

CONVENTION

AUSTRALIA

Patents Act 1990

656246

REQUEST FOR A STANDARD PATENT

AND NOTICE OF ENTITLEMENT

The Applicant identified below requests the grant of a patent to the nominated person identified below for an invention described in the accompanying standard complete patent specification.

[70,71] Applicant and Nominated Person:

Imperial Chemical Industries PLC
Imperial Chemical House, Millbank, London SW1P 3JF, UNITED KINGDOM

[54] Invention Title:

CATHODE FOR USE IN ELECTROLYTIC CELL

[72] Actual Inventors:

Eric Paul
Paul Michael Hayes
Mary Jane Mockford
Frank Rourke

[74] Address for Service:

PHILLIPS ORMONDE & FITZPATRICK
367 Collins Street
Melbourne 3000 AUSTRALIA

[31,33,32]

Details of basic application(s):-

9126534.8 UNITED KINGDOM
9126536.3 UNITED KINGDOM

GB 13 December 1991
GB 13 December 1991

Applicant states the following:

1. The nominated person is the assignee of the actual inventor(s)
2. The nominated person is
 - the applicant
 - the assignee of the applicant
 - authorised to make this application by the applicant of the basic application.
3. The basic application(s) was/were the first made in a convention country in respect of the invention.

The nominated person is not an opponent or eligible person described in Section 33-36 of the Act.

30 November 1992

Imperial Chemical Industries PLC
By PHILLIPS ORMONDE & FITZPATRICK
Patent Attorneys
By

Our Ref : 312121

5999q

David B Fitzpatrick N 041411 301192

AU922971i

(12) PATENT ABRIDGMENT (11) Document No. AU-B-29711/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 656246

(54) Title
CATHODE FOR USE IN ELECTROLYTIC CELL

International Patent Classification(s)

(51)⁵ C25B 011/06 C23C 028/02

(21) Application No. : 29711/92 (22) Application Date : 30.11.92

(30) Priority Data

(31) Number (32) Date (33) Country
9126534 13.12.91 GB UNITED KINGDOM
9126536 13.12.91 GB UNITED KINGDOM

(43) Publication Date : 17.06.93

(44) Publication Date of Accepted Application : 27.01.95

(71) Applicant(s)
IMPERIAL CHEMICAL INDUSTRIES PLC

(72) Inventor(s)
ERIC PAUL; PAUL MICHAEL HAYES; MARY JANE MOCKFORD; FRANK ROURKE

(74) Attorney or Agent
PHILLIPS ORMONDE & FITZPATRICK , 367 Collins Street, MELBOURNE VIC 3000

(56) Prior Art Documents
US 5021304
US 4342792

(57) Claim

1. An electrode suitable for use as a cathode in an electrolytic cell which electrode includes a metallic substrate and a coating thereon, said coating having at least an outer layer which includes at least 10% cerium oxide as measured by X-ray diffraction analysis (XRD) and at least one non-noble Group 8 metal.

6. A process for the preparation of an electrode as claimed in Claim 1 including the steps of (A) applying an interim coating to the metallic substrate by plasma spraying an intermetallic compound of cerium and a non-noble Group 8 metal and (B) heating the electrode bearing the interim coating in a non-oxidising atmosphere.

17. An electrode suitable for use as a cathode in an electrolytic cell which electrode includes a metallic substrate and a coating thereon, said electrode being prepared by a process as claimed in any one of Claims 6 to 16.

AUSTRALIA

Patents Act

656246

COMPLETE SPECIFICATION
(ORIGINAL)

Class Int. Class

Application Number:
Lodged:

Complete Specification Lodged:

Accepted:

Published:

Priority

Related Art:

Name of Applicant:

Imperial Chemical Industries PLC

Actual Inventor(s):

Eric Paul
Paul Michael Hayes
Mary Jane Mockford
Frank Rourke

Address for Service:

PHILLIPS ORMONDE & FITZPATRICK
Patent and Trade Mark Attorneys
367 Collins Street
Melbourne 3000 AUSTRALIA

Invention Title:

CATHODE FOR USE IN ELECTROLYTIC CELL

Our Ref : 312121
POF Code: 1453/1453

The following statement is a full description of this invention, including the best method of performing it known to applicant(s):

CATHODE FOR USE IN ELECTROLYTIC CELL

5 This invention relates to a cathode for use in an electrolytic cell, and in particular to a cathode which has a low hydrogen over-voltage when used in the electrolysis of water or aqueous solutions, e.g. aqueous alkali metal chloride solutions.

10 The voltage at which a solution may be electrolysed at a given current density is made up of and is influenced by a number of features, namely the theoretical electrolysing voltage, the over-voltages at the anode and cathode, the resistance of the solution which is electrolysed, the resistance of the diaphragm or membrane, if any, positioned between the anode and cathode, and the resistance of the metallic conductors and their contact resistances.

15 As the cost of electrolysis is proportional to the voltage at which electrolysis is effected, and in view of the high cost of electrical power, it is desirable to reduce the voltage at which a solution is electrolysed to as low as a value as possible. In the electrolysis of water or aqueous solutions there is considerable scope for achieving such a reduction in the electrolysing voltage by reducing the hydrogen over-voltage at the cathode.

20 There have been many prior proposals of means of achieving such a reduction in hydrogen over-voltage.

25 For example, it is known that the hydrogen over-voltage at a cathode may be reduced by increasing the surface area of the cathode, e.g. by etching the surface of the cathode in an acid, or by grit-blasting the surface of the cathode, or by coating the surface of the cathode with mixture of metals, e.g. a mixture of nickel and aluminium, and selectively leaching one of the metals, e.g. aluminium, from the coating.

Other methods of achieving a low hydrogen over-voltage cathode which have been described involve coating the surface of a cathode with an electrocatalytically-active material which comprises a platinum group metal and/or an oxide thereof.

5 Examples of such prior disclosures include the following.

10 US Patent 4100049 discloses a cathode comprising a substrate of iron, nickel, cobalt or alloys thereof and a coating of a mixture of a precious metal oxide, particularly palladium oxide, and a valve metal oxide particularly zirconium oxide.

15 British Patent 1511719 discloses a cathode comprising a metal substrate, which may be ferrous metal, copper or nickel, a coating of cobalt, and a further coating consisting of ruthenium.

20 Japanese Patent Publication 54090080 discloses pre-treating an iron cathode with perchloric acid followed by sinter coating the cathode with cathode active substances which may be ruthenium, iridium, iron or nickel in the form of the metal or a compound of the metal.

25 Japanese Patent Publication 54110983 discloses a cathode, which may be of mild steel, nickel or nickel alloy, and a coating of a dispersion of nickel or nickel alloy particles and a cathode activator which comprises one or more of platinum, ruthenium, iridium, rhodium, palladium or osmium metal or oxide.

30 Japanese Patent Publication 53010036 discloses a cathode having a base of a valve metal and a coating of an alloy of at least one platinum group metal and a valve metal, and optionally a top coating of at least one platinum group metal.

35 European Patent 0 129 374 describes a cathode which comprise a metallic substrate and a coating

5 having at least an outer layer of a mixture of at least one platinum group metal and at least one platinum group metal oxide in which the platinum group metal in the mixture with the platinum group metal oxide comprises from 2% to 30% by weight of the mixture.

10 The present invention relates to a cathode for use in an electrolytic cell which has a low hydrogen over-voltage when used in the electrolysis of water or aqueous solutions and which does not depend for its effectiveness on the presence of a coating containing a platinum group metal or an oxide thereof, such metals and oxides being relatively expensive.

15 Furthermore, we have found surprisingly that where an interim coating is applied by air plasma spraying at ambient pressure (hereinafter referred to for convenience as "APS") and the electrode coated with the interim coating is heated in a non-oxidising atmosphere a cathode operating at low hydrogen over-voltage for a prolonged period of time, at least 20 12 months, say, may be prepared (hereinafter referred to for convenience as "durable electrode"). Such durable electrodes are also resistant to the effects of so-called "cell short-circuit stoppage", that is cell short-circuit stoppage has little adverse effect 25 on the hydrogen over-voltage.

30 It is well known that cell short-circuit stoppage and "switch-off" separately lead to corrosion of cathodes, for example as described in EP 0,222,911 and EP 0,413,480 respectively. In EP 0,413,480 it has been suggested that the incorporation of metallic titanium and/or zirconium into the coating would reduce such corrosion and in EP 0,405,559 it has been suggested that incorporation of nickel Misch metal, 35 stabilised a Raney nickel coating against corrosion.

5 The first aspect of the present invention provides an electrode suitable for use as a cathode in an electrolytic cell which electrode comprises a metallic substrate and a coating thereon having at least an outer layer comprising a cerium oxide and at least one non-noble Group 8 metal. The electrode will hereinafter be referred to as a cathode.

10 In the electrode according to the first aspect of the present invention cerium oxide provides at least 10% and preferably at least 20% as measured by X-ray diffraction analysis (XRD) of the coating.

15 We do not exclude the possibility that a small amount, say less than 10% by XRD of a non-noble Group 8 metal oxide may be present in the coating, eg NiO.

20 The electrode according to the first aspect of the present invention may be prepared by a process comprising the step of plasma spraying, preferably by APS an intermetallic compound of cerium and nickel.

25 The second aspect of the present invention provides a process for the preparation of an electrode as defined in the first aspect of the present invention which process comprises the steps of (A) applying an interim coating to the metallic substrate by APS and (B) heating the electrode bearing the interim coating in a non-oxidising atmosphere.

30 35 However, we do not exclude the possibility that the electrode according to the first aspect of the present invention may be prepared by (a) the APS of an intermetallic compound of cerium and at least one non-noble Group 8 metal onto the substrate, directly or (b) by heat treatment of known intermetallic coatings, or (c) thermal spraying of a mixture of cerium oxide and nickel.

A further aspect of the present invention provides an electrode for use as a cathode in an

electrolytic cell which electrode comprises a metallic substrate and a coating thereon having at least an outer layer prepared by a process involving the step of APS an intermetallic compound of cerium and nickel and the further step of heating the electrode bearing the interim coating in a non-oxidising atmosphere.

As examples of non-oxidising atmospheres may be mentioned inter alia a vacuum, a reducing gas, eg hydrogen, or preferably an inert gas, eg argon, or mixtures thereof, eg heating in argon followed by vacuum treatment at elevated temperature.

The interim coating produced in Step A of the process according to the present invention typically comprises about 10% by XRD of an intermetallic compound, eg CeN_x, wherein x has the meaning hereinafter ascribed to it. We have found that electrodes comprising such an interim coating often have a low hydrogen over-voltage.

Furthermore, we have found that low hydrogen over-voltage electrodes may be prepared by the low pressure plasma-spraying (hereinafter referred to for convenience as "LPPS") of an intermetallic compound of cerium and nickel. Coatings prepared by LPPS tend to comprise cerium oxide, non-noble Group 8 metal, preferably Ni, and at least 20% by XRD of an intermetallic compound of Ce and a non-noble Group 8 metal, eg CeNi_x.

We do not exclude the possibility that the interim coating in the preparation of the electrode according to the first aspect of the present invention may be prepared by an alternative melt-spraying process, eg low pressure plasma spraying; or baking, eg spray-bake; or composite plating, eg in a Watts bath heated to at least 300°C.

The interim coating comprises cerium oxide, a non-noble Group 8 metal and oxide thereof and an intermetallic compound of cerium and the non-noble Group 8.

5 We are aware of certain prior disclosures in which the use of intermetallic compounds as a low hydrogen over-voltage cathode coating has been described.

10 Doklady Akad Nauk SSSR 1984, vol 276 No 6 pp1424-1426, describes a study of the electrochemical properties of an electrode which is a copper or nickel screen to which a mixture of an intermetallic compound LaNi₅, CeCo₃, or CeNi₃ and a fluoropolymer is pressed and thermally treated under vacuum. The electrode of the present invention does not require the use of a fluoropolymer binder for the intermetallic compound. Furthermore, the electrochemical properties of the electrodes of the reference are said to be related to the electrode material as a whole since they will be influenced by the properties of the binder and its proportions.

20 In the proceedings of a symposium on Electrochemical Engineering in the Chlor-alkali and Chlorate Industries, The Electrochemical Society, 1988 pp184-194, there is described the use of a coated electrode in which the coating comprises LaNi₅ and a non-electroactive bonding agent or sintered particulate LaNi₅ or a sintered mixture of particulate LaNi₅ and Ni powder.

25 30 Journal of Applied Electrochemistry vol 14, 1984, pp107-115 describes a cathode for use in a chlor-alkali electrolytic cell in which the cathode comprises a steel or nickel substrate and a plasma-sprayed nickel coating on the substrate.

Published European patent application

No 0 089 141 describes a cathode which comprises a hydrogenated species of an AB_n material including an AB_5 phase, wherein A is a rare earth metal or calcium, or two or more of these elements, of which up to 0.2 atoms in total may be replaced atom for atom by one or both of zirconium and thorium, and B is nickel or cobalt or both, of which up 1.5 atoms in total may be replaced atom for atom by one or more of copper, aluminium, tin, iron, and chromium, and particles of the AB_n material not exceeding $20\mu\text{m}$ in size being bonded by a metallic or electrically conductive plastic binder.

The cathode of the present invention comprises a metallic substrate. The substrate may be of a ferrous metal, or of a film-forming metal, e.g. titanium. However, it is preferred that the substrate of the cathode is made of nickel or a nickel alloy or of another material having an outer face of nickel or nickel alloy. For example, the cathode may comprise a core of another metal, e.g. steel or copper, and an outer face of nickel or nickel alloy. A substrate comprising nickel or a nickel alloy is preferred on account of the corrosion resistance of such a substrate in an electrolytic cell in which aqueous alkali chloride solution is electrolysed, and on account of the long term low hydrogen over-voltage performance of cathodes of the invention which comprises a substrate of nickel or nickel alloy.

The substrate of the cathode may have any desired structure. For example, it may be in the form of a plate, which may be foraminous, e.g. the cathode may be a perforated plate, or it may be in the form of an expanded metal, or it may be woven or unwoven. The cathode is not necessarily in plate form. Thus, it

may be in the form of a plurality of so-called cathode fingers between which the anode of the electrolytic cell may be placed.

As it assists in the production of a cathode which operates with a low hydrogen over-voltage it is desirable that the substrate has a high surface area. Such a high surface area may be achieved by roughening the surface of the substrate, for example by chemically etching the surface and/or by grit-blasting the surface.

In the electrode according to the first aspect of the present invention the defined coating may be applied directly to the surface of the substrate.

However, we do not exclude the possibility that the defined coating may be applied to an intermediate coating of another material on the surface of the substrate. Such an intermediate coating may be, for example, a porous nickel coating. However, the invention will be described hereinafter with reference to a cathode in which such an intermediate coating is not present.

The intermetallic compound which is to be air-plasma sprayed in the process according to the second aspect of the present invention must contain cerium. However, we do not exclude the possibility that it may contain one or more other metals of the lanthanide series, e.g. lanthanum itself, that is some of the cerium may be replaced by one or more other lanthanide metals. However, where such other metal of the lanthanide series is present in the intermetallic compound it should provide less than 2% w/w of the intermetallic compound and cerium should be present as the major amount of the total metal of the lanthanide series, including cerium.

5 The intermetallic compound which is to be air-plasma sprayed contains at least one non-noble Group 8 metal, that is at least one of iron, cobalt and nickel. Intermetallic compounds containing cobalt and/or nickel, particularly nickel, are preferred.

10 The intermetallic compound may contain one or more metals additional to cerium and non-noble Group 8 metals but such other metals, if present, will generally be present in a proportion of not more than 2%.

15 The intermetallic compound may have an empirical formula CeM_x where M is at least one non-noble Group 8 metal, x is in the range of about 1 to 5, and in which some of the cerium may be replaced by one or more other lanthanide metals as hereinbefore described.

20 The composition used for plasma spraying may be a neat intermetallic compound, e.g. $CeNi_3$, or a mixture of intermetallic compounds, e.g. $CeNi_3$ and Ce_2Ni_7 , or an intimate mixture of a metal powder, preferably Ni, with an intermetallic compound, e.g. Ce_2Ni_7 to form, e.g. notionally $CeNi_{22}$, or a cerium/nickel alloy containing $CeNi_x$ phases wherein x is 1-5.

25 Typically the concentration of Ce in the intermetallic compound charged to the plasma spray gun is not more than about 50 % w/w and it is often preferred that it is not less than about 10 % w/w.

30 The relative amounts of a component in the outer layer can be determined from the peaks of the XRD analysis of the coating using the equation

$$\begin{aligned} \text{Relative amount of Y} &= (\text{highest intensity diffraction} \\ &\quad \text{peak height of Y}) \div \\ &\quad (\text{sum of highest intensity} \end{aligned}$$

diffraction peak height of all components)

5 It will be appreciated that amorphous material and/or low levels of a solid solution of cerium in nickel, not detectable by XRD analysis, may be present in the coatings.

10 The present invention is further illustrated by reference to the accompanying drawing. The drawing shows an X-ray diffraction pattern of an electrode coating comprising cerium oxide, nickel and nickel oxide.

15 The interim coating produced in step A of the process of the present invention essentially comprises oxides of metals and Group 8 metal. Typically, up to about 10% by XRD say of intermetallic compound may be present in the interim coatings. The proportion of intermetallic compound in the coating decreases on heating in Steps B as shown by XRD analysis.

20 The precise temperature to be used in Step B of the process of the present invention depends at least to some extent on the precise method by which the coating is produced as will be discussed hereafter.

25 The coated electrode may be produced by direct application of particles of intermetallic compound to the metallic substrate. The particles of intermetallic compound may themselves be made by processes known in the art. For example, a mixture of the required metals in the proportions necessary for the production of the intermetallic compound may be melted and the molten mixture may then be comminuted and cooled rapidly to form a plurality of small particles of the intermetallic compound. The particles charged to the spray gun typically have a size in the range 0.1 μm to 250 μm , although particles

having a size outside this range may be used, preferably 20-106 μ and more preferably 45-90 μ m.

5 The temperature at which the particles are heated in the plasma-spraying step of process of the second aspect of the present invention may be several thousand °C. In general the power output from the plasma spray gun may be in the range 20 to 55kW.

10 The mechanical properties and chemical/physical composition of the coating in the (durable) electrode according to the first aspect of the present invention are dependent on the length of time, the rate of heating and temperature used in Step B. It is preferably heated for less than 8 hours, more preferably above 1 hour. The temperature to which it is heated is preferably above 300°C and less than 1000°C and more preferably about 500°C. The typical rate of heating is between 1 and 50°C per minute and preferably is in the range 10-20°C/min.

15 The proportion of intermetallic compound in the coating decreases on heating in Step B as shown by X-ray diffraction analysis.

20 By "low pressure plasma spraying" we mean plasma spraying at low pressure, e.g. about 80-150 mbars, in an inert gas atmosphere, preferably argon. For example, the spraying chamber is evacuated and then back-filled with argon to the desired pressure.

25 In general the coating on the surface of the metallic substrate of the electrode of the first aspect of the present invention will be present at a loading of at least 20gm⁻² of electrode surface in order that the reduced hydrogen overvoltage provided by the coating should last for a reasonable period of time. The length of time for which the reduced hydrogen over-voltage persists is related to the loading of the coating of intermetallic compound and

the coating preferably is present at a loading of at least 50gm⁻². The coating may be present at a loading of as much as 1200gm⁻² or more.

It will be appreciated that the chemical compositions of the coating of the electrode prepared by the process according to the second aspect of the present invention will depend on inter alia the composition and form, eg size and shape, of the powder and on the plasma spraying conditions used, eg distance of gun from target and gun current.

The cathode of the invention may be a monopolar electrode or it may form part of a bipolar electrode.

The cathode is suitable for use in an electrolytic cell comprising an anode, or a plurality of anodes, a cathode, or a plurality of cathodes, and optionally a separator positioned between each adjacent anode and cathode. The separator may be a porous electrolyte permeable diaphragm or it may be a hydraulically impermeable cation permselective membrane.

The anode in the electrolytic cell may be metallic, and the nature of the metal will depend on the nature of the electrolyte to be electrolysed in the electrolytic cell. A preferred metal is a film-forming metal, particularly where an aqueous solution of an alkali metal chloride is to be electrolysed in the cell.

The aforementioned film-forming metal may be one of the metals titanium, zirconium, niobium, tantalum or tungsten or an alloy consisting principally of one or more of these metals and having anodic polarisation properties comparable with those of titanium.

The anode may have a coating of an electro-conducting electro-catalytically active material.

Particularly in the case where an aqueous solution of an alkali metal chloride is to be electrolysed this coating may for example consist of one or more platinum group metals, that is platinum, rhodium, 5 iridium, ruthenium, osmium and palladium, or alloys of the said metals, and/or an oxide or oxides thereof. The coating may consist of one or more of the platinum group metals and/or oxides thereof in admixture with one or more non-noble metal oxides, particularly a 10 film-forming metal oxide. Especially suitable electro-catalytically active coatings include platinum itself and those based on ruthenium dioxide/titanium dioxide, ruthenium dioxide/tin dioxide, ruthenium dioxide/tin dioxide/titanium dioxide, and tin dioxide, ruthenium dioxide and iridium dioxide.

Such coatings, and methods of application thereof, are well known in the art.

Cation permselective membranes as aforementioned are known in the art. The membrane is preferably a fluorine-containing polymeric material containing anionic groups. The polymeric material is preferably a fluoro-carbon containing the repeating groups.

$[CF_2-CF_2]_m$ and $[CF_2 - \overset{X}{CF}]_n$

where m has a value of 2 to 10, and is preferably 2, the ratio of m to n is preferably such as to give an equivalent weight of the groups X in the range 500 to 2000, and X is chosen from

A or $\frac{[OCF_2-CF]_p}{z}^A$

where p has the value of for example 1 to 3, Z is fluorine or a perfluoroalkyl group having from 1 to 10 carbon atoms, and A is a group chosen from the groups:

5 -SO₃H

-CF₂SO₃H

-CCl₂SO₃H

-X¹SO₃H₂

-PO₃H₂

-PO₂H₂

10 -COOH and

-X¹OH

or derivatives of the said groups, where X¹ is an aryl group. Preferably A represents the group SO₃H or -COOH. SO₃H group-containing ion exchange membranes are sold under the tradename 'Nafion' by E I DuPont de Nemours and Co Inc and -COOH group containing ion exchange membranes under the tradename 'Flemion' by the Asahi Glass Co Ltd.

20 The cathode of the invention is suitable for use in an electrolytic cell in which water or an aqueous solution is electrolysed and in which hydrogen is produced by electrolysis and evolved at the cathode. The cathode of the invention finds its greatest application in the electrolysis of aqueous solutions of alkali metal chlorides, particularly aqueous solutions of sodium chloride, and in water electrolysis, e.g. in the electrolysis of aqueous potassium hydroxide solution.

25 The invention is illustrated by the following Examples in which, unless stated otherwise, each cathode comprised a grit-blasted nickel substrate.

30 In the Examples, the overvoltage was measured at a current density of 3kAm⁻² in a 32% NaOH solution at 90°C and the overvoltage of Grit Blasted Nickel ("GBNi") cathodes was taken as 350mV. It was measured

using the average measurements taken from three Luggin probes where the Luggin probes are disposed close (about 1mm) to the electrode surface. A saturated calomel electrode was used as the reference electrode and the voltages obtained from the coated cathodes were compared with that of a GBNi cathode.

In the Examples, by "short" we mean the application of a shorting switch to the cell which allows the applied current to by-pass the cell and allows the cathode to return to its thermodynamic rest potential. This lack of a polarising voltage affords the possibility of corrosion occurring at the cathode coating. It will be appreciated that the ability of the cathode to withstand this change of condition in laboratory experiments is a prime indicator of its potential working durability in commercial chlor-alkali cells.

In the Examples, the coating loading was determined as weight increase per unit area of cathode.

Examples 1-20

Examples 6-17 illustrate durable electrodes according to the present invention (Table 3).

Examples 1-5 illustrate low over-voltage electrodes prepared by Step A of the process according to the present invention (Table 2).

Examples 18-20 are Comparative Tests.

In the Examples a grit-blasted nickel substrate was plasma-sprayed with a powder under essentially the following conditions:

Argon flow	40	SLPM
Hydrogen flow	10	SLPM
Power feed rate	25	g min ⁻¹
Current	450A	

In Examples 1-11 and 18, the powder charged to the spray-gun was a cerium/nickel intermetallic compound wherein the weight ratio of cerium:nickel was 50:50.

In Examples 12-17 and 19-20, the powders charged to the spray-gun had the compositions shown in Table 1

Table 1

Example No.	Composition (%w/w)	
12	Cerium/nickel intermetallic	45:55
13	"	35:65
14	"	19:81
15	"	19.81
16	"	10:90
17	"	10:90
19	Cerium oxide : nickel	76:24
20	Mm/Ni intermetallic	50:50

Table 2

Example No.	Loading gm ⁻²	Initial saving mV*	Final saving mV*
1	70	286	138
2	130	312	171
3	300	268	109
4	309	288	147
5	1200	278	254

* vs. Grit blasted nickel coating

In Example 5 the cell was on load for 148 days, but not subjected to any shorts.

In Examples 6-15, 17, 18 and 20, the electrodes bearing interim coatings prepared under the aforementioned plasma-spraying conditions were subjected to one of the following heat treatments.

- A: Argon atmosphere for 1 hour at 500°C (Examples 6-10, 12-15, 17 and 20);
- B: Hydrogen atmosphere for 1 hour at 500°C (Example 11); or
- C: air for 1 hour at 500°C (Example 18)

In the Examples, the electrodes were subjected to 5 "shorts" (except Examples 5,10 and 19 which were not "shorted").

TABLE 3

Example No	Loading g m ⁻²	Initial mV saving*	Final mV saving*
6	48	247	235
7	118	251	265
8	120	275	261
9	210	294	263
10	146	224	211
11	131	271	269
12	415	313	295
13	431	233	252
14	197	237	219
15	430	247	220
16	245	239	164
17	197	219	170
18	150	321	114
19	201	69	28
20	212	257	101

* vs. Grit blasted nickel coating

5 In Example 10, which is a Comparative Test in which the electrode was not subjected to any shorts, the cell was on load for 148 days.

10 The coatings on the electrodes in certain of the Examples were analysed by XRD and the percentage compositions shown in Table 4 were observed.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35



TABLE 4

5	Example No	Z by XRD			
		CeO ₂	Ni	NiO	CeNi _x
10	1	61	19	12	8
	6	73	21	6	0
	11	77	23	0	0
	18	71	16	13	0
	12	70	27	3	0
	13	54	43	39	0
	15	26	72	2	0
	18	43	25	9	24

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751<br

Examples 16 and 17 reveal that low cerium content reduces the durability of the coating even after heat treatment.

5 Example 18 shows that increasing the NiO content by heating the interim coating in air does not increase durability.

Example 19 shows that direct plasma spraying of CeO and Ni does not produce a low over-voltage coating.

10 Example 20 shows that increasing the proportion of other rare earths (in Misch metal) does not give durable coating.

20

25

30

35

The claims defining the invention are as follows:

1. An electrode suitable for use as a cathode in an electrolytic cell which electrode includes a metallic substrate and a coating thereon, said coating having at least an outer layer which includes at least 10% cerium oxide as measured by X-ray diffraction analysis (XRD) and at least one non-noble Group 8 metal.
2. An electrode as claimed in Claim 1 wherein CeO_2 provides at least 50% by XRD of the outer layer.
3. An electrode as claimed in Claim 1 or Claim 2 wherein the metallic substrate includes nickel or a nickel alloy.
4. An electrode as claimed in any one of claims 1 to 3 wherein the at least one non-noble Group 8 metal is cobalt and/or nickel.
5. An electrode as claimed in any one of claims 1 to 4 wherein the outer layer is present at a loading of at least 50gm^{-2} .
6. A process for the preparation of an electrode as claimed in Claim 1 including the steps of (A) applying an interim coating to the metallic substrate by plasma spraying an intermetallic compound of cerium and a non-noble Group 8 metal and (B) heating the electrode bearing the interim coating in a non-oxidising atmosphere.
7. A process for the preparation of an electrode as claimed in Claim 6 which process includes charging particles of an intimate mixture of a metal powder and the intermetallic compound to the spray gun in the plasma spraying step (A).
8. A process for the preparation of an electrode as claimed in Claim 6 wherein the concentration of Ce in the intermetallic compound charged to the spray gun is more than about 10% w/w.
9. A process for the preparation of an electrode as claimed in Claim 7 wherein the metal powder is nickel powder.
10. A process for the preparation of an electrode as claimed in Claim 6 wherein the size of the particles charged to the spray gun in the plasma spraying step is in

the range 45 - 90 μm .

11. A process as claimed in any one of claims 6 to 10 wherein the non-oxidising atmosphere is provided by an inert gas.

5 12. A process as claimed in Claim 11 wherein the inert gas is argon.

13. A process as claimed in Claim 12 wherein the electrode, after heating in an argon atmosphere, is heated in vacuo.

10 14. A process as claimed in Claim 6 wherein the electrode with the interim coating is heated at about 500°C.

15. A process as claimed in Claim 14 wherein the electrode is heated at about 500°C for about 1 hour.

15 16. A process as claimed in Claim 6 wherein the electrode with the interim coating is heated at a rate in the range 10-20°C/min to reach the suitable temperature.

17. An electrode suitable for use as a cathode in an electrolytic cell which electrode includes a metallic substrate and a coating thereon, said electrode being prepared by a process as claimed in any one of Claims 6 to 16.

20 18. An electrolytic cell wherein at least one cathode includes an electrode as claimed in any one of Claims 1 to 5 or 17.

19. A process for the electrolysis of water or an aqueous solution carried out in an electrolytic cell as claimed in Claim 18.

25 20. An electrode as claimed in Claim 1 substantially as hereinbefore described with reference to the drawing or any one of the examples.

21. A process as claimed in Claim 6 substantially as hereinbefore described with reference to the drawing or any one of the examples.

35 DATED: 15 November 1994

PHILLIPS ORMONDE & FITZPATRICK

Attorneys for:

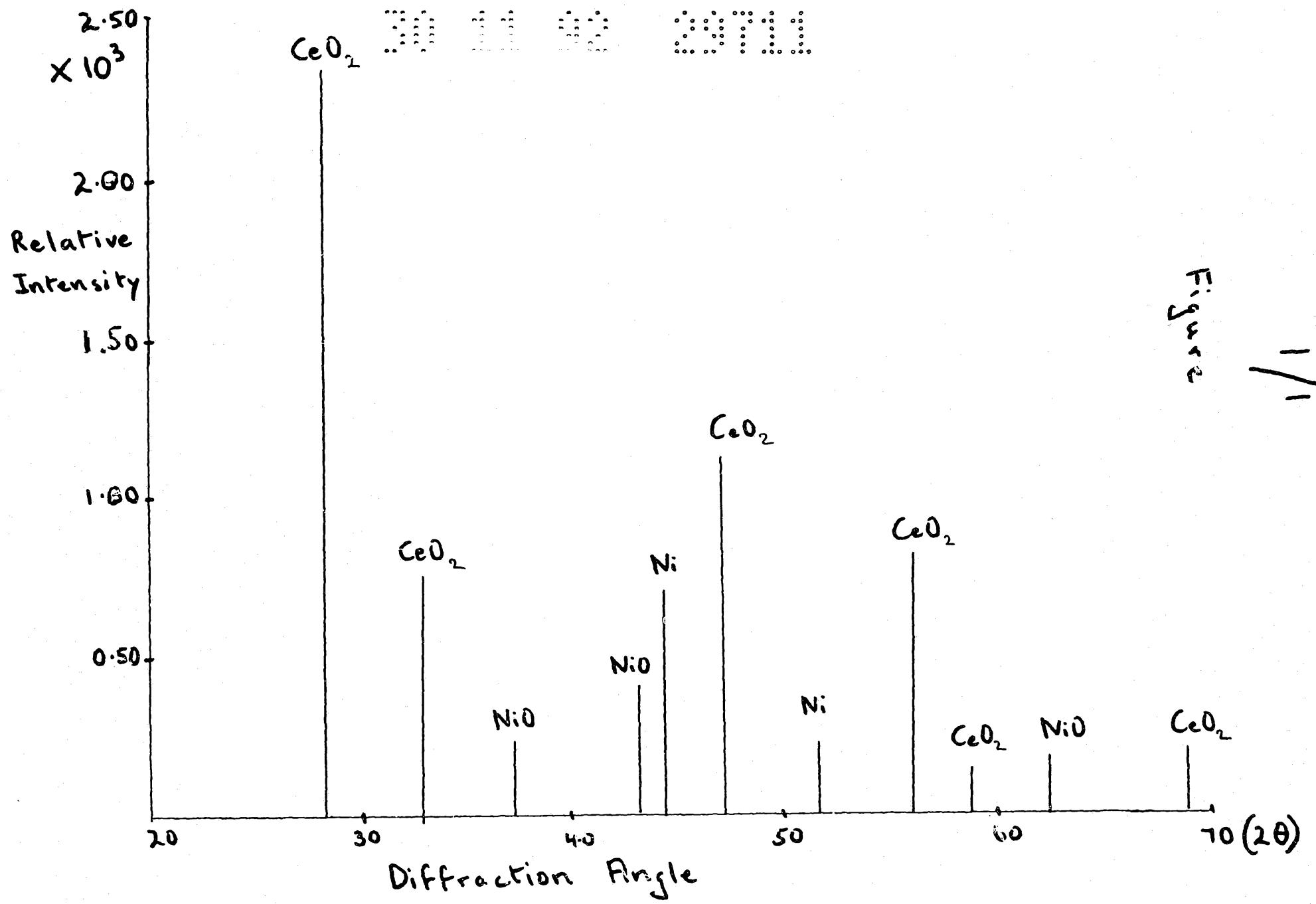
IMPERIAL CHEMICAL INDUSTRIES PLC

5606m

David B Fitzpatrick

ABSTRACT

Durable low hydrogen over-voltage cathodes bearing a coating which has an outer layer which comprises at least 10% cerium oxide by XRD and at least one non-noble Group 8 metal. Such cathodes may be prepared by a process involving at least the steps of coating a metallic substrate with an interim coating comprising cerium oxide and at least one non-noble Group 8 metal by plasma spraying an intermetallic compound of cerium and nickel and heating the interim coating in a non-oxidising atmosphere.


15

20

25

30

35

