INV. C12N5/06 G01N33/50

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERT GEBOETE
Recherchierte Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole)
C12N G01N

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, WPI Data, BIOSIS, MEDLINE

C. ALS WESENTLICH ANGEGEBEN ANGESEHENEN UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 E älteres Dokument, das jedoch entweder vorn oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

<table>
<thead>
<tr>
<th>Datum des Abschlusses der internationalen Recherche</th>
<th>Absendetag des internationalen Recherchenberichts</th>
</tr>
</thead>
</table>

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5318 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter
Paresce, Donata
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Beitr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>VOGEL WICHARD ET AL: "Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells" HAEMATOLOGICA, FONDAZIONE FERRATA STORTI, ROME, IT, Bd. 88, Nr. 2, 1. Februar 2003 (2003-02-01), Seiten 126-133, XP002531561 ISSN: 0390-6078 Seite 129 - Seite 130; Tabelle 1</td>
<td>1-3,7,9, 12-14,17</td>
</tr>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008075699 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003283240 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10242338 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1539822 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005214873 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2604493 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101248171 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1869165 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008538495 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070120598 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009074728 A1</td>
</tr>
</tbody>
</table>