(54) 发明名称

一种流量指示图的编码方式及信标帧

(57) 摘要

本发明实施例提供一种流量指示图的编码方式及信标帧，涉及通信领域，能够使得用户得知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道，并减小信标帧中流量指示图占字节数。本实施例的流量指示图的编码方式包括：通过标记位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
1. 一种流量指示图的编码方法，其特征在于，包括:

通过标记流量指示图TIM中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中或者使得用户终端获知是否接入信道。

2. 根据权利要求1所述的编码方法，其特征在于，所述通过标记流量指示图TIM中的至少一个比特位，控制子位图中的分块位图显示字段是否显示包括:

通过标记流量指示图TIM中位图控制字段的至少一个比特位，控制子位图中的分块位图显示字段是否显示。

3. 根据权利要求1或2所述的编码方法，其特征在于，所述通过标记位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括:

当存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值不大于预设第一阈值时，使用第一符号标记所述位图控制字段中的至少一个比特位，隐藏各个子位图中的分块位图显示字段。

当存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，使用第二符号标记所述位图控制字段中的至少一个比特位，显示各个子位图中的分块位图显示字段。

4. 根据权利要求1或2所述的编码方法，其特征在于，

若使用所述第一符号标记所述位图控制字段中的比特位，则表明各个子位图中均包括至少一个分块子位图，各个分块子位图的长度为至少一个字节。

5. 根据权利要求1或2所述的编码方法，其特征在于，通过标记所述位图控制字段的第一比特位至第五比特位中的至少一个比特位，控制子位图中的分块位图显示字段是否显示。

6. 一种流量指示图的编码方法，其特征在于，包括:

通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

7. 根据权利要求6所述的编码方法，其特征在于，所述通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括:

当存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值不大于预设第一阈值时，在子位图的分块位图控制字段中设置第一标识，隐藏所述子位图中的分块位图显示字段。

当存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，显示所述子位图中的分块位图显示字段。

8. 根据权利要求6所述的编码方法，其特征在于，

若在所述子位图的分块位图控制字段中设置所述第一标识，则表明所述子位图中包括至少一个分块子位图。

9. 一种流量指示图的编码方法，其特征在于，包括:
通过在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

10. 根据权利要求9所述的编码方法，其特征在于，所述在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括：

当存在缓存数据的用户终端的各个关联标识符之间的差值不小于预设的第二阈值时，在所述子位图的分块位图控制字段中设置所述第二标识，隐藏所述子位图中的分块位图显示字段，其中，子位图中分块子位图的低位六比特表示用户终端关联标识符的低位六比特。

当存在缓存数据的用户终端的各个关联标识符之间的差值小于所述第二阈值时，显示所述子位图中的分块位图显示字段。

11. 根据权利要求9所述的编码方法，其特征在于，

若在所述子位图的分块位图控制字段中设置所述第二标识，则表明所述子位图中包括零至八个分块子位图，每个分块子位图的长度为一字节。

12. 一种信标帧Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度标识用于表明流量指示图的长度，其特征在于，还包括：

位图控制字段和子位图，通过标记所述位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

13. 根据权利要求12所述的流量指示图，其特征在于，所述通过标记位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括：

当存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值大于预设第一阈值时，使用第一符号标记所述位图控制字段中的至少一个比特位，隐藏各个子位图中的分块位图显示字段。

当存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，使用第二符号标记所述位图控制字段中的至少一个比特位，显示各个子位图中的分块位图显示字段。

14. 根据权利要求12所述的信标帧Beacon，其特征在于，

若使用所述第一符号标记所述位图控制字段中的比特位，则表明各个子位图中均包括至少一个分块子位图，各个分块子位图的长度为至少一个字节。

15. 根据权利要求12所述的信标帧Beacon，其特征在于，通过标记所述位图控制字段的第一比特位至第五比特位中的至少一个比特位，控制子位图中的分块位图显示字段是否显示。

16. 一种信标帧Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度标识用于表明流量指示图的长度，其特征在于，还包括：

子位图，通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位
图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

17. 根据权利要求16所述的信标帧Beacon，其特征在于，所述通过在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括：

当存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值不小于预设阈值时，在子位图的分块位图控制字段中设置第一标识，隐藏所述子位图中的分块位图显示字段。

当存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，显示所述子位图中的分块位图显示字段。

18. 根据权利要求16所述的信标帧Beacon，其特征在于，所述在所述子位图的分块位图控制字段中设置所述第一标识，则表明所述子位图中包括至少一个分块子位图。

19. 一种信标帧Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度标识用于表明流量指示图的长度，其特征在于，还包括：

子位图，通过在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

20. 根据权利要求19所述的信标帧Beacon，其特征在于，所述在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中包括：

当存在缓存数据的用户终端的各个关联标识符之间的差均不小于预设的第二阈值时，在所述子位图的分块位图控制字段中设置所述第二标识，隐藏所述子位图中的分块位图显示字段，其中，所述子位图中分块子位图的低位六比特表示用户终端关联标识符的低位六比特。

当存在缓存数据的用户终端的各个关联标识符之间的差小于或等于所述第二阈值时，显示所述子位图中的分块位图显示字段。

21. 根据权利要求19所述的信标帧Beacon，其特征在于，所述在所述子位图的分块位图控制字段中设置所述第二标识，则表明所述子位图中包括零至八个分块子位图，各个分块子位图的长度为一字节。

22. 一种流量指示图的编码方法，其特征在于，所述方法包括：

如果相邻的两个块采用同一种编码，则设置在子位图的位图控制字段中的分块位图显示字段所指示的范围包括后续的多个子位图，其中，分块位图显示字段中的第一个比特指示本块或者相邻本块之后的下一块是否为未编码的位图指示信息。

23. 根据权利要求22所述的方法，其特征在于，所述子块的位图控制字段中的分块位图显示字段为0则对应的块未采用未编码的位图指示方法，如果为1，则对应的块采用未编码的位图指示方法。
一种流量指示图的编码方式及信标帧

技术领域
【0001】本发明涉及通信领域，尤其涉及一种流量指示图的编码方式及信标帧。

背景技术
【0002】WLAN（Wireless Local Area Networks，无线局域网络）中，用户终端在进入AP（Access Point，接入点）覆盖范围内后，接入点向用户终端发送特定的关联标识符，并且会每隔一段时间会广播一个信标帧，每个信标帧中包含一个TIM（Traffic Indication Map，流量指示图），TIM中的位图能够表明接入点中是否缓存了需要给用户终端传输的数据。当用户终端收到信标帧后，能够通过特定的关联标识符读取信标帧中的TIM以得知是否有数据缓存在接入点中，若得知有数据缓存在接入点中，可以等待接收指令发送的数据，若用户终端读取到没有数据缓存在接入点中，可以进入休眠状态以省电。
【0003】然而，对于现有技术，发明人发现，若接入点中存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量接近，接入点生成信标帧中TIM的时间仍然很长，而TIM所占字节数仍然很大，传输该信标帧就需要大量时间，并且，用户终端的关联标识符是按照一定顺序进行排列的，若多个用户终端的关联标识符相距较远时，接入点生成信标帧中TIM的时间也会很长，而TIM所占字节数很大，因而传输该信标帧也需要大量的时间。

发明内容
【0004】本发明的实施例提供一种流量指示图的编码方式及信标帧，能够使得用户得知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道，并减小信标帧中流量指示图所占字节数。
【0005】本发明的实施例采用如下技术方案：
【0006】一方面，本发明实施例提供一种流量指示图的编码方式，包括：
【0007】通过标记位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
【0008】另一方面，本发明实施例提供一种流量指示图的编码方式，包括：
【0009】通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
【0010】另一方面，本发明实施例提供一种流量指示图的编码方式，包括：
【0011】通过在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
【0012】一方面，本发明实施例提供一种信标帧Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度
标识用于表明流量指示图的长度，还包括：
[0013] 位图控制字段和子位图，通过标记所述位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0014] 另一方面，本发明实施例提供一种信标帧 Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度标识用于表明流量指示图的长度，还包括：
[0015] 子位图，通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0016] 另一方面，本发明实施例提供一种信标帧 Beacon，所述信标帧包括流量指示图，所述流量指示图包括元素标识、长度标识，所述元素标识用于表明编码为流量指示图，所述长度标识用于表明流量指示图的长度，还包括：
[0017] 子位图，通过在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段是否显示，所述子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0018] 本发明实施例提供的流量指示图及其编码方式，通过标记位图控制字段中的至少一个比特位，或在子位图的分块位图控制字段中设置第一标识，或在子位图的分块位图控制字段中设置第二标识，以控制子位图中的分块位图显示字段是否显示，最终，用户终端通过子位图中的分块子位图获知是否有数据缓存在接入点中。通过该方案，不仅能够使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道，而且能够通过控制子位图中的分块位图显示字段是否显示，并减小信标帧中流量指示图所占的字节数。

附图说明
[0019] 为了更清楚地说明本发明实施例或现有技术中的技术方案，下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍，显而易见地，下面描述中的附图仅仅是本发明的一些实施例，对于本领域普通技术人员来讲，在不付出创造性劳动的前提下，还可以根据这些附图获得其他的附图。
[0020] 图 1 为本发明实施例提供的流量指示图结构示意图之一；
[0021] 图 2 为本发明实施例提供的流量指示图结构示意图之二；
[0022] 图 3 为本发明实施例提供的流量指示图结构示意图之三；
[0023] 图 4 为本发明实施例提供的流量指示图结构示意图之四；
[0024] 图 5 为本发明实施例提供的流量指示图结构示意图之五；
[0025] 图 6 为本发明实施例提供的关联标识符结构示意图。

具体实施方式
[0026] 下面将结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例，都属于本发明保护的范围。

[0027] 本发明实施例提供一种流量指示图的编码方式，包括：
[0028] 接入点通过标记位图控制字段中的至少一个比特位，控制子位图中的分块位图显示字段显示或者隐藏，子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使用户终端获知是否接入信道。
[0029] 每一个用户终端在进入点覆盖范围内后，接入点会向用户终端发送特定关联标识符，该关联标识符可以为十二比特，各个关联标识符是按照一定的顺序进行排列的，接入点中储存了整体位图，整体位图能够记录在接入点覆盖范围内的所有的用户终端是否在接入点中存在缓存。接入点每隔一段时间会生成并广播一个信标帧，每个信标帧可以包含一个流量指示图，流量指示图中可以携带部分位图，各个部分位图构成整体位图，用户终端根据关联标识符读取该流量指示图，从而得知是否有缓存在接入点中，或者使得用户终端获知是否接入信道。

[0030] 一个流量指示图包括元素标识、长度标识、位图控制字段和子位图。元素标识用于表示其为流量指示图，因为信标帧还可以包括其他的编码，该元素标识即是用于表明该编码为流量指示图；长度标识用于表示该流量指示图所占的字节数；位图控制字段包括至少一个比特位和位图索引，其中，位图索引用于指示由各个子位图构成的每个位图是整体位图的哪一部分；子位图包括分块位图索引、分块位图控制字段、分块位图显示字段及分块子位图，其中，分块位图索引用于指示该子位图是部分位图的哪一部分，分块位图控制字段用于指示分块子位图的编码方式，分块位图显示字段用于指示分块子位图，例如隐藏分块子位图中全为零的字节，分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

[0031] 作为本发明的一种实施方式，当接入点判断出存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值大于预设第一阈值时，使用第一符号标记位图控制字段中的至少一个比特位，隐藏各个子位图中的分块位图显示字段，这样每个子位图均节省了 1 个字节的开销。若使用第一符号标记所指示位图控制字段中的至少一个比特位，则表明各个子位图中均包括至少一个分块子位图，具体数量可以为八个，各个分块子位图的长度为至少一个字节。当接入点判断出存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，使用第二符号标记位图控制字段中的至少一个比特位，显示各个子位图中的分块位图显示字段。

[0032] 由于接入点告知用户终端是否存在缓存数据可以通过在分块子位图对应应该用户终端的比特中设置 0 或 1，那么存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值大于预设第一阈值，可以简单地理解为：若 0 的数量与 1 的数量的比较接近，则使用第一符号标记位图控制字段中的至少一个比特位，隐藏各个子位图中的分块位图显示字段，若 0 的数量与 1 的数量不接近，则使用第二符号标记位图控制字段中的至少一个比特位，显示各个子位图中的分块位图显示字段。

[0033] 这里，接入点可以标记位图控制字段中至少一个比特位的一个或多个比特，例如，可以通过标记 1，使用一个比特来表示隐藏各个子位图中的分块位图显示字段，或者，可以通过标记 101，使用三个比特来表示隐藏各个子位图中的分块位图显示字段，因些作用均是用来自控制各个子位图中的分块位图显示字段的显示或隐藏，因此应均在本实施例的保护范
围之内。
[0034] 接入点通过子位图中的分块子位图，使得用户终端获知是否有数据缓存在接入点中。示例性的，如果接入点在子位图中分块子位图的某个用户终端所对应的一个比特设置为 1，那么用户终端在根据关联标识符读取分块子位图时，可以得知有数据缓存在接入点中，用户终端可以等待接收接入点发送的数据；或者得知该用户终端可以接入信道。接入点在子位图中分块子位图的某个用户终端所对应的一个比特设置为 0，那么用户终端在根据关联标识符读取分块子位图时，可以得知没有数据缓存在接入点中，用户终端可以进入休眠状态以省电；或者得知该用户终端不能接入信道。
[0035] 需要补充的是，本编码方式是对位图控制字段中的至少一个比特位进行了标记，同样的，还可以通过标记至少一个比特位而采用其他的编码方式，例如，采用一比特表示取反指示，即此比特为 1 时，后面的比特映射是原始的比特映射先取反，再按照剩下的部分或者全部比特指示进行表示，由于均是通过标记至少一个比特位而采用某种编码方式，此处不再赘述。
[0036] 接入点通过在子位图的分块位图控制字段中设置第一标识，控制子位图中的分块位图显示字段是否显示，子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0037] 作为本发明的另一种实施方式，当接入点判断出存在缓存数据的用户终端的各个关联标识符之间的差均不小于预设的第二阈值时，接入点在子位图的分块位图控制字段中设置第一标识，隐藏子位图中的子块位图显示字段。若在子位图的分块位图控制字段中设置第一标识，则表明该子位图中包括至少一个分块子位图，其中，子位图中分块子位图可以具体为部分位图。当接入点判断出存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，显示各个子位图中的位图分块位图显示字段。
[0038] 需要说明的是，本流量指示图的编码方式仍然是当接入点判断出存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值不小于预设第一阈值时执行的，它与前述流量指示图的编码方式的区别在于，本编码方式是接入点在某个子位图中的分块位图控制字段中设置第一标识，那么仅是该子位图中的分块位图显示字段隐藏，不在位图控制字段中设置第一标识，则仅是该子位图中的分块位图显示字段显示，其他子位图中的分块位图显示字段可以隐藏也可以显示。而前述编码方式是标记位图控制字段中的至少一个比特位，若使用第一符号进行标记后，该流量指示图中的所有的子位图中的分块位图显示字段均隐藏，若使用第二符号进行标记后，该流量指示图中的所有的子位图中的分块位图显示字段均显示。
[0039] 接入点通过在子位图中的分块子位图存储数据，使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0040] 接入点通过在子位图的分块位图控制字段中设置第二标识，控制 子位图中的分块位图显示字段是否显示，子位图中的分块子位图用于使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。
[0041] 作为本发明的另一种实施方式，当接入点判断出存在缓存数据的用户终端的各个关联标识符之间的差均不小于预设的第二阈值时，在子位图的分块位图控制字段中设置第二标识，隐藏该子位图中的分块位图显示字段，这样该子位图节省了 1 个字节的开销。当存
在缓存数据的用户终端的各关联标识符的差均小于第二阈值时，显示所述子位图中的分块位图显示字段。

[0042] 由于各个用户的关联标识符是按照一定的顺序排列下来的，那么存在缓存数据的用户终端的各关联标识符之间的差均小于预设的第二阈值，可以简单地理解为，若每个用户终端的关联标识符之间的相距较远，即仅存在稀疏的几个用户终端的缓存，则在子位图的分块位图控制字段中设置第二标识，隐藏子位图中的分块位图显示字段，若存在缓存数据的用户终端的各关联标识符之间的差均小于所述第二阈值时，显示子位图中的分块位图显示字段。

[0043] 若子位图的分块位图控制字段中设置第二标识，则表明该子位图中包括零至八个分块位图，各个分块子位图的长度为一字节。

[0044] 其中，子位图中分块子位图的低位六比特为用户终端关联标识符的低位六比特，高位二比特中可以选择一比特来表示该分块子位图是否为此子位图中的最后一个分块子位图，那么，考虑到所有的情况，该子位图中的分块子位图的个数可以是零至八个。

[0045] 需要说明的是，这里只是示例性地将分块子位图的最大个数设定为八个，也可以将最大个数设定为更大或更小的值。但本发明的发明目的或在于通过采用各种编码方式以减小流量指示图的字节数，因此设定为八个是优选的一种方案，若需要表示的用户数量更多，则采用其他的编码方式相较于本编码方式更能够节省字节。

[0046] 作为本发明的另一种实施方式，当接入点判断出存在缓存数据的用户终端的所有或者大部份关联标识符之间的差均小于预设的第三阈值时，在子位图的分块位图控制字段中设置第三标识，隐藏该子位图中的分块位图显示字段，这样该子位图节省了1个字节的开销。当存在缓存数据的用户终端的部分关联标识符之间的差大于第三阈值时，不在位图的分块位图控制字段中设置第三标识。

[0047] 由于各个用户的关联标识符是按照一定的顺序排列下来的，那么存在缓存数据的用户终端的所有或者大部份关联标识符之间的差均小于预设的第三阈值，可以简单地理解为，若每个用户终端的关联标识符之间的相距较远，即在某一段相邻的用户都有缓存的数据，则在子位图的分块位图控制字段中设置第三标识，隐藏该子位图中的分块位图显示字段，存在缓存数据的用户终端的部分关联标识符之间的差大于第三阈值时，不在位图的分块位图控制字段中设置第三标识。

[0048] 若子位图的分块位图控制字段中设置第三标识，则表明该子位图的表示形式为用户关联标识符 (AID)，且用前一个用户关联标识符 (AID) 作为起始的用户标识，后一个用户关联标识符 (AID) 作为结束的用户标识。这两个 AID 所代表的用户之间的用户都在此子位图中被指示。

[0049] 其中，子位图中可以为每一个分块子位图分配两个字节，这样一个分块子位图就表示一个用户关联标识符；也可以为每一个分块子位图分配一个字节，这样一个分块子位图表示一个用户关联标识符的部分信息（比如低位的八个比特）。也可以沿用上一个实施方式，只用低位六比特为用户终端关联标识符的低位六比特。考虑到所有的情况，该子位图中的分块子位图的个数可以是两个，也可以是四个。

[0050] 作为本发明的另一种实施方式，可以利用连续发送的流量指示图的相关性，进一步优化指示方法。当接入点判断出此信标（Beacon）周期中存在缓存数据的用户终端与之
前某个信标周期中存在缓存数据的用户终端的差异小于预设的第四阈值时，在流量指示图中增加两个指示域，流量指示图控制和流量指示图编号。其中，流量指示图控制的作用是指示当前流量指示图所指示的内容是相对于之前某个信标帧中的流量指示图的差异还是与之前某个信标帧中的流量指示图无关。如果是差异，则在流量指示图编号域中增加当前的流量指示图所比较的流量指示图编号；如果是无关，则需要为当前的流量指示图在流量指示图编号域中分配一个新的流量指示图编号。

[0051] 这里的差异，是指两次信标帧中的所针对的用户终端中不相同的用户终端的个数。

[0052] 在具体实现的时候，可以在信标控制字段中放置流量指示图控制和流量指示图编号两个子域。也可以在流量指示图中新增加字段用于表示这两个域。

[0053] 作为举例，流量指示图控制域的设定可以有以下功能：

[0054] 表格 1 流量指示图控制域定义（示例）

<table>
<thead>
<tr>
<th>分组控制信息（3比特）</th>
<th>含义</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>定义新流量指示图/重定义之前某个流量指示图</td>
</tr>
<tr>
<td>001</td>
<td>采用之前某个流量指示图</td>
</tr>
<tr>
<td>010</td>
<td>基于之前某个流量指示图临时增加用户终端（STA），并且在子位图中指示，仅本次有效</td>
</tr>
<tr>
<td>011</td>
<td>基于之前某个流量指示图临时减少用户终端，并且在子位图中指示，仅本次有效</td>
</tr>
<tr>
<td>100</td>
<td>基于之前某个流量指示图永久增加用户终端，并且在子位图中指示</td>
</tr>
<tr>
<td>101</td>
<td>基于之前某个流量指示图永久减少用户终端，并且在子位图中指示</td>
</tr>
<tr>
<td>其他</td>
<td>保留</td>
</tr>
</tbody>
</table>

[0055] 作为本发明的另一种实施方式，可以针对连续多个块都有指示的情况做进一步优化。本实施例在分块位图控制后增加一个长度字段（例如可以为一个字节），用于指示后续采用相同压缩方法的块或者分块的长度。当接收到在将此信标（Beacon）周期中所涉及的STA位图分为分为多个子位图，如果相邻的两个块或多个块都采用同一种编码，则在子块的分块位图控制字段中指示本块中具有长度字段，并利用长度字段指示采用这种编码的子块个数或者块个数。所述相同的编码方式可以采用分块位图显示字段。在长度字段指示的范围内，可以有效节省其他块内的分块位图索引字段和分块位图控制字段。本实施例所针对
的场景为连续两个或者多个块采用相同的编码方式。

[0057] 作为本发明的又一种实施方式，可以针对连续多个块都有指示的情况做进一步优化。在本实施例中，当接入点在将此信标（Beacon）周期内所涉及的STA位图为分为多个子位图，如果相邻的两个块或多个块都采用同一种编码，则在子块的位图控制字段中指示本块中的分块位图显示字段所指示的单子从子块变为块，即该指示子位图的位图控制字段中的分块位图显示字段所指示的范围包括后续的多个子位图，其中，分块位图显示字段中的第一个比特指示本块或者相邻本块之后的下一块是否为未编码的位图指示信息。

[0058] 如果该位比特为 0，则对应的块未采用未编码的位图指示方法；如果该位比特为 1，则对应的块采用了未编码的位图指示方法。以此类推，如果分块位图控制字段长度为 8 个比特，则该位图控制字段最多可以指示 9 个块（含本块）是否采用了未编码的位图指示方法。分块位图控制字段长度对应后续的第 8 个块，根据分块显示字段的取值指示对应块的位图指示信息。例如第 1 个比特对应后续的第 1 块，即第 n 个比特对应后续的第 n 块。在有效指示的范围之内，本方法可以有效节省其他块的分块位图显示字段、分块位图控制字段和分块位图显示字段。

[0059] 如前所述的，一个流量指示图包括元素标识、长度标识、位图控制字段和子位图。上述的实施例中，通过标记流量指示图 TIM 中位图控制字段的至少一个比特位为例，控制子位图中的分块位图显示字段是否显示。将进一步的，在具体的实施中，可以标记 TIM 中的其他字段以达到上述相同的效果。在其他的实施方法中，例如使用 TIM 中其他的预留比特或者闲置比特，在不影响 TIM 必要功能的基础上选择其他比特用于标记字段以控制子位图中的分块位图显示字段是否显示。

[0060] 接入点判断的依据除了存在缓存数据的用户终端的多少以外，也可以是接入点希望接入信道的用户情况。比如第一种实施方式，其判断准则可以是：接入点希望接入信道的用户终端的数量与不希望接入信道的用户终端的数量的差值不大于预设阈值。对于第二和第三种实施方式，其判断准则可以是：接入点希望接入信道的用户终端的各个关联标识符之间的差均不小于预设的阈值。对于第四种实施方式，其判断准则可以是：接入点希望接入信道的用户终端的所有或者大部份关联标识符之间的差均小于预设的阈值。对于第五种实施方式，其判断准则可以是：接入点在当前信标帧中希望接入信道的用户终端与之前某个信标帧的差异小于预设的第四阈值。

[0061] 接入点通过在子位图中的分块子位图存储数据或者用户标识，使得用户终端获知是否有数据缓存存在接入点中。

[0062] 同样的，接入点能够通过标记位图控制字段中的至少一个比特位，或在子位图的分块位图控制字段中设置第一标识，或在子位图的分块位图控制字段中设置第二标识，控制子位图中的分块位图显示字段显示或者隐藏。子位图中的分块子位图用于使得用户终端获知是否接入信道。

[0063] 当用户终端处于休眠状态时，该用户终端仅接收信标帧，因此，若接入点想要该用户终端接入信道，则可以通过本实施例提供的编码方式，生成流量指示图，进而通过发送信标帧使得用户终端获知是否接入信道，由于编码方式与上述实施例相同，因此此处不再赘述，但也应本发明保护范围之内。

[0064] 本发明实施例提供的流量指示图的编码方式，通过标记位图控制字段中的至少一
个比特位，或在子位图的分块位图控制字段中设置第一标识，或在子位图的分块位图控制字段中设置第二标识，以控制子位图中的分块位图显示字段是否显示，最终，用户终端通过子位图中的分块位图获取是否有数据缓存在接入点中。通过该方案，不但能够使得用户终端得知是否有数据缓存在接入点中，或者使得用户终端获取是否接入信道，而且能够通过控制子位图中的分块位图显示字段是否显示，并减小信标帧中流量指示图所占的字节数。

[0065] 与上述流量指示图的编码方式相对应的，本发明还提供信标帧 Beacon，信标帧包括流量指示图 1，如图 1 所示，包括位图控制字段 13 和一个或多个子位图 14，其中，位图控制字段 13 包括至少一个比特位 131，子位图 14 包括分块位图控制字段 142 和一个或多个分块子位图 144。

[0066] 进一步地，如图 2 所示，流量指示图 1 还包括元素标识 11，长度标识 12，位图控制字段 13 还包括位图索引 132，子位图 14 还包括分块位图索引 141，分块位图显示字段 143。

[0067] 一字节的元素标识 11 用于表示其为流量指示图，因为信标帧还可以包括其他的编码，该元素标识 11 即是用于表明该编码为流量指示图；一字节长度标识 12 用于表示该流量指示图所占的字节数；一字节位图控制字段 13 可以包括比特位 131 和位图索引 132，其中，位图索引 132 用于指示由各个子位图构成的部分位图是整体位图的哪一部分；子位图 14 包括分块位图索引 141，分块位图控制字段 142，分块位图显示字段 143 及分块子位图 144，其中，分块位图索引 141 用于指示该子位图是部分位图的哪一部分，分块位图控制字段 142 用于指示分块子位图的编码方式，分块位图显示字段 143 用于控制分块子位图 144，例如隐藏分块子位图中全为零的字，分块子位图 144 用于使得用户终端获取是否有数据缓存在接入点中，或者使得用户终端获取是否接入信道。

[0068] 当接入点判断出存在缓存数据的用户终端的数量与不存在缓存数据的用户终端的数量的差值不小于预设第一阈值时，如图 3 所示，使用第一符号标记位图控制字段 13 中的比特位 131，隐藏各个子位图 14 中的分块位图显示字段 143，或者，使用第二符号标记位图控制字段 142 中的比特位 131，显示各个子位图中的分块位图显示字段 143。若使用第一符号标记位图控制字段 13 中的比特位 131，则表明各个子位图 14 中均包括至少一个分块子位图 144，分块子位图 144 的数据量可以具体为八个，各个分块子位图 144 的长度为至少一个字节。

[0069] 这里，接入点可以标记位图控制字段 13 的第一比特位 131 至第五比特位 131 中的至少一个比特位，例如，可以通过标记 1，使用一个比特来表示隐藏各个子位图 14 中的分块位图显示字段 143，或者可以通过标记 101，使用三个比特来表示隐藏各个子位图 14 中的分块位图显示字段 143，因其作用是用于控制各个子位图 14 中的分块位图显示字段 143 的显示或隐藏，因此应均在本实施例的保护范围之内。

[0070] 或者，如图 4 所示，在子位图 14 的分块位图控制字段 142 中设置第一标识，隐藏子位图 14 中的分块位图显示字段 143，或当存在缓存数据的用户终端与不存在缓存数据的用户终端的数量差的绝对值大于预设第一阈值时，显示子位图 14 中的分块位图显示字段 143。若在子位图 14 的分块位图控制字段 142 中设置第一标识，则表明子位图 14 中包括至少一个分块子位图 144，分块子位图 144 可以具体为部分位图。

[0071] 当存在缓存数据的用户终端的各个关联标识符之间的差均不小于预设的第二阈
值时，如图5所示，在子位图14的分块位图控制字段142中设置第二标识，隐藏子位图14中的分块位图显示字段143，其中，子位图14中分块子位图144的低位六比特表示用户终端关联标识符的低位六比特。或当存在缓存数据的用户终端的各个关联标识符之间的差没有比第二阈值时，显示子位图14中的分块位图显示字段143。若在子位图14的分块位图控制字段142中设置第二标识，则表明子位图14中包括零至八个分块子位图144，各个分块子位图144的长度为一字节。

0072 用户终端能够根据关联标识符读取子位图14中的分块子位图144的数据，从而获知是否有数据缓存在接入点中。

0073 同样的，用户终端能够关联标识符读取子位图14中的分块子位图144中的数据，从而获知是否接入信道。由于流量指示图的结构与上述实施例所述的相同，此处不再赘述，但应在本发明保护范围之内。

0074 这里，如图6所示，对关联标识符2的结构进行说明，以得知用户终端是如何根据关联标识符2来读取分块子位图中的数据。关联标识符2与流量指示图之间是存在对应关系的，一个关联标识符2可以为十二比特。关联标识符2包括位图标识21、子位图标识22、分块子位图标识23、用户终端标识24。其中位图标识21用于寻找用户终端对应于哪一个部分位图，子位图标识22用于寻找用户终端对应于哪一个子位图，分块子位图标识23用于寻找用户终端对应于子位图中哪一分块子位图，用户终端标识24用于寻找用户终端对应于分块子位图中哪一个的比特，用户终端通过读取该比特中的数据来获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。

0075 本发明实施例提供的流量指示图，通过标记位图控制字段中的至少一个比特位，或者在子位图的分块位图控制字段中设置第一标识，或者在子位图的分块位图控制字段中设置第二标识，以控制子位图中的分块位图显示字段是否显示，最终，用户终端通过子位图中分块子位图获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道。通过该方案，不但能够使得用户终端获知是否有数据缓存在接入点中，或者使得用户终端获知是否接入信道，而且能够通过控制子位图中的分块位图显示字段是否显示，并减小信标帧中流量指示图所占的字节数。

0076 本领域普通技术人员可以理解：实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成，前述的程序可以存储于一计算机可读取存储介质中，该程序在执行时，执行包括上述方法实施例的步骤；而前述的存储介质包括：ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

0077 以上所述，仅为本发明的具体实施方式，但本发明的保护范围并不局限于此，任何熟悉本技术领域的技术人员在本发明揭露的技术范围内，可轻易想到变化或替换，都应涵盖在本发明的保护范围之内。因此，本发明的保护范围应以权利要求书的保护范围为准。