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RENAL NERVE STIMULATION METHOD 
AND APPARATUS FOR TREATMENT OF 

PATIENTS 

RELATED APPLICATIONS 

This application is related and claims priority to the 
following commonly-owned provisional applications: Ser. 
No. 60/370,190, entitled “Modulation Of Renal Nerve To 
Treat CHF, that was filed in the U.S. Patent and Trademark 
Office (USPTO) on Apr. 8, 2002; Ser. No. 60/415,575 
entitled “Modulation Of Renal Nerve To Treat CHF, that 
was filed in the USPTO on Oct. 3, 2002, and Ser. No. 
60/442,970 entitled “Treatment Of Renal Failure And 
Hypertension', that was filed in the USPTO on Jan. 29, 
2003. The entirety of each of these provisional applications 
is incorporated by reference herein. 

FIELD OF THE INVENTION 

This invention relates to methods and apparatus for treat 
ment of congestive heart failure, chronic renal failure and 
hypertension by nerve stimulation. In particular, the inven 
tion relates to the improvement of these conditions of 
patients by blocking signals to the renal (kidney) nerve. 

BACKGROUND OF THE INVENTION 

The Heart Failure Problem: 
Congestive Heart Failure (CHF) is a form of heart disease 

still increasing in frequency. According to the American 
Heart Association, CHF is the “Disease of the Next Millen 
nium”. The number of patients with CHF is expected to 
grow even more significantly as an increasing number of the 
“Baby Boomers' reach 50 years of age. CHF is a condition 
that occurs when the heart becomes damaged and reduces 
blood flow to the organs of the body. If blood flow decreases 
Sufficiently, kidney function becomes impaired and results in 
fluid retention, abnormal hormone secretions and increased 
constriction of blood vessels. These results increase the 
workload of the heart and further decrease the capacity of 
the heart to pump blood through the kidney and circulatory 
system. This reduced capacity further reduces blood flow to 
the kidney, which in turn further reduces the capacity of the 
blood. It is believed that the progressively-decreasing per 
fusion of the kidney is the principal non-cardiac cause 
perpetuating the downward spiral of the “Vicious Cycle of 
CHF. Moreover, the fluid overload and associated clinical 
symptoms resulting from these physiologic changes are 
predominant causes for excessive hospital admissions, ter 
rible quality of life and overwhelming costs to the health 
care system due to CHF. 

While many different diseases may initially damage the 
heart, once present, CHF is split into two types: Chronic 
CHF and Acute (or Decompensated-Chronic) CHF. Chronic 
Congestive Heart Failure is a longer term, slowly progres 
sive, degenerative disease. Over years, chronic congestive 
heart failure leads to cardiac insufficiency. Chronic CHF is 
clinically categorized by the patient’s ability to exercise or 
perform normal activities of daily living (such as defined by 
the New York Heart Association Functional Class). Chronic 
CHF patients are usually managed on an outpatient basis, 
typically with drugs. 

Chronic CHF patients may experience an abrupt, severe 
deterioration in heart function, termed Acute Congestive 
Heart Failure, resulting in the inability of the heart to 
maintain sufficient blood flow and pressure to keep vital 
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organs of the body alive. These acute CHF deteriorations can 
occur when extra stress (such as an infection or excessive 
fluid overload) significantly increases the workload on the 
heart in a stable chronic CHF patient. In contrast to the 
stepwise downward progression of chronic CHF, a patient 
suffering acute CHF may deteriorate from even the earliest 
stages of CHF to severe hemodynamic collapse. In addition, 
Acute CHF can occur within hours or days following an 
Acute Myocardial Infarction (AMI), which is a sudden, 
irreversible injury to the heart muscle, commonly referred to 
as a heart attack. 
Normal Kidney Function: 
The kidneys are a pair of organs that lie in the back of the 

abdomen on each side of the vertebral column. Kidneys play 
an important regulatory role in maintaining the homeostatic 
balance of the body. The kidneys function like a complex 
chemical plant. The kidneys eliminate foreign chemicals 
from the body, regulate inorganic Substances and the extra 
cellular fluid, and function as endocrine glands, secreting 
hormonal Substances like renin and erythropoietin. 
The main functions of the kidney are to maintain the water 

balance of the body and control metabolic homeostasis. 
Healthy kidneys regulate the amount of fluid in the body by 
making the urine more or less concentrated, thus either 
reabsorbing or excreting more fluid, respectively. In case of 
renal disease, some normal and important physiological 
functions become detrimental to the patients health. This 
process is called overcompensation. In the case of Chronic 
Renal Failure (CRF) patients overcompensation often mani 
fests in hypertension (pathologically high blood pressure) 
that is damaging to heart and blood vessels and can result in 
a stroke or death. 
The functions of the kidney can be summarized under 

three broad categories: a) filtering blood and excreting waste 
products generated by the body's metabolism; b) regulating 
salt, water, electrolyte and acid-base balance; and c) secret 
ing hormones to maintain vital organ blood flow. Without 
properly functioning kidneys, a patient will Suffer water 
retention, reduced urine flow and an accumulation of wastes 
toxins in the blood and body. 
The primary functional unit of the kidneys that is involved 

in urine formation is called the “nephron'. Each kidney 
consists of about one million nephrons. The nephron is made 
up of a glomerulus and its tubules, which can be separated 
into a number of sections: the proximal tubule, the medul 
lary loop (loop of Henle), and the distal tubule. Each 
nephron is surrounded by different types of cells that have 
the ability to secrete several Substances and hormones (such 
as renin and erythropoietin). Urine is formed as a result of 
a complex process starting with the filtration of plasma 
water from blood into the glomerulus. The walls of the 
glomerulus are freely permeable to water and Small mol 
ecules but almost impermeable to proteins and large mol 
ecules. Thus, in a healthy kidney, the filtrate is virtually free 
of protein and has no cellular elements. The filtered fluid that 
eventually becomes urine flows through the tubules. The 
final chemical composition of the urine is determined by the 
secretion into and reabsorbtion of substances from the urine 
required to maintain homeostasis. 

Receiving about 20% of cardiac output, the two kidneys 
filter about 125 ml of plasma water per minute. This is called 
the Glomerular Filtration Rate (GFR) and is the gold stan 
dard measurement of the kidney function. Since measure 
ment of GFR is very cumbersome and expensive, clinically, 
the serum creatinine level or creatinine clearance are used as 
Surrogates to measure kidney function. Filtration occurs 
because of a pressure gradient across the glomerular mem 
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brane. The pressure in the arteries of the kidney pushes 
plasma water into the glomerulus causing filtration. To keep 
the GFR relatively constant, pressure in the glomerulus is 
held constant by the constriction or dilatation of the afferent 
and efferent arterioles, the muscular walled vessels leading 
to and from each glomerulus. 

Abnormal Kidney Function in CHF: 
The kidneys maintain the water balance of the body and 

control metabolic homeostasis. The kidneys regulate the 
amount of fluid in the body by making the urine more or less 
concentrated, thus either reabsorbing or excreting more 
fluid, respectively. Without properly functioning kidneys, a 
patient will suffer water retention, reduced urine flow and an 
accumulation of wastes toxins in the blood and body. These 
conditions resulting from reduced renal function or renal 
failure (kidney failure) are believed to increase the workload 
of the heart. In a CHF patient, renal failure will cause the 
heart to further deteriorate as the water build-up and blood 
toxins accumulate due to the poorly functioning kidneys and 
in turn, cause the heart further harm. 

In a CHF patient, for any of the known cause of heart 
dysfunction, the heart will progressively fail and blood flow 
and pressure will drop in the patient’s circulatory system. In 
the acute heart failure, the short-term compensations serve to 
maintain perfusion to critical organs, notably the brain and 
the heart that cannot survive prolonged reduction in blood 
flow. In chronic heart failure, these same responses that 
initially aided survival in acute heart failure can become 
deleterious. 
A combination of complex mechanisms contribute to the 

deleterious fluid overload in CHF. As the heart fails and 
blood pressure drops, the kidneys cannot function owing to 
insufficient blood pressure for perfusion and become 
impaired. This impairment in renal function ultimately leads 
to a decrease in urine output. Without sufficient urine output, 
the body retains fluids and the resulting fluid overload 
causes peripheral edema (Swelling of the legs), shortness of 
breath (from fluid in the lungs), and fluid in the abdomen, 
among other undesirable conditions in the patient. 

In addition, the decrease in cardiac output leads to 
reduced renal blood flow, increased neurohormonal stimu 
lus, and release of the hormone renin from the juxtaglom 
erular apparatus of the kidney. This results in avid retention 
of Sodium and thus Volume expansion. Increased rennin 
results in the formation of angiotensin, a potent vasocon 
strictor. 

Heart failure and the resulting reduction in blood pressure 
reduces the blood flow and perfusion pressure through 
organs in the body, other than the kidneys. As they suffer 
reduced blood pressure, these organs may become hypoxic 
causing the development of a metabolic acidosis which 
reduces the effectiveness of pharmacological therapy as well 
as increases the risk of Sudden death. 

This spiral of deterioration that physicians observe in 
heart failure patients is believed to be mediated, in large part, 
by activation of a subtle interaction between heart function 
and kidney function, known as the renin-angiotensin System. 
Disturbances in the heart's pumping function results in 
decreased cardiac output and diminished blood flow. The 
kidneys respond to the diminished blood flow as though the 
total blood volume was decreased, when in fact the mea 
sured volume is normal or even increased. This leads to fluid 
retention by the kidneys and formation of edema causing 
fluid overload and increased stress on the heart. 

Systemically, CHF is associated with an abnormally 
elevated peripheral vascular resistance and is dominated by 
alterations of the circulation resulting from an intense dis 
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4 
turbance of sympathetic nervous system function. Increased 
activity of the sympathetic nervous system promotes a 
downward vicious cycle of increased arterial vasoconstric 
tion (increased resistance of vessels to blood flow) followed 
by a further reduction of cardiac output, causing even more 
diminished blood flow to the vital organs. 

In CHF via the previously explained mechanism of vaso 
constriction, the heart and circulatory system dramatically 
reduces blood flow to kidneys. During CHF, the kidneys 
receive a command from higher neural centers via neural 
pathways and hormonal messengers to retain fluid and 
Sodium in the body. In response to stress on the heart, the 
neural centers command the kidneys to reduce their filtering 
functions. While in the short term, these commands can be 
beneficial, if these commands continue over hours and days 
they can jeopardize the persons life or make the person 
dependent on artificial kidney for life by causing the kidneys 
to cease functioning. 
When the kidneys do not fully filter the blood, a huge 

amount of fluid is retained in the body resulting in bloating 
(fluid in tissues), and increases the workload of the heart. 
Fluid can penetrate into the lungs and the patient becomes 
short of breath. This odd and self-destructive phenomenon is 
most likely explained by the effects of normal compensatory 
mechanisms of the body that improperly perceive the 
chronically low blood pressure of CHF as a sign of tempo 
rary disturbance Such as bleeding. 

In an acute situation, the organism tries to protect its most 
vital organs, the brain and the heart, from the hazards of 
oxygen deprivation. Commands are issued via neural and 
hormonal pathways and messengers. These commands are 
directed toward the goal of maintaining blood pressure to the 
brain and heart, which are treated by the body as the most 
Vital organs. The brain and heart cannot Sustain low perfu 
sion for any Substantial period of time. A stroke or a cardiac 
arrest will result if the blood pressure to these organs is 
reduced to unacceptable levels. Other organs, such as kid 
neys, can withstand somewhat longer periods of ischemia 
without Suffering long-term damage. Accordingly, the body 
sacrifices blood Supply to these other organs in favor of the 
brain and the heart. 
The hemodynamic impairment resulting from CHF acti 

Vates several neurohomonal systems, such as the renin 
angiotensin and aldosterone system, sympatho-adrenal sys 
tem and vasopressin release. As the kidneys Suffer from 
increased renal vasoconstriction, the filtering rate (GFR) of 
the blood drops and the sodium load in the circulatory 
system increases. Simultaneously, more renin is liberated 
from the juxtaglomerular of the kidney. The combined 
effects of reduced kidney functioning include reduced glom 
erular Sodium load, an aldosterone-mediated increase in 
tubular reabsorption of sodium, and retention in the body of 
Sodium and water. These effects lead to several signs and 
symptoms of the CHF condition, including an enlarged 
heart, increased systolic wall stress, an increased myocardial 
oxygen demand, and the formation of edema on the basis of 
fluid and sodium retention in the kidney. Accordingly, 
Sustained reduction in renal blood flow and vasoconstriction 
is directly responsible for causing the fluid retention asso 
ciated with CHF. 

In view of the physiologic mechanisms described above it 
is positively established that the abnormal activity of the 
kidney is a principal non-cardiac cause of a progressive 
condition in a patient suffering from CHF. 
Growing population of late stage CHF patients is an 

increasing concern for the Society. The disease is progres 
sive, and as of now, not curable. The limitations of drug 



US 7,162,303 B2 
5 

therapy and its inability to reverse or even arrest the dete 
rioration of CHF patients are clear. Surgical therapies are 
effective in Some cases, but limited to the end-stage patient 
population because of the associated risk and cost. There is 
clearly a need for a new treatment that will overcome 5 
limitations of drug therapy but will be less invasive and 
costly than heart transplantation. 

Similar condition existed several decades ago in the area 
of cardiac arrhythmias. Limitations of anti-arrhythmic drugs 
were overcome by the invention of heart pacemakers. Wide 
spread use of implantable electric pacemakers resulted in 
prolonged productive life for millions of cardiac patients. So 
far, all medical devices proposed for the treatment of CHF 
are cardio-centric i.e., focus on the improvement of the heart 15 
function. The dramatic role played by kidneys in the dete 
rioration of CHF patients has been overlooked by the 
medical device industry. 

Neural Control of Kidneys: 
The autonomic nervous system is recognized as an impor 

tant pathway for control signals that are responsible for the 
regulation of body functions critical for maintaining vascu 
lar fluid balance and blood pressure. The autonomic nervous 
system conducts information in the form of signals from the 
body's biologic sensors such as baroreceptors (responding to 
pressure and Volume of blood) and chemoreceptors (re 
sponding to chemical composition of blood) to the central 
nervous system via its sensory fibers. It also conducts 
command signals from the central nervous system that 
control the various innervated components of the vascular 
system via its motor fibers. 
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Experience with human kidney transplantation provided 
early evidence of the role of the nervous system in the 
kidney function. It was noted that after the transplant, when 
all the kidney nerves are totally severed, the kidney 
increased the excretion of water and Sodium. This phenom 
enon was also observed in animals when the renal nerves 
were cut or chemically destroyed. The phenomenon was 
called “denervation diuresis" since the denervation acted on 
a kidney similar to a diuretic medication. Later the “dener 
vation diuresis” was found to be associated with the vasodi 
latation the renal arterial system that led to the increase of 
the blood flow through the kidney. This observation was 
confirmed by the observation in animals that reducing blood 
pressure Supplying the kidney could reverse the "denerva 
tion diuresis'. 
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It was also observed that after several months passed after 
the transplant Surgery in Successful cases, the “denervation 
diuresis' in transplant recipients stopped and the kidney so 
function returned to normal. Originally it was believed that 
the “renal diuresis” is a transient phenomenon and that the 
nerves conducting signals from the central nervous system 
to the kidney are not essential for the kidney function. Later, 
new discoveries led to the different explanation. It is ss 
believed now that the renal nerves have a profound ability to 
regenerate and the reversal of the “denervation diuresis” 
shall be attributed to the growth of the new nerve fibers 
Supplying kidneys with the necessary stimuli. 

Another body of research that is of particular importance 60 
for this application was conducted in the period of 
1964–1969 and focused on the role of the neural control of 
secretion of the hormone renin by the kidney. As was 
discussed previously, renin is a hormone responsible for the 
“vicious cycle' of vasoconstriction and water and sodium 65 
retention in heart failure patients. It was demonstrated that 
increase (renal nerve stimulation) or decrease (renal nerve 

6 
denervation) in renal sympathetic nerve activity produced 
parallel increases and decreases in the renin Secretion rate by 
the kidney, respectively. 

In Summary, it is known from clinical experience and the 
large body of animal research that the stimulation of the 
renal nerve leads to the vasoconstriction of blood vessels 
Supplying the kidney, decreased renal blood flow, decreased 
removal of water and sodium from the body and increased 
renin secretion. These observations closely resemble the 
physiologic landscape of the deleterious effects of the 
chronic congestive heart failure. It is also known that the 
reduction of the sympathetic renal nerve activity, achieved 
by denervation, can reverse these processes. 

It was established in animal models that the heart failure 
condition results in the abnormally high sympathetic stimu 
lation of the kidney. This phenomenon was traced back to 
the sensory nerves conducting signals from baroreceptors to 
the central nervous system. Baroreceptors are the biologic 
sensors sensitive to blood pressure. They are present in the 
different locations of the vascular system. Powerful rela 
tionship exists between the baroreceptors in the carotid 
arteries (Supplying brain with arterial blood) and the sym 
pathetic nervous stimulus to the kidneys. When the arterial 
blood pressure was suddenly reduced in experimental ani 
mals with heart failure, the sympathetic tone increased. 
Nevertheless the normal baroreflex alone, cannot be respon 
sible for the elevated renal nerve activity in chronic CHF 
patients. If exposed to the reduced level of arterial pressure 
for a prolonged time baroreceptors normally “reset’ i.e. 
return to the baseline level of activity until a new disturbance 
is introduced. Therefore, in chronic CHF patients the com 
ponents of the autonomic-nervous system responsible for the 
control of blood pressure and the neural control of the 
kidney function become abnormal. The exact mechanisms 
that cause this abnormality are not fully understood but, its 
effects on the overall condition of the CHF patients are 
profoundly negative. 
End Stage Renal Disease Problem: 
There is a dramatic increase in patients with end-stage 

renal disease (ESRD) due to diabetic nephropathy, chronic 
glomerulonephritis and uncontrolled hypertension. In the 
US alone, 372,000 patients required dialysis in the year 
2000. There were 90,000 new cases of ESRD in 1999 with 
the number of patients on dialysis is expected to rise to 
650,000 by the year 2010. The trends in Europe and Japan 
are forecasted to follow a similar path. Mortality in patients 
with ESRD remains 10–20 times higher than that in the 
general population. Annual Medicare patient costs $52,868 
for dialysis and S18,496 for transplantation. The total cost 
for Medicare patients with ESRD in 1998 was $12.04 
billion. 
The primary cause of these problems is the slow relentless 

progression of Chronic Renal Failure (CRF) to ESRD. CRF 
represents a critical period in the evolution of ESRD. The 
signs and symptoms of CRF are initially minor, but over the 
course of 2–5 years, become progressive and irreversible. 
Until the 1980s, there were no therapies that could signifi 
cantly slow the progression of CRF to ESRD. While some 
progress has been made in combating the progression to and 
complications of ESRD in last two decades, the clinical 
benefits of existing interventions remain limited with no new 
drug or device therapies on the horizon. 

Progression of Chronic Renal Failure: 
It has been known for several decades that renal diseases 

of diverse etiology (hypotension, infection, trauma, autoim 
mune disease, etc.) can lead to the syndrome of CRF 
characterized by Systemic hypertension, proteinuria (excess 



US 7,162,303 B2 
7 

protein filtered from the blood into the urine) and a progres 
sive decline in GFR ultimately resulting in ESRD. These 
observations suggested that CRF progresses via a common 
pathway of mechanisms, and that therapeutic interventions 
inhibiting this common pathway may be successful in slow 
ing the rate of progression of CRF irrespective of the 
initiating cause. 

To start the vicious cycle of CRF, an initial insult to the 
kidney causes loss of some nephrons. To maintain normal 
GFR, there is an activation of compensatory renal and 
systemic mechanisms resulting in a state of hyperfiltration in 
the remaining nephrons. Eventually, however, the increasing 
numbers of nephrons “overworked and damaged by hyper 
filtration are lost. At some point, a sufficient number of 
nephrons are lost so that normal GFR can no longer be 
maintained. These pathologic changes of CRF produce 
worsening systemic hypertension, thus high glomerular 
pressure and increased hyperfiltration. Increased glomerular 
hyperfiltration and permeability in CRF pushes an increased 
amount of protein from the blood, across the glomerulus and 
into the renal tubules. This protein is directly toxic to the 
tubules and leads to further loss of nephrons, increasing the 
rate of progression of CRF. This vicious cycle of CRF 
continues as the GFR drops, with loss of additional nephrons 
leading to further hyperfiltration and eventually to ESRD 
requiring dialysis. Clinically, hypertension and excess pro 
tein filtration have been shown to be two major determining 
factors in the rate of progression of CRF to ESRD. 
Though previously clinically known, it was not until the 

1980s that the physiologic link between hypertension, pro 
teinuria, nephron loss and CRF was identified. In 1990s the 
role of sympathetic nervous system activity was elucidated. 
Afferent signals arising from the damaged kidneys due to the 
activation of mechanoreceptors and chemoreceptors stimu 
late areas of the brain responsible for blood pressure control. 
In response brain increases sympathetic stimulation on the 
systemic level resulting in the increased blood pressure 
primarily through vasoconstriction of blood vessels. 
When elevated sympathetic stimulation reaches the kid 

ney via the efferent sympathetic nerve fibers, it produces 
major deleterious effects in two forms: 

A. Kidney is damaged by direct renal toxicity from the 
release of sympathetic neurotransmitters (such as norepi 
nephrine) in the kidney independent of the hypertension. 

B. Secretion of renin that activates Angiotensin II is 
increased leading to the increased systemic vasoconstriction 
and exacerbated hypertension. 

Over time damage to the kidney leads to further increase 
of afferent sympathetic signals from the kidney to the brain. 
Elevated Angiotensin II further facilitates internal renal 
release of neurotransmitters. The feedback loop is therefore 
closed accelerating the deterioration of the kidney. 

BRIEF DESCRIPTION OF THE INVENTION 

A treatment of heart failure, renal failure and hypertension 
has been developed to arrest or slow down the progression 
of the disease. This treatment is expected to delay the morbid 
conditions and death often suffered by CHF patients and to 
delay the need for dialysis in renal failure. This treatment is 
expected to control hypertension in patients that do not 
respond to drugs or require multiple drugs. 
The treatment includes a device and method that reduces 

the abnormally elevated sympathetic nerve signals that 
contribute to the progression of heart and renal disease. The 
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8 
desired treatment should be implemented while preserving a 
patient’s mobility and quality of life without the risk of 
major Surgery. 
The treatment breaks with tradition and proposes a coun 

terintuitive novel method and apparatus of treating heart 
failure, renal failure and hypertension by electrically or 
chemically modulating the nerves of the kidney. Elevated 
nerve signals to and from the kidney are a common pathway 
of the progression of these chronic conditions. 

Chronic heart and renal failure is treated by reducing the 
sympathetic efferent or afferent nerve activity of the kidney. 
Efferent nerves (as opposed to afferent) are the nerves 
leading from the central nervous system to the organ, in this 
case to the kidney. Sympathetic nervous system (as opposed 
to parasympathetic) is the part of the autonomic nervous 
system that is concerned especially with preparing the body 
to react to situations of stress or emergency that tends to 
depress secretion, decrease the tone and contractility of 
Smooth muscle, and increase heart rate. In the case of renal 
sympathetic activity, it is manifested in the inhibition of the 
production of urine and excretion of sodium. It also elevates 
the secretion of renin that triggers vasoconstriction. This 
mechanism is best illustrated by the response of the body to 
severe bleeding. When in experimental animals, the blood 
pressure is artificially reduced by bleeding, and the sympa 
thetic inhibition of the kidney is increased to maintain blood 
pressure with an ultimate goal of preserving the brain from 
hypotension. The resulting vasoconstriction and fluid reten 
tion work in Synchrony to help the body to maintain homeo 
Stasis. 

Efferent renal nerve activity is considered postganglionic, 
autonomic and exclusively sympathetic. In general, efferent 
sympathetic nerves can cause a variety of responses in the 
innervated organs. Studies of sympathetic renal nerves show 
that they have a strong tendency to behave as a uniform 
population that acts as vasoconstrictors. The renal postgan 
glionic neurons are modulated by pregangleonic (ganglion is 
a "knot' or agglomeration of nerve sells) nerves that origi 
nate from the brain and thoracic and upper lumbar regions 
of the spinal cord. 
The pregangleonic nerves have diverse function and are 

likely to have high degree of redundancy. Although different 
pathways exist to achieve reduced efferent renal nerve 
activity, the simplest way is to denervate the postganglionic 
nerves with an electric stimulus or a chemical agent. The 
same desired affect could be achieved by total surgical, 
electric or chemical destruction (ablation) of the nerve. For 
two reasons this is not a preferred pathway. As was 
described before, renal nerves regenerate and can grow back 
as soon as several months after Surgery. Secondarily, total 
irreversible denervation of the kidney can result in danger to 
the patient. Overdiuresis or removal of excess water from 
blood can result in the reduction of blood volume beyond the 
amount that can be rapidly replaced by fluid intake. This can 
result in hypovolemia and hypotension. Hypotension is 
especially dangerous in heart failure patients with the 
reduced capacity of the heart to pump blood and maintain 
blood pressure. In addition, the vasodilation of the renal 
artery resulting from the renal denervation will cause a 
significant increase in renal blood flow. In a healthy person, 
renal blood flow can amount to as much as 20% of the total 
cardiac output. In heart failure patients cardiac output is 
reduced and the renal denervation can “steal even larger 
fraction of it from circulation. This, in turn, can lead to 
hypotension. Also, in a heart failure patient the heart has 
limited ability to keep up with the demand for oxygenated 
blood that can be caused by even modest physical effort. 
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Therefore a heart failure patient that can sustain the 
increased blood flow to the kidneys while at rest can face 
serious complications resulting from acute hypotension, if 
the demand for blood flow is increased by temperature 
change or exercise. 

In view of the factors described above it is desired to have 
means to reduce the efferent sympathetic stimulation of the 
kidney in CHF patients in a reversible, controlled fashion 
preferably based on a physiologic feedback signal that is 
indicative of the oxygen demand by the body, blood pres 
Sure, cardiac output of the patient or a combination of these 
and other physiologic parameters. 
The treatment also breaks with tradition and proposes a 

counterintuitive novel method and apparatus of treating 
chronic renal failure (CRF) with the goal of slowing down 
the progression of CRF to the ESRD by electrically or 
chemically altering the sympathetic neural stimulation enter 
ing and exiting the kidney. The described method and 
apparatus can be also used to treat hypertension in patients 
with renal disease or abnormal renal function. 

To control the afferent nerve signals from the kidney to 
the brain and block efferent nerve stimuli from entering the 
kidney (without systemic side effects of drug therapy), a 
renal nerve stimulator is implanted and attached to an 
electrode lead placed around or close to the renal artery. 
Stimulation effectively blocks or significantly reduces both 
efferent and afferent signals traveling between the kidney, 
the autonomic nervous system and the central nervous 
system. 
The benefits that may be possible by controlling renal 

nerve signals to reduce efferent overstimulation are: 
a. The secretion of renin by kidney should be reduced by 

40–50% translating into the proportionate reduction of sys 
temic angiotensin II, resulting in the reduction of blood 
pressure in all hypertensive patients including patients 
refractory to drugs. 

b. Similar to renoprotective mechanisms of ACE-I, the 
reduction of angiotensin II should result in slowed progres 
sion of intrarenal changes in glomerular structure and func 
tion independent of blood pressure control. 

c. Similar to the effects of moxonidine, reduced efferent 
overstimulation should reduce damage by direct renal tox 
icity from the release of sympathetic neurotransmitters. 

Following the reduction of the afferent sympathetic renal 
feedback to the brain, there is expected to be a marked 
reduction in the systemic efferent overstimulation. This will 
translate into the systemic vasodilation and reduction of 
hypertension independent of the renin-angiotensin II mecha 
nism. 

Renal nerve stimulation in hypertensive CRF patients is 
unlikely to cause clinically relevant episodes of hypoten 
sion. Systemic blood pressure is tightly controlled by feed 
backs from baroreceptors in aorta and carotid sinuses. These 
mechanisms are likely to take over if the blood pressure 
becomes too low. In polycystic kidney disease (PKD) 
patients who underwent Surgery for total denervation of 
kidneys, denervation resolved hypertension without postop 
erative episodes of hypotension. 

Technique for Nerve Modulation 
Nerve activity can be reversibly modulated in several 

different ways. Nerves can be stimulated with electric cur 
rent or chemicals that enhance or inhibit neurotransmission. 
In the case of electrical stimulation, a stimulator containing 
a power source is typically connected to the nerve by wires 
or leads. Leads can terminate in electrodes, cuffs that enclose 
the nerve or in conductive anchors (screws or hooks) that are 
embedded in tissue. In the later case, the lead is designed to 
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10 
generate sufficient electric field to alter or induce current in 
the nerve without physically contacting it. The electrodes or 
leads can by bipolar or unipolar. There are permanent leads 
that are implanted for months and years to treat a chronic 
condition and temporary leads used to Support the patient 
during an acute stage of the disease. The engineering aspects 
of design and manufacturing of nervestimulators, pacemak 
ers, leads, anchors and nerve cuffs are well known. 

Proposed clinical applications of nerve stimulation 
include: Depression, Anxiety, Alzheimer's Disease, Obesity, 
and others. In all existing clinical applications except pain 
control, the targeted nerves are stimulated to increase the 
intensity of the transmitted signal. To achieve relief of 
hypertension and CRF signal traffic traveling to and from the 
kidney via renal nerves needs to be reduced. This can be 
achieved by known methods previously used in physiologic 
studies on animals. A nerve can be paced with electric pulses 
at high rate or at Voltage that Substantially exceed normal 
traffic. As a result, a nerve will be “overpaced', run out of 
neurotransmitter Substance and transmit less stimulus to the 
kidney. Alternatively relatively high Voltage potential can be 
applied to the nerve to create a blockade. This method is 
known as “voltage clamping of a nerve. Infusion of a small 
dose of a local anesthetic in the vicinity of the nerve will 
produce the same effect. 

Ablation of conductive tissue pathways is another com 
monly used technique to controlaterial or ventricular tachy 
cardia of the heart. Ablation can be performed by introduc 
tion of a catheter into the venous system in close proximity 
of the sympathetic renal nerve subsequent ablation of the 
tissue. Catheter based ablation devices were previously used 
to stop electric stimulation of nerves by heating nerve tissue 
wit RF energy that can be delivered by a system of elec 
trodes. RF energy thus delivered stops the nerve conduction. 
U.S. Pat. No. 6,292,695 describes in detail a method and 
apparatus for transvascular treatment of tachycardia and 
fibrillation with nerve stimulation and ablation. Similar 
catheter based apparatus can be used to ablate the renal 
nerve with an intent to treat CRF. The method described in 
this invention is applicable to irreversible ablation of the 
renal nerve by electric energy, cold, or chemical agents such 
as phenol or alcohol. 

Thermal means may be used to cool the renal nerve and 
adjacent tissue to reduce the sympathetic nerve stimulation 
of the kidney. Specifically, the renal nerve signals may be 
dampened by either directly cooling the renal nerve or the 
kidney, to reduce their sensitivity, metabolic activity and 
function, or by cooling the Surrounding tissue. An example 
of this approach is to use the cooling effect of the Peltier 
device. Specifically, the thermal transfer junction may be 
positioned adjacent the vascular wall or a renal artery to 
provide a cooling effect. The cooling effect may be used to 
dampen signals generated by the kidney. Another example of 
this approach is to use the fluid delivery device to deliver a 
cool or cold fluid (e.g. saline). 

BRIEF DESCRIPTION OF THE DRAWINGS 

A preferred embodiment and best mode of the invention 
is illustrated in the attached drawings that are described as 
follows: 

FIG. 1 illustrates the role of sympathetic renal nerve 
stimulation in congestive heart failure (CHF). 

FIG. 2 illustrates the preferred implanted electrostimula 
tion embodiment of the present invention. 

FIG. 3 illustrates stimulation of renal nerves across the 
wall of the renal vein. 
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FIG. 4 illustrates the drug infusion blocking embodiment 
with an implanted drug pump. 

FIG. 5 illustrates the arterial pressure based control algo 
rithm for renal nerve modulation. 

FIG. 6 illustrates electrostimulation of the renal nerve 
with an anodal block. 

FIG. 7 illustrates different nerve fibers in a nerve bundle 
trunk. 

FIG. 8 illustrates renal nerve modulation by blocking 
electric signals at one point and stimulating the nerve at a 
different point. 

FIG. 9 illustrates transvenous stimulation of the renal 
nerve with electric field. 

FIG. 10 illustrates an embodiment where the stimulation 
lead is placed using laparoscopic Surgery. 

FIG. 11 illustrates a patient controlled stimulation 
embodiment. 

FIG. 12 illustrates the progression of CRF to ESRD. 
FIG. 13 illustrates the physiologic mechanisms of CRF. 
FIG. 14 illustrates stimulation of renal nerves in a patient 

with an implanted stimulator with a renal artery cuff elec 
trode. 

FIG. 15 illustrates the placement of a stimulation cuff on 
a renal artery end nerve plexus. 

FIG. 16 illustrates the design of the cuff electrode that 
wraps around an artery. 

FIG. 17 illustrates the interface between cuff electrodes 
and the renal artery Surface. 

DETAILED DESCRIPTION OF THE 
INVENTION 

A method and apparatus has been developed to regulate 
sympathetic nerve activity to the kidney to improve a 
patient's renal function and overall condition, and ultimately 
to arrest or reverse the vicious cycle of CHF disease. 

FIG. 1 illustrates the role of sympathetic renal nerves in 
heart failure. Neural pathways are indicated by solid lines, 
hormones by interrupted lines. Baroreceptors 101 respond to 
low blood pressure resulting from the reduced ability of the 
failing heart 103 to pump blood. Unloading of baroreceptors 
101 in the left ventricle of the heart 103, carotid sinus, and 
aortic arch (not shown) generates afferent neural signals 113 
that stimulate cardio-regulatory centers in the brain 102. 
This stimulation results in activation of efferent pathways in 
the sympathetic nervous system 118. Sympathetic signals 
are transmitted to the spinal cord 106, sympathetic ganglia 
107 and via the sympathetic efferent renal nerve 109 to the 
kidney 111. The increased activity of sympathetic nerves 
108 also causes vasoconstriction 110 (increased resistance) 
of peripheral blood vessels. 

In the kidney 111 efferent sympathetic nerve stimulation 
109 causes retention of water (reduction of the amount of 
urine) and retention of Sodium 112 an osmotic agent that is 
responsible for the expansion of blood volume. The sym 
pathetic stimulation of the kidney stimulates the release of 
hormones renin 105 and angiotensin 11. These hormones 
activate the complex renin-angiotensin-aldosterone system 
117 leading to more deleterious hormones causing vasocon 
striction 104 and heart damage 116. The sympathetic stimu 
lation of the hypothalamus of the brain 102 results in the 
release of the powerful hormone vasopressin 114 that causes 
further vasoconstriction of blood vessels. Angiotensin II 
constricts blood vessels and stimulates the release of aldos 
terone from adrenal gland (not shown). It also increases 
tubular sodium reabsorption (sodium retention) in the kid 
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ney 111 and causes remodeling of cardiac myocytes there 
fore contributing to the further deterioration of the heart 103 
and the kidney 111. 

It can be inferred from the FIG. 1 that the renal efferent 
sympathetic stimulation in heart failure is caused by low 
blood pressure and is a primary factor responsible for the 
most debilitating symptom of heart failure i.e. fluid over 
load. It also contributes to the progression of the disease. 
Acting through the Volume overload and peripheral vaso 
constriction (together increasing load on the heart) it accel 
erates the enlargement of the left ventricle that in turn results 
in the deteriorating ability of the heart to pump blood. Drugs 
used to treat heat failure address these issues separately. 
Diuretics are used to reduce fluid overload by reducing the 
reabsorption of sodium and increasing the excretion of water 
112. Vasodilators are used to reduce peripheral vasoconstric 
tion 110 by reducing levels of angiotensin 117. Inotropic 
agents are used to increase blood pressure and de-activate 
the signals from baroreceptors 101. These drugs have lim 
ited affect and ultimately fail to control the progression and 
debilitating symptoms heart failure. The proposed invention 
corrects the neuro-hormonal misbalance in heart failure by 
directly controlling the sympathetic neural stimulation 109 
of the kidney 111. 

FIG. 2 shows a patient 201 suffering from chronic con 
gestive heart failure treated in accordance with the inven 
tion. An implantable device 202 is implanted in the patients 
body. An implantable device can be an electric device 
similar to a pacemaker or nerve stimulator or a chemical 
substance infusion device. Such devices are well known in 
the field of medicine. Internal mechanism of the implantable 
device typically includes a battery 203, an electronic circuit 
and (in the case of a drug delivery device) a reservoir with 
medication. 
An example of an implantable drug infusion device is the 

MiniMed 2007TM implantable insulin pump system for 
treatment of diabetes or the SynchroMed Infusion System 
used to control chronic pain, both manufactured by 
Medtronic Inc. The drug used in this embodiment can be a 
common local anesthetic Such as Novocain or Lidocaine or 
a more long lasting equivalent anesthetic. Alternatively, a 
nerve toxin such as the botox can be used to block the nerve. 
An example of an implantable nerve stimulator is the Vagus 
Nerve Stimulation (VNSTM) with the Cyberonics NeuroCy 
bernetic Prosthesis (NCPR) System used for treatment of 
epilepsy. It is manufactured by Cyberonics Inc. The internal 
mechanism of the implantable device typically includes a 
battery, an electronic circuit and (in the case of a drug 
delivery device), a reservoir with medication. Neurostimu 
lation systems from different manufacturers are virtually 
identical across application areas, usually varying only in 
the patterns of stimulating Voltage pulses, style or number of 
electrodes used, and the programmed parameters. The basic 
implantable system consists of a pacemaker-like titanium 
case enclosing the power Source and microcircuitry that are 
used to create and regulate the electrical impulses. An 
extension lead attached to this generator carries the electrical 
pulses to the electrode lead that is implanted or attached to 
the nerves or tissues to be stimulated. 
The implantable device 202 is equipped with the lead 204 

connecting it to the renal nerve 205. The lead can contain an 
electric wire system or a catheter for delivery of medication 
or both. Renal nerve conducts efferent sympathetic stimu 
lation from the sympathetic trunk 206 to the kidney 208. 
Sympathetic trunk is connected to the patient's spinal cord 
inside the spine 207. The connection can be located between 
the kidney 208 and the posterior renal or other renal ganglia 
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(not shown) in the region of the 10", 11" and 12" thoracic 
and 1 lumbar segments of the spine 207. 
The implantable device 202 is also equipped with the 

sensor lead 209 terminated with the sensor 210. The sensor 
can be a pressure sensor or an oxygen Saturation sensor. The 
sensor 210 can be located in the left ventricle of the heart 
211, right atrium of the heart or other cavity of the heart. It 
can also be located outside of the heart in the aorta 213, the 
aortic arch 212 or a carotid artery 214. If the sensor is a 
pressure sensor, it is used to supply the device 202 with the 
information necessary to safely regulate the sympathetic 
nerve signals to the kidney 208. A venous blood oxygen 
saturation signal can be used in a similar way to control the 
sympathetic nerve traffic based on oxygen demand. The 
sensor will be placed in the right atrium of the heart or in the 
vena cava. More than one sensor can be used in combination 
to Supply information to the device. Sensors can be inside 
the vascular system (blood vessels) or outside of it. For 
example, a motion sensor can be used to detect activity of 
the person. Such sensor does not require placement outside 
the implanted device case and can be integrated inside the 
sealed case of the device 202 as a part of the internal 
mechanism. 

FIG. 3 shows external renal nerve stimulator apparatus 
306 connected to the electrode tip 308 by the catheter 301. 
A catheter is inserted via an insertion site 303 into the 
femoral vein 305 into the vena cava 302 and further into the 
renal vein 304. The tip 308 is then brought into the electric 
contact with the wall of the vein 304. Hooks or screws, 
similar to ones used to secure pacemaker leads, can be used 
to anchor the tip and improve the electric contact. The tip 
308 can have one, two or more electrodes integrated in its 
design. The purpose of the electrodes is to generate the 
electric field sufficiently strong to influence traffic along the 
renal nerve 205 stimulating the kidney 208. 
Two potential uses for the embodiment shown on FIG. 3 

are the acute short-term stimulation of the renal nerve and 
the implanted embodiment. For short term treatment, a 
catheter equipped with electrodes on the tip is positioned in 
the renal vein. The proximal end of the catheter is left 
outside of the body and connected to the electro stimulation 
apparatus. For the implanted application, the catheter is used 
to position a stimulation lead, which is anchored in the 
vessel and left in place after the catheter is withdrawn. The 
lead is then connected to the implantable stimulator that is 
left in the body and the surgical site is closed. Patients have 
the benefit of mobility and lower risk of infection with the 
implanted stimulator—lead system. 

Similar to the venous embodiment, an arterial system can 
be used. Catheter will be introduced via the femoral artery 
and aorta (not shown) into the renal artery 307. Arterial 
catheterization is more dangerous than venous but may 
achieve Superior result by placing stimulation electrode (or 
electrodes) in close proximity to the renal nerve without 
Surgery. 

FIG. 4 shows the use of a drug infusion pump 401 to block 
or partially block stimulation of the kidney 208 by infiltrat 
ing tissue proximal to the renal nerve 205 with a nerve 
blocking drug. Pump 401 can be an implanted drug pump. 
The pump is equipped with a reservoir 403 and an access 
port (not shown) to refill the reservoir with the drug by 
puncturing the skin of the patient and the port septum with 
an infusion needle. The pump is connected to the infusion 
catheter 402 that is surgically implanted in the proximity of 
the renal nerve 205. The drug used in this embodiment can 
be a common local anesthetic Such as Novocain. If it is 
desired to block the nerve for a long time after a single bolus 
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drug infusion, a nerve toxin Such as botox (botulism toxin) 
can be used as a nerve-blocking drug. Other Suitable nerve 
desensitizing agents may comprise, for example, tetrodot 
oxin or other inhibitor of excitable tissues. 

FIG. 5 illustrates the use of arterial blood pressure moni 
toring to modulate the treatment of CHF with renal nerve 
blocking. The blood pressure is monitored by the computer 
controlled implanted device 202 (FIG. 2) using the 
implanted sensor 210. Alternatively the controlling device 
can be incorporated in the external nerve stimulator 306 
(FIG. 3) and connected to a standard blood pressure mea 
surement device (not shown). The objective of control is to 
avoid hypotension that can be caused by excessive vasodi 
lation of renal arteries caused by Suppression of renal 
sympathetic stimulus. This may cause the increase of renal 
blood flow dangerous for the heart failure patient with the 
limited heart pumping ability. The control algorithm 
increases or decreases the level of therapy with the goal of 
maintaining the blood pressure within the safe range. Simi 
larly the oxygen content of venous or arterial blood can be 
measured and used to control therapy. Reduction of blood 
oxygen is an indicator of insufficient cardiac output in heart 
failure patients. 

FIG. 6 illustrates the principles of modulating renal nerve 
signal with an anodal block. Renal nerve 601 conducts 
efferent sympathetic electric signals in the direction towards 
the kidney 602. Renal nerve 601 trunk is enveloped with two 
conductive cuff type electrodes: the anode 603 is a positive 
pole and the cathode 604 is a negative pole electrode. It is 
significant that the anode 603 is downstream of the cathode 
and closer to the kidney while the cathode is upstream of the 
anode and closer to the spine where the sympathetic nerve 
traffic is coming from. The electric current flowing between 
the electrodes opposes the normal propagation of nerve 
signals and creates a nerve block. Anode 603 and cathode 
604 electrodes are connected to the signal generator (stimu 
lator) 306 with wires 606. This embodiment has a practical 
application even if the device for renal nerve signal modu 
lation is implanted Surgically. During Surgery the renal nerve 
is exposed and cuffs are placed that overlap the nerve. The 
wires and the stimulator can be fully implanted at the time 
of Surgery. Alternatively wires or leads can cross the skin 
and connect to the signal generator outside of the body. An 
implantable stimulator can be implanted later during a 
separate Surgery or the use of an external stimulator can be 
continued. 

Clinically used spiral cuffs for connecting to a nerve are 
manufactured by Cyberonics Inc. (Houston, Tex.) that also 
manufactures a fully implantable nerve stimulator operating 
on batteries. See also, e.g., U.S. Pat. No. 5.251,643. Various 
external signal generators suitable for nerve stimulation are 
available from Grass-Telefactor Astro-Med Product Group 
(West Warwick, R.I.). Nerve cuff electrodes are well known. 
See, e.g., U.S. Pat. No. 6,366,815. The principle of the 
anodal block is based on the observation that close to an 
anodal electrode contact the propagation of a nerve action 
potential can be blocked due to hyperpolarization of the fiber 
membrane. See e.g., U.S. Pat. Nos. 5,814,079 and 5,800, 
464. If the membrane is sufficiently hyperpolarized, action 
potentials cannot pass the hyperpolarized Zone and are 
annihilated. 

As large diameter fibers need a smaller stimulus for their 
blocking than do small diameter fibers, a selective blockade 
of the large fibers is possible. See e.g., U.S. Pat. No. 
5,755,750. The activity in different fibers of a nerve in an 
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animal can be selectively blocked by applying direct electric 
current between an anode and a cathode attached to the 

W. 

Antidromic pulse generating wave form for collision 
blocking is an alternative means of inducing a temporary 
electric blockade of signals traveling along nerve fibers. See 
e.g., U.S. Pat. No. 4,608.985. In general, nerve traffic 
manipulation techniques such as anodal blocking, cathodal 
blocking and collision blocking are sufficiently well 
described in scientific literature and are available to an 
expert in neurology. Most of blocking methods allow Suf 
ficient selectivity and reversibility so that the nerve will not 
be damaged in the process of blocking and that selective and 
gradual modulation or Suppression of traffic in different 
functional fibers can be achieved. 
A nerve is composed of the axons of a large number of 

individual nerve fibers. A large nerve. Such as a renal nerve, 
may contain thousands of individual nerve fibers, both 
myelinated and non-myelinated. Practical implementation 
of physiological blockade of selective nerve fibers in a living 
organism is illustrated by the paper "Respiratory responses 
to selective blockade of carotid sinus baroreceptors in the 
dog by Francis Hopp. Both anodal block and local anes 
thesia by injection of bupivacaine (a common long-acting 
local anaesthetic, used for Surgical anaesthesia and acute 
pain management) were applied to the Surgically isolated 
and exposed but intact nerve leading from baroreceptors 
(physiologic pressure sensors) in the carotid sinus of the 
heart to the brain of an animal. Anodal block was induced 
using simple wire electrodes. Experiments showed that by 
increasing anodal blocking current from 50 to 350 micro 
amperes signal conduction in C type fibers was gradually 
reduced from 100% to 0% (complete block) in linear pro 
portion to the strength of the electric current. Similarly 
increasing concentration of injected bupivacaine (5, 10, 20 
and 100 mg/ml) resulted in gradual blocking of the carotid 
sinus nerve activity in a dog. These experiments confirmed 
that it is possible to reduce intensity of nerve stimulation 
(nerve traffic) in an isolated nerve in controllable, reversible 
and gradual was by the application of electric current or 
chemical blockade. In the same paper it was described that 
smaller C type fibers were blocked by lower electric current 
and higher concentration of bupivacaine than larger C type 
fibers. 

Gerald DiBona in “Neural control of the kidney: func 
tionally specific renal sympathetic nerve fibers’ described 
the structure and role of individual nerve fibers controlling 
the kidney function. Approximately 96% of sympathetic 
renal fibers in the renal nerve are slow conducting unmy 
elinated C type fibers 0.4 to 2.5 micrometers in diameter. 
Different fibers within this range carry different signals and 
respond to different levels of stimulation and inhibition. It is 
known that lower stimulation voltage of the renal nerve 
created untidiuretic effect (reduced urine output) while 
higher level of stimulation created vasoconstriction effect. 
Stimulation threshold is inversely proportional to the fiber 
diameter; therefore it is likely that elevated signal levels in 
larger diameter renal nerve C fibers are responsible for the 
retention of fluid in heart failure. Relatively smaller diameter 
C fibers are responsible for vasoconstriction resulting in the 
reduction of renal blood flow in heart failure. 

FIG. 7 illustrates a simplified cross-section of the renal 
nerve trunk 601. Trunk 601 consists of a number of indi 
vidual fibers. The stimulation electrode cuff 603 envelops 
the nerve trunk. Larger C type fiber 705 exemplifies fibers 
responsible for diuresis. There are also other fibers 702 that 
can be for example afferent fibers. Traffic along these fibers 
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can be blocked by the application of lower blocking voltage 
or lower dose of anesthetic drug. The resulting effect will be 
diuresis of the CHF patient (secretion of sodium and water 
by the kidney) and the relief of fluid overload. Smaller C 
fiber 704 is responsible for the regulation of renal blood 
flow. 

In clinical practice, it may be desired to modulate or block 
selectively or preferably the larger fibers 705. This can be 
achieved with lower levels of stimulation. The patient can be 
relieved of access fluid without significantly increasing renal 
blood flow since traffic in smaller C fibers will not be altered. 
Renal blood flow can amount to as much as 20% of cardiac 
output. In a CHF patient with a weakened heart significant 
increase of renal blood flow can lead to a dangerous decrease 
of arterial pressure if the diseased heart fails to pump harder 
to keep up with an increased demand for oxygenated blood. 
The nerve stimulator or signal generator 306 therefore is 
capable of at least two levels of stimulation: first (lower) 
level to block or partially block signals propagating in larger 
C fibers that control diuresis, and second (higher) level to 
block signals propagating in Smaller C fibers that control 
renal vascular resistance and blood flow to the kidney. The 
later method of nerve traffic modulation with higher electric 
current levels is useful in preventing damage to kidneys in 
acute clinical situations where the vasoconstriction can lead 
to the ischemia of a kidney, acute tubular necrosis (ATN), 
acute renal failure and sometimes permanent kidney dam 
age. This type of clinical Scenario is often associated with 
the acute heart failure when hypotension (low blood pres 
Sure) results from a severe decompensation of a chronic 
heart failure patient. Acute renal failure caused by low blood 
flow to the kidneys is the most costly complication in 
patients with heart failure. 

Similar differentiated response to modulation could be 
elicited by applying different frequency of electric pulses 
(overpacing) to the renal nerve and keeping the applied 
voltage constant. DiBona noted that renal fibers responsible 
for rennin secretion responded to the lowest frequency of 
pulses (0.5 to 1 Hz), fibers responsible for sodium retention 
responded to middle range of frequencies (1 to 2 HZ) and 
fibers responsible for blood flow responded to the highest 
frequency of stimulation (2 to 5 Hz). This approach can be 
used when the renal nerve block is achieved by overpacing 
the renal nerve by applying rapid series of electric pulses to 
the electrodes with the intent to fatigue the nerve to the point 
when it stops conducting stimulation pulses. 
One embodiment of the method of treating heart failure 

comprises the following steps: 
A. Introducing one or more electrodes in the close proX 

imity with the renal nerve, 
B. Connecting the electrodes to an electric stimulator or 

generator with conductive leads or wires, 
C. Initiating flow of electric current to the electrodes 

sufficient to block or reduce signal traffic in the sympathetic 
efferent renal nerve fibers with the intention of increasing 
diuresis, reducing renal Secretion of renin and vasodilation 
of the blood vessels in the kidney to increase renal blood 
Supply. 

FIG. 8 shows an alternative embodiment of the invention. 
In this embodiment the natural efferent signal traffic 804 
entering the renal nerve trunk 601 is completely blocked by 
the anodal block device stimulator 306 using a pair of 
electrodes 604 and 603. The third electrode (or pair of 
electrodes) 803 is situated downstream of the block. The 
electrode is used to stimulate or pace the kidney. Stimulation 
signal is transmitted from the generator 306 via the addi 
tional lead wire 805 to the electrode 803. The induced signal 



US 7,162,303 B2 
17 

becomes the nerve input to the kidney. This way full control 
of nerve input is accomplished while the natural sympathetic 
tone is totally abolished. 

FIG. 9 shows the transvenous embodiment of the inven 
tion using anodal blockade to modulate renal nerve traffic. 5 
Renal nerve 601 is located between the renal artery 901 and 
the renal vein 902. It follows the same direction towards the 
kidney. Renal artery can branch before entering the kidney 
but in the majority of humans there is only one renal artery. 
Stimulation catheter or lead 903 is introduced into the renal 10 
vein 902 and anchored to the wall of the vein using a 
securing device 904. The securing device can be a barb or a 
screw if the permanent placement of the lead 903 is desired. 
Electric field 904 is induced by the electric current applied 
by the positively charged anode 905 and cathode 906 15 
catheter electrodes. Electrodes are connected to the stimu 
lator (nor shown) by wires 907 and 908 that can be incor 
porated into the trunk of the lead 903. Electric field 904 is 
induced in the tissue surrounding the renal vein 902 and 
created the desired local polarization of the segment of the 20 
renal nerve trunk 601 situated in the close proximity of the 
catheter electrodes 905 and 907. Similarly catheters or leads 
can be designed that induce a cathodal block, a collision 
block or fatigue the nerve by rapidly pacing it using an 
induced field rather than by contacting the nerve directly. 25 

FIG. 10 shows an embodiment where the stimulation lead 
is placed using laparoscopic Surgery. This technology is 
common in modern Surgery and uses a small video-camera 
and a few customized instruments to perform Surgery with 
minimal tissue injury. The camera and instruments are 30 
inserted into the abdomen through Small skin cuts allowing 
the surgeon to explore the whole cavity without the need of 
making large standard openings dividing skin and muscle. 

After the cut is made in the umbilical area a special needle 
is inserted to start insufflation. A pressure regulated CO2 35 
insufflator is connected to the needle. After satisfactory 
insuflation the needle is removed and a trocar is inserted 
through the previous small wound. This method reduces the 
recovery time due to its minimal tissue damage permitting 
the patient to return to normal activity in a shorter period of 40 
time. Although this type of procedure is known since the 
beginning of the 19th century, it was not until the advent of 
high resolution video camera that laparoscopic Surgery 
became very popular among Surgeons. Kidney Surgery 
including removal of donor kidneys is routinely done using 45 
laparoscopic methodology. It should be easy for a skilled 
surgeon to place the lead 903 through a tunnel in tissue 
layers 1001 surrounding the renal nerve 601. This way lead 
electrodes 905 and 906 are placed in close proximity to the 
nerve and can be used to induce a block without major 50 
Surgery. 

FIG. 11 shows an implanted embodiment of the invention 
controlled by the patient from outside of the body. The 
implanted stimulation device 203 is an electric stimulation 
device to modulate the renal nerve signal but can be an 55 
implantable infusion pump capable of infusing a dose of an 
anesthetic drug on command. The implantable device 203 
incorporates a magnetically activated Switch Such as a reed 
relay. The reed Switch can be a single-pole, single-throw 
(SPST) type having normally open contacts and containing 60 
two reeds that can be magnetically actuated by an electro 
magnet, permanent magnet or combination of both. Such 
Switch of extremely small size and low power requirements 
suitable for an implanted device is available from Coto 
Technology of Providence, R.I. in several configurations. 65 
Switch is normally open preventing electric or chemical 
blockade of the renal nerve 209. When the patient brings a 
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magnet 1101 in close proximity to the body site where the 
device 202 is implanted the magnetic field 1103 acts on the 
magnetic switch 1102. Switch is closed and blocking of the 
renal nerve is activated. The resulting reduction of the 
sympathetic tone commands the kidney 208 to increase the 
production of urine. Patient can use the device when they 
feel the symptoms of fluid overload to remove access fluid 
from the body. The device 202 can be equipped with a 
timing circuit that is set by the external magnet. After the 
activation by the magnet the device can stay active (block 
renal nerve activity) for a predetermined duration of time to 
allow the kidney to make a desired amount of urine Such as 
for an hour or several hours. Then the device will time out 
to avoid excessive fluid removal or adaptation of the renal 
nerve to the new condition. 

FIG. 12 illustrates the progression of CRF to ESRD. 
Following the original injury to the kidney 1201 some 
nephrons 1202 are lost. Loss of nephrons lead to hyperfil 
tration 1203 and triggers compensatory mechanisms 1204 
that are initially beneficial but over time make injury worse 
until the ESRD 1208 occurs. Compensatory mechanisms 
lead to elevated afferent and efferent sympathetic nerve 
signal level (increased signal traffic) 1207 to and from the 
kidney. It is the objective of this invention to block, reduce, 
modulate or otherwise decrease this level of stimulation. 
The effect of the invented therapeutic intervention will be 

the reduction of central (coming from the brain) sympathetic 
stimulation 1206 to all organs and particularly blood vessels 
that causes vasoconstriction and elevation of blood pressure. 
Following that hypertension 1205 will be reduced therefore 
reducing continuous additional insult to the kidney and other 
organs. 

FIG. 13 illustrates the physiologic mechanisms of CRF 
and hypertension. Injured kidney 1302 sends elevated affer 
ent nerve 1306 signals to the brain 1301. Brain in response 
increases sympathetic efferent signals to the kidney 1307 
and to blood vessels 1311 that increase vascular resistance 
1303 by vasoconstriction. Vasoconstriction 1303 causes 
hypertension 1304. Kidney 1302 secretes renin 1310 that 
stimulates production of the vasoconstrictor hormone 
Angiotensin II 1305 that increases vasoconstriction of blood 
vessels 1303 and further increases hypertension 1304. 
Hypertension causes further mechanical damage 1312 to the 
kidney 1302 while sympathetically activated neurohor 
mones 1307 and angiotensin II causes more subtle injury via 
the hormonal pathway 1310. 

Invented therapy reduces or eliminates critical pathways 
of the, progressive disease by blocking afferent 1306 and 
efferent 1307 signals to and from the kidney 1302. Both 
neurological 1311 and hormonal 1309 stimulus of vasocon 
striction are therefore reduced resulting in the relief of 
hypertension 1304. As a result, over time the progression of 
renal disease is slowed down, kidney function is improved 
and the possibility of stroke from high blood pressure is 
reduced. 

FIG. 14 shows a patient 201 suffering from CRF or renal 
hypertension treated in accordance with the invention. An 
implantable device 202 is implanted in the patient’s body. 
An implantable device can be an electric nervestimulator or 
a chemical Substance (drug) infusion device. The implant 
able device 202 described above is equipped with the lead 
204 connecting it to the renal nerve artery cuff 1401. Cuff 
1401 envelopes the renal artery 203 that anatomically serves 
as a Support structure for the renal nerve plexus. It is 
understood that there exist many varieties of electrode 
configurations such as wires, rings, needles, anchors, 
screws, cuffs and hooks that could all potentially be used to 
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stimulate renal nerves. The cuff configuration 1401 illus 
trated by FIGS. 14, 15, 16 and 17 was selected for the 
preferred embodiment base on the information available to 
the inventors at the time of invention. 

The lead conduit can be alternatively an electric wire or 
a catheter for delivery of medication or a combination of 
both. Renal nerve conducts efferent sympathetic stimulation 
from the sympathetic trunk 206 to the kidney 208. Sympa 
thetic trunk is connected to the patient’s spinal cord inside 
the spine 207. The lead to nerve connection can be located 
anywhere between the kidney 208 and the posterior renal or 
other renal ganglia (not shown) in the region of the 10", 11" 
and 12" thoracic and 1 lumbar segments of the spine 207. 
The stimulation lead 204 and the arterial nerve cuff 1401, as 
selected for the preferred embodiment of the invention, can 
be placed using laparoscopic Surgery. 

FIG. 15 illustrates one possible embodiment of the renal 
nerve stimulation cuff electrode cuff. When the treated 
disease is CRF or hypertension it is the additional objective 
of this embodiment of the invention to selectively modulate 
nerve traffic in both afferent and efferent nerve fibers inner 
Vating the human kidney. Using existing selective modula 
tion techniques it is possible to stimulate only afferent or 
efferent fibers. Different types of fibers have different struc 
ture and respond to different levels and frequency of stimu 
lation. Anatomically renal nerve is difficult to locate in 
humans even during Surgery. The autonomic nervous system 
forms a plexus on the external surface renal artery. Fibers 
contributing to the plexus arise from the celiac ganglion, the 
lowest splanchnic nerve, the aorticorenal ganglion and aortic 
plexus. The plexus is distributed with branches of the renal 
artery to vessels of the kidney, the glomeruli and tubules. 
The nerves from these sources, fifteen or twenty in number, 
have a few ganglia developed upon them. They accompany 
the branches of the renal artery into the kidney; some 
filaments are distributed to the spermatic plexus and, on the 
right side, to the inferior vena cava. This makes isolating a 
renal nerve difficult. 
To overcome this anatomic limitation the preferred 

embodiment of the neurostimulation shown on FIG. 15 has 
an innovative stimulation cuff. The cuff 1401 envelopes the 
renal artery 203 and overlaps nerve fibers 1501 that form the 
renal plexus and look like a spider web. Cuff has at least two 
isolated electrodes 1402 and 1403 needed for nerve block 
ing. More electrodes can be used for selective patterns of 
stimulation and blocking. Electrodes are connected to the 
lead 204. Renal artery 203 connects aorta 213 to the kidney 
208. It is subject to pulsations of pressure and therefore 
cyclically Swells and contracts. 

FIG.16 further illustrates the design of the cuff 1401. Cuff 
envelopes the renal artery 203. Cuff is almost circumferen 
tial but has an opening 406. When the artery cyclically 
swells with blood pressure pulses, the cuff opens up without 
damaging the nerve or pinching the artery. Opening 406 also 
allows placement of the cuff around the artery. Similar 
designs of nerve cuffs known as “helical cuffs are well 
known, see e.g., U.S. Pat. Nos. 5.251,634; 4,649.936 and 
5,634,462. 

FIG. 17 shows the crossection of the cuff 1401. Cuff 1401 
is made out of dielectric material. Two electrodes 1402 and 
1403 form rings to maximize the contact area with the wall 
of the artery 203. 
Common to all the embodiments, is that an invasive 

device is used to decrease the level of renal nerve signals 
that are received by the kidney or generated by the kidney 
and received by the brain. The invention has been described 
in connection with the best mode now known to the appli 
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cant inventors. The invention is not to be limited to the 
disclosed embodiment. Rather, the invention covers all of 
various modifications and equivalent arrangements included 
within the spirit and scope of the appended claims. 

Heart failure, also called congestive heart failure (CHF) 
and chronic heart failure is a progressive heart disease 
characterized by low cardiac output, deterioration of heart 
muscle and fluid retention. Renal failure, also called chronic 
renal failure (CRF) is a progressive degenerative renal 
disease that is characterized by gradual loss of renal function 
that leads to the end stage renal disease (ESRD). ESRD 
requires dialysis for life. Hypertension is the chronic disease 
associated with high probability of stroke, renal failure and 
heart failure that is characterized by the abnormally high 
blood pressure. 
A nerve in the context of this application means a separate 

nerve or a nerve bundle, nerve fiber, nerve plexus or nerve 
ganglion. Renal nerve is a part of the autonomic nervous 
system that forms a plexus on the external Surface renal 
artery. Fibers contributing to the plexus arise from the celiac 
ganglion, the lowest splanchnic nerve, the aorticorenal gan 
glion and aortic plexus. The plexus is distributed with 
branches of the renal artery to blood vessels of the kidney, 
the glomeruli and tubules. The nerves from these sources, 
have a few ganglia developed upon them. They accompany 
the branches of the renal artery into the kidney; some 
filaments are distributed to the spermatic plexus and, on the 
right side, to the inferior Vena cava. 

Nerve stimulation, neurostimulation, nerve modulation 
and neuromodulation are equivalent and mean altering (re 
ducing or increasing) naturally occurring level of electric 
signals propagating through the nerve. The electric signal in 
the nerve is also called nerve traffic, nerve tone or nerve 
stimulus. 
Nerve block, blocking or blockade is a form of neuro 

modulation and means the reduction or total termination of 
the propagation or conduction of the electric signal along the 
selected nerve. Nerve block can be pharmacological (in 
duced by a drug or other chemical Substance) or an electric 
block by electrostimulation. Electric nerve block can be a 
hyperpolarization block, cathodal, anodal or collision block. 
Overpacing a nerve can also induce a block. Overpacing 
means stimulating the nerve with rapid electric pulses at a 
rate that exceeds the natural cycling rate of the nerve 
polarization and depolarization. As a result of overpacing 
the nerve gets fatigued, reserves of the immediately avail 
able neurotransmitter substance in the nerve become 
exhausted, and the nerve becomes temporarily unable to 
conduct signals. Nerve block by the means listed above can 
result in the reduction of the nerve signal, in particular the 
renal sympathetic efferent or afferent tone that determines 
the electric stimulus received or generated by the kidney. 
The technique of the controlled reduction of the nerve signal 
or traffic, which results in less organ stimulation, is called 
nerve signal modulation. Nerve modulation means that the 
individual nerve fibers fire with a reduced frequency or that 
fewer of the nerve fibers comprising the renal nerve are 
actively conducting or firing. The increase of nerve traffic or 
nerve activity usually involves recruitment of larger number 
of fibers in the nerve; alternatively less stimulation is 
associated with less active fibers. Denervation means block 
ing of the renal nerve conduction or the destruction of the 
renal nerve. 

Lead is a medical device used to access the nerve desig 
nated for stimulation or blocking. It is usually a tubular 
device that is electrically insulated and includes multiple 
conductors or wires. Wires conduct stimulation or blocking 
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signals from the stimulator to the designated nerve. Wires 
are terminated in electrodes. Electrodes are conductive ter 
minals and can contact the nerve directly or contact the 
conductive tissue in the vicinity of the nerve. Electrodes can 
have different geometric configurations and can be made of 
different materials. The lead can include lumens or tubes for 
drug delivery to the nerve. A stimulator or an electrostimu 
lator is an electric device used to generate electric signals 
that are conducted by the lead to the nerve. The stimulator 
can be implanted in the body or external. Electric signals can 
be a DC current, voltage, series of pulses or AC current or 
voltage. Electrodes can induce an electric field that affects 
the nerve and results in nerve blocking. Nerve cuff is a 
Support structure that at least partially envelops the targeted 

W. 

While the invention has been described in connection 
with what is presently considered to be the most practical 
and preferred embodiment, it is to be understood that the 
invention is not to be limited to the disclosed embodiment, 
but on the contrary, is intended to cover various modifica 
tions and equivalent arrangements included within the spirit 
and scope of the appended claims. 
What is claimed is: 
1. A method for treating a human patient comprising: 
a. positioning a nerve stimulation device adjacent to a 

renal nerve of at least one kidney of the patient, 
wherein the nerve stimulation device comprises a cuff 
placed around a renal blood vessel of the kidney; and 

b. at least partially blocking the renal nerve of the kidney. 
2. A method as in claim 1 wherein the cuff comprises an 

electrode, and the electrode is positioned Surgically in the 
patient. 

3. A method as in claim 1 wherein the cuff comprises a 
drug delivery device, and the device is positioned Surgically 
in the patient. 

4. The method of claim 1 wherein the nerve stimulation 
device is implanted in the patient. 

5. The method as in claim 1 wherein afferent fibers of the 
renal nerve are blocked and efferent fibers are not blocked. 

6. The method as in claim 1 wherein efferent fibers of the 
renal nerve are blocked and afferent fibers are not blocked. 

7. A method as in claim 1 wherein the step of blocking the 
renal nerve is accomplished by a block selected from a group 
consisting of an anodal block, a cathodal block and a 
collision block. 

8. A method as in claim 1 wherein the step of blocking the 
renal nerve is accomplished by overpacing the nerve. 

9. A method as in claim 1 wherein the step of blocking is 
accomplished by continuous infusion of an anesthetic drug 
to the nerve. 

10. A method as in claim 1 further comprising monitoring 
blood pressure of the patient, and adjusting a level of 
blocking in response to said blood pressure. 

11. A method as in claim 1 wherein the nerve stimulation 
device is a catheter. 

12. A method as in claim 1 wherein the nerve stimulation 
device is a lead with multiple electrodes. 

13. A method as in claim 1 wherein the step of blocking 
is accomplished by the injection of a neurotoxin. 

14. A method as in claim 1 wherein the step of blocking 
is accomplished by ablation of the renal nerve. 

15. A method as in claim 1 wherein the step of blocking 
is accomplished by cooling of the renal nerve. 

16. A method as in claim 1 applied to a patient Suffering 
from at least one of heart failure, chronic renal failure and 
hypertension. 
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17. A method to stimulate a renal nerve in a mammalian 

patient to treat at least one of acute myocardial infarction, 
heart failure, chronic renal failure and hypertension, the 
method comprising: 

a. positioning a renal nerve stimulation device in the 
patient such that an electrode at a distal section of the 
stimulation device can apply an electrical field to a 
renal nerve of a kidney of the patient and a proximal 
section of the stimulation device is connected to an 
electro stimulation apparatus outside of the patient; 

b. applying an electrical stimulation signal with the device 
to the renal nerve; 

c. at least partially blocking the renal nerve by application 
of the stimulation signal; and 

d. removing the distal section of the stimulation device 
from the patient. 

18. A method as in claim 17 wherein stimulation signal is 
an electrical current applied by the electrode to the renal 

W. 

19. A method as in claim 17 wherein the nervestimulation 
device further comprises a drug delivery device and the 
stimulation signal is a nerve blocking drug applied to the 
renal nerve. 

20. A method for reducing abnormally elevated sympa 
thetic renal nerve signals to treat at least one of acute 
myocardial infarction, heart failure, chronic renal failure and 
hypertension, the method comprising: 

a. positioning a renal nerve stimulator Such that at least 
one electrode at a distal end is proximate to a renal 
nerve of a mammalian patient and a proximal end of the 
renal nerve stimulator is outside of the patient; 

b. applying an electrical current to the electrode with an 
electric controller to stimulate the renal nerve to at least 
reduce signal traffic in sympathetic efferent renal nerve 
fibers: 

c. regulating the current applied to the electrode based on 
at least one condition of the patient being monitored by 
a sensor, and 

d. removing the distal end of the renal nerve stimulator 
from the patient. 

21. A method as in claim 20 wherein a controller monitors 
blood pressure in the patient and the sensor is a blood 
pressure sensor. 

22. A method as in claim 20 wherein a controller monitors 
blood oxygen in the patient and the sensor is a blood oxygen 
SSO. 

23. A method for treating at least one of acute myocardial 
infarction, heart failure, chronic renal failure and hyperten 
sion in a human patient comprising: 

positioning a distal section of an electrical nerve stimu 
lation device within a renal vasculature adjacent to a 
renal nerve of at least one kidney of the patient and a 
proximal section of the electrical nerve stimulation 
device outside of the patient; and 

at least partially blocking the renal nerve of the kidney via 
the intravascularly-positioned electrical nerve stimula 
tion device; and 

removing the distal section of the electrical nerve stimu 
lation device from the patient. 

24. The method of claim 23, wherein positioning the 
electrical nerve stimulation device within renal vasculature 
further comprises positioning an electrode within the renal 
vasculature. 

25. The method of claim 24, wherein positioning the 
electrode within the renal vasculature further comprises 
positioning a bipolar electrode pair within the renal vascu 
lature. 
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26. The method of claim 25, wherein at least partially 
blocking the renal nerve of the kidney further comprises 
delivering an electric field across the bipolar electrode pair. 

27. The method of claim 23, wherein positioning an 
electrical nerve stimulation device within the renal vascu 
lature of the patient further comprises positioning the elec 
trical nerve stimulation device within a renal vein of the 
patient. 

28. The method of claim 23, wherein positioning an 10 
electrical nerve stimulation device within the renal vascu 
lature of the patient further comprises positioning the elec 
trical nerve stimulation device within a renal artery of the 
patient. 
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29. A method for treating a human patient comprising: 
a. positioning a nerve stimulation device adjacent to a 

renal nerve of at least one kidney of the patient, and 
b. at least partially blocking the renal nerve of the kidney, 

wherein the step of blocking is accomplished by abla 
tion of the renal nerve. 

30. A method for treating a human patient comprising: 
a. positioning a nerve stimulation device adjacent to a 

renal nerve of at least one kidney of the patient, and 
b. at least partially blocking the renal nerve of the kidney, 

wherein the step of blocking is accomplished by cool 
ing of the renal nerve. 

k k k k k 
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