

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2006-126205

(P2006-126205A)

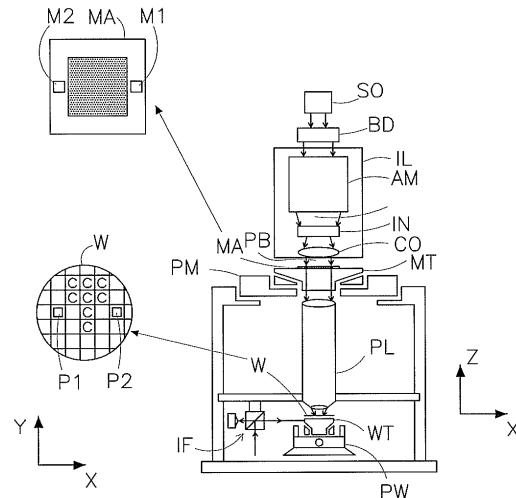
(43) 公開日 平成18年5月18日(2006.5.18)

(51) Int.C1.	F 1	テーマコード (参考)
GO 1 N 21/956 (2006.01)	GO 1 N 21/956 A	2 F 0 6 5
HO 1 L 21/027 (2006.01)	HO 1 L 21/30 5 1 6 C	2 G 0 5 1
GO 3 F 7/20 (2006.01)	GO 3 F 7/20 5 2 1	5 F 0 4 6
GO 1 B 11/02 (2006.01)	GO 1 B 11/02 H	

審査請求 有 請求項の数 38 O L 外国語出願 (全 66 頁)

(21) 出願番号	特願2005-320099 (P2005-320099)	(71) 出願人	504151804 エイエスエムエル ネザランドズ ベスロ ーテン フエンノートシャップ オランダ国 フェルトホーフェン、デル ン 6501
(22) 出願日	平成17年10月5日 (2005.10.5)	(74) 代理人	100066692 弁理士 浅村 皓
(31) 優先権主張番号	10/957,752	(74) 代理人	100072040 弁理士 浅村 肇
(32) 優先日	平成16年10月5日 (2004.10.5)	(74) 代理人	100072822 弁理士 森 徹
(33) 優先権主張国	米国(US)	(74) 代理人	100087217 弁理士 吉田 裕

最終頁に続く


(54) 【発明の名称】粒子検出デバイス、リソグラフィ装置およびデバイス製造方法

(57) 【要約】

【課題】粒子とゴースト粒子をするために、ゴースト粒子の放射線を実粒子の放射線から分解する検出器システムを提供する。

【解決手段】検出器システムが、自身の一部に入射する放射線の強度に対応する複数の検出器信号を出力する。あるいは、検出器システムが、自身に入射する放射線の強度に対応する検出器信号を出力する。複数の検出器信号は各々、ゴースト粒子から放射線が所定の閾値レベルより高いレベルを有さず、粒子から放射線を受け取ると、閾値レベルより高いほぼ同じレベルを表示する。さらには、検出器システムが、所定部分に入射する放射線に応答して第一検出器信号を生成する放射線検出デバイスと、粒子からではない放射線が検出器デバイスの所定部分に入射するのを防止する放射線遮断アセンブリを有する。

【選択図】図 1

【特許請求の範囲】**【請求項 1】**

オブジェクトの表面上の粒子を検出するように構成された粒子検出システムであって、

- 第一波長を有する放射線のビームを生成するように構成された第一放射線ソースを有し、放射線のビームはオブジェクトの表面にある検出区域に配向され、さらに、
- 放射線検出器システムに入射し、検出区域から受け取った放射線の強度に対応する複数の検出器信号を出力するように構成された放射線検出器システムと、
- 放射線検出器システムに結合され、複数の検出器信号からオブジェクトの表面上に粒子が存在するかを判断するように構成された検出回路とを有し、

粒子からの信号に対するゴースト粒子からの信号を解析することによって、粒子の存在を判断するものである粒子検出システム。 10

【請求項 2】

検出回路が、複数の検出器信号それぞれを所定の閾値レベルと比較し、前記複数の検出器信号がそれぞれ、前記閾値レベルより高いレベルを有する場合に、オブジェクトの表面上に粒子が存在することを示すように構成される、請求項 1 に記載の粒子検出システム。 10

【請求項 3】

さらに、オブジェクトの表面と放射線検出器システムとの間に位置決めされた十字形ダイヤフラムを有し、ダイヤフラム検出器システムが検出器デバイスを有し、前記検出器システムが、検出器システムの第一部に入射する放射線の強度に対応する第一検出器信号を出力し、検出器システムの第二部に入射する放射線の強度に対応する第二検出器信号を出力するように構成される、請求項 2 に記載の粒子検出システム。 20

【請求項 4】

さらに、第二波長を有する放射線のビームを生成するように構成された第二放射線ソースを有し、放射線のビームはオブジェクトの表面に配向され、検出器システムは、第 1 波長を有して、第一検出器に入射する放射線の強度に対応する第一検出器信号を出力するように構成された第一検出器デバイスと、第二波長を有し、自身に入射する放射線の強度に対応する第二検出器信号を出力するように構成された第二検出器デバイスとを有する、請求項 2 に記載の粒子検出システム。 20

【請求項 5】

検出器システムが、(1) 第一検出器サブシステムを有し、第一検出器サブシステムは第一検出器サブシステムの第一部に入射する放射線の強度に対応する第一検出器信号を出力し、第一検出器サブシステムの第二部に入射する放射線の強度に対応する第二検出器信号を出力するように構成され、さらに(2) 第二検出器サブシステムを有し、第二検出器サブシステムは、第二検出器サブシステムの第一部に入射する放射線の強度に対応する第三検出器信号を出力し、第二検出器サブシステムの第二部に入射する放射線の強度に対応する第四検出器信号を出力するように構成され、システムがさらに、オブジェクトの表面と各検出器の間に位置決めされた十字形ダイヤフラムを有する、請求項 2 に記載の粒子検出システム。 30

【請求項 6】

検出回路が、(1) 対応する複数の入力検出器信号を閾値レベルと比較するように構成された複数の比較器を有し、複数の比較器がそれぞれ論理比較器信号を出力し、さらに、(2) 各論理比較器信号を受信して、複数の入力信号がそれぞれ閾値レベルより高い場合は、論理 T R U E 信号を出力するように構成された A N D 演算器を有する、請求項 2 に記載の粒子検出システム。 40

【請求項 7】

検出回路がさらに、検出器信号に基づいて検出された粒子のサイズを判断するように構成される、請求項 2 に記載の粒子検出システム。

【請求項 8】

検出された粒子のサイズが、1つの検出器信号、または少なくとも2つの検出器信号の組み合わせに基づいて判断される、請求項 7 に記載の粒子検出システム。 50

【請求項 9】

放射線検出器システムが、検出器ピクセル要素のアレイを有する検出器デバイスを有し、複数の検出器信号の各検出器信号が、少なくとも1つの検出器ピクセル要素に入射する放射線の強度に対応し、それによって検出された粒子の粒子像を提供し、像が幾つかの像ピクセルを有し、検出回路が、

- 粒子像に基づいて、検出粒子が大きいか小さいかを検出し、
- 少なくとも1つの検出器ピクセル要素に入射する放射線強度に基づいて、小さい粒子のサイズを判断し、
- 粒子像の像形態に基づいて、大きい粒子のサイズを判断するように構成される、請求項7に記載の粒子検出システム。

10

【請求項 10】

検出回路は、検出された粒子に関する像ピクセルの総数が所定のピクセル数より小さい場合は、粒子が小さいと検出するように構成される、請求項9に記載の粒子検出システム。

【請求項 11】

粒子のサイズが、第一検出器からの信号、第二検出器からの信号、または第一および第二検出器からの信号の組み合わせに基づいて判断される、請求項4に記載の粒子検出システム。

【請求項 12】

放射線検出器システムが、

- 放射線検出器デバイスの少なくとも1つの所定部分に入射する放射線に応答して、第一検出器信号を生成する放射線検出器デバイスと、
- オブジェクトの表面の周囲にある検出区域から発生したものではない放射線が、放射線検出器デバイスの所定部分に入射するのを防止する放射線遮断アセンブリとを有する、請求項1に記載の粒子検出システム。

20

【請求項 13】

放射線遮断アセンブリが、

検出区域から発生した放射線を放射線検出器デバイスの少なくとも1つの所定部分に集束する検出器レンズと、

検出区域から発生したものではない放射線が、検出器レンズによって検出器デバイスの所定部分に配向されるのを防止する遮断デバイスとを有する、請求項12に記載の粒子検出システム。

30

【請求項 14】

放射線検出器システムが、ゴースト粒子信号を検出するために、放射線検出器デバイスの前記少なくとも1つの所定部分の外側で放射線が放射線検出器デバイスに入射したかを示す少なくとも第二の検出器信号をさらに出力するように構成される、請求項12に記載の粒子検出システム。

【請求項 15】

検出回路がさらに、検出器信号に基づいて検出粒子のサイズを判断するように構成される、請求項12に記載の粒子検出システム。

40

【請求項 16】

検出器システムが、検出器ピクセル要素のアレイを有する検出器デバイスを有し、複数の検出器信号の各検出器信号が、前記検出器ピクセル要素の少なくとも1つに入射する放射線の強度に対応し、これによって複数の検出器信号が、検出された粒子の粒子像を提供し、像が幾つかの像ピクセルを有し、検出回路が、

- 粒子像に基づいて、検出粒子が大きいか小さいかを検出し、
- 少なくとも1つの検出器ピクセル要素に入射する放射線強度に基づいて、小さい粒子のサイズを判断し、
- 粒子像の像形態に基づいて、大きい粒子のサイズを判断するように構成される、請求項15に記載の粒子検出システム。

50

【請求項 17】

検出回路は、検出された粒子に関する像ピクセルの総数が所定のピクセル数より小さい場合は、粒子が小さいと検出するように構成される、請求項16に記載の粒子検出システム。

【請求項 18】

リソグラフィ装置であって、
放射線のビームを調整するように構成された照明システムと、
パターニングデバイスを支持するように構成された支持構造とを有し、パターニングデバイスが、放射線ビームの断面にパターンを与える働きをし、さらに、
基板を保持するように構成された基板テーブルと、
パターン形成したビームを基板の目標部分に投影するように構成された投影システムと、
オブジェクトの表面の検出区域で粒子を検出するように構成された粒子検出システムとを有し、粒子からの信号からゴースト粒子からの信号を空間的に解析することによって粒子の存在が判断されるリソグラフィ装置。

【請求項 19】

前記粒子検出システムが、複数の検出器信号を所定の閾値レベルと比較し、前記複数の検出器信号が閾値レベルより高いレベルを有する場合、オブジェクトの表面に粒子が存在することを示すように構成される、請求項18に記載のリソグラフィ装置。

【請求項 20】

粒子システムがさらに、オブジェクトの表面と検出器システムの間に位置決めされた十字形ダイヤフラムを有し、放射線検出器システムが検出器を有し、前記検出器が、検出器の第一部に入射する放射線の強度に対応する第一検出器信号を出力し、検出器の第二部に入射する放射線の強度に対応する第二検出器信号を出力するように構成される、請求項19に記載のリソグラフィ装置。

【請求項 21】

粒子検出システムがさらに、第二波長を有する放射線のビームを生成するように構成された第二放射線ソースを有し、放射線のビームがオブジェクトの表面に配向され、検出器システムが、第一波長を有し、自身に入射する放射線の強度に対応する第一検出器信号を出力するように構成された第一検出器と、第二波長を有し、自身に入射する放射線の強度に対応する第二検出器信号を出力するように構成された第二検出器とを有する、請求項19に記載のリソグラフィ装置。

【請求項 22】

粒子検出システムの検出器システムが、(1)第一検出器を有し、第一検出器が、第一検出器の第一部に入射する放射線の強度に対応する第一検出器信号を出力し、第一検出器の第二部に入射する放射線の強度に対応する第二検出器信号を出力するように構成され、さらに(2)第二検出器を有し、第二検出器が、第二検出器の第一部に入射する放射線の強度に対応する第三検出器信号を出力し、第二検出器の第二部に入射する放射線の強度に対応する第四検出器信号を出力するように構成され、システムがさらに、オブジェクトの表面と各検出器の間に位置決めされた十字形ダイヤフラムを有する、請求項19に記載のリソグラフィ装置。

【請求項 23】

粒子検出システムの検出回路が、(1)対応する複数の入力検出器信号を閾値レベルと比較するように構成された複数の比較器を有し、複数の比較器がそれぞれ、論理比較器信号を出力し、さらに、(2)各論理比較器信号を受信し、複数の入力信号がそれぞれ閾値レベルより大きい場合は、論理TURE信号を出力するように構成されたAND演算器を有する、請求項19に記載のリソグラフィ装置。

【請求項 24】

検出回路がさらに、検出器信号に基づいて検出された粒子のサイズを判断するように構成される、請求項18に記載のリソグラフィ装置。

10

20

30

40

50

【請求項 25】

検出された粒子のサイズが、1つの検出器信号または少なくとも2つの検出器信号の組み合わせに基づいて判断される、請求項24に記載のリソグラフィ装置。

【請求項 26】

検出器デバイスの検出器システムが検出器ピクセル要素のアレイを有し、複数の検出器信号の各検出器信号が、少なくとも1つの検出器ピクセル要素に入射する放射線の強度に対応し、それによって検出された粒子の粒子像を提供し、像が幾つかの像ピクセルを有し、検出回路が、

- 粒子像に基づいて、検出粒子が大きいか小さいかを検出し、
- 少なくとも1つの検出器ピクセル要素に入射する放射線強度に基づいて、小さい粒子のサイズを判断し、
- 粒子像の像形態に基づいて、大きい粒子のサイズを判断するように構成される、請求項24に記載のリソグラフィ装置。

【請求項 27】

検出回路は、検出された粒子に関する像ピクセルの総数が所定のピクセル数より小さい場合は、粒子が小さいと検出するように構成される、請求項26に記載のリソグラフィ装置。

【請求項 28】

粒子のサイズが、第一検出器からの信号、第二検出器からの信号、または第一および第二検出器からの信号の組み合わせに基づいて判断される、請求項21に記載のリソグラフィ装置。

【請求項 29】

前記オブジェクトが基板またはパターニングデバイスである、請求項18に記載のリソグラフィ装置。

【請求項 30】

粒子検出器システムが、

- 放射線検出器デバイスの少なくとも1つの所定部分に入射する放射線に応答して、第一検出器信号を生成する放射線検出器デバイスと、
- オブジェクトの表面の周囲にある検出区域から発生したものではない放射線が、放射線検出器デバイスの所定部分に入射するのを防止する放射線遮断アセンブリとを有する、請求項18に記載のリソグラフィ装置。

【請求項 31】

放射線遮断アセンブリが、

検出区域から発生した放射線を放射線検出器デバイスの少なくとも1つの所定部分に集束する検出器レンズと、

検出区域から発生したものではない放射線が、検出器レンズによって検出器デバイスの所定部分に配向されるのを防止する遮断デバイスとを有する、請求項30に記載の粒子検出システム。

【請求項 32】

放射線検出器システムが、ゴースト粒子信号を検出するために、放射線検出器デバイスの前記少なくとも1つの所定部分の外側で放射線が放射線検出器デバイスに入射したかを示す少なくとも第二の検出器信号をさらに出力するように構成される、請求項31に記載の粒子検出システム。

【請求項 33】

デバイス製造方法であって、

パターン形成した放射線のビームを基板の目標部分に投影することと、

オブジェクトの表面上の粒子を粒子検出システムで検出することとを含み、

前記粒子検出システムが検出回路を有し、これは、複数の検出器信号を所定の閾値レベルと比較し、前記複数の検出器信号が前記閾値レベルより高いレベルを有する場合に、オブジェクトの表面上に粒子が存在することを示すように構成されるものであるデバイス製

10

20

30

40

50

造方法。

【請求項 3 4】

前記オブジェクトが基板、または放射線ビームのパターン形成に使用するパターニングデバイスである、請求項 3 3 に記載のデバイス製造方法。

【請求項 3 5】

デバイス製造方法であって、

パターン形成した放射線のビームを基板の目標部分に投影することと、

オブジェクトの表面上の粒子を粒子検出システムで検出することとを含み、

粒子検出システムが、

- 放射線検出器デバイスの少なくとも 1 つの所定部分に入射する放射線に応答して、第一検出器信号を生成する放射線検出器デバイスと、

- オブジェクトの表面の周囲にある検出範囲から発生したものではない放射線が、検出器デバイスの所定部分に入射するのを防止する放射線遮断アセンブリとを有するものであるデバイス製造方法。

【請求項 3 6】

前記オブジェクトが放射線のビームのパターン形成に使用するパターニングデバイスである請求項 3 5 に記載のデバイス製造方法。

【請求項 3 7】

デバイス製造方法であって、

パターン形成した放射線のビームを基板の目標部分に投影することと、

オブジェクトの表面上の粒子を検出することとを含み、前記検出することが、

前記オブジェクトの表面に放射線のビームを提供することと、

前記粒子および／または前記オブジェクトによって再配向された放射線のビームを検出することと、

検出された放射線のビームの強度に対応する複数の信号を出力することと、

前記オブジェクトの表面上に粒子が存在するかを判断するために、複数の信号を所定の閾値レベルと比較することとを含むものであるデバイス製造方法。

【請求項 3 8】

デバイス製造方法であって、

パターン形成した放射線のビームを基板の目標部分に投影することと、

オブジェクトの表面上の粒子を検出することとを含み前記検出することが、

前記オブジェクトの表面に放射線のビームを提供することと、

前記粒子および／または前記オブジェクトによって再配向された放射線のビームを検出することと、

オブジェクトの表面の周囲にある検出範囲内から発生した放射線のビームを、放射線検出デバイスの所定部分に配向することと、

オブジェクトの表面の周囲にある検出範囲から発生したものではない放射線が、放射線検出デバイスの所定部分に入射するのを防止することと、

放射線検出デバイスの所定部分に入射する検出放射線ビームの強度に対応する検出器信号に基づいて、前記オブジェクトの表面に粒子が存在するかを判断することとを含むものであるデバイス製造方法。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

本発明は粒子検出デバイス、粒子検出デバイスを含むリソグラフィ装置、およびデバイス製造方法に関する。

【背景技術】

【0 0 0 2】

リソグラフィ装置は、所望のパターンを基板の目標部分に適用する機械である。リソグ

10

20

30

40

50

ラフィ装置は例えば、集積回路（IC）の製造において使用可能である。このような場合、マスクなどのパターニングデバイスは、ICの個々の層に対応する回路パターンの生成に使用することができ、このパターンを、放射線感光原料（レジスト）の層を有する基板（例えばシリコンウェハ）上の目標部分（例えば1つあるいはそれ以上のダイの一部を含む）に描像することができる。一般的に、1枚の基板は、順次照射される近接目標部分のネットワークを含んでいる。従来のリソグラフィ装置は、パターン全体を目標部分に1回露光することによって各目標部分が照射される、いわゆるステッパと、所定の方向（「走査」方向）にパターンを投影ビームで走査し、これと同時に基板をこの方向と平行に、あるいは反平行に走査することにより、各目標部分が照射される、いわゆるスキャナとを含む。

10

【0003】

場合によっては薄膜によって保護される小さい構造を含むパターンの描像は、パターニングデバイスおよび基板の埃および他の汚染物質に非常に敏感である。したがって、描像する前に、パターニングデバイス（および／または薄膜で保護したその小さい構造）および試験に汚染物質、特に粒子がないか試験する。従来のリソグラフィ装置では、粒子検出システムが放射線のビーム、特に（しかし必然的ではなく）モノクローム放射線、つまりほぼ1つの波長しかない放射線を、オブジェクトの表面に配向する。このオブジェクトは例えばパターニングデバイスまたは基板であるが、それに限定されない。オブジェクトおよび／またはビームは、オブジェクトの表面を走査するために移動する。放射線のビームがオブジェクトの表面に当たると、放射線は反射の物理的法則（射出する角度は表面に直角の想像線（法線）に対して入射角度と同一である）に従って部分反射する。入射放射線の別の部分は、パターニングデバイスまたは基板などのオブジェクトに入って、屈折する。両方の場合で、ビームは異方性状態で再配向される。放射線ビームが汚染粒子に当たると、放射線が散乱する。つまり等方反射する。

20

【0004】

放射線検出器は、表面で反射した放射線が検出器に入射せず、粒子または他の汚染物質によって散乱した、つまりほぼ全方向に反射した放射線の一部が検出器に入射するよう、表面および放射線ビームに対して位置決めされる。したがって、検出器は放射線ビームが粒子または他の汚染物質によって散乱した場合にのみ、放射線を受け取る。

30

【0005】

オブジェクトの表面に入射する放射線の一部はオブジェクトに入り、上述したように屈折する。オブジェクト内では、ビームはクロムパターンで屈折および／または回折するか、1回または複数回反射する、またはその両方である。材料、サイズ、幾何学的形状などのパラメータの数に応じて、オブジェクトに入る放射線の一部が、検出器の方向で再びオブジェクトを出る。その場合、検出器は粒子で散乱していない放射線を検出する。その結果、検出器から信号を受信した検出回路は粒子が存在すると判断するが、実際には粒子が存在しない。このように検出されるが、実際には存在しない粒子を、これ以降ゴースト粒子と呼ぶ。

【0006】

粒子を検出する他の従来のシステムでは、顕微鏡を使用することがある。このようなシステムは、顕微鏡を使用して表面を走査し、検出された粒子の詳細な分析を実行することができる。しかし、このようなシステムは高価であり、単なる粒子のインライン検出にはそれほど適切ではない。

40

【発明の開示】

【発明が解決しようとする課題】

【0007】

本発明の実施形態は、オブジェクトの表面上の粒子をインライン検出する単純で費用効果が高い粒子検出システムを含み、システムは、粒子からの信号と誤り信号、つまりゴースト粒子信号とを弁別することができる。ゴースト粒子からの放射線は、実際の粒子からの放射線から空間的に、またはその他の方法で取り除くことができる。

50

【課題を解決するための手段】

【0008】

本発明の実施形態によると、オブジェクトの表面上の粒子を検出するように構成された粒子検出システムが提供され、システムは、第一波長を有する放射線のビームを生成するように構成された第一放射線ソースを含み、ビームはオブジェクトの表面にて検出区域へと配向され、さらに検出区域から検出器システムに入射する放射線の強度に相当する少なくとも2つの検出器信号を出力するように構成された放射線検出器システムと、少なくとも2つの検出器信号から、オブジェクトの表面に粒子が存在するか否かを判断するようにされた検出回路とを有し、検出回路は、少なくとも2つの検出器信号を所定の閾値レベルと比較し、少なくとも2つの検出器信号がそれぞれ閾値レベルより高いレベルを有する場合に、オブジェクトの表面に粒子が存在することを表示するように構成される。10

【0009】

本発明の実施形態による粒子検出システムは、等方性放射線と異方性放射線とを弁別することができる。上述したように、粒子によって散乱した放射線は等方性放射線である。放射線ソースから発して、オブジェクトの内部で屈折、反射および回折し、その後に検出器システムに入射する放射線は、図面に関して以下で説明するように、異方性である。

【0010】

オブジェクトの表面にある検出区域に配向された光のビームから開始して、等方性状態で再配向された放射線は、異方性状態で再配向、つまり散乱した放射線から弁別することができる。異方性放射線は所定の断面、つまり円形、長方形または他の任意の形状のような制限された断面を有するからである。このような制限されたビームの結果、検出器の表面または放射線ビームの軌跡にある他の任意の表面のような表面に入射すると、相応する制限されたスポットになる。これに対して、等方性状態で散乱した放射線は、このような制限されたスポットにならない。等方性散乱放射線は、実質的にどの方向にも配向される。したがって、検出器システムに入射する放射線の等方性部分は、放射線ビームに集中した光のスポットが存在するかを評価することによって、異方性部分から弁別することができる。検出器システムの表面上の放射線の分布および位置に基づく弁別を、これ以降、空間的弁別と呼ぶ。20

【0011】

検出器システムに入射する放射線は、例えば1つの検出器からの複数の信号、または複数の検出器それぞれからの1つの信号を使用して、少なくとも2つの信号を生成するように検出され、そこから入射放射線が等方性状態で再配向された放射線および/または異方性状態で再配向された放射線を含むか推定することができる。少なくとも2つの信号の組み合わせから空間情報を導出できるように、検出器システム上で放射線から少なくとも2つの信号を生成する。検出システムは、例えばゴースト粒子からの放射線と実際の粒子からの放射線を空間的に解像することによって、放射線が粒子から生じるか、ゴースト粒子から生じるかを判断することができる。30

【0012】

放射線ソースから来る放射線ビームの断面形状は、丸い(円形)か、任意の他の形状、例えば線を有する。第一波長を有する放射線はモノクローム放射線か、特定の範囲の波長を有する放射線を含んでもよい。特に、1つの放射線ソースしか使用しない場合は、白色光でも、つまり可視範囲に多くの波長を含む放射線でも使用することができる。40

【0013】

放射線検出器システムは、単純な放射線感光デバイスを含むか、1D(線形)または2D(平面)CCD要素または1または2次元放射線感光フォトダイオード(PSD)などの1次元または2次元放射線感光デバイスでよい。

【0014】

粒子検出システムは、検出器信号に基づいて検出粒子のサイズを判断するように構成される。上述したように、検出器システムは、検出器ピクセル要素(例えば2D(平面)CCD要素)のアレイを有する検出器デバイスを有してよく、複数の検出器信号の各検出器50

信号は、少なくとも 1 つの検出器ピクセル要素に入射する放射線の強度に対応し、それによって検出粒子の粒子像を提供して、像は像ピクセルのアレイを有し、検出回路は、

- 粒子像に基づいて、検出粒子が大きいか小さいかを検出し、
- 少なくとも 1 つの検出器ピクセル要素に入射する放射線強度に基づいて、小さい粒子のサイズを判断し、
- 粒子像の像形態に基づいて、大きい粒子のサイズを判断するように構成される。

【 0 0 1 5 】

本発明の実施形態によると、放射線のビームを調整するように構成された照明システムと、パターニングデバイスを支持するように構成された支持構造とを有し、パターニングデバイスが、放射線ビームの断面にパターンを与える働きをし、さらに基板を保持するように構成された基板テーブルと、パターニングデバイスまたは基板の表面上に、ほぼ粒子が存在しないことを検証するように構成された粒子検出システムと、パターン形成したビームを基板の目標部分に投影するように構成された投影システムとを有するリソグラフィ装置が提供され、粒子検出システムは検出回路を含み、これは少なくとも 2 つの検出器信号を所定の閾値レベルと比較し、少なくとも 2 つの検出器信号がそれぞれ閾値レベルより高いレベルを有する場合、オブジェクトの表面上に粒子が存在することを示すように構成される。

【 0 0 1 6 】

本発明のさらなる実施形態によると、デバイス製造方法で、基板を提供することと、照明システムを使用して放射線のビームを提供することと、投影ビームの断面にパターンを与えるために、パターニングデバイスを使用することと、パターン形成した放射線のビームを基板の目標部分に投影することと、粒子検出システムを使用して、パターニングデバイスまたは基板の表面上にほぼ粒子が存在しないことを検証することを含む方法が提供され、粒子検出システムは検出回路を含み、これは少なくとも 2 つの検出器信号を所定の閾値レベルと比較し、少なくとも 2 つの検出器信号がそれぞれ閾値レベルより高いレベルを有する場合、オブジェクトの表面上に粒子が存在することを示すように構成される。

【 0 0 1 7 】

デバイス製造方法は、パターン形成した放射線のビームを基板の目標部分に投影することと、オブジェクトの表面上で粒子を検出することとを含み、検出することが、オブジェクトの表面の検出区域に配向された放射線のビームを提供することと、粒子が散乱した放射線のビームを検出することとを含み、さらに放射線の検出ビームの強度に対応する複数の信号を出力することと、オブジェクトの表面上に粒子が存在するかを判断するために、複数の信号を所定の閾値レベルと比較することとを含む。

【 0 0 1 8 】

本発明の実施形態によりオブジェクトの表面上の粒子を検出するように構成された粒子検出システムは、第一波長を有する放射線のビームを生成するように構成された第一放射線ソースを含み、放射線ビームはオブジェクトの表面に配向され、さらに、検出器システムに入射する放射線の強度に対応する複数の検出器信号を出力するように構成された放射線検出器システムと、放射線検出器システムに結合され、オブジェクトの表面上に粒子が存在するかを複数の検出器信号から判断するように構成された検出回路とを含み、検出回路は、複数の検出器信号を所定の閾値レベルと比較し、複数の検出器信号が閾値レベルより高いレベルを有する場合に、粒子がオブジェクトの表面上に存在することを示すように構成される。

【 0 0 1 9 】

本発明の実施形態によりオブジェクトの表面上の粒子を検出するように構成された粒子検出システムは、放射線のビームを生成するように構成された放射線ソースを有し、放射線のビームはオブジェクトの表面に配向され、さらに、検出器システムに入射した放射線の強度に対応する少なくとも第一検出器信号を出力するように構成された放射線検出器システムと、放射線検出器システムに結合されて、少なくとも 1 つの検出器信号から、オブジェクトの表面上に粒子が存在するかを判断するように構成された検出回路とを有する。

10

20

30

40

50

放射線検出器システムは、放射線検出器デバイスの少なくとも1つの所定部分に入射する放射線に応答して、第一検出器信号を生成する放射線検出器デバイスと、オブジェクトの表面の周囲で検出範囲から生じていない放射線が検出器デバイスの所定の部分に入射するのを防止する放射線遮断アセンブリとを有する。したがってゴースト粒子からの放射線および実際の粒子からの放射線は、検出器システムの検出器の面で空間的に解像される。その結果、検出器信号は、オブジェクトの表面上の粒子による散乱から生じた放射線にのみ依存する。

【0020】

上記の実施形態では、放射線検出器システムは、放射線が検出器デバイスの前記少なくとも1つの所定部分の外側で検出器デバイスに入射したのかを示す少なくとも第二の検出器信号をさらに出力するように構成することができる。したがって、第二信号は、ゴースト粒子から生じる放射線の存在を示すことができる。

10

【0021】

本文ではICの製造におけるリソグラフィ装置の使用に特に言及しているが、本明細書で説明するリソグラフィ装置が他にも用途を有することは理解されるべきである。例えば、集積光学システム、磁気ドメインメモリ用ガイダンスおよび検出パターン、液晶ディスプレイ（LCD）、薄膜磁気ヘッド等の製造の用途である。こうした代替的な用途の状況においては、本文にて使用した「ウェハ」または「ダイ」といった用語は、それぞれ「基板」または「目標部分」といった、より一般的な用語と同義と見なされることが当業者には理解される。本明細書で言及する基板は、露光前または露光後に、例えばトランク（通常はレジストの層を基板に塗布し、露光したレジストを現像するツール）または計測または検査ツールで処理することができる。適宜、本明細書の開示は、以上およびその他の基板処理ツールに適用することができる。さらに、基板は、例えば多層ICを生成するために、複数回処理することができ、したがって本明細書で使用する基板という用語は、既に複数の処理済み層を含む基板も指す。

20

【0022】

本明細書で使用する「放射線」および「ビーム」という用語は、イオンビームあるいは電子ビームといったような粒子ビームのみならず、紫外線（UV）放射線（例えば、365nm、248nm、193nm、157nm、あるいは126nmの波長を有する）および超紫外線（EUV）放射線（例えば、5nm～20nmの範囲の波長を有する）を含むあらゆるタイプの電磁放射線を網羅するものとして使用される。

30

【0023】

本明細書において使用する「パターニングデバイス」なる用語は、基板の目標部分にパターンを生成するように、放射線ビームの断面にパターンを与えるために使用し得るデバイスを指すものとして広義に解釈されるべきである。放射線ビームに与えられるパターンは、基板の目標部分における所望のパターンに正確に対応しないことがあることに留意されたい。一般的に、放射線ビームに与えられるパターンは、集積回路などの目標部分に生成されるデバイスの特別な機能層に相当する。

【0024】

パターニングデバイスは透過性または反射性でよい。パターニングデバイスの例には、マスク、プログラマブルミラーアレイ、およびプログラマブルLCDパネルがある。マスクはリソグラフィにおいて周知のものであり、これには、様々なハイブリッドマスクタイプのみならず、バイナリマスク、レベンソンマスク、減衰位相シフトマスクといったようなマスクタイプも含まれる。プログラマブルミラーアレイの一例は小さなミラーのマトリクス配列を用いる。そのミラーの各々は、異なる方向に入射の放射線ビームを反射するよう個々に傾斜することができる。この方法で、反射ビームにパターンが形成される。パターニングデバイスの各例で、支持構造は例えば枠またはテーブルでよく、これは固定されるか、必要に応じて動作可能でよく、パターニングデバイスが例えば投影システムなどに對して所望の位置にあることを保証することができる。本明細書で「マスク」または「マスク」という用語を使用した場合、これはさらに一般的な「パターニングデバイス」とい

40

50

う用語と同義であると見なすことができる。

【0025】

本明細書において使用する「投影システム」なる用語は、例えば使用する露光放射線、または浸漬流体の使用や真空の使用などの他の要因に合わせて適宜、例えば屈折光学システム、反射光学システムおよび反射屈折光学システムを含むさまざまなタイプの投影システムを網羅するものとして広義に解釈されるべきである。本明細書において「レンズ」なる用語を使用した場合、これはさらに一般的な「投影システム」なる用語と同義と見なされる。

【0026】

照明システムは、放射線の投影ビームを誘導、成形または制御するために屈折、反射、および反射屈折光学構成要素などの様々なタイプの光学構成要素を含むこともでき、このような構成要素を以下では集合的に、または単独で「レンズ」とも言う。

【0027】

リソグラフィ装置は2つ(デュアルステージ)あるいはそれ以上の基板テーブル(および/または2つもしくはそれ以上のマスクテーブル)を有するタイプのものである。このような「多段」機械においては、追加のテーブルが並列して使用される。もしくは、1つ以上の他のテーブルが露光に使用されている間に予備工程が1つ以上のテーブルにて実行される。

【0028】

リソグラフィ装置は、投影システムの最終要素と基板との間の空間を充填するよう、基板を水などの比較的高い屈折率を有する液体に浸漬するタイプでもよい。浸漬液は、例えばマスクと投影システムの最初の要素の間など、リソグラフィ装置の他の空間に適用してもよい。浸漬技術は、投影システムの開口数を増加させるために当技術分野でよく知られている。

【0029】

次に、本発明の実施形態を添付の略図を参照に、例示の方法においてのみ説明する。図面では対応する参照記号は対応する部品を示すものとする。

【発明を実施するための最良の形態】

【0030】

図1は、本発明の実施形態によるリソグラフィ装置を概略的に示したものである。この装置は、放射線ビームPB(例えばUV放射線)を提供するように構成された照明システム(照明装置)ILと、パターニングデバイス(例えばマスク)MAを支持しするように構成され、かつ、投影システムPL(レンズ)に対して正確にパターニングデバイスの位置決めを行うように構成された第一位置決めデバイスPMに連結を行った第一支持構造(例えばマスクテーブル)MTとを含む。装置は、基板(例えばレジスト塗布したウェハ)Wを支持するように構成され、かつ、投影システムPL(「レンズ」)に対して正確に基板の位置決めを行うように構成された第二位置決めデバイスPWに連結を行った基板テーブル(例えばウェハテーブル)WTと、パターニングデバイスMAによって放射線ビームPBに与えられたパターンを基板Wの目標部分C(例えば、1つあるいはそれ以上のダイから成る)に投影するように構成された投影システム(例えば屈折性投影レンズシステム)PLとを含む。

【0031】

ここで示しているように、本装置は透過タイプである(例えば透過マスクを使用する)。あるいは、装置は反射タイプでもよい(例えば上記で言及したようなタイプのプログラマブルミラーアレイを使用する)。

【0032】

照明装置ILは放射線ソースSOから放射線ビームを受け取る。ソースとリソグラフィ装置とは、例えばソースがエキシマレーザである場合に、別個の存在でよい。このような場合、ソースはリソグラフィ装置の一部を形成すると見なされず、放射線ビームは、例えば適切な集光ミラーおよび/またはビーム拡大器などを含むビーム送出システムBDの助

10

20

30

40

50

けにより、ソース S O から照明装置 I L へと渡される。他の場合、例えばソースが水銀ランプの場合は、ソースが装置の一体部品でもよい。ソース S O および照明装置 I L は、必要に応じてビーム送出システム B D とともに放射線システムと呼ぶことができる。

【 0 0 3 3 】

照明装置 I L は、ビームの角度強度分布を調節するように構成された調節デバイス A D を含んでよい。一般的に、照明装置の瞳面における強度分布の外部および / あるいは内部放射範囲（一般的にそれぞれ、 - outer および - inner と呼ばれる）を調節することができる。また、照明装置 I L は、積分器 I N およびコンデンサ C O のような他の様々な構成要素を含む。照明装置は、その断面に亘り所望する均一性と強度分布とを有する放射線ビーム P B とも呼ばれる調整済み放射線ビームを提供する。

10

【 0 0 3 4 】

放射線ビーム P B は、マスクテーブル M T 上に保持されているマスク M A に入射する。放射線ビーム P B はマスク M A を通り抜けて、基板 W の目標部分 C 上にビームを集束する投影システム P B を通過する。第二位置決めデバイス P W および位置センサ I F（例えば干渉計デバイス）の助けにより、基板テーブル W T は、例えば放射線ビーム P B の経路における異なる目標部分 C に位置を合わせるために正確に運動可能である。同様に、第一位置決めデバイス P M および別の位置センサ（図 1 には明示的に図示せず）を使用して、例えばマスクライブラリから機械的に検索した後に、あるいは走査運動の間に、ビーム P B の経路に対してマスク M A を正確に位置決めることができる。一般的に、マスクテーブル M T および W T の運動は、位置決めデバイス P M および P W の部分を形成するロングストロークモジュール（粗動位置決め）およびショートストロークモジュール（微動位置決め）の助けで行われる。しかし、ステッパの場合（スキャナとは対照的に）、マスクテーブル M T はショートストロークアクチュエータに連結されるだけであるか、あるいは固定される。マスク M A および基板 W は、マスクアラインメントマーク M 1、M 2 および基板アラインメントマーク P 1、P 2 を使用して位置合わせができる。

20

【 0 0 3 5 】

ここに表した装置は以下のモードにて使用可能である。

1. ステップモードにおいては、マスクテーブル M T および基板テーブル W T は、基本的に静止状態に保たれている。そして、放射線ビームに与えたパターン全体が 1 回で目標部分 C に投影される（すなわち 1 回の静止露光）。次に基板テーブル W T が X 方向および / あるいは Y 方向にシフトされ、異なる目標部分 C が照射され得る。ステップモードでは、露光フィールドの最大サイズが、1 回の静止露光で描像される目標部分 C のサイズを制限する。

30

2. 走査モードにおいては、マスクテーブル M T および基板テーブル W T を同期走査する一方、放射線ビームに与えられたパターンを目標部分 C に投影する（つまり 1 回の動的露光）。マスクテーブル M T に対する基板テーブル W T の速度および方向は、投影システム P L の拡大（縮小）および像反転特性によって決定される。走査モードでは、露光フィールドの最大サイズが、1 回の動的露光で目標部分の（非走査方向における）幅を制限し、走査動作の長さが目標部分の（走査方向における）高さを決定する。

40

3. 別のモードでは、マスクテーブル M T が基本的に静止状態に維持されて、プログラマブルパターンデバイスを保持し、放射線ビームに与えられたパターンを目標部分 C に投影する間に、基板テーブル W T が動作するか、走査される。このモードでは、一般的にパルス状放射線ソースを使用して、基板テーブル W T を動作させるごとに、または走査中に連続する放射線パルス間に、プログラマブルパターンデバイスを必要に応じて更新する。この動作モードは、以上で言及したようなタイプのプログラマブルミラーアレイなどのプログラマブルパターンデバイスを使用するマスクなしリソグラフィに容易に適用することができる。

【 0 0 3 6 】

上述した使用モードの組合せおよび / または変形、または全く異なる使用モードも使用することができる。

50

【0037】

入射放射線による粒子検出の原理、およびいかにアーティファクトが生じるかを示すために、図2から図5には、放射線が等方性状態で、つまり散乱する粒子または他の汚染物質によって、および異方性状態で、例えば回折または反射していかに検出器システムに入射するかが示されている。

【0038】

図2は、リソグラフィマスクまたは基板のようなオブジェクト2を示す。図2の左手側を参照すると、ビーム4Aがオブジェクト2の表面に当たる。ビーム4Aが表面に当たる位置には、法線6、つまり表面に対して直角の線が示されている。反射ビーム8は、当業者に知られている物理的法則（出射角度は法線6に対して入射角度と同じである）に従って反射する。入射ビーム4Aは部分的に屈折することもあり、これは屈折ビーム10で表される。オブジェクト2の材料の屈折率および放射線ビーム4Aが通過する媒体の屈折率に応じて、屈折ビーム10は法線6に向かうか、そこから離れる方向に屈曲する。屈折および/または反射する放射線の量は、特にオブジェクト2の材料、オブジェクト2の表面コーティングおよび/または入射角度に依存する。

【0039】

検出器システム12は、放射線ビーム4Aの入射位置から来て、検出器システム12に向かって配向される放射線を検出し、これは検出円錐14で示される。図2の左手側で見られるように、入射ビーム4Aは、反射ビーム8として異方反射するか、屈折ビーム10として異方屈折する、あるいはその両方である。したがってこの場合は、検出器に入射する放射線がなく、検出器は、ノイズおよび/またはバイアスレベルはあるが有意の粒子検出レベルがない信号を出力する。

【0040】

次に図2の右手側を参照すると、放射線ビーム4Bが、オブジェクト2の表面上に存在する汚染粒子16に入射する。入射放射線の一部は粒子16に吸収される。その他の部分は反射する。粒子16の表面の表面形状のせいで、入射放射線は散乱、つまり等方反射する。等方性状態で反射した放射線は、矢印18で示され、ほぼ全ての方向に配向される。したがって、反射放射線18の一部は、検出器システム12の検出円錐14内にある。したがって、検出器システム12は放射線を検出し、検出した放射線に対応し、粒子検出レベル、つまり閾値レベルより高いレベルを有する信号を出力する。

【0041】

図3では、放射線4の入射ビームが、オブジェクト2の表面に当たるよう図示されている。入射位置から、放射線ビーム19は検出器システム12の検出円錐14内にあり、検出器システム12に入射する。ビーム19は、汚染粒子によって散乱した放射線でよく、したがって検出回路が粒子を適正に検出する。

【0042】

しかし、以降で説明するような回折、屈折および/または反射の結果としてオブジェクト2の内側から来るビーム20は、オブジェクト2を出て、屈折し、したがってビーム19となる。したがって、法線に対して屈折ビーム19が検出円錐14内にあるような角度を有するビーム20がオブジェクト2内から来ると、検出器システム12は、汚染粒子によって散乱していない放射線を検出する。しかし、検出器システム12からの信号を受信する検出回路は、信号が所定の閾値レベルより高いと判断し、誤って粒子が存在すると示す。このように検出されるが実際には存在しない粒子を、本明細書ではゴースト粒子と呼ぶ。

【0043】

図4および図5に関して以下で詳細に説明するように、ゴースト粒子の検出にとって重要な原因是、回折パターンである。オブジェクトが、入った放射線が内部回折する表面にて例えば反射クロムパターンなどのパターンを含む場合は、回折パターンになる。回折パターンは、内部で反射し、屈折して、次に回折パターンの少なくとも一部が検出器に入射するようにオブジェクトから出ることができる。このような回折パターンは、検出器に入

10

20

30

40

50

射する放射線の異方性因子である。

【0044】

回折パターンは、幾つかの次数を含んでよい。つまりゼロ次パターン、1次パターンおよびそれより高い次数のパターンである。回折パターンの次数の形状、方向および間隔は、回折パターンの形状、方向および空間的周波数に依存する。回折パターンが2次元の周期的構造を有する場合は、関連する回折パターンも2次元である。回折次数のエネルギー(強度)は、特にパターンのデューティサイクル(つまりパターンの空間的特徴)およびパターンの高さの差に依存する。回折パターンの方向は、ゼロ次、1次またはそれ以上の次数の回折パターンが検出器システムに到達できるかを決定する。

【0045】

回折パターンの一部は、回折パターンのその部分が検出器に入射する前に、ダイヤフラムによって遮断される。場合によっては、2次以上の回折パターンのような回折パターンの別の部分が、それでもダイヤフラムを通過する。本発明の実施形態によると、異方性放射線は等方性放射線から弁別される。放射線の等方性因子は、このようなダイヤフラムが存在しても検出器の両方の部分に入射するからである。したがって、検出器の各部分からの各信号が、所定の閾値またはノイズレベルより高いほぼ同じレベル(検出器デバイスの中心と放射線ビームが位置合わせされている場合は)であることを検証することによって、放射線に等方性因子があるか判断することができる。

【0046】

上述したダイヤフラムは、検出器デバイスを2つの部分に分割する。ダイヤフラムが存在するにもかかわらず、多少の異方性放射線が検出器デバイスに入射することができる。さらに、異方性放射線は一部が検出器システムの第一部分に入射し、一部が検出器システムの第二部分に入射して、各検出器部分からほぼ同じ信号レベルが生じる。本発明のさらなる実施形態によると、第二ダイヤフラムは、検出器システムの部分の間に区域を覆うことによって、このような入射を防止する。また、前記ダイヤフラムの幅は、入射放射線ビームに予想される幅と等しいか、それより大きくなる。これらの実施形態については、図6Aから図6Dおよび図7Aから図7Cに関して以下でさらに解明する。

【0047】

図4では、オブジェクト2の内側からいかにビームが発生するかを示す。図示のオブジェクト2はマスクである。一方の表面上で、マスク2は例えばクロミウムなどで作成したマスクパターン22を含む。マスク2の反対側表面に粒子がないか走査する。図4に示した例では、実際に粒子が存在しない。

【0048】

ビーム4は、走査される表面に配向され、そこに入射する。入射放射線の一部は反射し(図示せず)、別の部分は吸収され、屈折し、屈折ビーム10がマスクパターン22に当たる。吸収され、反射したビーム10はマスク2を通過する。反対側の表面では、屈折したビーム10がマスクパターン22に当たる。マスクパターン22は周期的パターンである。周期性のせいで放射線は回折する。回折したビーム24はマスク2を通過し、入射表面で反射する。その後に他の表面で内部反射が生じ、これは反射ビーム26で示される。最終的に、内部反射ビーム26は、ビーム4の入射位置に近づき、したがってマスク2を出て、ビーム19で示すように検出器システム12に向かって屈折する。したがって、ゴースト粒子が検出される。

【0049】

図5では、この場合もマスク2の内側から来る屈折ビーム19は検出器システム12に入射するが、これは図4で示した例と比較すると別の一連の反射、屈折および/または回折によるものである。図5で示す例では、入射ビーム4はマスク2に入り、屈折ビーム10として屈折する。入射角度および表面状態が与えられると、屈折ビーム10が反対表面で回折または屈折し、屈折ビーム28としてマスク2を出る。屈折ビーム28が、薄膜などの別のオブジェクトの表面32で反射すると、反射ビーム26は再びマスク2の表面に当たる。

【0050】

反射ビーム26は、周期的マスクパターン22で回折し、回折ビーム30としてマスク2に入る。図示の回折ビーム30は、検出器システム12に向かって屈折して、検出されるように、マスク2を出る。図4と同様に、検出回路がゴースト粒子を検出するが、粒子は存在しない。

【0051】

図3、図4および図5に関する以上の説明では、反射、屈折および回折が異方性であることに留意されたい。その結果、再配向された放射線が1本または複数のビームに含まれ、これに対して散乱した等方性放射線はほぼ全ての方向に再配向される。複数の回折ビームは(回折)次数として知られる。

10

【0052】

回折パターンのビームの断面は、入射放射線ビームの断面形状に依存する。例えば、入射ビームが1本の丸い放射線ビームである場合、回折パターンは一連の単独の丸いビームになる。

【0053】

さらに、光には他にも多くの軌跡が可能であるので、図2から図5は例示のみを目的とすることが分かる。例えば、図2から図5には図示されていないが、図示の円錐14の内側以外の別の方向から来る放射線が検出器システム12に入射することができ、したがってゴースト粒子が検出されることになる。他の一連の反射、屈折および/または回折の結果、放射線が検出器システムに配向され、したがってゴースト粒子が検出され得る。

20

【0054】

図6Aでは、検出器システム12の表面が図示されている。検出器システム12は、表面に入射する放射線を検出して、対応する信号を出力する。3つのスポット(n 次、($n+1$)次および($n+2$)次)を含む第一回折パターンは、一部が検出器表面12に入射する。したがって、検出器システム12は放射線を検出し、検出した放射線の強度に対応する信号を出力する。回折パターン40は、粒子によって分散した放射線ではないので、信号を受信した検出回路は、誤って粒子が存在すると判断する。ゴースト粒子の検出を防止するために、図6Bで示すようなダイヤフラムを使用してよい。このようなダイヤフラムを、走査される表面と検出器の間に位置決めしてよい。

30

【0055】

次に図6Bを参照すると、第一回折パターン40を遮断するために細片形のダイヤフラム34を使用することができる。粒子による散乱の結果生じる等方性反射も、細片形ダイヤフラム34によって一部が遮断されるが、等方性放射線の別の部分は遮断されず、検出器システム12に入射する。したがって、検出器システム12は、等方性散乱放射線のみ検出し、出力信号は存在する粒子からのみ生じる。

【0056】

検出器システム12の前に細片形ダイヤフラム34を使用するのではなく、図6Cで示すようなダイヤフラム35を同様に使用してよいことが理解される。ダイヤフラムの開口37が放射線を通過させる。細片34が、ダイヤフラムの開口37に位置決めされ、第一回折パターン40を遮断する。

40

【0057】

図6Dでは、第一回折パターン40が図示されているばかりでなく、幾つかのスポットを含む第二回折パターン42も図示されている。第二回折パターン42は、マスクパターン22(図4および図5参照)の別の部分から、または回折パターンの他の特徴によるものである。細片形ダイヤフラム34は第一回折パターン40を遮断するが、第二回折パターン42はダイヤフラムを通過して、検出器システム12に到達する。したがって、第2回折パターン42が粒子の存在を示す信号をもたらすので、なおゴースト粒子を検出する可能性がある。

【0058】

図7Aから図7Cでは、垂直ダイヤフラム34および水平ダイヤフラム36を有する十

50

字形ダイヤフラムが図示されている。図6の場合と同様に、垂直ダイヤフラム34が第一回折パターン(図示せず)を遮断する。第二回折パターン42は幾つかの位置をとり得る。ダイヤフラム34、36の幅は、幅が回折パターン42のスポットの幅より大きくなるように選択される。

【0059】

図7Aでは、第二回折パターン42が水平ダイヤフラム36によって遮断される。したがって、検出器システム12に入射する回折パターンがない。しかし図7Bでは、第二回折パターン42が遮断されず、少なくとも部分的にダイヤフラム34、36を通過し、回折放射線が検出器システム12に入射する。同じことが図7Cで示す状況に当てはまり、この状況では回折パターン42が、図7Bで示す状況と比較して、水平ダイヤフラム36の反対側へと通過する。

【0060】

図7Aで示す状況が生じると、ゴースト粒子が検出されない。検出器12に入射する回折放射線がないからである。等方性散乱放射線のみ検出される。図7Bおよび図7Cでは、異方性回折放射線42が検出器システム12の半分にのみ入射する。それぞれ下半分または上半分である。その結果、検出器システム12の他の半分は、散乱放射線を検出するのみで、これも回折放射線とは別に検出器システム12の他の半分で検出される。したがって、検出器システム12の対応する半分で検出される放射線に対応する2つの信号が、検出器システム12で出力され、回折放射線が存在する場合は、異方性回折放射線の因子のせいで、一方の信号が他方より高いレベルを有する。

【0061】

3つの状況のいずれかが生じ得る。

1. 非等方性(回折、屈折、反射)放射線と等方性(散乱)放射線の両方が、検出器システム12に入射する。
2. 等方性(散乱)放射線のみが検出器に入射する。
3. 非等方性(回折、屈折および/または反射)のみが検出器に入射する。

【0062】

第一の状況では、両方の信号が所定のノイズ(閾値)レベルより高いレベルを有して、少なくとも等方性放射線のみが検出器システム12に入射したことを示し、検出回路は、粒子が存在すると判断することができる。第二の状況では、検出器の両方の半分がほぼ同じ信号レベルを出力し、これはゴースト粒子の因子がなく、粒子のみが存在することを示す。第三の状況では、信号の1つのみがノイズ(閾値)レベルより高いレベルを有し、検出された放射線が回折、屈折および/または反射によるもので、粒子の散乱によるものではないことを示す。検出回路は、粒子が存在しないと判断する。

【0063】

本発明の別の実施形態は、空間的弁別に依存せず、波長に関連する弁別に依存する。上述したように、ゴースト粒子が検出される重要な要因は、回折パターンである。しかし、回折パターンは、回折した入射放射線の波長に依存する。それぞれが自身の固有波長を有する2つ以上の放射線ソースを使用して、異なる回折パターンを生成する。波長ごとに検出器を使用して、各波長の回折パターンを個々の検出器で検出する。異なる波長の放射線ビームの様々な回折パターン、および他の内部反射および屈折も全て、対応する検出器に到達する可能性が非常に少ないように、波長を選択する。したがって、上述した実施形態の検出方法と同様に、各検出器からの各信号がノイズレベルより高いレベルを有することを検証することによって、検出した放射線に等方性因子があるかを判断することができる。

【0064】

第一および第二検出器は、1つの検出器によって物理的に表され、その検出信号は、異なる波長を有する様々な放射線ビームからの幾つかの因子に分割できることが分かる。因子の数は、幾つかのビームを同時に検出した後に検出するか、例えばパルス状放射線ソースを使用して、幾つかの因子を次々に判断することができる。

10

20

30

40

50

【0065】

図8は、本発明の上述した実施形態を示し、2つの放射線ソース38Aおよび38Bが、異なる波長を有する2本の放射線ビーム4Aおよび4Bを出力する。波長は、場合によって発生するような回折パターンが対応する検出器に向かう軌跡にて重なる可能性が低くなるように選択される。光学デバイス44Aが2本の放射線ビーム4Aおよび4Bを結合し、結合したビームは、走査されるオブジェクトの表面に配向される。結合したビームは、他方の光学デバイス46Aを通過し、粒子16に当たるか、当たらない。

【0066】

散乱した後、反射、屈折および/または回折した放射線は、幾つかの光学デバイス46Bが存在する場合に、それを通過する。次に、光学デバイス44Bが放射線を、ビーム4Aに対応する範囲の波長を有する放射線と、ビーム4Bに対応する範囲の波長を有する放射線に分割し、放射線を対応する検出器12Aまたは12Bへと経路指示する。

【0067】

ビーム4Aおよび4Bは、上述したように異なる波長を有する。各ビーム4は、モノクローム放射線のビームであるか、特定の波長範囲内の波長を有する放射線を含んでよい。波長は、ビームが異なる回折パターンを確実に有するように、異なってよい。回折パターンは、入射放射線の波長に依存するからである。入射放射線ビーム4Aおよび4Bがオブジェクトに入ると（したがって粒子に当たらないと）、回折、反射および/または屈折し、したがって入射放射線の一部が、検出器12Aまたは12Bそれぞれの方向にてオブジェクトを出る。波長の違いによりその回折パターンが異なるので、両方の検出器12Aおよび12Bがこのような異方性放射線を同時に受け取ることは、実質的に不可能である。したがって、ビーム4Aおよび/または4Bからの放射線が回折、反射および/または屈折すると、個々の検出器12Aおよび12Bのうち一方のみが、所定の閾値レベルより高いレベルを有する信号を出力することができ、したがって粒子が存在しないと判断される。

【0068】

ビーム4Aおよび4Bが粒子16に当たると、両方のビーム4Aおよび4Bは散乱し、両方のビーム4Aおよび4Bから放射線の一部が、個々の検出器12Aおよび12Bの方向に散乱/反射する。したがって、粒子が存在する場合、両方の検出器12Aおよび12Bが、ある量の放射線を受け取り、所定のノイズレベルより高いレベルを有する放射線の受け取った量に対応する信号を出力し、したがって粒子が存在すると判断される。この実施形態では、第一および第二検出器は、1つの検出器で物理的に表され、検出された信号を、上述したように異なる波長を有する放射線の異なるビームからの幾つかの因子に分解することができる。

【0069】

粒子が存在して、放射線を異方性状態で再配向し、等方性状態で再配向された放射線も検出器の一方に入射する場合は、両方の検出器が、閾値レベルより高いレベルを有する信号を出力する。しかし、一方の信号は、異方性および等方性状態で再配向された放射線を表すレベルを有し、別の信号は、異方性状態で再配向された放射線のみを表すレベルを有する。信号のレベルが違うにもかかわらず、両方の信号が、閾値レベルより高いレベルを有するので、汚染粒子が検出され、したがって粒子が存在すると判断される。波長の選択のせいで、両方の波長が対応する検出器に等方性（ゴースト）信号を提供するという結果になる可能性は低く、したがって粒子信号をゴースト信号から確実に弁別する。

【0070】

本発明の上述した実施形態のそれぞれで、2つ以上の独立した信号が、閾値レベルより高いレベルを有することが検証される。全てのレベルが閾値レベルより高い場合、検出器回路は、表面上に粒子が存在すると判断する。このように、等方性の光が検出器に入射したことが検出されるからである。したがって、図9で示すような本発明の実施形態では、検出回路は、対応する数の入力信号を閾値レベルと比較するように構成された幾つかの比較器を含み、各比較器は論理的比較器信号を出力し、AND演算器は、各論理比較器信号

10

20

30

40

50

を受信して、各論理比較し信号が TRUE を表す場合は、論理 TRUE 信号を出力するよう構成される。したがって、表面上に粒子が存在する場合、検出回路は論理 TRUE を出力する。

【0071】

図9は、表面上に粒子が存在するか否かを判断するために本発明の上述した実施形態で使用する検出回路を示す。幾つかの信号（検出回路の図示した実施形態では2つの信号）が、所定のノイズレベルを表す閾値レベルより高いレベルを有することを検証することによって、粒子が存在すると判断される。図9で示す例示的回路はデジタル回路である。しかし、回路はアナログ回路でもよい。

【0072】

図9を参照すると、第一検出器システム12Aは、増幅器50Aへと信号を出力する。増幅器50Aの出力を、アナログ・デジタル変換器52Aに入力する。しかし、増幅器50Aは検出回路の基本的構成要素ではない。検出器システム12Aの出力を、アナログ・デジタル変換器52Aに直接入力してもよいからである。アナログ・デジタル変換器52Aの出力を、第一入力として比較器54Aに供給し、所定のノイズレベルを表す閾値信号56Aを、第二入力として比較器54Aに入力する。比較器54Aは入力信号を比較して、論理的比較信号58Aを出力する。論理比較信号58Aを、第一入力としてAND演算器60に入力する。

【0073】

検出回路の上述したブランチは、任意の回数存在してもよい。図9で示す実施形態では、検出器システム12B、増幅器50B、アナログ・デジタル変換器52B、比較器54B、閾値信号56Bおよび論理比較信号58Bを含む第二ブランチがあり、信号58BはAND演算器60にも入力する。同様に、検出回路には任意の数の同一ブランチが存在してもよい。これで、AND演算器60は対応する数の入力を有する。論理AND演算器の出力62は、粒子が存在するか否かを示す論理値を表す。

【0074】

検出された散乱放射線の量は、検出された粒子のサイズの尺度である。したがって、検出回路は、粒子が存在するかを示すばかりでなく、粒子のサイズの推定値を示すような構成でもある。しかし、論理AND演算器の出力62は、粒子が存在するか否かしか示さない。論理値は「TRUE」または「FALSE」しか表せないからである。サイズを示すためには、一方または両方の検出器の信号値を保存し、粒子が検出された場合は、検出回路の出力で表さなければならない。図9で示す検出回路は、粒子が検出された場合はサイズを出力し、粒子が検出されない場合は、NULL信号を出力するように構成される。

【0075】

また、検出回路にADD演算器66を設け、これは各アナログ・デジタル変換器、図示の実施形態では変換器52Aおよび52Bの出力を加算する。回路に存在するブランチが増加した場合、ADD演算器66は対応する数の入力部を有し、全ての入力信号を加算する。ADD演算器66の出力から、ADD演算器の出力信号68をMUL演算器70に供給して、入力信号を乗じる。ADD演算器の出力信号68意外に、論理AND演算器の信号62をMUL演算器70に入力する。MUL演算器の出力72は、以下で説明するように、粒子が検出された場合に、そのサイズを表し、粒子が検出されない場合はNULLを表す。

【0076】

以下の説明から、当業者には検出回路が機能する方法が容易に理解される。回路は、任意の数の検出器信号に拡張してよいことが分かる。検出器12Aおよび12Bは、検出器システム12Aおよび12Bそれぞれが受け取る放射線の量を表す信号を出力する。出力は、増幅器50Aおよび50Bそれぞれで増幅され、アナログ・デジタル変換器52Aおよび52Bそれぞれでデジタル化することができる。あるいは、デジタル信号S1およびS2を、ソフトウェアで実行するアルゴリズムを使用して処理することができる。ソフトウェアでは、例えばより複雑なアルゴリズムを容易にプログラムし、使用すること

ができる。検出回路は、アナログでもよく、したがって変換器 52A および 52B を省略してよい。

【0077】

変換器 52A および 52B の出力は、このようにまだ検出器 12A および 12B それぞれの出力の信号値を表す。変換器 52A および 52B の出力は個々の変換器 54A および 54B に入力され、これは信号値を個々の閾値 56A および 56B と比較して、検出器の出力が閾値より高いレベルを有するかを判断する。閾値 56A、56B は、所定のノイズレベルを表す。検出器の出力がノイズレベルより低い場合は、検出器システム 12A、12B が特定の最低量の放射線を受け取らず、その出力はノイズにすぎないと想定される。比較器 54A、54B は、検出器の出力が閾値 56A、56B より高い場合は、「TRUE」(「1」)を表し、検出器の出力が閾値 56A、56B より低い場合は「FALSE」(「0」)を表す論理信号 58A、58B を出力する。

【0078】

両方の比較器 54A および 54B が論理 TRUE (「1」)を出力すると、AND 演算器 60 が、TRUE を表す信号 58A、58B しか受信せず、したがって論理 TRUE (「1」)を出力する。一方またはどちらの入力 58A、58B も FALSE (「0」)を表さない場合、AND 演算器 60 の出力 62 は FALSE (「0」)を表す。

【0079】

ADD 演算器 66 は、粒子が検出されるか否かに関係なく検出器の出力を加算する。検出器出力の加算は、図 7 の実施形態に関して説明した実施形態に特に適している。その実施形態では、受け取った量の放射線を検出器の 2 つの半分部分に分割し、2 つの別個の信号として出力するからである。これで、相互に加算された 2 つの別個の信号は、受信した放射線の合計量を表す。図 9 で示す 2 つの検出器 12A および 12B は、この場合、1 つの検出器の 2 つの半分部分と解釈される。したがって、ADD 演算器の出力信号 68 は、受け取った放射線の合計量を表す。

【0080】

本発明の実施形態では、検出回路は、検出器信号に基づいて検出した粒子のサイズを判断するように構成することができる。検出器信号のレベルは、検出器に入射する検出放射線の強度を表す。入射放射線の強度は、検出粒子のサイズの尺度である。

【0081】

ADD 演算器の出力信号 68 は、MUL 演算器 70 に入力される。MUL 演算器 70 はさらに、粒子が存在する場合、および粒子が存在しない場合にそれぞれ、論理 TRUE (「1」) または FALSE (「0」) も受信する。したがって、粒子が存在する場合、MUL 演算器 70 は ADD 演算器の出力信号 68 と論理 TRUE (「1」) を掛けて、その結果、ADD 演算器の出力信号 68 と同じ信号値を有する出力信号 72 になる。ADD 演算器の出力信号 68 は、検出器 12A および 12B が受け取った放射線の量を表し、したがって検出粒子のサイズの尺度である。したがって、MUL 演算器 70 の出力 72 は、検出した粒子のサイズを表す。粒子が検出されない場合は、ADD 演算器の出力信号 68 に 0 (「FALSE」) を掛けるので、NULL を表す。

【0082】

複数の信号を受信し、本発明の 1 つまたは複数の実施形態に関して上述したような検出器の各部分から 1 つ、または複数の検出器からの 1 つまたは複数の信号を受信した場合は、別個の各信号、または 2 つ以上の信号の組み合わせを使用して、粒子サイズを判断することができる。適切な組み合わせは、例えば 1 つの検出器から来た 2 つの信号の合計であり、したがって検出器全体に入射する放射線の強度を再構築する。

【0083】

検出器に入射する光は、等方性および異方性状態で再配向された光、つまり粒子によって再配向された光およびゴースト粒子を表す光の両方を含むことがある。したがって、両方の信号が、閾値レベルより高いレベルを有し、第一信号が、第二信号よりはるかに高いレベルを有することがある。このような場合、第一信号は、入射光の等方性因子と異方性

10

20

30

40

50

因子の両方により発生する。第二信号は、等方性因子、つまり粒子による散乱から生じた放射線のみを表す。したがって、検出回路の実施形態では、最低レベルを有する信号を粒子サイズの判断に使用する。

【0084】

A D D 演算器 66 を使用する代わりに、他の回路を使用して、粒子のサイズを表す信号を出力してよいことが分かる。例えば、両方の検出器 12A および 12B が高い信号を出力する場合、その一方が散乱した等方性放射線ばかりでなく非等方性放射線も受け取ったと見なすことができる。したがって、一方の信号が他方よりはるかに高くなる。このような場合は、低い方の信号のみを使用するように考慮される。というのは、低い方の信号は、散乱放射線しか表さず、したがって散乱粒子のサイズをよりよく表すと想定されるからである。論理演算器またはアナログ回路を使用して回路を作成する方法は、当業者には容易に理解され、この回路は、低い方の信号を選択して、その信号を図 9 で示す MUL 演算器 70 へと出力する。

【0085】

レチクルの汚染を検出し、汚染粒子のサイズを測定するために、内部または外部レチクル検査システムを使用することができる。これらのシステムは、レチクル表面（またはその一部）の 2 次元像を獲得するために、デジタルカメラまたはスキャナを含んでよい。

【0086】

2 次元描像システムで分解能（ピクセルのサイズまたは走査ビームのスポットサイズ）より小さい粒子のサイズは、粒子を露光した時に最大反射信号強度（ピクセル強度）を測定し、それを既知の寸法の標準的ラテックス球で反射した光の量と比較することによって推定することができる。

【0087】

形状およびサイズのような 2 次元ビットマップから粒子の特徴を抽出することも可能である。このような 2 次元ビットマップを使用して、2 次元描像システムの分解能より大きい粒子のサイズを推定することができる。この方法を像特徴方法と呼ぶことができる。この方法は一般的に、2 次元描像システムの分解能よりはるかに大きい粒子でのみ正確である。実際的な実施形態では、後者は約 70 μm である。

【0088】

ラテックス等価球（LES）反射方法は、2 次元描像システムの分解能より小さい汚染粒子にもうまく働くが、この方法は、比較的大きい粒子には望ましくない。というのは、非現実的な推定になり、基本的にこれらの粒子を小さすぎると分類するからである。反射方法で使用するラテックス球の範囲は、一般的に 10 μm から 100 μm に制限される。

【0089】

粒子は、レチクルの上面および / または薄膜（硬質または軟質）の底面で検出されるので、粒子は常にレチクル上のパターンに対して焦点ずれの位置にあり、これは小さい粒子の方が描像に及ぼす影響が小さいので、小さい粒子は大きい粒子ほど重大ではないことを意味する。したがって、選択される汚染検出方法は、約 60 μm より大きい粒子のサイズも正確に推定しなければならない。

【0090】

本発明の実施形態では、オブジェクト上の粒子を検出する新しい方法が提示される。第一に、レチクルの 2 次元像を取得する。この 2 次元像は粒子の反射強度を含む。次に、特定の閾値より高い強度を有し、接続したピクセルのクラスタにつき、この像を走査して、個々の粒子を突き止める。各ピクセルクラスタのサイズは、像特徴方法に従って判断することができるが、このサイズが所定値より小さい場合は、代わりにラテックス等価球反射方法を使用してもよい。像特徴方法による粒子サイズは、本発明の実施形態では全てのクラスタピクセルを含む長方形のバウンディングボックスの幅および高さを求めるこによって、像から抽出する。あるいは、例えばクラスタピクセルの数、バウンディングボックスの対角線、または 2 つのクラスタピクセル間の最大距離を使用することができる。粒子は、極めて非対称のことがある（例えばバウンディングボックスの幅が高さより非常に大

きい) ことが理解され、その場合は像特徴方法を使用してよい。

【0091】

その結果の方法は、小さい粒子と大きい粒子の両方を検出できることが分かり、その範囲は、実際には2次元像のサイズによってのみ制限される。

【0092】

本発明の別の実施形態は、検出器デバイスの表面の空間的弁別に依存する。本発明のこの実施形態を示す図10Aおよび図10Bを参照すると、放射線遮断アセンブリ130は、オブジェクト102の表面102Aから放射線検出器デバイス112までの放射線軌跡120(光軸)に位置決めされる。放射線遮断アセンブリ130はレンズ131およびダイヤフラム132を有する。汚染粒子116は、オブジェクト102の表面102A上に存在する。放射線ビーム110が粒子116に入射する。粒子116によって再配向されたその結果の散乱放射線ビームが、検出器デバイス112に向かって伝播する円錐114として図示されている。

【0093】

レンズ131は、オブジェクト102の表面102Aの面上の放射線ソースから来る放射線を、検出器デバイス112の面に集束するように構成される。したがって、粒子116によって散乱した放射線ビーム114が検出器デバイス112に集束する。しかし、ダイヤフラム132が、レンズ131に入射する放射線の一部を遮断する。円錐114の放射線の一部はダイヤフラム132を通過して、それでも検出器デバイス112に集束される。汚染粒子116の像に対するダイヤフラム132からの影響は、検出器デバイス112上で放射線の強度が失われることである。

【0094】

次に、上述した実施形態をさらに示す図10Cおよび図10Dを参照すると、ダイヤフラム132は、オブジェクト102の表面102Aから放射線検出器デバイス112までの放射線軌跡120(光軸)に位置決めされる。

【0095】

図10Cおよび図10Dでは、オブジェクト102の表面102Aに汚染粒子が存在しない。放射線ビーム(図示せず)が表面102Aに入射する。ビームは、屈折してオブジェクト102に入り、オブジェクト102内で反射して、場合によってはパターン表面102Bで回折する。その結果の円錐118内の回折放射線ビームが、ビーム119として図示されている。円錐118は、ゴースト粒子122から来て、レンズ131へと配向される可能な異方性放射線ビームのアセンブリと見なすことができる。

【0096】

ダイヤフラム132が、レンズ131に向かって廃校された等方性放射線の一部を遮断する。ダイヤフラム132を通過する円錐114の放射線の一部が、検出器デバイス112上に集束している。粒子116Aの像に対してダイヤフラム132からの影響は、検出器デバイス112上で放射線の強度が失われることである。

【0097】

異方性ビームがパターン表面102B内で生成される場合、このビームが表面102Bを出るポイントを、ゴースト粒子122の位置と見なすことができる。表面102Aにおける屈折のせいで、ゴーストビームはオブジェクト102を出る時に異なる方向を有し、ゴーストが図10Cで示すような仮想ゴースト粒子122Aに起源を有するように見える。ビームが131に到達すると、これは円錐118内に位置する。円錐118内でゴースト粒子122から来る異方性ビームに関しては、2つの可能性がある。ビームはダイヤフラム132によって遮断されるか、ビームが(部分的に)ダイヤフラム132を通過し、レンズ131に入射して、ポイント117に集束するのである。ポイント117は、レンズ131によって作成されたゴースト粒子122の像である。ゴースト粒子122Aは、粒子116よりもさらにレンズ131から離れているので、ポイント117の像は、光学描像の法則に従い、検出器デバイス112上の粒子116の像の前で多少の距離に位置する。ゴースト粒子122からの放射線は、ポイント117を通過した後、検出器デバイス

10

20

30

40

50

112に向かってさらに伝播し、その結果、区域112Aの外側で検出器デバイス112の区域112Bまたは112C内のスポットになる。

【0098】

図10Eでは、区域112A、112Bおよび112Cが拡大して図示されている。区域112Aは、粒子122から来て、ポイント117に集束した円錐118の全ての可能なビームによって作成されたダイヤフラム132の影と言うことができる。したがって、検出器デバイス112の部分112Aには、ゴースト粒子122の結果生じた放射線がない。検出器デバイス112の部分112Aを、これ以降、検出器デバイス112のゴースト非検出部分112Aと呼ぶ。したがって、図10Aから図10Dで示した状況では、区域112Aからの信号は、粒子116にのみ関係し、ゴースト粒子122には関係しない。

10

【0099】

しかし、例外的な場合には、2次元パターン上の二重回折により、ゴースト粒子が図10Cの面の外側にあるように見えることがある。そのような場合は、ゴースト粒子が区域112A、および112Bまたは112Cに入ることがある。粒子の存在の不正確な判断を防止するために、実施形態では、ゴースト粒子122に関係する区域112Bまたは112Cからの信号を使用する。検出器デバイス112(図10E)上の粒子116の像133が、区域112A内にある。したがって、区域112Bまたは112Cからの信号は、ゴースト粒子122にのみ関係し、実際の粒子116には関係しない。区域112Bまたは112Cを使用して、ゴースト粒子122の存在を警告することができる。これは、区域112Aからの信号を粒子116からの信号として誤って解釈するがあり、信号が実際にはゴースト粒子に関係するという、図10Cの面の外側に位置するゴースト粒子の上述した状況に有用である。したがって、区域112Bまたは112Cからの信号は誤った解釈を補正することができる。

20

【0100】

ゴースト非検出部分112Aのサイズは、ゴースト粒子122とレンズ131の焦点との距離に依存する。レンズ131の焦点は、汚染粒子116によって散乱した放射線が検出器デバイス112の部分112Aで集束するように選択される。ゴースト非検出部分112Aのサイズは、特にレンズ131の焦点、検出器デバイス112とポイント117との距離、およびダイヤフラム132のサイズに依存する。

30

【0101】

当業者には、図10Aから図10Eで図示し、上述したような実施形態を、図6から図9に関して説明したような実施形態と本発明の技術を使用せずに組み合わせられることが分かる。例えば、ダイヤフラム132は、図6Aから図6Dまたは図7Aから図7Cで示すような形状を有してよい。このような実施形態では、ダイヤフラム132の幅は、側面図および/または上面図でレンズ131の幅とほぼ等しい。

40

【0102】

以上、本発明を好ましい実施形態にて説明し、図示してきたが、本発明の範囲内でそこから逸脱できることを理解されたい。本発明は、本明細書で開示された詳細に制限されない。

【0103】

本発明の詳細な実施形態を、必要に応じて本明細書で開示しているが、開示された実施形態は本発明の例示にすぎず、これは様々な形態で実現できることを理解されたい。したがって、本明細書で開示された特定の構造および機能の詳細は、制限的なものではなく、請求の範囲のベースにすぎず、ほぼ全ての適切な詳細構造に本発明を様々に使用することを当業者に教示する代表的ベースとして解釈される。さらに、本明細書で使用する用語および句は、制限的であるように意図したものではなく、本発明を理解可能であるように説明したものである。

【0104】

本明細書で使用する「1つの」という用語は、1つまたは1つより多いものと定義され

50

る。本明細書で使用する複数という用語は、2つまたは2つより多いと定義される。本明細書で使用する別という用語は、少なくとも2つまたはそれより多いものと定義される。本明細書で使用する含むおよび／または有するという用語は、有するものと定義される(つまりオープン言語)。本明細書で使用する結合という用語は、必ずしも直接的ではなく、必ずしも機械的ではない接続と定義される。

【図面の簡単な説明】

【0105】

【図1】本発明の実施形態によるリソグラフィ装置を示したものである。

【図2】オブジェクトまたは粒子への放射線ビームの再配向を概略的に示したものである。

【図3】オブジェクトを出て、検出器システムによって検出される放射線のビームを概略的に示したものである。

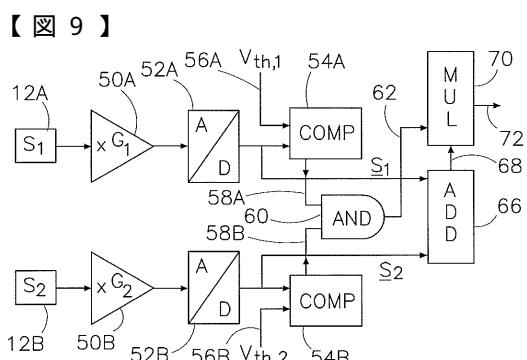
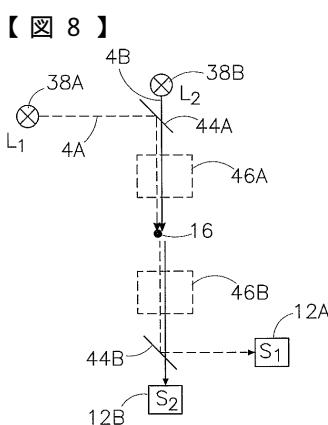
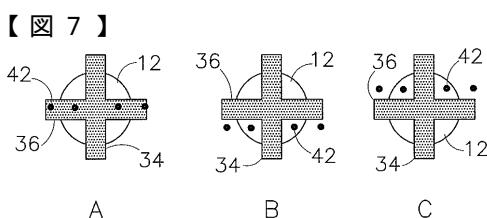
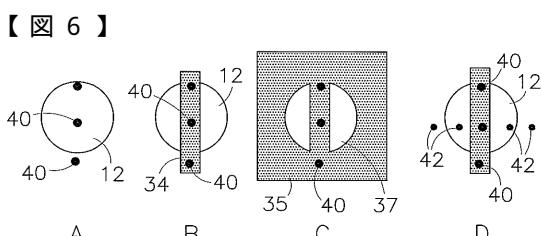
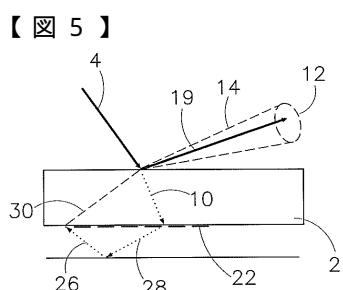
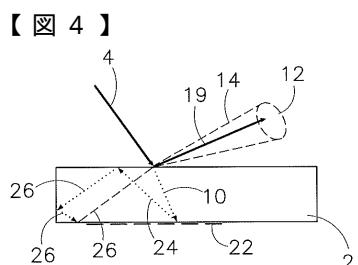
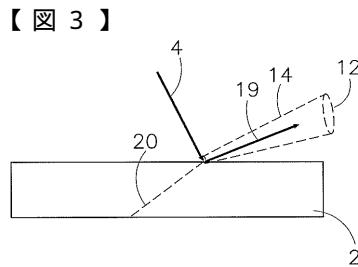
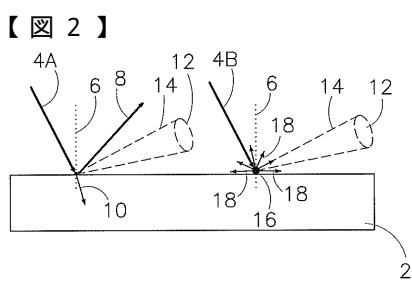
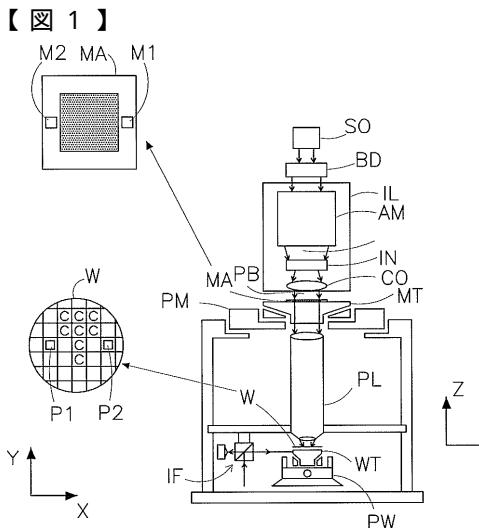
【図4】放射線のビームが、検出器システムの方向でオブジェクトを出る前に、いかに内部屈折、回折および／または反射するかを概略的に示したものである。

【図5】放射線のビームが、検出器システムの方向でオブジェクトを出る前に、いかに内部および外部屈折、回折および／または反射するかを概略的に示したものである。

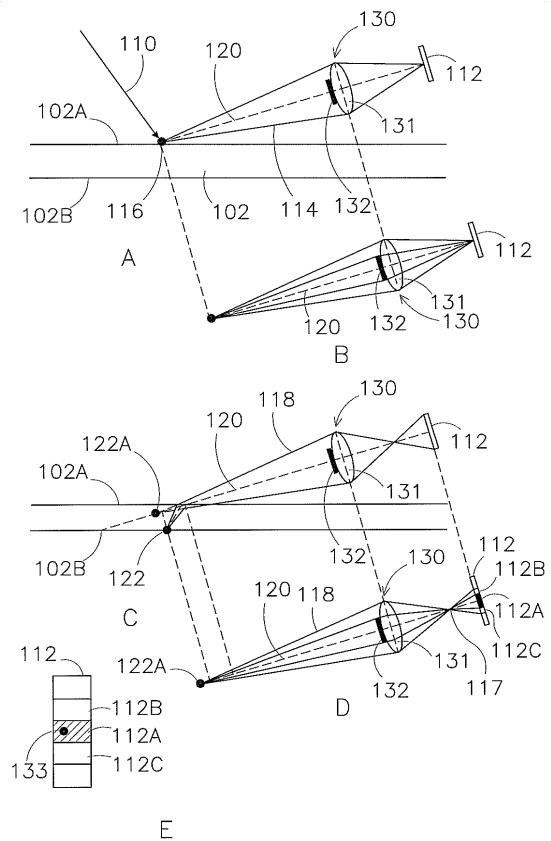
【図6】AからDは、1次回折パターンが検出器システムに入射するのを防止するように構成された従来通りのダイヤフラムを概略的に示したものである。

【図7】AからCは、本発明の実施形態によるダイヤフラムを概略的に示したものである。

【図8】2つの放射線ソースおよび2つの放射線検出器デバイスを含む粒子検出システムを概略的に示したものである。










【図9】本発明の実施形態による検出回路の回路図である。

【図10】Aは放射線遮断センブリを有する粒子検出システムの実施形態の略側面図である。Bは、Aの実施形態の略上面図である。Cは放射線遮断センブリを有する粒子検出システムの実施形態の略側面図である。Dは、Cの実施形態の略上面図である。


Eは、AからDの実施形態の検出器デバイスの検出器面を概略的に示したものである。

10

20

【図10】

フロントページの続き

(72)発明者 ヨハネス オンフレー
オランダ国、エス - ヘルトゲンボシュ、ラムシュトラーティエ 4

(72)発明者 ペーター フエルディナント グレーフェ
オランダ国、アイトホーフェン、ドンゲラーン 3

(72)発明者 ヨハネス ヘンドリクス ゲルトルディス フランセン
オランダ国、エールセル、ミダッケルス 3

(72)発明者 レイモンド フィッセル
オランダ国、ベシュト、ツヴェンカイント 8

(72)発明者 アーウィン テオドルス ヤコバ フエルハーゲン
オランダ国、フェルトホーフェン、ペクプロエケンラーン 42

F ターム(参考) 2F065 AA26 BB02 CC03 CC17 CC25 DD04 FF04 FF41 FF48 HH04
HH12 JJ02 JJ03 JJ05 JJ16 JJ26 LL04 QQ03 QQ06 QQ21
QQ25 QQ27
2G051 AA51 AA56 AB01 BA05 BA10 BA20 BB09 BB11 CA01 CB01
CB06 CC09 DA07 EB01
5F046 BA03 CB17 DA02 DB01 DC02 DC10

【外國語明細書】

PARTICLE DETECTION DEVICE, LITHOGRAPHIC APPARATUS AND DEVICE MANUFACTURING METHOD

FIELD OF THE INVENTION

[0001] The present invention relates to a particle detection device, a lithographic apparatus including a particle detection device and a device manufacturing method.

BACKGROUND OF THE INVENTION

[0002] A lithographic apparatus is a machine that applies a desired pattern onto a target portion of a substrate. Lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In that circumstance, a patterning device, such as a mask, may be used to generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. including part of, one or several dies) on a substrate (e.g. a silicon wafer) that has a layer of radiation-sensitive material (resist). In general, a single substrate will contain a network of adjacent target portions that are successively exposed. Conventional lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at once, and so-called scanners, in which each target portion is irradiated by scanning the pattern through the projection beam in a given direction (the "scanning"-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction.

[0003] The imaging of the pattern including small structures, possibly protected by a pellicle, is very sensitive to dust and other contamination of the patterning device and substrate. Therefore, before imaging, the patterning device (and/or the pellicle protecting the small structures thereof) and substrate are tested for contamination, in particular for particles. In conventional lithographic apparatus, a particle detection system directs a beam of radiation, in particular (but not necessarily) monochrome radiation, i.e. radiation having substantially one wavelength, on a surface of an object, for example, but not limited to, the patterning device or the substrate. The object and/or the beam move in order to scan the surface of the object. When the beam of radiation engages the surface of the object, the radiation is partially reflected according to physical laws of reflection (an exit angle is

identical to an angle of incidence with respect to a fictitious line perpendicular to the surface (the normal)). Another part of the incident radiation may enter the object, such as the patterning device or substrate, and is refracted. In both cases, the beam is anisotropically redirected. When the beam of radiation engages a contaminating particle, the radiation is scattered, i.e. reflected isotropically.

[0004] A radiation detector is positioned with respect to the surface and the beam of radiation such that radiation reflected on the surface is not incident on the detector, but a part of the radiation scattered, i.e. being reflected in substantially every direction, by a particle or other contamination is incident on the detector. Thus, the detector receives radiation only when the beam of radiation is scattered by a particle or other contamination.

[0005] A part of the radiation incident on the surface of the object enters the object and is refracted, as above mentioned. Inside the object, the beam may be refracted and/or diffracted by the chrome pattern and/or reflected one or more times. Depending on a number of parameters, such as the material, the size, the geometry, and the like, a part of the radiation that entered the object will leave the object again in the direction of the detector. In that case, the detector detects radiation not being scattered by a particle. As a result a detection circuit receiving a signal from the detector determines that a particle is present, although no particle is actually present. Such a detected, but not actually present particle will hereinafter be referred to as a ghost particle.

[0006] In other conventional systems for detecting particles, a microscope may be used. Such systems use a microscope to scan the surface and may perform a detailed analysis of any detected particle. However, such systems are expensive and less suitable for mere in-line detection of particles.

SUMMARY OF THE INVENTION

[0007] Embodiments of the invention include a simple and cost-effective particle detection system for in-line detection of particles on a surface of an object, which system is capable of discriminating between a signal from a particle and an erroneous signal, i.e. a ghost particle signal. Radiation from a ghost particle may be spatially, or otherwise, resolved from radiation from an actual particle.

[0008] According to an embodiment of the invention, there is provided a particle detection system configured to detect a particle on a surface of an object, the system including a first radiation source configured to generate a beam of radiation having a first wavelength, the beam being directed at a detection area at the surface of the object; a radiation detector system configured to output at least two detector signals corresponding to an intensity of radiation received from the detection area being incident on the detector system; a detection circuit configured to determine from the at least two detector signals whether a particle is present on the surface of the object; wherein the detection circuit is configured to compare the at least two detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when each of the at least two detector signals has a level above the threshold level.

[0009] The particle detection system according to embodiments of the present invention is capable of discriminating between isotropic and non-isotropic radiation. As mentioned above, radiation scattered by a particle is isotropic radiation. Radiation coming from the radiation source and being refracted, reflected and diffracted internally of the object and thereafter being incident on the detector system is anisotropic as will be explained below in relation to the drawings.

[0010] Starting with a beam of light directed at a detection area at the surface of the object, isotropically redirected radiation may be distinguished from anisotropically redirected, i.e. scattered, radiation, since anisotropic radiation has a predetermined cross-section, i.e. a limited cross-section, for example a circle, rectangle or any other shape. Such a limited beam results in a corresponding limited spot, when incident on a surface, such as the surface of a detector or any other surface in the trajectory of the beam of radiation.

Isotropically scattered radiation, on the contrary, does not result in such a limited spot.

Isotropically scattered radiation is directed in virtually any direction. Thus, the isotropic part of the radiation incident on the detector system may be distinguished from an anisotropic part by evaluating whether any concentrated light spot is present in the beam of radiation. The discrimination based on the distribution and location of radiation on a surface of the detector system will hereinafter be referred to as spatial discrimination.

[0011] The radiation incident on the detector system may be detected such, that at least

two signals are generated, for example using more than one signal from one detector or one signal from each of more detectors, from which it may be deduced whether the incident radiation includes isotropically redirected and/or anisotropically redirected radiation.

Generating at least two signals from the radiation on the detector system is performed such that spatial information may be derived from the combination of the at least two signals. A detection circuit may determine whether the incident radiation originates from a particle or from a ghost particle by e.g. spatially resolving radiation from a ghost particle and radiation from an actual particle.

[0012] A cross-sectional shape of the beam of radiation coming from the radiation source may be round (a circle) or may have any other shape, a line for example. The radiation having a first wavelength may be monochrome radiation, but may also include radiation having a wavelength in a certain range. In particular, when only one radiation source is used, even white light, i.e. radiation including many wavelengths in the visible range, may be used.

[0013] The radiation detector system may include a simple radiation sensitive device or it may be a one or two-dimensional radiation-sensitive device such as a 1D (linear) or 2D (planar) CCD-element or one or two-dimensional radiation-sensitive photo diode (PSD).

[0014] The particle detection system may be configured to determine a size of a detected particle based on the detector signals. As mentioned above, the detector system may comprise a detector device comprising an array of detector pixel elements (e.g. a 2D (planar) CCD-element), each detector signal of the plurality of detector signals corresponding to an intensity of radiation incident on at least one detector pixel element, thereby providing a particle image of a detected particle, the image comprising an array of image pixels, wherein the detection circuit is configured to:

- detect whether a detected particle is small or large based on the particle image;
- determine the size of a small particle based on the radiation intensity incident on at least one detector pixel element; and
- determine the size of a large particle based on image features of the particle image.

[0015] According to an embodiment of the invention, there is provided a lithographic apparatus including an illumination system configured to condition a beam of radiation; a

support structure configured to support a patterning device, the patterning device serving to impart the beam of radiation with a pattern in its cross-section; a substrate table configured to hold a substrate; a particle detection system configured to verify that substantially no particles are present on a surface of the patterning device or the substrate; and a projection system configured to project the patterned beam onto a target portion of the substrate, wherein the particle detection system includes a detection circuit, which is configured to compare at least two detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when each of the at least two detector signals has a level above the threshold level.

[0016] According to a further embodiment of the invention, there is provided a device manufacturing method including providing a substrate; providing a beam of radiation using an illumination system; using a patterning device to impart the projection beam with a pattern in its cross-section; projecting the patterned beam of radiation onto a target portion of the substrate; and verifying that substantially no particles are present on a surface of the patterning device or the substrate using a particle detection system, wherein the particle detection system includes a detection circuit, which is configured to compare at least two detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when each of the at least two detector signals has a level above the threshold level.

[0017] A device manufacturing method including projecting a patterned beam of radiation onto a target portion of a substrate; and detecting a particle on a surface of an object, the detecting including providing a beam of radiation directed at a detection area at the surface of the object, detecting the beam of radiation scattered by a particle; outputting a plurality of signals corresponding to an intensity of the detected beam of radiation, and comparing the plurality of signals with a predetermined threshold level to determine whether a particle is present on the surface of the object.

[0018] A particle detection system configured to detect a particle on a surface of an object, in accordance with an embodiment of the invention includes a first radiation source configured to generate a beam of radiation having a first wavelength, the beam of radiation being directed to the surface of the object; a radiation detector system configured to output

a plurality of detector signals corresponding to an intensity of radiation incident on the detector system; and a detection circuit coupled to the radiation detector system and configured to determine from the plurality of detector signals whether a particle is present on the surface of the object; wherein the detection circuit is configured to compare the plurality of detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when the plurality of detector signals has a level above the threshold level.

[0019] A particle detection system configured to detect a particle on a surface of an object, in accordance with an embodiment of the invention comprises a radiation source configured to generate a beam of radiation, the beam of radiation being directed to the surface of the object; a radiation detector system configured to output at least a first detector signal corresponding to an intensity of radiation incident on the detector system; and a detection circuit coupled to the radiation detector system and configured to determine from the at least one detector signal whether a particle is present on the surface of the object. The radiation detector system comprises a radiation detector device for generating the first detector signal in response to radiation incident on at least one predetermined part of the radiation detector device; and a radiation blocking assembly for preventing radiation not originating from within a detection range around the surface of the object from being incident on the predetermined part of the detector device. Thus, the radiation from a ghost particle and radiation from an actual particle is spatially resolved in a plane of the detector of the detector system. As a result, the detector signal is only dependent on radiation originating from scattering by a particle on the surface of the object.

[0020] In the above embodiment, the radiation detector system may be configured to further output at least a second detector signal for indicating whether radiation is incident on the detector device outside said at least one predetermined part of the detector device. Thus, a second signal may be indicative for the presence of radiation originating from a ghost particle.

[0021] Although specific reference may be made in this text to the use of lithographic apparatus in the manufacture of ICs, it should be understood that the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical

systems, guidance and detection patterns for magnetic domain memories, liquid-crystal displays (LCDs), thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms "wafer" or "die" herein may be considered as synonymous with the more general terms "substrate" or "target portion", respectively. The substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist) or a metrology or inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.

[0022] The terms "radiation" and "beam" used herein encompass all types of electromagnetic radiation, including ultraviolet (UV) radiation (e.g. having a wavelength of 365, 248, 193, 157 or 126 nm) and extreme ultra-violet (EUV) radiation (e.g. having a wavelength in the range of 5-20 nm), as well as particle beams, such as ion beams or electron beams.

[0023] The term "patterning device" used herein should be broadly interpreted as referring to a device that can be used to impart a beam of radiation with a pattern in its cross-section such as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the beam of radiation may not exactly correspond to the desired pattern in the target portion of the substrate. Generally, the pattern imparted to the beam of radiation will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.

[0024] Patterning devices may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels. Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions; in this manner, the reflected beam is patterned. In each example of patterning

device, the support structure may be a frame or table, for example, which may be fixed or movable as required and which may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms "mask" or "mask" herein may be considered synonymous with the more general term "patterning device".

[0025] The term "projection system" used herein should be broadly interpreted as encompassing various types of projection system, including refractive optical systems, reflective optical systems, and catadioptric optical systems, as appropriate for example for the exposure radiation being used, or for other factors such as the use of an immersion fluid or the use of a vacuum. Any use of the term "lens" herein may be considered as synonymous with the more general term "projection system".

[0026] The illumination system may also encompass various types of optical components, including refractive, reflective, and catadioptric optical components for directing, shaping, or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly, as a "lens".

[0027] The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more mask tables). In such "multiple stage" machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.

[0028] The lithographic apparatus may also be of a type wherein the substrate is immersed in a liquid having a relatively high refractive index, e.g. water, so as to fill a space between the final element of the projection system and the substrate. Immersion liquids may also be applied to other spaces in the lithographic apparatus, for example, between the mask and the first element of the projection system. Immersion techniques are well known in the art for increasing the numerical aperture of projection systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Embodiments of the invention will now be described, by way of example only, with

reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:

- [0030] Figure 1 depicts a lithographic apparatus according to an embodiment of the invention;
- [0031] Figure 2 schematically illustrates redirection of a beam of radiation on an object or on a particle;
- [0032] Figure 3 schematically illustrates a beam of radiation leaving an object being detected by a detector system;
- [0033] Figure 4 schematically illustrates how a beam of radiation may internally be refracted, diffracted and/or reflected before leaving the object in the direction of a detector system;
- [0034] Figure 5 schematically illustrates how a beam of radiation may internally and externally be refracted, diffracted and/or reflected before leaving the object in the direction of a detector system;
- [0035] Figures 6A - 6C schematically illustrate a conventional diaphragm configured to prevent a first order diffraction pattern being incident on the detector system;
- [0036] Figures 7A - 7C schematically illustrate a diaphragm according to an embodiment of the present invention;
- [0037] Figure 8 schematically illustrates a particle detection system including two radiation sources and two radiation detector devices;
- [0038] Figure 9 is a circuit diagram of a detection circuit according to an embodiment of the present invention; and
- [0039] Figures 10A and 10C are a schematical side view of an embodiment of a particle detection system having a radiation blocking assembly;
- [0040] Figures 10B and 10D are a schematical top view of the embodiment of Figures 10A and 10C, respectively; and
- [0041] Figure 10E schematically shows a detector plane of a detector device of the embodiment of Figures 10A - 10D.

DETAILED DESCRIPTION OF THE INVENTION

[0042] Figure 1 schematically depicts a lithographic apparatus according to an embodiment of the invention. The apparatus includes an illumination system (illuminator) IL configured to provide a beam PB of radiation (e.g. UV radiation), and a first support structure (e.g. a mask table) MT configured to support a patterning device (e.g. a mask) MA and connected to a first positioning device PM configured to accurately position the patterning device with respect to the projection system, item PL ("lens"). The apparatus also includes a substrate table (e.g. a wafer table) WT configured to hold a substrate (e.g. a resist-coated wafer) W and connected to a second positioning device PW configured to accurately position the substrate with respect to the projection system, item PL ("lens"); the projection system (e.g. a refractive projection lens) PL being configured to image a pattern imparted to the beam of radiation PB by the patterning device MA onto a target portion C (e.g. including one or more dies) of the substrate W.

[0043] As here depicted, the apparatus is of a transmissive type (e.g. employing a transmissive mask). Alternatively, the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above).

[0044] The illuminator IL receives a beam of radiation from a radiation source SO. The source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to form part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD including for example suitable directing mirrors and/or a beam expander. In other cases, the source may be integral part of the apparatus, for example, when the source is a mercury lamp. The source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.

[0045] The illuminator IL may include an adjusting device AM configured to adjust the angular intensity distribution of the beam. Generally, at least the outer and/or inner radial extent (commonly referred to as σ -outer and σ -inner, respectively) of the intensity distribution in a pupil plane of the illuminator can be adjusted. In addition, the illuminator IL generally includes various other components, such as an integrator IN and a condenser

CO. The illuminator provides a conditioned beam of radiation, referred to as the beam of radiation PB, having a desired uniformity and intensity distribution in its cross-section.

[0046] The beam of radiation PB is incident on the mask MA, which is held on the mask table MT. Having traversed the mask MA, the beam of radiation PB passes through the lens PL, which focuses the beam onto a target portion C of the substrate W. With the aid of the second positioning device PW and position sensor IF (e.g. an interferometric device), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning device PM and another position sensor (which is not explicitly depicted in Figure 1) can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval from a mask library, or during a scan. In general, movement of the object tables MT and WT will be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning), which form part of the positioning device PM and PW. However, in the case of a stepper (as opposed to a scanner) the mask table MT may be connected to a short stroke actuator only, or may be fixed. Mask MA and substrate W may be aligned using mask alignment marks M1, M2 and substrate alignment marks P1, P2.

[0047] The depicted apparatus can be used in the following modes:

[0048] *Step mode*: the mask table MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the beam of radiation is projected onto a target portion C at once (i.e. a single static exposure). The substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed. In step mode, the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure.

[0049] *Scan mode*: the mask table MT and the substrate table WT are scanned synchronously while a pattern imparted to the beam of radiation is projected onto a target portion C (i.e. a single dynamic exposure). The velocity and direction of the substrate table WT relative to the mask table MT is determined by the (de-)magnification and image reversal characteristics of the projection system PL. In scan mode, the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a

single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion.

[0050] *Another mode:* the mask table MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern imparted to the beam of radiation is projected onto a target portion C. In this mode, generally a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan. This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.

[0051] Combinations and/or variations on the above-described modes of use or entirely different modes of use may also be employed.

[0052] To show the principle of particle detection by incident radiation and how artifacts may occur, it is illustrated in Figures 2 - 5 how isotropic, i.e. by a particle or other contamination scattered, and non-isotropic, e.g. diffracted or reflected, radiation may be incident on a detector system.

[0053] Figure 2 shows an object 2 such as a lithographic mask or substrate. Referring to the left-hand side of Figure 2, a beam 4A hits the surface of the object 2. At the location where the beam 4A hits the surface, the normal 6, i.e. a line perpendicular to the surface, is indicated. A reflection beam 8 may be reflected according to physical laws known to the person skilled in the art (an exit angle is the same as the angle of incidence with respect to the normal 6). The incident beam 4A may partially be refracted, indicated by a refraction beam 10. Depending on a refraction index of the material of object 2 and on the refraction index of the medium through which the radiation beam 4A travels, the refracted beam 10 is bent towards or away from the normal 6. The amount of radiation being refracted and/or reflected depends on the material of object 2, a surface coating of the object 2 and/or on the angle of incidence, among others.

[0054] A detector system 12 detects radiation coming from the location of incidence of the radiation beam 4A, and being directed towards the detector system 12, indicated by a detection cone 14. As is seen from the left-hand side of Figure 2, an incident beam 4A is

anisotropically reflected as a reflection beam 8 and/or anisotropically refracted as a refraction beam 10. Thus, in this case, no radiation is incident on the detector and the detector may output a signal having a noise and/or bias level, but not having a significant particle detection level.

[0055] Now referring to the right-hand side of Figure 2, a beam of radiation 4B is incident on a contaminating particle 16 present on the surface of object 2. A part of the incident radiation may be absorbed by the particle 16. Another part may be reflected. Due to the surface shape of the surface of the particle 16, the incident radiation is scattered, i.e. isotropically reflected. Isotropically reflected radiation, indicated by arrows 18 is directed in substantially every direction. Therefore, a part of the reflected radiation 18 lies within the detection cone 14 of the detector system 12. Thus, the detector system 12 detects radiation and outputs a signal corresponding to the detected radiation having a level above the particle detection level, i.e. a threshold level.

[0056] In Figure 3, an incident beam of radiation 4 is indicated to hit the surface of the object 2. From the location of incidence, a beam of radiation 19 lies within a detection cone 14 of detector system 12 and is incident on the detector system 12. The beam 19 may be radiation having been scattered by a contaminating particle, the detection circuit thus correctly detecting the particle.

[0057] However, a beam 20 coming from inside the object 2, as a result of diffraction, refraction and /or reflection as will be explained hereinafter, may leave the object 2 and be refracted such that the beam 19 results. So, if a beam 20 comes from inside the object 2 having such an angle with respect to the normal that its refracted beam 19 lies within the detection cone 14, the detector system 12 detects radiation which was not scattered by a contaminating particle. A detection circuit receiving a signal from the detector system 12 however determines that the signal is above a predetermined threshold level and erroneously indicates that a particle is present. Such a detected, but not actually present particle is herein referred to as a ghost particle.

[0058] As will be explained in detail below in relation to Figures 4 and 5, an important contributor to the detection of ghost particles is a diffraction pattern. When the object includes a pattern, for example a reflective chrome pattern at a surface, at which surface an

entered radiation beam internally diffracts, a diffraction pattern may result. The diffraction pattern may internally reflect and refract and then exit the object such that at least a part of the diffraction pattern will be incident on the detector. Such a diffraction pattern is an anisotropic contribution to the radiation incident on the detector.

[0059] A diffraction pattern may include a number of orders, i.e. a zero order pattern, a first order pattern and higher order patterns. A shape, orientation and spacing of the orders of the diffraction pattern is dependent on the shape, orientation and spatial frequency of the diffracting pattern. If a diffracting pattern has a two-dimensional periodic structure, the related diffraction pattern will also be two-dimensional. The energy (intensity) in the diffracted orders depends among others on a duty cycle of the pattern (i.e. a spatial characteristic of the pattern) and on height differences in the pattern. The direction of the diffraction pattern determines whether none, one or more orders of the diffraction pattern may reach the detector system.

[0060] A part of a diffraction pattern may be blocked by a diaphragm before the part of the diffraction pattern is incident on the detector. Possibly, another part of the diffraction pattern, such as a second and higher order diffraction pattern may still pass the diaphragm. According to an embodiment of the present invention, the anisotropic radiation will be discriminated from the isotropic radiation, since an isotropic contribution to the radiation will be incident on both parts of the detector despite of the presence of such a diaphragm. Hence, it may be determined whether there is an isotropic contribution to the radiation by verifying that each signal from each part of the detector has a substantially same (if a center of the detector device and the beam of radiation are aligned) level higher than a predetermined threshold or noise level.

[0061] The above-described diaphragm splits the detector device in two parts. Despite the presence of the diaphragm, some anisotropic radiation may be incident on the detector device. Moreover, anisotropic radiation may be partly incident on a first part of the detector system and partly incident on a second part of the detector system, thereby generating a substantially same signal level from each detector part. According to a further embodiment of the present invention a second diaphragm prevents such incidence by covering an area between parts of the detector system. Thereto, the width of said

diaphragm may be equal to or larger than the expected width of the incident beam of radiation. These embodiments are further elucidated below in relation to Figures 6A - 6D and 7A - 7C.

[0062] In Figure 4, it is illustrated how a beam may originate from inside the object 2. The illustrated object 2 is a mask. On one surface, the mask 2 includes a mask pattern 22, which is made, for example, of chromium. An opposite surface of the mask 2 is scanned for particles. There is no particle actually present in the case illustrated in Figure 4.

[0063] A beam 4 is directed at and incident on the surface to be scanned. A part of the incident radiation may be reflected (not shown) and another part may be absorbed and refracted. An absorbed and refracted beam 10 travels through the mask 2. At the opposite surface, the refracted beam 10 hits the mask pattern 22. The mask pattern 22 is a periodic pattern. Due to the periodicity the radiation is diffracted. A diffracted beam 24 travels through the mask 2 and is reflected at the surface of incidence. Subsequent internal reflections at other surfaces may occur, indicated by reflected beams 26. Eventually, an internally reflected beam 26 may approach the location of incidence of the beam 4 such that it leaves the mask 2 and is refracted towards the detector system 12 as indicated by the beam 19. Thus, a ghost particle is detected.

[0064] In Figure 5, again, a refracted beam 19 coming from inside the mask 2 is incident on the detector system 12, but due to another series of reflections, refractions, and/or diffractions compared to the case illustrated in Figure 4. In the case illustrated in Figure 5, an incident beam 4 enters the mask 2 and is refracted as refracted beam 10. Given the angle of incidence and the surface conditions, the refracted beam 10 is diffracted or refracted at the opposite surface and leaves the mask 2 as diffracted beam 28. If the diffracted beam 28 is reflected at a surface 32 of another object, such as a pellicle, a reflected beam 26 may hit the surface of the mask 2 again.

[0065] The reflected beam 26 is diffracted by periodic mask pattern 22 and enters the mask 2 as a diffracted beam 30. The indicated diffracted beam 30 leaves the mask 2 such that it is refracted towards the detector system 12 and is detected. Similar to Figure 4, a ghost particle is detected by a detection circuit, although no particle is present.

[0066] In the above description in relation to Figures 3, 4 and 5, it should be noted that

reflection, refraction and diffraction are anisotropic. The resulting redirected radiation is included in one or more beams as opposed to scattered, isotropic radiation being redirected in substantially every direction. The multiple diffracted beams are known as (diffraction) orders.

[0067] The cross sections of the beams in a diffraction pattern are dependent on the shape of the cross-section of the incident beam of radiation. When, for instance, the incident beam is a single round beam of radiation, the diffraction pattern will be a series of single round beams.

[0068] Further, it is noted that Figures 2 - 5 are for illustrative purpose only, since many other light trajectories are possible. For example, although not shown in Figures 2 - 5, radiation coming from other directions than from inside the illustrated cone 14 may be incident on the detector system 12, and thus resulting in the detection of a ghost particle. Other series of reflections, refractions and/or diffractions may result in radiation being directed at the detector system such that a detection of a ghost particle could result.

[0069] In Figure 6A, a surface of a detector system 12 is indicated. The detector system 12 detects radiation incident on the surface and outputs a corresponding signal. A first diffraction pattern 40 including three spots (n^{th} , $(n+1)^{\text{th}}$ and $(n+2)^{\text{th}}$ order) is partially incident on the detector surface 12. Thus, the detector system 12 detects radiation and outputs a signal corresponding to the intensity of the detected radiation. Since the diffraction pattern 40 is not radiation scattered by a particle, a detection circuit receiving the signal erroneously determines the presence of a particle. To prevent detection of a ghost particle, a diaphragm as shown in Figure 6B may be used. Such a diaphragm may be positioned between the surface being scanned and the detector.

[0070] Now referring to Figure 6B, a strip-shaped diaphragm 34 may be used to block the first diffraction pattern 40. An isotropic reflection, resulting from scattering by a particle is also partially blocked by the strip-shaped diaphragm 34, however, another part of the isotropic radiation is not blocked and is incident on the detector system 12. Thus, the detector system 12 only detects isotropic scattered radiation and the output signal only results from a present particle.

[0071] It is understood that instead of using the strip-shaped diaphragm 34 in front of a

detector system 12, a diaphragm 35, as illustrated in Figure 6C, may be employed similarly. A diaphragm opening 37 lets radiation pass. The strip 34 is positioned in the diaphragm opening 37 and blocks the first diffraction pattern 40.

[0072] In Figure 6D, not only a first diffraction pattern 40 is shown, also a second diffraction pattern 42 including a number of spots is shown. The second diffraction pattern 42 may result from another part of the mask pattern 22 (see Figures 4 and 5) or may result from other characteristics of the diffracting pattern. The strip-shaped diaphragm 34 blocks the first diffraction pattern 40, but the second diffraction pattern 42 passes the diaphragm and reaches the detector system 12. Thus, it is still possible that a ghost particle is detected, since a second diffraction pattern 42 may lead to a signal indicating the presence of a particle.

[0073] In Figures 7A - 7C, a cross-shaped diaphragm comprising a vertical diaphragm 34 and a horizontal diaphragm 36 is shown. Like in Figure 6D, the vertical diaphragm 34 blocks the (not shown) first diffraction pattern. The second diffraction pattern 42 may have a number of positions. The width of the diaphragms 34, 36 is selected such that the width is larger than the width of the spots of the diffraction pattern 42.

[0074] In Figure 7A, the second diffraction pattern 42 is blocked by the horizontal diaphragm 36. Thus, no diffracted beam is incident on the detector system 12. In Figure 7B however, the second diffraction pattern 42 is not blocked, but passes the diaphragm 34, 36, at least partially, and diffracted radiation is incident on the detector system 12. The same applies to the situation shown in Figure 7C, in which situation the diffraction pattern 42 passes on an opposite side of the horizontal diaphragm 36 compared to the situation illustrated in Figure 7B.

[0075] When the situation shown in Figure 7A occurs, no ghost particle is detected, since no diffracted radiation is incident on the detector 12. Only isotropic, scattered radiation may be detected. In Figures 7B and 7C, the anisotropic diffracted radiation 42 is incident on only one half of the detector system 12: the lower half or the upper half, respectively. Consequently, the other half of the detector system 12 only detects scattered radiation, which is also detected by the other half of the detector system 12 apart from the diffracted radiation. Thus, if two signals corresponding to radiation detected on a corresponding half

of the detector system 12, are output by the detector system 12 and diffracted radiation is present, one signal has a higher level than the other due to the contribution of the anisotropic diffracted radiation.

[0076] Three situations may occur:

1. Both non-isotropic (diffracted, refracted, reflected) radiation and isotropic (scattered) radiation is incident on the detector system 12;
2. Only isotropic (scattered) radiation is incident on the detector; or
3. Only non-isotropic (diffracted, refracted, and/or reflected) is incident on the detector.

[0077] In the first situation, both signals have a level higher than a predetermined noise (threshold) level, indicating that at least isotropic radiation was incident on the detector system 12, and a detection circuit may determine that a particle is present. In the second situation, both halves of the detector output a substantially same signal level, which indicates the presence of only a particle, without a ghost particle contribution. In the third situation, only one of the signals has a level above the noise (threshold) level, indicating that the detected radiation is due to diffraction, refraction and/or reflection, but not to scattering by a particle. A detection circuit may determine that no particle is present.

[0078] Another embodiment of the present invention does not depend on spatial discrimination but depends on wavelength related discrimination. As mentioned above, an important contributor to the detection of ghost particles is a diffraction pattern. However, the diffraction patterns are dependent on the wavelength of the incident radiation being diffracted. Using two, or even more radiation sources having each their own specific wavelength, different diffraction patterns are generated. Using a detector for each wavelength, the diffraction pattern for each wavelength is detected by the respective detectors. The choice of wavelength is made such that it is highly improbable that different diffraction patterns, and also other internal reflections and refractions, of the radiation beams of different wavelengths will all reach the corresponding detectors. Thus, similar to the detection method of the above described embodiment, it may be determined whether there is an isotropic contribution to the detected radiation by verifying that each signal from each detector has a level higher than a noise level.

[0079] It is noted that the first and second detector may physically be represented by one detector of which the detected signal may be split into a number of contributions coming from the different beams of radiation having different wavelengths. The number of contributions may be determined after simultaneous detection of the number of beams, or the number of contributions may be determined one after another, for example using pulsed radiation sources.

[0080] Figure 8 illustrates the above-mentioned embodiment of the present invention, wherein two radiation sources 38A and 38B output two beams of radiation 4A and 4B having different wavelengths. The wavelengths are selected such that it is unlikely that possibly resulting diffraction patterns overlap in their trajectory towards the corresponding detectors. An optical device 44A combines the two radiation beams 4A and 4B and the combined beam is directed at the surface of the object to be scanned. The combined beam may pass through other optical devices 46A and may hit a particle 16, or not.

[0081] After being scattered, reflected, refracted and/or diffracted, radiation may travel through a number of optical devices 46B, if present. Then, an optical device 44B splits the radiation into radiation having wavelengths in the range corresponding to beam 4A and radiation having wavelengths in the range corresponding to beam 4B to route the radiation to its corresponding detector 12A or 12B.

[0082] The beams 4A and 4B have different wavelengths as mentioned above. Each beam 4 may be a beam of monochrome radiation or including radiation having wavelengths within a certain range of wavelengths. The wavelengths may be different to ascertain that the beams will have different diffraction patterns, since the diffraction patterns are dependent on the wavelength of the incident radiation. When incident radiation beams 4A and 4B enter the object (thus they do not hit a particle), they may be diffracted, reflected and/or refracted such that a part of the incident radiation leaves the object in the direction of a detector 12A or 12B, respectively. Since their diffraction patterns are different due to their different wavelengths, it is virtually impossible that both detectors 12A and 12B receive such anisotropic radiation simultaneously. Thus, if radiation from the beams 4A and/or 4B is diffracted, reflected and/or refracted, only one of the respective detectors 12A and 12B may output a signal having a level above a predetermined threshold level, and

therefore it is determined that no particle is present.

[0083] When the beams 4A and 4B hit a particle 16, both beams 4A and 4B are being scattered and from both beams 4A and 4B a part of the radiation is scattered/reflected in the direction of their respective detectors 12A and 12B. Thus, when a particle is present, both detectors 12A and 12B receive an amount of radiation and output a signal corresponding to the received amount of radiation having a level above a predetermined noise level, and therefore it is determined that a particle is present. It is noted that, in this embodiment, the first and second detector may physically be represented by one detector of which the detected signal may be split into a number of contributions coming from the different beams of radiation having different wavelengths as mentioned above.

[0084] If a particle is present and anisotropically redirects radiation, and if isotropically redirected radiation is also incident on one of the detectors, both detectors output a signal having a level above the threshold level. However, one signal has a level representing anisotropically and isotropically redirected radiation and another signal has a level representing only anisotropically redirected radiation. Despite the difference in signal level, the contaminating particle is detected, since both signals have a level above the threshold level, and therefore it is determined that a particle is present. Due to the choice of wavelengths, it is unlikely that both wavelengths will result in an isotropic (ghost) signal in their corresponding detector, and thus reliably discriminating a particle signal from a ghost signal.

[0085] In each of the above-mentioned embodiments of the present invention, two or more independent signals are verified to have a level higher than a threshold level. If all levels are higher than the threshold level, the detector circuit determines that a particle is present on the surface, since it is thus detected that isotropic light is incident on the detector. Therefore, in an embodiment of the present invention as illustrated in Figure 9, the detection circuit includes a number of comparators configured to compare a corresponding number of input signals with a threshold level, each comparator outputting a logical comparator signal; an AND-operator configured to receive each logical comparator signal and to output a logical TRUE signal when each logical comparator signal represents TRUE. Thus, when a particle is present on the surface, the detection circuit outputs a logical

TRUE.

[0086] Figure 9 illustrates a detection circuit for use with the above-described embodiments of the present invention to determine whether a particle is present on a surface, or not. By verifying that a number of signals (in the shown embodiment of the detection circuit two signals) have a level above a threshold level representing a predetermined noise level, it is determined whether a particle is present. The exemplary circuit illustrated in Figure 9 is a digital circuit. The circuit may however as well be an analogue circuit.

[0087] Referring to Figure 9, a first detector system 12A outputs a signal to an amplifier 50A. The output of the amplifier 50A is input in an analog-to-digital converter 52A. The amplifier 50A is however not an essential component of the detection circuit, since the output of the detector system 12A may be directly input in the analog-to-digital converter 52A. An output of the analog-to-digital converter 52A is fed to a comparator 54A as a first input and a threshold signal 56A representing a predetermined noise level is input in the comparator 54A as a second input. The comparator 54A compares the input signals and outputs a logical comparison signal 58A. The logical comparison signal 58A is input as a first input in an AND-operator 60.

[0088] The above described branch of the detection circuit may be present any number of times. In the embodiment shown in Figure 9, there is a second branch including detector system 12B, amplifier 50B, analog-to-digital converter 52B, comparator 54B, threshold signal 56B and logical comparison signal 58B, which signal 58B is also input in AND-operator 60. Similarly, any number of identical branches may be present in the detection circuit. The AND-operator 60 then has a corresponding number of inputs. A logical AND-operator output 62 represents a logical value indicating whether a particle is present, or not.

[0089] The detected amount of scattered radiation is a measure of a size of a detected particle. Therefore, the detection circuit may be adapted not only to indicate whether a particle is present, but also to indicate an estimate of the size of the particle. The logical AND-operator output 62 however only indicates whether a particle is present, since the logical value can only represent 'TRUE' or 'FALSE'. To indicate a size, the signal value of one or both of the detectors should be preserved and presented at an output of the detection

circuit, if a particle is detected. The detection circuit shown in Figure 9 is configured to output the size if a particle is detected, and to output a NULL-signal, if no particle is detected.

[0090] Thereto, the detection circuit is provided with an ADD-operator 66, which adds the output of each analog-to-digital converter, in the illustrated embodiment converters 52A and 52B. If more branches are present in the circuit, the ADD-operator 66 has a corresponding number of inputs and adds all input signals. From an output of the ADD-operator 66, an ADD-operator output signal 68 is fed to an MUL-operator 70 multiplying input signals. Beside the ADD-operator output signal 68, the logical AND-operator signal 62 is input in the MUL-operator 70. The MUL-operator output 72 represents the size of a particle if detected, and NULL if no particle is detected, as will be explained below.

[0091] A person skilled in the art will from the below description readily understand how the detection circuit functions. It will be appreciated that the circuit may be extended to any number of detector signals. Detectors 12A and 12B output a signal representing the amount of radiation received by the detector system 12A and 12B, respectively. The outputs may be amplified by amplifiers 50A and 50B, respectively, and may be digitized by analog-to-digital converters 52A and 52B, respectively. Alternatively, digital signals S1 and S2 may be processed using an algorithm implemented in software. In software, more complex algorithms may easily be programmed and used, for example. The detection circuit may be analog as well and therefore the converters 52A and 52B may be omitted.

[0092] The output of the converters 52A and 52B are thus still representing the signal value of the output of the detectors 12A and 12B, respectively. The output of the converters 52A and 52B are input in the respective comparators 54A and 54B that compare the signal value with a respective threshold value 56A and 56B to determine whether the detector outputs have a level above the threshold. The threshold value 56A, 56B represents a predetermined noise level. If the detector output lies under the noise level, the detector system 12A, 12B did not receive a certain minimum amount of radiation and the output may be assumed to be no more than noise. The comparator 54A, 54B outputs a logical signal 58A, 58B representing 'TRUE' ('1') if the detector output is higher than the threshold value 56A, 56B, and representing 'FALSE' ('0') if the detector output is lower than the

threshold value 56A, 56B.

[0093] If both comparators 54A and 54B output a logical TRUE ('1'), the AND-operator 60 receives only signals 58A, 58B representing TRUE and therefore outputs a logical TRUE ('1'). If one or none of the inputs 58A, 58B represents FALSE ('0'), the output 62 of the AND-operator 60 represents FALSE ('0').

[0094] The ADD-operator 66 adds the detector outputs independent from whether a particle is detected, or not. Adding the detector outputs is particularly suited for the embodiment described in relation to the embodiment of Figure 7, since in that embodiment the received amount of radiation is divided over two halves of the detector and is output as two separate signals. The two separate signals added together then represents the total received amount of radiation. The two detectors 12A and 12B shown in Figure 9 should in that case be interpreted as two halves of one detector. Thus, the ADD-operator output signal 68 represents a total received amount of radiation.

[0095] In an embodiment of the invention, the detection circuit may be configured to determine a size of a detected particle based on the detector signal. The level of the detector signal represents an intensity of the detected radiation incident on the detector. The intensity of the incident radiation is a measure for the size of the detected particle.

[0096] The ADD-operator output signal 68 is input in the MUL-operator 70. The MUL-operator 70 further receives a logical TRUE ('1') or FALSE ('0') when a particle is present and when a particle is not present, respectively. Thus, when a particle is present, the MUL-operator 70 multiplies the ADD-operator output signal 68 and the logical TRUE ('1') resulting in an output signal 72 having the same signal value as the ADD-operator output signal 68. The ADD-operator output signal 68 represents the amount of radiation received by the detectors 12A and 12B, and thus is a measure of the size of a detected particle. The output 72 of the MUL-operator 70 therefore represents the size of a detected particle, since, if no particle is detected, the ADD-operator output signal 68 is multiplied by 0 ('FALSE') and would represent NULL.

[0097] When receiving more than one signal, one from each part of a detector as described above in relation to one or more embodiments of the present invention, or one or more signals from more than one detector, each separate signal or a combination of two or more

signals may be used to determine the particle size. A suitable combination may be, for example, the sum of two signals coming from one detector, thus reconstructing the intensity of radiation incident on the whole detector.

[0098] Light incident on a detector may include both isotropically and anisotropically redirected light, i.e. light redirected by a particle and light representing a ghost particle. Thus, both signals may have a level higher than the threshold level, while a first signal may have a substantially higher level than a second signal. In such a case, the first signal is generated due to both the isotropic contribution and the anisotropic contribution to the incident light. The second signal only represents the isotropic contribution, i.e. the radiation resulting from scattering by a particle. Therefore, in an embodiment of the detection circuit, the signal having the lowest level may be used for determining the particle size.

[0099] Instead of using the ADD-operator 66, it will be appreciated that any other circuitry may be employed to output a signal representing a size of a particle. For example, it may be considered that if both detectors 12A and 12B output a high signal, one of them may have received not only scattered isotropic radiation, but also non-isotropic radiation. Therefore, one signal may be substantially higher than the other. In such a case, it is considered to use only the lower signal, since it is assumed that the lower signal represents only scattered radiation and may thus be more representative for the size of the scattering particle. A person skilled in the art readily understands how a circuit may be built using logical operators or analogue circuitry, which circuit selects the lower signal and outputs the signal to the MUL-operator 70 shown in Figure 9.

[0100] In order to detect reticle contamination and to measure size of contaminant particles, internal or external reticle inspection systems may be used. These systems may contain a digital camera or a scanner to obtain a two-dimensional image of (or part of) the surface of the reticle.

[0101] Estimating the size of particles which are smaller than the resolution (pixel size or spot size of the scanning beam) of the two-dimensional imaging system can be done by measuring the maximum reflected signal intensity (pixel intensity) when the particle is exposed with light and by comparing it with the amount of light reflected by standard latex

spheres of known dimensions.

[0102] It is also possible to extract particle features from the two-dimensional bitmap, like shape and size. These two-dimensional bitmaps can be used to estimate the size of particles that are larger than the resolution of the two-dimensional imaging system. This method can be referred to as Image feature method. This method is generally accurate only for particles that are significantly larger than the resolution of the two-dimensional imaging system. In a practical embodiment, the latter may be about 70 μm .

[0103] Although the latex equivalent sphere (LES) reflection method works well for contaminant particles that are smaller than the resolution of the two-dimensional imaging system, this method may not be desirable for larger particles because it may result in unrealistic estimates, basically classifying those particles as being too small. The range of latex spheres used in the reflection method is generally limited to from 10 to 100 μm .

[0104] Since particles are detected on the top surface of the reticle and/or on the bottom surface of the pellicle (hard or soft), particles may always be at an out-of-focus position with respect to the pattern on the reticle, which implies that small particles are not as relevant as large particles since they have less impact on imaging. Therefore, the contamination detection method of choice should also correctly estimate the size of particles larger than about 60 μm .

[0105] In an embodiment of the invention, a new method for detecting particles on an object is presented. First, a two-dimensional image of the reticle is obtained. This two-dimensional image contains particle reflection intensities. Then, individual particles are located by scanning this image for clusters of connected pixels with an intensity above a certain threshold. The size of each pixel cluster may be determined according to the image feature method but if this size is less than a predefined value, then the latex equivalent sphere reflection method may be used instead. The particle size according to the image feature method is extracted from the image by determining, in an embodiment of the invention, the width and height of a rectangular bounding box including all cluster pixels. Alternatively, the number of cluster pixels, the diagonal of the bounding box, or the maximum distance between 2 cluster pixels can be used, for example. It will be appreciated that a particle may be strongly asymmetric (e.g. the width of the bounding box

is much larger than its height) in which case the image feature method may be used.

[0106] It will be appreciated that the resulting method may be capable of detecting both small and large particles, where the range is in practice only limited by the size of the two-dimensional image.

[0107] Another embodiment of the present invention depends on spatial discrimination on the surface of the detector device. Referring to Figures 10A and 10B, illustrating this embodiment of the present invention, a radiation blocking assembly 130 is positioned in a radiation trajectory 120 (optical axis) from the surface 102A of an object 102 to a radiation detector device 112. The radiation blocking assembly 130 comprises a lens 131 and a diaphragm 132. A contaminating particle 116 is present on the surface 102A of the object 102. A beam of radiation 110 is incident on the particle 116. A resulting scattered beam of radiation redirected by the particle 116 is shown as cone 114 propagating towards the detector device 112.

[0108] The lens 131 is configured to focus radiation coming from a radiation source in a plane of the surface 102A of the object 102 in a plane of the detector device 112. Thus, the beam of radiation 114 scattered by the particle 116 is focused onto the detector device 112. The diaphragm 132, however, blocks a part of the radiation incident on the lens 131. A part of the radiation of cone 114 passes the diaphragm 132 and is still being focused on detector device 112. An effect resulting from the diaphragm 132 for the image of the contaminating particle 116 is a loss of radiation intensity on the detector device 112.

[0109] Now referring to Figures 10C and 10D, further illustrating the above-mentioned embodiment, the diaphragm 132 is positioned in a radiation trajectory 120 (optical axis) from the surface 102A of an object 102 to the radiation detector device 112.

[0110] In Figures 10C and 10D, no contaminating particle is present on the surface 102A of the object 102. A beam of radiation (not shown) is incident on the surface 102A. The beam has been refracted into the object 102 and is in the object 102 reflected and possibly diffracted at a pattern surface 102B. A resulting beam of diffracted radiation inside cone 118 is shown as beam 119. The cone 118 may be regarded as an assembly of possible anisotropic beams of radiation coming from a ghost particle 122 and directed toward lens 131.

[0111] The diaphragm 132 blocks a part of the isotropic radiation directed toward the lens 131. The part of the radiation of cone 114 passing the diaphragm 132 is being focused on the detector device 112. The effect resulting from the diaphragm 132 for the image of the particle 116A is a loss of radiation intensity on the detector device 112.

[0112] When an anisotropic beam is generated in the pattern surface 102B then the point where this beam leaves surface 102B can be regarded as the location of a ghost particle 122. Due to refraction at surface 102A the ghost beam will have a different direction when it leaves object 102, and it will seem that the ghost beam has its origin in the virtual ghost particle 122A as drawn in Figure 10C. If the beam reaches lens 131 it will be located inside cone 118. Regarding an anisotropic beam coming from the ghost particle 122 inside cone 118 there are two possibilities: either the beam is blocked by diaphragm 132 or the beam (partly) passes diaphragm 132, is incident on the lens 131 and is focused in point 117. Point 117 is the image of ghost particle 122 made by lens 131. Because ghost particle 122A is located further away from lens 131 than particle 116, the image in point 117 is located at some distance in front of the image of particle 116 on the detector device 112 according to the laws of optical imaging. After passing the point 117 the radiation from ghost particle 122 propagates further towards the detector device 112 and results in a spot in area 112B or 112C of detector device 112, outside area 112A.

[0113] In Figure 10E the areas 112A, 112B and 112C are depicted on a larger drawing scale. Area 112A can be described as a shadow of diaphragm 132 made by all possible beams in cone 118 that come from particle 122, focused in point 117. Hence, no radiation resulting from a ghost particle 122 is present in a part 112A of the detector device 112. The part 112A of the detector device 112 may be referred to hereinafter as a no-ghost detection part 112A of the detector device 112. Therefore in the situation drawn in Figure 10A to 10D signals from area 112A are only related to particle 116 and not to ghost particle 122.

[0114] However, in exceptional cases, through double diffraction on two-dimensional patterns, a ghost particle may appear to lie out of the plane of drawing 10C; in such a case a ghost particle may enter area 112A, and 112B or 112C. To prevent an incorrect determination of the presence of a particle, in an embodiment, signals from area 112B or 112C related to ghost particle 122 may be employed. An image 133 of particle 116 on

detector device 112 (Figure 10E) is within area 112A. Therefore, signals from area 112B or 112C are only related to a ghost particle 122 and not to an actual particle 116. Signals from area 112B or 112C can be used to warn for the presence of a ghost particle 122. This is useful for the above-described situation of a ghost particle located out of the plane of drawing 10C where a signal from area 112A could be misinterpreted as a signal from a particle 116 while the signal actually is related to a ghost particle. Thus, the signals from area 112B or 112C enable to correct a misinterpretation.

[0115] The size of the no-ghost detection part 112A is dependent on the distance of the ghost particle 122 and a focal point of the lens 131. The focal point of the lens 131 is selected such that the radiation scattered by a contaminating particle 116 is focused on a part 112A of the detector device 112. The size of the no-ghost detection part 112A depends, *inter alia*, on the focal point of the lens 131, a distance between the detector device 112 and the point 117 and a size of the diaphragm 132.

[0116] It is noted that a person skilled in the art may combine the embodiment as illustrated in Figs. 10A to 10E, and described above, with the embodiment as described in relation to Figs. 6 - 9 without using any inventive skills. For example, the diaphragm 132 may have a shape as shown in Fig. 6A - 6D or Fig. 7A - 7C. In such an embodiment, a width of the diaphragm 132 may be, in side view and/or in top view, substantially equal to a width of the lens 131.

[0117] While the invention has been described and illustrated in its preferred embodiments, it should be understood that departures may be made therefrom within the scope of the invention, which is not limited to the details disclosed herein.

[0118] As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention.

[0119] The terms "a" or "an", as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically.

WHAT IS CLAIMED IS:

1. A particle detection system configured to detect a particle on a surface of an object, the system comprising:
 - a first radiation source configured to generate a beam of radiation having a first wavelength, the beam of radiation being directed to a detection area at the surface of the object;
 - a radiation detector system configured to output a plurality of detector signals corresponding to an intensity of radiation received from the detection area incident on the radiation detector system; and
 - a detection circuit coupled to the radiation detector system and configured to determine from the plurality of detector signals whether a particle is present on the surface of the object;

wherein presence of a particle is determined by resolving a signal from a ghost particle relative to a signal from the particle.
2. The particle detection system of claim 1, wherein the detection circuit is configured to compare each of the plurality of detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when each of said plurality of detector signals has a level above said threshold level.
3. The particle detection system of claim 2, further comprising a cross-shaped diaphragm positioned between the surface of the object and the radiation detector system, wherein the radiation detector system comprises a detector device, said detector system being configured to output a first detector signal corresponding to the intensity of radiation incident on a first part of the detector system, and to output a second detector signal corresponding to the intensity of radiation incident on a second part of the detector system.
4. The particle detection system of claim 2, further comprising a second radiation source configured to generate a beam of radiation having a second wavelength, the beam of radiation being directed to the surface of the object, wherein the detector system comprises a first detector device configured to output a first detector signal

corresponding to an intensity of radiation having the first wavelength and being incident on the first detector, and a second detector device configured to output a second detector signal corresponding to an intensity of radiation having the second wavelength and being incident on the second detector device.

5. The particle detection system of claim 2, wherein the detector system comprises (1) a first detector subsystem, the first detector subsystem being configured to output a first detector signal corresponding to the intensity of radiation incident on a first part of the first detector subsystem, and to output a second detector signal corresponding to the intensity of radiation incident on a second part of the first detector subsystem, and (2) a second detector subsystem, the second detector subsystem being configured to output a third detector signal corresponding to the intensity of radiation incident on a first part of the second detector subsystem, and to output a fourth detector signal corresponding to the intensity of radiation incident on a second part of the second detector subsystem; and wherein the system further comprises a cross-shaped diaphragm positioned between the surface of the object and each detector.

6. The particle detection system of claim 2, wherein the detection circuit comprises (1) a plurality of comparators configured to compare a corresponding plurality of input detector signals with a threshold level, each of the plurality of comparators outputting a logical comparator signal, and (2) an AND-operator configured to receive each logical comparator signal and to output a logical TRUE signal when each of the plurality of input signals is greater than the threshold level.

7. The particle detection system of claim 2, wherein the detection circuit is further configured to determine a size of a detected particle based on the detector signal.

8. The particle detection system of claim 7, wherein the size of the detected particle is determined based on one detector signal or a combination of at least two detector signals.

9. The particle detection system of claim 7, wherein the radiation detector

system comprises a detector device comprising an array of detector pixel elements, each detector signal of the plurality of detector signals corresponding to an intensity of radiation incident on at least one detector pixel element, thereby providing a particle image of a detected particle, the image comprising a number of image pixels, wherein the detection circuit is configured to:

- detect whether a detected particle is small or large based on the particle image;
- determine the size of a small particle based on the radiation intensity incident on at least one detector pixel element; and
- determine the size of a large particle based on image features of the particle image.

10. The particle detection system of claim 9, wherein the detection circuit is configured to detect that a particle is small if a total number of image pixels relating to the detected particle is smaller than a predetermined number of pixels.

11. The particle detection system of claim 4, wherein a size of the particle is determined based on the signal from the first detector, the signal from the second detector or a combination of the signals from the first and the second detector.

12. The particle detection system of claim 1, wherein the radiation detector system comprises:

- a radiation detector device for generating the first detector signal in response to radiation incident on at least one predetermined part of the radiation detector device; and
- a radiation blocking assembly for preventing radiation not originating from the detection area around the surface of the object from being incident on the predetermined part of the radiation detector device.

13. The particle detection system of claim 12, wherein the radiation blocking assembly comprises:

- a detector lens for focussing radiation originating from the detection area on the at least one predetermined part of the radiation detector device;
- a blocking device for preventing radiation not originating from the detection

area from being directed by the detector lens onto the predetermined part of the detector device.

14. The particle detection system of claim 12, wherein the radiation detector system is configured to further output at least a second detector signal for indicating whether radiation is incident on the radiation detector device outside said at least one predetermined part of the radiation detector device for detecting a ghost particle signal.

15. The particle detection system of claim 12, wherein the detection circuit is further configured to determine a size of a detected particle based on the detector signal.

16. The particle detection system of claim 15, wherein the detector system comprises a detector device comprising an array of detector pixel elements, each detector signal of the plurality of detector signals corresponding to an intensity of radiation incident on at least one of said detector pixel elements, the plurality of detector signals thereby providing a particle image of a detected particle, the image comprising a number of image pixels, wherein the detection circuit is configured to:

- detect whether a detected particle is small or large based on the particle image;
- determine the size of a small particle based on the radiation intensity incident on at least one detector pixel element; and
- determine the size of a large particle based on image features of the particle image.

17. The particle detection system of claim 16, wherein the detection circuit is configured to detect that a particle is small if a total number of image pixels relating to the detected particle is smaller than a predetermined number of pixels.

18. A lithographic apparatus comprising:
an illumination system configured to condition a beam of radiation;
a support structure configured to support a patterning device, the patterning device serving to impart the beam of radiation with a pattern in its cross-section;
a substrate table configured to hold a substrate;
a projection system configured to project the patterned beam onto a target

portion of the substrate, and

a particle detection system configured to detect a particle in a detection area at a surface of an object, wherein presence of a particle is determined by spatially resolving a signal from a ghost particle from a signal from the particle.

19. The lithographic apparatus of claim 18, wherein said particle detection system comprises a detection circuit configured to compare a plurality of detector signals with a predetermined threshold level, and to indicate that a particle is present on the surface of the object, when said plurality of detector signals has a level above said threshold level.

20. The lithographic apparatus of claim 19, the particle detection system further comprising a cross-shaped diaphragm positioned between the surface of the object and the detector system, wherein the radiation detector system comprises a detector, said detector being configured to output a first detector signal corresponding to the intensity of radiation incident on a first part of the detector, and to output a second detector signal corresponding to the intensity of radiation incident on a second part of the detector.

21. The lithographic apparatus of claim 19, the particle detection system further comprising a second radiation source configured to generate a beam of radiation having a second wavelength, the beam of radiation being directed to the surface of the object, wherein the detector system comprises a first detector configured to output a first detector signal corresponding to an intensity of radiation having the first wavelength and being incident on the first detector, and a second detector configured to output a second detector signal corresponding to an intensity of radiation having the second wavelength and being incident on the second detector.

22. The lithographic apparatus of claim 19, wherein the detector system of the particle detection system comprises (1) a first detector, the first detector being configured to output a first detector signal corresponding to the intensity of radiation incident on a first part of the first detector, and to output a second detector signal corresponding to the intensity of radiation incident on a second part of the first detector, and (2) a second

detector, the second detector being configured to output a third detector signal corresponding to the intensity of radiation incident on a first part of the second detector, and to output a fourth detector signal corresponding to the intensity of radiation incident on a second part of the second detector; and wherein the system further comprises a cross-shaped diaphragm positioned between the surface of the object and each detector.

23. The lithographic apparatus of claim 19, wherein the detection circuit of the particle detection system comprises (1) a plurality of comparators configured to compare a corresponding plurality of input detector signals with a threshold level, each of the plurality of comparators outputting a logical comparator signal, and (2) an AND-operator configured to receive each logical comparator signal and to output a logical TRUE signal when each of the plurality of input signals is greater than the threshold level.

24. The lithographic apparatus of claim 18, wherein the detection circuit is further configured to determine a size of a detected particle based on the detector signal.

25. The lithographic apparatus of claim 24, wherein the size of the detected particle is determined based on one detector signal or a combination of at least two detector signals.

26. The lithographic apparatus of claim 24, wherein the detector system comprises a detector device comprising an array of detector pixel elements, each detector signal of the plurality of detector signals corresponding to an intensity of radiation incident on at least one detector pixel element, thereby providing a particle image of a detected particle, the image comprising a number of image pixels, wherein the detection circuit is configured to:

- detect whether a detected particle is small or large based on the particle image;
- determine the size of a small particle based on the radiation intensity incident on at least one detector pixel element; and
- determine the size of a large particle based on image features of the particle image.

27. The lithographic apparatus of claim 26, wherein the detection circuit is

configured to detect that a particle is small if a total number of image pixels relating to the detected particle is smaller than a predetermined number of pixels.

28. The lithographic apparatus of claim 21, wherein a size of the particle is determined based on the signal from the first detector, the signal from the second detector or a combination of the signals from the first and the second detector.

29. The lithographic apparatus of claim 18, wherein said object is the substrate or the patterning device.

30. The lithographic apparatus of claim 18, the particle detection system comprising:

- a radiation detector device for generating a first detector signal in response to radiation incident on at least one predetermined part of the radiation detector device; and
- a radiation blocking assembly for preventing radiation not originating from the detection area around the surface of the object from being incident on the predetermined part of the radiation detector device.

31. The particle detection system of claim 30, wherein the radiation blocking assembly comprises:

a detector lens for focussing radiation originating from the detection area on the at least one predetermined part of the radiation detector device;

a blocking device for preventing radiation not originating from the detection area from being directed by the detector lens onto the predetermined part of the detector device.

32. The particle detection system of claim 31, wherein the radiation detector system is configured to further output at least a second detector signal for indicating whether radiation is incident on the detector device outside said at least one predetermined part of the detector device for detecting a ghost particle signal.

33. A device manufacturing method comprising:
projecting a patterned beam of radiation onto a target portion of a substrate,
and
detecting a particle on a surface of an object with a particle detection system,
wherein said particle detection system comprises a detection circuit, which
is configured to compare a plurality of detector signals with a predetermined threshold
level, and to indicate that the particle is present on the surface of the object, when said
plurality of detector signals has a level above said threshold level.

34. The device manufacturing method of claim 33, wherein said object is the
substrate or a patterning device used to pattern the beam of radiation.

35. A device manufacturing method comprising:
projecting a patterned beam of radiation onto a target portion of a substrate,
and
detecting a particle on a surface of an object with a particle detection system,
wherein the particle detection system comprises:
- a radiation detector device for generating the first detector signal in
response to radiation incident on at least one predetermined part of the radiation detector
device; and
- a radiation blocking assembly for preventing radiation not originating
from a detection range around the surface of the object from being incident on the
predetermined part of the detector device.

36. The device manufacturing method of claim 35 wherein said object is the
substrate or a patterning device used to pattern the beam of radiation.

37. A device manufacturing method comprising:
projecting a patterned beam of radiation onto a target portion of a substrate,
and
detecting a particle on a surface of an object, said detecting including:
providing a beam of radiation onto the surface of said object,

detecting the beam of radiation redirected by said particle and/or said object;

outputting a plurality of signals corresponding to an intensity of the detected beam of radiation , and

comparing the plurality of signals with a predetermined threshold level to determine whether a particle is present on the surface of said object.

38. A device manufacturing method comprising:

projecting a patterned beam of radiation onto a target portion of a substrate,
and

detecting a particle on a surface of an object, said detecting including:

providing a beam of radiation onto the surface of said object,

detecting the beam of radiation redirected by said particle and/or said object;

directing a beam of radiation originating from within a detection range around the surface of the object on a predetermined part of a radiation detection device,

preventing radiation not originating from within a detection range around the surface of the object from being incident on the predetermined part of a radiation detection device and

determining whether a particle is present on the surface of said object based on a detector signal corresponding to an intensity of the detected beam of radiation incident on the predetermined part of the radiation detection device.

ABSTRACT

To enable differentiation between a particle and a ghost particle, a detector system is presented, wherein radiation from a ghost particle is resolved from radiation from an actual particle. In a first embodiment, the detector system outputs at least two detector signals corresponding to intensities of radiation being incident on different parts of the detector system. In a second embodiment, the detector system outputs at least two detector signals corresponding to intensities of radiation with different wavelengths being incident on the detector system. In the first and second embodiments, if radiation is received from a ghost particle, not each of the at least two detector signals has a level above a predetermined threshold level, whereas radiation received from a particle results in the signals having substantially a same level above a threshold level.

In a third embodiment, the detector system comprises a radiation detector device for generating the first detector signal in response to radiation incident on at least one predetermined part of the radiation detector device; and a radiation blocking assembly for preventing radiation not originating from a particle from being incident on the predetermined part of the detector device.

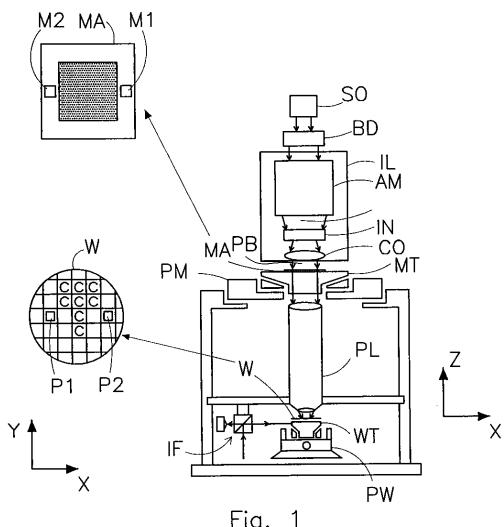


Fig. 1

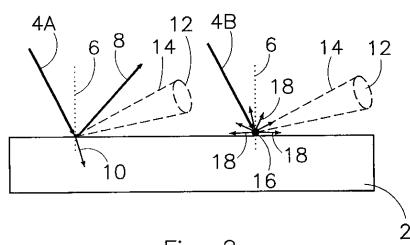


Fig. 2

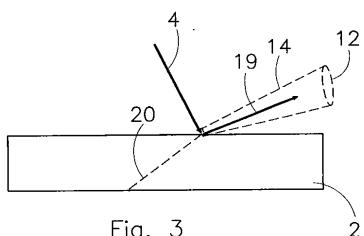


Fig. 3

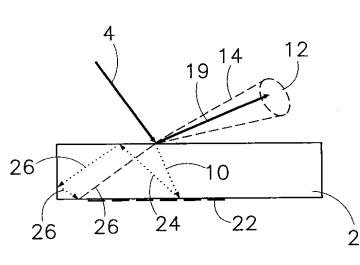


Fig. 4

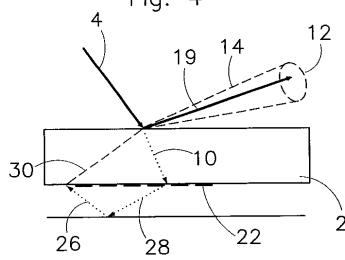


Fig. 5

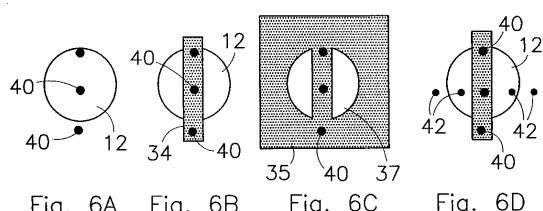


Fig. 6A Fig. 6B Fig. 6C Fig. 6D

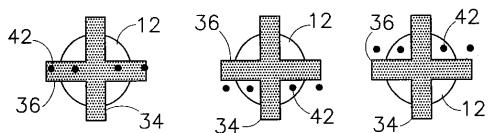


Fig. 7A Fig. 7B Fig. 7C

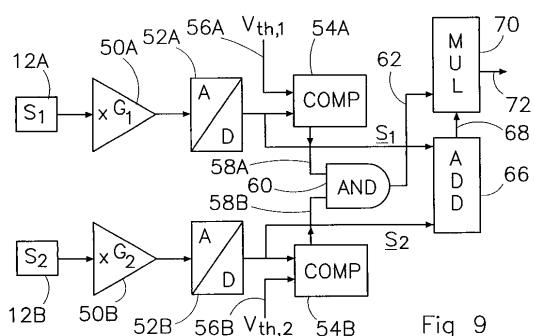


Fig. 9

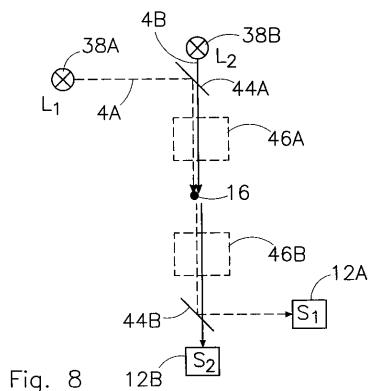


Fig. 8

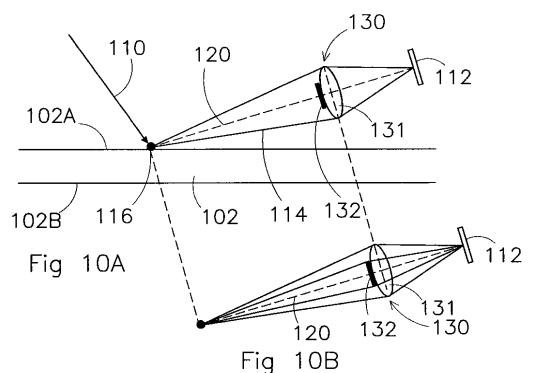


Fig. 10A

Fig. 10B

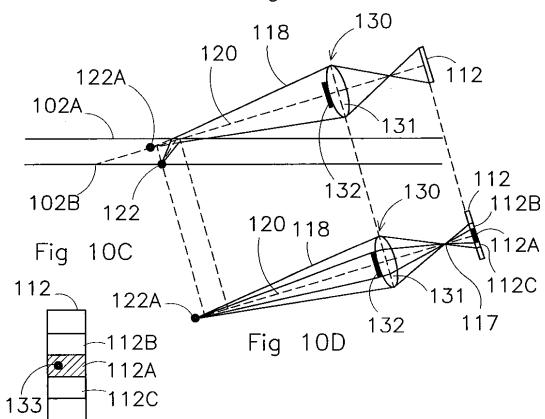


Fig. 10E