

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2011318676 B2

(54) Title
Production of butanol from carbon monoxide by a recombinant microorganism

(51) International Patent Classification(s)

C12P 7/16 (2006.01)	C12P 7/52 (2006.01)
C07C 31/12 (2006.01)	C12R 1/01 (2006.01)
C12N 1/21 (2006.01)	C12R 1/02 (2006.01)
C12N 15/74 (2006.01)	C12R 1/145 (2006.01)

(21) Application No: **2011318676** **(22) Date of Filing:** **2011.09.29**

(87) WIPO No: **WO12/053905**

(30) Priority Data

(31) Number	(32) Date	(33) Country
13/049,263	2011.03.16	US
61/405,871	2010.10.22	US

(43) Publication Date: **2012.04.26**

(44) Accepted Journal Date: **2014.07.03**

(71) Applicant(s)

LanzaTech New Zealand Limited

(72) Inventor(s)

Koepke, Michael; Simpson, Sean Dennis; Liew, Fungmin

(74) Agent / Attorney

Baldwins Intellectual Property, 16 Chisholm Street, NORTH RYDE, NSW, 2113

(56) Related Art

D2 : US 2010/0151543 A1 (REEVES) 17 June 2010

D3 : KOPKE ET AL: "Clostridium ljungdahlii represents a microbial production platform based on syngas". Proceedings of the National Academy of Sciences USA July 2010, vol 107, pages 13087-13092

D1 : US 2009/0191593 A1 (BURK ET AL) 30 July 2009

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
26 April 2012 (26.04.2012)(10) International Publication Number
WO 2012/053905 A1

(51) International Patent Classification:

C12P 7/16 (2006.01)	C12P 7/52 (2006.01)
C12N 15/74 (2006.01)	C12R 1/145 (2006.01)
C12R 1/02 (2006.01)	C12N 1/21 (2006.01)
C07C 31/12 (2006.01)	C12R 1/01 (2006.01)

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/NZ2011/000203

(22) International Filing Date:

29 September 2011 (29.09.2011)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/405,871	22 October 2010 (22.10.2010)	US
13/049,263	16 March 2011 (16.03.2011)	US

(71) **Applicant** (for all designated States except US): **LANZATECH NEW ZEALAND LIMITED** [NZ/NZ]; 24 Balfour Road, Parnell, Auckland, 1052 (NZ).

(72) Inventors; and

(75) **Inventors/Applicants** (for US only): **KOEPKE, Michael** [DE/NZ]; c/o Lanzatech New Zealand Limited, 24 Balfour Road, Parnell, Auckland, 1052 (NZ). **LIEW, Fung-Min** [NZ/NZ]; c/o LanzaTech New Zealand Limited, 24 Balfour Road, Parnell, Auckland, 1052 (NZ).

(74) **Agent:** **BALDWINS INTELLECTUAL PROPERTY**; P O Box 5999, Wellesley Street, Auckland, 1141 (NZ).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(54) **Title:** PRODUCTION OF BUTANOL FROM CARBON MONOXIDE BY A RECOMBINANT MICROORGANISM

(57) **Abstract:** The invention relates, inter alia, to novel genetically modified microorganisms capable of using CO to produce 1-butanol and/or a precursor thereof, novel methyltransferases and nucleic acids encoding same, methods for producing genetically modified microorganisms using said novel methyltransferases, and methods of producing 1-butanol and/or a precursor thereof by microbial fermentation.

Production Of Butanol From Carbon Monoxide By A Recombinant Microorganism

FIELD

The present invention relates to methods for the production of biofuels by microbial fermentation and genetically modified micro-organisms suitable for use in such methods.

5

BACKGROUND

Butanol is an important bulk chemical with a wide range of industrial uses that has worldwide production of 4.5-5.5 million tonnes per annum. It is used as a precursor for the production of acrylate and methacrylate esters (used in coatings, plastics, textiles, adhesives, etc), glycol ethers 10 (coatings, electronics) and butyl acetate (paints, ink, coatings, synthetic fruit flavoring) as well as butylamines (production of pesticides and pharmaceuticals) and amine resins. It also has direct use as a solvent (in ink, dyes, etc), an extractant (for the production of drugs and natural substances such as alkaloids, antibiotics, hormones, and vitamins), and in deicing fluids, cosmetics and chromatography.

15

Butanol also has potential as a second generation biofuel, and in this context is referred to as Biobutanol (Köpke & Dürre, 2010). It has similar properties to gasoline and superior properties to ethanol. Specifically, it has increased mileage due to higher energy density, it can be mixed with gasoline in any concentration (while ethanol can only be blended up to 85%) and is not 20 hygroscopic or corrosive.

Biofuels for transportation are attractive replacements for gasoline and are rapidly penetrating fuel markets as low concentration blends. Biofuels, derived from natural plant sources, are more environmentally sustainable than those derived from fossil resources (such as gasoline), their use 25 allowing a reduction in the levels of so-called fossil carbon dioxide (CO₂) gas that is released into the atmosphere as a result of fuel combustion. In addition, biofuels can be produced locally in many geographies, and can act to reduce dependence on imported fossil energy resources.

The vast majority of biofuels are produced via traditional yeast-based fermentation processes 30 that use crop derived carbohydrates as the main carbon source and are known as first generation biofuels. However, these crops are required for food and many crops also require high agricultural inputs in the form of fertilizers. These limitations mean that first generation biofuels are considered unsustainable and the greenhouse gas reductions that can be achieved are limited. The aim of second generation biofuels is the sustainable use of non-food parts of current

crops or other industrial waste to reduce greenhouse gas emissions and reduce dependency on fossil fuels.

Recent 1-butanol production has been mainly by oxo synthesis (Weißermel & Arpe, 2003).

5 Petrochemicals including crude oil are cracked to form propylene which is used during oxo synthesis. However the synthesis process requires use of non-renewable resources as well as suffering from being expensive and non-specific in the products formed.

Butanol can also be produced through biological production methods, the most common being
10 the Acetone-Butanol-Ethanol (ABE) fermentation which has been used industrially since 1913 (Köpke & Dürre, 2010). This method has the unwanted by-product of acetone which is usually produced at about half the volume of butanol which therefore substantially reduces the yield. Additionally, this method of fermentation is limited by the toxicity of butanol to the micro-organism which results in growth being almost completely inhibited at such low butanol
15 concentrations as 1.5% (Köpke and Dürre 2010). Furthermore ABE fermentation uses sugar from corn, starch, cassava and sugar cane as a feedstock. This results in the undesirable use of arable land to produce fuel rather than food. It can also exacerbate problems related to deforestation and desertification.

20 Only a few organisms are known to naturally produce butanol and none of these produce butanol at a high yield from abundant sources (such as carbon monoxide - CO). Two organisms known to naturally produce butanol from CO are *Butyribacterium methylotrophicum* (which synthesises only traces of butanol (Heiskanen et al, 2007)), and *Clostridium carboxidivorans* (which produces low yields of 1-butanol as a by-product to the main fermentation products ethanol and acetate
25 (Liou et al, 2005)).

A number of organisms have been genetically modified to produce 1-butanol including *E. coli*, *Bacillus subtilis*, *Saccharomyces cerevisiae*, *Pseudomonas putida*, or *Lactobacillus brevis*. However all of these organisms still rely on sugar as feedstock (Köpke & Dürre, 2010). Despite over 250 Clostridium species being known, only a few are genetically accessible. There is no natural
30 competence (uptake of extracellular DNA from the cell's environment) known in Clostridia and electrotransformation or conjugation are the only methods available for transformation. These issues present significant difficulties in effectively transforming Clostridia species. Most Clostridia have one or more restriction/methylation systems to protect against foreign and phage DNA which means that transformation is particularly difficult and unpredictable.

Bibliographic details of the publications referred to herein are collected at the end of the description.

5 It is an object of the invention to overcome one or more disadvantages of the prior art, or to at least provide the public with a useful alternative to known technologies.

SUMMARY OF INVENTION

In accordance with the invention, it has been discovered that a genetically modified microorganism is capable of using CO to produce 1-butanol or a precursor thereof as the main

10 fermentation product.

In a first aspect, the invention provides a carboxydrotrophic acetogenic recombinant microorganism which produces 1-butanol and/or a precursor thereof as the main fermentation product.

15

In a related aspect, the invention provides an acetogenic recombinant microorganism which is capable of producing 1-butanol and/or a precursor thereof by fermentation from a substrate comprising CO at a concentration of greater than approximately 1mM or 0.075g/l per litre of fermentation broth.

20

Preferably, the microorganism comprises exogenous nucleic acids adapted to express one or more enzymes in the butanol biosynthesis pathway.

In one embodiment, the one or more enzymes are chosen from the group consisting:

25 Thiolase

3-hydroxybutyryl-CoA dehydrogenase

Crotonase/crotonyl-CoA hydratase

Butyryl-CoA dehydrogenase

Electron Transfer Flavoprotein A

30 Electron Transfer Flavoprotein B

Preferably, the microorganism comprises one or more exogenous nucleic acids encoding one or more of the enzymes.

Preferably, the one or more nucleic acids encoding the one or more enzymes is chosen from the nucleic acids SEQ ID NO. 1 to SEQ ID NO. 6 or functionally equivalent variants thereof.

Preferably, the microorganism comprises one or more exogenous nucleic acids encoding each of

5 Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase, Electron Transfer Flavoprotein A and Electron Transfer Flavoprotein B.

Preferably, the microorganism comprises a plasmid encoding one or more of, or preferably each of, Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase,

10 Electron Transfer Flavoprotein A and Electron Transfer Flavoprotein B.

In one embodiment, the microorganism comprises one or more exogenous nucleic acids encoding each of the enzymes thiolase 3-hydroxybutyryl-CoA dehydrogenase, crotonase / crotonyl-CoA hydratase and butyryl-CoA dehydrogenase.

15 Preferably, the microorganism further comprises an exogenous phosphotransacetylase/acetate kinase promoter. Preferably, the promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof.

20 Preferably, the promoter is contained on a construct encoding one or more of the enzymes referred to herein before.

In one embodiment, the microorganism comprises exogenous nucleic acids adapted to express one or more of the enzymes chosen from the group consisting of:

25 Phosphotransbutyrylase;
butyrate kinase;
ferredoxin dependent aldehyde oxidoreductase;
butyraldehyde dehydrogenase ;
butanol dehydrogenase;
30 a bifunctional butyraldehyde dehydrogenase and butanol dehydrogenase.

In one embodiment, the microorganism comprises exogenous nucleic acids adapted to express one or more of butyraldehyde dehydrogenase, butanol dehydrogenase and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase. Preferably, the microorganism comprises

one or more exogenous nucleic acids encoding one or more of butyraldehyde dehydrogenase, butanol dehydrogenase and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase.

- 5 In one embodiment, the microorganism comprises exogenous nucleic acids adapted to express one or more of Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase. Preferably, the microorganism comprises one or more exogenous nucleic acids encoding one or more of Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase. In particular
- 10 10 embodiments, the microorganism comprises exogenous nucleic acids adapted to express each of Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase.

In one embodiment, the one or more nucleic acids encoding the one or more enzymes is chosen
15 from the nucleic acids outlined in tables 7 to 10 herein after and functionally equivalent variants thereof.

In one embodiment, the microorganism comprises one or more nucleic acid adapted to express at least two of the enzymes in the butanol biosynthesis pathway, at least 3, at least 4, at least 5, at
20 least 6, at least 7, at least 8, at least 9, at least 10, at least 11, or at least 12 of the enzymes.

In one embodiment, the microorganism comprises one or more nucleic acid adapted to express Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase/crotonyl-CoA hydratase, Butyryl-CoA dehydrogenase, Electron Transfer Flavoprotein A, Electron Transfer Flavoprotein B, and one or
25 both of butyraldehyde dehydrogenase and butanol dehydrogenase (or a bifunctional enzyme).

In one embodiment, the microorganism comprises one or more nucleic acid adapted to express Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase/crotonyl-CoA hydratase, Butyryl-CoA dehydrogenase, Electron Transfer Flavoprotein A, Electron Transfer Flavoprotein B, and at least
30 one of phosphotransbutyrylase and butyrate kinase and ferredoxin dependent aldehyde oxidoreductase and butanol dehydrogenase.

Preferably, the microorganism is selected from the group of carboxydrophic acetogenic bacteria. In certain embodiments the microorganism is selected from the group comprising *Clostridium autoethanogenum*, *Clostridium ljungdahlii*, *Clostridium ragsdalei*, *Clostridium carboxidivorans*, *Clostridium drakei*, *Clostridium scatologenes*, *Butyribacterium limosum*, 5 *Butyribacterium methyltrophicum*, *Acetobacterium woodii*, *Alkalibaculum bacchii*, *Blautia producta*, *Eubacterium limosum*, *Moorella thermoacetica*, *Moorella thermautotrophica*, *Oxobacter pfennigii*, and *Thermoanaerobacter kiuvi*.

Preferably, the microorganism is *Clostridium autoethanogenum* DSM23693.

10

In one embodiment, the recombinant microorganism of the invention has the defining characteristics of the microorganism deposited at the DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) under the accession number DSM24138.

15

In a second aspect, the invention provides a recombinant methyltransferase gene according to nucleotide SEQ_ID NO 27 or a functionally equivalent variant thereof.

20

In a third aspect, the invention provides a methyltransferase according to SEQ_ID NO 28 or a functionally equivalent amino acid variant thereof.

In a related aspect the invention provides a recombinant microorganism comprising a methyltransferase gene according to the second aspect. The methyltransferase gene may be present on a nucleic acid construct or integrated into the genome of the microorganism.

25

In a fourth aspect, the invention provides a nucleic acid comprising SEQ_ID No 1 to 6, or functionally equivalent variants thereof, in any order.

Preferably, the nucleic acid comprises SEQ_ID No 1 to 6 in the order shown in figure 2.

30

Preferably, the nucleic acid further comprises a phosphotransacetylase/acetate kinase promoter. Preferably, the promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof.

In a fifth aspect, the invention provides an expression construct comprising one or more nucleic acid sequences wherein the construct, when expressed in an acetogenic microorganism, results in 1-butanol and/or a precursor thereof being produced as the main fermentation product.

5 Preferably, the one or more nucleic acid sequences encode one or more enzymes that are part of the 1-butanol biosynthesis pathway.

Preferably, the nucleic acids are selected from nucleic acids encoding thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, electron transfer flavoprotein A

10 and/or electron transfer flavoprotein B.

Preferably, the one or more nucleic acid sequences are selected from SEQ_ID NO. 1 to SEQ_ID NO. 6 or functionally equivalent variants thereof.

15 In one embodiment, the nucleic acids are further selected from nucleic acids encoding Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, butyraldehyde dehydrogenase, butanol dehydrogenase, and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase.

20 In one embodiment, the nucleic acids are selected from the group of nucleic acids outlined in tables 7 to 10 herein after and functionally equivalent variants thereof.

In one embodiment, the expression construct encodes at least 2 enzymes in the butanol biosynthesis pathway, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at 25 least 10, at least 11 or at least 12 of the enzymes.

Preferably, the expression construct further comprises a phosphotransacetylase/acetate kinase operon promoter. In another embodiment, the expression construct comprises another highly active promoter such as the promoter of the pyruvate:ferredoxin oxidoreductase (SEQ_ID No. 30 48), the Wood-Ljungdahl gene cluster (SEQ_ID No 47), Rnf operon (SEQ_ID No 49) or the ATP synthase operon (SEQ_ID No 50). Preferably, the phosphotransacetylase/acetate kinase operon promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof.

In a sixth aspect, the invention provides a methylation construct comprising a methyltransferase gene as described herein.

In a seventh aspect, the invention provides a composition comprising the expression construct of 5 the fifth aspect and the methylation construct of the sixth aspect.

Preferably, the composition is able to produce a recombinant microorganism which produces 1-butanol and/or a precursor thereof as the main fermentation product.

10 In an eighth aspect, the invention provides a method of producing a recombinant microorganism comprising:

a. introduction into a shuttle microorganism of (i) an expression construct and (ii) a methylation construct according to the sixth aspect comprising a methyltransferase gene;

15 b. expression of the methyltransferase gene;

c. isolation of one or more constructs from the shuttle microorganism; and,

d. introduction of at least the expression construct into a destination microorganism;

wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

20

In one embodiment, expression of the methyltransferase gene in step b. is constitutive. In another embodiment, expression of the methyltransferase gene in step b. is induced.

25 In one embodiment, both the methylation construct and the expression construct are isolated in step C. In another embodiment, the expression construct is isolated in step C.

In one embodiment, only the expression construct is introduced into the destination microorganism. In another embodiment, both the expression construct and the methylation construct are introduced into the destination microorganism.

30

Preferably, the expression construct is as defined in the fifth aspect.

Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

In a related aspect, the invention provides a method of producing a recombinant microorganism comprising:

- a. methylation of an expression construct *in vitro* by a methyltransferase according to SEQ_ID No 28 or a functionally equivalent variant thereof
- 5 b. introduction of an expression construct into a destination microorganism; wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

10 Preferably, the expression construct is as defined in the fifth aspect.

Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

15 Preferably, the methyltransferase is produced by expressing a methyltransferase gene, preferably according to SEQ_ID No 27 or a functionally equivalent variant thereof, in a microorganism and isolating the methyltransferase enzyme.

In a further related aspect, the invention provides a method of producing a recombinant 20 microorganism comprising:

- a. introduction into the genome of a shuttle microorganism of a methyltransferase gene, preferably according to SEQ_ID No 27 or a functionally equivalent variant thereof
- 25 b. introduction of an expression construct into the shuttle microorganism
- c. isolation of one or more constructs from the shuttle microorganism; and,
- d. introduction of at least the expression construct into a destination microorganism; wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

30 Preferably, the expression construct is as defined in the fifth aspect.

Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

In a further related aspect, the invention provides a method of producing a recombinant microorganism comprising:

- 5 a. methylation of an expression construct in accordance with the fifth aspect *in vitro* by a methyltransferase
- b. introduction of the expression construct into a destination microorganism.

Preferably, the methyltransferase is encoded by a methyltransferase gene as defined in the second aspect or a methyltransferase as defined in the third aspect.

10 Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

In a ninth aspect, the invention provides a method of producing a recombinant microorganism comprising:

- 15 a. introduction of (i) an expression construct according to the fifth aspect and (ii) a methylation construct comprising a methyltransferase gene into a shuttle microorganism;
- b. expression of the methyltransferase gene;
- c. isolation of one or more constructs from the shuttle microorganism; and
- 20 d. introduction of at least the expression construct into a destination microorganism; wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

In one embodiment, expression of the methyltransferase gene in step b. is constitutive. In 25 another embodiment, expression of the methyltransferase gene in step b. is induced.

In one embodiment, both the methylation construct and the expression construct are isolated in step C. In another embodiment, the expression construct is isolated in step C.

30 In one embodiment, only the expression construct is introduced into the destination microorganism. In another embodiment, both the expression construct and the methylation construct are introduced into the destination microorganism.

Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

In a tenth aspect, the invention provides a method of producing a recombinant microorganism

5 that produces 1-butanol or a precursor thereof as the main fermentation product comprising:

- a. Introduction of (i) an expression construct and (ii) a methylation construct comprising a methyltransferase gene into a shuttle microorganism;
- b. expression of the methyltransferase gene;
- c. isolation of one or more constructs from the shuttle microorganism; and,
- 10 d. introduction of at least the expression construct into a destination microorganism;

wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

15 In one embodiment, expression of the methyltransferase gene in step b. is constitutive. In another embodiment, expression of the methyltransferase gene in step b. is induced.

In one embodiment, both the methylation construct and the expression construct are isolated in step C. In another embodiment, the expression construct is isolated in step C.

20

In one embodiment, only the expression construct is introduced into the destination microorganism. In another embodiment, both the expression construct and the methylation construct are introduced into the destination microorganism.

25 Preferably, the expression construct is as defined in the fifth aspect.

Preferably, the methylation construct is as defined in the sixth aspect.

In an eleventh aspect, the invention provides a method of production of 1-butanol and/or a precursor thereof by microbial fermentation comprising fermenting a substrate using a recombinant microorganism.

Preferably, 1-butanol and/or a precursor thereof is the main fermentation product.

Preferably, the recombinant microorganism is as described in any one of the eighth to the tenth aspects.

Preferably, 1-butanol and/or a precursor thereof is produced in a yield of from approximately

- 5 0.075 grams per litre of fermentation broth (g/l) to approximately 20g/l. In one embodiment, the yield is from approximately 0.15g/l to approximately 1.54g/l. In other embodiments, the yield is approximately 10g/l, approximately 5g/l, or approximately 2g/l. Preferably, the yield of 1-butanol is up to the limit at which butanol becomes toxic to the surrounding media.
- 10 Preferably, the substrate comprises CO. Preferably, the substrate is a gaeous substrate comprising CO. In one embodiment, the substrate comprises an industrial waste gas. In certain embodiments, the gas is steel mill waste gas or syngas.

In one embodiment, the substrate will typically contain a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 20% to 70% CO by volume, from 30% to 60% CO by volume, and from 40% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume.

- 15
- 20 While it is not necessary for the substrate to contain any hydrogen, the presence of H₂ should not be detrimental to product formation in accordance with methods of the invention. In particular embodiments, the presence of hydrogen results in an improved overall efficiency of alcohol production. For example, in particular embodiments, the substrate may comprise an approx 2:1, or 1:1, or 1:2 ratio of H₂:CO. In one embodiment the substrate comprises about 30% or less H₂ by volume, 20% or less H₂ by volume, about 15% or less H₂ by volume or about 10% or less H₂ by volume. In other embodiments, the substrate stream comprises low concentrations of H₂, for example, less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or is substantially hydrogen free. The substrate may also contain some CO₂ for example, such as about 1% to about 80% CO₂ by volume, or 1% to about 30% CO₂ by volume.
- 25

30

Preferably, the precursor produced by the method of any of the preceding aspects is converted to 1-butanol in the presence of phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase.

Preferably, the microorganism produces phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase both before and after introduction of an exogenous nucleic acid.

5 Preferably, the precursor produced by the method of any of the preceding aspects is converted to 1-butanol in the presence of butyraldehyde dehydrogenase, butanol dehydrogenase and/or a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase.

Preferably, the microorganism produces butyraldehyde dehydrogenase, butanol dehydrogenase
10 and/or a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase before and after introduction of an exogenous nucleic acid.

In a twelfth aspect, the invention provides 1-butanol or a precursor thereof when produced by the method of the eleventh aspect.

15 In a thirteenth aspect, the invention provides a shuttle microorganism comprising a methylation construct as defined herein.

Preferably, the shuttle microorganism further comprises an expression construct as defined
20 herein.

Preferably, the shuttle microorganism is *E.coli*, *Bacillus subtilis* or *Lactococcus lactis*.

Preferably, the methylation construct of any of the previous aspects comprises a *lac* promoter and the methyltransferase gene and is induced by Isopropyl-β-D-thio-galactoside (IPTG).
25 Expression of the methyltransferase could also be controlled by other inducible promoter systems such as *ara*, *tet*, or *T7*.

In a fourteenth aspect, the invention provides a nucleic acid having a sequence chosen from the group consisting of SEQ_ID NOs 8 to 13.

In a fifteenth aspect, the invention provides a nucleic acid having a sequence chosen from the
30 group consisting of SEQ_ID NOs 16 to 23.

In a sixteenth aspect, the invention provides a nucleic acid comprising at least the nucleic acid sequence of SEQ_ID NO. 7 or a functionally equivalent variant thereof, a nucleic acid construct or

vector comprising same, and microorganisms comprising said nucleic acid or nucleic acid construct or vector.

In a seventeenth aspect, the invention provides a nucleic acid which encodes a methyltransferase according to SEQ_ID No 28.

In an eighteenth aspect, the invention provides a nucleic acid comprising a nucleic acid encoding a polypeptide having the amino acid sequence of a polypeptide chosen from the group listed in tables 7 to 10 herein after and functionally equivalent variants of any one or more thereof.

In a nineteenth aspect, the invention provides a nucleic acid comprising a nucleic acid chosen from the group listed in tables 7 to 10 herein after and functionally equivalent variants of any one or more thereof.

In a twentieth aspect, the invention provides constructs and microorganisms comprising a nucleic acid of the eighteenth or nineteenth aspects of the invention.

In a twenty first aspect, the invention provides a nucleic acid having a sequence chosen from the group consisting of SEQ_ID NOs 32 to 38 and 123 to 135.

In a twenty second aspect, the invention provides a polypeptide comprising the amino acid sequence of a polypeptide chosen from the group listed in tables 7 to 10 herein after and functionally equivalent variants of any one or more thereof.

In a further aspect, the invention provides an acetogenic recombinant microorganism which comprises at least one exogenous nucleic acid encoding (a) an electron transport flavoprotein and (b) at least one enzyme selected from the group consisting of Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase/crotonyl-CoA hydratase, Butyryl-CoA dehydrogenase, Phosphotransbutyrylase, butyrate kinase and ferredoxin dependent aldehyde oxidoreductase; and which does not include an exogenous nucleic acid encoding a bifunctional butyraldehyde/butanol dehydrogenase; and produces 1-butanol as the main fermentation product during fermentation of a gaseous substrate comprising carbon monoxide wherein the recombinant microorganism is selected from the group consisting of: *Clostridium autoethanogenum*, *Clostridium ljungdahlii*,

14A

Clostridium ragsdalei, *Clostridium carboxidivorans*, *Clostridium drakei*, *Clostridium scatologenes*, *Clostridium aceticum*, *Clostridium formicoaceticum*, *Clostridium coskati*.

In a further aspect, the invention provides a method for the production of 1-butanol by microbial fermentation of a gaseous substrate comprising CO using a recombinant microorganism of the first aspect.

The invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.

BRIEF DESCRIPTION OF THE FIGURES

These and other aspects of the present invention, which should be considered in all its novel aspects, will become apparent from the following description, which is given by way of example only, with reference to the accompanying figures, in which:

Figure 1 shows the butanol biosynthesis pathway from CO.

Figure 2 shows an exemplary expression plasmid encoding genes involved in 1-butanol biosynthesis.

Figure 3 shows sequencing results of pMTL85245-thlA-crt-hbd which demonstrate that the 1-
5 butanol biosynthesis genes found on the expression plasmid were free of mutations.

Figure 4a, 4b and 4c show a nucleotide alignment of the *C. autoethanogenum* (CAU), *C. ljungdahlii* (CLJ), *C. ragsdalei* (CRA) and the designed methyltransferase (DMT) genes.

10 Figure 4d shows an amino acid alignment of the methyltransferases from *C. autoethanogenum* (CAU1+2), *C. ljungdahlii* (CLJ), *C. ragsdalei* (CRA1+2) and the designed methyltransferase (DMT).

Figure 5 shows an exemplary methylation plasmid of the invention

15 Figure 6 shows an agarose gel electrophoresis image of isolated plasmid DNA. Lane 1, 6, 11, 16, 21 and 26 show 100 bp Plus DNA Ladder. Lane 2-5 shows PCR with original methylated plasmid mix as template in the following order: *ermB*, *ColE1*, *thlA*, *crt*. Lane 7-10, 12-15, 17-20, 22-25 and 27-30 show PCR with isolated plasmids from 4 different clones as template, each in the following order *ermB*, *ColE1*, *thlA*, *crt*. Lane 32-35 shows plasmid prep from 4 different clones. Lane 36
20 shows plasmid prep from original *C. autoethanogenum* DSM23693.

Figure 7 shows HPLC results showing 1-butanol production with *C. autoethanogenum* harboring butanol plasmid pMTL85245-thlA-crt-hbd.

25 Figure 8 shows an analysis of expression of over 200 genes during a typical fermentation with *Clostridium autoethanogenum* at standard conditions using real-time PCR to identify appropriate promoter regions for the expression of heterologous genes.

Figure 9 shows the sequence for SEQ_ID No 1, 2 and 3.

30

Figure 10 shows the sequence for SEQ_ID No 4, 5 and 6.

Figure 11 shows the sequence for promoter regions encoded by SEQ_ID No 7, 47, 48, 49 and 50.

Figure 12 shows the sequence for SEQ_ID No 14

Figure 13 shows the sequence for SEQ_ID No 15

5 Figure 14 shows the sequence for SEQ_ID No 24 and 25

Figure 15 shows the sequence for SEQ_ID No 26

Figure 16 shows the sequence for SEQ_ID No 27

10

Figure 17 shows the sequence for SEQ_ID No 28

Figure 18 shows the sequence for SEQ_ID No 29

15 Figure 19 shows the 16s rRNA gene of *C. autoethanogenum* (Y18178, GI:7271109)

Figures 20 and 21 show the sequence for SEQ_ID No 31

Figure 22 shows Seq. ID 39: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde

20 dehydrogenase of *C. autoethanogenum*

Figure 23 shows Seq. ID 40: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. autoethanogenum*

25 Figure 24 shows Seq. ID 41: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*; and, Seq. ID 42: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*

Figure 25 shows Seq. ID 43: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C.*

30 *autoethanogenum*; and, Seq. ID 44: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*

Figure 26 shows Seq. ID 45: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C.*

autoethanogenum

Figure 27 shows Seq. ID 46: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*; and, Seq. ID 119: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*

5

Figure 28 shows Seq. ID 120: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and Seq. ID 121: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*.

10 Figure 29 shows Seq. ID 122: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and, Seq. ID 51: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*.

15 Figure 30 shows Seq. ID 52: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and, Seq. ID 53: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*

20 Figure 31 shows Seq. ID 54: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and, Seq. ID 55: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*

25 Figure 32 shows Seq. ID 56: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and, Seq. ID 57: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*.

Figure 33 shows Seq. ID 58: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*; and Seq. ID 59: Nucleotide sequence of phosphate acetyl/butyryl transferase from *C. autoethanogenum*; and Seq. ID 60: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. autoethanogenum*.

30

Figure 34 shows Seq. ID 61: Nucleotide sequence of acetate/butyrate kinase from *C. autoethanogenum*; and Seq. ID 62: Amino acid sequence of acetate/butyrate kinase from *C. autoethanogenum*.

Figure 35 shows Seq. ID 63: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*; and Seq. ID 64: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*.

5 Figure 36 shows Seq. ID 65: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*; and Seq. ID 66: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*.

Figure 37 shows Seq. ID 67: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. Ijungdahlii*

10 Figure 38 shows Seq. ID 68: Amino acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. Ijungdahlii*

15 Figure 39 shows Seq. ID 69: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. Ijungdahlii*

Figure 40 shows Seq. ID 70: Amino acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. Ijungdahlii*; and Seq. ID 71: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. Ijungdahlii*.

20 Figure 41 shows Seq. ID 72: Amino acid sequence of butyraldehyde dehydrogenase of *C. Ijungdahlii*; and Seq. ID 73: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. Ijungdahlii*; and Seq. ID 74: Amino acid sequence of butyraldehyde dehydrogenase of *C. Ijungdahlii*.

25 Figure 42 shows Seq. ID 75: Nucleotide acid sequence of butanol dehydrogenase of *C. Ijungdahlii*; and Seq. ID 76: Amino acid sequence of butanol dehydrogenase of *C. Ijungdahlii*; and Seq. ID 77: Nucleotide acid sequence of butanol dehydrogenase of *C. Ijungdahlii*.

30

Figure 43 shows Seq. ID 78: Amino acid sequence of butanol dehydrogenase of *C. Ijungdahlii*; and Seq. ID 79: Nucleotide acid sequence of butanol dehydrogenase of *C. Ijungdahlii*; and Seq. ID 80: Amino acid sequence of butanol dehydrogenase of *C. Ijungdahlii*.

Figure 44 shows Seq. ID 81: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*; and Seq. ID 82: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*; and Seq. ID 83: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*.

5 Figure 45 shows Seq. ID 84: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*; and Seq. ID 85: Nucleotide sequence of phosphate acetyl/butyryl transferase from *C. ljungdahlii*; and Seq. ID 86: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. ljungdahlii*; and Seq. ID 87: Nucleotide sequence of acetate/butyrate kinase from *C. ljungdahlii*.

10 Figure 46 shows Seq. ID 88: Amino acid sequence of acetate/butyrate kinase from *C. ljungdahlii*; and Seq. ID 89: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*; and Seq. ID 90: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*.

15 Figure 47 shows Seq. ID 91: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*; and Seq. ID 92: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*.

Figure 48 shows Seq. ID 93: Nucleotide Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*

20 Figure 49 shows Seq. ID 94: Amino Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*

Figure 50 shows Seq. ID 95: Nucleotide Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*.

Figure 51 shows Seq. ID 96: Amino Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*; and Seq. ID 97: Nucleotide Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*.

30 Figure 52 shows Seq. ID 98: Amino Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*; Seq. ID 99: Nucleotide Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*; and Seq. ID 100: Amino Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*.

Figure 53 shows Seq. ID 101: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 102: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 103: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*.

5

Figure 54 shows Seq. ID 104: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 105: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 106: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

10 Figure 55 shows Seq. ID 107: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 108: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 109: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*.

15 Figure 56 shows Seq. ID 110: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*; and Seq. ID 111: Nucleotide sequence of phosphate acetyl/butyryl transferase from *C. ragsdalei*; and Seq. ID 112: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. ragsdalei*; and Seq. ID 113: Nucleotide sequence of acetate/butyrate kinase from *C. ragsdalei*.

20 Figure 57 shows Seq. ID 114: Amino acid sequence of acetate/butyrate kinase from *C. ragsdalei*; and Seq. ID 115: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*; and Seq. ID 116: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*.

25 Figure 58 shows Seq. ID 117: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*; and Seq. ID 118: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*.

Figure 59 shows SEQ ID 136: 16S rRNA gene of *Clostridium ljungdahlii* (CP001666.1, GI:300433347).

30 Figure 60 shows Gene expression pattern of (A) bifunctional butanol/butyraldehyde dehydrogenase (Seq ID 39); (B) butyraldehyde dehydrogenase (Seq. ID 41); (C) butyraldehyde dehydrogenase (Seq. ID 45); (D) butanol dehydrogenase (Seq. ID 53); (E) butanol dehydrogenase (Seq. ID 57); (F) phosphate acetyl/butyryl transferase (Seq. ID 57); (G) acetate/butyrate kinase

(Seq. ID 59); (H) aldehyde:ferredoxin oxidoreductase (Seq. ID 63); (OI) aldehyde:ferredoxin oxidoreductase (Seq. ID 65).

DETAILED DESCRIPTION OF THE INVENTION

5 The following is a description of the present invention, including preferred embodiments thereof, given in general terms. The invention is further elucidated from the disclosure given under the heading "Examples" herein below, which provides experimental data supporting the invention, specific examples of various aspects of the invention, and means of performing the invention.

10 Among others, the closely related microorganisms *C. autoethanogenum*, *C. ljungdahlii*, and *C. ragsdalei* are known to be useful for production of ethanol as biofuel from carbon monoxide. In order to produce 1-butanol as a biofuel from a gaseous substrate, a universal transformation system for these organisms has been developed and production of 1-butanol as the main fermentation product from CO has been demonstrated.

15 The inventors have found that when particular genes encoding proteins in the 1-butanol biosynthesis pathway (figure 1) were introduced into acetogenic microorganisms, such microorganisms were able to use a gaseous substrate to produce 1-butanol or a precursor thereof as the main fermentation product. Although some unmodified microorganisms are known to

20 produce 1-butanol, the yield of 1-butanol from CO produced by such unmodified microorganisms is very low. As a result, their utility for production of biofuels from gaseous substrates is extremely limited due to their low efficiency and a subsequent lack of commercial viability. *Clostridium autoethanogenum* naturally produces ethanol, acetate, 2,3-butandiol and lactic acid but is not known to produce 1-butanol.

25 As shown in figure 1, the Wood-Ljungdahl pathway converts CO to acetyl-CoA. This compound may be further converted to 1-butanol in acetogenic microorganisms by the action of the enzymes thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase / crotonyl-CoA hydratase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase and butanol dehydrogenase. In a

30 particular embodiment of the invention, the microorganism expresses the first four enzymes which may be encoded by the nucleic acid SEQ_ID Nos 1 to 4 or functionally equivalent variants thereof. The present invention provides a microorganism that facilitates the conversion of acetyl-CoA to 1-butanol by the action of enzymes encoded by recombinant nucleic acids as well as naturally occurring enzymes. The invention also provides for the use of microorganisms

expressing other recombinant nucleic acid sequences which encode enzymes at other stages in the Wood-Ljungdahl or butanol biosynthesis pathways. The inventors have also identified a number of novel enzymes and nucleic acids.

5 Since there is no natural competence (uptake of extracellular DNA from the cell's environment) known in Clostridia and electrotransformation or conjugation are the only methods available for transformation. These issues present significant difficulties in effectively transforming Clostridium species. Additionally, the restriction/methylation systems found in Clostridia protect against foreign and phage DNA and result in their genetic transformation being particularly 10 troublesome. Transformation of several Clostridium strains (*C. acetobutylicum* ATCC824, *C. cellulolyticum* ATCC35319, *C. botulinum* ATCC25765, and *C. difficile* CD3 and CD6) was shown to be only possible if DNA is methylated *in vivo* in *E. coli* or methylated *in vitro* in a specific pattern prior to transformation (Mermelstein et al, 1993; Herbert et al, 2003; Jennert et al, 2000; Davis et al, 2000). However, the determination of the correct methylation pattern is often not possible 15 due to unspecific exonucleases, etc. Additionally, many Clostridium species also possess restriction systems which digest DNA that is methylated at a specific ("wrong") position.

The abovementioned major hurdles have been overcome by the inventors in developing the recombinant microorganisms of the present invention. A novel methylation system comprising a 20 novel methyltransferase gene was developed to circumvent the naturally occurring restriction barriers present in native acetogenic microorganisms. Accordingly, the methylation method and methyltransferase gene of the present invention may be applied to a number of compatible microorganisms that have restriction barriers preventing effective introduction and expression of desirable recombinant nucleic acids in microorganisms.

25

Definitions

As referred to herein, "precursors of 1-butanol" include butyryl CoA, butyryl-phosphate, butyrate, and butyraldehyde.

30 As referred to herein, a "fermentation broth" is a culture medium comprising at least a nutrient media and bacterial cells.

As referred to herein, a "shuttle microorganism" is a microorganism in which a methyltransferase enzyme is expressed and is distinct from the destination microorganism.

As referred to herein, a “destination microorganism” is a microorganism in which the genes included on the expression construct are expressed and is distinct from the shuttle microorganism.

5

As referred to herein, the term “main fermentation product” is intended to mean the one fermentation product which is produced in the highest concentration and/or yield.

10 The terms “increasing the efficiency”, “increased efficiency” and the like, when used in relation to a fermentation process, include, but are not limited to, increasing one or more of the rate of growth of microorganisms catalysing the fermentation, the volume of desired product (such as alcohols) produced per volume of substrate (such as sugar) consumed, the rate of production or level of production of the desired product, and the relative proportion of the desired product produced compared with other by-products of the fermentation.

15

The phrase “substrate comprising carbon monoxide” and like terms should be understood to include any substrate in which carbon monoxide is available to one or more strains of bacteria for growth and/or fermentation, for example.

20 The phrase “gaseous substrate comprising carbon monoxide” and like phrases and terms includes any gas which contains a level of carbon monoxide. In certain embodiments the substrate contains at least about 20% to about 100% CO by volume, from 20% to 70% CO by volume, from 30% to 60% CO by volume, and from 40% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or 25 about 50% CO, or about 55% CO, or about 60% CO by volume.

30 While it is not necessary for the substrate to contain any hydrogen, the presence of H₂ should not be detrimental to product formation in accordance with methods of the invention. In particular embodiments, the presence of hydrogen results in an improved overall efficiency of alcohol production. For example, in particular embodiments, the substrate may comprise an approx 2:1, or 1:1, or 1:2 ratio of H₂:CO. In one embodiment the substrate comprises about 30% or less H₂ by volume, 20% or less H₂ by volume, about 15% or less H₂ by volume or about 10% or less H₂ by volume. In other embodiments, the substrate stream comprises low concentrations of H₂, for example, less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or is

substantially hydrogen free. The substrate may also contain some CO₂ for example, such as about 1% to about 80% CO₂ by volume, or 1% to about 30% CO₂ by volume. In one embodiment the substrate comprises less than or equal to about 20% CO₂ by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO₂ by volume, less than or equal to 5 about 10% CO₂ by volume, less than or equal to about 5% CO₂ by volume or substantially no CO₂.

In the description which follows, embodiments of the invention are described in terms of delivering and fermenting a "gaseous substrate containing CO". However, it should be appreciated that the gaseous substrate may be provided in alternative forms. For example, the 10 gaseous substrate containing CO may be provided dissolved in a liquid. Essentially, a liquid is saturated with a carbon monoxide containing gas and then that liquid is added to the bioreactor. This may be achieved using standard methodology. By way of example, a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3 / October, 2002) 15 could be used. By way of further example, the gaseous substrate containing CO may be adsorbed onto a solid support. Such alternative methods are encompassed by use of the term "substrate containing CO" and the like.

In particular embodiments of the invention, the CO-containing gaseous substrate is an industrial 20 off or waste gas. "Industrial waste or off gases" should be taken broadly to include any gases comprising CO produced by an industrial process and include gases produced as a result of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, gasification of biomass, electric power production, carbon black production, and coke manufacturing. Further examples may be provided elsewhere herein.

25 Unless the context requires otherwise, the phrases "fermenting", "fermentation process" or "fermentation reaction" and the like, as used herein, are intended to encompass both the growth phase and product biosynthesis phase of the process. As will be described further herein, in some embodiments the bioreactor may comprise a first growth reactor and a second fermentation 30 reactor. As such, the addition of metals or compositions to a fermentation reaction should be understood to include addition to either or both of these reactors.

The term "bioreactor" includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR),

Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact. As is described herein after, in some embodiments the bioreactor may comprise a first growth reactor and a second fermentation reactor. As such, when referring to the addition of substrate to the bioreactor or 5 fermentation reaction it should be understood to include addition to either or both of these reactors where appropriate.

“Exogenous nucleic acids” are nucleic acids which originate outside of the microorganism to which they are introduced. Exogenous nucleic acids may be derived from any appropriate source, 10 including, but not limited to, the microorganism to which they are to be introduced, strains or species of microorganisms which differ from the organism to which they are to be introduced, or they may be artificially or recombinantly created. In one embodiment, the exogenous nucleic acids represent nucleic acid sequences naturally present within the microorganism to which they are to be introduced, and they are introduced to increase expression of or over-express a 15 particular gene (for example, by increasing the copy number of the sequence (for example a gene)). In another embodiment, the exogenous nucleic acids represent nucleic acid sequences not naturally present within the microorganism to which they are to be introduced and allow for the expression of a product not naturally present within the microorganism or increased expression of a gene native to the microorganism (for example in the case of introduction of a 20 regulatory element such as a promoter). The exogenous nucleic acid may be adapted to integrate into the genome of the microorganism to which it is to be introduced or to remain in an extra-chromosomal state.

It should be appreciated that the invention may be practised using nucleic acids whose sequence 25 varies from the sequences specifically exemplified herein provided they perform substantially the same function. For nucleic acid sequences that encode a protein or peptide this means that the encoded protein or peptide has substantially the same function. For nucleic acid sequences that represent promoter sequences, the variant sequence will have the ability to promote expression of one or more genes. Such nucleic acids may be referred to herein as “functionally equivalent 30 variants”. By way of example, functionally equivalent variants of a nucleic acid include allelic variants, fragments of a gene, genes which include mutations (deletion, insertion, nucleotide substitutions and the like) and/or polymorphisms and the like. Homologous genes from other bacteria capable of butyric acid or butanol fermentation may also be considered as examples of functionally equivalent variants of the sequences specifically exemplified herein. These include

homologous genes in species such as *Clostridium acetobutylicum*, *Clostridium beijerinckii*, *Clostridium tetani*, *Clostridium pasteurianum*, *Clostridium kluyveri*, *Clostridium cellulovorans*, *Clostridium perfringens*, *Clostridium botulinum*, *Clostridium butyricum* strain DSM10702, *Clostridium tyrobutyricum* strain ATCC 25755, *Anaerococcus prevotii* DSM 20548,

5 *Thermoanaerobacter tengcongensis*, *Brachyspira pilosicoli*, *Bacillus megaterium*, *Streptococcus pyogenes* and *Clostridium saccharoperbutylacetonicum* details of which are publicly available on websites such as Genbank or NCBI. The phrase “functionally equivalent variants” should also be taken to include nucleic acids whose sequence varies as a result of codon optimisation for a particular organism. “Functionally equivalent variants” of a nucleic acid herein will preferably 10 have at least approximately 70%, preferably approximately 80%, more preferably approximately 85%, preferably approximately 90%, preferably approximately 95% or greater nucleic acid sequence identity with the nucleic acid identified. In a particular embodiment, the functionally equivalent variant of the thiolase gene as defined herein may be the *atoAB* gene in *E. coli* (NC_000913.2; *atoA* = GenID: 946719; *atoB* = GenID: 946727). Functionally equivalent variants 15 of the *eftAB* gene as defined herein may be found in Tsai and Saier (1995).

It should also be appreciated that the invention may be practised using polypeptides whose sequence varies from the amino acid sequences specifically exemplified herein. These variants may be referred to herein as “functionally equivalent variants”. A functionally equivalent variant of a protein or a peptide includes those proteins or peptides that share at least 40%, preferably

20 50%, preferably 60%, preferably 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95% or greater amino acid identity with the protein or peptide identified and has substantially the same function as the peptide or protein of interest. Such variants include within their scope fragments of a protein or peptide wherein the fragment comprises a truncated form of the polypeptide wherein deletions may be from 1 to 5, to 10, to 15, to 20, to 25 amino acids, 25 and may extend from residue 1 through 25 at either terminus of the polypeptide, and wherein deletions may be of any length within the region; or may be at an internal location. Functionally equivalent variants of the specific polypeptides herein should also be taken to include polypeptides expressed by homologous genes in other species of bacteria, for example as exemplified in the previous paragraph.

30

“Substantially the same function” as used herein is intended to mean that the nucleic acid or polypeptide is able to perform the function of the nucleic acid or polypeptide of which it is a variant. For example, a variant of an enzyme of the invention will be able to catalyse the same

reaction as that enzyme. However, it should not be taken to mean that the variant has the same level of activity as the polypeptide or nucleic acid of which it is a variant.

One may assess whether a functionally equivalent variant has substantially the same function as 5 the nucleic acid or polypeptide of which it is a variant using any number of known methods. However, by way of example, the methods outlined in Inui et al (2008) may be used to assess enzyme activity.

"Over-express", "over expression" and like terms and phrases when used in relation to the 10 invention should be taken broadly to include any increase in expression of one or more protein as compared to the expression level of the protein of a parental microorganism under the same conditions. It should not be taken to mean that the protein is expressed at any particular level.

A "parental microorganism" is a microorganism used to generate a recombinant microorganism 15 of the invention. The parental microorganism may be one that occurs in nature (ie a wild type microorganism) or one that has been previously modified but which does not express or over-express one or more of the enzymes the subject of the present invention. Accordingly, the recombinant microorganisms of the invention have been modified to express or over-express one or more enzymes that were not expressed or over-expressed in the parental microorganism.

20 The terms nucleic acid "constructs" or "vectors" and like terms should be taken broadly to include any nucleic acid (including DNA and RNA) suitable for use as a vehicle to transfer genetic material into a cell. The terms should be taken to include plasmids, viruses (including bacteriophage), cosmids and artificial chromosomes. Constructs or vectors may include one or more regulatory 25 elements, an origin of replication, a multicloning site and/or a selectable marker, among other elements, sites and markers. In one particular embodiment, the constructs or vectors are adapted to allow expression of one or more genes encoded by the construct or vector. Nucleic acid constructs or vectors include naked nucleic acids as well as nucleic acids formulated with one or more agents to facilitate delivery to a cell (for example, liposome-conjugated nucleic acid, 30 an organism in which the nucleic acid is contained).

It should be appreciated that nucleic acids of the invention may be in any appropriate form, including RNA, DNA, or cDNA, including double-stranded and single-stranded nucleic acids.

In one aspect the invention provides genetically modified microorganisms capable of using CO to produce 1-butanol and/or a precursor thereof as the main fermentation product. The microorganism is preferably an acetogenic recombinant microorganism which produces 1-butanol and/or a precursor thereof as the main fermentation product. In one particular embodiment, the 5 acetogenic recombinant microorganism is capable of producing 1-butanol or a precursor thereof by fermentation from a substrate comprising CO at a concentration of greater than approximately 1mM or 0.075g/l of butanol per litre of fermentation broth.

In one particular embodiment, the microorganism comprises one or more exogenous nucleic acid 10 adapted to express or over-express one or more enzymes in the butanol biosynthesis pathway. In one embodiment, the microorganism is adapted to express one or more enzyme in the butanol biosynthesis pathway which is not naturally present in the parental microorganism from which it is derived, or to over-express one or more enzyme in the butanol biosynthesis pathway which are naturally present in the parental microorganism.

15 The microorganism may be adapted to express or over-express the one or more enzymes by any number of recombinant methods including, for example, increasing expression of native genes within the microorganism (for example, by introducing a stronger or constitutive promoter to drive expression of a gene), increasing the copy number of a gene encoding a particular enzyme 20 by introducing exogenous nucleic acids encoding and adapted to express the enzyme, introducing an exogenous nucleic acid encoding and adapted to express an enzyme not naturally present within the parental microorganism.

In certain embodiments, the parental microorganism may be transformed to provide a 25 combination of increased or over-expression of one or more genes native to the parental microorganism and introduction of one or more genes not native to the parental microorganism.

30 Preferably, the microorganism comprises one or more exogenous nucleic acids encoding one or more of the enzymes chosen from the group consisting: Thiolase; 3-hydroxybutyryl-CoA dehydrogenase; Crotonase/crotonyl-CoA hydratase; Butyryl-CoA dehydrogenase; Electron Transfer Flavoprotein A; and, Electron Transfer Flavoprotein B. In one embodiment, the one or more nucleic acids encoding the one or more enzymes is chosen from the nucleic acids SEQ ID NO. 1 to SEQ ID NO. 6 or functionally equivalent variants thereof.

In one embodiment the recombinant microorganism is adapted to express one or more of the genes which encode the enzymes thiolase (IUBMB enzyme nomenclature EC:2.3.1.9) (*thlA*), 3-hydroxybutyryl-CoA dehydrogenase (EC:1.1.1.157) (*hbd*), crotonase / crotonyl-CoA hydratase (EC:1.1.1.157) (*crt* or *cch*) and/or butyryl-CoA dehydrogenase (EC4.2.1.55) (*bcd*). In one embodiment, the microorganism is adapted to express all of these enzymes. In a further embodiment, the genes correspond to one or more of the nucleic acid sequences selected from SEQ_ID Nos 1 to 4 or functionally equivalent variants thereof. The recombinant microorganism of the invention may also contain two electron transferring proteins. In one embodiment, the electron transferring proteins are electron transferring flavoproteins (EC1.3.99.2) (*etfAB*) encoded by SEQ_ID Nos 5 and 6, or functionally equivalent variants thereof. The use of these electron-transferring flavoproteins enhances the efficiency of the microorganism in producing 1-butanol. The flavoproteins provide a stable complex that is required for the activity of Bcd.

In one particular embodiment, the microorganism comprises one or more exogenous nucleic acids encoding each of Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase, Electron Transfer Flavoprotein A and Electron Transfer Flavoprotein B.

In one embodiment, the microorganism comprises a plasmid encoding one or more of, or preferably each of, Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase, Electron Transfer Flavoprotein A and Electron Transfer Flavoprotein B.

In one embodiment, the microorganism alternatively or further comprises exogenous nucleic acids adapted to express one or more of the enzymes chosen from the group consisting of: Phosphotransbutyrylase; butyrate kinase; ferredoxin dependent aldehyde oxidoreductase (or in other words aldehyde:ferredoxin oxidoreductase); butyraldehyde dehydrogenase ; butanol dehydrogenase; a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase.

In one embodiment, the microorganism comprises exogenous nucleic acids adapted to express one or more of butyraldehyde dehydrogenase, butanol dehydrogenase and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase. Preferably, the microorganism comprises one or more exogenous nucleic acids encoding one or more of butyraldehyde dehydrogenase, butanol dehydrogenase and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase.

In one embodiment, the microorganism comprises exogenous nucleic acids adapted to express one or more of Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase. Preferably, the microorganism comprises one or more exogenous nucleic acids encoding one or more of Phosphotransbutyrylase, butyrate kinase, 5 ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase. In particular embodiments, the microorganism comprises exogenous nucleic acids adapted to express each of Phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase.

10 In one embodiment, the microorganism comprises one or more nucleic acid adapted to express at least two of the enzymes in the 1-butanol biosynthesis pathway, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, or at least 12 of the enzymes.

In one embodiment, the microorganism further comprises an exogenous 15 phosphotransacetylase/acetate kinase promoter, although other promoters may be used. Preferably, the promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof. Preferably, the promoter is contained on a construct encoding one or more of the enzymes referred to herein before.

20 Preferably, the parental microorganism is selected from the group of carboxydrophic acetogenic bacteria. In certain embodiments the microorganism is selected from the group comprising *Clostridium autoethanogenum*, *Clostridium ljungdahlii*, *Clostridium ragsdalei*, *Clostridium carboxidivorans*, *Clostridium drakei*, *Clostridium scatologenes*, *Butyribacterium limosum*, *Butyribacterium methylotrophicum*, *Acetobacterium woodii*, *Alkalibaculum bacchii*, 25 *Blautia producta*, *Eubacterium limosum*, *Moorella thermoacetica*, *Moorella thermautotrophica*, *Oxobacter pfennigii*, and *Thermoanaerobacter kiuvi*.

In one particular embodiment, the parental microorganism is selected from the cluster of ethanologenic, acetogenic Clostridia comprising the species *C. autoethanogenum*, *C. ljungdahlii*, 30 and *C. ragsdalei* and related isolates. These include but are not limited to strains *C. autoethanogenum* JAI-1^T (DSM10061) [Abrini J, Naveau H, Nyns E-J: *Clostridium autoethanogenum*, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. *Arch Microbiol* 1994, 4: 345-351], *C. autoethanogenum* LBS1560 (DSM19630) [Simpson SD, Forster RL, Tran PT, Rowe MJ, Warner IL: Novel bacteria and methods thereof.

International patent 2009, WO/2009/064200], *C. autoethanogenum* LBS1561 (DSM23693), *C. ljungdahlii* PETC^T (DSM13528 = ATCC 55383) [Tanner RS, Miller LM, Yang D: *Clostridium ljungdahlii* sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I. *Int J Syst Bacteriol* 1993, 43: 232-236], *C. ljungdahlii* ERI-2 (ATCC 55380) [Gaddy JL: Clostridium stain which produces acetic acid from waste gases. US patent 1997, 5,593,886], *C. ljungdahlii* C-01 (ATCC 55988) [Gaddy JL, Clausen EC, Ko C-W: Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth. US patent, 2002, 6,368,819], *C. ljungdahlii* O-52 (ATCC 55989) [Gaddy JL, Clausen EC, Ko C-W: Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth. US patent, 2002, 6,368,819], *C. ragsdalei* P11^T (ATCC BAA-622) [Huhnke RL, Lewis RS, Tanner RS: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055], related isolates such as "*C. coskatii*" [Zahn JA, Saxena J, Do Y, Patel M, Fishein S, Datta R, Tobey R: *Clostridium coskatii*, sp. nov., an Anaerobic Bacterium that Produces Ethanol from Synthesis Gas. Poster SIM Annual Meeting and Exhibition, San Francisco, 2010], or mutated strains such as *C. ljungdahlii* OTA-1 (Tirado-Acevedo O. Production of Bioethanol from Synthesis Gas Using *Clostridium ljungdahlii*. PhD thesis, North Carolina State University, 2010). These strains form a subcluster within the Clostridial rRNA cluster I, and their 16S rRNA gene is more than 99% identical with a similar low GC content of around 30%. However, DNA-DNA reassociation and DNA fingerprinting experiments showed that these strains belong to distinct species [Huhnke RL, Lewis RS, Tanner RS: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055].

All species of this cluster have a similar morphology and size (logarithmic growing cells are between 0.5-0.7 x 3-5 µm), are mesophilic (optimal growth temperature between 30-37 °C) and 25 strictly anaerobe [Tanner RS, Miller LM, Yang D: *Clostridium ljungdahlii* sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I. *Int J Syst Bacteriol* 1993, 43: 232-236; Abrini J, Naveau H, Nyns E-J: *Clostridium autoethanogenum*, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. *Arch Microbiol* 1994, 4: 345-351; Huhnke RL, Lewis RS, Tanner RS: Isolation and Characterization of novel Clostridial Species. International patent 2008, 30 WO 2008/028055]. Moreover, they all share the same major phylogenetic traits, such as same pH range (pH 4-7.5, with an optimal initial pH of 5.5-6), strong autotrophic growth on CO containing gases with similar growth rates, and a similar metabolic profile with ethanol and acetic acid as main fermentation end product, and small amounts of 2,3-butanediol and lactic acid formed under certain conditions. [Tanner RS, Miller LM, Yang D: *Clostridium ljungdahlii* sp. nov., an

Acetogenic Species in Clostridial rRNA Homology Group I. *Int J Syst Bacteriol* 1993, 43: 232-236; Abrini J, Naveau H, Nyns E-J: *Clostridium autoethanogenum*, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. *Arch Microbiol* 1994, 4: 345-351; Huhnke RL, Lewis RS, Tanner RS: Isolation and Characterization of novel Clostridial Species. International patent 2008, 5 WO 2008/028055]. Indole production was observed with all three species as well. However, the species differentiate in substrate utilization of various sugars (e.g. rhamnose, arabinose), acids (e.g. gluconate, citrate), amino acids (e.g. arginine, histidine), or other substrates (e.g. betaine, butanol). Moreover some of the species were found to be auxotroph to certain vitamins (e.g. thiamine, biotin) while others were not.

10 In one embodiment, the microorganism produces phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, and butanol dehydrogenase both before and after introduction of an exogenous nucleic acid.

15 In one embodiment, the microorganism produces butyraldehyde dehydrogenase and/or butanol dehydrogenase both before and after introduction of an exogenous nucleic acid.

In one particular embodiment, the microorganism is *Clostridium autoethanogenum* DSM23693.

20 In one embodiment, the recombinant microorganism of the invention has the defining characteristics of the microorganism deposited at the DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) under the accession number DSM24138.

25 The one or more exogenous nucleic acids may be delivered to a parental microorganism as naked nucleic acids or may be formulated with one or more agents to facilitate the transformation process (for example, liposome-conjugated nucleic acid, an organism in which the nucleic acid is contained). The one or more nucleic acids may be DNA, RNA, or combinations thereof, as is appropriate.

30 The microorganisms of the invention may be prepared from a parental microorganism and one or more exogenous nucleic acids using any number of techniques known in the art for producing recombinant microorganisms. By way of example only, transformation (including transduction or transfection) may be achieved by electroporation, conjugation, or chemical and natural

competence. Suitable transformation techniques are described for example in Sambrook et al, 1989.

In certain embodiments, due to the restriction systems which are active in the microorganism to 5 be transformed, it is necessary to methylate the nucleic acid to be introduced into the microorganism. This can be done using a variety of techniques, including those described below, and further exemplified in the Examples section herein after.

In another aspect, the invention provides a method of producing a recombinant microorganism 10 comprising the following steps:

- a. introduction into a shuttle microorganism of (i) an expression construct and (ii) a methylation construct comprising a methyltransferase gene;
- b. expression of the methyltransferase gene;
- c. isolation of one or more constructs from the shuttle microorganism; and,
- 15 d. introduction of the one or more constructs into a destination microorganism; wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination organism.

In one embodiment, the methyltransferase gene of step B is expressed constitutively. In another 20 embodiment, expression of the methyltransferase gene of step B is induced.

The shuttle microorganism is a microorganism, preferably a restriction negative microorganism, that facilitates the methylation of the nucleic acid sequences that make up the expression construct. In a particular embodiment, the shuttle microorganism is a restriction negative *E. coli*, 25 *Bacillus subtilis* or *Lactococcus lactis*.

Once the expression construct and the methylation construct are introduced into the shuttle 30 microorganism, the methyltransferase gene present on the methylation construct is expressed. In one embodiment, where expression must be induced, induction may be by any suitable promoter system although in one particular embodiment of the invention, the methylation construct comprises an inducible *lac* promoter (preferably encoded by SEQ_ID NO 28) and is induced by addition of lactose or an analogue thereof, more preferably isopropyl- β -D-thio-galactoside (IPTG). Other suitable promoters include the *ara*, *tet*, or *T7* system. In an alternative embodiment of the invention, the methylation construct promoter is a constitutive promoter.

In one embodiment the expression construct promoter is a constitutive promoter that is preferably highly active under appropriate fermentation conditions. However, an inducible promoter could be used. In preferred embodiments, the expression construct promoter is

5 selected from the group comprising phosphotransacetylase/acetate kinase operon promoter, pyruvate:ferredoxin oxidoreductase (SEQ_ID No. 48), the Wood-Ljungdahl gene cluster (SEQ_ID No 47), Rnf operon (SEQ_ID No 49) or the ATP synthase operon ((SEQ_ID No 50). Preferably, the phosphotransacetylase/acetate kinase operon promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof. Figure 8 shows that expression of genes operably linked

10 to these promoters have a high level of expression in *Clostridium autoethanogenum* under standard conditions.

In a particular embodiment, the methylation construct has an origin of replication specific to the identity of the shuttle microorganism so that any genes present on the methylation construct are

15 expressed in the shuttle microorganism. Preferably, the expression construct has an origin of replication specific to the identity of the destination microorganism so that any genes present on the expression construct are expressed in the destination microorganism.

Expression of the methyltransferase enzyme results in methylation of the genes present on the

20 expression construct. The expression construct may then be isolated from the shuttle microorganism according to any one of a number of known methods. By way of example only, the methodology described in the Examples section described hereinafter may be used to isolate the expression construct.

25 In one particular embodiment, both constructs are concurrently isolated. The expression construct may be introduced into the destination microorganism using any number of known methods. However, by way of example, the methodology described in the Examples section hereinafter may be used. Since the expression construct is methylated, the nucleic acid sequences present on the expression construct are able to be incorporated into the destination

30 microorganism and successfully expressed.

In a further embodiment, the invention provides a method of producing a recombinant microorganism comprising:

- a. methylation of an expression construct *in vitro* by a methyltransferase, preferably according to SEQ_ID No 28 or a functionally equivalent variant thereof; and,
- b. introduction of an expression construct, preferably according to the fifth aspect, into a destination microorganism;

5 wherein the expression construct comprises one or more genes encoding enzymes to be expressed in the destination microorganism.

It is envisaged that a methyltransferase gene of the invention, preferably according to SEQ_ID No 27 or a functionally equivalent variant thereof, may be introduced into a shuttle microorganism 10 and over-expressed. The resulting methyltransferase enzyme may be collected using known methods and used *in vitro* to methylate an expression construct, preferably, the expression construct is as defined in the fifth aspect. The expression construct may then be introduced into the destination microorganism for expression. Preferably, the recombinant microorganism produces 1-butanol and/or a precursor thereof as the main fermentation product.

15 In a further embodiment, the invention provides a method of producing a recombinant microorganism comprising:

- a. introduction into the genome of a shuttle microorganism of a methyltransferase gene, preferably according to SEQ_ID No 27 or a functionally equivalent variant thereof;
- b. introduction of an expression construct into the shuttle microorganism;
- c. isolation of one or more constructs from the shuttle microorganism; and,
- d. introduction of at least the expression construct into a destination microorganism;

20 wherein the expression construct comprises one or more genes encoding enzymes to be 25 expressed in the destination microorganism.

Standard methods are used for the introduction of a methyltransferase gene, preferably according to SEQ_ID No 27, into the genome of the shuttle microorganism. The methyltransferase may be constitutively expressed by the microorganism and result in the 30 production of a methyltransferase enzyme, preferably according to SEQ_ID No 28 or a functionally equivalent variant thereof. An expression construct is methylated, isolated and introduced into the destination microorganism which preferably, produces 1-butanol and/or a precursor thereof as the main fermentation product.

The invention also includes microorganisms comprising a recombinant methyltransferase gene or methylation construct as herein described.

The present invention also provides a hybrid methyltransferase gene (SEQ_ID NO 28) developed 5 following analysis of methyltransferase nucleic acid sequences and restriction barrier systems from *C. autoethanogenum*, *C. ljungdahlii*, and *C. ragsdalei*.

The methyltransferase gene is expressed in a shuttle microorganism which results in the production of a methyltransferase enzyme which methylates the sequence of the expression 10 construct. The methyltransferase gene may be present on a construct or integrated into the genome of the shuttle microorganism. The hybrid methyltransferase gene is codon optimised for *E. coli* and may be incorporated into a methylation construct (figure 5). The methyltransferase gene may be codon optimised for use in another species of microorganism where appropriate, for example *Bacillus subtilis*. Methods for codon optimisation are standard and would be known to 15 one of skill in the art (Carbone et al, 2003). Also incorporated within the scope of the invention are methyltransferase genes that have at least 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95% or greater nucleic acid sequence identity to SEQ_ID NO 28 and express a polypeptide which is able to methylate DNA.

20 It will be appreciated by one of skill in the art that the methylation method and methyltransferase gene will have utility across a range of microorganisms. In one embodiment, the destination microorganism is selected from the group comprising *Clostridium autoethanogenum*, *Clostridium ljungdahlii*, *Clostridium ragsdalei*, *Clostridium carboxidivorans*, *Clostridium drakei*, *Clostridium scatologenes*, *Butyribacterium limosum*, *Butyribacterium methylotrophicum*, *Acetobacterium woodii*, *Alkalibaculum bacchii*, *Blautia producta*, *Eubacterium limosum*, *Moorella thermoacetica*, 25 *Moorella thermautotrophica*, *Oxobacter pfennigii*, and *Thermoanaerobacter kiuvi*.. In one particular embodiment, the destination microorganism is selected from the group consisting *Clostridium autoethanogenum*, *Clostridium ljungdahlii* and *Clostridium ragsdalei*. In one particular embodiment the destination microorganism is *Clostridium autoethanogenum* DSM23693.

30

The invention also provides various nucleic acids or nucleic acid constructs as outlined in aspects 4, 5, 14, 15, 16, 18, 19 and 21 of the invention herein before described.

In another embodiment of the invention, there is an expression construct comprising one or more nucleic acids encoding one or more enzymes chosen from Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase and an electron transfer protein or a functionally equivalent variant thereof. Preferably, the electron transfer protein is Electron

5 Transfer Flavoprotein A or Electron Transfer Flavoprotein B. In a particular embodiment, both Electron Transfer Flavoprotein A and Electron Transfer Flavoprotein B are included on the expression construct.

Exemplary sequence information for each gene and equivalent enzyme is provided on GenBank as 10 detailed in Table 1 herein after. Skilled persons will readily appreciate alternative genes and enzymes which may be used. In one embodiment, the enzymes are encoded by the nucleic acid SEQ_ID No 1 to 6 which may be present in any order on the construct or in the order shown in figure 2. SEQ_ID Nos 8 to 13 and SEQ_ID Nos 16 to 23 are novel sequences used to clone and sequence the genes referred to in the immediately preceding paragraph.

15 In order to obtain 1-butanol from a precursor the activity of one or more of butyraldehyde dehydrogenase (EC1.2.1.10), alcohol dehydrogenase (EC 1.1.1.1), phosphotransbutyrylase (EC 2.3.1.19), butyrate kinase (EC 2.7.2.7), aldehyde:ferredoxin oxidoreductase (EC1.2.7.5) and alcohol dehydrogenase (EC 1.1.1.1) may be required. The alcohol dehydrogenase of the invention 20 is a butanol dehydrogenase. In certain embodiments, butyraldehyde dehydrogenase (EC1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1), or phosphotransbutyrylase (EC 2.3.1.19), butyrate kinase (EC 2.7.2.7), aldehyde:ferredoxin oxidoreductase (EC1.2.7.5) and alcohol dehydrogenase (EC 1.1.1.1), or a combination of both sets of enzymes is required. In one embodiment, the butyraldehyde dehydrogenase and butanol dehydrogenase activity is supplied by a bifunctional 25 butyraldehyde dehydrogenase/butanol dehydrogenase. These various enzymes are shown in the butanol biosynthesis pathway depicted in figure 1. In some microorganisms butyraldehyde dehydrogenase, butanol dehydrogenase, phosphotransbutyrylase, butyrate kinase, and/or aldehyde:ferredoxin oxidoreductase are naturally expressed by the microorganism and therefore catalyse the conversion of butyryl-CoA to 1-butanol.

30 Accordingly, in one embodiment, the expression construct comprises nucleic acids encoding one or more of phosphotransbutyrylase, butyrate kinase, ferredoxin dependent aldehyde oxidoreductase, butyraldehyde dehydrogenase, butanol dehydrogenase, and a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase in addition to or in the alternative to one

or more of Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase and an electron transfer protein.

Examples of appropriate enzymes and amino acid and nucleic acid sequence information include,

5 but are not limited to: butyraldehyde dehydrogenase, such as Ald from *C. beijerinckii* (ABR35947, GI:149905114), *C. saccharobutylicum* (CAQ57983, GI:189310620), or *Clostridium saccharoperbutylacetoniucm* (AAP42563, GI:31075383); butanol dehydrogenase, such as BdhB from *C. acetobutylicum* (NP_349891, GI:15896542); bifunctional butyraldehyde/butanol dehydrogenase enzyme, such as AdhE1 from *C. acetobutylicum* (NP_149325, GI:15004865) or

10 AdhE2 from *C. acetobutylicum* (NP_149199, GI:15004739), *C. beijerinckii*. YP_001307449, GI:150015195); a phosphotransbutyrylase such as PtB from *C. acetobutylicum* (NP_348368); butyrate kinase such as Buk from *C. acetobutylicum* (AAK81015.1); aldehyde:ferredoxin oxidoreductase AOR from *C. acetobutylicum* (NP_348637). Persons of ordinary skill in the art to which the invention relates may readily appreciate alternative examples of appropriate enzymes

15 of use in the invention. The inventors have also identified a number of novel enzymes and genes which may be used in the invention, the details of which are provided herein after in the Examples section (in particular see tables 7 to 10). The invention also encompasses functionally equivalent variants of these enzymes and genes and their use in methods of the invention.

20 The inclusion of one or more of these genes may help avoid co-production of butyrate completely, increasing the efficiency of 1-butanol production. The invention also provides recombinant microorganisms comprising one or more nucleic acids adapted to express or increase expression of one or more of these enzymes.

25 In one embodiment, the nucleic acid(s) encode an enzyme chosen from the group of enzymes listed in tables 7 to 10 herein after and functional equivalents of any one or more thereof. In a particular embodiment, the nucleic acids are chosen from the group of nucleic acids listed in tables 7 to 10 herein after and functional equivalents of any one or more thereof.

30 In one embodiment, the expression construct encodes at least 2 enzymes in the butanol biosynthesis pathway, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11 or at least 12 of the enzymes.

Preferably, the expression construct further comprises a suitable promoter as hereinbefore described. In one embodiment the promoter is a phosphotransacetylase/acetate kinase promoter. Preferably, the promoter corresponds to SEQ_ID No. 7 or a functionally equivalent variant thereof.

5

In a preferred embodiment, the expression construct comprises a nucleic acid encoding all of said enzymes. It will be appreciated by one of skill in the art that the expression construct may comprise nucleic acids encoding alternative electron transferring proteins.

- 10 The genes to be expressed in the recombinant microorganism may be assembled in the expression construct under the control of any appropriate promoter. In a particular embodiment, the promoter allows for substantially constitutive expression of the genes under its control. In a particular embodiment, the promoter is a phosphotransacetylase/acetate kinase (SEQ_ID NO 7) promoter. Other promoters which may find use in the invention include those from *C.*
- 15 *autoethanogenum* (or *C. ljungdahlii*). The inventors have also identified a number of other promoters that are operably linked to genes that were highly expressed under typical fermentation conditions in *Clostridium autoethanogenum* (figure 8). Analysis of expression of over 200 genes during typical fermentation conditions using real-time PCR identified a number of appropriate promoters. These include pyruvate:ferredoxin oxidoreductase (SEQ_ID No. 48), the
- 20 Wood-Ljungdahl gene cluster (SEQ_ID No 47), Rnf operon (SEQ_ID No 49) and the ATP synthase operon (SEQ_ID No 50). It will be appreciated by those of skill in the art that other promoters which can direct expression, preferably a high level of expression under appropriate fermentation conditions, would be effective as alternatives to the presently preferred embodiments.
- 25 In one embodiment, the invention comprises a construct, recombinant microorganism or a nucleic acid sequence comprising nucleic acid SEQ_ID NOs 1 to 6 in the order shown in figure 2. However, it will be appreciated by one of skill in the art that the invention may still have the desired utility when the nucleic acid sequences are presented in any order and with one or more of the sequences absent.
- 30 In another embodiment, the invention comprises a nucleic acid comprising the promoter sequence represented by Seq ID No. 7, or a functionally equivalent variant thereof, construct comprising said promoter and recombinant microorganisms comprising same.

It will be appreciated that an expression construct of the present invention may contain any number of regulatory elements in addition to the promoter as well as additional genes suitable for expression of further proteins if desired. In one embodiment the construct includes one promoter. In another embodiment, the construct includes two or more promoters. In one 5 particular embodiment, the construct includes one promoter for with each gene to be expressed. In one embodiment, the construct includes one or more ribosomal binding sites, preferably a ribosomal binding site for each gene to be expressed.

It will be appreciated by those of skill in the art that the nucleic acid sequences and construct 10 sequences defined herein may contain standard linker nucleotides such as those required for ribosome binding sites and/or restriction sites. Such linker sequences should not be interpreted as being required and do not provide a limitation on the sequences defined.

When the expression construct of the invention is expressed in an acetogenic microorganism, the 15 microorganism produces 1-butanol or a precursor thereof as the main fermentation product. It is envisaged that other genes which encode enzymes catalyzing different steps of the Wood-Ljungdahl or butanol biosynthesis pathways may also be incorporated in the expression construct in order to produce 1-butanol as the main fermentation product.

20 It is envisaged that the expression construct and the methylation construct as defined above may be combined to provide a composition of matter. Such a composition has particular utility in circumventing restriction barrier mechanisms in a wide variety of microorganisms but in a preferred embodiment, the recombinant microorganism produced by use of the composition produces 1-butanol or a precursor thereof as the main fermentation product.

25 Nucleic acids and nucleic acid constructs, including expression constructs of the invention, may be constructed using any number of techniques standard in the art. For example, chemical synthesis or recombinant techniques may be used. Such techniques are described, for example, in Sambrook et al (1989). Further exemplary techniques are described in the Examples section 30 herein after. Essentially, the individual genes and regulatory elements will be operably linked to one another such that the genes can be expressed to form the desired proteins. Suitable vectors for use in the invention will be appreciated by those of ordinary skill in the art. However, by way of example, the following vectors may be suitable: pMTL80000 shuttle vectors, pIMP1, pJIR750 and the plasmids exemplified in the Examples section herein after.

To the extent that the invention provides novel nucleic acids and nucleic acid vectors, it also provides nucleic acids which are capable of hybridising to at least a portion of a nucleic acid herein described, a nucleic acid complementary to any one thereof, or a functionally equivalent 5 variant of any one thereof. Such nucleic acids will preferably hybridise to such nucleic acids, a nucleic acid complementary to any one thereof, or a functionally equivalent variant of any one thereof, under stringent hybridisation conditions. "Stringent hybridisation conditions" means that the nucleic acid is capable of hybridising to a target template under standard hybridisation conditions such as those described in Sambrook *et al* (1989). It will be appreciated that the 10 minimal size of such nucleic acids is a size which is capable of forming a stable hybrid between a given nucleic acid and the complementary sequence to which it is designed to hybridise. Accordingly, the size is dependent on the nucleic acid composition and percent homology between the nucleic acid and its complementary sequence, as well as the hybridisation conditions which are utilised (for example, temperature and salt concentrations). In one embodiment, the 15 nucleic acid is at least 10 nucleotides in length, at least 15 nucleotides in length, at least, 20 nucleotides in length, at least 25 nucleotides in length, or at least 30 nucleotides in length.

It should be appreciated that nucleic acids of the invention may be in any appropriate form, including RNA, DNA, or cDNA, including double-stranded and single-stranded nucleic acids.

20

The invention also provides host organisms, particularly microorganisms, and including viruses, bacteria, and yeast, comprising any one or more of the nucleic acids described herein.

25

The invention provides a method of production of 1-butanol and/or a precursor thereof by microbial fermentation comprising fermenting a gaseous substrate comprising CO using a recombinant microorganism. In certain embodiments, 1-butanol or a precursor thereof is co-produced with another fermentation product (for example, ethanol). In one embodiment, the 1-butanol or a precursor thereof is the main fermentation product. In one, embodiment, the recombinant microorganism is as herein before described.

30

In one embodiment, 1-butanol and/or a precursor thereof is produced in a yield of from approximately 0.075 grams per litre of fermentation broth (g/l) to approximately 20g/l. In one embodiment, the yield is from approximately 0.15g/l to approximately 1.54g/l. In other

embodiments, the yield is approximately 10g/l, approximately 5g/l, or approximately 2g/l. Preferably, the yield of 1-butanol is up to the limit at which butanol becomes toxic to the bacteria.

Preferably, the fermentation comprises the steps of anaerobically fermenting a substrate in a
5 bioreactor to produce 1-butanol and/or a precursor thereof using recombinant microorganisms as described herein.

Where the precursor of 1-butanol is referred to herein it is envisaged that it may be optionally converted to 1-butanol in the presence of butyraldehyde dehydrogenase, butanol
10 dehydrogenase, a bifunctional butyraldehyde dehydrogenase/butanol dehydrogenase, phosphotransbutyrylase, butyrate kinase, and/or ferredoxin dependent aldehyde oxidoreductase. Preferably, the microorganism produces one or more of these enzymes both before and after introduction of a recombinant nucleic acid.

15 In an embodiment of the invention, the gaseous substrate fermented by the microorganism is a gaseous substrate containing CO. The gaseous substrate may be a CO-containing waste gas obtained as a by-product of an industrial process, or from some other source such as from automobile exhaust fumes. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous
20 products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing. In these embodiments, the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method. The CO may be a component of syngas (gas comprising carbon monoxide and hydrogen). The CO
25 produced from industrial processes is normally flared off to produce CO₂ and therefore the invention has particular utility in reducing CO₂ greenhouse gas emissions and producing butanol for use as a biofuel. Depending on the composition of the gaseous CO-containing substrate, it may also be desirable to treat it to remove any undesired impurities, such as dust particles before introducing it to the fermentation. For example, the gaseous substrate may be filtered or
30 scrubbed using known methods.

It will be appreciated that for growth of the bacteria and CO-to-1butanol fermentation to occur, in addition to the CO-containing substrate gas, a suitable liquid nutrient medium will need to be fed to the bioreactor. A nutrient medium will contain vitamins and minerals sufficient to permit

growth of the micro-organism used. Anaerobic media suitable for fermentation to produce butanol using CO are known in the art. For example, suitable media are described Biebel (2001). In one embodiment of the invention the media is as described in the Examples section herein after.

5

The fermentation should desirably be carried out under appropriate conditions for the CO-to-butanol fermentation to occur. Reaction conditions that should be considered include pressure, temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations

10 to ensure that CO in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition.

In addition, it is often desirable to increase the CO concentration of a substrate stream (or CO partial pressure in a gaseous substrate) and thus increase the efficiency of fermentation reactions

15 where CO is a substrate. Operating at increased pressures allows a significant increase in the rate of CO transfer from the gas phase to the liquid phase where it can be taken up by the micro-organism as a carbon source for the production of butanol. This in turn means that the retention time (defined as the liquid volume in the bioreactor divided by the input gas flow rate) can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure.

20 The optimum reaction conditions will depend partly on the particular micro-organism of the invention used. However, in general, it is preferred that the fermentation be performed at pressure higher than ambient pressure. Also, since a given CO-to-butanol conversion rate is in part a function of the substrate retention time, and achieving a desired retention time in turn dictates the required volume of a bioreactor, the use of pressurized systems can greatly reduce

25 the volume of the bioreactor required, and consequently the capital cost of the fermentation equipment. According to examples given in US patent no. 5,593,886, reactor volume can be reduced in linear proportion to increases in reactor operating pressure, i.e. bioreactors operated at 10 atmospheres of pressure need only be one tenth the volume of those operated at 1 atmosphere of pressure.

30

The benefits of conducting a gas-to-ethanol fermentation at elevated pressures has been described elsewhere. For example, WO 02/08438 describes gas-to-ethanol fermentations performed under pressures of 30 psig and 75 psig, giving ethanol productivities of 150 g/l/day and 369 g/l/day respectively. However, example fermentations performed using similar media and

input gas compositions at atmospheric pressure were found to produce between 10 and 20 times less ethanol per litre per day.

The composition of gas streams used to feed a fermentation reaction can have a significant impact on the efficiency and/or costs of that reaction. For example, O₂ may reduce the efficiency of an anaerobic fermentation process. Processing of unwanted or unnecessary gases in stages of a fermentation process before or after fermentation can increase the burden on such stages (e.g. where the gas stream is compressed before entering a bioreactor, unnecessary energy may be used to compress gases that are not needed in the fermentation). Accordingly, it may be desirable to treat substrate streams, particularly substrate streams derived from industrial sources, to remove unwanted components and increase the concentration of desirable components.

In certain embodiments a culture of a bacterium of the invention is maintained in an aqueous culture medium. Preferably the aqueous culture medium is a minimal anaerobic microbial growth medium. Suitable media are known in the art and described for example in US patent no.s 5,173,429 and 5,593,886 and WO 02/08438, and as described in the Examples section herein after.

Butanol, or a mixed alcohol stream containing butanol and one or more other alcohols, may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, pervaporation, and extractive fermentation, including for example, liquid-liquid extraction. By-products such as acids including butyrate may also be recovered from the fermentation broth using methods known in the art. For example, an adsorption system involving an activated charcoal filter or electrodialysis may be used. Alternatively, continuous gas stripping may also be used.

In certain preferred embodiments of the invention, butanol and by-products are recovered from the fermentation broth by continuously removing a portion of the broth from the bioreactor, separating microbial cells from the broth (conveniently by filtration), and recovering butanol and optionally acid from the broth. Alcohols may conveniently be recovered for example by distillation, and acids may be recovered for example by adsorption on activated charcoal. The separated microbial cells are preferably returned to the fermentation bioreactor. The cell free permeate remaining after the alcohol(s) and acid(s) have been removed is also preferably

returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor.

Also, if the pH of the broth was adjusted as described above to enhance adsorption of acetic acid 5 to the activated charcoal, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor.

In one embodiment of the invention, butanol is recovered from the fermentation reaction using extractive fermentation procedures in which butanol is recovered into an oil phase in the reactor.

10 Skilled persons would readily appreciate techniques for achieving this

Examples:

The invention will now be described in more detail with reference to the following non-limiting examples.

15 Genetic modifications were carried out using a plasmid containing a synthetic operon consisting of a strong, native *C. autoethanogenum* promoter controlling a thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, and 2 electron transferring flavoproteins genes from *C. acetobutylicum* (Fig. 1-2). This plasmid was methylated *in vivo* using a novel 20 methyltransferase and then transformed into *C. autoethanogenum* DSM23693. Production of 1-butanol as the main fermentation product was shown on different industrial gas streams (steel mill waste gas, syngas).

Construction of expression plasmid:

25 Standard Recombinant DNA and molecular cloning techniques were used in this invention and are described by Sambrook et al, 1989 and Ausubel et al, 1987. DNA sequences of butanol biosynthetic genes of *Clostridium acetobutylicum* ATCC824 used were obtained from NCBI (Table 1). The phosphotransacetylase/acetate kinase operon promoter of *C. autoethanogenum* DSM10061 were sequenced and used for expression of target genes (Table 1). RT-PCR 30 experiments showed that this promoter is constitutively expressed at a high level (figure 8).

Table 1: Sources of 1-butanol pathway genes

Gene/Promoter	GenBank Citation	SEQ_ID NO.
Thiolase (<i>thlA</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824,	1

	complete genome; GI:15896127; GeneID:1119056	
3-hydroxybutyryl-CoA dehydrogenase (<i>hbd</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824, complete genome; GI:15895965; GeneID:1118891	2
Crotonase (<i>crt</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824, complete genome; GI:15895969; GeneID:1118895	3
butyryl-CoA dehydrogenase (<i>bcd</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824, complete genome; GI:15895968; GeneID:1118894	4
Electron Transfer Flavoprotein A (<i>etfA</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824, complete genome; GI:15895966; GeneID:1118892	5
Electron Transfer Flavoprotein B (<i>etfB</i>)	NC_003030 <i>Clostridium acetobutylicum</i> ATCC 824, complete genome; GI:15895967; GeneID:1118893	6
phosphotransacetylase/acetate kinase promoter (<i>P_{pta-ack}</i>)	<i>Clostridium autoethanogenum</i> DSM10061	7

Genomic DNA from *Clostridium acetobutylicum* ATCC824 and *Clostridium autoethanogenum* DSM10061 was isolated using a modified method by Bertram and Dürre (1989). A 100-ml overnight culture was harvested (6,000 x g, 15 min, 4 °C), washed with potassium phosphate buffer (10 mM, pH 7.5) and suspended in 1.9 ml STE buffer (50 mM Tris-HCl, 1 mM EDTA, 200 mM sucrose; pH 8.0). 300 µl lysozyme (~100,000 U) were added and the mixture was incubated at 37 °C for 30 min, followed by addition of 280 µl of a 10 % (w/v) SDS solution and another incubation for 10 min. RNA was digested at room temperature by addition of 240 µl of an EDTA solution (0.5 M, pH 8), 20 µl Tris-HCl (1 M, pH 7.5), and 10 µl RNase A (Fermentas). Then, 100 µl Proteinase K (0.5 U) were added and proteolysis took place for 1-3 h at 37 °C. Finally, 600 µl of sodium perchlorate (5 M) were added, followed by a phenol-chloroform extraction and an isopropanol precipitation. DNA quantity and quality was inspected spectrophotometrically.

Butanol biosynthesis genes and the phosphotransacetylase/acetate kinase promoter were amplified by PCR with oligonucleotides in table 2 using iProof High Fidelity DNA Polymerase (Bio-Rad Laboratories) and the following program: initial denaturation at 98 °C for 30 seconds, followed by 32 cycles of denaturation (98 °C for 10 seconds), annealing (50-62 °C for 30-120 seconds) and elongation (72 °C for 45 seconds), before a final extension step (72 °C for 10 minutes).

20 Table 2: Oligonucleotides for cloning

Target	Oligonucleotide Name	DNA Sequence (5' to 3')	SEQ_ID NO.
Ppta-ack	Ppta-ack-NotI-F	<u>GAGCGGCCGCAATATGATATTATGTCC</u>	8
Ppta-ack	Ppta-ack-Ndel-R	<u>TTCCCATATGTTCATGTTCATTCCTCC</u>	9
ThIA	ThIA-Cac-Ndel-F	<u>GTTCATATGAAAGAAGTTGTAATAGC</u>	10
ThIA	ThIA-Cac-EcoRI-R	<u>CAAGAATTCTAGCACTTTCTAGC</u>	11
crt-bcd-etfB-etfA-	Crt-Cac-KpnI-F	<u>AAGGTACCTAGGAGGATTAGTCATGG</u>	12

hbd operon			
crt-bcd-etcB-etcA-hbd operon	Crt-hbd-Cac-BamHI-R	<u>GAGGATCCGGATTCTGTAAACTTATTG</u>	13

The amplified 498 bp promoter region of the phosphotransacetylase/acetate kinase operon ($P_{pta-ack}$) was cloned into the *E. coli-Clostridium* shuttle vector pMTL 85141 (Seq. ID 14; FJ797651.1; Nigel Minton, University of Nottingham; Heap et al., 2009) using *NotI* and *NdeI* restriction sites 5 and strain DH5 α -T1^R (Invitrogen). The created plasmid pMTL85145 and the 1,194 bp PCR product of the thiolase gene were both cut with *NdeI* and *EcoRI*. A ligation was transformed into *E. coli* XL1-Blue MRF' Kan (Stratagene) resulting in plasmid pMTL85145-thlA. Subsequently, the amplified 4,764 bp PCR fragment of the *crt-bcd-etcB-etcA-hbd* operon from *C. acetobutylicum* ATCC 824 was cloned into this vector using *KpnI* and *BamHI* and *E. coli* ABLE K (Stratagene), 10 creating plasmid pMTL85145-thlA-crt-hbd. Finally, the antibiotic resistance cassette was changed from chloramphenicol to clarithromycin. Therefore, an *ermB* cassette was released from vector pMTL82254 (Seq. ID 15; FJ797646.1; Nigel Minton, University of Nottingham; Heap et al., 2009) using restriction enzymes *Pmel* and *Fsel* and exchanged with the *catP* cassette of plasmid pMTL85145-thlA-crt-hbd. The insert of the resulting expression plasmid pMTL85245-thlA-crt-hbd 15 (SEQ_ID No. 31 was completely sequenced using oligonucleotides given in table 3 and results confirmed that the butanol biosynthesis genes were free of mutations (Figure 3).

Table 3: Oligonucleotides for sequencing

Oligonucleotide Name	DNA Sequence (5' to 3')	SEQ_ID NO.
seq-ThlA-hbd-3562-4162	CAGAGGATGTTAACGAGTC	16
seq-ThlA-hbd-4163-4763	GCATCAGGATTAAATGACTG	17
seq-ThlA-hbd-4764-5364	ATAGCGAAGTACTTG	18
seq-ThlA-hbd-5365-5965	GATGCAATGACAGCTTC	19
seq-ThlA-hbd-5966-6566	GGAACAAAAGGTATATCAGC	20
seq-ThlA-hbd-7168-7768	CGGAGCATTTGATAAAGAA	21
seq-ThlA-hbd-7769-8369	GCTGATTGTACATCACTTGA	22
seq-ThlA-hbd-8370-8870	CCAGAATTAATAGCTCAAGT	23

20 **Methylation of DNA:**

A hybrid methyltransferase gene fused to an inducible *lac* promoter was designed (Seq. ID 28), by alignment of methyltransferase genes from *C. autoethanogenum* (SEQ_ID No. 24), *C. ljungdahlii* (SEQ_ID No. 25), and *C. ragsdalei* (SEQ_ID No. 26) (figure 4a, 4b and 4c). Expression of the methyltransferase gene resulted in production of a methyltransferase enzyme according to 25 SEQ_ID No. 28. Methyltransferase amino acid sequence alignment data is shown in figure 4d.

The hybrid methyltransferase gene (SEQ_ID No. 27) was chemically synthesized and cloned into vector pGS20 (Seq. ID 29; ATG:biosynthetics GmbH, Merzhausen, Germany) using *Eco*RI (Fig. 5). The resulting methylation plasmid pGS20-methyltransferase was double transformed with the expression plasmid pMTL85245-thlA-crt-hbd into the restriction negative *E. coli* XL1-Blue MRF' 5 Kan (Stratagene). *In vivo* methylation was induced by addition of 1 mM IPTG, and methylated plasmids were isolated using the PureLink™ HiPure Plasmid Maxiprep Kit (Invitrogen). The resulting methylated plasmid composition was used for transformation of *C. autoethanogenum* DSM23693.

10 **Transformation:**

During the complete transformation experiment, *C. autoethanogenum* DSM23693 and *C. ljundahlii* (DSM13528) were grown in PETC media (Tab. 4) with 10 g/l fructose and 30 psi steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N₂, 22% CO₂, 2% H₂) as carbon source at 37 °C using standard anaerobic techniques described by 15 Hungate (1969) and Wolfe (1971).

Table 4: PETC media (ATCC media 1754; <http://www.atcc.org/Attachments/2940.pdf>)

Media component	Concentration per 1.0L of media
NH ₄ Cl	1 g
KCl	0.1 g
MgSO ₄ .7H ₂ O	0.2 g
NaCl	0.8 g
KH ₂ PO ₄	0.1 g
CaCl ₂	0.02 g
Trace metal solution	10 ml
Wolfe's vitamin solution	10 ml
Yeast Extract	1 g
Resazurin (2 g/L stock)	0.5 ml
NaHCO ₃	2 g
Reducing agent	0.006-0.008 % (v/v)
Distilled water	Up to 1 L, pH 5.5 (adjusted with HCl)

Wolfe's vitamin solution	per L of Stock
Biotin	2 mg
Folic acid	2 mg

Pyridoxine hydrochloride	10 mg
Thiamine.HCl	5 mg
Riboflavin	5 mg
Nicotinic acid	5 mg
Calcium D-(+)-pantothenate	5 mg
Vitamin B ₁₂	0.1 mg
p-Aminobenzoic acid	5 mg
Thioctic acid	5 mg
Distilled water	To 1 L

Trace metal solution	per L of stock
Nitrilotriacetic Acid	2 g
MnSO ₄ .H ₂ O	1 g
Fe (SO ₄) ₂ (NH ₄) ₂ .6H ₂ O	0.8 g
CoCl ₂ .6H ₂ O	0.2 g
ZnSO ₄ .7H ₂ O	0.2 mg
CuCl ₂ .2H ₂ O	0.02 g
NaMoO ₄ .2H ₂ O	0.02 g
Na ₂ SeO ₃	0.02 g
NiCl ₂ .6H ₂ O	0.02 g
Na ₂ WO ₄ .2H ₂ O	0.02 g
Distilled water	To 1 L

Reducing agent stock	per 100 mL of stock
NaOH	0.9 g
Cystein.HCl	4 g
Na ₂ S	4 g
Distilled water	To 100 mL

5 To make competent cells, a 50 ml culture of *C. autoethanogenum* DSM23693 and a 50ml culture of *C. ljundahlii* DSM13528 were subcultured to fresh media for 3 consecutive days. These cells were used to inoculate 50 ml PETC media containing 40 mM DL-threonine at an OD_{600nm} of 0.05. When the culture reached an OD_{600nm} of 0.4, the cells were transferred into an anaerobic chamber and harvested at 4,700 x g and 4 °C. The culture was twice washed with ice-cold electroporation buffer (270 mM sucrose, 1 mM MgCl₂, 7 mM sodium phosphate, pH 7.4) and finally suspended in

10

a volume of 600 μ l fresh electroporation buffer. This mixture was transferred into a pre-cooled electroporation cuvette with a 0.4 cm electrode gap containing 1 μ g of the methylated plasmid mix (and in the case of *C. ljundahlii* 1 μ l Type 1 restriction inhibitor (Epicentre Biotechnologies)) and immediately pulsed using the Gene pulser Xcell electroporation system (Bio-Rad) with the following settings: 2.5 kV, 600 Ω , and 25 μ F. Time constants of 3.7-4.0 ms were achieved. The culture was transferred into 5 ml fresh media. Regeneration of the cells was monitored at a wavelength of 600 nm using a Spectronic Helios Epsilon Spectrophotometer (Thermo) equipped with a tube holder. After an initial drop in biomass, the cells start growing again. Once the biomass has doubled from that point, the cells were harvested, suspended in 200 μ l fresh media and plated on selective PETC plates (containing 1.2 % BactoTM Agar (BD)) with 4 μ g/ μ l Clarithromycin. After 4-5 days of inoculation with 30 psi steel mill gas at 37 °C, 15-80 colonies per plate were clearly visible.

The colonies were used to inoculate 2 ml PETC media containing 4 μ g/ μ l Clarithromycin. When growth occurred, the culture was upscaled into 5 ml and later 50 ml PETC media containing 4 μ g/ μ l Clarithromycin and 30 psi steel mill gas as sole carbon source.

Conformation of the successful transformation:

C. autoethanogenum: To verify the DNA transfer, a plasmid mini prep was performed from 10 ml culture volume using the QIAprep Spin Miniprep Kit (Qiagen). Due to Clostridial exonuclease activity (Burchhardt and Dürre, 1990), the isolated plasmid DNA from 4 analyzed clones were partly degraded and only resulted in a smear on an agarose gel, while a plasmid isolation from the original *C. autoethanogenum* DSM23693 strain didn't result in a signal at all (Fig. 6). However, the quality of the isolated plasmid DNA was sufficient to run a control PCR using 4 sets of primers, covering all relevant different regions of the plasmid (Table 5). The PCR was performed with Illustra PuReTaq Ready-To-GoTM PCR Beads (GE Healthcare) using a standard conditions (95 °C for 5 min; 32 cycles of 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min; 72 °C for 10 min). PCR of all 4 analyzed transformants resulted in the same signals as with the original methylated plasmid mix as template (Fig. 6). As a further control, 1 μ l of each of the partly degraded isolated plasmids were re-transformed in *E. coli* XL1-Blue MRF' Kan (Stratagene), from where the plasmids could be isolated cleanly and verified by restriction digests.

To confirm the identity of the 4 clones, genomic DNA was isolated (see above) from 40 ml of each culture and a PCR was performed against the 16s rRNA gene (Tab. 5; Weisberg et al., 1991) using

illuстра PuReTaq Ready-To-Go™ PCR Beads (GE Healthcare) and standard conditions (95 °C for 5 min; 32 cycles of 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min; 72 °C for 10 min). The respective PCR products were purified and sequenced. Sequences of all clones showed at least 99.9% identity against the 16S rRNA gene of *C. autoethanogenum* (Seq. ID 30; Y18178, 5 GI:7271109).

A respective strain was deposited at DSMZ (Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) under the accession number DSM24138 on 26 October 2010.

10

C. ljungdahlii: *Clostridium ljungdahlii* transformants were confirmed using the same method and primer sets. Sequencing of the 16S rRNA gene resulted in a 100 % match with the 16S gene of *Clostridium ljungdahlii* (Seq. ID 119; CP001666, GI:300433347).

15 **Table 5: Oligonucleotides for PCR confirmation of plasmid and species**

Target region	Oligonucleotide Name	DNA Sequence (5' to 3')	Seq ID No.
16s rRNA gene	fD1	CCGAATTCTGACAAACAGAGTTGATCCTGGCT CAG	135
16s rRNA gene	rP2	CCCGGGATCCAAGCTTACGGCTACCTTGTACGA CTT	32
Antibiotic resistance cassette (<i>ermB</i>)	ermB-F	TTTGTAAATTAGAAGGAG	33
Antibiotic resistance cassette (<i>ermB</i>)	ermB-R	GTAGAAATCCTTCTTCAAC	34
Insert 1 (<i>thlA</i>)	ThlA-Cac-NdeI-F	GTTCATATGAAAGAAGTTGTAATAGC	10
Insert 1 (<i>thlA</i>)	ThlA-Cac-EcoRI-R	CAAGAATTCCCTAGCACTTTCTAGC	11
Insert 2 (<i>crt-bcd-etcAB-hbd</i>)	Crt-conserved-F	GCTGGAGCAGATAT	35
Insert 2 (<i>crt-bcd-etcAB-hbd</i>)	Crt-conserved-R	GCTGTCATTCCCTTC	36
Replication origin (ColE1)	ColE1-F	CGTCAGACCCCGTAGAAA	37
Replication origin (ColE1)	ColE1-R	CTCTCCTGTTCCGACCT	38

1-butanol production:

To demonstrate 1-butanol production from CO as sole energy and carbon source, PETC media without yeast extract and fructose were prepared and inoculated with the novel *C. autoethanogenum* and *C. ljungdahlii* strains harbouring butanol plasmid pMTL85245-thlA-crt-hbd. 20 Bottles were pressurized with 30 psi of a CO containing gas stream from two industrial sources, steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44%

CO, 32% N₂, 22% CO₂, 2% H₂) and syngas (Range Fuels Inc., Broomfield, CO; composition: 29 % CO, 45 % H₂, 13 % CH₄, 12 % CO₂, 1 % N₂). 1-Butanol production could be demonstrated on with both strains and both gas mixes over several subculturing periods. Co-production of butyrate was observed as well. Neither 1-butanol nor butyrate were detected in samples of unmodified strains 5 of *C. autoethanogenum* DSM23693 and *C. ljungdahlii* DSM13528 under the same conditions.

Analysis of metabolites were performed by HPLC using an Agilent 1100 Series HPLC system equipped with a RID operated at 35 °C (Refractive Index Detector) and an Alltech IOA-2000 Organic acid column (150 x 6.5 mm, particle size 5 µm) kept at 60 °C. Slightly acidified water was 10 used (0.005 M H₂SO₄) as mobile phase with a flow rate of 0.7 ml/min. To remove proteins and other cell residues, 400 µl samples were mixed with 100 µl of a 2 % (w/v) 5-Sulfosalicylic acid and centrifuged at 14,000 x g for 3 min to separate precipitated residues. 10 µl of the supernatant were then injected into the HPLC for analyses.

15 In serum bottle experiments the highest 1-butanol production was observed in two static cultures of *C. autoethanogenum* harboring butanol plasmid pMTL85245-thlA-crt-hbd. In these cultures, 1-butanol was the main fermentation end product observed with 1.54 g/l (25.66 mM) (Table 6, Fig. 7). The production of the other metabolites was reduced compared to the original strain *C. autoethanogenum* DSM23693, which only produced ethanol, acetate, and 2,3-butandiol. 20 Although the carbon flux was shifted towards 1-butanol production, the amount of total carbon incorporated into metabolic end products remain almost the same (Table 6). The slight increase of 20 % is likely to be the result of an extra reducing equivalents offload by producing 1-butanol and butyrate compared to ethanol and respectively acetate. The production of 2,3-butandiol which usually acts as electron sink, was completely diminished.

25

Table 6: Metabolite production and carbon balance of *C. autoethanogenum* harboring butanol plasmid pMTL85245-thlA-crt-hbd compared to original *C. autoethanogenum* DSM23693

Product	M [g/mo l]	P [g/cm ³]	Carbo n atoms	Original <i>C. autoethanogenum</i> DSM23693			<i>C. autoethanogenum</i> DSM23693 + pMTL85245-thlA-crt-bcd		
				Product [g/l]	Product [mmol/l]	Carbon [mmol/l]	Product [g/l]	Product [mmol/l]	Carbon [mmol/l]
Ethanol	46.08	0.789	2	1.02	28.06	56.11	0.37	10.18	20.35
Acetate	60.05	1.049	2	1.87	29.69	59.37	0.30	4.76	9.52
2,3- butandiol	90.12	0.987	4	0.18	2.02	8.09	0	0	0

1-butanol	74.12	0.810	4	0	0	0	1.54	25.66	102.63
Butyrate	88.11	0.960	4	0	0	0	0.31	3.67	14.67
Total					123.58				147.17

1-butanol production was also observed in cultures of *C. ljungdahlii* DSM13528 harbouring the butanol plasmid pMTL85245-thlA-crt-hbd in significant amounts of up to 0.36 g/L (6mM), although lower compared to *C. autoethanogenum* DSM23693 carrying the same plasmid. This

5 can be explained as *C. autoethanogenum* DSM23693 is a strain with improved alcohol production and correspondingly, the unmodified strain of *C. autoethanogenum* DSM23693 produces more ethanol and less acetate than the unmodified strain of *C. ljungdahlii* DSM13528 (both strains produce neither butanol nor butyrate).

10 *C. ljungdahlii* harbouring the butanol plasmid pMTL85245-thlA-crt-hbd had a lower 1-butanol:butyrate ratio than *C. autoethanogenum*. The ratio of 1-butanol to butyrate, however, can be altered by process conditions. This allows production of 1-butanol as the main fermentation product, but also production of butyrate as the main fermentation product in both strains *C. autoethanogenum* and *C. ljungdahlii*. In serum bottle experiments, molar ratios of 1-butanol:butyrate between 50:1 to 1:30 were observed with *C. autoethanogenum* and between 20:1 and 1:30 with *C. ljungdahlii*. Cultures which were incubated under shaking produced generally higher butyrate and lower 1-butanol levels compared to static cultures. The concentration of CO (and H₂) in the headspace was found to have an effect on the 1-butanol:butyrate ratio as well. In cultures with less CO in the headspace, butyrate production was

15 more favoured and could be produced as the main fermentation product. Correspondingly, higher 1-butanol titers were observed on the CO-richer steel mill gas (44 % CO) than on the CO-leaner syngas (29 % CO) in performed serum bottle experiments. A maximum of 1.08 g/l (12.8 mM) butyrate was observed with *Clostridium autoethanogenum* harbouring plasmid pMTL85245-thlA-crt-hbd and a level of 1.03 g/L (12.5 mM) with *C. ljungdahlii* carrying the same plasmid. This

20 effect can be explained by the extra carbon going into the system and also the additional reducing power generated from CO oxidation by the carbon monoxide dehydrogenase (CODH).

25

Conversion of butyryl-CoA to butyrate and butanol:

The expression plasmid only contains the genes necessary for production of butyryl-CoA from

30 acetyl-CoA. Butyryl-CoA can then be converted directly to butanol by action of a butyraldehyde dehydrogenase and butanol dehydrogenase (Fig. 1). A second possibility is that butyryl-CoA is converted to butyrate via a phosphotransbutyrylase and butyrate kinase (Fig. 1), in which case

ATP is gained via substrate level phosphorylation (SLP). Since operation of the Wood-Ljungdahl pathway requires ATP, acetogenic cells rely on ATP from SLP, which is also reflected in the fact that every acetogenic bacteria known produces acetate (Drake et al., 2006). However, the recombinant cell can now also generate ATP via SLP also by producing butyrate. Butyrate can then 5 be further reduced to butyraldehyde via a aldehyde:ferredoxin oxidoreductase (AOR) (Fig. 1). This reaction could be driven by reduced ferredoxin, provided by oxidation of CO via the carbon monoxide dehydrogenase ($\text{CO} + \text{Fd}_{\text{red}} \rightarrow \text{CO}_2 + \text{Fd}_{\text{ox}}$), the initial step in the Wood-Ljungdahl pathway. Butyraldehyde can then be converted to butanol via a butanol dehydrogenase (Fig. 1). Conversion of externally added butyrate to butanol by a culture of *C. autoethanogenum* has been 10 demonstrated (WO2009/113878).

Respective genes/enzymes with butyraldehyde dehydrogenase, butanol dehydrogenase, phosphotransbutyrylase, butyrate kinase, and aldehyde:ferredoxin oxidoreductase activity have been identified by the inventors in *C. autoethanogenum*, *C. ljungdahlii*, and *C. ragsdalei* (Tab. 7-15). Potential genes and enzymes were predicted by comparison with characterized genes and enzymes using BLAST (Altschul et al, 1990), COG (Tatusov et al, 2003), and TIGRFAM (Haft et al, 2002) databases. Motif scans were performed against PROSITE (Hulo et al., 2008) Pfam (Finn et al., 2010) databases. Genomes of *C. autoethanogenum*, *C. ljungdahlii*, and *C. ragsdalei* contain 15 several genes encoding enzymes with alcohol and aldehyde dehydrogenase activity. As indicated 20 in tables 7 to 10, some of these were found to have high homology of over 70 % to characterized butyraldehyde and butanol dehydrogenases from *C. acetobutylicum*, *C. beijerinckii*, or *C. saccharobutylicum*, while others have at least in some 40 % identity to these enzymes. All three 25 genomes encode exactly one enzyme with Phosphate acetyl/butyryl transferase activity and one with Acetate/butyrate kinase activity. *C. autoethanogenum*, *C. ljungdahlii*, and *C. ragsdalei* each possess 2 aldehyde:ferredoxin oxidoreductase genes.

Table 7: Genes of *C. autoethanogenum* potentially conferring butyraldehyde and butanol dehydrogenase activity

Sequence	Description	Identity (protein) to characterized enzymes
Seq. ID 39-40	Bifunctional butanol/butyraldehyde dehydrogenase	<ul style="list-style-type: none">bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 644/861 (75%), Positives = 748/861 (87%), e-value = 0.0)bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 594/858 (70%), Positives = 730/858 (86%), e-value = 0.0)
Seq. ID 41-42	Butyraldehyde dehydrogenase	<ul style="list-style-type: none">bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 367/504 (73%), Positives = 437/504 (87%), e-value = 0.0)bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (354/504 (71%), Positives = 440/504 (88%), e-value = 0.0)
Seq. ID 43-44	Butyraldehyde dehydrogenase	<ul style="list-style-type: none">bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 173/352 (50%), Positives = 236/352 (68%), e-value = 1e-91)

		<ul style="list-style-type: none"> • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 160/374 (43%), Positives = 234/374 (63%), e-value = 5e-87) • bifunctional aldehyde/alcohol dehydrogenase AdhE1 from <i>C. acetobutylicum</i> ATCC824 (Identities = 158/366 (44%), Positives = 235/366 (65%), e-value = 5e-82) • butyraldehyde dehydrogenase Ald from <i>C. beijerinckii</i> NCIMB8052 (Identities = 110/354 (32%), Positives = 184/354 (52%), e-value = 9e-44) • butyraldehyde dehydrogenase from <i>C. saccharoperbutylacetonicum</i> (111/354 (32%), Positives = 182/354 (52%), e-value = 2e-44)
Seq. ID 45-46	Butyraldehyde dehydrogenase	<ul style="list-style-type: none"> • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 188/477 (40%), Positives = 270/477 (57%), e-value = 9e-84) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 164/428 (39%), Positives = 256/428 (60%), e-value = 1e-79)
Seq. ID 119-120	Butanol dehydrogenase	<ul style="list-style-type: none"> • NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 285/388 (74%), Positives = 334/388 (87%), e-value = 7e-177) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 163/396 (42%), Positives = 237/396 (60%), e-value = 4e-80)
Seq. ID 121-122	Butanol dehydrogenase	<ul style="list-style-type: none"> • NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 271/388 (70%), Positives = 328/388 (85%), e-value = 3e-168) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 169/403 (42%), Positives = 240/403 (60%), e-value = 3e-83)
Seq. ID 51-52	Butanol dehydrogenase	<ul style="list-style-type: none"> • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (246/315 (79%), Positives = 287/315 (92%), e-value = 1e-153) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (208/312 (67%), Positives = 260/312 (84%), e-value = 4e-128)
Seq. ID 53-54	Butanol dehydrogenase	<ul style="list-style-type: none"> • NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 264/388 (69%), Positives = 326/388 (85%), e-value = 5e-163) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB8052 (Identities = 169/410 (42%), Positives = 246/410 (60%), e-value = 5e-82) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 162/402 (41%), Positives = 240/402 (60%), e-value = 2e-78)
Seq. ID 55-56	Butanol dehydrogenase	<ul style="list-style-type: none"> • NADH-dependent butanol dehydrogenase BdhA from <i>C. acetobutylicum</i> ATCC824 (Identities = 161/388 (42%), Positives = 243/388 (63%), e-value = 7e-92) • NADH-dependent butanol dehydrogenase BdhB from <i>C. acetobutylicum</i> ATCC824 (Identities = 155/389 (40%), Positives = 242/389 (63%), e-value = 4e-85)
Seq. ID 57-58	Butanol dehydrogenase	<ul style="list-style-type: none"> • NADPH-dependet butanol dehydrogenase AdhE2 from <i>C. saccharobutylicum</i> (Identities = 156/385 (41%), Positives = 236/385 (62%), e-value = 1e-72) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 154/412 (38%), Positives = 233/412 (57%), e-value = 8e-70)
Seq. ID 59-60	Phosphate acetyl/butyryl transferase	<ul style="list-style-type: none"> • phosphate butyryltransferase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 85/338 (26%), Positives = 146/338 (44%), e-value = 2e-12)
Seq. ID 61-62	Acetate/butyrate kinase	<ul style="list-style-type: none"> • butyrate kinase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 49/175 (28%), Positives = 78/175 (45%), e-value = 5e-08)
Seq. ID 63-64	Aldehyde:ferredoxin oxidoreductase	<ul style="list-style-type: none"> • aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 183/618 (30%), Positives = 311/618 (51%), e-value = 6e-72)
Seq. ID 65-66	Aldehyde:ferredoxin oxidoreductase	<ul style="list-style-type: none"> • aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 191/633 (31%), Positives = 308/633 (49%), e-value = 2e-70)

Table 8: Genes of *C. ljungdahlii* potentially conferring butyraldehyde and butanol dehydrogenase activity

Sequence	Description	Identity to characterized enzymes
Seq. ID 67-68	Bifunctional butanol/butyraldehyde dehydrogenase	<ul style="list-style-type: none"> • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 644/862 (75%), Positives = 751/862 (88%), e-value = 0.0) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 592/858 (69%), Positives = 729/858 (85%), e-value = 0.0)
Seq. ID 69-70	Bifunctional butanol/	<ul style="list-style-type: none"> • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB

	butyraldehyde dehydrogenase	8052 (Identities = 636/860 (74%), Positives = 752/860 (88%), e-value = 0.0) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 585/858 (69%), Positives = 733/858 (86%), e-value = 0.0)
Seq. ID 71-72	Butyraldehyde dehydrogenase	• bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 209/429 (49%), Positives = 286/429 (67%), e-value = 4e-111) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 196/467 (42%), Positives = 286/467 (62%), e-value = 1e-102) • bifunctional aldehyde/alcohol dehydrogenase AdhE1 from <i>C. acetobutylicum</i> ATCC824 (Identities = 193/443 (44%), Positives = 283/443 (64%), e-value = 7e-100) • butyraldehyde dehydrogenase Ald from <i>C. beijerinckii</i> NCIMB8052 (Identities = 125/409 (31%), Positives = 206/409 (51%), e-value = 3e-49) • butyraldehyde dehydrogenase from <i>C. saccharoperbutylacetonicum</i> (124/409 (31%), Positives = 204/409 (50%), e-value = 2e-48)
Seq. ID 73-74	Butyraldehyde dehydrogenase	• bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 188/477 (40%), Positives = 270/477 (57%), e-value = 9e-84) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 164/428 (39%), Positives = 256/428 (60%), e-value = 1e-79)
Seq. ID 75-76	Butanol dehydrogenase	• NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 285/388 (74%), Positives = 335/388 (87%), e-value = 9e-177) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 164/396 (42%), Positives = 238/396 (61%), e-value = 1e-80)
Seq. ID 77-78	Butanol dehydrogenase	• NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 281/388 (73%), Positives = 327/388 (85%), e-value = 2e-173) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 169/403 (42%), Positives = 240/403 (60%), e-value = 3e-83)
Seq. ID 79-80	Butanol dehydrogenase	• NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 264/388 (69%), Positives = 326/388 (85%), e-value = 5e-163) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB8052 (Identities = 169/410 (42%), Positives = 246/410 (60%), e-value = 4e-82) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 162/402 (41%), Positives = 240/402 (60%), e-value = 2e-78)
Seq. ID 81-82	Butanol dehydrogenase	• NADH-dependent butanol dehydrogenase BdhA from <i>C. acetobutylicum</i> ATCC824 (Identities = 161/388 (42%), Positives = 243/388 (63%), e-value = 7e-92) • NADH-dependent butanol dehydrogenase BdhB from <i>C. acetobutylicum</i> ATCC824 (Identities = 155/389 (40%), Positives = 242/389 (63%), e-value = 4e-85)
Seq. ID 83-84	Butanol dehydrogenase	• NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 150/389 (39%), Positives = 233/389 (60%), e-value = 7e-73) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 154/412 (38%), Positives = 233/412 (57%), e-value = 8e-70)
Seq. ID 85-86	Phosphate acetyl/butyryl transferase	• phosphate butyryltransferase from <i>C. acetobutylicum</i> ATCC 824 (91/340 (27%), Positives = 156/340 (46%), e-value = 1e-16)
Seq ID 87-88	Acetate/butyrate kinase	• butyrate kinase from <i>C. acetobutylicum</i> ATCC 824 (49/162 (31%), Positives = 77/162 (48%), e-value = 5e-08)
Seq ID 89-90	Aldehyde:ferredoxin oxidoreductase	• aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (188/631 (30%), Positives = 318/631 (51%), e-value = 3e-11)
Seq ID 91-92	Aldehyde:ferredoxin oxidoreductase	• aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 191/633 (31%), Positives = 308/633 (49%), e-value = 2e-70)

Table 10: Genes of *C. ragsdalei* potentially conferring butyraldehyde and butanol dehydrogenase activity

Sequence	Description	Identity to characterized enzymes
Seq. ID 93-94	Bifunctional butanol/butyraldehyde dehydrogenase	• bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 645/861 (75%), Positives = 751/861 (88%), e-value = 0.0) • bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i>

Seq. ID 95-96	Bifunctional butanol/butyraldehyde dehydrogenase	ATCC824 (Identities = 591/858 (69%), Positives = 731/858 (86%), e-value = 0.0) <ul style="list-style-type: none"> bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 639/860 (75%), Positives = 752/860 (88%), e-value = 0.0) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 591/858 (69%), Positives = 735/858 (86%), e-value = 0.0)
Seq. ID 97-98	Butyraldehyde dehydrogenase	<ul style="list-style-type: none"> bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 214/457 (47%), Positives = 294/457 (65%), e-value = 5e-111) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 200/457 (44%), Positives = 283/457 (62%), e-value = 1e-103) bifunctional aldehyde/alcohol dehydrogenase AdhE1 from <i>C. acetobutylicum</i> ATCC824 (Identities = 198/457 (44%), Positives = 289/457 (64%), e-value = 4e-101) butyraldehyde dehydrogenase Ald from <i>C. beijerinckii</i> NCIMB8052 (Identities = 125/409 (31%), Positives = 206/409 (51%), e-value = 3e-49) butyraldehyde dehydrogenase from <i>C. saccharoperbutylacetonicum</i> (Identities = 123/409 (31%), Positives = 205/409 (51%), e-value = 1e-48)
Seq. ID 99-100	Butyraldehyde dehydrogenase	<ul style="list-style-type: none"> bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB 8052 (Identities = 188/477 (40%), Positives = 270/477 (57%), e-value = 9e-84) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 164/428 (39%), Positives = 256/428 (60%), e-value = 1e-79)
Seq. ID 101-102	Butanol dehydrogenase	<ul style="list-style-type: none"> NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 285/388 (74%), Positives = 335/388 (87%), e-value = 9e-177) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 164/396 (42%), Positives = 238/396 (61%), e-value = 1e-80)
Seq. ID 103-104	Butanol dehydrogenase	<ul style="list-style-type: none"> NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 281/388 (73%), Positives = 327/388 (85%), e-value = 2e-173) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 169/403 (42%), Positives = 240/403 (60%), e-value = 3e-83)
Seq. ID 105-106	Butanol dehydrogenase	<ul style="list-style-type: none"> NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 264/388 (69%), Positives = 326/388 (85%), e-value = 5e-163) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. beijerinckii</i> NCIMB8052 (Identities = 169/410 (42%), Positives = 246/410 (60%), e-value = 4e-82) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 162/402 (41%), Positives = 240/402 (60%), e-value = 2e-78)
Seq. ID 107-108	Butanol dehydrogenase	<ul style="list-style-type: none"> NADH-dependent butanol dehydrogenase BdhA from <i>C. acetobutylicum</i> ATCC824 (Identities = 162/388 (42%), Positives = 243/388 (63%), e-value = 3e-92) NADH-dependent butanol dehydrogenase BdhB from <i>C. acetobutylicum</i> ATCC824 (Identities = 155/389 (40%), Positives = 242/389 (63%), e-value = 6e-85)
Seq. ID 109-110	Butanol dehydrogenase	<ul style="list-style-type: none"> NADPH-dependet butanol dehydrogenase from <i>C. saccharobutylicum</i> (Identities = 147/389 (38%), Positives = 227/389 (59%), e-value = 3e-71) bifunctional aldehyde/alcohol dehydrogenase AdhE2 from <i>C. acetobutylicum</i> ATCC824 (Identities = 155/412 (38%), Positives = 233/412 (57%), e-value = 2e-70)
Seq. ID 111-112	Phosphate acetyl/butyryl transferase	<ul style="list-style-type: none"> phosphate butyryltransferase from <i>C. acetobutylicum</i> ATCC 824 87/325 (27%), Positives = 148/325 (46%), e-value = 2e-16)
Seq ID 113-114	Acetate/butyrate kinase	<ul style="list-style-type: none"> butyrate kinase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 49/162 (31%), Positives = 77/162 (48%), e-value 4e-11)
Seq ID 115-116	Aldehyde:ferredoxin oxidoreductase	<ul style="list-style-type: none"> aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 187/633 (30%), Positives = 319/633 (51%), e-value = 3e-74)
Seq ID 117-118	Aldehyde:ferredoxin oxidoreductase	<ul style="list-style-type: none"> aldehyde:ferredoxin oxidoreductase from <i>C. acetobutylicum</i> ATCC 824 (Identities = 187/633 (30%), Positives = 302/633 (48%), e-value = 1e-69)

Gene expression studies

Gene expression studies were performed to confirm successful expression of introduced Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, Butyryl-CoA dehydrogenase, Electron Transfer

5 Flavoprotein A and Electron Transfer Flavoprotein B genes in *C. autoethanogenum* harboring

butanol plasmid pMTL85245-thlA-crt-hbd. In addition, a selection of putative butanaldehyde, butanol dehydrogenase, phosphate acetyl/butyryl transferase acetate/butyrate kinase, aldehyde/ferredoxin oxidoreductase genes identified in the genome of *C. autoethanogenum* (Table 7) were also found to be expressed under standard fermentation conditions (Figure 60).

5

A sample was harvested by centrifugation (6,000 x g, 5 min, 4 °C). RNA was isolated by suspending the cell pellet in 100 µL of lysozyme solution (50,000 U lysozyme, 0.5 µL 10% SDS, 10 mM Tris-HCl, 0.1 mM EDTA; pH 8). After 5 min, 350 µL of lysis buffer (containing 10 µL of 2-mercaptoethanol) was added. The cell suspension was mechanistically disrupted by passing five times through an 10 18-21 gauge needle. RNA was then isolated using PureLink™ RNA Mini Kit (Invitrogen) and eluted in 100 µL of RNase-free water. The RNA was checked via PCR and gel electrophoresis and quantified spectrophotometrically, and treated with DNase I (Roche) if necessary. Quality and integrity of RNA was checked using a BioAnalyzer (Agilent Technologies). The reverse transcription step was carried out using SuperScript III Reverse Transcriptase Kit (Invitrogen). RT- 15 PCR reactions were performed in MyiQ Single Colour Real-Time PCR Detection System (Bio-Rad Laboratories) in a reaction volume of 15 µL with 25 ng of cDNA template, 67 nM of each primer (Tab. 11), and 1x iQ SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA 94547, USA). Guanylate kinase and formate tetrahydrofolate ligase were used as housekeeping gene and non-template controls were included. The reaction conditions were 95 °C for 3 min, followed by 40 20 cycles of 95 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s. A melting-curve analysis was performed immediately after completion of the RT PCR (38 cycles of 58 °C to 95 °C at 1 °C/s), for detection of primer dimerisation or other artifacts of amplification.

mRNA for all heterologous genes could successfully be detected showing that the genes are 25 expressed. The signal for all genes was on a similar level.

Tab. 11: Oligonucleotides for qRT-PCR

Target	Oligonucleotide Name	DNA Sequence (5' to 3')	SEQ_ID NO.
Guanylate kinase	GnK-F	TCAGGACCTTCTGGAACTGG	131
	GnK-R	ACCTCCCCTTTCTTGGAGA	132
Formate tetrahydrofolate ligase	FoT4L-F	CAGGTTTCGGTGCTGACCTA	133
	FoT4L-R	AACTCCGCCGTTGTATTCA	134
Thiolase	thlA-RT-F	TTGATGAAATGATCACTGACGGATT	123
	thlA-RT-R	GAAATGTTCCATCTCTCAGCTATGT	124
3-hydroxybutyryl-CoA	hdb-RT-F	CATCACTTTCAATAACAGAAGTGGC	125

dehydrogenase	hbd-RT-R	TACCTCTACAAGCTTCATAACAGGA	126
Butyryl-CoA dehydrogenase	bcd-RT-F	AAAATGGGTCACTATGGTATGATGG	127
	bcd-RT-R	TGTAGTACCGCAAACCTTGATAAT	128
Electron Transfer Flavoprotein A	etfA-RT-F	CAAGTTTACTTGGTGGAAACAATAGC	129
	etfA-RT-R	GAGTTGGCTTACAGTTTACCACT	130
Bifunctional butanol/butyraldehyde dehydrogenase (Seq. ID 39)	adhE-RT-F	CGGCTGCTCAAAGAAATTCTAGC	137
	adhE-RT-R	CCAGAACTCCGCAGGTCTTTCACCC	138
Butyraldehyde dehydrogenase (Seq. ID 41)	Bld1-RT-F	GGCAGTAGAAGAAAGCGGAATGG	139
	Bld1-RT-R	AAAGCCTGCATCTCTCTAAACTCC	140
Butyraldehyde dehydrogenase (Seq. ID 45)	Bld2-RT-F	TAATGATTTGCTCTCCATCCAAGAAC	141
	Bld2-RT-R	TCGCATTCTCCGCCATACG	142
Butanol Dehydrogenase (Seq. ID 53)	BDH1-RT-F	AGCTGTAGTAGTTGGAGGAGGA	143
	BDH1-RT-R	TCC CACAGACGGATCTGGTTAACACC	144
Butanol Dehydrogenase (Seq. ID 57)	BDH2-RT-F	GAATCTATTCAACTTTAGAGCAAGT	145
	BDH2-RT-R	CAACTGGAACTTATTCCAGCTTGC	146
Phosphate acetyl/butyryl transferase (Seq. ID 59)	Pta-RT-F	GATGCTTTTATGAATTGAGAAAGAA	147
	Pta-RT-R	GAAGG TGAAACCAATCCATCTGCATCTCC	148
Acetate/butyrate kinase (Seq. ID 61)	Ack-RT-F	TGCAAGATGAAAGTGTGAGCAA	149
	Ack-RT-R	GG ACTTTGTGGCTTCAATTGGTTGC	150
Aldehyde:ferredoxin oxidoreductase (Seq. ID 63)	AOR1-RT-F	CTTCAACAGGAAACAGATTGAGAGC	151
	AOR1-RT-R	CCAACACCACACGTCTGC	152
Aldehyde:ferredoxin oxidoreductase (Seq. ID 65)	AOR2-RT-F	GGTTGGGATATGATAATAGTAGAGG	153
	AOR2-RT-R	ATAAGGC GTAACCTTCCCCAAAGCTGTGACG	154

The invention has been described herein, with reference to certain preferred embodiments, in order to enable the reader to practice the invention without undue experimentation. However, a

5 person having ordinary skill in the art will readily recognise that many of the components and parameters may be varied or modified to a certain extent or substituted for known equivalents without departing from the scope of the invention. It should be appreciated that such modifications and equivalents are herein incorporated as if individually set forth. Titles, headings, or the like are provided to enhance the reader's comprehension of this document, and should not 10 be read as limiting the scope of the present invention.

The entire disclosures of all applications, patents and publications, cited above and below, if any, are hereby incorporated by reference. However, the reference to any applications, patents and publications in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that they constitute valid prior art or form part of the common general knowledge in any country in the world.

Throughout this specification and any claims which follow, unless the context requires otherwise, the words "comprise", "comprising" and the like, are to be construed in an inclusive sense as opposed to an exclusive sense, that is to say, in the sense of "including, but not limited to".

References:

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool *J Mol Biol* 215: 403-410.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. John Wiley & Sons, Ltd., Hoboken, NJ.

Bertram J, Dürre P (1989) Conjugal transfer and expression of streptococcal transposons in *Clostridium acetobutylicum*. *Arch Microbiol* 151: 551-557.

Biebel (2001). *Journal of Industrial Microbiology & Biotechnology* 27, 18-26.

Burchhardt G and Dürre P (1990) Isolation and characterization of DNase-deficient mutants of *Clostridium acetobutylicum*. *Curr Microbiol* 21: 307-311.

Carbone A, Zinovyev A and Kepes F (2003) Codon adaptation index as measure of dominating codon bias. *Bioinformatics* 19: 2005-2015.

Drake HL, Küsel K, Matthies C, Acetogenic prokaryotes. In: Dworkin M, Rosenberg E, Schleifer KH, Stackebrandt E The Prokaryotes, 3rd edition, vol. 2 (Ecophysiology and Biochemistry). Springer, NY: 354-420.

Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. *Nucleic Acids Res* 38: D211-222.

Haft DH, Selengut DH, White O (2003) The TIGRFAMs database of protein families. *Nucleic Acids Res* 31: 371-373.

Heap JT, Pennington OJ, Cartman ST, and Minton NP (2009) A modular system for *Clostridium* shuttle plasmids. *J Microbiol Methods* 78: 79-85.

Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE *Nucleic Acids Res* 36: D245-249.

Hungate RE (1969) A roll tube method for cultivation of strict anaerobes, in Norris JR and Ribbons DW (eds.), *Methods in Microbiology*, vol. 3B. Academic Press, New York, NY: 117-132.

Inui, et al. *Appl Microbiol Biotechnol* (2008) 77:1305-1316

Köpke M, Dürre P (2010) Biochemical production of biobutanol, in Luque R, Campelo J, Clark JH (Eds.): *Handbook of biofuel production - Processes and technologies*, Woodhead Publishing, Camebridge, UK: 221-257.

Liou JS, Balkwill DL, Drake GR, Tanner RS (2010) *Clostridium carboxidivorans* sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen *Clostridium scatologenes* strain SL1 as *Clostridium drakei* sp. nov. *Int J Syst Evol Microbiol*. 55: 2085-2091.

Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in *Escherichia coli* by the *Bacillus subtilis* phage Φ 3T1 to protect plasmids from restriction upon transformation of *Clostridium acetobutylicum* ATCC 824. *Appl Environ Microbiol* 59:1077–1081.

Noack S, Köpke M, Dürre P (2009) Microbially produced fuels and other biofuels, in Wright JH, 5 Evans DA (Eds.): New research on Biofuels, Nova Publishers, Haupage, NY: 17-30.

Heiskanen H, Virkajärvib I, Viikarib L (2007) The effect of syngas composition on the growth and product formation of *Butyribacterium methylotrophicum*. *Enz Microbial Technol* 41: 362-367.

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory Manual, Cold Spring Harbour Labrotary Press, Cold Spring Harbour, NY.

10 Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. *BMC Bioinformatics* 4: 41.

Tsai MH and Saier Jr. MH (1995) Phylogenetic characterization of the ubiquitous electron transfer flavoprotein famlies ETF- α and ETF- β . *Res. Microbiol.* 146: 397-404.

15 Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). *J Bacteriol.* 173: 697-703.

Weïermel K, Arpe HJ (2003) Industrial organic chemistry, 4th edition, Wiley-VCH Verlag, GmbH & Co. KGaA, Weinheim, Germany.

Wolfe RS (1971) Microbial formation of methane. *Adv Microb Physiol* 6: 107-146.

CLAIMS:

1. An acetogenic recombinant microorganism which comprises at least one exogenous nucleic acid encoding (a) an electron transport flavoprotein and (b) at least one enzyme selected from the group consisting of Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase/crotonyl-CoA hydratase, Butyryl-CoA dehydrogenase, Phosphotransbutyrylase, butyrate kinase and ferredoxin dependent aldehyde oxidoreductase; and which does not include an exogenous nucleic acid encoding a bifunctional butyraldehyde/butanol dehydrogenase; and produces 1-butanol as the main fermentation product during fermentation of a gaseous substrate comprising carbon monoxide wherein the recombinant microorganism is selected from the group consisting of: *Clostridium autoethanogenum*, *Clostridium ljungdahlii*, *Clostridium ragsdalei*, *Clostridium carboxidivorans*, *Clostridium drakei*, *Clostridium scatologenes*, *Clostridium aceticum*, *Clostridium formicoaceticum*, *Clostridium coskatii*.
2. The acetogenic recombinant microorganism of claim 1, wherein the microorganism is capable of producing 1-butanol as the major product by fermentation from a gaseous substrate comprising CO at a concentration of greater than 1mM or 0.075 grams per liter of fermentation broth.
3. The acetogenic recombinant microorganism of claim 1 or 2, wherein the microorganism comprises one exogenous nucleic acid encoding: Thiolase, 3-hydroxybutyryl-CoA dehydrogenase, Crotonase, and Butyryl-CoA dehydrogenase.
4. The acetogenic recombinant microorganism of claim 1 or 2, wherein the at least one electron transport flavoprotein is selected from the group consisting of Electron Transfer Flavoprotein A, and Electron Transfer Flavoprotein B, and both Electron Transfer Flavoproteins A and B.
5. The acetogenic recombinant microorganism of claim 3, wherein the acetogenic recombinant microorganism further comprises at least one exogenous nucleic acid encoding at least one enzyme selected from the group consisting of phosphotransbutyrylase, butyrate kinase, and ferredoxin dependent aldehyde oxidoreductase.

6. The acetogenic recombinant microorganism of any one of claims **1 to 5**, wherein the microorganism is *Clostridium autoethanogenum* DSM23693.
7. A recombinant microorganism having the defining characteristics of the microorganism deposited at the DSMZ under the accession number DSM24138.
8. A method for the production of 1-butanol by microbial fermentation of a gaseous substrate comprising CO using the recombinant microorganism of any one of claims 1 to 7.
9. The method of Claim 8 where the gaseous substrate is a steel mill waste gas stream or a syngas stream.
10. The method of claim **8 or 9** where at least one of 1-butanol and a precursor of 1-butanol is produced in a yield from 0.075 grams per litre of fermentation broth (g/l) to 20g/l.
11. The method of any one of claims **8 to 10** where the gaseous substrate comprises at least 20% to 100% CO by volume.

1 / 58

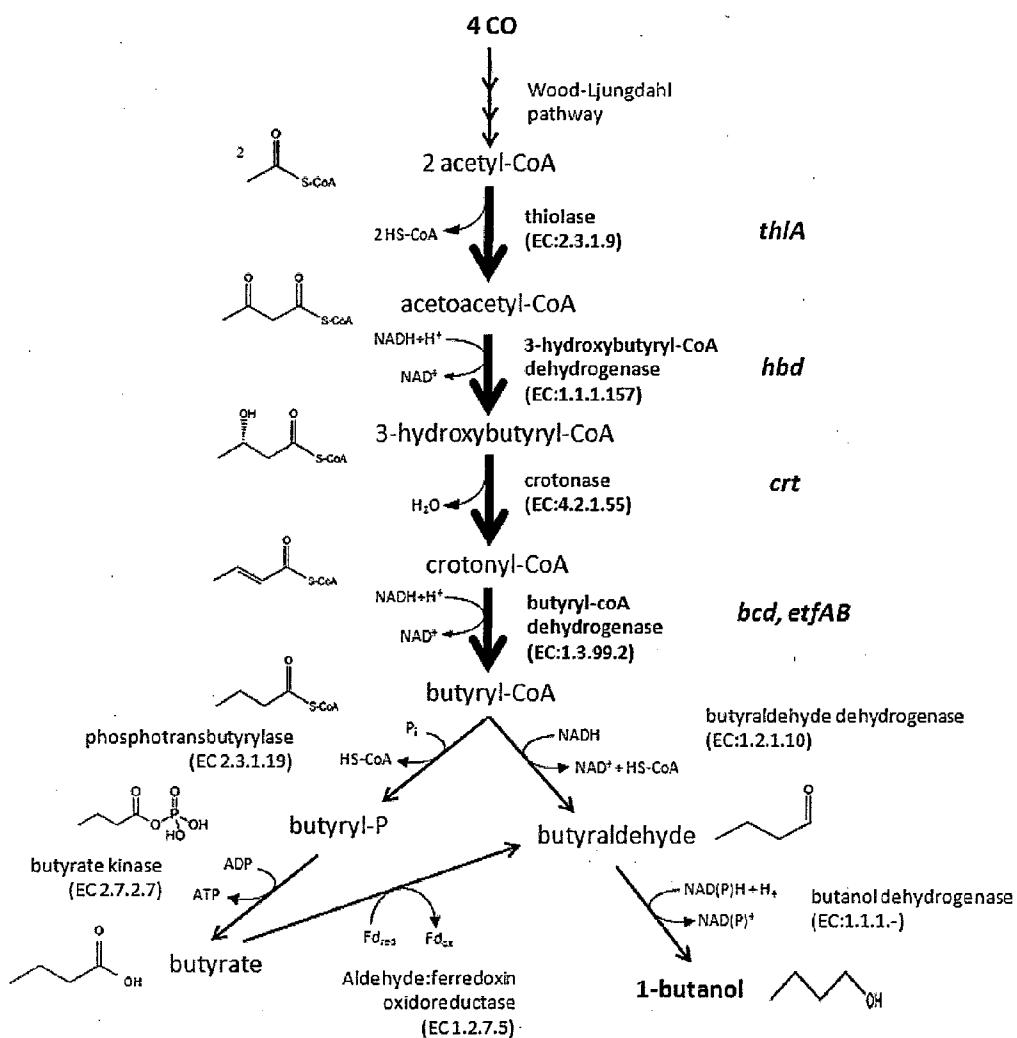


Figure 1

2 / 58

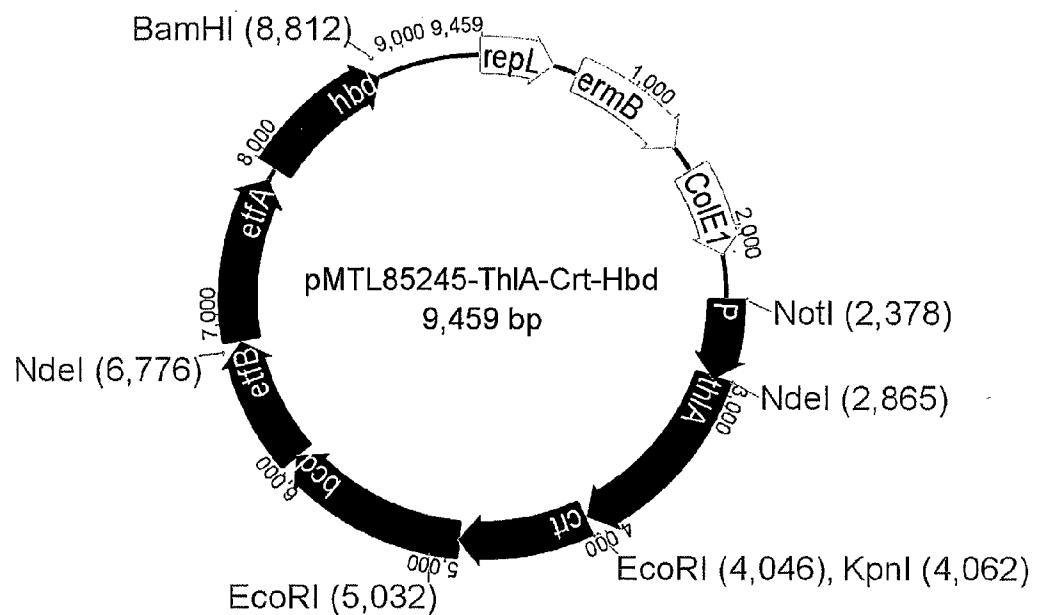
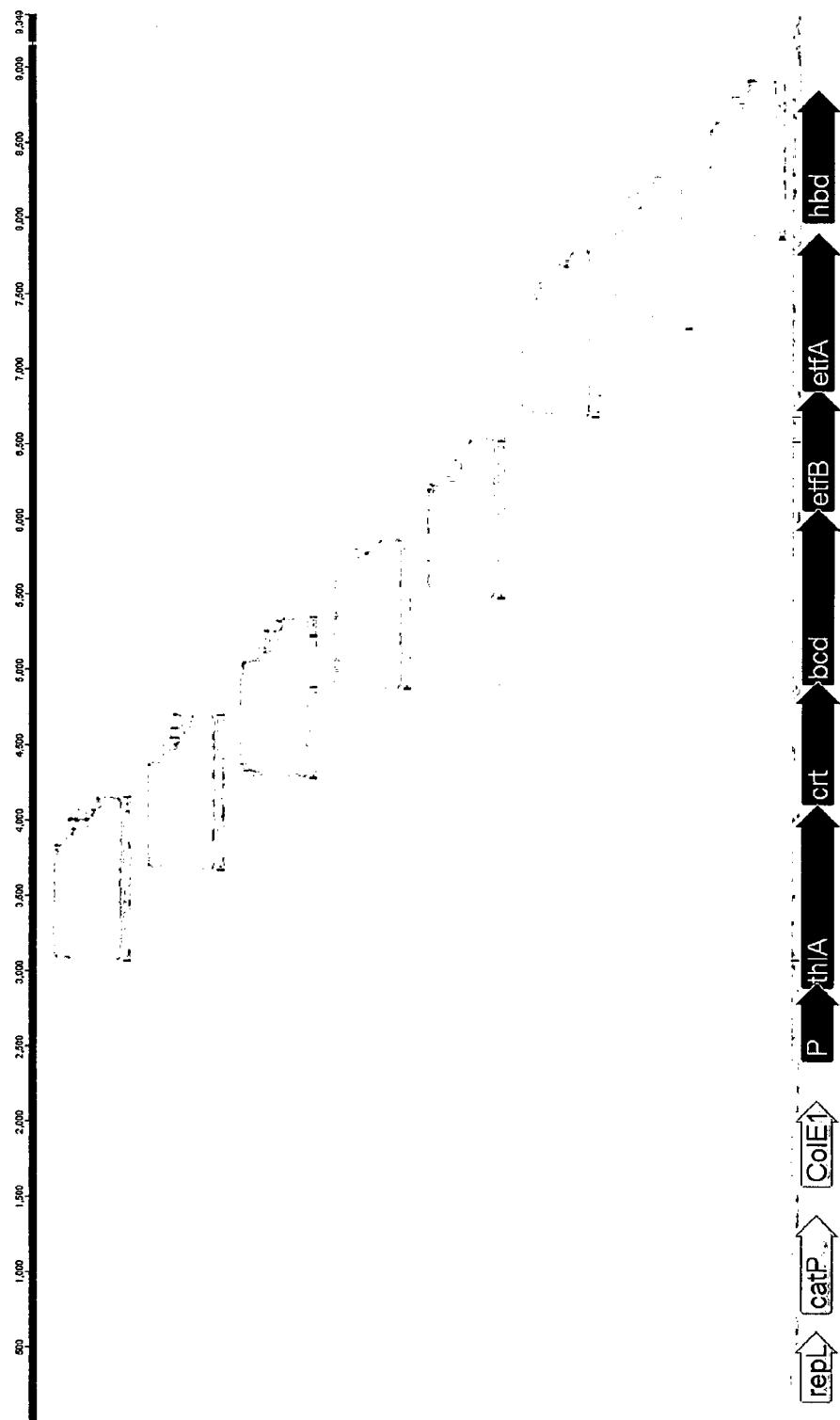



Figure 2

3 / 58

Figure 3

4 / 58

Figure 4a

CAU	1	10	20	30
CLJ				
CRA	A T G T T T C C C T G T A A T G C A T A T A T T C A G G C A C			
DMT	A T G T T T C C G T G C A A T G C C T A T A T C G A A T A T	40	50	60
CAU				
CLJ		A T G A A C A G T T T T A T T G A A		
CRA	G G A I G A T A G G A A T A T G A A T A A T T T A T T G A A			
DMT	G G T G A T A A A A A T A T G A A C A G I C T T T A T C G A A	70	80	90
CAU				
CLJ	G A T I G T T G A A C A A A T T T A C A A T T T T A T T A A A			
CRA	G A T A T T G A A G A A A T T T A T A A T T T T A T T A A A			
DMT	G A T I G T G G A A C A G A T C T A C I A A C T T C A T T A A A	100	110	120
CAU				
CLJ	A A A A A A T A T A G A T G T A G G A A G A G A A G A T G C A T			
CRA	A A A A A A T A C A G A T G T A G G A A G A G A A T A T T C A T			
DMT	A A G A A C A T T G A T G T G G A A G A A A A G A T G C A T	130	140	150
CAU	T T T A T A G A A A C T T A T A I G C A A A A A T C T A A T			
CLJ	T T T A T A G A A A C T T A T A I G C A A A A A T C T A A T			
CRA	T T T A T A G A A A C T T A T A I G G C A A A G A C T T A A T			
DMT	T T C A T T G A A A C C T A T A A C A G A A A A G C A A C	160	170	180
CAU	A T G A A G A A A G A A A T T A G C T T T C A G G A A G A A			
CLJ	A T G A A G A A A G A A A A T T A G C T T T C A G G A A G A A			
CRA	A T G A A G A A A G A A A A T T A G C T T T T C A G G A A G A A			
DMT	A T G A A G A A A G A G A T T A G C T T T A G C G G A A G A A	190	200	210
CAU	T A C T A T A A A C A G A A A A T T A T G A A T T G G A A A A			
CLJ	T A C T A T A A A C A G A A A A T T A T G A A T T G G A A A A			
CRA	T A C T A T A A A C A G A A A A A T T A T G A A T T G G A A A A			
DMT	T A C T A T A A A C A G A A G A T T A T G A A C G G C A A A	220	230	240
CAU	A A T G G A G T A I G T G T A T A C T C C T C C G G A A A T G			
CLJ	A A T G G A G T A I G T G T A T A C T C C T C C G G A A A T G			
CRA	A A C G G A G T A I G T G T A T A C T C C T C C G G A A A T G			
DMT	A A T G G C G T T G T A C A C C C C C G C C G G A A A T G	250	260	270
CAU	G C A I G C A T T T A T G G T T A A A A A C T T G A T A A A T			
CLJ	G C A I G C A T T T A T G G T T A A A A A C T T G A T A A A T			
CRA	G C A I G C A T T T A T G G T T A A A A A C T T G A T A A A T			
DMT	G C G G C C T T A T G G T T A A A A A T C T G A T C A A C	280	290	300
CAU	G T C I A A T G A T G T A A T T G G A A A T C C A T T T A T A			
CLJ	G T C I A A T G A T G T A A T T G G A A A T C C A T T T A T A			
CRA	G T C I A A T G A T G T A A T T G G A A A A T C C A T T T A T A			
DMT	G T T A A C G A T G T T A T T G G C A A T C C G T T T A T T			

Figure 4a (cont.)

CAU	AA A A T A A T A I G A T C C C T T C C T G T G G G A T C T G G G	310	320	330
CLJ	AA A A T A A T A I G A T C C C T T C C T G T G G G A T C T G G G			
CRA	AA A G T A I G T A I G A T C C C T T C C T G T G G G A T C T G G A			
DMT	AA A A T C A T T G A C C C G A G C T G C G G T A G C G G C			
CAU	A A T T T A A T T T G T A A G I T G C I T T C T A T A T T T A	340	350	360
CLJ	A A T T T A A T T T G T A A G I T G C I T T C T A T A T T T A			
CRA	A A T T T A A T T T G T A A G I T G C I T T C T A T A C T T A			
DMT	A A T C T G A T T T G C A A A T G T T T C T G T A T C T G			
CAU	A A T C G A A T A T T A T T A A G I A A T A T T G A A G T T	370	380	390
CLJ	A A T C G A A T A T T A T T A A G I A A T A T T G A A G T T			
CRA	A A T C A A A T A T T C A T T A A A A A T A T T G A A G T T			
DMT	A A T C G C A T C T T A T T A A G I A A C A T T G A G G T G			
CAU	A T A A A T I A G T A A A A A C A A T T A A T T G A A A	400	410	420
CLJ	A T A A A T I A G T A A A A A C A A T T A A T T G A A A			
CRA	A T A A A T I A G T A A A A A A T A A T T A A T T G A A A			
DMT	A T T A A C A G C A A A A A T A A C C T G A A T C T G A A A			
CAU	C T A G I A A G A T A T A A G I T T A C C A T A T A G T A C G I T	430	440	450
CLJ	C T A G I A A G A T A T A A G I T T A C C A T A T A G T A C G I T			
CRA	C T A T A A A G A T A T A A G I T T A C C A T A T A G T A C G A T			
DMT	C T G G I A A G A C A T C A G C T A C C A C A T C G T T C G I C			
CAU	A A C A A T C T A T T T G G A I T T T G A T A T A G A T I G A A	460	470	480
CLJ	A A C A A T C T A T T T G G A I T T T G A T A T A G A T I G A A			
CRA	A A C A A T C T A T T T G G A I T T T G A T A T G A T I G A A			
DMT	A A C A A T C T G T T T G G C T T C G A T A T T G A C G A A			
CAU	A C T I G C I A A T A A A A A G T T T T A A A A A T A G A C T T A	490	500	510
CLJ	A C T I G C I A A T A A A A A G T T T T A A A A A T A G A C T T A			
CRA	A C T I G C I A A T A A A A A G T T T T A A A A A T A G A C T T A			
DMT	A C C G C G A T C A A A G T G C T G A A A A T T G A T C T G			
CAU	T T T T T G A T T A G C A A T C A I G I T T T A G I T G A A A A	520	530	540
CLJ	T T T T T G A T T A G C A A T C A I G I T T T A G I T G A A A A			
CRA	T T T T T G A T T A G C A A T C A I G I T T T A G I T G A A A A			
DMT	T T T C T G A T C A G C A A C C A A T T T A G C G A G A A A			
CAU	A A T T T T C A A G T A A A A G I G G A T T T T C T A G T G G G A A	550	560	570
CLJ	A A T T T T C A A G T A A A A G I G G A T T T T C T A G T G G G A A			
CRA	A A T T T T C A A G T A A A A G I G G A T T T T C T A G T G G G A A			
DMT	A A T T T T C C A G G T T A A A A G A C T T T C T G G T G G G A A			
CAU	A A T A T A G A T A G A A A A T A T G A T I G T G T T T A T A	580	590	600
CLJ	A A T A T A G A T A G A A A A T A T G A T I G T G T G T T T A T A			
CRA	A A T A T A G A T A G A A A A T T T G A T I G T G T T T A T A			
DMT	A A T A T T G A T C G G C A A A T A T G A C G T G T T C A T T			

Figure 4a (cont.)

CAU	G G A A A T C C T C C G T A T A T A G G A C A T' A A A T' C T	610	620	630
CLJ	G G A A A T C C T C C G T A T A T A G G A C A T' A A A T' C T			
CRA	G G A A A T C C C C C A T A T A T A G G A C A T' A A A A T' C T			
DMT	G G T A A T C C G C C G T A T A T C G G T C A C A A A A G C			
	640	650	660	
CAU	G T A G A T T C T A G T T C A T A T G T T T T A A G A			
CLJ	G T A G A T T C T A G T T C A T A T G T T T T A A G A			
CRA	G T A G A T T C C A G T T A T T C A T A T A T T T T A A G G			
DMT	G T G G A C A G C A G C T A C A G C T A C G T G C T G C G C			
	670	680	690	
CAU	A A A A T A T A T G G G A A G T A T A T A T A G G A G A C A A			
CLJ	A A A A T A T A T G G G A A G T A T A T A T A G G A G A C A A			
CRA	A A A A T A T A T G G G A A G T A T A T A T A G G A G A T A A			
DMT	A A A A T C T A C G G C A G C A T C T A C C C G C G A C A A			
	700	710	720	
CAU	G G A G A C A T A T C C T A C T G T T T T T T C A A A A A			
CLJ	G G A G A C A T A T C C T A C T G T T T T T T C A A A A A			
CRA	G G A G A C A T A T C T T A C T G T T T T T T C A A A A A			
DMT	G G C G A T A T C A G C T A T T G T T T C T T T C A G A A G			
	730	740	750	
CAU	T C A T T A A A G T G T T T A A A G G A G G G A A A A			
CLJ	T C A T T A A A A G T G T T T A A A G G A G G G A A A A			
CRA	T C A T T A A A A G T G C T T A A A A G A G G G A A A A			
DMT	A G C C T G A A A T G T C T G A A G G A A G G T G G C A A			
	760	770	780	
CAU	C T G G T T T T T T G T T A C T C T C T A G G T A T T T G T			
CLJ	C T G G T T T T T T G T T A C T C T C T A G G T A T T T G T			
CRA	T T A C T T T T T G T T A C C T C C T A G A T A T T T T G C			
DMT	C T G G T G T T T G T A C C A G C C G C T A C T T C T G C			
	790	800	810	
CAU	G A A T C T T G C A G C G G A A A A G A A C T T A G A A A G			
CLJ	G A A T C T T G C A G C G G A A A A G A A C T T A G A A A G			
CRA	G A A T C T T G C A G C G G A A A A G A A C T T A G A A A G			
DMT	G A G A G C T G C A G C G G T A A A A G A A C T G C G T A A A			
	820	830	840	
CAU	T T T T T A A T T G A A A A A T A C C T C T A T T T A T A A			
CLJ	T T T T T A A T T G A A A A A T A C C T C T A T T T A T A A			
CRA	T T T T T A A T T G A A A A A T A C C T C T A T T T A T A A			
DMT	T T C C T G A T C G A A A A C A C G A G G C A T T T A C A A G			
	850	860	870	
CAU	A T T A T A G A T T T T A T G G T A T A A G G A C C T T T			
CLJ	A T T A T A G A T T T T A T G G T A T A A G G A C C T T T			
CRA	A T T A T A G A T T T T A T G G T A T A A G G A C C T T T			
DMT	A T C A T T G A T T T T A C G G C A T C C G C C C G T T C			
	880	890	900	
CAU	A A A A A G A G G T A G G T A T A G A C C C C A A T G A T A A T			
CLJ	A A A A A G A G G T A G G T A T A G A C C C C A A T G A T A A T			
CRA	A A A A A G A G G T A G G T A T A G A T C C C A A T G A T A A T			
DMT	A A A A C G C G T G G G T A T C G A T C C G A T G A T T A T T			

7 / 58

Figure 4a (cont.)

	910	920	930
CAU	T T T T T A G T A A G A A C A A A A A A T T G G A A C A A T		
CLJ	T T T T T A G T A A G A A C A A A A A A T T G G A A C A A T		
CRA	T T T T T A G T A A G A A C A A A A A A T T G G G A C A A T		
DMT	T T T C T G G T T C G T A C G A A G A A C T G G A A C A A T		
	940	950	960
CAU	A A T A T A G A A A A T C A T A A G A C C C A A T A A A A T T		
CLJ	A A T A T A G A A A A T C A T A A G A C C C A A T A A A A T T		
CRA	A A T A T A G A A A A T C A T A A G A C C C A A T A A A A G T		
DMT	A A C A T T G A A A T T A T T C G C C C G A A C A A G A T T		
	970	980	990
CAU	G G A A A A A A A A T G A A A A A A A A T A A A T T T C T T G A T		
CLJ	G G A A A A A A A A T G A A A A A A A A T A A A A T T T C T T G A T		
CRA	G G A A A A A G A T T G A A A A A A A A T A A A A T T C C T T G A T		
DMT	G G A A A A A G A A C G A A A A G A A C A A A A T T C C T G G A T		
	1,000		
CAU	T T C C T T T G T T T T		
CLJ	T T C C T T T G T T T T		
CRA	T T C T T T T G C T T T T		
DMT	A G C C C T G T T T C C		

Figure 4b

		1,010	1,020
		T A I G A T A A A T C T G A A A A A T I G C	
		T A I G A T A A A T C T G A A A A A T I G C	
		T A I G A T A A A T C T G A A A A A T A C	
		T G G A C A A A A G C G A A A A G T G T	
	1,030		1,040
CAU	A A A A A I G T T T C T A T T T C T C A A A A G T C T A T A		1,050
CLJ	A A A A A I G T T T C T A T T T C T C A A A A G T C T A T A		
CRA	A A A A A A A T T T C T A T T C T C A A A A A G T C T A T A		
DMT	A A A A A I G T T T A G C A T T A G C C A G A A A A G C A T T		
	1,060	1,070	1,080
CAU	A A T A A A T G A T G G A T G G G T A T T T G T T G A C G A A		
CLJ	A A T A A A T G A T G G A T G G G T A T T T G T T G A C G A A		
CRA	A A T A A G T G A T G G A T G G G T A T T T G T T G A A T G A A		
DMT	A A T A A G C G A T G G C T G G G T T T T C G T G G A C G A A		
	1,090	1,100	1,110
CAU	G T T G A G A A A A A T A T A A T A G A T A A A A A T A A A A		
CLJ	G T T G A G A A A A A T A T A A T A G A T A A A A A T A A A A		
CRA	G T T G A G A A A A A T A T A A T G G A T A A A A A T A G A A		
DMT	G T G G A G A A A A A C A T T A T C G A C A A A A T C A A A		
	1,120	1,130	1,140
CAU	G A A A A A A A G T A A A A T T A T T T A A A G G A T A T A		
CLJ	G A A A A A A A G T A A A A T T A T T T A A A A G G A T A T A		
CRA	G C A A A A A A G T G A A T T T A T T T A A A A G G A T A T A		
DMT	G A G A A A A A G C A A G T T C A T T C T G A A A G A T A T T		
	1,150	1,160	1,170
CAU	T G C C A T A G I T T I G I T C A I G G G T A T A A T A A C G G G A		
CLJ	T G C C A T A G I T T I G I T C A I G G G T A T A A T A A C G G G A		
CRA	T G C C C A T A G I T T A T C A I G G G T A T A A T A A C G G G A		
DMT	T G C C C A T A G C T I G I T C A A G G C A T T A T C A C C G G T		
	1,180	1,190	1,200
CAU	T G T G A T A A G G G C T T T A T A G T T G A T A G A G A C		
CLJ	T G T G A T A A G G G C T T T A T A G T T G A T A G A G A C		
CRA	T G T G A T A A G G G C T T T A T A G T T G A T A G A G A C		
DMT	T G T G A T C G C G C C T T A T T G T G G A C C G T G A T		

Figure 4b (cont.)

	1,210	1,220	1,230
CAU	A T T A A T A A A T A G G T A I G A A A A A T T I N G A A T T I T A A G I G I		
CLJ	A T T A A T A A A T A G G T A I G A A A A A T T I N G A A T T I T A A G I G I		
CRA	A C T A A T A A A T A G G T A I G A A A A A T T I N G A A T T I T A A G I G I		
DMT	A T T C A T C A A T A G G C C G T A A G A T C G A A C T G C G T		
	1,240	1,250	1,260
CAU	T T T A A T A A A A C C C I C T G G I A T A A A A A G T A G G C C A T		
CLJ	T T T A A T A A A A C C C I C T G G I A T A A A A A G T A G G C C A T		
CRA	T T T A A T A A A A C C C I C T G G G T G A A A A A G C A G C C A T		
DMT	C T G A T T A A A C C G T G G I A T T A A A A A G C A G C C A T		
	1,270	1,280	1,290
CAU	A T A C G I A A A A A A C I G A A G T A A T T A A A A I G G I T G A A		
CLJ	A T A C G I A A A A A A C I G A A G T A A T T A A A A I G G I T G A A		
CRA	A T A C G I A A A A A A C I G A A G T A A T T A A A A I G G I T G A A		
DMT	A T C C G T A A G A A T G A A G T T A T T A A G G G C G A A		
	1,300	1,310	1,320
CAU	A A A T T T A T T A T A I C T C I C A A A T T T I T A A T A I G A A I		
CLJ	A A A T T T A T T A T A I C T C I C A A A T T T I T A A T A I G A A I		
CRA	A A A T T T A T T A T A I C T C I C A A A T T T I T A A T A I G A A I		
DMT	A A A T T C A T C A T C T A T A G C A A C C T G A T T G A G		
	1,330	1,340	1,350
CAU	A A T G A A A A C I A G A A I T G T C C I T A A T G C I T A T A A I G I		
CLJ	A A T G A A A A C I A G A A I T G T C C I T A A T G C I T A T A A I G I		
CRA	A A T G A G A T A I G A A I T G T C C I T A A T G C I T A T A A I G I		
DMT	A A T G A A A A C I C G A A G T G T C C G A A T G C G G A T T A A		
	1,360	1,370	1,380
CAU	T A T A T I A G A I G I C A G T A C A A A A A A A A I G I G C T T I A T		
CLJ	T A T A T I A G A I G I C A G T A C A A A A A A A A I G I G C T T I A T		
CRA	T A T A T I A G A I G I C A G T A C A A A A A A A A I G I G C T T I A T		
DMT	T A T A T C G A A C A G T A C A A G A A A C G T - C T G A T		
	1,390	1,400	1,410
CAU	G G A A A I A G I A T A I G I A G A A T T G I T A A A A A A I G G I A A C A I A G		
CLJ	G G A A A I A G I A T A I G I A G A A T T G I T A A A A A A I G G I A A C A I A G		
CRA	G G A A A I A G I A T A I G I A G A A T T G I T A A A A A A I G G I A A C G I A G		
DMT	G G A G C G C C G C G A A T T G C A A A A A A A A G G G G C A C G C G		
	1,420	1,430	1,440
CAU	A A A A G T G G T A T G A A I C T C I C A A T T G G G G G I A A G I A A A		
CLJ	A A A A G T G G T A T G A A I C T C I C A A T T G G G G G I G I A A G I A A A		
CRA	A A A A G T G G T A T G A A G C T C I C A A T T G G G G G I G I A A G I A A A		
DMT	T A A A G T G G T A T G A A I C T C I G C A A T T G G G G G C C I G T A A		
	1,450	1,460	1,470
CAU	A C C G G A A A T T T T T I G A A G A A A A A G A A A A A T T G T		
CLJ	A C C G G A A A T T T T T I G A A G A A A A A G A A A A A T T G T		
CRA	A C C G G A A A T T T T C I G A A G A A A A A G A A A A A T T G T		
DMT	A C C G G A A A T C T T C I G A A G A A A A A G A A A A A T T G T		
	1,480	1,490	1,500
CAU	G T T C C C C A A T A C I A A G C T C I C I T G T G A C I A A T A I G I A T		
CLJ	G T T C C C C A A T A C I A A G C T C I C I T G T G A C I C A A T A I G I A T		
CRA	A T T C C C C A A T A C I A A A I T C I G T G T G A T A A T A I G I A T		
DMT	T T T C C C C G T A T A A A A G C I T G T G A C I A A T C G T T T		

Figure 4b (cont.)

	1,510	1,520	1,530
CAU	T G C T C T T G A C A A G G G A A G C T A T T T A G T G C		
CLJ	T G C T C T T G A C A A G G G A A G C T A T T T A G T G C		
CRA	T G C T C T T G A T A A G G G A A G C T A T T T A G T G C		
DMT	T G C A C T G G A T A A G G G T A G C T A T T T A G C G C		
	1,540	1,550	1,560
CAU	A G A T A T A T A T T C C T T A G T A T T A A A A A A A A A		
CLJ	A G A T A T A T A T T C C T T A G T A T T A A A A A A A A A		
CRA	A G A T A T A T A T T C C T T A G T A T T A A A A A A A A A		
DMT	A G A C A T T A T A G C C T G G T T C T G A A G A A A A A		
	1,570	1,580	1,590
CAU	T G T A C C C T T T A C C T A T G A A A T A C T T T A A A		
CLJ	T G T A C C C T T T A C C T A T G A A A T A C T T T A A A		
CRA	T G T A C C C T T T A C C T A T G A A A T G C T T T A A A		
DMT	T G T G C C G T T C A C C T A T G A G A T C C T G C T G A A		
	1,600	1,610	1,620
CAU	T A T A T T A A A C A G T C C T T G T A T G A A T T T T A		
CLJ	T A T A T T A A A C A G T C C T T G T A T G A A T T T T A		
CRA	T A T A T T A A A A T A G T T C T T G T A T G A A T T T T A		
DMT	T A T C C T G A A T A G C C C C G C T G T A C G A G T T T T A		
	1,630	1,640	1,650
CAU	C T T T A A A A C T T C G C A A A A A A T T A G G A G A		
CLJ	C T T T A A A A C T T C G C A A A A A A T T A G G A G A		
CRA	C T T T A A A A C T T C G G G A A A A A A T T A G G A G A		
DMT	C T T T A A G A C C T T C G C G G A A A A A G C T G G G C G A		
	1,660	1,670	1,680
CAU	A A A A T C T A T A T G A G T A T T A C C C T A A T A A T C T		
CLJ	A A A A T C T A T A T G A G T A T T A C C C T A A T A A T C T		
CRA	A A A A T C T A T A T G A G T A T T A T C C T A A T A A T C T		
DMT	G A A T C T G T A C G A G T A C T A T C C G A A C A A C C T		
	1,690	1,700	1,710
CAU	A A T G A A A T T G T G T A T T C C T T C T A T T G A T T T		
CLJ	A A T G A A A T T G T G T A T T C C T T C T A T T G A T T T		
CRA	G A T G A A A T T G T G T A T T C C T T C T A T T G G T T T		
DMT	G A T G A A G C T T G C A T C C C G A G C A T C G A T T T		
	1,720	1,730	1,740
CAU	T T G G A G G G A A A A T A A T A T A G A A A A A A A G C T		
CLJ	T T G G A G G G A A A A T A A T A T A G A A A A A A A G C T		
CRA	T T C G A G A A G A A A A T A A T G T A G A A A A A A G T T		
DMT	C T G C G G G T G A G A A C A A T A T T G A G A A A A A G C T		
	1,750	1,760	1,770
CAU	G T A T G A T T T T T T G G A C T G A C A G A T A A G G A		
CLJ	G T A T G A T T T T T T G G A C T G A C A G A T A A G G A		
CRA	G T A T G A T T T T T T G G G G C T G A C A G A T A A G G A		
DMT	G T A T G A T T T C T T T G G T C T G A C G G G A T A A A G A		
	1,780	1,790	1,800
CAU	A A T T G A G A T T G T A G A A A A A G A T A A A A A G A T A A		
CLJ	A A T T G A G A T T G T A G A A A A A G A T A A A A A G A T A A		
CRA	A A T T C A G A T T G T A G A A A A A A T A A A A A G A T A A		
DMT	A A T T G A G A T T G T G G A G A A G A T C A A A G A T A A		
	1,807		
CAU	T T G C T G A		
CLJ	T T G C T G A		
CRA	T T G C T G A		
DMT	C T G C T A A		

Figure 4c

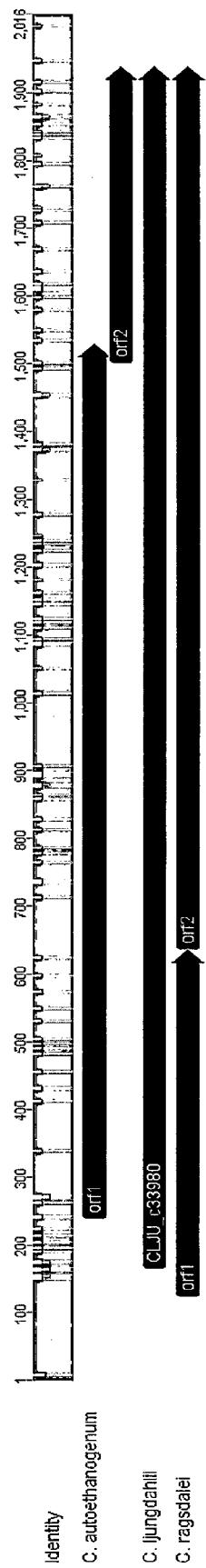


Figure 4d

1	10	20	30	40	50	60	70	80	90	100
AU1										
AU2										
LJ	MUSOLE	DUOQYNEIK	KNEDVEEIKH	FEETYQOKSN	MKEIISFEE	YYKQITMINGK	NGVVYTPPEM	AAEMVNLLIN	VNDVIGNPET	
RA1	MEPCNAYIQH	EDRNINNIE	DIEETXNFIK	KNEDVEEIKH	FEETYQOKSN	MKEIISFEE	YYKQITMINGK	NGVVYTPPEM	AAEMVNLLIN	VNDVIGNPET
RA2	MEPCNAYIEY	GDKNMNSIE	DEQIYNEIK	KNEDVEEIKH	FEETYQOKSN	MKEIISFEE	YYKQITMINGK	NGVVYTPPEM	AAEMVNLLIN	VNDVIGNPET
MT	110	120	130	140	150	160	170	180	190	200
AU1	KLIDPSCSG	KLICKCELYL	NRIFIRNIEV	INSRNNLNK	LEDISYHIVR	NNLEGDDIDE	TAIKVLKEDL	FLISNOSEK	NEQVKDELVE	NIDRKYDVEI
AU2	KLIDPSCSG	KLICKCELYG	NRIFIRNIEV	INSRNNLNK	LEDISYHIVR	NNLEGDDIDE	TAIKVLKEDL	FLISNOSEK	NEQVKDELVE	NIDRKYDVEI
LJ	KLIDPSCSG	KLICKCELYL	NRIFIRNIEV	INSRNNLNK	LEDISYHIVR	NNLEGDDIDE	TAIKVLKEDL	FLISNOSEK	NEQVKDELVE	NIDRKYDVEI
RA1	KLIDPSCSG	KLICKCELYL	NRIFIRNIEV	INSRNNLNK	LEDISYHIVR	NNLEGDDIDE	TAIKVLKEDL	FLISNOSEK	NEQVKDELVE	NIDRKYDVEI
RA2	KLIDPSCSG	KLICKCELYL	NRIFIRNIEV	INSRNNLNK	LEDISYHIVR	NNLEGDDIDE	TAIKVLKEDL	FLISNOSEK	NEQVKDELVE	NIDRKYDVEI
MT	210	220	230	240	250	260	270	280	290	300
AU1	GNPPYIGHKS	VDSSSYVLR	KIYGSYVLR	EDISYCEFFQK	LVEVTSRYEC	ESCSGKELRK	ELIENTSYK	LIDEFYGIRPE	KRVGIDPMI	
AU2	GNPPYIGHKS	VDSSSYVLR	KIYGSYVLR	EDISYCEFFQK	LVEVTSRYEC	ESCSGKELRK	ELIENTSYK	LIDEFYGIRPE	KRVGIDPMI	
LJ	GNPPYIGHKS	VDSSSYVLR	KIYGSYVLR	EDISYCEFFQK	LVEVTSRYEC	ESCSGKELRK	ELIENTSYK	LIDEFYGIRPE	KRVGIDPMI	
RA1	GNPPYIGHKS	VDSSSYVLR	KIYGSYVLR	EDISYCEFFQK	LVEVTSRYEC	ESCSGKELRK	ELIENTSYK	LIDEFYGIRPE	KRVGIDPMI	
RA2	GNPPYIGHKS	VDSSSYVLR	KIYGSYVLR	EDISYCEFFQK	LVEVTSRYEC	ESCSGKELRK	ELIENTSYK	LIDEFYGIRPE	KRVGIDPMI	
MT	310	320	330	340	350	360	370	380	390	400
AU1	ELVRTKNNNN	NIEELIRPNKL	EMEEMKELD	SLEMDKSEKC	KFESIISOKS	I N D G M A V E D E	VEKNITDKK	EKSFKLKD	CHSCQGLITG	CDRAFIVDRD
AU2	ELVRTKNNNN	NIEELIRPNKL	EMEEMKELD	SLEMDKSEKC	KFESIISOKS	I N D G M A V E D E	VEKNITDKK	EKSFKLKD	CHSCQGLITG	CDRAFIVDRD
LJ	ELVRTKNNNN	NIEELIRPNKL	EMEEMKELD	SLEMDKSEKC	KFESIISOKS	I N D G M A V E D E	VEKNITDKK	EKSFKLKD	CHSCQGLITG	CDRAFIVDRD
RA1	ELVRTKNNNN	NIEELIRPNKL	EMEEMKELD	SLEMDKSEKC	KFESIISOKS	I N D G M A V E D E	VEKNITDKK	EKSFKLKD	CHSCQGLITG	CDRAFIVDRD
RA2	ELVRTKNNNN	NIEELIRPNKL	EMEEMKELD	SLEMDKSEKC	KFESIISOKS	I N D G M A V E D E	VEKNITDKK	EKSFKLKD	CHSCQGLITG	CDRAFIVDRD
MT	410	420	430	440	450	460	470	480	490	500
AU1	TINSRKIELR	LIKPKWIKSSH	TRNEVIEKGE	KELIYSNLIE	NEHECPNAIK	YIEQYKKA	GRK	PEIEEEKKV	EPYKSCDNRE	
AU2	TINSRKIELR	LIKPKWIKSSH	TRNEVIEKGE	KELIYSNLIE	NEHECPNAIK	YIEQYKKA	GRK	PEIEEEKKV	EPYKSCDNRE	
LJ	TINSRKIELR	LIKPKWIKSSH	TRNEVIEKGE	KELIYSNLIE	NEHECPNAIK	YIEQYKKA	GRK	PEIEEEKKV	EPYKSCDNRE	
RA1	TINSRKIELR	LIKPKWIKSSH	TRNEVIEKGE	KELIYSNLIE	NEHECPNAIK	YIEQYKKA	GRK	PEIEEEKKV	EPYKSCDNRE	
RA2	TINSRKIELR	LIKPKWIKSSH	TRNEVIEKGE	KELIYSNLIE	NEHECPNAIK	YIEQYKKA	GRK	PEIEEEKKV	EPYKSCDNRE	
MT	510	520	530	540	550	560	570	580	590	600
AU1	BLDGGSYESA	DIYSSLYVKKEN	VPETYEILLN	ILNSSELYEEY	EKTEAKKLG	NLYEYYPNNL	ENKLCTPSIDE	GGENNIEKKL	YDEFGLTDK	LEIEVERIKDN
AU2	BLDGGSYESA	DIYSSLYVKKEN	VPETYEILLN	ILNSSELYEEY	EKTEAKKLG	NLYEYYPNNL	ENKLCTPSIDE	GGENNIEKKL	YDEFGLTDK	LEIEVERIKDN
LJ	BLDGGSYESA	DIYSSLYVKKEN	VPETYEILLN	ILNSSELYEEY	EKTEAKKLG	NLYEYYPNNL	ENKLCTPSIDE	GGENNIEKKL	YDEFGLTDK	LEIEVERIKDN
RA1	BLDGGSYESA	DIYSSLYVKKEN	VPETYEILLN	ILNSSELYEEY	EKTEAKKLG	NLYEYYPNNL	ENKLCTPSIDE	GGENNIEKKL	YDEFGLTDK	LEIEVERIKDN
RA2	BLDGGSYESA	DIYSSLYVKKEN	VPETYEILLN	ILNSSELYEEY	EKTEAKKLG	NLYEYYPNNL	ENKLCTPSIDE	GGENNIEKKL	YDEFGLTDK	LEIEVERIKDN
MT	610	620	630	640	650	660	670	680	690	700

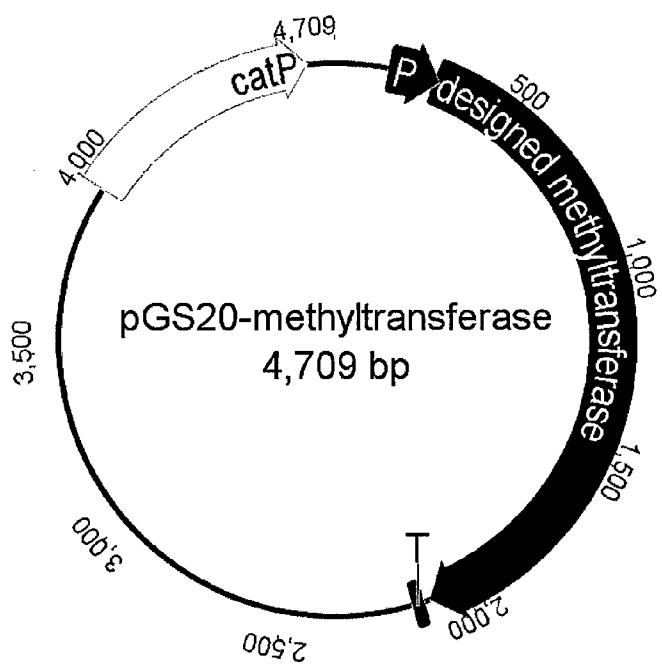


Figure 5

14 / 58

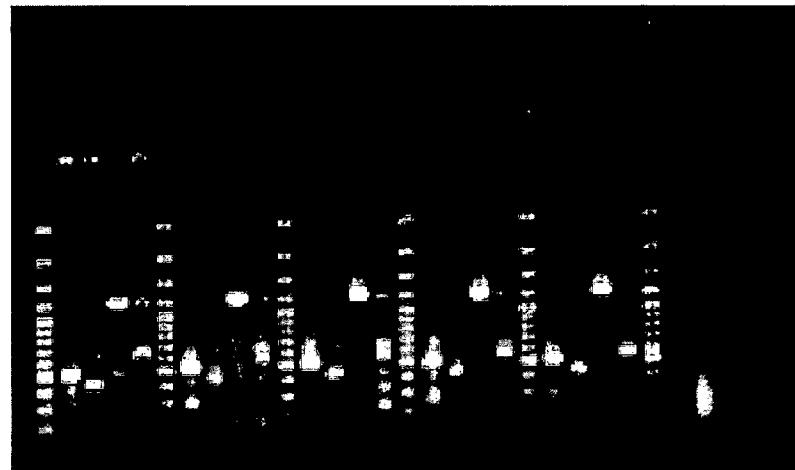


Figure 6

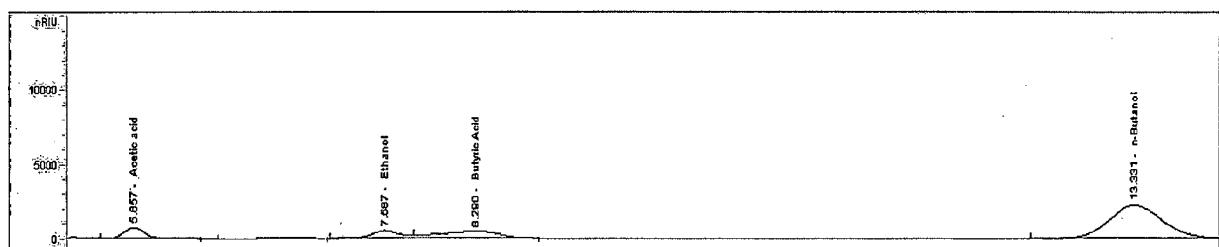


Figure 7

15 / 58

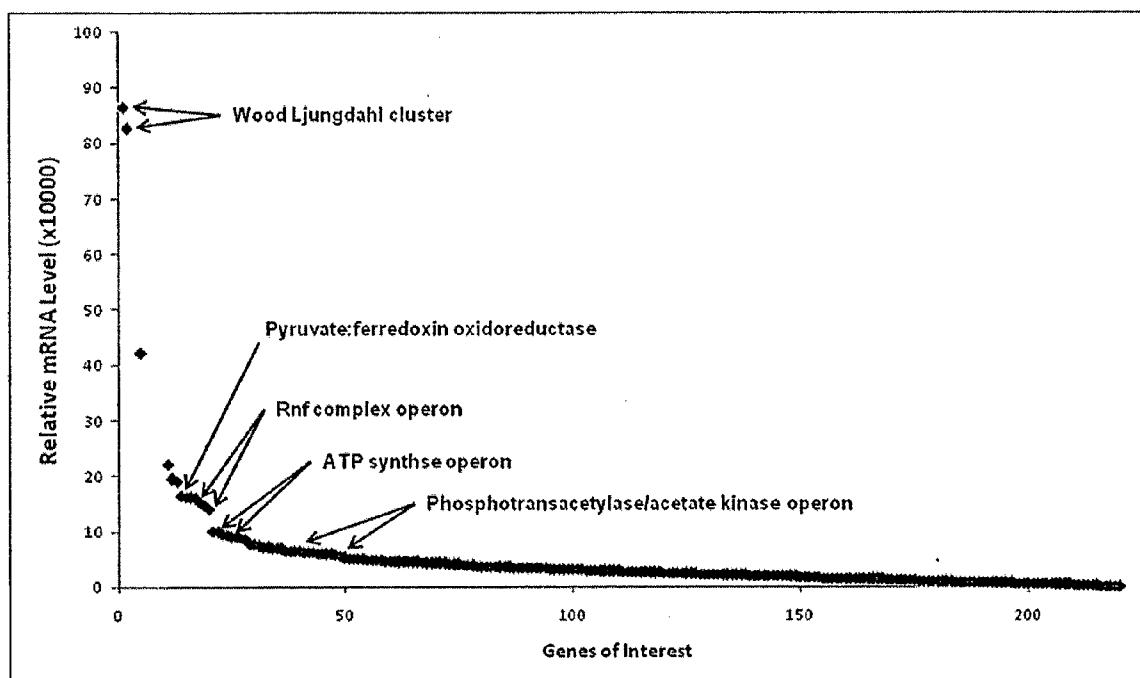


Figure 8

Seq. ID 1: *Clostridium acetobutylicum* ATCC824 thiolase gene (*thlA*):

ATGAAAGAAGTTGTAATAGCTAGTCAGTAAGAACAGCGATTGGATCTTATGAAAGTCTCTAAGGATGTACAGCAGTAG
 ATTTAGGAGCTACAGCTATAAAGGAAGCAGTTAAAAGCAGGAATAAAACCAGAGGATGTTAATGAAGTCATTTAGGAA
 ATGTTCTCAAGCAGGTTAGGACAGAATCCAGCAAGACAGGCATTTAAAGCAGGATTACCGAGTTGAAATTCCAGCTATG
 ACTATTAATAAGGTTGTGGTCAGGACTTAGAACAGTTAGCTAGCAGCACAAATTATAAAGCAGGAGATGCTGACGTA
 TAATAGCAGGTGGTATGGAAAATATGCTAGAGCTCCTTACTTAGCAGAATAACGCTAGATGGGGATATAGAATGGGAAACGC
 TAAATTGTTGATGAAATGATCACTGACGGATTGTTGAGCTTGTGATCAGGAGATGCTTGTGATCAGGAGAAACATA
 GCTGAGAGATGAAACATTCAAGAGAAGAACAGATGAGTTGCTTGTGATCAGGAGAAACAGCTGAAGAAGCTATAAAAT
 CAGGTCAATTAAAGATGAAATAGTTCTGTAGTAATTAAAGGCAGAAAGGGAGAAACTGTAGTTGATACAGATGAGCACCC
 TAGATTGGATCAACTATAGAAGGACTTGCAAAATTAAAACCTGCTTCAAAAAGATGGAACAGTACAGCTGGTAATGCAT
 CAGGATTAATGACTGTGAGCAGTACTTGTAAATCATGAGTCAGGAGAAAGCTAAAGAGCTGGAGTAAACCACCTGCTAA
 GATAGTTCTTATGGTTCAGCAGGAGTTGACCCAGCAATAATGGGATATGGACCTTCTATGCAACAAAGCAGCTATTGAAA
 AAGCAGGTTGGACAGTTGATGAAATTAGATTAATAGAATCAAATGAAGCTTTGCAAGCTAAAGTTAGCAGTAGCAAAAAGA
 TTAAATTTGATATGAATAAAGTAAATGAAATGGAGGAGCTATTGCCCTGGTACATCCAATTGGAGCATCAGGTGCAAGA
 ATACTCGTTACTCTGTACACGCAATGCAAAAGAGATGCAAAAGAGCTAGCAACTTATGTATAGGTGGCGGACAAG
 GAACAGCAATTGCTAGAAAAGTGTAG

Seq. ID 2: *Clostridium acetobutylicum* ATCC824 3-hydroxybutyryl-CoA dehydrogenase gene (*hbd*):

ATGAAAAGGTATGTTAGGTGCAGGTACTATGGGTCAGGAATTGCTCAGGCATTGCAAGCTAAAGGATTGAAAGTAG
 TATTAAGAGATATTAAAGATGAAATTGTTAGAGGATTAGATTTCATAATAAAATCTTCTAAATTAGTTAAAAAAGGA
 AAGATAGAAGAAGCTACTAAAGTGTAAACTAGAATTCCGGAACAGTTGACCTTAATATGGCAGTGATTGCGATT
 AGTTATAGAAGCAGCTGTGAAAGAATGGATATTAAAAGCAGATTGCTGACTTAGACAATATGCAAGGCCAGAAACA
 ATTCTGCATCAAATACATCATCACTTCAATAACAGAAGTGGCATCAGCAACTAAAGACCTGATAAGGTTAGGTATGCA
 TTCTTAATCCAGCTCTGTTATGAAAGCTGTAGAGGTATAAGAGGAATAGCTACATCACAAGAAACTTTGATGCA
 AAGAGACATCTAGCAATAGGAAAAGATCCTGTAGAAGTAGCAGAACGACCAGGATTGTTGTAATAGAATATTAAAC
 AATGATTAATGAAGCAGTTGGTATATTAGCAGAAGGAATAGCTCAGTAGAAGACATAGATAAAAGCTATGAAACTTGGAGCT
 AATCACCCAAATGGGACCATAGAATTAGGTGATTATAGGTCTGTATATGCTCTGATATAATGGATGTTTACTCAGAA
 ACTGGAGATTCTAAGTATAGACCACATACATTACTAAGAAGTATGTAAGAGCAGGATGGCTGGAAGAAAATCAGGAAA
 GGTTCTACGATTATTCAAATAA

Seq. ID 3 *Clostridium acetobutylicum* ATCC824 crotinase (*crt*):

ATGGAACATAACATGTCATCTTGAAAAGGAAGGTAAGTTGCTGTAGTTACCATTAACAGACCTAAAGCATTAAATGCGTT
 AAATAGTGTACACTAAAGAAATGGATTATGTTAGGTGAAATTGAAATGATAGCGAAGTACTTGCACTAATTTAAC
 GAGCAGGAGAAAATCATTTGAGCAGGAGCAGATATTCTGAGATGAAGGAAATGAATACCATTAAGGTAGAAAATCG
 GGATACTGGAAATAAGTGTAGAAGATTAGAAGCTCTGAAAAGCCTGTAATAGCAGCTTAATGGTTTGCTTGT
 GGCAGATGCAAAATAGCTATGCTTGATATAAGAATAGCTTCAAGCAACGCAAGATTGGTCAACCAGAAGTAGGTCTCG
 GAATAACACCTGGTTGGTACACAAAGACTTCAAGATTAGTGGATGGCATGGCAAAGCAGCTTATTTACTGCA
 CAAAATATAAAGGCAGATGAAGCATTAAAGAATCGGACTTGTAAATAAGGTAGTAGAACCTAGTGAATTATGAATACAGCAA
 AAGAAATTGCAAACAAAATTGTGAGCAATGCTCCAGTAGCTGTTAAGCTAAACAGGCTTTAATAGAGGAATGAGTG
 TGATATTGATACTGCTTAGCATTTGAATCAGAAGCATTGGAGAATGCTTCAACAGAGGATCAAAGGATGCAATGACAG
 CTTCATAGAGAAAAGAAAATTGAAGGCTCAAAATAGATAG

Figure 9

Seq. ID 4: *Clostridium acetobutylicum* ATCC824 butyryl-CoA dehydrogenase (*bcd*):

ATGGATTTAACAGAGAACAGAACAGAATTAGTAAGACAGATGGTAGAGAATTGCTGAAATGAAGTTAACCTATAG
CAGCAGAAATTGATGAAACAGAAAGATTCCAATGGAAAATGAAAGAAAATGGGTCACTATGGTATGATGGGAAATTCATT
TTCAAAAGAGTATGGTGGCGCAGGTGGAGATGTATTATCTTATAATCGCCGTTGAGGAATTATCAAAGGTTGCGGTACT
ACAGGAGTTATTCTTCAGCACATACATCACTTGTGCTTCATTAATAATGAACATGGTACAGAAGAACAAAACAAAATA
TTTAGTACCTTAGCTAACAGTAAAAATAGGTGTTATGGATTGACTGAGCCAATGCAGGAACAGATTCTGGAGCACAA
CAAACAGTAGCTGACTTGAAGGAGATCATTGTAATTAAATGGTCAAAATATTCAAACAACTATGGAGGAGTTGAGATAC
TTTGTATATTGCAATGACTGACAGAACTAAAGGAACAAAAGGTATATCAGCATTATAATAGAAAAAGGCTTCAAAGGTT
TCTCTATTGTAAGTTAACAAAAGCTTGAATAAGAGCTTCAACAACTGAACATTGTATTGAAGATATGATAGTACCA
GTAGAAAACATGTTGAAAGAAGGAAAAGGCTTCCATAGCAATGAAAACACTTGTATGGAGGAGAAATTGGTATAGCA
GCTCAAGCTTAGGTATAGCTGAAGGTGCTTCAACGAAGCAAGAGCTTACATGAAGGAGGAGAAAACAATTGGAGAGC
CTTGACAAATTCCAAGGTCTTGCATGGATGATGGCAGATATGGATGAGCTATAGAATCAGCTAGATATTAGTATATAAGC
AGCATATCTAAACAAGCAGGACTTCCATACAGTTGATGCTGCAAGAGCTAACGTTCATGCTGCAAATGTAGCAATGGAT
GTAACAACTAAGGCACTACAATTATTGGTGGATACGGATATACAAAAGATTATCCAGTTGAAGAATGATGAGAGATGCTA
AGATAACTGAAATATGAAGGAACCTCAGAACATTAGTTATTCAAGGAAAATTAGATAATTAGATAA

Seq. ID 5: *Clostridium acetobutylicum* ATCC824 electron transfer flavoprotein (*etfA*):

ATGAATAAACAGATTACAAGGGCGTATGGGTGTTGCTGAACAAAGAGACGGAGAATTACAAAAGGTATCTGGAAATTA
TTAGGTAAAGGTAAAGGAAATGGCTGAGAAATTAGGCGTTGAATTAAACAGCTGTTTACTTGGACATAATACTGAAAAAATGT
CAAAGGTTTATTATCTCATGGAGCAGATAAGGTTAGCAGCAGATAATGAACATTGACATTTCACAGATGGATAT
GCTAAAGTTATGTGATTAGTTAATGAAAGAAAGCCAGAAATATTACATAGGAGCTACTTTCATAGGAAGGAGATTAG
ACCAAGAATAGCAGCAAGACTTCACTGGTTAACTGCTGATTGACATCACTGACATAGATGTAGAAAATAGAGATTAT
TGGCTACAAGACCAGCGTTGGAAATTGATAGCTACAATAGTTGTCAGACCACAGACCACAAATGGCTACAGTAAG
ACCTGGTGTGTTGAAAATTACCTGTTAATGATGCAAATGTTCTGATGATAAAATAGAAAAAGTTGCAATTAAATTACAG
CATCAGACATAAGAACAAAAGTTCAAAGTTGAAGCTGCTAAAGATAATTGAGATATCGGAGAACGCTAAGGTATTAGTT
GCTGGTGTAGAGGAGTTGAAAGCAAAGAAAACTTGAAAACCTGAAAGAGTTAGCAAGTTACTTGGTGGAAACAATAGCC
GCTTCAAGAGCAGCAATAGAAAAAGATGGTTGATAAGGACCTCAAGTAGGTCAAATGGTAAACTGTAAGACCAACTC
TTTATATTGCATGTGGTATATCAGGAGCTACAGCATTAGCAGGTATGCAAGATTGAGATTACATAATTGCTATAAATAAA
GATGAGAAGCCCCAATAATGAAGGTAGCAGATTGGCTATAGTTGGTATGTAATAAGTTGATGACCAATTAGCT
AAGTTAAAGCTGCTAATAATTAA

Seq. ID 6: *Clostridium acetobutylicum* ATCC824 electron transfer flavoprotein (*etfB*):

ATGAATATAGTTGTTGTTAAAACAAGTCCAGATACAGCGGAAGTTAGAATAGATCCAGTTAAGGGACACTTATAAGAG
AAGGAGTTCCATCAATAATAATCCAGATGATAAAACGCACTTGAGGAAGCTTGTATTAAAGATAATTATGGTCACAT
GTAACAGTTATAAGTATGGGACCTCCACAAGCTAAAATGCTTAGTAGAAGCTTGGCTATGGGTGCTGATGAAGCTGTACT
TTAACAGATAGAGCATTGGAGGAGCAGATACTTGCGACTTCACATACAATTGAGCAGGAATTAGAACGCTAAATAT
GATATAGTTTGTGAGAAAGTTGAAGTTGATGGAGATACTTAAAGATTAGAAAAGCTGGGAAGATGGATATGAAGT
CTCAAGTAACCTATGTTGAGAAAGTTGAAGTTGATGGAGATACTTAAAGATTAGAAAAGCTGGGAAGATGGATATGAAGT
TGTGAGTTAACAGACCCAGTTTAAACAGCAATTAAAGAATTAAAGATTGTTCAAGATATGAGTGTAGAAAAAATATTG
GAGCATTGATAAAAGAAGTAAAATGTGGACTGCCGATGATAGATGTAGATAAGGCTAATTAGGTCTAAAGGTTCAAC
AACTAAAGTTAACAGTCATAACTAAAGAACGTTAAAGGACAGGGAGAAGTTATTGATAAGCCTGTTAACAGCAGCTGC
ATATGTTGTCTAAAATTAAAGAAGAACACTATATTAA

Figure 10

Seq. ID 7: *Clostridium autoethanogenum* DSM10061 phosphotransacetylase/acetate kinase promoter region ($P_{pta-ack}$):

GAGCGGCCGCAATATGATATTATGCCATTGTGAAAGGGATTATTCACATTATTCCAGTTACGTCATAGAAATTTCTTCTAAAATATTTATTCATGTCAAGAACCTCTGTTATTCAAGTAAAGTATAAGCATTGAAAAAAATAGGCTAGTATATTGATTGATTATTTAAAGCCTAAGTAAAGTATAACATATTATAACAATAAAATAAGTATTAGTGTAGGATTTAAATAGAGTATCTATTTCAGATTAATTTGATTATTGATTACATTATAATATTGAGTAAAGTATTGACTAGCAAAATTTTGATACTTTAATTGTGAAATTCTTATCAAAGTTATTTGAAATAATTTTATTGAAAATACAACAAAGGATTATAGTATAAGTGTGTAATTGTTAAATTAAAGGGAGGAAATGAACATGAAACATATGGAA

Seq. ID 47: Wood-Ljungdahl cluster promoter:

AAGCGGCCGCAAAATAGTTGATAATAATGCAGAGTTAAACAAAGGTGAAAGCATTACTTGATTCTTTTATATATTATAAAATAAAATGAAGCTGTATTAGAAAAAAATACACACCTGTAATATAAAATTAAATTAAATTAAATTAAATTTCAAAATGTATTACATGTTAGAATTGATGTATTTAAATAGTAGAATACATAAGATACTTAATTAAAGATAGTTAAGTACTTTCAATGCTTTAGATGTTAACAAATCTTAATTGAAAAGAAATGCTGTACTATTACTGTACTAGTGACGGGATTAAACTGTATTAAATTATAAAATAAAAGTACAGTTGTTAAAATTATATTGTTAAATTAAATCTAATAGTACGATGTAAGTTATTATACTATTGCTAGTTAACAAAGATTAAATTATATGCTGAAAGGAGAGGAATCCATATGCGTAA

Seq. ID 48: pyruvate:ferredoxin oxidoreductase promoter:

ATACCATAAATTACTGAAAAATAGTTGATAATAATGTAGAGTTAAACAAAGGTGAAAGCATTACTTGATTCTTTTATATTATTATAAAATTAAATGAAGCTGTATTAGAAAAAAATACACACCTGTAATATAAAATTAAATTAAATTAAATTAAATTTCAAAATGTAAATTTACATGTTAGAATTGATGTATTTAAATAGTAGAATACATAAGATACTTAATTAAAGATAGTTAAGTACTTTCAATGCTTTAGATGTTAACAAATCTTAATTGAAAAGAAATGCTGTACTATTACTGTACTAGTGACGGGATTAAAGTATTAAATTATAAAATAAAATAAGTACAGTTGTTAAAATTATATTGTTAAATTAAATCTAATAGTACGATGTAAGTTATTATACTATTGCTAGTTAACAAAGATTAAATTATACTTGAAAGGAGAGGAATTATTGCGTAA

Seq. ID 49: Rnf operon promoter:

TAGAAAAACATGTATACAAAATTAAAAAAACTATTATAACACATAGTCAATTGAGGTAATACTGTTCAATATCGATACAGATAAAATATAACAGAAGAAAAATTATAAATTGTTGATAATATAAGTATAGTAATTAAAGTTAACCTCGTGAAAACGCTAACAAATAATAGGAGGTGTATTAT

Seq. ID 50: ATP synthase operon promoter:

ATCTGTATTTTCCATTAAATTATTGACTATAATTACACTGAGTGTATTGTATTTAAAAAATTGGTACAATTAGTTAGTTAAATAATTCTAAATTGTAATTACAGAACCTTATTAGGAAATACATAGATTAAAGGAGAAATCATAAAAGGTGTAATATAAACTGGCTAAATTGAGCAAAATTGAGCAATTAGACTTTTGATTGTATTTTATATATTAAAGGTATATACTTATTGATGAAATAACATATTCTAGAC

Figure 11

Seq. ID 14: *E. coli-Clostridium* shuttle vector pMTL 85141:

CCTGCAGGATAAAAAATTGTAGATAAAATTATAAAATAGTTTATCTACAATTTCATTCAGGAAACAGCTATGACCGCGG
 CCGCTGTATCCATATGACCATGATTACGAATTGAGCTCGTACCCGGGATCCTAGAGTCGACGTACCGTCCATGGAG
 ATCTCGAGGCCTGCAGACATGCAAGCTTGCAGTGGCACTGGCGTCTTACAACGTCGTACTGGAAAACCTGGCGTTACCCA
 ACTTAATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCGACCGATGCCCTCCAAACAGT
 TGCAGCAGCTGAATGGCGATGGCGTAGCATAAAAATAAGAAGCTGCATTGCAGGCTCTTATTTATGGCGGCCGC
 ATTCACTCTTTCTATATAAAATATGAGCGAAGCGAATAAGCGTCGGAAAAGCAGCAAAAGCTTCTTGTGGAGC
 ATGGGGTTCAGGGGGTGCAGTATCTGACGTCAATGCCAGCGAAAGCGAGCCGAGGGTAGCATTTACGTTAGATAACCC
 CCTGATATGCTCGACGCTTATATAGAAAAGATTCAACTAGGTAATCTTAAATAGGTTGAGATGATAAGGTTATA
 AGGAATTGTTGTTCTAATTTCACTCATTGTTCTAATTCTTAAACAATGTTCTTTAGAACAGTTATGATA
 GTTAAAGATGTTAAAATAAGGAGTGAAGAAAAGATGAAAGAAAGATATGAAACAGTCTATAAAGGCTCTAGAGGCTCAT
 AGACGAAGAAAGTGGAGAAGTCATAGAGGTAGACAAGTTACCGTAAACAAACGCTGGTAACTCGTAAGGCAATAT
 AGTCAATTAATAAGTATGTTAGATATGATTGGCGGAAAAAACTTAAATCGTTAACTATATCCTAGATAATGTCACCTAA
 GTAACAATACAATGATAGCTACAACAAGAGAAATAGCAAAGCTACAGGAACAAGTCTACAAACAGTAATAACAACACTAA
 AATCTTAGAAGAAGGAAATTATAAAAAGAAAATCTGGAGTTAAATGTTAAACCCCTGAACACTAAATGAGAGGCGACGAC
 CAAAACAAAATACCTTACTCGAATTGGAACTTGTGAGCAAGAGGCAAATGAAATAGATTGACCTCCAATAACACACC
 GTAGTTATTGGAGGTCAATCTATGAAATCGATTAAGGGCGGCAGTGGCAAGTTGAAAATTCAACAAAATGTTG
 AATATCTTGTCTTAACTGAGCGATAACTTGAATTGAGAGGGAACTTAGATGGTTAGGAAATTGATAAAAATAGTGG
 AACAGAAAAGAGTATTGACCAACTTGCAGTGTACCTGACAGCATGACCGTAAACGCCATTAGAGTTAGGACGG
 AAAGGAAAAGGGAAATGAAACTATCCTGCAATGCTTATTATATTGCAATGATTGAAACCCGTTAGAGTTAGGACGG
 CAATCAATCAAGATGGTGAATTGGGATATGATGAGATGATAACAGCTATAACATTTCACAATGATACTGAAACATT
 TCCAGCCTTGGACTGAGTGTAAAGTCTGACTTAAATCATTTAGCAGATTATGAAAGTGTACCGTGGTCAACCTCGATGGCTT
 ATCTGAATTGAGAAAGGATGATTGATTCTTACTATGGGAAATATTAAAGAAGATAACAAAATTATAC
 TTCCCTTGGCAATTCAAGTTCATCAGCAGTATGTGACGGATTTCACATTGCCGTTGTAACGAATTGAGGAATTGATAA
 ATAGTTAACTTCAGGTTGTGTAACTAAAACAAGTATTAAAGCAAAACATCGTAGAAATACGGTTTTGTTACCTCA
 AGTTAAACTCCTTGTATACTCATGACCAAAATCCCTAACGTGAGTTTGTCCACTGAGCGTCAGACCCGTAGAAA
 AGATCAAAGGATCTCTGAGATCCTTTCTGCGCTAATCTGCTGTTGAAACAAAAACCCGCTACCAGCGGTG
 GTTGTGTTGCCGATCAAGAGCTACCAACTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCT
 CTAGTGTAGCCGTAGTTAGGCCACCACTTCAGAAGACTCTGTAGCACCCTACATACCTCGCTGCTGTAATCCTGTTACCAAGTG
 GCTGCTGCCAGTGGCGATAAGTCGTCTACCGGGTGGACTCAAGACGATAGTTACCGGATAAGCGCAGCGGTGGC
 TGAACGGGGGGTCTGTCACACAGCCCAGCTGGAGCGAACGACTACACCGAAGTACAGCTGAGATAACCTACAGCGTGA
 GAAAGCGCCACGCTTCCGAAGGGAGAAAGCGGACAGGTACCGGTAAGCGCAGGGTGGAACAGGAGAGCGCACGA
 GGGAGCTCCAGGGGGAAACGCCGGTATGAAAACGCCAGCAACGCCGCTTTACGGTTCTGGCTTTGCTGGCCTT
 TGCTGCTCAGGGGGGGCGGAGCCTATGAAAACGCCAGCAACGCCGCTTTACGGTTCTGGCTTTGAGTGA
 TCACATGTTCTTCTGCGTTACCCCTGATTCTGAGGATAACCGTATTACCGCCTTGAGTGA
 GAGCTGATACCGCTCGCCGAGCGACCGGCCAATACGCAGGGCCC

Figure 12

Seq. ID 15: *E. coli*-*Clostridium* shuttle vector pMTL 82254:

Figure 13

Seq. ID 24: Methyltransferase gene cluster of *C. ljungdahlii*:

ATGAAACAGTTTATTGAAGATGTTGAACAAATTACAATTTTAAAGAAAATAGATGAGAAGAGATGCATTTAT
AGAAAACCTATAAGCAAAATCTAATATGAAGAAAGAAATTAGCTTTCAGAAGAATACTATAAACAGAAAATTATGAATGGA
AAAAATGGAGTAGTGTATACTCCTCCGAAATGGCAGCATTATGGTAAAGCTGTATAATGTCATGATGTAATTGGAA
ATCCATTATAAAAATAATAGATCCTCCTGTGGATCTGGGAAATTAAATTGTAAAGTGTCTTCTATATTAAATCGAATATTAT
TAAGAATATTGAAGTTAAATAGAAAACAATTAAATTGAAACTAGAAGATATAAGTACCATATAGTAGTAACAATC
TATTGGATTGATATAGATGAAACTGCAATAAAAGTTAAAATAGACTTATTGATTAGCAATCAGTTAGTGA
ATTTCAAGTAAAGGATTCTAGTGGAAAATAGATGAAAATATGATGTGTTTATAGGAAATCCTCGTATAGGACAT
AAATCTGTAGATTCTAGTTATTCTATGTAAAGAAAATATGGAAAGTATATAGACAGAACAGGAGACATATCCTACTG
TTTTTCAAAAATCTAAAGTGTAAAGGGAGGGAGGAAACTGGTTTGTACTCTAGGTATTGTAATCTGAG
CGGAAAAGAACTAGAAAGTTAAATTGAAAATACCTCTATTAAAATTAGATTGTATGGTATAAGACCTTAAAG
AGTAGGTATAGACCCAATGATAATTCTAGTAAGAACAAAAATTGGAACAAATAATAGAAATCATAAGACCCAATAAA
ATTGAAAAAAATGAAAAAAATAATTCTGATTCTGTGTTTAGATAAACTGAAAAAGTTCTATTCTCAA
AAGTCTATAATAATGATGGATGGGTATTGTTGACGAAGTTGAGAAAATATAATAGATAAAATAAGGAAAGTAAAT
TTATTAAAGGATATATGCCATAGTGTCAAGGTATAATAACGGGATGTGATAGGGCTTATAGTTGATAGAGACATAATA
AATAGTAGAAAATGATTAGGTTATAAACCCCTGGATAAAAAGTAGCCATATAGAACAAAAGCAAGTAATTAAAGGTG
AAAAATTATTATAACTCAAATTAAAGAAAATGAAACAGAATGCTCTAATGCTATAAGTATATAGAGCAGTACAAAAAA
AGGCTTATGGAAAGAAGAGAATGTAAAAAGAACAAGAAAGTGTGATGAACTTCAATGGGGAGAAAACCGGAAATT
GAAGAAAAGAAAATTGTGTTCCCATACAAGTCTGTGACAATAGATTGCTTGTACAAGGGAGCTATTAGTGCAGAT
ATACTCCTTAGTATAAAAAAAATGTACCTTACCTATGAAATACTTTAAATATAAACAGTCCTTGTATGAATTACT
TTAAAACCTTCGCAAAAAAAATTAGGAGAAAATCTATATGAGTATTACCTAATAATCTAATGAAATTGTGATTCTCTATTG
ATTTGGAGGAGAAAATAATAGAAAAAAAGCTGTATGATTGGACTGACAGATAAGGAAATTGAGATTGTAGAAAA
GATAAAAGATAATTGCTGA

Seq. ID 25: Methyltransferase gene cluster of *C. autoethanogenum*:

ATGCAATTAGAACTTATAAGCAAAATCTATATGAGAAAGAAATTAGCTTTCAGAAGAATACTATAAACAGAAAAT
TATGAATGGAAAAAAATGGAGTAGTGTATACTCTCCGGAAATGGCAGCATTATGGTAAAAACTTGATAATGTCATGAT
GTAATTGAAATCATTATAAAAATAATAGATCCTCCTGTGGATCTGGAAATTAAATTGTAAGTGTCTTATATTTAAATC
GAATATTATAAGAAATTGAGTTAAAATAAGTAAAACAAATTAAATTGAAACTAGAAGATAAAAGTTACCATATAGTAC
GTAACAATCTTGGATTGATATAGATGAAACTGCAATAAAAGTTAAAATAGACTTATTGATTAGCAATCAGTTA
GTGAAAAAAATTCAGTAAAGGATTTCTAGTGGAAAATATAAGATAAAAATATGATGTGTTATAGGAATCCTCGTAT
ATAGGACATAATCTGAGTTCTAGTTATCATATGTTAAGAAAATATATGGAAGTATATAGAGACAAAGGAGACAT
ATCCTACTGTTTTTCAAAATCATTAAGTGTAAAGGAGGGAGGAAAAGTGGTTTGTACTCTAGGTATTTGTGA
ATCTTGAGCGGAAAAGAACCTAGAAAGTTTAATTGAAAATACCTCTATTATAAAATTATAGATTTTATGGTATAAGACC
TTTAAAGAGTAGGTATAGACCCATGATAATATTTAGTAAGAACAAAATGGAACATAATATAGAAATCATAAGAC
CCAATAAAATGAAAAAAATGAAAAAAATTTCTGATCCTGTTTAGATAATCTGAAAAATGCAAAAGTTCTA
TTCTCAAAAGTCTATAAATAATGATGGATGGGTTTGTGACGAAGTTGAGAAAATATAATAGATAAAATAAAAGAAA
AAGTAAATTATTTAAAGGATATAGCCATAGTGTCAAGGTATAATAACGGGATGTGATAGGGTTTATAGTGTAGAG
ACATAATAAATAGTAGAAAATGAATTAAAGGTTATAAAACCTGGATAAAAAGTAGCCATACGAAAAACGAAGTAAT
TAAAGGTAAAAATTATATAACTCAAATTAAAGAAACAGAATGCTCTAATGCTATAAAGTATATAGAGCAGT
ACAAAAAAAGGCTTATGAAAGAAGAGAATGTAAGGAAACAAGGAAAGTGGTATGAACTTCATGGGGAGAAAACC
GGAAATTGAAAGAAAAGAAAATTGTGTCCTACAGTCTGTGACAATAGATTGCTTGTGACAAGGGAGCTATTAA
GTGCAGATATATTCTTAGTATTAAAAAAATGTACCTTACCTATGAAATACTTTAAATATTAACAGTCCTTGTAT
TGAATTTACTTTAAACTTCGCAAAAGGAGAAATAGGAGAAAATCTATATGAGTATTACCTAATAATCTAATGAAATTGAGA
TCTCTTATTGATTTGGAGGAGAAAATAATAGAAAAAGCTGTATGATTGGACTGACAGATAAGGAAATTGAGA
TTGAGAAAAGATAAAAGATAATTGCTGA

Figure 14

Seq. ID 26: Methyltransferase gene cluster of *C. ragsdalei*:

ATGTTCCCTGAAATGCATATATTCAAGCACGGAGATAGGAATATGAAGATATTGAAGAAATTATAATT
 ATTAAAAAAATACAGATGTAGAAGAGAATATTCAATTAGAAACTTATAGGCAAAGACTAATATGAAGAAAGAAATTA
 GCTTTCAAGAAGAATACTATAAACAGAAAATTATGAATGGAAAAACGGAGTAGTGTATACTCCTCCGAAATGGCAGCATT
 TATGGTAAAAACTGATAAATGTCAATGTGTAATTGAAAATCCATTATAAAAGTAGTAGATCCTCTGTGGATCTGGAA
 ATTTAATTGTAAGTCTTCTACTAAATCAAATATTCAATTAAATATTGAAGTTATAAATAGTAAAAATAATTAAATT
 GAAACTAAAAGATATAAGTACCATATAGTACATAACAATCTATTGGATTGATGAGTAAACTGCAATAAAAGTTTAA
 AATAGACTTATTTGATTAGCAATCAGTTAGTGAAGAAAATTCAAGTAAGGATTCTAGTGGAAAATATAGATAGAA
 AATTGATGTGTTAGGAAATCCCCATATAGGACATAATCTGAGATTCCAGTTATTCAATATATTAAAGGAAATAT
 ATGGAAGTATATAGAGATAAAGGAGACATCTTACTGTTTCAAAATCATTAAAGTCTTAAAGGAGGGAGGAA
 ATTACTTTGTTACCTCCAGATATTTCGAATCTGAGCGAAAAGAACTTAGAAAGTTTAAAGGATACCTTCTATT
 TATAAAATTATAGATTTTATGGTATAAGACCTTTAAAGAGTAGGTATAGATCCAATGATAATTTTAGTAAGAACAAA
 AATTGGGACAATAATAGAAATCATAAGACCCAATAAAAGTGGAAAAGATGAAAAAAATAATTCTGATTCTGGTT
 AGATAATCTGAAAATACAAAAATTCTTCTTCAAAAGTCTATAAATAGTGTGGATGGGTATTGTAATGAAGTTG
 AGAAAATATAATGGATAAAATAGAAGCAAAAGTGAATTATTAAAGGATATGCCATAGTTATCAGGGTATAAAC
 GGGATGTGAGGGTTTATAGTTGAGACACAATAATAGTAGAAAATTGAATTAGGTTAATAACCTGGGT
 AAAAGCAGCCATATACGAAAAACGAAGTAATTAAAGGTGAAAATTATTATATACTCAAATTAAATAGAAAATGAGATAG
 AATGTCCTAATGCTATAAAGTATAGAGCAGTACAAAAAAAGCTTATGGAAAGAAGAGAATGAAAAAGAACGAGAA
 AGTGGTATGAGCTTCAATGGGGAGAAAACCGGAAATTTCGAAGAAAAGAAAATTGATTCCATACAAATCGTGTATAA
 TAGATTGCTTGTATAAGGGAGCTATTAGTCAGATATATTCTTAGTATTAAAAAAATGTACCTTACCTATGA
 AATGCTTTAAATATATTAAATAGTCTTGTATGAATTACTTAAACTTCGGAAAATTAGGAGAAAATCTATATGA
 GTATTATCTAATAATCTGATGAAATTGTGATTCTCTTCTATTGGTTTCGAGAAGAAAATATGTAGAAAAAGGTTGATGA
 TTTTTGGCTGACAGATAAGGAAATTCAAGATTGTAGAAAAATAAAAGATAATTGCTGA

Figure 15

Seq. ID 27: Nucleotide sequence of novel methyltransferase gene fused with an inducible *lac* Promoter:

GCAGCCCGCAACGCAATTATGTGAGTTAGCTCACTATTAGGCACCCCAGGCTTACACTTATGCTCCGGCTGTATGTT
 GTGTGGAATTGTGAGCGATAACAATTTCACACAGGAAACACATATGTTCCGTCAATGCCATATCGAATATGGTGTATAAA
 AATATGAACAGCTTATCGAAGATGTGGAACAGATCTAACCTTCAAAAGAACATTGATGTGGAAGAAAAGATGCATT
 TCATTGAAACCTATAAACAGAAAAGCAACATGAAGAAAGAGATTAGCTTACGAGAAATACTAAACAGAACATTGAA
 CGGAAAAATGGCTTGTGACACCCCGCCGAAATGGCGGCTTATGGTAAAATCTGATCAACGTTAACGATGTTATTG
 GCAATCCGTTATTAAATCATTGACCCGAGCTGCGGTAGCGCAATCTGATTGCAAATGTTCTGATCTGAATCGCATCT
 TTATTAAGAACATTGAGGTGATTAACAGCAAAAATAACCTGAATCTGAAACTGGAGACATCAGTACCACTCGTCGCAAC
 AATCTGTTGGCTCGATATTGACGAAACCGCGATCAAAGTGTGAAATTGATCTGTTCTGATCAGCAACCAATTAGCGA
 GAAAATTCCAGGTTAAAGACTTCTGGTGGAAAATTGATCGAAATATGACGTGTTCTGATCGAATCCGGTATATCG
 GTCACAAAAGCGTGGACAGCAGCTACAGCTACGTGCGCAAATCTACGGCAGCATCTACCGCGACAAAGGCATATCA
 GCTATTGTTCTTCAGAAGAGCCTGAAATGTCTGAGGAAGGTGCAAACCTGGTGTGACCGCCGACTTCTCGCA
 GAGCTGAGCGTAAAGAACACTCGTAAATTCTGATCGAAAACAGAGCATTACAAGATCATTGATTTACGGCATCCGCC
 CGTCAACCGCGTGGTATCGATCGATGATTATTCTGGTGTACGAAGAACATAACATTGAAATTTCG
 CGAACAAAGATTGAAAAGAACAAAAGAACAAATTCTGGATAGCCTGTTCTGGACAAAAGCGAAAAGTGTAAAAGTT
 AGCATTAGCCAGAAAAGCATTAAACGATGGCTGGGTTCTGAGCGAAGTGGAGAAAACATTATCGACAAAATCAA
 GAGAAAAGCAAGTCATTCTGAAAGATATTGCCATAGCTGTCAGGCATTATCACCGGTTGTGATCGCGCTTATTG
 CGTGTGATATCATCAATAGCCGTAAGATCGAAGTCGCTGATTAAACCGTGGATTAAAGCAGCCATATCCGTAAGAATGAA
 GTTATTAGGGCGAAAATTCTCATCATCTAGCAACCTGATTGAGAATGAAACCGAGTAGTGTGCGAATGCGATTAAATATCGA
 ACAGTACAAGAACCGTCTGATGGAGCGCCCGAATGCAAAAAGGGCAGCGCTAAGTGGTATGAACTGCAATGGGGCGTA
 AACCGGAAATCTCGAAGAAAAGAAAATTGTTCTGAGGAAAATGTGCCGTTCACTATGAGATCTGCTGAATATCTGAATAGCCC
 GCTGTACGAGTTTACTTAAGACCTCGCAGAAAAGCTGGCGAGAATCTGTCAGGACTATCCGAACACCTGATGAG
 CTGTGATCCCGAGCATCGATTGGCGGTGAGAACAATTGAGAAAAGCTGTATGATTCTGGTCTGACGGATAAAAG
 AAATTGAGATTGGAGAAGATCAAAGATAACTGCTAAGAATT

Figure 16

Seq. ID 28: Protein sequence of novel methyltransferase:

MFCNAYIEYGDKNMNSIEDVEQYNFKKNDVEEKMFIETYKQKSNNMKEISFSEEEYKQKIMNGKNGVVYTPPEMAAFMVKNLINVNDVIGNPFIKIIDPSCGSNLLICKFLYLNRFIKNIEVINSKNNLNKLEDISYHIVRNLLFGFDIDETAIKVLKIDLFLISNQFSEKNFQVKDFLIVENIDRKYDVFIGNPPYIGHKSVDSSYVLRKIYGSYIYRDKGDISYCFQSKLCKLKEGGKLVFVTSRYFCESCSGKELRKFLIENTSIYKIIDFYGIRPFKRVGIDPMIIFLVRTKNNNNIEIRPNKIEKNEKNKFLDSLFLDKSECKKFSISQKSINNDGWWVFVDEVEKNIIDKIKEKSFKFILKDICHSCQGIITGCDRAFIVDRDIINSRKIELRLIKPWISSHIRKNEVIKGEFKIYNSNLIENETCPNAIKYIEQYKKRLLMERRECKKGTRKWLQWGRKPEIFEKKIVFPYKSCDNRFLDKGSYFSADIYSLVKKNNVPFTYEILLNILNSPLYEFYFKTFAKKLGONLYEYPPNLLMKLCIPSIDFGGENNIEKKLYDFFGLTDKEIEIVEKIKDNC*

Figure 17

Seq. ID 29: Plasmid pGS20:

334_11_2017_Puerto_Picos
TTGCCACCTGACGTCTAAGAAAAGGAATATTAGCAATTGGCCGTGCGAAGAAAGGCCACCCGTGAAGGTGAGCCAGT
GAGTTGATTGCTACGTAATTAGTTAGTCTAGGCCCTAGTACTCGTAATACGACTCACTATAGGCTGAGTCTAGAGAATTG
ATATCACCCGGAACTAGTCTGCAGCCCTTGTAGGGTTAATTGGAGTCACTAAGGGTTAGTTAGTATTAGCAGAAA
GTCAAAAGCCTCCGACCGAGGCTTGTACTAAACCTCCCTGGGTTATCATTGGGCTACTCAAAGGCGTAATCAGAT
AAAAAAATCCTAGTTCGCTAAGGATGATTCTGCTAGAGATGGAATAGACTGGATGGAGGCGGATAAAGTTGAGGAC
CACTCTGCCTGGCCCTTCCGGTGGTTATTGCTGATAAAATCTGGAGCCGGTGGCTGAGCCTGGTCTCGGGTATCATT
GCAGCACTGGGCCAGATGGTAAGCCCTCCGTATCGTAGTTATCACAGCACGGGAGTCAGGCAACTATGGATGAACGA
AATAGACAGATCGTAGGATAGGTGCTACTGATTAAGCATTGTAACGTCAAGACCAAGTTACTCATATACTTTAGAT
TGATTTAAACTCATTTAATTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGA
GTTTCGTTCCACTGAGCGTCAGACCCCTAATAAAGATGATCTCTGAGATCGTTGGTCTGCGCTAATCTCTGCTCTGA
AAACGAAAAAAACGCCCTGAGGGCGTTCTGAAGGTTCTGAGCTACCAACTCTTGAACCGAGGTAACTGGCTTGG
GGAGCGCAGTCACCAAAACTGTCTTCACTGTTAGCCTAACCGCGCATGACTCAAGACTAACTCCTCTAAATCAATTAC
AGTGGCTGCTGCCAGTGGTCTTTCATGTCTTCCGGTGGACTCAAGACGATAAGTACCGGATAAGGCGCAGCGGTG
GACTGAACGGGGGGGTTCTGTCATACAGTCCAGCTGGAGCGAAGTGCCTACCCGAACTGAGTGTCAAGGCGTGGAA
CAAACGCCCTACAGCGGAATGACACCGTAAACCGGAAGGCAGGAACAGGGAGCGCAGGAGGAGCGCAGGGGAGCCAGGG
GAAACGCCCTGGTATCTTATAGTCCTGCGGTTGCCACACTGATTTGAGCGTCAGATTCTGTATGCTTGTCAAGGGGG
CGGAGCCTATGGAAAAACGGCTTGCCTGGCGGGCCCTCTCACTTCCCTGTTAAAGTATCTCTGGCATCTCCAGGAAATCTCC
CCCGTCTGAAGCCATTCCGCTGCCAGTCGAACGACCGAGCGTAGCGAGTCAGTGAGCGAGGAAGCGGAATATATCT
GTATCACATATTCTGTCAGCAGCGTCACTGACACCCCTCATCAGTGC
ACATAGTAAGCCAGTATACACTCCCTAGCGCTGAGGTCTGCTCGTAAGAAGGTGTTGTCAGTCATACCGCCCTGAAT
CGCCCCATCATCAGCCAGAAAGTGGGGAGCCACGGTTGATGAGAGCTTGTAGGTGGACAGTTGGTATTTGAAC
TTTGCTTGCACGGAACGGTCTGCTGGAGATCGTGTCTCAACTCAGCAAAGTGTGATTATTCA
ACAAAGCCACGTTGTCCTCAAAATCTGATGTTACATTGCAAGATAAAATATCATCATGAACAATAAAACTGTC
TTACATAAAACAGTAATACAAGGGGTGTTACTAGAGGTTGATCGGACAGTCAGGAGCTAAGGAAGCTAAATGGAGAAAAAA
AGATCACTACCGGGCGTATTTTGAGTTATCGAGATTTCAAGGAGCTAAGGAAGCTAAATGGAGAAAAAAATCACGGGAT
ATACCACCGTTGATATATCCCAATGGCATCGTAAAGAACATTGAGGCATTTCAGTCAGTGCTCAATGTACCTATAACCAGA
CCGTTCACTGGATATTACGCCCTTTAAAGACCGTAAGAAAATAAGCACAAGTTTATCCGCCATTACACATTCTG
CCCGCCTGATGAACGCTACCCGGAGTTCTGATGGCATGAAAGACGGTGGCTGAGCTGGTATCTGGGATAGTGTCACT
TTACACCGTTCCATGAGCAAACGTTCTGCTCCCTGGAGTGAATACCAACGACGATTCCGGCAGTTCTCCACAT
ATATTGCAAGATGTGGCGTGTACGGTAAAACCTGCCATTCCCTAAAGGGTTATTGAGAATATGTTTTGTCTCAGC
CAATCCCTGGGTGAGTTACCGAGTTGATTTAAACGTCGGCAATATGGACAACCTTCGCCCCGTTTCAGATGGCAA
ATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATCCAGGTTCATGTCAGGCTTGTGATGGCTTCACTGCG
GCATGCTTAATGAATTACAACAGTACTGTGATGAGTGGCAGGGCGGGCGTAATAACTAGTCGGCAAAAAAACGGGC
AAGGTGTCACCACCCCTGCCCTTTCTTAAACCGAAAAGATTACTCGCG

Figure 18

Seq. ID 30: 16s rRNA gene of *C. autoethanogenum* (Y18178, GI:7271109):

GGCTCAGGACGAACGCTGGCGCGTGTAAACACATGCAAGTCGAGCGATGAAGCTCCTTCGGGAGTGGATTAGCGGCCGA
CGGGTGAGTAACACGTGGGTAACCTACCTCAAAGAGGGGGATAGCCTCCGAAAGGGAGATTAATACCGCATAATAATCAG
TTTCACATGGAGACTGATTTAAGGGAGTAATCCGTTGAGATGGACCCGCGCGCATTAGCTAGTTGGTAGGGTAACGGC
CTACCAAGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACATTGAACTGAGAGACGGTCCAGACTCCTACGGG
AGGCAGCAGTGGGAATATTGACAATGGGCGAAAGCCTGATGCAACGCCGCGTGAGTGAAAGAAGGTTTCGGATTGT
AAAGCTCTGTCTGGGACGATAATGACGGTACCCAAGGAGGAAGGCCACGGCTAACTACGTGCCAGCAGCCGCGTAATA
CGTAGGTGGCGAGCGTTGTCGGAATTACTGGCGTAAAGAGTGCGTAGGC GGATATTAAGTGAGATGTGAAATACCCGG
GCTTAACCCGGGCACTGCAATTCAAACCTGGATATCTAGAGTGCGGGAGAGGAGAATGGAATTCTAGTGAGCGGTGAAAT
GCGTAGAGATTAGGAAGAACACCAAGTGGCGAAGGCAGTTCTGGACCGTAACGCTGAGTGACTAGGTGAGGAGGTATCGACCCCTCTGTGCCG
GCAAACAGGATTAGATAACCTGGTAGTCCACGCCGTAACAGATGAGTACTAGGTGAGGAGGTATCGACCCCTCTGTGCCG
CAGTAACACAAATAAGTACTCCGCTGGGAAGTACGATGCAAGGATTAACAGGAAATTGACGGGGGCCGACAAG
CAGCGGAGCATGTGGTTAATTGAAAGCAACCGAAGAACCTTACCTGGACTTGACATACCCCTGAATATCTAGAGATAAGA
GAAGCCCTCGGGCAGGGATACAGGTGGTGCATGGTGTGCTCAGCTGTCGTGAGATGTTAGGTTAAGTCTGCAAC
GAGCGCAACCCCTGTTGTTAGTTGCTAACATTAGTTGAGCAGTCTAGCAAGACTGCCGCGTTAACGCGGAGGAAGGTGGG
GATGACGTCAAATCATCATGCCCTTATGTCCAGGGCAACACACGTGCTACAATGGGAGTACAGAGAGAAGCAAGACCGCA
AGGTGGAGCAAACCTCAAAACTGCCCTCAGTTGGATTGCAAGGCTGAAACTCGCCTACATGAAGTTGGAGTTGCTAGTAAT
CGCGAATCAGAATGTGCGGGTGAATACGTTCCGGGCCTTGACACACCGCCCGTCACACCATGAGAGCTGGCAACACCGA
AGTCCGTAGTCTAACTTAGGAGGACGCGGCCGAAGGTGGGGTAGTAATTGGGTGAAGTCGTAACAAGGTAGCCGT

Figure 19

Seq. ID 31: Butanol expression plasmid pMTL85245-thIa-crt-hbd:

ATAAAAAAATTGAGATAAAATTATAAAATAGTTTATCACAATTTTATCAGGAAACAGCTATGACCGCGGCCGC
 AATATGATATTATGTCATTGTGAAAGGGATTATTCAGTCAACTATTATCCAGTTACGTTAGAAATTTCCTTCTA
 AAATATTATTCCATGTCAAGAACCTGTTTATTCAAGAAGTACAATAAGTACAATAAGGATTGAAAAAAT
 AGGCTAGTATATTGATTGATTATTAAATGCCTAAGTGAAGATAACATATTATAACAATAAAATAAGTATTA
 GTGAGGATTAAATAGAGTATCTATTCAAGATTAAATTGATTATTGATTACATTATAATAATTGAGTAAA
 GTATTGACTGAAATTGATACCTTAAATTGAGAATTCTTACAAAGTTATATTGATAAATTGAGTAAA
 AAAAATACAACAAAGGATTAGTATAAGTGTGTAATTGTTAAATTAAAGGGAGGAATGAACATGAAAC
 ATATGAAAGAAGTGTAAAGCTAGTCAGTAAAGAACAGCGATTGGATCTTATGAAAGCTCTTAAGGATGACCA
 GTAGATTAGGAGCTACAGCTAAAGGAAGCAGTAAAGGAGGAATAAACCCAGAGGATGTTAATGAAGTCATT
 AGGAAATGTTCTAACAGCAGGTTAGGACAGAACAGCAGACAGGATCTTAAAGCAGGATTACAGTTGAAATT
 CAGCTGACTATTAAATAAGGTTGTTAGGACTAGAACAGTTAGCTTAGCAGCACAATTAAAGCAGGAGAT
 GCTGAGCTAAATAGCAGGTTGATGAAATGACTGACGGATTGTTGGATGATTAAATGATTGAGTAA
 AATGGGAAACGCTAAATTGTTGATGAAATGACTGACGGATTGTTGGATGATTAAATGATTGAGTAA
 CAGCAGAAAACATAGCTGAGAGATGAAACATTCAAGAGAAGAACAGTGAAGTTGCTTGCATCACAAAAAAAGCT
 GAAGAAGCTAAATCAGGTCAATTAAAGTGAATAGTCTGTAGTAAATTAAAGCAGAAAGGGAGAACTGAGT
 TGATACAGATGAGCACCTAGATTGATCACTATAGAAGGACTTGCAAAATTAAACCTGCCTTCAAAAAAGATGAA
 CAGTTACAGCTGGAATGCACTGAGATTAAATGACTGTCAGCAGTACTTGTAACTATGAGTGCAAAAAAGCTAAAG
 CTGGAGTAAACCACTTGTCAAGATAGTTCTTATGGTTCAGCAGGAGTTGACCCAGCAATAATGGGATATGGACCTT
 CTATGCAACAAAAGCAGCTATTGAAAAGCAGGTTGGACAGTTGATGAATTAGATTTAAGAATCAAATGAAGCTTT
 CAGCTCAAAGTTAGCAGTAGCAAAGATTAAATTGATGATAAAAGTAAATGTAATGGAGGAGTATTGCCCT
 GGTCACTTAACTGGAGCATCAGGTGCAAGAATACTCGTTACTCTGTACACGCAATGCAAAAAGAGATGCAAAAAAAG
 CTTAGCAACTTATGTAAGGTGGCGGACAAGGAACAGCAATTGCTAGAAAAGTCTAGGAATTGAGCTGGTACCT
 TAGGAGGATTAGTCATGAACTAAACAATGTATCCTTAAAGGAGGTAAAGTTGCTGTAGTTACCTAACAGACCT
 AAAGCTAAATGCGTTAAATAGTGTACACTAAAGAAATGGATTATGTTAGGTGAAATTGAAATGATAGCAG
 ACTTGAGTAACTGGAGCAGGAGAAAATCATTGAGCAGGAGCAGATATTCTGAGATGAAGGAAATGAATA
 CCATTGAGGTAAGAAAATTGGGAACTTGGAAATAAGTGTGTTAGAAGGATGAACTTCTGAAAGCCTGTAATAGCA
 GCTGTTAATGGTTGTTAGGAGGCGGATGCGAAATGCTATGTCTGTGATAATAAGAATAGCTCAAGCAACGCAAG
 ATTTGGTCAACCAGAAGTAGGTCTGGAATAACACCTGGTTGGTGTACACAAAGACTTCAAGATTGTTGAATGG
 GCATGGCAAAGCAGCTTATTTACTGACAATTAAAGGCAGATGAAGCATTAAAGAATCGGACTTGTAAATAAGGA
 GTAGAACCTAGTGAATTAAATGAAACAGCAAAGAAATTGCAAAACAAAATTGAGCAGTCTCAGTAGCTGTTAAGTT
 AAGCAAACAGGCTTAAATAGAGGAATGCGATGTTGAGTACTGCTTGTGAACTGAGCATTGGAGAAT
 GCTTCAACAGAGGATCAAAGGATGCAATGACGCTTACAGAGGATCAAAGGCTTCAAAATAGATAG
 GAGGTAAGTTATGGATTAAATTAAACAAGAGAACAGAAATTGAGTAAAGACAGATGTTAGAGAATTGCTGAAATG
 AAGTAAACCTATAGCAGCAGAAATTGATGAAACAGAAAGATTCAATGGAAATGAAAGAAAATGGGAGTGTGTT
 ATGATGGGAAATTCCATTTCAAAAGAGTATGGTGGCGCAGGGAGATGTTAGTATCTTAAATGCGGTTGAGGAATT
 ATCAAAGGTTGGCGACTACAGGAGTTCTCAGCACATACATCATTGCTTCAATTAAATGAAACATGGTAA
 CAGAAGAACAAAACAAAATTAGTACCTTAGCTAAAGGTGAAAATAGGTCTTATGGGTTGACTGAGCAGGAAAT
 GCAGGAACAGATTCTGGAGCACACAAACAGTAGCTGACTTGAAGGAGATCATTGTAATTATGGTCAAAATATT
 CATAACTAATGGAGGAGTTGAGATACTTGTGTTATTTGCAATGACTGACAGAACTAAAGGAACAAAGGTATATCAG
 CATTATAATAGAAAAGGCTCAAAGGTTCTTATTGGTAAAGTGAACAAAAGCTTGAATAAGGCTTCAAC
 ACTGAACCTGATTGAGATATGAGTACAGTAGAAAACATGATTGGTAAAGAAGGAAAGGCTTCAAC
 GAAAACCTTGTGAGGAGAACATTGGTATAGCAGCTAACGCTTAAAGGTGCTTCAACGAAAGCAAGAG
 CTTACATGAAGGGAGGAAAACAATTGGAAAGAACGCTTGCACAAATTCAAGGCTTGCATGGATGGCAGATATGGAT
 GTAGCTATAGAATCAGCTAGATTTAGTATATAAGCAGCATATCTTAAACAAGCAGGACTCCATACACAGTTGATGC
 TGCAAGAGCTAACGCTTGTGCAATGAGTAAACAACAGTACAATTGTTGGGATACGG
 ATACAAAAGATTATCCAGTTGAAAGAATGAGAGAGTCTAGAAGATAACTGAAATATATGAGGAACCTCAGAAGTTCAG
 AAATTAGTTATTGAGAAAATTGAGATAATTAAAGGAGGTTAGAGGAGATGAAATAGTTGTTGTTAAACAAAGT
 TCCAGATACGCGGAAGTTAGAATAGATCCAGTTAGGGAAACACTTAAAGAGAAGGGAGTCCATCAATAATAATCCAG
 ATGATAAAAACGCACTTGAGGAAGCTTGTAGTAAAGATAATTGTTGACATGTAACAGTTAAGTATGGGACCT
 CCACAAGCTAAAATGCTTGTAGAAGCTTGGCTATGGGTGCTGATGAAGGCTGTTAACAGATAAGGAGCTTGG
 AGGAGCAGATACCTGGACTTACATACAATTGCAAGGAGGTTAGAGGAGATGAAAGCTTAAAGGTTCAACAAACTAAAGTT
 GGCAGGGCTATAGTGGAGATACAGCTCAGGTTGGACAGGAATAGCTGAGCATCTGGAAACCTCAAGTAACCTTGT
 GAGAAAGTGAAGTTGAGGAGATCTTAAAGGTTAGGAAAGCTTGGGAGATGGATATGAGTTGTTGAAGTAAAGAC
 ACCAGTTTAAACAGCAATTAAAGAATTAAAGTCTTCAAGGATATGAGTGTAGGAAAGGAAATTCTGGAGCATTTGATA
 AAGAAGTAAAATGTTGAGCTGCGATGATAGTGTAGGAGATAAGGCTAATTAGGCTTAAAGGTTCAACAACTAAAGTT
 AAGAAGTCATCAACTAAAGAAGTTAAAGGAGCAGGGAGAAGGTTATTGATAAGCCTGTTAAGGAGCAGCTGCA
 TCTAAACAAAGGAGAAGACACTTAAAGTGTAGGAGGATTCTTAAAGTGAATAAGGAGGTTATTGTTGAGGAG
 TGTTGCTGAACAAAGAGAGCAGGAGAATTACAAAGGTTCTGGAATTAGGTAAGGAAAGGAAATTGCTGAGAAA
 TTAGGCGTTGAATTACAGCTGTTTACTGGACATAACTGAAAGGAGTTATTATCTCATGGAGCAGA
 TAAGGTTAGCAGCAGATAATGAACTTACAGCACATTTCACACAGATGGATGCTAAAGTTATGTTAGTTA

Figure 20 (Sequence continued in figure 21)

ATGAAAGAAAGCCAGAAATTTCATAGGAGCTACTTCATAGGAAGAGATTAGGACCAAGAACAGCAAGACTT
 TCTACTGGTTAACGCTGATGACATCACTGACATAGATGTAGAAAATAGAGATTATTGGCTACAAGACCAGCGTT
 TGGTGGAAATTGATAGCTACAATAGTTGTCAGACCACAGACCACAAATGGCTACAGTAAGACCTGGTGTGTTGAAA
 AATTACCTGTTAATGATGCAAATGTTCTGATGATAAAATAGAAAAGTTGCAATTAAATAACAGCATCAGACATAAGA
 ACAAAAGTTCAAAAGTTGTAAGCTGAAAGATATTGAGATATCGAGAAGCTAAGGTATTAGTTGCTGGTAG
 AGGAGTTGAAGCAAAGAAAATTGAAAGAGTTAGCAAGTACTTGGTGGACAATAGCCGCTCAAGAG
 CAGCAATAGAAAAGAATGGGTGATAAGGACCTCAAGTAGGTCAAACACTGGTAAAGACCAACTCTTATATT
 GCATGGTATATCAGGAGCTACCGCATTAGCAGGTATGCAAGATTGAGTACATAATTGCTATAAAAGATGT
 AGAAGCCCCAATAATGAAGGTAGCAGATTGGCTAGTTGGTGTGATAAATAAAAGTTGACCAGAATTAATAGCTCAAG
 TAAAGCTGCTAATAATTAAAGATAAAAGAATTATTAAAGCTTATGCTAAACAAACTTATATAGTATTGGT
 GTAAATGCTGATAGTTCTTAAATTAGGGAGGTCTGTTAATGAAAGAGTTAGTGTATAGGTGAGGACTATG
 GGTCAGGAATTGCTCAGGCACTTCAGCTAAAGGATTGAGTAGTATTAGGATATAAGATGAATTGGTGTGATAG
 AGGATTAGATTATTCATAAAATCTTCTAAATTAGTTAAAAGGAAAGATAGAAGCTACTAAAGTTGAAATCT
 TAACAGAATTCCGGAACAGTGTACCTTAAATGGCAGCTGATTGCTAGTTAGTGTAGAAGCAGCTGTTGAAAGAATG
 GATAAAAAGCAGATTGCTGACTTAGACAATATGCAAGCCAGAACAACTTTCATCAAAATACATCATCACT
 TTCAATAACAGAAGTGGCATCAGCAACTAAAGACCTGATAAGGTTAGGTATGCTTAAATCCAGCTCCTGTTA
 TGAAGCTGTAGAGGTAATAAGAGGAATAGCTACATCACAAGAAACTTTGATGCTGAGTTAGAGACATTATAGCAATA
 GGAAAAGATCTGTAGAGTAGCAGAACAGCAGGATTGTTGAAATAGAATATTAAACCAATGATAATGAAGCAGT
 TGGTATTAGCAGAAGGAATAGCTTCTGACTAGAAGACATAGATAAGCTATGAAACTTGGAGCTAATCACCACGGAC
 CTTAGAATTAGGTGATTAGGTCTGATATGCTCTGATAATGGATGTTTACTCAGAAACTGGAGATTCT
 AAGTATAGACCACATACATTACTAAGAAGTATGTAAGAGCAGGATGGCTGAAAGAAAATCAGGAAAAGGTTCTACGA
 TTATTCAAATAAGTTACAAGAATCCGGATCCTCTAGACTGACGTCACGCGTCCATGGAGATCTCGAGGCGTGCAGAC
 ATGCAAGCTTGGCACTGGCGTGTAAACACGCTGACTGGAAAACCTGGTGTACCCACTTAATCGCCTGCA
 GCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCGACCGATGCCCTCCAAAGTGGCAGCCTGAA
 TGGCGAATGGCGTAGCATAAAAAGAAGCCTGCTTGGCAGGCTTCTATTGGCGCGCCATTCACTCTT
 TTCTATATAATATGAGCGAACGTAAGCTGGAGCGAACAGGAGCTGTTGAGCTTACGTTAGATAACCCCTGATA
 TCAGGGGGTGCAGTATGACGCTAATGCCAGCGAACAGGAGCTGTTGAGCTTACGTTAGATAACCCCTGATA
 TGCTCCGACGCTTATAGAAAAGAAGTCAACTAGTAAATCTTAAATAGGTGAGATGATAAGGTTATAAGGA
 ATTTGTTGTTCTAATTTCACCTCTTGGCTTAATTTCTTAAACAAATGTTCTTTTTAGAACAGTTGAT
 ATAGTTAGAATAGTTAAAATAGGAGTGAAGAAAAGATGAAAGAAAAGATATGAAACAGTCTATAAAGGCTCTAGAGGC
 TCATAGACGAAGAAAGTGGAGAAGTCATAGAGGTAGACAAGTTACCGTAAACACGCTGTTGTAACCTGTAAGGCA
 TATAGTGCATAATAAGTATGTTAGATGTTGGCGAAAAAACTTAAACCTGTTAATGCTAAACAGCTCTAGATAATGT
 CCACTTAAGTAACAATACATGATAGCTACACAAGAGAAATAGCAGGAAACAGTCTACAAACAGTAATAA
 CAACACTTAAATCTTAGAAGAAGGAAATATAAAAGGAAACTGGAGTTGAGCTAAACCTGAAACTACTAATG
 AGAGGCAGCAGACAAAAACACACACCTCTACTCGTAATTGGGAGCTTGGAGCTTGGAGGCAAGAGGCAAATGAAAGTGG
 TCCCAATAACACCCACGCTAGTTGGGAGGTCAATCTATGAAATGCGATAAGGGCCGCCAGCAAACCTTAAGAGTGT
 GTTGATAGTGCAGTATCTTAAATTGTTGATAATAGGAATTGAGTTAAATTAGATGCTAAAATTGTAATTAGAAGG
 AGTGTGATTACATGAACAAAATATAAAATCTCAAACCTTAAACGAGTGAAGGAAACTCAACCAAATAATAAAACA
 ATTGAATTAAAAGAAAACCGATAACGTTACGAAATTGAAACAGGTAAGGGCATTAAACGACGAAACTGGCTAAATAA
 GTAAACAGGTAACGCTATTGAAATTAGACAGTCATCTACACTTACGAAAATTGAAACAGGTAAGGGCATTAAACGACGAAACTGGCTAA
 ACTTTAATTACCAAGATATTCTACAGTTCAATTCCCTAACAAACAGAGGTATAAAATTGTTGGAGTATTCTTACCA
 TTTAACGACACAAATTATAAAAGTGGTTTGGATAATAGGCTGCTGACATCTATGTTGAGTGTGTTGAGAAGGATTCT
 ACAAGCGTACCTGGATATTACCGAACACTAGGGTGTCTGACACTCAAGTCTGATTGCTAGCAATTGCTTAAGCTG
 CCAGCGGAATGCTTCTACCTAAACCAAAGTAAACAGTGTCTTAATAAAACTTACCCCATACACAGATGTTCCAGA
 TAAATTTGGAGCTATACGTTGTTCAAAATGGGTCAATCGAGAACATCGTCAACTGTTACTAAAATCAGT
 TTCTACAGCAATGAAACACGCCAAGTAAACAAATTAAAGTACCGTTACTTATGAGCAAGTATTGCTATTGTTAATAGT
 TATCTATTATAACGGGAGGAAATAATTCTATGAGTCGCTTGTAAATTGAAAGTTACCGTTACTAAAGGGATG
 TGTTAAACTCCTTGTATACTCATGACCAAAATCCCTAACGTGAGTTGCTTCCACTGAGCGTCAAGCCGTA
 GAAAAGATCAAAGGATCTTGTAGATCCTTCTGCGCTAATGCTGCTGCAACACAAAAACCCACCGCTACC
 AGCGGTGGTTGTTGCCGGATCAAGAGCTACCAACTTTTCCGAAGGTAACCTGGCTCAGCAGAGCGCAGATACCAA
 ATACTGTTCTCTAGTGTAGCGTAGTTAGGCCACCACTCAAGAACACTGTAGCACCGCTACATACCTGCTCTGCTA
 ATCCGTTACAGTGGCTGCTGCCAGTGGCGATAAGTCGTTGCTTACCGGGTTGACTCAAGACGATAGTTACGGGATAA
 GGCAGCGTGGCTGAGCTACAGGCCACGCCAGCTGGAGCGAACGACCTACACCGAACCTGAGATACC
 TACAGCGTAGCTATGAGAAAAGCGCCACGCCAGCTGGAGGAGAAAGCGGACAGGTATCGGTAGCGGAGGGTGG
 ACAGGAGAGCGCACGAGGGAGCTCCAGGGGAAACGCCGTGTTATGCTCTGCGGTTGCTGCAACCTCTGACT
 TGAGCGTCTGATGTCGTCAGGGGGCGGAGGCTATGGAAAACGCCAGAACGCCGCTTACGGGTT
 TGGCCCTTGTGGCTTGTGTCACATGTTCTCTGCTTACCGCTTACCGGTTGAGTGTGAGGAGGAGGAGGAGGAGG
 GAGTGTGAGCTGATACCGCTGCCGAGCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAGGAGGAGGAGG
 ACGCAGGGCCCCCTGCGAG

Figure 21

Seq. ID 39: Nucleotide acid bifunctional butanol/ butyraldehyde dehydrogenase of *C. autoethanogenum*:

ATGAGAAATTGTTTATTTAACAGCATAAAAAATAAGAAAGAGGTGCTTAATGAAGGTAACTAAGGTAACTAACGTTG
 AAGAATTAATGAAAAAGTTAGATGAAGTAACGGCTGCTAAAAGAAATTCTAGCTATACTCAAGAACAGTGGATGAAAT
 TTTCAGGCAGGCAGCTATGGCAGCCAATAGTCTAGAATAGACTTAGCTAAATGGCAGTGGAAAGAAAGCGGAATGGAAAT
 TGTAGAAGACAAGGTCTTAAACATTTGTTGAGAATATATATAACAAATATAAGGTGAAAGACCTGCGGAGTT
 CTGGAACAAAGATGAAGGCTTGGTATGGTAAATTGAGAACCTGAGGAGTTATTGAGCAGTAGTTCCAACAACAAATC
 CAACATCTACAGCAATTTAACATCAATAGCTTAAACACTAGAAATGGTATAGTTTCAACCACATCCAAGGGAAAAAA
 AATCAACTATTGAGCAGCTAAAGATAGTACTTGATGAGCAGTTAAAGCTGGTCCCCCTGAAGGAATTAGGCTGGATAGA
 TGAAACCTCTATTGAACCTTACAGGTGGTAATGAAAGAACAGATCTAATTCTGCAACTGGTGGACCAGGTATGGTAAAGG
 CTGCCTATTCTCAGGAAAGCTCTATAGGAGTTGGTCAGGTAAATCACCTGCTGTAATTGATGAAAGTGGCACATTAA
 ATGGCAGTAAATTCAACTACTTCAAAACTTTGATAATGGTATGATTGTGCTTCAGAGCAGTCAGTAATAGTGCAGC
 TCAATATACGATGAAGTCAAGAAAGAGTTGAGATAGAGGAGCATATATATTAGTAAGGATGAAACAGATAAGGTGGA
 AAAACAAATCATGATTAATGGAGCTTAAATGCTGAAATTGAGGGCAAAGTGCCTTAAATAGCTCAGATGGCGGGAGTC
 GTGTACCGAAGATGCTAAATACTTATAGGAGAAGTAAATCGGTAGAACCTGAGAACAGGCCCTTGCTCATGAAAAGCT
 GTCTCCAGTTCTAGGCATGTACAAAGCAAAGATTGATGAGCAGCTCTAAAGGCTGGAAAGATTAGTTGAAACGAGGTGGA
 ATAGGGCATACTGTATTGATGAAATTGATGACGGAAAAGTAAAGTAGAAAAGTTAGAGGAAACTATGAAAGACCG
 GTAGAACATTGATAAAATATGCCTCAGCGCAAGGGCCTATAGGAGATATATAACTTAAACTAGCTCCTCTTGACATTAG
 GCTGTGGTCTGGGAGGAAACTCTGTATCAGAAAATGTTGGACCTAAACATTGTTAAACATAAAGAGTGTGCTGAGAG
 GAGAGAAAATATGCTTGGTTAGAGTACCTGAAAAGGTTATTCAATATGGCAGCCTGGAGTTGCACTAAAAGAAACTG
 AGAATTATGGAGAAGAAAAGCGTTTATAGTAACGGATAAAGTCTTTATCAATTAGGTTATGAGATAAAATTACAAGA
 ACCTCGATGAATTAGAGTTCATATAAAATATTACAGATGAGAACAGATCCAACCTTGTACAGCTAAAAAGGTGCA
 GCAGAACTGCTTCTATGAACCGATAACAATTAGCAGTTGGTGGTGGCAATGGATGCTGCAAGATCATGTGG
 TAATGTATGAGCATCCAGAAGTAAAGATTGAGATTCTAGTAGCAACATCCGAGGAACAGGGTCAGAAGTTACTCCATTGAGTAATT
 CGGACGAAAGAACAGGAGCTAAATCTCTGGCTGATTATGAAATTACTCCAACATGGCTATAGTTGATGAGAACCTT
 GATGGGAATGCCAAGGGCTAACAGCAGCTTCAAGGATAGTGCCTGACTCATGCACTGGAGGCCTATGTGTCATAATG
 GCTTCAGAATATACCAACGGATTGGCTCTGAAAGCAACAGATTAGTATTCAAATATTGCCAATAGCTTACAGAACGGTAC
 AATTATGTAAGGCAAGAGAAAAATGGCTATGCTTATGCTATTGAGGTATGGCTTGCCAATGCATTGGGT
 GCCACTCTATGGCACATAAATTGGGAGCACAGCACCACATACCACATGGAATTGCAATGCACTTATGATAGATGAAAGTTATA
 AAATTCAATGCTTAGAGGCTCAAGGAAACAAGCGGATTCCACAATATAAAATCAAATGTTAAAGAAAGATATGCTA
 GAATAGCTGATTACCTAAATTAGGTGAAAGTACAGATGAGAAAAGTACAATTGCTAATAATGCTATAGATGACTTAA
 AACTAAGTTAAATATCCAAAGACTATTAAAGAAGCAGGAGTTGAGAAGATAAATTCTATGCTACTTGTAGATACAATGTCAG
 AACTGGCTTGTATGATCAATGTACAGGAGCTAACAGATATCCACTAATAGGAGAAATAAACAAATGTATATAATGCA
 TTGATACACCAAAGGCAACTGTGGAGAAGAAAACAAGAAAGAAAAAGTAA

Figure 22

Seq 40: AA sequence bifunctional butanol/butyraldehyde dehydrogenase of *C. autoethanogenum*:

MRNLIFNSIKNKEVSLMKVTNVEELMKLDEVTAAQKKFSSYEQVDEIFRQAAAMAANSARIDLAKMAVEES
 GMGIVEDKVKNHVAEYIYNKYGEKTCGVLEQDEGFGMVRIAEPVGVIAAVVPTTNTSTAIFKSLIAKTRNGIVFSP
 HPRAKKSTIAAKIVLDAAVKAGAPEGIIGWIDEPSELSQVMKKEADLILATGGPGMVKAAYSSGKPAIGVPGPNTPA
 VIDESADIKMAVNSILLSKTFDNGMICASEQSVIVASSIYDEVKKEFADRGAYILSKDETDKVGTIMINGALNAGIVGQS
 AFKIAQMAGVSVPEDAKILIGEVKSVEPEEPFAHEKLSPVLAMYKAKDFDEALLKAGRLVERGGIGHTSVLYVNSMTE
 KVVKVEKFRETMKTGRTLINMPAQAQGAIGDIYNFKLAPSITLGCWSGGNSVENVGPKHLLNIKSVAERRENMLWFR
 VPEKVFYFKYGLVALKELRIMEKKKAFIVTDKVLYQLGYVDKITKNLDELRSYKIFTDVEPDPLATAKKGAAELLSYEP
 DTIIAVGGGSAMDAKIMWWMYEHPEVRFEDLAMRFMDIRKRVYVFPKMGEKAMMISVATSAGTGSEVTPFAVIT
 DERTGAKYPLADYELTPNMAIVDAELMMGMPKGGLTAASGIDALTHALEAYVSIMASEYTNGLALEATRLVFKYLPIAYT
 EGTINVKAREKMAHASICAGMAFANAFLGVCHSMAKLGAQHHIPHGIANALMIDEVIKFNAVEAPRKQAAFPQYK
 YPNVKRRYARIADYLNLGGSTDDEKVQLLINAIDDLKTKLNIPKTIKEAGVSEDKFYATLDTMSELAFDDQCTGANPRYP
 LIGEIKQMYINAFDTPKATVEKKTRKKK*

FIGURE 23

Seq. ID 41: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

ATGAAAGTTACAAACGTTAGAAGAACTAATGAAAAGACTAGAAGAAATAAGGATGCTAAAAGAAATTGCTACATATACTC
 AAGAACAGTGGATGAAATTTAGACAAGCAGCTATGGCAGCTAATAGTCTAGAATAGAAACTAGCTAAATGGCAGTAG
 AAGAAAGCGGAATGGATTGTAGAAGACAAGGTTATTAACCTTGCAGAATATATATAACAAATATAAGGA
 TGAAAAAAACCTGTGGAGTTAGAGAGAGATGCAGGCTTGGTATAAGTTAGAATTGCGGAACCTGTAGGAGTTATTGCGAGCA
 GTAGTCCAACAACATAATCCAACATCTACAGCAATATTAACACTAATAGCTTAAAAGACTAGAAATGGTATAATTTTAC
 CCCATCCAAGGGCAAAAGAAATCAACTATTGCAGCAGCTAAATAGTACTTGACGCTGCAGTTAAGCTGGTCTGAAGG
 AATTATAGGATGGATAGATGAACCTTCCATTGAACCTTCACAGGTGGAATGGGAGAAGCAAATTAAATTCTGCAACTGGT
 GTCCGGGTATGGTTAAGGCTGCCTATTCTCAGGAAACCTGTGTGGGAGTTGGTCCAGGTACACACCTGCTGTAATTGAT
 GAAAGTGCACATTAATGGCAGTAAATTCAATATTACTATCAAAAACCTTGTATAATGGTATGATTGCGCTCAGAGCA
 GTCACTAATAGTTTACTAATATGAGGAAGTTAAAAGAATTGCTTATAGGGTGTCTATATATTAAAGTAAGGATG
 AAACAGATAAGGTTGGAAAAATAATTAAAATGGAGCCTAAATGCAAGGTATTGTAGGACAACCTGCTTTAAAATAGC
 ACAGCTGGCAGGAGTGGATGTACAGAAAAAGCTAAAGTACTTATAGGAGAGGTAGAATCGGTAGAACTTGAAGAACCTT
 TTCTCATGAAAAGTTATCTCAGTTAGCTATGTACAGGGCAAGAAATTGAGGATGCCATTGCAAAACTGATAAAACTGG
 TTAGGGCAGGTGGATTGGACATACATCTTATTGTATAAACTCAATGACAGAAAAGCAAAGTAGAAAAATTAGTACT
 ATGATGAAAACATCAAGAACTATAATTAAACACACCTCATCCAAGGTGGTATAGGTGATATATAACTTTAAACTAGCTCCT
 TCTTGACATTAGGCTGGTTCTGGGGGGAAATTCTGTATCCGAAAATGTTGGCCTAAACATTAAACATAAAAAG
 TGTGCTGAGAGGAGAGAAAATATGCTTGGTTAGAGTACCTGAAAAGGTTATTCAAAATGGTAGTCTGGAGTTGCAT
 TAAAAGAGTTAAAGTTATGAATAAGAAGAAAGTATTATAGTAACAGATAAAGTTCTTATCAATTAGGTATGTGGACAA
 GTTACAAAAGTCTGAGGAACAAAAATTCTATAAGGTATTACAGATGTAGAACAGATCCAACCTTGCTACAGCTAA
 AAAAGGTGCAGCAGAACTGCTTCTATGAACCGGATACAATTATCAGTTGGTGGTGGTCAAGCAATGGATGCAGCTAAG
 ATCATGTGGTAATGTAGCATCCAGAAGTAAATTGAGATTAGCTATGAGATTATGGATATAAGAAAGAGAGTAT
 ATGTTTCCCTAAGATGGAGAAAAGCAATGATGATTCTAGTAGCAACATCCGAGGAACAGGGTGGAGTTACTCCATT
 TGCACTAATCAGTGTGAAACAGGAGCTAAATATCATTAGCTGATTATGAACACTCCAGACATGGCTATAGTTGATG
 CAGAACTTATGATGGGAATGCCAGAGGACTACAGCAGCTTGGGTATAGATGCATTAACCCATGCACTGGAGGCAGTAT
 GTCAATAATGGCTACAGAATTACCAATGGATTAGCCCTGAAAGCAGTAAAGGTGATATTGAATATTACAAAAGCTTATA
 CAGAAGGTACAACATAATGAAAGCAAGAGAAAAGATGGCTCATGCTCATGTATTGAGGTATGGCTTGCACATGCA
 TTTAGGGGTATGCCACTCTATGGCACATAAATTGGGAGCACAGCATCACATACCACTGGAATTGCAATGCACTTATGATAG
 ATGAAGTTATAAAATTCAATGCTGTAGATGATCCAATAAAACAAGCTGCATTCCCAATACGAGTATCCAATGCTAGGTAT
 AGATATGCTCAGATAGCTGATTGTCTGAACCTGGGAGGAAATACAGAAGAGGAAAGGTACAACATTAAATGCTATAG
 ATGATTAAAAGCTAAAGTTAAATTCCAGAAACTATAAAAGAAGCAGGAGTTCAAGAGATAAAATTCTATGCTACTTTAGAT
 AAAATGTCAGAATTAGCTTTGATGATCAGTGTACAGGAGCTAACTCAAGATATCCACTGATAAGTGAATAAAACAAATGTA
 TATAATGTTTGTATAAAACCGAACCAATTGTAGAAGATGAAGAAAAGTAA

Seq. ID 42: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

MKVTVNEELMKRLEIKAQKKFATYTQEVDIFRQAAMAANSARIELAKMAVEESGMGIVEDKVIKNHFASEYIYNKYKDEKTC
 GVLERDAGFGIVRIAEPVGVIAAVPTTNPTSTAIFKSLIALKTRNGIIFSPHPRAKKSTIAAKIVLDAVKAGAPEGIIGWIDEPEI
 LSQVVMGEANLILATGGPGMVKAAYSSGKPAVGVGPGNTPAVIDESADIKMAVNSILLSKTFDNGMICASEQSIVLDSIYEEVK
 KEFAYRGAYILSKDETDKVGKIIKNGALNAGIVGQPAFKIAQLAGVDVPEKAKVLIGEVESVELEEPSHEKLPVLAMYRARNF
 EDAIAKTDKLVRAGGFHTSSLYINPMTEKAKVEKFSTMKTSRTIINTPSSQGGIDYINFKLAPS TLGCGSWGGNSVENGP
 KHLLNIK SVAERRENMLWFRVPEKVFYFKYGSGLVALKELVMNKKVFIVTDKVLYQLGYVDKVT
 VLEELKNFL*

FIGURE 24

Seq. ID 43: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

TTGGAAAATTTGATAAAGACTTACGTTCTACAGAAAGCAAGAGATCTGCACGTTAGGAAAATTGCAGCAGACCAAAT
 TGCTGATTATACTGAAGAACAAATTGATAAAATCCTATGTAATATGGTAGGGTAGCAGAAGAAAATGCAGTTGCCTGGTA
 AAATGGCTGCAGAACAAACTGGTTGGAAAAGCTGAAGATAAGGCTTATAAGAACCATATGGCTGCTACTACAGTATAAA
 TTACATCAAGGATATGAAGACTATTGGTTATAAAAGAACATAAGTGAAGGTGTAATTGAAATTGAGAACCGAGTTGGT
 TTATTAAATGGTATTGTACCATCTACAAATCCAACATCTACTGTTATTATAATCAATCATTGCAATTAAATCAAGAACATGCAA
 TTGTATTCTCACCACACCAGCTGCATTAAAATGTTCAACAAAAGCAATAGAACATTGCGTGTGAGCAGTAGCAGCAGGAGA
 GCTCCTGCAAATGTAATTGGTGTATTGTTACCATCTACAGCTACAAATGAACATTGAAAGCTAAAGAACAGTTGCTAT
 GATAATTGCAACTGGAGGCCCTGGAATGGTAAAGGCTGATATAGTTAGGAACACCTGCAATAGGCCTGGTGTGGTAAC
 TCTCCATCCTATTGAAAGAACACTGCTGATGTTCATCAATCAGTTAAAGATATAATAGCTAGTAAGAGTTGACTATGGTACT
 ATTTGTGCATCCGAGCAGTCTGTAATTGAGAACATGCAACAAAGTTGAGCAGCTACTTTAAACCTGGTACACACAGCATGAGCGCTAAGTTGTA
 GGAAGAGCTCCTCAGGTTATAGCAGAACAGCTGCAGGTTACAGTTCCAGAAGGAACAAAGTATTAAATAGGAGAACAGGC
 GGAGTTGGAATGGTACCCCTATCTTATGAGAAACTTACAACAGTACTTGCTTCTATACAGTTAAAGATTGGCATGAAGC
 ATGTGAGCTTAGTATAAGATTACTCAAATGGTCTGGACATACAATGAACATTGATACAAATGATAGAGACTTAGTAA
 AGTTGCTAAAAAACAGCATCCGTATCTTAGTTAACTGGTGGAGCTCTGTTCTGAAAATGTTACTCCATTACATTAA
 GAGAGTAGCATATGGCTTAAAGATTGACTACATTAGCTGCAGACGATACAACTTCAATCATCCTGAACATTGCAAG
 AAAATGACTTAGGATTCTGTGCTACAAGCCCTGCAAAAGAGCAATTGATAGCAACTGCTGAGATACTACT
 GATAATGATAAACTGCTAGACTCGTAAGTGAATTAGTAGCTGCAATGAAGGGAGCTAACTAA

Seq. ID 44: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

MENFDKDLRSIQEARDLARLGKIAADQIADYEEQIDKILCNMVRVAEENAVCLGKMAAEETGFGKAEDKAYKNHMAATTVNYI
 KDMKTIGVIKEKSEGVIIFAEPVGLLMIVPSTNPTSTVIYKSIIAKSRNAIVFSPHPAALKCSTKAIELMRDAAVAAGAPANVIGGI
 VTPSIQATNELMKAKEVAMIIATGGPGMVKAAYSSGTPAIGVGAGNSPSYIERTADVHQSVKDIIASKSFYGTICASEQSVIAEECN
 HDEIVAEFKKQGGYFMTAEEAKVCSVLFKPGTHSMSAKFVGRAPQVIAEAAGFTVPEGTKVLIGEQGGVGNGYPLSYEKLTTVLA
 FYTVKDWEACELSIRLLQNLGHTMNIHTNDRLVMKFAKKPASRILVNTGGSQGGTGSTGLAPAFTLGCGTWGGSSVENV
 TPLHLINIKRVAYGLKDCCTLAADDTFNHPELCGSKNDLGFCAUTSPAFAAKSNCSTAADTTNDKLARLVSELVAAMKGAN

FIGURE 25

Seq. ID 45: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

GTGGAAAATGCTGCACGAGCACAAAAATGTTAGCAACCTTCCACAAAGAAAAGCTAGATGAGATTGTTAACGTATGGCGG
 AAGAAAATGGAAAACATACCCGAGAGCTGCTGTAATGTCACAGGATGAAACTGGTTATGGAAAATGGCAGGATAATGCA
 TCAAAACCGATTGCTGTGAGTATTGCAAGCTAGAGGAATGCGATGTTAGGTATTATAATGAAAATGGTCAG
 GATAAGACCATGGATGTTAGGTGACCTATGGGTGAATTATTGCAATTATGCTCTGCAACTAGTCCGGTTCTACTACCATATAT
 AAGGCATTGATTGCAATTAGCTGGTAATGCAATTATCTTCTCCACATCCTAGAGCAAAGGAGACAATTGTAAGGCCT
 TGACATCATGATTGCTGCAGCTGAAGGATATGGCTTCCAGAAGGAGCTTGCATACTACATACTGTGACGCCTAGTGG
 ACAATCGAATTGATGAACCATATTGCACTCTTGATTATGAAATACAGGTGTTCCGGATGCTAAAGCAGCATATAATT
 GGGAAACCTGTTATATGGAGGAACGGTATGGACAGCATTATTGAAACGTACAGCTGACATCAAACAGGCCTGAAAA
 GATATTATTGCTAGTAAGACCTTGATAACCGGAATAGTACCATCAGCTGAACAATCTATTGTTAGATAGCTGTGTTGCATCT
 GATGTTAAACGTGAGTTGCAAAATAATGGTCATATTGATGACAGAGGGAGAACACAAAAACTAGGTTCTCTTTTCCG
 TTCTGATGGCAGTATGGATTGAAATGGTGGCAAATCCGCACAAAGATTGGCTAAAAAGCAGGTTCTAGCATTCCG
 AGTAGCACAGTCTAATTGAGCAGAAATATGTTCTCAAGATAATCCTATTGCAAGGAGAAACTTGTCCGGTACTAGC
 TTACTACATTGAAAGATGATTGGATGCTGATGTGAAAGTGTATTGAACTGCTGTTAGTGAAGGAGACATGGTCACACTTGT
 TTATACATTCAAAGACGAAGAGTGAATTGCCAGTTGCTTAAACCTGAGGTAGGATACATTGTTAAACGCTGCT
 TCCTTGGTAGTATGGGTGCTACAAGTAATTATTGCTTAACTTAGGTAGTGGATCGGCAGGTAAAGGTATTACCTCC
 GATAATGTTACCAATGAATCTTACGTCGCAAAGTCGGATATGGCTACGGAAATGTAGAAGAGATTGCAATA
 TGGATTGTTACAGAACAAAAAGTGATTTGAATGGAATGACAAAAAAAGTCAGACTATAATCCAGAGGATACAAATGTTA
 CAGCATATTAAAAAGCTATGGAAAAATTAAATAG

FIGURE 26

Seq. ID 46: Amino acid sequence of butyraldehyde dehydrogenase of *C. autoethanogenum*:

MENAARAQKMLATFPQEKLDEVERMAEEIGKHTRELAVMSQDETGYGKWQDKC1KNRFACEYLPAKLGMRCVGIINENGQD
KTMDVGVPVMGVIALCPATSPVSTTIKALIAIKSGNAAIFSPHPRAKETICKALDIMIRAAEGYGLPEGALAYLHTVTPSGTIELMNHI
ATSLIMNTGVPGMKAAYNSGKPVYGGTGNGPAPFERTADIKQAVKDIIASKTFDNGIVPSAEQSIVVSDCSVASDVKRELOQNNGAY
FMTEEEAQKLGLSLLFRSDGSMDESEMVGKSAQRLLAKAGFSIPESSTVLISEQKQYVSQDNPYSKEKLCPVLAYIYEDDWMHACEKCIE
LLLSERHGHTLVIHSKDEDVIRQFALKKPVGRLVNTPASFGSMGATSNLFPAUTLGSGSAGKGITSNDVSPMNLIYVRKVGYGVRN
VEEIVNTNGLTEEKSDLNGMTKKSDYNPEDIOMLQHILKKAMEKIK*

Seq. ID 119: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

ATGGCAAGATTTACTTACCAAGAGACATTATTTGGAGAAAATTCAATTAGAAACCTGAAAGACCTAGATGGAAAAAAAGC
TGTATTGCTGAGGGTGGATCCATGAAACGATTGGATCCCTGATAAGGTAGTAAACTACTTAAAGAAGCAGGTATTG
AATCAAAATTAAAGAAGGAGTTGAAACCAGATCCATCTGAGAAACTGTTAGTGAATGGCGTAAACTATGAGAGAATATGA
ACCAGATTAAATAGTATCAATAGGTGGAGGTTACCAATTGACGCAAAAGCTATGTTAGTGAATACCTGAGT
TTACTTTAAAGAGGCTGTGGTCTTTGGTCTTCTAAATTAAAGACAAAAAGCAACATTATAGCTATACCTTACAAGTG
GTACTGCAACAGAAGTAACGGCATTCTGTAATAACAGACTATAAAGCTAAATTAAATATCCTTAGCTGACTCAATTAA
CACCAGATATAGCTATAATTGATCCAGCATTAGCTAAACAATGCCACCTAAATTAACTGCACATACTGGAATGGATGCACTT
ACCCATGCTATTGAAGCATATGTCAGGACTTCATTCAAGTCTCTGCTATTCAAGCTATAGTTATGGTAAATC
AGTATTTAAATCAATGAAGATAAAGAGCTAGAAACCAATGCATTAGCTCAATGTTAGCTGGATGGCATT
TCAAATGCACTTCTGGAATAACTCACAGTTAGCACATAAACAGGTGCAGTATTCCATATTCCCTATGGATGTGCCAATGCA
ATATATCTCCCTATGTTAGATTCAATAAAAAAGCTGTACACCAAGATATGCTGATATAGCTAGGAGTCTAAACTTCA
GGAAATACTGATGATGAATTAGTAGATTCAACTAACATGATAAAGATATGAACAAGAGTATGGATATTCTTGCACATT
AAAAGATTACGGAGTAGATGAAAAAGATAATTAAAGATAATGAAGATTAGCTCATATGCCATTAGATGCCCTGCACT
GGATCAAATCTAGAAGTATAATGATGCTGAAATGAAAAATTGTTAGAATACATCTATTATGGTAAAAAGGTTGATTTTA
A

FIGURE 27

Seq. ID 120: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

MARFTLPRDIYFGENSLETLDGKKAIVVGGGSMKRGFLDKVNVYLKEAGIESKLI
EVGEPDPSVETVMNGAKLMREYEPDLSI
VSIGGGSPIDA
AKAMWIFYEY
PEFTFKEAVVPFG
LPKLRQKATFIA
IPSTSGTATE
VTAFS
VITDYKAKIKYPLAD
FNLTPDIA
IDPALA
QT
MPPKLT
AHTGMD
ALTHAIE
AYVAGLHS
VFS
SDPLAI
QIAVM
VNQY
LIKSY
NEDKE
ARNQM
HLA
QCLAG
MAFS
NALL
GITHSLA
KT
GAVF
HIPH
GCAN
AIYLP
YIDFN
KACT
PRYAD
IARSL
KLPG
NTDEL
VDSL
TNMI
KDMN
KSMD
IPLTL
KDYG
VDEKE
FKDN
EDF
IAHNA
VLD
ACT
TGS
NPR
SIND
AEM
KKL
LEYI
YYG
KKV
D
*

Seq. ID 121: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

ATGGGAAGATTTACTTGCCTAGGGATATTACTTGGTAAAATGCCTAGAAAATTAAAAATTAGATGGAATAAAGC
AGTAGTTGTAGGGGGGATCTAGAAGAGATTGGATTCTAGCCAAAGTTGAAAATCTTAAAGAAACTGGTATG
GAAGTTAAATTAAAGAGGTGGAGCTGCTGTTGATAGTTGATGGCGCTAAATAATGAGAGACTTTAA
CCCAGATTGGATAGTATCAATAGGTGGAGGATCTCCATAGATGCTGCTAAAGCAATGTGGATATTGAAATACCCGACT
TTACATTGAAAAGCGGTAGTCCCTTGGATTCTAAATTAGGCAGAAGGCACAAATTGTTGCTATACTCTACAAGTG
GAACAGCAACTGAAGTAACATCATTCTGTAATAACAGACTAAAGCTAAAATAAATTCCTTGCAGATTAAACCTTA
CCCCGTATAGCTATAATAGATCCGTCTTGCAGAAAACAATGCCAAAAGCTTACAGCACACACTGGATGGATGCACTT
ACTCACGCAATAGAAGCATATGAGCAAGTTACATTGAGATTCTCAGATCCACTGCTATGCTATAACCATGATTCA
AAATATTATTGAAATCTATGAAGAAGATAAAGAGCTAGAGGACATATGCATATGCCAATGCTAGCTGGGATGGCAT
TTCAATGCTCTCTTGGATAACTCATGTTAGCACATAAAACTGGTGCAGTATTTCACATACCTCATGGGTGTGCTAATG
CCATATACTTACCTATGTTAGATTAAACAAGAAAGCTTGCAGAAAGATATGCTAAAATGCCAAAAGCTGCATCTAT
CAGGAAATAGTGAAGATGAGCTAATAGATTCTAACTGAAATGATTGCTACTATGAACAAAAAGATGGATATTCTCACC
ATAAAAGATTATGGTATAAGCGAAAACGATTAAATGAAACCTAGATTATGCTCACAATGCCATGATGGATGCCGAC
TGGATCCAATCTAGAGCAATACTGAGGAAGAAATGAAAAGCTTGCAGTATATGTTAGGGCAAAAGGTTAATTTC
TAG

FIGURE 28

Seq. ID 122: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

MGRFTLPRDIYFGENALENLKNLDGNKAVVVGGGSMKRGFLAKVEKYLKETGMEVKLIEGVEPDPSVDTVMNGA
 KIMRDFNPDWIVSIGGGSPIDAAKAMWIFYEYPDFTEKAVVPGIPKLRQKAQFVAIPSTSGTATEVTSFSVITDYKAKI
 KYPLADFNLTDPDIAIIDPSLAETMPKKLTAHTGMDALTHAIEAYVASLHSDFSDPLAMHAITMIHKYLLKSYEEDKEARG
 HMHIAQCLAGMAFSNALLGITHSIAHKTGAVFHIPHGCANAIYLPVIDFNKKACSERYAKIAKKLHLSGNSEDELIDSLT
 EMIRTMNKKMDIPLTIKYGISENDFNENLDFIAHNAMMDACTGSNPRAITEEMKLLQYMYNGQKVNF*

Seq. ID 51: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

ATGAAAGTTACAACGTAGAAGAACTAATGAAAAGACTAGAAGAAATAAAGGATGCTCAAAGAAATTGCTAC
 ATATACTCAAGAACAAAGTGGATGAAATTAGACAAGCAGCTATGGCAGCTAATAGTGTAGAATAGAAACTAGC
 TAAAATGGCAGTAGAAGAAAGCGGAATGGGATTGAGTTAGAGACAAGGTTATTAAGGAAACTTGGCTTCAGAAT
 ATATATATAACAAATATAAGGATGAAAAACCTGTTGGAGTTAGAGAGAGATGCAAGGCTTGGTATAGTTAGA
 ATTGCGGAACCTGTAGGAGTTATGCAGCAGTAGTCCAACAACATCCAAGGGAAAGAAATCAACTATTGCAAGCAGC
 TAATAGCTTAAAAACTAGAAATGGTATAATTTCACCCCATCCAAGGGAAAGAAATCAACTATTGCAAGCAGCAGC
 TAAAATAGTACTTGACGCTGAGTTAAAGCTGGTGCCTGAAGGAATTAGGATGGATAGATGAACCTTCCAT
 TGAACTTCACAGGTGGAATGGGAGAAGCAAATTAAATTCTGCACTGGTGGTCCGGGTATGGTTAAGGCTGC
 CTATTCTCAGGCAAACCTGCTGTGGAGTTGGTCCAGGTAAACACACCTGCTGAATTGATGAAAGTGGCAGC
 TAAAATGGCAGTAAATTCAATATTACTATCAAAACTTTGATAATGGTATGATTGTCCTCAGAGCAGTCAGTA
 ATAGTTTAGACTCAATATGAGGAAGTAAAAAGAATTGCTTATAGGGGTGCTATATATTAAAGTAAGGAT
 GAAACAGATAAGGTTGGAAAAATAATTAAAAATGGAGCCTTAAATGCAGGTATTGTCAGGACAACCTGCTTT
 AAAATAGCACAGCTGGCAGGAGTGGATGTAACAGAAAAAGCTAAAGTACTTATAGGAGAGGTAGAATCGGTAG
 AACCTGAAGAACCATTTCTCATGAAAAGTTATCTCCAGTTAGCTATGTACAGGGCAAGAAATTGAGGATGC
 CATTGCAAAACTGATAAACTGGTAGGGCAGGTGGATTGGACATACATCTCATTGTATATAATCCAATGAC
 AGAAAAAGCAAAGTAGAAAAATTAGTACTATGATGAAAACATCAAGAACTATAATTACACACCTTCATCCCA
 AGGTGGTATAGGTGATATATAACTTAAACTAGCTCCTTGTGACATTAGGCTGCCGTTCTGGGGGGAAA
 TTCTGTATCGAAAATGTTGGCCTAAACATTAAACATAAAAGTGTGCTGAGAGGAGAGAAAATATGCT
 TTGGTTAGAGTACCTGAAAAGTTATTCAAATATGGTAGTCTGGAGTTGCATTAAAGAGTTAAAGTTAG
 AATAAGAAGAAAGTATTATAGTAACAGATAAAAGTTCTTATCAATTAGTTATGTGGACAAAGTTACAAAAGTT
 CTTGAGGAACCTAAATTCTATAGGTATTACAGATGTAGAACAGATCCAACCCCTGCTACAGCTAAAAAA
 GGTGCAGCAGAACTGCTTCTATGAACCGGATACAATTATCAGTTGGTGGTTCAGCAATGGATGCAGCT
 AAGATCATGTGGTAATGTAGCATCCAGAAGTAAATTGAAGATTAGCTATGAGATTGAGATATAAGA
 AAGAGAGTATATGTTTCCCTAAGATGGAGAAAGCAATGATGATGTTAGCTAGCAACATCCGAGGAACAGG
 GTCGGAAGTTACTCCATTGCACTGATGAAAAACAGGAGCTAAATATCATTAGCTGATTGAACT
 AACTCCAGACATGGCTAGTTGATGAGCAACTTATGATGGGAATGCCAAGAGGACTACAGCAGCTCGGGTA
 TAGATGCATTAAACCATGCACTGGAGGGCTATGTGTCATAATGGCTACAGAATTACCAATGGATTAGCCCTG
 AAGCAGTAAAGTTGATATTGAATATTACAAAAAGCTTATACAGAAGGTACAACATGTAAGGCAAGAGAAA
 AGATGGCTCATGCTTGTATTGCAAGGTATGGCCTTGCAAATGCATTAGGGTATGCCACTCTATGGCACA
 TAAATTGGGAGCACAGCATCACATACACATGAAATTGCCAATGCACTTATGATAGATGAAGTTAAAATTCAA
 TGCTGTAGATGATCCAATAAAACAGCTGATTCCCAATACAGAGTATCCAATGCTAGGTATAGATATGCTCA
 GATAGCTGATTGCTGAACCTGGGAGGGAAATACAGAAGAGGAAAGGTACAACATTTAAATGCTATAGATG
 ATTAAAAGCTAAGTTAAATATTCCAGAAACTATAAAAGAAGCAGGAGTTGAGAAGATAAAATTCTATGCTACTTT
 AGATAAAATGTCAGAATTAGCTTGTATTGATGATCAGTGTACAGGAGCTAATCCAAGATATCCACTGATAAGTGAAT
 AAAACAAATGTATATAATGTTTGATAAAACCGAACCAATTGAGAAGATGAAGAAAAGTAA

FIGURE 29

Seq. ID 52: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:
 MDAAKIMWVMYEHPEVKFEDLAMRFMDIRKRVVFPMGEKAMMISVATSAGTGSEVTPFAITDEKTGAKYPLADYELTPDM
 AIVDAELMMGMPRLTAASGIDALTHALEAYVSIMATEFTNGLALEAVKLIFEYLPKAYTEGTTNVKAREKMAHASCIAGMAFAN
 AFLGVCHSMAHKLGAQHHIPHGIANALMIDEVIKFNAVDDPIKQAAFPQYEYPNARYRAQIADCLNLGGNTEEKVQLLINAIDD
 LKAKLNIPETIKEAGVSEDKFYATLDKMSLAFDDQCTGANPRYPLISEIKQMYINVFDKTEPIVEDEEK*

Seq. ID 53: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:
 ATGGAAATAAAATTAGGGGGATAATAATGGAGAGATTACGTTGCCAAGAGACATTACTTGGAGAAGATGCTTGGGTG
 CTTGAAAACGTTAAAGGTAAGAAAGCTGTTAGTAGTTGGAGGAGGATCCATGAAGAGATTGGTTCCCTTGACAAGGT
 AGAAGAAACTTAAAGAAGCAAACATAGAAGTTAAACTAATAGAAGGTGTTGAACCAGATCCGTCTGGAAACCCTTATG
 AAAGGTGCCAAAATAATGACAGAATTGGCCAGATTGGATAGTTGCTATTGGAGGAGGTTCCAATAGATGCTGCAAAG
 GCTATGGCTATTGATGAAATATCCAGATTACTTTAAACAAGCAATTGTCGTTGGATTACAGAATTAAGACAAAAAA
 GCTAAATTGAGCTATGCTTACTAGTGGAACAGCTACTGAAGTTACTTCAGTAAATAACTGATTATAAGCTAAA
 ATAAAGTATCCTTACTGCTGACTTCATTTGACACCGGATAGCTATAGTTGATCAGCATTAGCCCAGACAATGCCACCTAA
 TTAACTGCACATACGGTATGGATGCTTAACATGCAGTAGAAGCTTGTAGCATCAGCTAGATCAGATATTGAGATCCA
 CTTGCAATACATCCATAATTATGACAAGGGATAACTTACTTAACTCTATAAGGGTGTAAAGATGCTAGAAATAAGATGCA
 TATATCACAATGTTAGCAGGTATGGCATTCTAACTGCACTTCTGGTATAACTCATAGTTAGCACATAAAACAGGAGCTG
 ATGGCACATACCATGGATGCGCTAATGCAATATATCTCCATATGTTAGATTAAATAAAAAGCTTGCTCAGATAGATA
 TGCTAATATAGCTAAATATTAGGACTTAAAGGAACTACTGAAGATGAATTGGTAGATTCTCTAGTTAAATGGTACAAGATA
 TGGATAAGGAATTGAATATACCTTGACCTTAAAGATTATGGTATAAGCAAAGATGATTCAATTCAAATGTTGATTATAG
 CAAAGAATGCGCTTAGATGCATGTACAGGAGCTAACAGGCATAGATTGATCAAATGAAAGATACTTCAATG
 ATATATGATGGAAAAAGGTAACCTTTAA

FIGURE 30

Seq. ID 54: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:
 MEIKLGGIIMERFTLPRDIYFGEDALGALKKGKAVVVVGGGSMKRFGFLDKVEEYLKEANIEVKLIEGVEPDPSVETVMKGAKI
 MTEFGPDWIVAIAGGGSPIDAACKAMWLFYEPDFTFKQAVPFGLELRQKAKFVAIASTSGTATEVTSFSVITDYKAKIKYPLADFN
 TPDIAIVDPALAQTMPKLTAGMDALTHALEAYVASARSDISDPLAIIHSIIMTRDNLKSYKGDKDARNKMHSQCLAGMAFSN
 ALLGITHSLAHKTGAVWHIPHGCANAIYLPVLDFNKKACSDRYANIAKILGLKTTDELVDSLVMQDMDKELNIPLTLDYGIS
 KDDFNNSVDFIAKNALLDACTGANPRPIDFDQMKKILQCIYDGKKVTF*

Seq. ID 55: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:
 GTGAGGGATGTTATTATGGAAAACTTTATTGTTAAAAATGCTACAGAAATTATTTGGTAAGGATACCGAAAATCTTGTAGG
 AAGTAAGTAAAGGAGTATTCAAAGTCAGATAAAACTCTTTGCTATGGGGAGGAAGCATAAAAGATCTGGTCTATAT
 GATAGAGTTAAAGTCCTAAAGAAAATGGAATTGAATTAGAACCTCCAGGAATTAAACCTAATCCAAGATTAGGACC
 TGTTAAAGAAGGTATAAGACTATGTAGAGAAAATAATATAAAATTGTTACTATCTGTAGGAGGAGGAAGTCAGCAGATACG
 GCTAAAGCTATTGCTGTAGGAGTACCTTAAAGGAGACGTATGGATTACGGCAAAGCTGAAGTGAAAGAGGCTC
 TCCCTGTAGGAGTTGTAATAACATTACCTGCTACAGGTACAGAATCTAGTAATAGTTCTGTTATTATGAATGAAGATGGTGG
 TTTAAAAAAGGATTAATACAGTACTTAAAGACCTGCTTTCAATTATGAATCTGAACCTTACTTTACACTACCAGAGTATC
 AAACGCTTGTGGTGTGCTTGACATTGGCACATATAATGAAAGATATTTCACAAATGTGAAACATGTAGATATAACTGAT
 AGGCTTGCAGCTGCACTTAGAAATGTTATAATAATGCCCAATAGTTTAAAGATCCAAAATATGATGCTAGGGC
 AGAAATTATGTGGACCGGTACTATAGCTCATATGATGTGCTTAGTGCAGGAGTAAAGGTGATTGGCTTCACAAAATT
 GAACATGAATTGAGTGGGAAACAGACATTGCCCATGGAGCAGGACTGCAATTGTTACCTGCATGGATGAAATATGTAT
 ATAAACACGATATCAATAGATTGACAATTGCAAGTGTAGGATGTTATCTTATAGTTCTGCGAAGATATT
 GTACTTGAGGCATAAGGAGAAATGACAGCATTCAAGAGCATGGGTTACCTGTAACTTAAAGAAGGAAGTATAGGA
 GAAGATAAAATTGAAGAAATGGCTAATAAGTCACGGATAATGGAACAAACTGTAGGACAATTGTAAGGAAATTAAATAAG
 ATGATATTGAAAAATTAAATTAGCTAAATAA

FIGURE 31

Seq. ID 56: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

VRDVIMENFIFKNATEIIFGKDTENLVGSKVKEYSKSDKILFCYGGGSIKRSGLYDRVIKSLENGIEFIELPGIKPNPRLGPVKEGIRLCR
ENNIKFVLSVGGGSSADTAKIAVGVPYKGDVWFYTGKAEVKEALPVGVVITLPATGTESSNNSVIMNEDGWFKGLNTVLIRPA
FSIMNPELTFTLPEYQTACGACDIMAHIMERYFTNVKHVDITDRLCEAALRNVINNAPIVLKDPKNYDARAEIMWTGTIAHNDVLS
AGRIGDWASHKIEHELSGETDIAHGAGLAIVFPAWMKYVYKHDINRFVQFAVRVWDLSYSSCEDIVLEGIRRMTAFFKSMGLP
VTLKEGSIGEDKIEEMANKCTDNGTKTVGQFVLNKDDIVKILNLAK*

Seq. ID 57: Nucleotide acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

ATGGAAGACAAGTTGAAAATTTAATTGAAATCCAAGATTATTTAATAGGAATCTATTCAACTTTAGAGCAAGTCACT
GGTTCTCGAGCATTTATTGTCAGATGCTATTATGGAAAACCTGGATATCTCAAAAAGTAATAGATTACCTAAGCAAAGC
TGGATAAGTTCCGTTGTTTACGGGGTACACCCCTGATCCAGACGTCATGTAATTGAGATGCAATGAAATTGACAAAAA
AAAGCAGCAGATGTTCTCGTAGCACTAGTGGAGGATCCAGTATTGATAACCGCTAAGGGAATAATGTTAGGCTATGTA
TTAGGAAAAGCAATGGCCAAGAAATGAAAAACCTCTATTGCAATTCCATACAACAGGGTACAGGCTCTGAAGTA
ACAAACTTACTGTTATTACTCTCAGAAAGAAAAGGTATGCATTAGATGTTATTGACCAAGATGTTGCAAACTTGAC
TCAAGTTGATTGATGGCTGCCTCAGCGTATTGAGCAGATACTGGTATAGATGTTCTAGTTCTATTGAAGCCTATGTT
TCCAAAAAAAGCAACTGACTTACAGACGCTTGTGCTGAAAAGCAGTTAAATTAAATTGAGAATCTTCAAAATTATAAC
GATAGTAAGGATTCCGAAGCTCGAGATCATGTTCAAAACGCTTGTATAGCAGGAATAGCATTACAATGCTGGCTTGG
AATTAAATCACAGCTGGCTCATGCTATGGGTGATCTTCCACATTCTCACGGCCGATCCAATGCACTTACTTAATGAGT
AATGGAATACAACGCTAGCTGGTGGAAATGCAAGCGAACATGCTATGGAAAAATACGCAAACACTAGCATCAATTCTACAC
CTTCAGCTCGAACAACTCGCGAAGGGCCTGTAAGTTATTGAAGCTGTAGATAAATTAAATAAAATCCCTAGGTGTTGAAGA
TAATATTGATCTCTGGGATTAAGAAGATGAGTTCAAAGTGTCTAAATCATATGGCAGAAACAGCAATGCAAGATAGAT
GCACTCCAACTAATCTAGAAAACCTCTAAAGAAGAACTTACATATTATCAAATGTTATTAA

FIGURE 32

Seq. ID 58: Amino acid sequence of butanol dehydrogenase of *C. autoethanogenum*:

MEDKFENFLKSKIYFNRESIQLLEQVTGSRAFIVADAIMGKLGYLQKVIDYLSKAGISSVVFVHDPDVNVIADAMKLYKKSDAD
VLVALGGGSSIDTAKGIMYFACNLGKAMGQEMKKPLFIAIPSTSGTSEVTNFTVITSQEKVCIIDDFIAPDVAILDSSCIDGLPQRIV
ADTGIDVLVHSIEAYVSKKATDFTDALAEKAVKLIFENLPKIYNSKDSEARDHVQNACIAGIAFTNAGLGINHSLAHAMGGSFHIP
HGRSNALLNAVMEYNASLGNASEHAMEKYAKLASILHLPARTTREGAVSFIEAVDKLIKSLGVEDNIRSLGIKEDEFQSALNHMA
ETAMQDRCTPTNPRKPSKEELIHYQKCY*

Seq. ID 59: Nucleotide of phosphate acetyl/butyryl transferase from *C. autoethanogenum*:

ATGGAAAAAATTGGAGTAAGGCAAAGGAAGACAAAAAAAGATTGCTTAGCTGAAGGAGAAGAAGAAAGAAACTCTTCAA
GCTTGTAAAAATAATTAAAGAGGGTATTGCAAATTAACTCTGTAGGGATGAAAAGGTATAAAAGAAAAAGCGTCAA
AATTAGGTGAAGTTAAATGGAGCAGAAATAGTAGATCCAGAGATTCAGATAAAACTAAAGGCATATGCAGATGCTTTTAT
GAATTGAGAAAGAAGAGGAATAACGCCAGAAAAGCGGATAAAATAGTAAGAGATCCAATATACCTTGCTACAATGATG
GTTAAACTGGAGATGCAGATGGATTGGTTCAAGTGCAGGTTCTACTACAGCGATCTTGAGACCGAGCTCAAATAGT
AAAGACAGCTCCAGGTACATCAGTAGTTCCAGTACATTATAATGGAAGTACCAAATTGAGTATGGTACATGGTACATGGTGTAC
TTCTATTGCTGATTGTGCTGAAATCCATGCCAGATAGTGTCAATTGGCTCAATTGCAATAAGTACAGCAGAAACTGCAA
AGAACTTATGTTGAATGGATCCAAGTAGCAATGCTTCAATTCTACTAAGGGAGTGCAAAACACGAATTAGTAGACAA
AGTTAGAAATGCTGTAGAGATTGCAAAAAAGCTAAACCGAGTTAAGTTAGACGGAGAATTACAATTAGATGCCTCTATC
GTAGAAAAGGGTCAAGTTAAAGGCTCTGGAGTGAAGTAGCAGGGAAAAGCAAATGTAATTGTTATTCCAGATCTCCAAG
CAGGAAATATAGGCTATAACTCGTCAAAGATTGCAAAGCAGATGCTATAGGACCTGTATGCCAAGGATTGCAAAC
TATAATGATTGCAAGAGGATGTAATTGATGATAGTAAATGTTAGCTGTAACAGCAGTTCAAGCACAAGCTCAA
AGTAA

Seq. ID 60: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. autoethanogenum*:

MEKIWSKAKEDKKKIVLAECEEERTLQACEKIKEGIANLILVGNEVKIKEKASKLGVSNGAEIVDPEISDKLKAYADAFYELRKKKGIT
PEKADKIVRDPYFATMMVKGADGLVSGAVHTGDLLRPLQIVKAPGTSVSSTFIMEVPNCEYDNGVLLFADCAVNPCP
DSDQLASIAISTAETAKNLGMDPKVAMLSFSTKGSAKHELVDKVRNAVEIAKKAKPDSLSDGELQLDASIVEKVASLKAPGSEVAG
KANVLVFPDLQAGNIGYKLVQRFAKADAIGPVCQGFAKPINDLRCNSDDIVNVVAVTAVQAQAK*

FIGURE 33 SUBSTITUTE SHEET (RULE 26)

Seq. ID 61: Nucleotide sequence of acetate/butyrate kinase from *C. autoethanogenum*:

ATGAAAATATTAGTAGTAAACTGTGGAAGTTCATCTTAAAATATCAACTTATTGATATGCAAGATGAAAGTGTGTAGCAAA
 GGGTCTTGTAGAAAGAATAGGAATGGACGGTCAATTAAACACACAAAGTTAATGGAGAAAAGTTGTACAGAGCAACCA
 ATGGAAGACCACAAAGTTGCTATAATTAGTATTAAATGCTCTTGTAGATAAAAACATGGTGTAAATAAAGACATGTCAGA
 AATATCCGCTGTAGGACATAGAGTTTGACGGTGGAAAGAAATATGCAGCATCCATTCTATTGACGAAAATGTAATGAAA
 GCAATAGAAGAATGTATCCCACCTAGGACCACTACATAATCCAGCTAATATAATGGAAATAGATGCTTGTAAAAAATTAATGCC
 AAATACTCCAATGGTAGCAGTATTGATACAGCATTTCATCAGACAATGCCAGATTGCTTATACTTATGCAATACCTTATGA
 TATATCTGAAAAGTATGATATCAGAAAATATGGTTTATGGAACCTCTCATAGATTGTTCAATTGAAAGCAGCTAAATTATT
 AAAGAAAAGATCCAAAAGATCTTAAGTTAATAACTTGTCAATTAGGAAATGGAGCTAGCATATGTGCAGTAAACCAAGGAAA
 GCAGTAGATACAACATGGGACTTACTCCTCTGCAGGACTTGTAAATGGGAACTAGATGCGGTGATATAGATCCAGCTATAAGT
 ACCATTGTAATGAAAAGAACAGGCATGTCTGTAGATGAAGTGGATACCTTAATGAATAAAAAGTCAGGAATACTGGAGTA
 TCAGGAGTAAGCAGTGATTTAGAGATGTAGAAGAAGCTGCAAATTCAAGGAAATGATAGAGCAGAAACTTGCACTTAAATATGT
 ATTATCACAAAGTTAATCTTCAAGGAGCTTATGTCAGTTAAATGGAGCAGATGCTATAATTTACGGCAGGACTG
 GAGAAAATTCAAGCAACTAGCAGATCTGCTATATGTAATGGATTAAGCTTTGGAAATTAAAATAGATGAAGAAAAGAATAA
 GAAAAGGGGAGAGGCACTAGAAAATAAGCACACCTGATTCAAAGATAAAAGTATTGAAATTCTACAAATGAAGAACTTATG
 ATAGCTAGGGATACAAAGAAAATAGTTGAAAATAATAA

Seq. ID 62: Amino acid sequence of acetate/butyrate kinase from *C. autoethanogenum*:

MKILVVNCSSSLKYQLIDMQDESVVAKGLVERIGMDGSILTHKVNGEKFVTEQPMEDHKVAIQLVLNALVDKKHGVIKDMSEISA
 VGHRLHGGKKAASILIDENVMKAIIEECIPLGPLHNPANIMGIDACKLMPNTPMVAVFDTAFHQTMPDYAYTYAIPYDISEKYDI
 RKYGFHGTSRHFVSIEAAKLLKKDPKDLKLITCHLNGASICAVNQGKAVDTMGLPLAGLVMGTRCGDIDPAIVPFVMKRTGMS
 VDEVDTLMNKKGILGVSGVSSDFRDVEEAANSGNDRAKLALNMYYHKVKSFIGAYVAVLNGADAIIFTAGLGENSATRSACNG
 LSYFGIKIDEENKKRGEALEISTPDSKIKVLVIPTNEELMIARDTKEIVENK*

FIGURE 34

Seq. ID 63: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*:

GTGGAAGAATTGAAAATTGACAAAGCTAAAAAATTATAGGTGCAAGAGGGTTAGGCCTAAAAACCTTATTGACGAAGTA
 GATCCAAAGGTAGATCATTACACCTGATAACAAATTATTATAGCAGCGGGACCACTTACAGGTGCACCTGTTCCAACAAG
 CGGAAGATTCACTGGTAGTTACTAAATCACCTTAACAGGAACATTGCTATTGCAAATTCAAGGTGAAAATGGGGAGCAGAA
 TTCAAAGCAGCTGGATACGATATGATAATCGTGAAGGTAATCTGATAAAAGAAGTTATGTAATATAGTAGATGATAAAG
 TAGAATTAGGGATGTTCTCATGTTGGGAAAACTAACAGAAGAACTACAAAATGCTTACAGGAAACAGATTGAG
 AGCTAAGGTTTATGCATAGGACCAGCTGGGAAAAGTTACTTATGGCAGCAGTTGAATGATGTTGATAGAACAGCA
 GGACGTGGTGGTGGAGCTTTAGGGTCAAAGAACTAAAGCTATTGAGTTAAAGGAAGCGGAAAGTAAAATT
 TTTGATGAACAAAAGTGAAGGAAGTAGCACTTGAGAAAACAATTAAAGAAAAGATCCAGTAGCTGGTGGAGGACTTC
 CAACATACCGAACAGCTGACTTGTAAATTATAATGAAATGGTGTACATCCAGTAAGAATTTCAAAATCTTATACA
 GATCAAGCAGATAAGATCAGTGGAGAAACTTAACTAAAGATTGCTTAGTTAGAAAAAACTCTGCTATAGGTGTCCAATTG
 CTGTGGAAAGATGGTAAAACCTGATGATGGAACCTGAATGTGGAGGACCAATATGAAACATTATGGTCAATTGGATCTGAT
 TGTGATGTATACTGATATAATGCTGAAATACAGCAAATATGTTGTAAATGAAATATGGACTAGATACCATTACAGCAGGATG
 TACTATTGCACTGAGCTATGGAACTTATCAAAGAGGTTATTAAGGATGAAGAAATAGCAGCAGATGGATTGTCACCTAATT
 GGGGAGATGCTAAGCCATGGTTGAATGGGAAAGAAAATGGGACTTAGAGAAGGATTGGAGACAAGATGGCAGATGGT
 TCATACAGACTTGTGACTCATCGGTGTACCTGAGTATTCAATGACTGTAACAAAACAGGAACCTTCAGCATATGACCAAG
 AGGAATACAGGGACATGGCATTACTTATGCTGTTAACAAATAGGGAGGATGTCACATTAAGGGATATATGGTAAAGTCTGAA
 ATACTGGCTATCCAGAAAACCTGATAGACTGCACTGGAGGAAAAGCAGGATATGCTAGAGTATTCCATGATTAAACAG
 CTGTTATAGATTCACTGGATTATGTTACACATTGGTCTGGTGCACAGGATTGTTGATATGTTAAATGCACTGAGTAG
 TTGGTGGAGAATTACATGATGTAATTCTTAAATGTTAGCTGGAGATAGAATATGGACTTAGAAAAAAATTAACTTAAAC
 GCAGGCATAGATAGTCACAGGAACTCTTCAAAGAGATTGCTGAAGAACAAATTCCAGAAGGACCATCAAAGGAGAA
 GTTCATAAGTTAGATGTAACCTGAATATTACAGTACGTGGATGGATAAAATGGTATTCCACAGAGGAAACGTT
 AAAGAAATTAGGATTAGATGAATACGTAGGTAAGCTTAG

Seq. ID 64: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*:

MEELKIDAKKFIGARGLGVKTLFDEVDPKVDPLSPDNKFIIAGPLTGAPVPTSGRFMVTKSPLTGTIAIANSGGK
 YDMIIVEGKSDKEVYVNIVDDKVEFRDASHVWGKLTETTKMLQQETDSRAKVLCLGIPAGEKLSLMAAVMNDV
 DRTAGRRGVGA
 VMGSKNLKAIIVVKGSVKLFD EQKVKEVALEKTNILRKDPVAGGGPLTYGTA
 LVNIINENGVHPVKNFQKS
 YTDQADKISGETLT
 KDCLVRKNPCYRCPIACGRWVKLDGTECGGPEYETLWSFGSDCDVYD
 INAVNTANMLCNEYGLDTITAGCTIAAMELYQRGYI
 KDEEIAADGLSLNWGDAKSMVEWVKKMGLREGFDK
 MADGSYRLCDSYGVPEYS
 MVTKKQELPAYDPRGIQGHGITYAVNNR
 GGCHIKGYMVSPEILGYPEKLDRLAVEGKAGYARVFHDLTA
 VIDSLGLCIFTFGLGAQDYV
 DMYNAVVGELHDVNSLMLAGDRI
 WTLEKIFNLKAGIDSSQDTLPKRL
 LEEQIPEGPSKGEV
 HKLDVLLPEYYSVRGWD
 KNGIPTEETLKKLGLDEYVGKL*

FIGURE 35

Seq. ID 65: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*:

ATGTATGGTTATGATGGTAAAGTATTAAGAATTAAATTAAAAGAAGAACTTGCAAATCAGAAAATTAGATTA
 GATAAAGCTAAAAGTTATAGGTTGTAGGGGACTAGGTGTTAAACCTTATTGATGAAATAGATCCTAAAATA
 GATGCATTATCACCAAGAAAATAATTATAATTGTAACAGGTCTTAACTGGAGCTCCGGTTCCAACACTAGTGGAA
 GGTTATGGTAGTTACTAAAGCACCCTACAGGAACATAGGAATTCAAATTGGGGAAAATGGGGAGTA
 GACTTAAAAAAAGCTGGTGGGATATGATAATAGTAGAGGATAAGGCTGATTCAACAGCTTACAGAAACTACAAAAGAGTTAGA
 GATGATAAGGTAGAAATTAAAGACGCGTCACAGCTTGGGAAAAGTTACATCAGAAACTACAAAAGAGTTAGA
 AAAGATAACTGAGAATAATCAAAGGTATTATGTATAGGACCTGCTGGTGAACGATTGTCTTATGGCAGCAGT
 TATGAATGATGTAGATAGAACTGCAGCAAGAGGCAGGGCGTGGTCAGTTATGGGATCTAAAACCTAAAAGCTA
 TTACAGTTAAAGGAACCTGGAAAAATAGCTTAGCTGATAAAAGAAAAAGTAAAAAAAGTGTCCGTAGAAAAAAATT
 ACAACATTAAAAAAATGATCCAGTAGCTGGTCAGGGAAATGCCAACTTATGGTACAGCTACTGGTTAATATAATA
 AATGAAAATGGAGTTATCCTGAAAGAATTTCAGAGTCTTACAGCTGCTTACAGCTGCTTACAGGTTGGAAGATGGGTTAGA
 CTAAAGATGGCACAGAGTGGCGGAGGACCAGAAATGAAACACTGTGGTGTGGATCTGACTGTGGTCATA
 TGATTTAGATGCTATAATGAAGCTAATGTTATGTAATGAATATGGTATTGATACTATTACTGTGGTCAACA
 ATTGCTCAGCTATGGAACCTTACAAAGAGGATATATAAAAGACGAAGAAAATAGCTGGAGATAACCTATCTCTC
 AAGTGGGGTGTACGGAATCTATGATTGGCTGGATAAAAGAGAATGGTATATAGTGAAGGCTTGGAGCAAAGA
 TGACAAATGGTTCATATAGGCTTGTGAAGGTTATGGAGCACGGAGTATTCTATGACAGTTAAAAGCAGGAA
 ATTCCAGCATATGATCCAAGGGGAAATACAGGGACACGGTATTACCTATGCAGTTAATAATAGAGGAGGCTGTC
 TATTAAGGGATACATGATTAACCTGAAATATTAGGTTATCCTGAAAAACTTGATAGATTGCTTACAGTTAATAGGAGGCTGTC
 GCAGCTTATGCCAAATTATTCTATGATTAACCTGCTGTAATTGATTCTTAGGATTGTGCATATTCACTACATTGG
 GCTTGGAAATCAGGATTATGTAGATATGTATAATGCAGTAGTAGGAGAATCTACTTATGATGCAGATTCACTATT
 AGAGGCAGGAGATAGAATCTGGACTCTGAGAAATTATTAATCTGCACTGGAAATAGACAGCAGCCAGGATA
 CTCTACCAAGAGATTGTTAGAAGAACCTATTCCAGATGGCCATCAAAGGGAGAAGTTCATAGGCTAGATGTT
 TTCTGCCAGAATATTACTCAGTACGAGGATGGAGTAAAGAGGGTACCTACAGAAGAAACATTAAGAAATT
 GGATTAGATGAATATAGGTAAGTTCTAG

Seq. ID 66: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. autoethanogenum*:

MYGYDGKVLRINLKERCKSENLDLDAKFKFIGCRGLGVKTLFEDIPKIDALSPENKFIIVTGPLTGPVPTSGRFMVVT
 KAPLTGTIGISNSGGKWGVDLKKAGWDMIIVEDKADSPVYIEVDDKVEIKDASQLWGKVSETTKELEKITEKSKVLC
 IGPAGERLSLMAAVMNDVDRTAARGGVGAVMGSKNLKAITVKGTGKIALADKEVKVVSEKITTLDKNDPVAGQGM
 PTYGTAILVNIINENGVHPVKNFQESYTNQADKISGETLTANQLVRKNPCYSCPIGCGRWVRLKDGTGCGPEYETLW
 CFGSDCGSYDLDANEANMLCNEYGIDTICGATIAAAMELYQRGYIKDEEAGDNLSLKWDGTESMIGWIKRMVYSE
 GFGAKMTNGSYRLCEGYGAPEYSMTVKKQEIPADPRGIQGHHGITYAVNNRGGCHIKGYMINPEILGYPEKLDRAFD
 GKAAYAKLFHDLTAVIDSLGLCIFTFGLGIQDYVDMYNAVGESTYDADSLEAGDRIWTLKLFNLAAAGIDSSQDTLP
 KRLLEPIPDPGSKGEVHRLDVLLPEYYSVRGWSKEGIPTEETLKKLGLDEYIGKF*

FIGURE 36

Seq. ID 67: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. ljungdahlii*:

ATGAAGGTAACTAAGGTAACTAACGTTGAAGAATTAAATGAAAAAGTTAGATGAAGTAACGGCTGCTAAAAGAAATTCTA
 GCTATACTCAAGAACAAAGTGGATGAAATTTCAGGCAGCAGCTATGGCAGCCAATAGTCTAGAATAGACTAGCTAAAT
 GGCAGTGGAAAGAACGGAAATGGATTGAGAAGACAAGGTCAATAAAATCATTTGTTGCAGAGTATATATAACAA
 ATATAAGGGTAAAAACCTGTGGAGTCTGGAACAAGATGAAGGCTTGGTATGGTAAAGTGCAGAACCTGTAGGGAGT
 TATTGAGCAGTAGTCCCAACAACATCTACAGCAATATTAACATTTAACTACAATAGCTTAAAAGTAGAAATGGTAT
 AGTTTTCGCCACATCCAAGGGCAAAAAAACTACTATTGAGCAGCTAAGATAGTACTTGATGCTGCAGTAAAGCTGGT
 CTCCTGAAGGAATTATAGGATGGATAGATGAACCTTCTATTGAACTTTCACAGGTGGTAATGAAAGAAGCAGATCTAATTCTT
 GCAACTGGTGGACCAGGTATGGTAAAGGCTGCCTATTCTCAGGAAGCCTGCTATAGGAGTTGGTCAGGTAACACGCTG
 CTGTAATTGATGAAAGTGTGACATTAATGGCAGTAAATTCAACTATTATCAAAAACCTTTGATAATGGTATGTTGTG
 CTCAGAGCAGTCAGTAGTAGTTGCAAGCTCAATATACGGATGAAGTCAGAAGAGTTGAGCAGATAGAGGAGCATATAT
 AAGTAAGGATGAAACAGAGAAGGTTGGAAAAAAACATTATAATTAAATGGAGCCTTAAATGCTGGCATTGTAGGGCAAAGTGC
 TTTAAAATAGCAGAGTGGCAGGAGTGAGTGTACCAAGAGATGCTAAAGTACTTATAGGAGAAGTTAAATCAGTAGAACCG
 GAAGAAGAGCCCTTGCGCATGAAAAGCTATCTCCAGTTAGCTATGTACAAAGCAGGAAAGATTGACGAAGCAGCCTCAA
 GGCTGGAAGATTAGTTGAAACGAGGTGGATTGGCATACTGTATTATATGAAATGCAATGACGGAAAAAGTAAAGGT
 AGAAAAGTTCAGAGAAACTATGAAGACTGGTAGAACATTGATAAAATGCTTCAGCACAAGGTGCTATAGGAGATATAT
 AACTTAAAGCTAGCTCTTCTTGACACTAGGTTGTTGGTCTGGGAGGAAACTCTGATAGCAGAAAATGTTGGCTAAACA
 TTATTAAACATAAAAGAGTGTGAGAGGAGGAAATATGCTTGGTTAGAGTACCTGAAACGGATAAGTTCTTATCA
 GTAGTCTGGAGTTGCACTAAAAGAACTGAGAATTATGGAGAAGAAAAGGCTTATAGTACGGATAAAAGTTCTTATCA
 ATTAGGTTATGTAGATAAAATTACAAAAAATCTGGATGAATTAAAGAGTTCTATATAAAATATTACAGATGTAGAACAGATC
 CAACCCCTTGCTACAGCTAAAAAAGGTGCAGCAGAACTGTTAGCTTGAACCGAGTACAATTAGCAGTCGGTGGTGGT
 AGCAATGGATGCAGCCAAGATCATGTTGGTAAATGTATGAGCATCCAGAAGTAAGGTTGAAGGTTAGCTATGAGATTG
 GATATAAGAAAGAGAGTGTATGTTCCCTAAATGGAGAAAAGGCAATGATGATTCTAGTAGCAACATCCGAGGAACA
 GGGTCGGAAGTTACGCCATTGAGTAAACGGATGAAAGAACAGGAGCTAAATCTCTGGCTGATTAGTGAATTGACT
 CAAACATGGCTAGTTGATGCAAGACTTATGATGGGAATGCCAAGGGACTAACAGCAGCTCAGGTATAGTCATTAAC
 CCATGCGCTGGAGGCCATGTATCAATAATGGCTCAGAATATACCAATGGATTGGCTCTGAAGCAACAAGATTAGTATT
 AATATTGCAATAGCTTATACAGAAGGTACAACATAATGTAAGGCAAGAGAAAAATGGCTATGCTCATGTATTGAGGT
 ATGGCCTTGCAATGCTTGTAGGGTATGCCACTCCATGGCACATAATTGGAGCACAGCACCACATACCACATGGAAT
 TGCCAATGCACTTATGATAGATGAAGTTAAAGTCAATGCTGTAGAGGCTCCAGGAAACAAGCGGCATTCCACAATATA
 AATATCCAATGTTAAAGAAGATATGCTAGAATAGCTGATTACTTAAATTAGGTTGAAGTACAGATGATGAAAAAGTACA
 ATTGTTAATAATGCTAGATGACTGAAACCAAGTTAAATATTCAAAGACTTAAAGAACGGAGTTCTAGAGATA
 ATTCTATGCTACTTGTAGATACATGTCAGAACTGGCTTGTGATGCAATGTACAGGAGCTAACAGATATCCATTAAATAG
 GAGAAATAAAACAAATGTATATAATGCTTGTAGACACCAAAGGCAACTGTGGAGAAGAAAACAAGAAAAGAAAAATAA

FIGURE 37

Seq. ID 68: Amino acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. ljungdahlii*:

MKVTKTNVEELMKKLDEVTAQQKKFSSYEQVDEIFRQAAMAANSARIDLAKMAVEESGMGIVEDKVIKNHFVAEYIYNKYKG
 EKTCGVLEQDEFGFMVRIAEPVGIAAVVPTTNTSTAIFKSLIALKTRNGIVFSPHPRAKKSTIAAKIVLDAAVKAGAPEGIIGWID
 EPSIELSQVMKEDALILATGGPGMVKAAYSSGKPAIGVPGPNTPAVIDESADIKMAVNSILLSKTFDNGMICASEQSVVVASSIYD
 EVKKEFADRGAYILSKDETEKVGTIIINGALNAGIVGQSAFKIAQMAGVSVPEDAKVILIGEVKSVEPEEEFAHEKSPVLAAMYKAK
 DFDEALLKAGRVERGGIGHTSVLYVNAMEKVKVEKFRETMKTGRTLNMPMSAQGAIGDIYNFKLAPSLTLGCGSWGGNSVSEN
 VGPKHLLNIKSVAERRENMLWFRVPEKVFYKYGSLVALKEIMKKAFIVTDKLYQLGYVDKITKNLDELRSYKIFTDVEPDPT
 LATAKKGAAELLAYEPDTIIVGGGSAMDAAKIMWVMYEHPEVRFEDIAMRFMDIRKRVVVFPMGEKAMMISVATSAGTSE
 VTPFAVITDERTGAKYPLADYELTPNMAIVDAELMMGMPKGTLAASGIDALTHALEAYVSIMASEYTNGLAETRLVFKYLPIAYT
 EGTTNVKAREKMAHASCIAGMAFANAFLGVCHSMALKLGAQHHIPHGIANALMIDEVIKNAVEAPRKQAAPQYKYPNVKRRY
 ARIADYLNLGGSTDDEKVQFLINAIDDLKTKLNPKTIKEAGVSEDKFYATLDTMSELAFDDQCTGANPRYPLIGEKQMYINAFTDPK
 ATVEKKTRKKK*

FIGURE 38

Seq. ID 69: Nucleotide acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. ljungdahlii*:

ATGAAAGTTACAAACGTAGAAGAACTAATGAAAAGACTAGAAGAAATAAGGATGCTAAAAGAAATTGCTACATATAACTC
 AAGAACAAAGTGGATGAAATTAGACAAGCAGCTATGGCAGCTAATAGTCTAGAATAGAACTAGCTAAAATGGCAGTAG
 AAGAAAGCGGAATGGGAATTGTAGAAGACAAGGTCTTAAACACTTGCCTCAGAATATATATAACAAATATAAGGA
 TGAAAAAAACCTGTGGAGTTAGAGAGAGATCAGGATTGGTATAGTTAGAATTGCGGAACCTGTAGGAGTTATCGCAGCA
 GTAGTTCCAACAACATACTAACATCTACAGCAATTAAATCACTAATAGCTTAAACACTAGAAATGGTATAATTTCAC
 CCCATCCAAGGGCAAAGAAATCAACTATTGCAAGCTAAATAGTACTTGACGCTGCAGTTAAGCTGGTCTCCTGAAGG
 AATTATAGGATGGATAGATGAACCTTCATTGAACTTTCACAGGTGGTATGGGAGAAGCAAATTAAATTCTGCAACTGGTG
 GCCCCGGGTATGGTTAAGGCTGCCTATTCTCAGGCAAACCTGCTGTGGGAGTTGGTCCAGGTAAACACACCTGCTGTAATTGAT
 GAAAGTCCCACATTAAATGGCAGTAAATTCAATTAACTATCAAAGACTTTGATAATGGTATGTTGTGCCTCAGAGCA
 GTCAGTAATAGTTAGACTCAATATGAGGAAGTTAAAAAGAATTGCTTATAGGGGTGCTTATATATTAAAGTAAGGATG
 AAACAGATAAGGTTGAAAAATAATTAAATGGGAGCTTAAATGCAAGGTATTGAGGAAACCTGCTTTAAAGC
 ACAGCTGGCAGGAGTGGATGTACAGAAAAAGCTAAAGTACTTATAGGAGAGGTAGAATCGGTAGAACCTGAAGAACCTT
 TTCTCATGAAAAGTTATCTCCAGTTAGCTATGTACAGGGCAAGAAATTGAGGATGCCATTGCAAAACTGATAAAACTGG
 TTAGGTCAAGGTGGATTGGACATACATCTTCATTATGTAAATCCAATGACAGAGAAAAGCAAAGTAGAAAAATTAGTACT
 ATGATGAAAACATCAAGAACTATAATTAAACACACCTCATCCAAGGTGGTATAGGTGATATATAACTTAAACTAGCTCCT
 TCTTGACATTAGGCTCGGGTCTGGGGAGGAAATTCTGTATCCGAAATGTTGGCCTAAACATTATTAAACATAAAAAG
 TGTTGCTGAGAGGAGAGAAAATGCTTGGTTAGAGTACCTGAAAAGGTTATTCAAATATGGTAGTCTGGAGTTGCAT
 TAAAAGAATTAAAAGTTGAATAAGAAGAAAGTATTAGTAACAGATAAAAGTCTTATCAATTAGTTATGTGGACAAA
 GTTACAAAAGTTCTGAGGAACCTAAATTCTTATAGGTATTACAGATGTAGAACCCAGATCCAACCTTGCACAGCTAA
 AAAAGGTGCAGCAGACTGCTTCTATGAACCGGATACAATTATCAGTTGGTGGCTCAGCAATGGATGCAGCTAAG
 ATCATGTTGGTAATGTATGAGCATCCAGAAGTAAATTGAGATTAGCTATGAGATTATGGATAAGAAAGAGAGTAT
 ATGTTTCCCTAAGATGGGAGAAAAGGCAATGATGATTCACTGAGTACACATCCGCAAGGGTGGAGTTACTCCATT
 TGCACTGAACTCACTGATGGGAGGACTAACAGCTGAGTACAGCAGCTGGGTATAGATGCATTAAACCATGCACTGGAGGCATATGT
 CAGAACTTATGATGGGAATGCCAGAGGACTAACAGCTGAGTACAGCAGCTGGGTATAGATGCATTAAACCATGCACTGGAGGCATATGT
 GTCAATAATGGCTACAGAATTACCAATGGATTAGCCCTTGAAGCAGTAAAGTTGATATTGAAATATTACCAAAAGCTTATA
 CAGAAGGTACAACATAATGTAAGGCAAGAGAAAAGATGGTCTATGCTTATGTTGAGTACACTCCAGACATGGCTATAGTTGATG
 TTTAGGGTATGCCACTCTATGGCACATAAATTGGGAGCAGCATCACATACCACATGGAATTGCCATGCACTTATGATG
 ATGAAGTTAAAATTCAATGCTGTAGATGATCCAATAAAACAAGCTGCATTCCCAATACGAGTATCCAATGCTAGGT
 AGATATGCTCAGATAGCTGATTGCTGAACCTGGGAGGAAATACAGAAGAGGAAAAGGTACAACATATTAAATGCTATAG
 ATGATTTAAAGCTAAAGTTCCAGAAACTATAAAAGAAGCAGGAGTTCAAGGATAATTCTATGCTACTTATG
 AAAATGTCAGAATTAGCTTGTAGTGTACAGGAGCTATCCAAGGATACTGACTGAAATAAAACAAATGTA
 TATAAAATGTTTGATAAAACCGAACCAATTGTTAGAAGGATGAAGAAAAGTAA

FIGURE 39

Seq. ID 70: Amino acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase of *C. ljunghdahlii*:

MKVTNVEELMKRLEEIKDAQKKFATYTQEVDIFRQAAMAANSARIELAKMAVEESGMGIVEDKVIKNHFASEYIYN
 KYKDEKTCGVLERDAFGIVRIAEPVGIAAVVPTTNPSTAIFKSLIALKTRNGIIFSPHPRAKKSTIAAKIVLDAAVKAG
 APEGIIGWIDEPSIELSQVMGEANLILATGGPGMVKAAYSSGKPAVGVGPGNTPAVIDESADIKMAVNSILLSKTFDN
 GMICASEQSVILDSIYEEVKEFAYRGAYILSKDETDVKVGIILKNGALNAGIVGQPAFKIAQLAGVDVPEKAKVLIGEV
 ESVELEEPSHEKLSPLVAMYRARNFEDAIAKTDKLVRSGGFGHTSSLVNPMTKEAKVEKFSTMMKTSRTIINTPSSQ
 GGIGDIYNFKLAPSLLCGGSWGGNSVSENVGPKHLLNIKSVARENMLWFRVPEKVFYKGSLGVALKELKVMNKK
 KVFIITDKVLYQLGYVVDKVTKVLLELKISYKVFTDVEPDPTLATAKKGAAELLSYEPTDIISVGGGSAMDAAKIMWVMY
 EHPEVKFEDLAMRFMDIRKRVYVFPKMGEKAMMISVATSAGTGSEVTPFAVITDEKTGAKYPLADYELTPDMAIVDA
 ELMMGMMPRLTAASGIDALTHALEAYVSMATEFTNGLALEAVKLFYLPKAYTEGTTNVKAREKMVHASCIAGMAF
 ANAFLGVCHSMMAHKLGAQHHIPHGIANALMIDEVIKFNNAVDDPIKQAAFPQYEYPNARYRYAQIADCLNLGGNTEEE
 KVQLLINAIDDLKAKLNIPIETIKEAGVSEDKFYATLDKMSLAFDDQCTGANPRYPLISEIKQMYINVFDKTEPIVEDEEK*

Seq. ID 71: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. ljunghdahlii*:

TTGGAAAATTTGATAAAAGACTTACGTTCTATACAAGAACAAATTGATAAAATCCTATGTAATATGGTAGGGTAGCAGAACAAAT
 GCAGTTGCCTGGAAAATGGCTGCAGAACAACTGGTTGGAAAAGCTGAAGATAAGGCTTATAAGAACCA
 TATGGCTGCTACTACAGTATATAATTACATCAAGGATATGAAGACTATTGGTTATAAAAGAACATAAAAGTGA
 AGGTGTAATTGAAATTGAGAACCACTGGTTATTATGGTATTGTACCATCTACAAATCCAACATCTACTGTT
 ATTTATAATCAATCATTGCAATTAAATCAAGAACATGCAATTGTATTCTCACCACACCCAGCTGCATTAAATGTT
 AACAAAGCAATAGAACCTATGCGTATGCGCAGCAGTAGCAGCAGGAGCTCTGCATAATGTAATTGGTGGTATTG
 TTACACCATCTATACAAGCTACAAATGAACCTATGAAAGCTAAAGAACGTTATGATAATTGCAACTGGAGGCC
 CTGGAATGGTAAAGGCTGCATATAGTCAGGAACACCTGCAATAGCGTGGCTGGTAACTCTCATCTATA
 TTGAAAGAACCTGCTGATGTTCATCAATCAGTTAAAGATATAATAGCTAGTAAGAGTTTGACTATGGTACTATTG
 TGCATCCGAGCAGCTGTAAATTGAGAACATGCAACCAGTATGAAAGTAGCTGAATTAAAGAACAGGCC
 GATATTCATGACAGCTGAAGAACACTGCAAAAGTTGCAGCGTACTTTAACCTGGTACACACAGCATGAGCG
 CTAAGTTGTAGGAAGAGCTCCCTCAGGTTATAGCAGAACGCTGCAGGTTACAGTCCAGAACAGAACAAAGTA
 TTAATAGGAGAACAAAGCGGAGTTGTAATGGTACCCCTATCTTATGAGAACCTACAACAGTACTGCTTCT
 ATACAGTTAAAGATTGGCATGAAGCATGTGAGCTAGTATAAGATTCTCAAATGGTCTGGACATACAATGA
 ACATTCTACAAATGATAGAGACTTAGTAATGAAGTTGCTAAAAAACAGCATCCGTATCTAGTTAATACTGG
 TGGAAAGCCAGGGAGGTACTGGTCAAGCACAGGATTAGCACCTGCATTACATTAGGTTGGTACATGGGAG
 GAAGCTCTGTTCTGAAAATGTTACTCCATTACATTAAATCAATATAAAGAGAGTAGCATATGGCTAAAGATTG
 TACTACATTAGCTGCAGACGATACAACTTCAATCATCCTGAACTTGCAGAACAGCAATTGATAGCACTGCTGCAGATACTGATAATGATAAA
 CTTGCTAGACTCGTAAGTGAATTAGTAGCTGCAATGAAGGGAGCTAACTAA

FIGURE 40

Seq. ID 72: Amino acid sequence of butyraldehyde dehydrogenase of *C. ljungdahlii*:

MENFDKDLRSIQEARDLARLGKIAADQIADYTEEQIDKILCNMVRVAEENAVCLGKMAAEETGFGKAEDKAYKNHMA
 ATT VNYIKDMKTIKGVIKEDKSEGVI EFAEPVGLLMGIVPSTNPTSTVIYKSI IAIKSRNAIVFSPHPAALKCSTKAIELMRD
 AAVAAGAPANVIGGIVTPSIQATNELMKAKEVAMIATGGPGMVKAAYSSGTPAIGVGAGNSPSYIERTADVHQSVK
 DIIASKSF DYGTCASEQS VIAECNHDEI VAEFKKQGGYFMTAEETAKVCSVLFKPGTHSMSAKFVGRAPQVIAEAAGF
 TVPEGTKVLIGEQGGVGNGYPLSYEKLTTVAFYTVKDWHACELSIRLLQNLGHTMNIHTNDRDLVMKFAKKPASR
 ILVNTGGSQGGTGASTGLAPAF TLGCGTWGGSSVSENVTPHLINIKRAYGLKDCTLAADDTFNHP ELCGSKNDL
 GFCATSPAFAAKSNCDSTAADTTDNDKLARLVSELVAAMKGN

Seq. ID 73: Nucleotide acid sequence of butyraldehyde dehydrogenase of *C. ljungdahlii*:

ATGAATATTATTGATAATGATTGCTCTCCATCCAAGAATCCGAATCCTGTGGAAATGCTGCACGAGCACAAA
 AAATGTTAGCAACCTTCCACAGAAAAGCTAGATGAGATTGTTAACGTATGGCGGAAAGAAATCGGAAAACAT
 ACCCGAGAGCTTGTGTAATGTCACAGGATGAAACTGGTTATGGAAAATGGCAGGATAATGCATCAAAACCG
 ATTTGCCTGTGAGTATTGCCAGCTAACGTTAGAGGAATGCGATGTGTAGGTATTATAATGAAAATGGTCAGGA
 TAAGACCATGGATGTAGGTGTACCTATGGGTGTAATTATTGCATTATGTCTGCAACTAGTCGGTTCTACTACC
 ATATATAAGGCATTGATTGCAATTAAAGTCTGGTAATGCAATTATCTTTCTCCACATCCTAGAGCAAAGGAGACAA
 TTTGTAAGGCCTGACATCATGATTCTGCAGCTGAAGGATATGGGCTTCCAGAAGGAGCTTGCTACTTAC
 ATACTGTGACGCCTAGTGGAACATCGAACATTGATGAACCATATTGCACTTGTGATTATGAATACAGGTGTTCC
 CGGGATGCTAAAGCAGCATATAATTCTGGAAACCTGTTATATGGAGGAACCTGGTAATGGACCAGCATTAT
 TGAACGTACAGCTGACATCAAACAGGCCTAAAGATATTGCTAGTAAGACCTTGATAACGGAATAGTAC
 ATCAGCTGAACAATCTATTGTTGATAGCTGTGTCATCTGATGTTAACGTGAGTTGCAAAATAATGGTGC
 ATATTCATGACAGAGGAGGAAGCACA AAAACTAGGTTCTCTTTCCGTTCTGATGGCAGTATGGATT CAGA
 AATGGTTGCAATCCGACAAAGATTGGCTAAAAGCAGGTTTCAGCATTCTGAAAGTAGCACAGTGCTAAT
 TTCAGAGCAGAAATATGTTCTCAAGATAATCCTTATTCAAGGAGAAACTTGCCGTTACTAGCTTACTACATT
 GAAGATGATTGGATGCATGTGAAAGTGATTGAACTGCTGTTAAGTGAGAGACATGGTCACACTCTGTT
 ATACATC AAAAGACGAAGATGTAATTGCCAGTTGCATTAACCTGTAGGTAGGATACTGTTAATACG
 CCTGCTCTTGGTAGTATGGGTGCTACAAGTAATTATTCCTGTTAACCTTAGGTAGTGGATCGGCAGGTA
 AAGGTATTACCTCCGATAATGTTCACCAATGAATCTTACAGTCCGAAAGTCGGATATGGCTACGGAAATGT
 AGAAGAGATTGTCAACTAATGGATTGTTACAGAAGAAAAAGTGATTGAATGGAAATGACAAAAAAAGTCAG
 ACTATAATCCAGAGGATACAAATGTTACAGCATTTAAAAAAAGCTATGGAAAAAATTAAATAG

Seq. ID 74: Amino acid sequence of butyraldehyde dehydrogenase of *C. ljungdahlii*:

MNIIDNDLSSIQESRILVENAARAQKMLATFPQEKLDEIVERMAEEIGKHTRELAVMSQDETGYGKWQDKC1KNRFAC
 EYLPALKRGMRCVGIINENGQDKTMVDPGVPMVIIALCPATSPVSTIYKALIAIKSGNAIIFSPHPRAKETICKALDIMIR
 AAEGYGLPEGALAYLHTVTPSGTIELMNHIATSLIMNTGPGMLKAAYNSGKPVYGGTGNGPFIERTADIKQAVKDI
 IASKTFDNGIVPSAEQSIIVDSCVASDVKRELQNNGAYFMTEEEAQKLGSLSFRSDGSMDEMVGKSAQRLAKKAGFS
 IPESSTVILSEQKYVSQDNPYSKEKLCPVAYIYEDDWMHACEKCI LLSERHGHTLVIHSKDEDVIRQFALKPVGRILV
 NTPASFGSMGATSNLFPALTGSGSAGKGITSDNVSPMNLIYVRKVGYGVRNVEEIVNTNGLTEEKSDLNGMTKSD
 YNPEDIQMLQHILKKAMEKIK*

FIGURE 41

Seq. ID 75: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

ATGGCAAGATTACTTACCAAGAGACATTATTTGGAGAAATTCAATTAGAAACCTTGAAAGACCTAGATGGA
 AAAAAAGCTTATTGTCGTAGGTGGTGGATCCATGAAACGATTGGATTCTTGTATAAGGTAGTAAACTACTTA
 AAAGAACGGTATTGAATCAAATTAGAAGGAGTTGAACCAGATCCATCTGTAGAAACTGTTATGAATGG
 CGCTAAACTAATGAGAGAATATGAACCAGATTTAATAGTATCAATAGGTGGAGGTTACCAATTGACGAGCAA
 AGCTATGTTGATATTCTATGAATACCCGTAGTTACTTTAAAGAGGCTGGTCCCTTGGCTTCTAAATTAA
 GACAAAAGCAACATTATAGCTATACCTTCTACAAGTGGTACTGCAACAGAAGTAACGGCATTTCTGTAAATAAC
 AGACTATAAGCTAAATTAAATACCTTAGCTGACTTCAATTAAACACCAGATAGCTATAATTGATCCAGCAT
 TAGCTCAAACAATGCCACCTAATTAACTGCACATACTGGAATGGATGCACCTACCCATGCTATTGAAGCATATGT
 TGCAGGACTTCATTCACTTCTCAGATCCTTGCTATTCAAGCTATAGTTAGGTAAATCAGTATTAAATTAAAT
 CTTACAATGAAGATAAAGAAGCTAGAAACCAAATGCATTAGCTCAATGTTAGCTGGATGGCATTTCAAATG
 CACTTCTGGATAACTCACAGTTAGCACATAAAACAGGTGCACTATTCCATATCCCTATGGATGTGCCAATGC
 AATATATCTCCTTATGTTAGATTCAATAAAAAGCTTGTGACCAAGATATGCTGAAATAGCTAGGAGTCTT
 AAACCTCCAGGAATAACTGATGATGAATTAGTAGATTCAACCAACATGATTAAAGATATGAATAAGAGTATG
 GATATTCTTAAACATTAAAGATTACGGAGTAGATGAAAAAGATTAAAGATAGTGAAGATTAGCTCAC
 AATGCCGTATTAGATGCCTGACTGGATCAAATCTAGAAGTATAATGATACTGAAATGAAAAAGTTATTAGAA
 TACATCTATTATGGTAAAAAGGTTGATTTAA

Seq. ID 76: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

MARFTLPRDIYFGENSLETLKLDGKKAVIVGGGSMKRGFLDKVNVYLKEAGIESKLIEGVEPDPSVETVMNGAKL
 MREYEPDLIVSIGGSPIDAAMWIFYYPEFTFKEAVVFPGLPKLRQKATFIAIPSTSGTATEVTAFSVITDYKAKIKYP
 LADFNLTDPDIAIDPALAQTMPPLTAHTGMDALTHAIEAYVAGLHSVFSPLAIQAVIMVNQYLIKSYNEDKEARNQ
 MHLAQCLAGMAFSNALLGITHSLAHKTGAVFHIPHGCANAIYLPVIDFNKKACAPRYAEIARSLKLPGNTDELVDSL
 TNMIKDMNKSMDIPLTLKDYGVDEKEFKDSEDFIAHNAVLDACTGSNPRSINDTEMKKLLEYIYYGKKVDF*

Seq. ID 77: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

ATGGGAAGATTACTTGCCTAGGGATATTACTTTGGTGGAAATGCCTAGAAAATTAAAAATTAGATGGA
 AATAAACGAGTAGTTGTTGAGGTGGGGATCTATGAAGAGATTGGATTCTAGCCAAAGTTGAAAAACTTA
 AAAGAAACTGGTATGGAAGTTAAATTAGAAGGTTGAGCTGATCCGTCTGTGATACTGTTATGAATGGC
 GCTAAAATAATGAGAGACTTAAACCCAGATTGGATAGTATCAATAGGTGGAGGATCTCCATAGATGCTGCTAAA
 GCAATGTTGATATTATGAATACCCGACTTACATTGAAAAGCGGTAGTCCCTTGGAAATTCTAAATTAA
 GGCAGAAGGCACAATTGTTGCTATACCTTCTACAAGTGGAACAGCAACTGAAGTAACATCATTTCTGTAAATAAC
 AGACTATAAGCTAAATAAAATACCTCTTGAGATTAACTTACCCCTGATATAGCTATAATAGATCCGTCTC
 TTGCAAGTTACATTACAGATTCTCAGATCCACTTGCTATGCATATAACCATGATTCTATAAAATTATTGAAA
 TCCTATGAAGAAGATAAAGAAGCTAGAGGACATATGCATATAGCCCAATGCTAGCTGGATGGCATTTCAAAT
 GCTCTCTTGGAAATAACTCATAGTATAGCACATAAAACTGGTGCAGTATTTCACATACCTCATGGGTGTGCTAATG
 CCATATACTACCTTATGTTAGATTAAACAAGAAAGCTTGGTCAAGAAAGATATGCTAAATAGCCAAAAGCT
 GCATCTACAGGAAATAGTGAAGATGAGCTAATAGATTCAACTGAAATGATTGCTACTATGAACAAAAAGAT
 GGATATTCCCTCACCATAAAAGATTATGGTATAAGCGAAAAGCTTAAATGAAAACCTAGATTAGCTCAC
 AATGCCATGATGGATGCCTGACTGGATCCAATCTAGAGCAATAACTGAGGAAGAAATGAAAAAGCTTGTCA
 GTATATGTATAATGGGCAAAAGGTTAATTCTAG

FIGURE 42

Seq. ID 78: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

MGRFTLPRDIYFGENALENLKNLDGNKAVVVGGGSMKRGFLAKVEKYLKETGMEVKLIEGVEPDPSVDTVMNGA
 KIMRDFNPDWIVSIGGGSPIDAAKAMWIFYEYPDFTFEKAVVPGIPKLRQKAQFVAIPSTSGTATEVTSFSVITDYKAKI
 KYPLADFNLTDPDIAIDPSLAETMPKKLTAHTGMDALTHAIEAYVASLHSDFSDPLAMHAITMIHKYLLKSYEEDKEARG
 HMHIAQCLAGMAFSNALLGITHSIAHKTGAVFHIPHGCANAIYLPVIDFNKKACSERVYAKIAKKLHLSGNSEDELIDSLT
 EMIRTMNKKMDIPLTIKDYGISENDFNENLDFIAHNAMMDACTGSNPRAITEEEMKKLLQYMYNGQKVNF*

Seq. ID 79: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

ATGGAGAGATTTACGTTGCCAACAGAGACATTACTTGGAGAAGATGCTTGGGTGTTGAAAACGTTAAAGGT
 AAGAAAGCTGTAGTAGTTGGAGGAGGATCCATGAAGAGATTGGTTCTGACAAGGTAGAAGAATACTT
 AAAAGAAGCAAACATAGAAGTTAACTAATAGAAGGTGTTGAACCAAGATCCGCTGTGGAAACCGTTATGAAAG
 GTGCCAAAATAATGACAGAATTGGGCCAGATTGGATAGTTGCTATTGGAGGAGGTTACCAATAGATGCTGCA
 AAGGCTATGTGGCTATTTATGAATATCCAGATTACTTTAAACAAGCAATTGTTCCGTTGGATTACCAAGATT
 AAGACAAAAGCTAAATTGTAGCTATAGCTTCACTAGTGGAACAGCTACTGAAGTTACTTCATTTAGTAATA
 ACTGATTATAAAGCTAAAATAAAGTATCCTTAGCTGACTTCATTGACACCGGATATAGCTATAGTTGATCCAG
 CATTAGCCCAGACAATGCCACCTAAATTAACTGCACATACTGGTATGGATGCATTAACATGCACAGAGCTTA
 TGTAGCATCAGCTAGATCAGATATTTCAGATCCACTTGCACATACATTCCATAATTATGACAAGGGATAACTTACTT
 AAATCCTATAAGGGTATAAAGATGCTAGAAATAAGATGCATATATCACATGTTAGCAGGTATGGCATTTC
 AATGCACTCTGGTATAACTCATAGTTAGCACATAAAACAGGGACTGTATGGCACATACCACATGGATGCCT
 AATGCAATATATCTCCATATGTTAGATTAAATAAAAAAGCTGCTCAGATAGATATGCTAATATAGCTAAAAT
 ATTAGGACTTAAAGGAACTACTGAAGATGAATTGGTAGATTCTCTAGTTAAATGGTACAAGATATGGATAAGG
 AATTGAATATACCTTGACCTTAAAGATTGGTATAAGCAAAGATGATTCAATTCAAATGTTATTAGC
 AAAGAATGCGCTTAGATGCATGTACAGGAGCTAACCAAGGCCTATAGATTGATCAAATGAAAAGATACT
 TCAATGTATATGATGGAAAAAAGGTAACCTTTAA

Seq. ID 80: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

MERFTLPRDIYFGEDALGALKLGKKAVVVGGGSMKRGFLDKVEEYLKEANIEVKLIEGVEPDPSVETVMKGAKIM
 TEFGPDWIVAIIGGGSPIDAAKAMWLFYEPDFTFKQAIVPGIPKLRQAKFVAIESTSGTATEVTSFSVITDYKAKIYP
 LADFNLTDPDIAIVDPALAQTMPPKLTAHTGMDALTHALEAYVASARSDISDPLAIHSIIMTRDNLLKSYKGDKDARNKM
 HISQCLAGMAFSNALLGITHSLAHKTGAVVWHIPHGCANAIYLPVLDFNKKACSDRYANIAKILGLKGTTEDELVDSLVK
 MVQDMDKELNIPLTLKDYGISKDDFNSNVDIFIKNALLDACTGANPRPIDFDQMKKILQCIYDGKKVTF*

FIGURE 43

Seq. ID 81: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

ATGGAAAACTTATTTAAAAATGCTACAGAAATTATTTGGTAAGGATACCGAAAATCTTAGGAAGTAAA
 GTAAAGGAGTATTCAAAGTCAGATAAAACTCTTGTATGGGGAGGAAGCATAAAAAGATCTGGTCTATAT
 GATAGAGTTATAAGTCCTAAAAGAAATGGAATTGAATTAGAACTTCAAGGAATTAAACCTAATCCAAGA
 TTAGGACCTGTTAAGAAGGTATAAGACTATGTAGAGAAAATAATATAAAATTGTACTATCTGTAGGAGGAGG
 AAGTCAGCAGATACGGCTAAAGCTATTGCTGTAGGAGTACCTTATAAAGGAGACGTATGGGATTTATACGGG
 CAAAGCTGAAGTGAAGAGGCTTCTGTAGGAGTTGAATAACATTACCTGCTACAGGTACAGAATCTAGTAA
 TAGTTCTGTTATTATGAATGAAGATGGTTGGTTAAAAAAGGATTAATACAGTACTTATAAGACCTGCTTTCA
 ATTATGAATCCTGAACTTACTTTACACTACCAGAGTATCAAACGTCTGTGGTCTTGACATTGGCACATAT
 AATGGAAAGATATTTACAAATGTGAAACATGTAGATATAACTGATAGGCTTGCAGAGCTGCACTAGAAATGT
 TATAAATAATGCCCAATAGTTAAAAGATCCAAAACATGTGCTAGGGCAGAAATTATGTTGGACCGGTAC
 TATAGCTCATATGATGTGCTTAGTGCAGGCTAGAATAGGTGATTGGGCTTCACAAAATTGAACATGAATTGAG
 TGGGAAACAGACATTGCCATGGAGCAGGACTGCAATTGATTTCCTGCATGGATGAAATATGTATATAAAC
 CGATATCAATAGATTGTACAATTGCACTAGGGATGGGATGTAGATTATCTTAGTTCTGCAGAGATATT
 GTACTGAAGGCATAAGGAGAATGACAGCATTTCAAGAGCATGGGTTACCTGTAACTTAAAAGAAGGAAG
 TATAGGAGAAGATAAAATTGAAGAAATGGCTAATAAGTCACGGATAATGGAACACTGTAGGACAATTG
 TAAAATTAAATAAGATGATATTGTTAAATTAAATTAGCTAAATAA

Seq. ID 82: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

MENIFKNATEIIFGKDTENLVGSKVKEYSKDKILFCYGGGSIKRSGLYDRVIKSLKENGIEFIELPGIKPNPRLGPVKEGIR
 LCRENNIKFVLSVGGGSSADTAKIAVGVPYKGDVWDFYTGKAEVKEALPVGVVITLPATGTESSNSVIMNEDGWFK
 KGLNTVLIRPAFSIMNPETFTLPEYQTACGACDIMAHIMERYFTNVKHDITDRLCEALRNVINNAPIVLKDPKNYDA
 RAEIMWTGTIAHNDVLSAGRIGDWASHKIEHELSGETDIAHGAGLAIVFPAWMKYVYKHDINRFVQFAVRVWDVDL
 SYSSCDEVLEGIRRMTAFFKSMGLPVTLKEGSIGEDKIEEMANKCTDNGTKVGQFVKLNKDDIVKILNLAK*

Seq. ID 83: Nucleotide acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

ATGGAAGACAAGTTGAAAATTAAATTGAAATCCAAGATTATTTAATAGGAAATCTATTCAACTTTAGAGC
 AAGTCACTGGTCTCGAGCATTATTGTCAGATGCTATTATGGAAAACCTGGATATCTCAAAAAGTAATAGA
 TTACCTAACAGCTGGAATAAGTCCGTTGTTTACGGGGTACACCTGATCCAGACGTCAATGTAATTGCA
 GATGCAATGAAATTGTACAAAAAAAGCGACGCAGATGTTCTCGTAGCAGTGGAGGATCCAGTATTGATAC
 CGCTAACGGGATAATGTATTGATGTAATTAGGAAAAGCAATGGCCAAGAAATGAAAAAACCTCTATTAT
 TGCAATTCCATCAACAAGTGGTACAGGCTCTGAAGTAACAAACTTACTGTTATTACTCTCAGAAAGAAAAGGTA
 TGCATTATAGATGATTATTGCAACCAGATGTTCAACTGACTCAAGTTGATTGATGGTCTGCCTCAGCGTA
 TTGTAGCAGATACTGGTATAGATGTTCTAGTTCTATTGAAGCCTATGTTCCAAAAAGCAACTGACTTAC
 AGACGCTCTGCTGAAAAGCAGTTAAATTATTTGAGAATCTTCCAAAAATTATAACGATAGTAAGGATTCC
 GAAGCTGAGATCATGTTCAAAACGCTCTGTATAGCAGGAATAGCATTACAATGCTGGTCTGGAAATTAA
 CACAGCTGGCTATGCTATGGGTGGATCTTCCACATTCTCACGGCCGATCCAATGCACTTCACTTAATGCG
 TAATGGAATACAACGCTAGCTGGTGGAAATGCAAGCGAACATGCTATGGAAAAATACGCAAAACTAGCATCA
 ATTCTACACCTCCAGCTGAACAACCTCGCAAGGCCTGTAAGTTTATTGAAGCTGTAGATAAAATTAAATAAAT
 CCCTAGGTGTTGAAGATAATTCGATCTTGGGATTAAAGAAGATGAGTTCAAAGTGTCTAAATCATATGG
 CAGAAACAGCAATGCAAGATAGATGCACTCCAACTAATCTAGAAAACCTCTAAAGAAGAACTTACATATT
 ATCAAAAATGTTATTAA

FIGURE 44

Seq. ID 84: Amino acid sequence of butanol dehydrogenase of *C. ljungdahlii*:

MEDKFENFNLKSKIYFNRESIQLEQVTGSRAFIVADAIMGKLGYLQKVIDYLSKAGISSVVFTEGVHPDPDVNVIADAMK
 LYKKSDADVLVALGGGSSIDTAKGIMYFACNLGKAMGQEMKKPLFIAIPSTSGSEVTNFTVITSQKEKVCIIDDFIAPD
 VAILDSSCIDGLPQRIVADTGIDVLVHSIEAVSKATDFTDALAEKAVKLIFENLPKIYNDSKDSEARDHVQNACIAGIA
 FTNAGLGINHSLAHAMGGSFHIPHGRSNALLNAVMENASLVDGNASEHAMEKYAKLASILHLPARTTREGAVSFIEA
 VDKLIKSLGVEDNIRSLGIKEDEFQSALNHMAETAMQDRCTPTNPRKPSKEELIYQKCY*

Seq. ID 85: Nucleotide sequence of phosphate acetyl/butyryl transferase from *C. ljungdahlii*:

ATGAAATTGATGGAAAAATTGGAGTAAGGCAAAGGAAGACAAAAAAAGATTGCTTAGCTGAAGGAGAAC
 AAGAAAGAACTCTTCAAGCTGTGAAAAATAATTAAAGAGGGTATTGCAAATTAAATCCTGTAGGGAAATGAAA
 AGGTAAATAAAAGAAAAAGCGTCAAATTAGGTAAAGTTAAATGGAGCAGAAATAGTAGATCCAGAGACTCA
 GATAAACTAAAGGCATATGCAGATGCTTTATGAATTGAGAAAGAAGAAGGGATAACGCCAGAAAAAGCGG
 ATAAAATAGTAAGAGATCCAATATACTTGCTACAATGATGGTAAACTTGGAGATGCAGATGGATTGGTTTCAG
 GTGCGGTTCATACACAGGTGATCTTGAGACCGAGCTCAAATAGTAAGACAGCTCCAGGTACATCAGTAG
 TTCCAGTACATTATAATGAAAGTACCAAATTGAGTATGGTACAATGGTACTTCTATTGCTGATTGTC
 TGTAATCCATGCCAGATAGTGTCAATTGGCTCAATTGCAATAAGTACAGCAGAAACTGCAAAGAACTTATG
 TGGAAATGGATCCAAAAGTAGCAATGCTTCAATTCTACTAAGGGAAAGTGCAAACACGAATTAGTAGACAAAGT
 TAGAAATGCTGTAGAGATTGCAAAAAAGCTAAACCAGATTAAAGTTAGACGGAGAATTACAATTAGATGCC
 TATCGTAGAAAAGGTTGCAAGTTAAAGGCTCTGGAAAGTGAAGTAGCAGGAAAAGCAAATGTACTTGATTTC
 AGATCTCCAAGCAGGAAATATAGGCTATAAACCTGTTCAAAGATTGCAAGAGGATGTAATTCTGATGATAGTAAATG
 AACAGCAGTTCAAGCACAAGCTAAAAGTAA

Seq. ID 86: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. ljungdahlii*:

MKLMEKIWSKAKEDKKKIVLAEGEEERTLQACEKIIKEGIANLILVGNEKVIKEKASKLGVSNGAEIVDPETSDKLKAYA
 DAFYELRKKKGITPEKADKIVRDPIYFATMMVVKLDADGLVSGAVHTTGDLLRPGLQIVKTAPGTSVVSSTFIMEVPNC
 EYGDNGVLLFADCNAVNPCPSDQLASIAISTAETAKNLCGMDPKVAMLSFSTKGSAKHELDVKVRNAVEIakkakPDL
 SLDGELQLDASIVEKVASLKAPGSEVAGKANVLVFPDLQAGNIGYKLVQRFAKADAIGPVCQGFAKPINLDRGCNSD
 DIVNVVAVTAVQQAQK*

Seq. ID 87: Nucleotide sequence of acetate/butyrate kinase from *C. ljungdahlii*:

ATGAAAATATTAGTAGTAAACTGTGGAAGTTCATCTTAAATCAACTTATTGATATGCAAGATGAAAGTGTG
 TAGCAAAGGGTCTGTAGAAAGAATAGGAATGGACGGTCAATTAAACACACAAAGTTAATGGAGAAAAGTT
 GTTACAGAGCAAACAATGGAAGACCACAAAGTTGCTATAACATTAGTAAATGCTCTGTAGATAAAAAACAT
 GGTGTAATAAAAGACATGTCAGAAATATCCGCTGTAGGACATAGAGTCTGCACGGTGGAAAGAAATATGCAGC
 ATCCATTCTATTGACGAAAATGTAATGAAAGCAATAGAAGAATGTATCCCAGTACAGGACCACTACATAATCCAGCT
 AATATAATGGGAATAGATGCTGTAAAAAATTAAATGCCAATACTCCAATGGTAGCAGTATTGATACAGCATT
 ATCAGACAATGCCAGATTATGCTTACCTTATGCAATACTTATGATATATCTGAAAAGTATGATATCAGAAAATA
 TGGTTTCATGGAACCTCTCATAGATTGCTTCAATTGAAGCAGCTAAATTAAAGAAAGATCCAAAAGATCTT
 AAGTTAATAACTTGTCTTAAAGGACTAGCATATGTGCACTAAACCAAGGAAAAGCAGTAGATACAAC
 GATGGGACTTACTCCTTGCAGGACTTGTAAATGGAACTAGATGCGGTGATATAGATCCAGCTATAGTACCT
 TGTAAATGAAAAGAACAGGCATGTCTGTAGATGAAGTGGATACCTTAATGAATAAAAGTCAGGAATACTTGGAG
 TATCAGGAGTAAGCAGTGTAGTTAGAGATGAGAAGAAGCTGCAAATTCAAGGAATGTAGAGCAAAATGCA
 TTAAATATGTATTATCACAAAGTTAAATCTTCAAGGAGCTTATGTCAGTTAAATGGAGCAGATGCTATAA
 TATTTACAGCAGGACTTGGAGAAAATTCAAGCAACTAGCAGATCTGCTATATGTAATGGATTAAGCTATTGGAA
 TTAAATAGATGAAGAAAAGAATAAGAAAAGGGAGAGGCAGTACAGAAATAAGCACACCTGATTCAAAGATAAA
 AGTATTAGTAATTCTACAAATGAAGAACTTATGATAGCTAGGGATACAAAGAAATAGTTGAAAATAATAA

Seq. ID 88: Amino acid sequence of acetate/butyrate kinase from *C. ljungdahlii*:

MKILVVNCSSSLKYQLIDMQDESVAKGVERIGMDGSILTHKVNGEKFVTEQTMEDHKVAIQLVLNALVDKKHGVI
 KDMSEISAVGHRVLHGGKKYAAASILIDENVMAKIEECIPLGPLHNPNANIMGIDACKLMPNTPMVAVFDTAFHQTMP
 DYAYTYAIPYDISEKYDIRKYGFHGTSHRFVSEAAKLLKDPKDLKLITCHLNGNGASICAVNQGKAVDTMGLTPLAGLV
 MGTRCGDIDPAIVPFVMKRTGMSVDEVTLMNKKSGILGVSGVSSDFRDVEEAANSGNDRAKLALNMYYHKVKSFI
 GAYAVAVLNGADAIIFTAGLGENSATRSAICNGLSYFGIKIDEENKKRGEALEISTPDSKIKVLVIPTNEELMIARDTKEIV
 ENK*

Seq. ID 89: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*:

ATGTACGGATATAAGGGTAAGGTATTAAGAATTAATCTAAGTAGTAAAACCTATATAGTGGAAAGAATTGAAAATT
 GACAAAGCTAAAAAAATTATAGGTCAAGAGGGTTAGCGTAAAAACCTTATTTGACGAAGTAGATCCAAGGGT
 AGATCATTATCACCTGATAACAAATTATTATAGCAGCGGGACCACTACAGGTGCACCTGTTCCAACAAGCGG
 AAGATTCAAGCAGCTGGATACGATATGATAATCGTGAAGGTAAATCTGATAAAAGAAGTTATGTAAATATAGT
 AGATGATAAAGTAGAATTAGGGATGCTCTCATGTTGGGAAAACTAACAGAAGAAAATCACAAAATGCTCA
 ACAGGAAACAGATTGAGAGCTAAGGTTATGCATAGGACAGCTGGGAAAAGTTATCACTTATGGCAGCAG
 TTATGAATGATGTTAGAACAGCAGGACGTGGTGGTGGAGCTGTATGGTTCAAAGAACTTAAAGCT
 ATTGAGTTAAAGGAAGCGGGAAAGTAAATTATTGATGAACAAAAAGTGAAGGAAGTAGCAGTGGAGAAAAC
 AAATATTAAAGAAAAGATCCAGTAGCTGGTGGAGGACTTCAACATACGGAACAGCTGTACTTGTAAATTAT
 AAATGAAAATGGTGTACATCCAGTAAGAATTTCAAAATCTTACAGATCAAGCAGATAAGATCAGTGGAGA
 AACTTAACTAAAGATTGCTTAGTTAGAAAAATCCTGCTATAGGTGTCATTGCTGTGGAGATGGTAA
 ACTTGATGATGGAACGTGAATGTGGAGGACCAAGAATATGAAACATTGGTCATTGGATCTGATTGTGATGTATA
 CGATATAATGCTGAAATACAGCAAATATGTTGTAATGAATATGGATTAGATCAGCAGGATGTAC
 TATTGCACTGGAACTTATCAAAGAGGTATATTAGGATGAAGAAAATAGCAGCAGATGGATTGTCACT
 TAATTGGGAGATGCTAAGTCCATGGTGAATGGTAAAGAAAATGGACTTAGAGAAGGATTGGAGACAAG
 ATGGCAGATGGTCATACAGACTTGTACTACGGTGTACCTGAGTATTCAATGACTGTAAAAAACAGGAA
 CTTCCAGCATATGACCCAAGAGGAATACAGGGACATGGTATTACTTATGCTTAAACAATAGGGGAGGATGTCAC
 ATTAAGGGATATGGTAACTGGCTGAAATACTGGCTATCCAGAAAATCTGATAGACTGAGTGGAGGAA
 AGCAGGATATGCTAGAGTATTCATGATTAACAGCTTATAGATTCACTGGATTATGTATTTACAACATTG
 GTCTTGGTGACAGGATTATGTTGATATGTATAATGCAGTAGTTGGTGGAGAATTACATGATGTAATTCTTAA
 GTTAGCTGGAGATAGAATATGGACTTAAAGGAGGACATCAAAGGAGAAGTTCATAAGTTAGATGTACT
 TCTTCAAAGAGATTGCTTGAAGAACAAATTCCAGAAGGACATCAAAGGAGAAGTTCATAAGTTAGATGTACT
 ACTACCTGAATATTACAGTACGTGGATGGATAAAATGGTATTCTACAGAGGAAACGTTAAAGAAATTAGG
 ATTAGATGAATACGTAGGTAAGCTTAG

Seq. ID 90: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*:

MYGYKGKVLRINLSSKTYIVEELKIDAKKFIGARGLGVKTLFDEVDPKVDPLSPDNKIIAGPLTGPVPTSGRFMVVT
 KSPLTGIAIANSGGKKGAEFKAAAGYDMIIVEGKSDKEVYVNIVDDKVEFRDASHVWGKLTETTKMLQQETDSRAK
 VLCIGPAGEKLSLMAAVMNDVDRTAGRGVGAVMGSKNLKAIV/KGSGKVLFDEQKVKEVALEKTNILRKDPVAG
 GGLPTYGTAVLVNIINENGVHPVKNFQKSYTDQADKISGETLTKDCLVRKNPCYRCPIACGRWVKLDDGTECGGPEYE
 TLWSFGSDCDVYDINAVENTANMLCNEYGLDTITAGCTIAAAMELYQRGYIKDEEIAADGLSLNWGDAKSMVEWVK
 MGLREGFGDKMADGSYRLCDSYGVPEYSMTVKKQELPAYDPRGIQGHGITYAVNNRGGCHIKGYMVSPEILGYPEKL
 DRLAVEGKAGYARVFHDLTAVIDSGLCIFTFGLGAQDYVDMYNAVVGELHDVNSLMLAGDRIWTLKIFNLKAGI
 DSSQDTLPKRLLEEQIPEGPSKGEVHKLDVLLPEYYSVRGWDKNGIPTEETLKKLGLDEYVGKL*

FIGURE 46

Seq. ID 91: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*:

ATGTATGGTTATGATGGTAAAGTATTAAGAATTAAATTAAAGAAGAAACTGCAAATCAGAAAATTAGATTTA
 GATAAAGCTAAAAGTTATAGGTTGAGGGACTAGGTGTTAAACCTTATTGATGAAATAGATCCTAAATA
 GATGCATTATCACCAGAAAATAATTATAATTGTAACAGGTCTTAACTGGAGCTCCGGTTCCAACTAGTGGAA
 GGTTATGGTAGTTACTAACGCACCGCTTACAGGAACATAGGAATTCAAACTCGGGTGGAAAATGGGAGTA
 GACTTAAAAAAAGCTGGTGGATATGATAATAGTAGAGGATAAGGCTGATTCAACAGTTACATTGAAATAGTA
 GATGATAAGGTAGAAATTAAAGACGCGTCACAGCTTGGGAAAAGTTACATCAGAAACTACAAAGAGTTAGA
 AAAGATAACTGAGAATAAACTAAAGGTATTATGTATAGGACCTGCTGGTGAACGATTGTCTTATGGCAGCAGT
 TATGAATGATGTAGATAGAACTGCAGCAAGAGGCCGTTGGTCAGTTATGGGATCTAAAACCTAAAGCTA
 TTACAGTTAAAGGAACCTGGAAAAATAGCTTAGCTGATAAAAGAAAAAGTAAAAAAAGTGTCCGTAGAAAAAATT
 ACAACATTAACAAATGATCCAGTAGCTGGTCAGGAATGCCACTTATGGTACAGCTATACTGGTTAATATAATA
 AATGAAAATGGAGTTACCTGTAAAGAATTTCAGAGTCTTACGAATCAAGCAGATAAAATAAGTGGAGAG
 ACTCTTACTGCTAACCAACTAGTAAGGAAAATCCTGTTACAGCTGTCTTACAGTGTGGTGTGGAGATGGTTAGA
 CTAAAAGATGGCACAGAGTGCAGGAGGACAGAATATGAAACACTGTGGTGTGGAGATCTGACTGTGGTTCAT
 TGATTAGATGCTATAATGAAGCTAATATGTTATGTAATGAATATGGTATTGATACTATTACTGTGGTGCACAA
 ATTGCTGCAGCTATGGAACCTTACAAAGAGGATATATAAGACGAAGAAAATAGCTGGAGATAACCTATCTCT
 AAGTGGGTGATACGGAATCTATGATTGGCTGGATAAGAGAATGGTATATAGTGAAGGCTTGGAGCAAAGA
 TGACAAATGGTCATATAGGTTGTGAAGGTTATGGAGCACCGGAGTATTCTATGACAGTTAAAAGCAGGAA
 ATTCCAGCATATGATCCAAGGGGAATACAGGGACACGGTATTACCTATGCAGTTAATAATAGAGGAGGCTGTCA
 TATTAAGGGATATGATTAACCCCTGAAATATTAGGTTATCCTGAAACCTTGTGATAGATTGTCATTAGATGGTAA
 GCAGCTTATGCCAAATTATTCATGATTAACTGCTGTAATTGATTCTTAGGATTGTGCATATTCACTACATTGG
 GCTTGGAAATACAGGATTATGTAGATATGTATAATGCAGTAGTAGGAGAATCTACTTATGATGCAGATTCACTATT
 AGAGGCAGGAGATAGAATCTGGACTCTTGAGAAATTATTAATCTGAGCTGGAAATAGACAGCAGCCAGGATA
 CTCTACCAAGAGGATTGTTAGAAGAACCTATTCCAGATGGCCATCAAAGGGAGAAGTTCATAGGCTAGATGTT
 TTCTGCCAGAATATTACTCAGTACGAGGATGGAGTAAAGAGGGTACCTACAGAAGAAACATTAAAGAAATTA
 GGATTAGATGAATATAGGTAAGTTCTAG

Seq. ID 92: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ljungdahlii*:

MYGYDGKVLRINLKERTCKSENLDLDAKKFIGCRLGVKTLFDEIDPKIDALSPENKFIVTGPLTGAPVPTSGRFMVVT
 KAPLTGTIGISNSGGKVGVDLKKAGWDMIVVEDKADSPVYIEIVDDKVEIKDASQLWGKVSETTKELEKITEKSKVLC
 IGPAGERLSLMAAVMNDVDRTAARGGVGAVMGSKNLKAITVKGTGKIALADKEVKKKVSVKEITLKNDPVAGQGM
 PTYGTAILVNIINENGVHPVKNFQESYTNQADKISGETLTANQLVRKNPCYSCPIGCGRWVRLKDTECGGPEYETLW
 CFGSDCGSYLDLDAINEANMLCNEYGIDTITCGATIAAAMELYQRGYIKDEEAGDNLSLKWDTESMIGWIKRMVSE
 GFGAKMTNGSYRLCEGYGAPEYSMTVKKQEIIPAYDPRGIQGHGITYAVNNRGGCHIKGYMINPEILGYPEKLDRAFD
 GKAAYAKLFHDLTAVIDSLGLCIFTFGLGIQDYVDMYNAVVGESTYDADSLEAGDRIWTLKLFNLAAIGIDSSQDTLP
 KRLLEEPIDGPSKGEVHRLDVLLPEYYSVRGWSKEGIPTEETLKKLGLDEYIGKF*

FIGURE 47

Seq. ID 93: Nucleotide Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*:
ATGCCAAGAAATCTGTTATTTAACAGCATGAAAAATAAGAAAGAGGTGTCATTAATGAAGGTAACTAAGGTAACTAAGC
TTGAAGAATTATGAAAAAGTTAGATGAAGTAACGGCTGCTAAAAAAATTCTAGTATTAGTCAGGAACAAGTGGATGA
GATCTTAGGCAGGCAGCTATGGCAGCCAATAGTCTAGAATAGATCTAGCTAAATGGCAGTGGAAAGAAAGCGGAATGGG
AATTGAGAAGACAAGGTTATTTAAATCTTTAGGTTAGAATTGCGAACCTGTAGGGGTTATAGCAGCAGTAGTTCCAACA
TCCAACATCCACAGCACTTTAAATCTTAAATAGCTTGAAGAAACTAGAAATGGTATAGTTTCAACCACATCCAAGAGCAA
AAAATCAACTATTGCAAGCAGCTAAAGATAGTACTTGATGCAGCAGTAAAGCTGGTCTGAAGGAATTATAGGATGGATA
GATGAACCTTCCATTGAACTCTCACAGGTGTAATGAAAGAACAGATTAAATTCTGCAACTGGTGGCCCGGGTATGGTTAA
GGCTGCCTATTCTCAGGAAAGCCTGCTATAGGAGTTGGCCAGGTAACACACCTGCTGTAATTGATGAAAGTGTGATATTAA
AAATGGCAGTAAATTCAACTCCTTCAAAACTTTGATAATGGTATGATTGCTTCAGAGCAGTCAGTAGTTGTA
GCTCAATACGATGAAGTCAAGAAAGAATTGCAAGATAGAGGAGCGTATATAAGTAAGGATGAAACAGATAAGGTG
AAAAAACAAATTGATTAATGGCGCTCTAAATGCTGGCATTGAGGGCAAAGTGTCTTAAATAGCACAGATGGCAGGAGT
GAGTGTACCAGAGGATGCTAAAGTACTTATAGGAGAAGTTAAATCAGTAGAACCTGAAGAACAGGCCCTTGCTCATGAAA
CTGCTCCAGTTTAGCTATGTACAAAGCAAAAGATTGATGAAGCACTCTAAAGGCTGGAAGATTAGTTGAACGAGGTG
GAATTGGCATACTGTATTATGTAATTCAATGACGGAAAAAGTAAAGTAGAAAAGTTAGAGAAAAGTCAAGAGAAACTATGAA
TGGTAGAACATTGATAAAATATGCCTTCAGCACAAGGTGCTATAGGAGATATATAACTTAAACTAGCTCTTCTTGACGT
AGGATGTGGTCTGGGGAGGAAACTCTGTATCAGAAAATGTTGGACCTAAACATTATAAACATAAAAGTGTGCTGAG
AGGAGAGAAAATATGCTTGGTTAGAGTACCTGAAAAGTTATTCAAATATGGTAGTCTGGAGTTGCTTAAGGAATT
GAGAACTTGGAGAAGAAAAGGCATTAGAACGGATAAGGTTCTTATCAATTAGTTAGTAACTACAAA
AATCTCGATGAATTAAAGAGTTCATATAAAATTACAGATGTAGAACCGAGTCAACCCCTGCTACAGCTAAAAAGGTGC
ATCAGAACTGCTTCCATGAACCGAGATAACATTAGCAGTTGGTGGTCTGGCAATGGATGCAAGGATCATGTGG
GTAATGTATGAGCATCCAGAAGTAAGATTGAAGATTGGCTATGAGATTGGATAAAAGAGAGTATATGTTTCC
TAAGATGGGTAAAAAGCAATGATGATTCTAGCAACATCCGCAGGAACAGGATCTGAAGTTACTCCATTGAGTAATT
ACGGATGAAAGAACAGGAGCTAAATATCCACTGGCTGATTGAAATTGACTCCAAACATGGCTATAATTGATGCAAGAACTTAT
GATGGGAATGCCAAAGGGCTACAGCAGCTGGGTATAGTCATTAACCCATGCACTGGAGGCGTATGTATCAATAATG
GCTTCAGAATATAACCAATGGATTGGCTCTGAAGAACACAAGATTAGTATTAAATTTGCCAATAGCTTATACAGAAGGTAC
AACTAATGTAAGGCAAGAGAAAAAAATGGCTCATGCTTCAACTATAGCAGGTATGGTTTGCCAATGCATTCTAGGGGTAT
GTCACTCTATGGCACATAATTGGAGCACAGCACCATAACACATGGAATTGCCAATGCGCTTATGATAGATGAAAGTTATA
AAATTCAATGCTGTAGAGGCTCAAGGAAACAAGCGGCATTCCACAATATAAGTACCCAAATGTTAAAAGAAGATATGCTA
GAATAGCTGATTACTTAAATTAGGAGGAAGCAGATGAAAGTACAATTGCTAATAAAATGCTATAGTGTACTAAA
AACTAAGTTAAATATTCCAAGACTTAAAGAGGGCAGGAGTTTCAAGAAGATAATTCTATGCTACTTTAGACACAATGTCAG
AACTGGCTTGTGATGATCAATGTACAGGAGCTAATCCAAGATATCCACTAATAGGAGAAATAAAACAAATGTTATAATGCA
TTTGATACACCAAGGCAACTGTGGAGAAGAAAAGAAAAAAAGAAAAATAACATATAA

FIGURE 48

Seq. ID 94: Amino Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*:

MPRNLIFNSMKNKEVSLMKVTKTNVEELMKLDEVTAAQKKFSSYSEQVDEIFRQAAMAANSARIDLAKMAVEESGMGV
 EDKVIKNHFVSEIYINKYKDETCGVLEEDQGFGMVRIAEPVGVIAAVPTTNTSTAIFKSLIALKTRNGIVFSPHPRAKKSTIAAAKI
 VLDAAVKAGAPEGIIGWIDEPSEIQLSQQVMKeadLILATGGPGMVKAAYSSGKPAIGVGPNTPAVIDESADIKMAVNSILLSKTFD
 NGMICASEQSVVVVSSIYDEVKKEFADRGAYILSKDETDKVGKTIMINGALNAGIVGQSAFKIAQMAGVSPEDAKVLIGEVKSVEP
 EEEPFAHEKLSPLVIALMYKAKDFDEALLKAGRVERGGIGHTSVLYVNSMTEKVKEFKRETMKTGRTLINVMPSAQGAIGDIYNFKLA
 PSLTLGCGSGWGGNSVSENVGPKHLNIKSVAERRENMLWFRVPEKVYFKYQSLGVALKELEKKAFIYTDKVLYQLGYVDKITK
 NLDELRVSYKIFTDVEPDPTLATAKKGASELLSYEPDTIIAVGGGSAMDAKIMWWMYEHPEVRFEDLAMRFMDIRKRVYVFPM
 GEKAMMISVATSAGTGSEVTPFAVITDERTGAKYPLADYEITPNMAIIDAEMLMGMPKGTLAASGIDALTHALEAYSIMASEYTN
 GLALEATRLVFKYLPPIAYTEGTTNVKAREKMAHASTIAGMAFANAFLGVCHSMALKLGAQHHIPHGIANALMIDEVIKFNAVEAPR
 KQAAFPQYKYPNVKRRYARIADYLNLLGGSTDDEKVQLLNAIDDLTKTLNIPKTIKEAGVSEDFYATLDTMSELAFDDQCTGANPR
 YPLIGEIKQMYINAFTDTPKATVEKKTKRKINI*

FIGURE 49

Seq. ID 95: Nucleotide Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*:

ATGAAAGTTACAAACGTGGAAGAATTAAATGAAAAGACTAGAAGAGATAAAGGATGCTAAAAGAAATTGCTAC
 ATATACTCAAGAACAAAGTGGATGAAATTAGACAAGCAGCTATGGCAGCCAATAGTGTAGAATAGAACTAGC
 TAAAATGGCAGTGGAAAGAAGCGGAATGGGAATTGTAGAAGACAAGGTTAAAAAACTACTTGCCTCAGAAT
 ATATATATAACAAATATAAGGATGAAAAGACCTGTGGAGTTAGAAAGAGATGCAGGCTTGGTATAGTTAGA
 ATTGCGGAACCTGTAGGGGTTATTGCAGCAGTAGTCCAACAACATCTACAGCAATCTTAAATCAC
 TAATAGCTTAAAAGTAGAAATGGTATAATTTCACCGCATCCAAGGGCAAAGGAAATCAACTATTGCAGCAGC
 TAAAATAGTACTTGATGCTGCAGTTAAGCTGGTCTCCGAAGGAATTATAGGATGGATAGATGAACCTTCCAT
 TGAACCTTCACAGGTGGAATGGGAGAAGCAAATTAACTTGTGCAACTGGTGGCCCGGGTATGGTAAGGCTGC
 CTATTCTCAGGAAAACCTGCTGTAGGAGTTGGCCAGGTAATACACCTGCTATAATTGATGAAAGTGCCGATAT
 TAAAATGGCAGTAAATTCAATATTACTCTAAAAACTTTGATAATGGTATGATTGTGCTCAGAGCAGTCAGTA
 ATAGTTTAGACTCAATATGAGGAAGTAAAAAGAATTGCTTATAGGGGAGCTTATATTGAGTGAGGAT
 GAAACAGATAAGGTTGAAAAATAATTAAAAATGGAGCCTAAATGCTGGTATTGAGGACAAAGTGCCTT
 AAAATAGCACAGCTGGCAGGAGTGAACGTACCAAGAAAAGCTAAAGTACTTATAGGAGAGGTAGAATCAGTAG
 AACTTGAAGAACCAATTCTCATGAAAAGTTATCTCAGTTAGCTATGTACAGGGCAAGAGATTGAGGATGC
 CATTGCAAAAACGTATAACTGGTAGGGCAGGTGGATTGGACATACATCTTCAATTATGTAATCCAATGAC
 AGAAAAAGCAAAGTAGAAAAATTAGTACTATGATGAAAACATCAAGAACTATAATTAAACACACCTCATCTCA
 AGGTGGTATAGGTGACATATATAACTTAAAGCTAGCTCCTCGCTGACGCTAGGCTGGATCTGGGAGGAA
 ACTCTGTATCCGAAAATGTTGGCCTAAACATTAAACATAAAAAGTGTGCTGAGAGGAGAGAAAATATGC
 TTTGGTTAGAGTGCCTGAAAAGGTTATTCAAATACGGTAGTCTGGAGTTGCATTAAAAGAATTAAAGTTAT
 GAATAAGAAGAAAGTATTATAGTAAACAGATAAAGTCTTTATCAATTAGGTTATGTGGACAAAGTTACAAAGT
 TCTTGAGGAACCTAAAATTCCATAAAGTATTACAGATGTAGAACCGAGATCCAACCCCTGCTACAGCTAAAAAA
 GGTGCAGCAGAATTGCTGTATGAACCCGATACAATTATCAGTTGGTGGTGGTCAATGGATGCAGCC
 AAGATTATGTGGTAATGTATGAGCATCCAGAAGTAAAATTGAAGATTAGCTATGAGATTATGGATATAAGA
 AAGAGAGTATATGTTCCCTAAGATGGGAGAAAAGCAATGATGATTTCAGTAGCAACATCCGCAGGTACAGG
 ATCAGAAGTTACTCCATTGCTGAGTAATTACAGATGAAAAACAGGAGCTAAATATCATTAGCTGATTATGAGTT
 AACTCCAAACATGGCTATAGTTGATGCAGAACCTTATGATGGGAATGCCAAGAGGACTACGGCAGCGTCAGGT
 TAGATGCATTAACACTCATGCACTGGAGCTTATGTATCAATAATGGCTACAGAATTACCAATGGATTAGCCCTGA
 AGCAGTAAAGTTGATATTGAATATTACAAAAGCTTACAGAACGGTACAACATAATGTAAGGCAAGAGAAA
 AATGGCTCATGCTTATGTATTGCTGGTATGGCTTGGCAATGCATTCTAGGGTATGCCACTCTATGGCACAT
 AAATTAGGAGCACGACCACATACCACATGGAATTGCTAATGCACTTATGATAGATGAAGTTATAAAATTCAAT
 GCTGTAGATGATCCAATAAAACAAGCTGCATTCCCTAATCAGAGTATCCAATGCCAAGTATAGATATGCTCAG
 ATAGCTGATTGTCTCAACTTAGGAGGAAATACAGAAGATGAAAAGGTGCAATTATTAATAATGCTATAGATGAT
 CTAAAAGCTAAGTTAAATATTCCAGAACGATTAAGAAGCAGGAGTTGAGTCAAGGAGCTAACCCAGGTATCCACTAATAAGTGA
 GATAAAATGTCAGAATTAGCTTGTATGATGATCAATGTACAGGAGCTAACCCAGGTATCCACTAATAAGTGA
 AAACAAATGTATATAAAATGTTTGATAAAACTGAACCAATTGAGTAAAGATGAAGAAAAGTAA

FIGURE 50

Seq. ID 96: Amino Acid sequence of bifunctional butanol/ butyraldehyde dehydrogenase from *C. ragsdalei*:

MKVTNVEELMKRLEEKDAQKKFATYTQEVTDEIFRQAAMAANSARIELAKMAVEESGMGIVEDKVIKNHFASEYIYN
 KYKDEKTCGVLERDAGFGIVRIAEPVGVIAAVVPTTNPSTAIFKSLIALKTRNGIIFSPHPRAKKSTIAAKIVLDAAVKAG
 APEGIIGWIDEPSIELSQVVMGEANLILATGGPGMVKAAYSSGKPAVGVPGPNTPAIDESADIKMAVNSILLSKTFDN
 GMICASEQSVILDSIYEEVKKEFAYRGAYILSEDETDKVGKIIULKNGALNAGIVQSAFKIAQLAGVNVEKAKVLIGEVE
 SVELEEPFSHEKLSPLVAMYRARDFEDAIKTDKLVRAAGFGHTSSLYVNPMTEKAKVEKFSTMMKTSRTIINTPSSQG
 GIGDIYNFKLAPSLLCGSGWGGNSVSENVGPKHLNIKSVAERRENMLWFRVPEKVFYFKYGLGVALKELKVMNKKK
 VFIVTDKVLYQLGYVDKVTKVLEELKISYKVFTDVEPDPLATAKKGAAELLSYPEPDTIISVGGGSAMDAKIMWVMYE
 HPEVKFEDLAMRFMDIRKRVYVFPKMGEKAMMISVATSAGTSEVTPFAVITDEKTGAKYPLADYELTPNMAIVDAE
 LMMGMPRLTAASGIDALTHALEAYVSIIMATEFTNGLALEAVKLIFEYLPKAYTEGTTNVKAREKMAHASCIAGMAFA
 NAFLGVCHSMAHKLGQAQHHIPHGIANALMIDEVIKNAVDDPIQQAFFPQEYPNAKYRYAQIADCLNLGGNTEDEK
 VQLLINAIDDLKAKLNIPETIKEAGVSEEKFYTLKMSELAFDDQCTGANPRYPLISEIKQMYINVFDKTEPIVEDEEK*

Seq. ID 97: Nucleotide Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*:

ATGGAGGGAACACAATTGGAAAATTGATAAAAGACTTACGCTCTATACAAGAAGCAAGAGATCTTCACGTTTA
 GGAAAAATTGCAGCATGTGAAATTGCTGATTACTGAAGAACAAATTGATAAAATCTATGTAATATGGTTAGG
 GTAGCAGAGGAAATGCAGTTGCCTGGTAAATGGCTGCAGAAGAAACTGGTTGGAAAAGCTGAAGATAA
 GGCTTATAAGAACCATATGGCTGCTACTACAGTATATAATTATCAAGGATATGAAGACTATTGGTTATAAAA
 GAAGATAAAAGTCAGGGTGAATTGAATTGCTGAACCAAGCTGGTTATTATGGGTATTGTACCATCTACAAATC
 CAACATCTACTGTTATCTATAAAATCAATCATTGCAATTAAATCAAGAACATGCAATTGTATTCTCACACACCCAGCT
 GCATTAATGTTCAACAAAGCAATAGAACTTATGCGTATGCAGCAGTAGCAGCAGGAGCTCTGCAAATGT
 AATTGGCGGTATTGTTACACCATCTATACAAGCTACAATGAACCTTATGAAAGCTAAAGAAGTTGCTATGATAATT
 GCCACTGGAGGCCCTGGAATGGTAAAGGCTGCTTATAGTCAGGAACACCTGCAATAGGCCTGGTCTGGTAA
 CTCTCCATCTTATAGAAAGAACCTGCTGATGTTCAATCAGTTAAAGATATAATTGCTAGTAAGAGTTTGAC
 TATGGTACTATTGTCATCTGAGCAATCAATAATTGTTGAAGAATGCAACCATGATGAAGTAATAGCTGAGTTG
 AAGAAACAAGGCGGATATTCATGACAGCTGAAGAAACTGCAAAAGTTGCTAGTATACCTTTAACGCTGGTACA
 CACAGTATGAGTCTAAGTTGAGGAACAAGGCGGAGTTGTAATGGTACCCCTATCTTATGAGAAACTTACAACA
 GGAACAAAAGTTTAGTAGGAGAACAGGCGGAGTTGTAATGGTACCCCTATCTTATGAGAAACTTACAACA
 GTACTTGTTCTATACAGTTAAAGATTGGCATGAAGCATGTGATCTTAGTATAAGATTACTCTAAAGTCTG
 GACATACTATGAACATTACACAAATGACAGAGACTTAGTAATGAAGTTGCTAAAAAACAGCATCCGTATATT
 AGTTAATACTGGTGAAGCCAAGGGAGGTACTGGTCAAGCAGCAGGATTAGCACCTGCATTACATTAGTTG
 GTACATGGGAGGAAGCTGTTCCGAAATGTTACTCCATTACATTAAATCAATATAAGAGAGTTGCATATG
 GTCTAAAGATTGTTCTACATTAGCTGCAGATGATAACATTCAATCATCCTGAACCTTGTGGAAGCAAAATGA
 CTTAGGATGCTGTGCTACAAGCCCTGCAGAATTGCAAGCAGAAATGCAATTGCTAGCACTGCTGCCGATACTAC
 TGATAATGATAAACTTGCTAGACTCGTAAGTGAATTAGTAGCTGCAATGAAGGGAGCTAACTAA

FIGURE 51

Seq. ID 98: Amino Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*:

MEGTQLENFDKDLRSIQEARDLARLGKIAACEIADYTEEQIDKILCNMVRVAEENAVCLGKMAAEETGFGKAEDKAYK
 NHMAATTVNYIKDMKTIGVIKEDKSQGVIEFAEPVGLMGIVPSTNPSTVIYKSIIAKSRNAIVFSPHPAALKCSTKAI
 ELMRDAAVAAGAPANVIGGIVTPSIQATNELMKAKEVAMIIATGGPGMVKAAYSSGTPAIGVGAGNSPSYIERTADV
 HQSVKDIASKSFYGTICASEQSIIVECNHDEVIAELKKQGGYFMTAEETAKVCSILFKPGTHSMSAKFVGRAPQVIAA
 AAGFSVPEGTKVLVGEQGGVGNGYPLSYEKLTTVLAFYTVKDWHACDLSIRLLQNLGHTMNIHTNDRDLVMKFAK
 KPARSILVNTGGSQGGTGASTGLAPAFTLGCWTWGGSSVENVPLHLINIKRVAYGLKDCSTLAADDTTFNHPHCGS
 KNDLGCCATSPAFAANSNCASTAADTTDNDKLARLSELVAAMKGN*

Seq. ID 99: Nucleotide Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*:

GTGGAAAATGCTGCACGAGCACAAAAAATGTTAGCAACTTTCCGCAAGAAAAGTTAGATGAGATTGTTGAACG
 TATGGCTGAAGAAATCGGAAAACATACCCGAGAGCTGCTGTAATGTACAGGATGAAACTGGTTATGGAAAAT
 GGCAGGATAAATGCATCAAAACCGATTGCCGTGAATATTGCCAGCTAAGCTTAGAGGAATGCGATGTGTA
 GGTATTATAACGAAATGGTCAGGATAAGACCATGGATGTAGGTGTACCTATGGGTGAATTATTGCAATTATGT
 CCTGCAACTAGTCCGGTTTCACTACCATAATAAGGCATTAATTGCAATTAGTCTGGTAATGCAATTATCTTTC
 TCCACATCCTAGAGCAAAGGAGACAATTGTAAGGCCTGACATCATGATTCTGCAAGCTGAAGGATATGGCT
 GCCAGAAGGAGCTTGCACTTACATACTGTGACGCCAGTGGAACATCGAATTGATGAACCATGAGCGA
 CTTCTTGTATTATGAATACAGGCCTCCCGGATGCTAAAGCGTCATATAGATCTGGAAAACCTGTGATCTATGG
 AGGAACCTGTAATGGACCAGCATTATTGAAACGTACAGCTGACATCAAGCAGGCCAGTGGAGATATTATTGCTA
 GTAAGACCTTGATAACGGAATAGTACCATCATCTGAACAATCTATTGTTAGATAGCTGTGTTGCATCTGATGT
 TAAACGTGAGTTGCAAAATAGTGGTGATATTGATGACAGAGGGAGGAAGCACAAAACCTGGTTCTCTCTTTT
 CCGTTCTGATGGTAGTATGGATTAGAAATGGTGGCAAATCCGCACAGAGATTGGCTAAGAAAGCAGGTTCA
 GTATTCTGAAAGTAGCACAGTCTAATTGAGCAGAAATGTTCCCAAGATAATCCTTATTCAAGGAGA
 AACTTGTCCGGTACTAGCTACTACATTGAAGATGATTGGATGCATGCTGTGAAAAGTGTATTGAGCTGCTATT
 AAGTGAGAGACATGGTCACACTTGTATACATTCAAAGAGCAAGATGTAATTGCCAGTTGCTTAAAGGAGA
 ACCTGTAGGCAGGATACTTGTAAACGCCCTGCTTGGTAGATGGGTGCTACAAGTAATTATTCCTGCTT
 TAACTTGTGAGGATATGGCTACGGAAATGTAGAAGAGATTATAACTAATGGATTGTTACAGAAGAAAAAGTG
 ATTTGAGTGGTAGACAAAGCAGTCAGACTATAATCCAGAGGATACAAATGTTGCAGCATATTGAAAAAG
 CTATGGAAAAAATTAATAG

Seq. ID 100: Amino Acid sequence of butyraldehyde dehydrogenase from *C. ragsdalei*:

VENAARAQKMLATFPQEKLDEIVERMAEEIGKHTRELAVMSQDETGYGKWKQDKCIKNRFACEYLPKLRGMRCVGII
 NENGQDKTMDVGVPVMGVIALCPATSPVSTIYKALIAIKSGNAlIIFSPHPRAKETICKALDIMIRAAEGYGLPEGALAYL
 HTVTPSGTIELMNHEATSLIMNTGVPGMKLASYRSRGKPVYGGTGNGPAFIERTADIKQAVRDIIASKTFDNGIVPSSEQ
 SIVVDSCVASDVKRELQNSGAYFMTEEEAQKLGSLSFRSDGSMDEMVGKSAQRLLAKKAGFSIPESTVLISEQKYVVSQ
 DNPPYSKEKLCPVLAYIEDDWMHACEKCIPLLSERHGHTLVIHSKDEDVIRQFALKPVGRILVNTPASFGSMGATSNL
 FPALTLGSGSAGKGITSNDVSPMNLIYVRKVGYGVRNVEIINTNGLTEEKSDLSGMTKQSDYNPEDIQMLQHILKKA
 MEKIK*

FIGURE 52

Seq. ID 101: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

ATGGCAAGATTACTTACCAAGAGACATTATTTGGAGAAAATTCTAGAGACCTGGAAAAACCTAGATGGA
 AAAAAAGCTGTCATTGCGTAGGTGGAGGATCCATGAAAAGATTGGATTCTTGTATAAGGTAGTAGACTACTTA
 AAAGAACGAGGTATTGAATCAAATTAAAGAAGGGCGTTGAGCCAGATCCATCCGTAGAAACTGTTATGAATGG
 TGCTAAACTAATGAGGGAATATGGGCCAGATTTAATAATCAATAGGTGGAGGTTACCAATTGATGCAGCAA
 AAGCTATGTGGATATTCTATGAATAACCTGAGTTACTTTAAAGAACGCTGAGTTCTTGGCTTCCTAAATTAA
 AGACAAAAAGCAACATTATAGCTATCCCTCTACAAGTGGTACTGCAACGGAAGTAACTGCATTCTGTAAATAA
 CAGACTATAAAGCTAAATTAAATATCCTTGGCTGACTTCAATTAAACACCAGATATAAGCTATAATTGATCCAGT
 ATTAGCTCAAACAATGCCCTAAATTAACTGCACATACTGGAATGGATGCACTTACTCACGCTATTGAAGCATAAT
 GTTGCAGGACTTCATTCAAGTTCTCGGACCCACTGCTATTCAAGCTATAGTCATGGTAAATCAATTAAATTAA
 ATCTTACAATGAAGATAAAGAAGCTAGGGATCAAATGCTTAACTGCAATGTTAGCTGGATATGGCATTTCAAA
 TGCACTCTTGGATAACTCACAGTTAGCACATAAAACAGGTGCAGTATCCATATCCCTATGGATGTGCTAAT
 GCAATATACTTCCTTATGTTAGATTCAATAAAAAAGCTTGTGCACCAAGATATGCTGATATAGCTAGGAGTC
 TTAAACTCCAGGAAACTGATGATGAAATTAGTAGATTCAACTAATATGATTAAAGATATGAACAAGAGTAT
 GGATATTCTTGCACATTAAAGATTATGGAGTAGATGAAAAAGAATTAAAGATAGTGAAGATTATAGCTCA
 TAATGCCGTATTAGATGCCTGACTGGATCAAATCTAGAAGCATAATGATGCTGAAATGAAAAGTTGTTAGA
 ATACATCTATTATGGTAAAAGGTTGATTAA

Seq. ID 102: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

MARFTLPRDIYFGENSLETNLGKKAVIVGGGSMKRGFLDKVVDYLKEAGIESKLI
 EGVEPDPSVETVMNGAKL
 MREYGPDLIISIGGGSPIDA
 KAMWIFYEYPEFTFKEAVV
 PFGLPKLRQKATFIA
 PSTS
 GATEV
 TAFSV
 ITDYKAKIKYPL
 ADFNLTPDIA
 IDPVL
 AQT
 MPPK
 LTA
 HTGMD
 ALTHA
 IEAY
 VAGLHS
 VFS
 DPLAI
 QAI
 MVNQY
 LIKSY
 NED
 KEARD
 QM
 HLAQCLAGMAFSN
 ALLG
 ITHSLA
 HTGAV
 FHIP
 HGC
 CAN
 AIYLPY
 VID
 FNKK
 ACAP
 RYADI
 ARSL
 KLP
 GNT
 DDEL
 VDSL
 NM
 IKDM
 NKS
 MDI
 PL
 LKD
 YGV
 DE
 KEF
 KDS
 EDF
 IAH
 NAV
 LDA
 CTG
 SN
 PRS
 SIND
 AEM
 MKL
 LEY
 YYG
 KK
 VDF*

Seq. ID 103: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

ATGGGAAGATTACTTGCCTAGGGATATTACTTGGTGGAAAATGCCTTAGAAAATTAAAAATTAGATGGA
 AATAAACGAGTAGTTGTTAGGTGGAGGATCTATGAAGAGATTGGGTTCTAGCCAAAGTTGAAGAATACTTA
 AAAGAACGAGGTATGGAAGTTAAATTAAAGAAGGTGGTGGAGCCTGATCCATCTGTTGATACTGTTATGAATGGT
 GCTAAAATAATGAGAGACTTAACTCAGACTGGATAGTATCAATAGGTGGAGGATCTCCATCGATGCTGCCAAA
 GCAATGTGGATATTGAAATACCTGACTTACATTGAAAAGCGGTAGTCCCTTGGGATTCTAAATTAA
 GGCAAAAGGCACAATTGTTGCTATACCTCTACAAGTGGAACAGCAACTGAAGTAACATCATTCTGTAATAAC
 AGACTATAAGCTAAATAAAATATCCTCTGCAGATTAAACCTTACCCCTGATATAGCTATAATAGATCCGTC
 TTGCAAGTTACATTCTCAGATTCTCAGATCCACTGCTATGCTATAACCAGTATTCTACAGCAATAGACAT
 TGGCAAGTTACATTCTCAGATTCTCAGATCCACTGCTATGCTATAACCAGTATTCTACAGCAATAGACAT
 TCCTATGAAGAAGATAAAGAAGCTAGGGCCATATGCACATAGCCCAATGCTAGCTGGATGGCATTTC
 CAATGCACCTTGGAAATAACTCATAGTATAGCACATAAAACTGGCGCAGTATTCCACATACCTCATGGGTG
 GCTAATG
 CCATATACTTACCTTATGTTAGATTAAACAAGAAAGCTTGTGAGAAAGATATGCTAAATAGCTAAAAGCT
 TCATCTACAGGGAAATAGTGAAGATGAATTAATAGATTCTAACAGAAATGATTGTA
 ACTATGAATAAAAAGAT
 GGATATTCTCTTACTATAAAAGATTATGGTATAAGCGAAAACGATTAAATGAAAACCTAGATT
 ATGCTATGATGGATGCTGC
 ACTGGATCTAATCCTAGAGCAATACTGAGGAAGAAATGAAAAGCTTGC
 GTATATGATAATGGC
 AAAAGGTTAATTCTAG

FIGURE 53

Seq. ID 104: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

MGRFTLPRDIYFGENALENLKNLDGNKAVVVVGGSMKRFGFLAKVEEYLKEAGMEVKLIEGVEPDPSVDTVMNGA
 KIMRDFNPDWIVSIGGGSPIDAAKAMWIFYEPDFTFEKAVVPFGIPKLQRQAQFVAIPSTSGTATEVTSFSVITDYKAKI
 KYPLADFNLTDPDIAIIDPSLAETMPKKLTAHTGMDALTHAIEAYVASLHSDFSDPLAMHAITMIHKYLLKSYEEDKEARG
 HMHIAQCLAGMAFSNALLGITHSIAHKTGAVFHIPHGCANAIYLPYVIDFNKKACSERVAKIAKKLHLSGNSEDELISLT
 EMICTMNKKMDIPLTIKDYGISENDFNENLDFIAHNAMMDACTGSNPRAITEEEMKKLLQYMYNGQKVN*

Seq. ID 105: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

ATGATTTAAAAACTAAACTTTGGGCAAACCTTATGAATTAAAAATATGAAGGAAGTATTGGCAAAAGCTAAT
 GAAGAAAATCGGGAGATGCTTAGCTGAATCATGCAAAAGTACAGCGGAGAGAGTTGCAGCAAAGGTTG
 TTTGCTGAAATAACTCTGAGGAATTAGGAATAATCCTGTAGTCCTATGAGGAGGATGAAGTAACAAGAG
 TAATACAAGATATGATTGATAAAGAAGCCTATAATAAAATCAAAGCTATGACAGTTGGCGAATTAGAGAATT
 TATTAATCAGAAGAAGCCGATATAAAAGAAATAAGAGATGGATTAACTCTGAGATGATAGCAGGTGTA
 AAGCTTATGAGTAATATGGACTTAGTATATGCTCTAAAAAATAAGAAATATTGCTACTTGCAACTACTATTG
 GTGAAAAGGGACAGTCTCTCAAGACTCAGCCTAATCATGCAGCAGATAGTATAGATGGAATTATGGCTCTG
 TAATGAAAGGGATAAGCTATGGTATAGGTGATGCTGTAATAGGTTAACCCCTGAGATACCATAGATAATA
 TATCAGAGATTTGAAAAATTAAAGCAGTTCATGATAAAATGGGATATACCTACACAAAATTGTTACTGCTCA
 TATAACAACGCAAATGGAGGCTTAAAGAAAGGAGTTCTATGGATCTGATGTTCCAGAGTATACTGGTTCA
 AAAATCCAATAAAGGCTTGGATAAGTGTGAAGCTTATGGATGAAGCTTATGAACCTTATGAAGGAAAAAAGA
 GCTCCAAAGGTCTAATTTATGTATTTGAAACAGGCCAGGGTCTGAGCTTCTCAGAAGGCCATAATGGAGC
 AGATCAGCTTACAATGGAAGCAAGATGTTATGGCTTGCAAAAAAATATAATCCATTCTGTAAACTCTGTTG
 GGATTCTAGGAGCAGAAATCTATGATGGAAAACAATTATAAGAGCAGGCTTAAAGATCATTGGT
 AAGTTAACAGGACTTCTATGGGTGTTGATGTATGTTACAAACCATATGAAAGCAGATCAAATGATTGGAA
 AATTAGCTTACTCCTGAGCAGCTGACTGTACTTATTGTTACCTGGAGGAGATGACGTAATGCTTA
 TGTATCAAACCTACAGCTATCATGATGTAGCTCTATCAGGGACATTATGCGTAAAAATCCTATAAAAGAATTG
 AGAAAGAATGGAAGCTAGGAATAATGAAAAATGGAAGGCTCACAGAAATAGCTGGTATCCATATATT
 TGATTAG

Seq. ID 106: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

MILKTKLFGQTYEFKNMKEVLAKANEKSGDALAGIIAKSTAERVAAKVVLSEITLEELRNNPVPYEEDEVTRVIQDMI
 DKEAYNKKAMTVGEFREFILKSEEADIKEIRDGLTSEMIAGVTKLMNSMDLVYASKKIRNIATCNTTIGEKGTVSSRLQP
 NHAADSIDGIMASVMEGISYIGDAVIGLNPVVDIDNISEILKNFKQFMWKWDIPTQNCVLAHTTQMEALKGVPM
 DLMFQSIAGSQKSNKGFGISVLMDEAYELMKEKKSSKGPNFMYFETGQGSELSSEGHNADQLTMEARCYGLAKKY
 NPFLVNSVVGFIGPEYLYDGKQIIRAGLEDHFMGKLTGLPMGVDVCYTNHMKADQNDLENLALLAAADCTYFMGIP
 GGDDVMLMYQTTSYHDVASIRDIMRKNPKEFEERMEALGIMKNGRLTEIAGDPSIFMI*

FIGURE 54

Seq. ID 107: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

ATGGAAAACTTATTTAAAATGCTACAGAAATTATTTGGTAAGGATACCGAAGATCTGTAGGAAGTAAA
 GTAAAGGAGTATTCAAAGTCAGATAAAACTCTTTGCTATGGGGAGGAAGTATAAAGAGATCGGGCTCTA
 TGATAGAGTTATAAAGTCCTAAAAGAAAATGGAATTGAATTATAGAACCTCCAGGAATTAAACCTAATCCAAG
 ATTAGGACCTGTTAAGAAGGTATAAGACTATGTAGAGAAAATAATATAAAATTGTACTATCTGTAGGAGGAG
 GAAGTTCAGCAGATACAGCTAAAGCTATTGCTTAGGAGTACCTTATAAAGGAGATGTATGGGATTTTACGG
 GCAAAGCTGAAGTAAAAGAGGCTTCCGTAGGAGTTGAATAACATTACCTGCTACAGGTACAGAATCTAGTA
 ATAGTTCTGTTATTATGAATGAAGATGGTGGTTAAAAAAGGATTAAATACGGTACTTATAAGACCTGCTTTTC
 AATTATGAATCCTGAACCTACTTACACTACAGAAATATCAAACCTGCTTGTGGTCTTGACATTATGGCACATA
 TAATGGAAAGATATTTACAATGTGAAACATGTAGATTAACTGATAGGCTTGCAGCTGCAACTAGAAATG
 TTATAAATAATGCCCAATAGTTAAAAGATCCTAAAAATTATGATGCTAGGGCAGAAATTATGGACTGGTA
 CTATAGCTATAATGATGTGCTTAGTACAGGTAGAATAGGTGATTGGCTCTCACAAATTGAACATGAATTAA
 GTGGGGAAACAGATATTGCCCATTGGAGCAGGACTTGCATTGATGCTAGGGATGAAATATGTATATAAAC
 ATGATATCAATAGATTGTACAATTGAGTCAAGGGTATGGGATGTAGATTATCTTATAGTCCGTGAAGATAT
 TGTACTTGAAGGCATAAGGAGAATGACAGCATTTCAGAGCATGGGTTACCTATAACTTAAAAGAAGGAA
 GTATAGGAGAAGATAAAATTGAAGAAATGGCTAATAAGTGCACGGATAATGGAACCAAAACTGTAGGACAATT
 GTAAAACAAATAAGATGATATTGAAAAATTAAATTAAATTAGCTAGATAA

Seq. ID 108: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

MENIFKNATEIIFGKDTELVGSKVKEYSKSDKILFCYGGGSIKRSGLYDRVIKSLKENGIEFIELPGIKPNRPLGPVKEGIR
 LCRENNIKFVLSVGGGSSADTAKAIAVGVPYKGDVWDFYTGKAEVKEALPVGVVITLPATGTESSNSVIMNEDGWFK
 KGLNTVLIRPAFSIMNPETFTLPEYQTACGACDIMAHIMERYFTNVKHVDLTDRLCEALRNVINNAPIVLKDPKNYD
 ARAEIMWTGTIAHNDVLSTGRIGDWASHKIEHELSGETDIAHGAGLAIIVFPAMWKYVYKHDINRFVQFAVRVWDVD
 LSYSSCEDIVLEGIRRMTAFFKSMGLPITLKEGSIGEDKIEEMANKTDNGTKTVGQFVKLNKDDIVKILNLAR*

Seq. ID 109: Nucleotide Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

ATGGAAGACAAGTTGAAATTAAATTGAAATCCAAGATTATTTAATAGGGAATCCATACAACCTTTAGAGC
 AGGTTACTGGCTCTGAGCATTATTGTTGAGATGCCATTATGGGAAACTGGATATCTCAAAAGTAATAG
 ATTCCCTAAGTAAAGCCGAATAAGTCCGTTGTTTACGGGAGTACACCTGATCCAGATGTCAATGTAATTGC
 AGATGCAATGAAATTGTACAACAAAAGCGATGCAGATGTTCTCGTTGCACTAGGTGGAGGCTCCAGCATTGATAC
 CGCAAAGGAATAATGTATTTCATGTAATTAGGAAAGCAATGGGCCAGGAATGAAAAGCCCCTGTTAT
 TGCAATTCCATCAACAAGTGGAACAGGCTCTGAAGTAACAAACTTACTGTTATTACTTCTCAGAAAGAAAAGGT
 ATGCATTGTAGATGATTTATTGCAACAGACGTTCAACTTGACTCTAGTTGATGGTCTGCCAACGTT
 ATTGTAGCAGATACTGGTATAGATGTTCTAGTTCAATTGAGCCTATGTTCCAAAAAATTATAACGATAGTAAAGATT
 CAGACGCTCTGCTGAAAGCAGTTAAATTGATTGAGAATCTCCAAAAAATTATAACGATAGTAAAGATT
 TGAAGCTGAGATCATGTTCAAAACGCTTCTGTATAGCAGGAATAGCATTACAATGCTGGCTTGGAAATTAA
 CACAGCTGGCTCATGCTATGGGTGGATCTTACATTCCACGGCCGATCCAATGCACTTTACTTAATGCAGT
 AATGGAATACAATGCTAGCTAGTGGGAAATGCAAACGATCATGCTATGGAAAATACGCAAACACTAGCATCAG
 TTCTACACCTTCCAGCTCGAACACTCGTGAAGGCCTGTAAGTTTATCGAAGCTGTAATAAAATTAAATGAC
 CCTAGGTGTTGAAGATAATTCAGAGCTTGGAAATTAAAGAAGACGATTTCAAGGTGCTAAATCATATGGC
 AGAAACAGCAATGCAAGATAGATGCACTCCAACTAATCCTAGAAAACCTCTAAAGAAGAACTGATAACATATTAA
 TCAAAATGCTATTAA

FIGURE 55

Seq. ID 110: Amino Acid sequence of butanol dehydrogenase from *C. ragsdalei*:

MEDKFENFNLSKSIYFNRESIQLLEQVTGSRAFIVADAIMGKLGYLQKVIDSLKAGISSVFTGVHPDPDVNIADAMK
 LYNKSDADVLVALGGGSSIDTAKGIMYFACNLGKAMGQEMKKPLFIAIPSTSGTSEVTNFTVITSQKEKVCIVDDFIAP
 DVAILDSSCIDGLPQRIVADTGIDVLVHSIEAYVSKKATDFTDALAEKAVKLIFENLPKIYNDSKDSEARDHVQNASCIAGI
 AFTNAGLGINHSLAHAMGGSFHIPHGRSNALLNAVMEMYNASLGNANDHAMEKYAKLASVLHLPARTTREGAVSFI
 EAVNKLIKSLGVEDNIRALGIKEDDFQGALNHMAETAMQDRCTPTNPRKPSKEELIHIYQKCY*

Seq. ID 111: Nucleotide sequence of phosphate acetyl/butyryl transferase from *C. ragsdalei*:

ATGGAAAAAAATTGGAATAAGGCAAAGGAAGACAAAAAAAGATTGCTTAGCTGAAGGAGAAGAAAGAAAGAA
 CTCTTCAGCTTGAAAAATAATTAAAGAAGGTATTGCAAATTAACTCTGTAGGGATGAAAAGGTAATAG
 AGGAGAAGGCATCAAATTAGCGTAAGTTAAATGGAGCAGAAATAGTAGATCCAGAACCTCGGATAAACTA
 AAAAATATGCAGATGCTTTATGAATTGAGAAAGAAGAAGGGAAATAACACAGAAAAAGCGGATAAAATAGT
 AAGAGATCCAATATATTTGCTACGATGATGGTTAAGCTTGGAGATGCAGATGGATTGGTTCAAGGTGAGTGCA
 TACTACAGGTGATCTTTGAGACCAGGACTCAAATAGTAAAGACAGCTCAGGTACATCAGTAGTTCCAGCAC
 ATTTATAATGGAAGTACCAAATTGTGAATATGGTACAATGGTACTCTATTTGCTGATTGTGCTGAAATCCA
 TGCCCAGATAGTGTCAATTGGCTTCAATTGCAATAAGTACAGCAGAAACTGCAAAGAACTTATGTGAAATGGAT
 CCAAAAGTAGCAATGCTTCATTTCTACTAAGGGAAAGTGCAAAACACGAATTAGTAGATAAAGTTAGAAATGCT
 GTAGAAATTGCCAAAAAGCTAACCAAGATTAAAGTTGGACGGAGAATTACAATTAGATGCCTCTATCGTAGAA
 AAGTTGCAAGTTAAAGGCTCTGAAAGTAGCAGGAAAGCAATGTACTTGATTCCAGATCTCAA
 GCAGGAAATATAGGTATAAACCTGTTCAAAGATTGCAAAAGCTGATGCTATAGGACCTGTATGCCAGGGATT
 GCAAAACCTATAATGATTGTCAAGAGGATGTAACCGATGATAGTAAATGTAGTAGCTGTAACAGCAGTT
 CAGGCACAAGCTCAAAGTAA

Seq. ID 112: Amino acid sequence of phosphate acetyl/butyryl transferase from *C. ragsdalei*:

MEKIWNKADEDKKIVLAEGEEERTLQACEKIIKEGIANLILVGNEKVIEEKASKLGVSLNGAEIVDPETSDKLKKYADAFY
 ELRKKKGITPEKADKIVRDPYFATMMVKLDADGLVSGAVHTTGDLLRPGQIVKTAAGTGSVVSSTFIMEVPNCEYGD
 NGVLLFADCNAVNPCPDSDQLASIAISTAETAKNLCGMDPKVAMILSFSTKGSAKHELVDKVRNAVEIAKKAKPDLSLDG
 ELQLDASIVEKVASLKAPESEVAGKANVLVFPDLQAGNIGYKLVQRFKADAIGPVCQGFAKPINDLSRCNSDDIVNV
 VAVTAVQAQAQK*

Seq. ID 113: Nucleotide sequence of acetate/butyrate kinase from *C. ragsdalei*:

ATGAAAATATTAGTAGTAAACTGTGGAAGTTCATTTAAATATCAACATTATTGATATGAAAGATGAAAGCGTT
 GTGGCAAAGGACTTGTAGAAAGAATAGGAGCAGAAGGTTAGTTAAACACATAAAGTTAACGGAGAAAAGTT
 TGTTACAGAGCAGCCAATGGAAGATCATAAAGTTCTATACAATTAGTATTAAATGCTTGTAGATAAAAAAACA
 TGGTGTAAAAAGATATGTCAGAAATATCTGCTTAGGGCATAGAGTTTGATGGTGGAAAAAAATATGCGG
 CATCCATTCTATTGATGACAATGTAATGAAAGCAATAGAAGAATGTATCCATTAGGACCATTACATAATCCAGC
 TAATATAATGGAATAGATGCTTGTAAAAACTAATGCCAATACTCCAATGGTAGCAGTATTGATACAGCATT
 CATCAGACAATGCCAGATTATGCTTATACCTATGCAATACCTTATGATATATCTGAAAGATGATATCAGAAAAT
 ATGGTTTCATGGAACCTCTCATAGATTGTTCAATTGAAAGCAGCCAAGTTGTTAAAGAAAAGATCCAAAAGATCT
 TAAGCTAATAACTGTCTATTAGGAAATGGAGCTAGTATATGTCAGTAAACCAGGAAAAGCAGTAGATACAA
 CTATGGGACTTACTCCCTTGAGGACTTGTATGGAACTAGATGTTGATATAGATCCAGCTATAATACCATT
 TGTAATGAAAAGAACAGGTATGCTGTAGATGAAATGGATACTTAAATGAAACAAAAGTCAGGAATACTGGAG
 TATCAGGAGTAAGCAGCGATTAGAGATGTAGAAGAAGCTGCAAATTAGGAAATGATAGAGCAGGAAACTTGCA
 TAAATATGTATTATCACAAAGTTAAATCTTCATAGGAGCTTATGTTGCAAGTTAAATGGAGCAGATGCTATAA
 TATTCAGCAGGACTTGGAGAAAATTCAGCTACTAGCAGATCTGCTATATGTAAGGGATAAGCTATTTGGAA
 TTAAAATAGATGAAAGAAAAGATAAAGAAAAGGGAGAAGCACTAGAAAATAAGCACACCTGATTCAAAGATAAA
 AGTATTAGTAATTCTACAAATGAAGAACTTATGATAGCTAGGGATACAAAAGAAATAGTTGAAAATAAATAA

Seq. ID 114: Amino acid sequence of acetate/butyrate kinase from *C. ragsdalei*:

MKILVVNCSSSLKYQLIDMKDESVAKGLVERIGAEGLVLTNVNGEKFVTEQPMEDHKVAIQLVLNALVDKKHGVI
 KDMSEISAVGHRLHGGKKYAAASILDDNVMAIEECIPLGPLHNPNANIMGIDACKLMPNTPMVAVFDTAFHQTMP
 DYAYTYAIPYDISEKYDIRKYGFHGTSHRFVSIEAAKLLKDPKDLKLITCHLNGNGASICAVNQGKAVDTMGLTPLAGLV
 MGTRCGDIDPAIIPFVMKRTGMSVDEMTLMNKKSGILGVSGVSSDFRDVEEAANSNDRAKLALNMYYHKVKSFI
 GAYAVLNGADAIIFTAGLGENSATRSAICKGLSYFGIKIDEENKKRGEALEISTPDSKIKVLVIPTNEELMIARDTKEIV
 ENK*

Seq. ID 115: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*:

ATGTACGGATATAATGGTAAGGTATTAAGAATTAATCTAAGTAGTAAAACCTTATAGTGGAAAGAATTGAAAATT
 GACAAAGCTAAAAAAATTAGGTGCAAGAGGTTAGGCCTAAACAGGAACATTAGCAGCGGGACCACTACAGGTGCGCTGTTCCAACAAGCG
 AGATCATTATCACCTGATAACAAATTATTAGCAGCGGGACCACTACAGGTGCGCTGTTCCAACAAGCG
 AAGATTCAAGCAGCTGGATACGATATGATAATCGTTGAAGGTAATCTGATAAAAGAAGTTATGTAATATAGT
 AGATGATAAAAGTAGAATTAGGGATGCTCTCATGTTGGGAAAACTAACAGAAGAAACTACAAAAATGCTCA
 ACAGGAAACAGATTGAGAGCTAAGGTTATGCATAGGACAGCTGGGAAAATTACTACATTATGGCAGCAG
 TTATGAATGATGTTGATAGAACAGCAGGACGTGGTGGAGCTGTTATGGCTCAAAGAACTTAAAGCT
 ATTGAGTTAAAGGAAGCGGAAAAGTAAAATTATTGATGAGCAAAAGTGAAGAAGTAGCAGTCACTTGAGAAAAC
 AAATTTAAAGAAAAGATCCAGTAGCTGGTGGAGGACTTCCAACATACGGAACAGCTGACTTGTAAATTAT
 AAATGAAAATGGCGTACATCCAGTAAAAAATTCCAAAATCTTACAGATCAGGACAGATAAGATCAGTGGAG
 AAACTTAACTAAAGATTGCTTAGTTAGAAAAAATCCTGCTATAGGTGCTAACATTGCTGTGGAAAGATGGTAA
 AACTTGATGATGAACTGAATGTGGAGGACCAAGAATATGAAACATTATGGTCAATTGGATCTGATTGTGATGTAT
 ACGATATAATGCTGTAATACAGCAAATATGTTGTAATGAATATGGATTAGATACCACTACAGCAGGATGTA
 CTATTGCACTATGAACTTTATCAAAGAGGTTATTAAGGATGAAGAAATAGCAGCAGATGGATTGTCAC
 TTAATTGGGAGATGCTAAGTCCATGGTGAATGGTAAAGAAAATGGACTTAGAGAAGGATTGGAGACAA
 GATGGCAGATGGTCATACAGACTTGTACTCATACGGTGTACCTGAGTATTCAATGACTGAAAAAAACAAGA
 AATCCAGCATATGACCCAAGAGGAATACAGGGACATGGTATAACTTATGCTGTTAACATAGGGAGGGTGTC
 ATATTAAGGGATATATGTAAGCCCTGAAATACTTGGTTATCCAGAAAAACTTGTAGACTTGCACTGGAAAGGAA
 AAGCAGGATATGCTAGAGTATTCCATGATTAAACAGCTGTTAGATTCACTGGATTATGTATTTACAACATT
 GGTCTGGTGACAGGATTGTTGATTGTATAATGCACTGTTAGATTCACTGGATTATGTATTTACAACATT
 ATGTTAGCTGGAGATAGAATATGGACTTAGAAAAAATTAACTTAAAGGCAGGCATAGATAGTTACAGGAT
 ACTCTCCAAAGAGAGATTGCTTGAGGAACCAGTCCAGAAGGACCATAAAAGGAGAGATTCAAGATTAGATGTA
 CTTCTCCTGAATATTACAGTACGTGGATGGATAAAATGGTACCTACAGAGGAAACGTTAAAGAAATTA
 GGATTAGATGAATATGTTAGGTAAGTTAA

Seq. ID 116: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*:

MYGYNGKVLRINLSSKTYIVEELKIDAKKFIGARGLGVKTLFDEVDPKVDPSPDNKFIIAGPLTGAPVPTSGRFMVVT
 KSPLTGIAIANSGGWGAEFKAAGYDMIIVEGKSDKEVYVNIVDDKVEFRDASHVWGLTEETTKMLQQETDSRAK
 VLCIGPAGEKLSLMAAVMNDVDRTAGRGGVGAVMGSKNLKAIVVKGSGKVLFDEQKVKEALEKTNILRKDPVAG
 GGLPTYGTAVLVIINENGVHPVKNFQKSYTDQADKISGETLTKDCLVRKNPCYRCPIACGRWVKLDGTECGGPEYE
 TLWSFGSDCDVYDINAVNTANMLCNEYGLDTITAGCTIAAAMELYQRGYIKDEEIAADGLSLNWGDAKSMVEWVKK
 MGLREGFGDKMADGSYRLCDSYGVPEYSMTVKKQEIYPDRGIQGHGITYAVNNRGGCHIKGYMVSPEILGYPEKL
 DRLAVEKGAGYARVFHDLTAVIDSLGLCIFTFGLGAQDYVLDLYNAVVGELHDVDSLMLAGDRIWTLEKIFNLKAGID
 SSQDTLPKRLLEEPVPEGPSKGEIHLRDVLLPEYYSVRGWDKNGIPTETLKKLGLDEYVGKF*

FIGURE 57

Seq. ID 117: Nucleotide sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*:

ATGTATGGTTATAATGGTAAAGTATTAAGAATTAAATTAAAAGAAGAACCTGCAAATCAGAAAATTAGTTAGATAAAGC
 TAAAAAGTTATAGGCTGTAGGGACTAGGTGTTAAAACCTTATTGATGAAATAGATCCTAAATAGATGCATTATCACAG
 AAAATAAATTATAATTGAAACAGGTCCGTTAAGCTGGAGCTCCAGTTCAACTAGTGGAAAGGTTATGGTAGTTACTAAAGCA
 CCGCTTACAGGAACATAGGAATTCAAATTGGGTGAAAATGGGAGTAGACTGAAAAAGCTGGCTGGGATATGATA
 ATAGTAGAGGATAAGGCTGATTACCAAGTTACATTGAAATAGTAGATGATAAAGTAGAAATTAAAGATCGTCACAGCTT
 GGGGAAAGTTACATCAGAAACTACAAAAGAGTTAGAAAAGATAACTGAGAATAGATCAAAGGTATTATGTATAGGACCTG
 CTGGTGAAGATTGTCCTTATGGCAGCAGTTGAATGATGTAGATAGAACTGCAGCAAGAGGGCGGGCTGGTAGCTT
 GGGATCTAAAACCTAAAAGCTTACAGTTAAGGAACGGAAAATAGCTTAGCTGATAAAGAAAAAGTAAAAAAAGTG
 TCCGTAGAAAAAAATTACAACATTAAAAATGATCCAGTAGCTGGTCAGGGAAATGCCAACTTATGGTACAGCTACTGGTAA
 TATAATAATGAAAATGGAGTTACCTGTAAATAATTCAAGAATCTTACGGATCAAGCAGATAAAATAAGTGGAGAGA
 CTCTTACTGCTAACCAACTAGTAAGGAAAATCCTGTTACAGCTGTCTATAGGTTGGAAGATGGTTAGACTAAAAGAT
 GGTACAGAGTGCAGGAGGACGGAGATGAAACACTGTGGTGGCTCTGACTGTGGTCTATGATTAGATGCTATAA
 ATGAAGCTAATATGTTATGTAATGAATATGGTATTGATACTATTACCTGTGGTCAACAATTGCTGCAGCTATGAACTTATC
 AAAGAGGATATGTAAGGAGATAACCTATCTCAAGTGGGAGATAACGGAGTCTATGATTGGCT
 GGATAAAGAAAATGGTATATGTAAGGCTTGGAGCAAGAGTACAATGGTCATATAGGTTGTGAAGGTTATGGAG
 TACCTGAGTATTCTATGACAGTTAAAAGCAAGAAATTCCAGCATATGATCCAAGGGGAAATACAGGGACATGGTATTACCTAT
 GCAGTTAATAGAGGAGGATGTCATATTAGGGATATGATTAATCCTGAAATATTAGGTTATCGGAAAAACTGATA
 GATTGCAATTAGATGGTAAAGCAGCCTATGCCAAATGATGATGATTAACTGCTGTAATTGATTCTTAGGATTGTGCAAT
 TCACTACATTGGGCTTGGAAATACAGGATTATGAGATATGTATAATGCACTAGTAGTAGGAGAACTACTTGTGATTCA
 CTATTAGAGGAGGAGATAGAGTATGGACTCTGAAAATTATTAATCTGCACTGGAAATAGACAGCAGCCAGGATACTC
 TACCAAAAGAGATTGTTAGAAGAACCTATTCAAGATGGTCATCAAAGGGACACGTTCATAGGCTAGATGTTCTGCCAGAA
 TATTACTCAGTACGAGGAGTGGAGTAAAGAGGGTATACCTACAGAAGAAACATTAAAGAAATTAGGATTAGATGAATATAG
 GTAAGTTCTAG

Seq. ID 118: Amino acid sequence of aldehyde:ferredoxin oxidoreductase from *C. ragsdalei*:

MYGYNGKVLRINLKERTCKSENLDLDAKKFIGCRGLVKTLFEDIDPKIDALSPENKFIVTGPLTGPVPTSGRFMVVTKAPLTGTI
 GISNSGGKVGVDLKKAGWDMIIVEDKADSPVYIEIVDDKVEIKDASQLWGKVTSSETTKELEKITEMRSKVLCLGPAGERLSLMAAV
 MNVDVDTAARGGVGAVMGSKNLKAIVKGTGKIALADKEKVKKVSVEKITTLLKNDPVAQGQGMPTYGTAILVNIINENGVHPVNN
 FQESYTDQADKISGETLTANQLVRKNPCYSCPIGCGRWVRLKDGTGCGPEYETLWCFGSDCGSYLDLAINEANMLCNEYGIDIT
 CGATIAAAAMELYQRGYVKDEEIAGDNLSLKWGDTESMIGWIKMVYSEGFGAKMTNGSYRLCEGYGVPEYSMTVKKQEIPAYDP
 RGIQGHGITYAVNNRGGCHIKGYMINPEILGYPEKLDRFALDGKAAYAKMMHDLTAVIDSLGLCIFTFGLGIQDYVDMYNAVGE
 STCDSDSILLEAGDRVWTLEKLFNLAAGIDSSQDTPKRLLEPIPDPGSKGHVHRLDVLPEYYSVRGWSKEGIPTEETLKKLGLDEYI
 GK*

FIGURE 58

Seq. ID 136: 16S rRNA gene of *Clostridium ljungdahlii* (CP001666.1, GI:300433347)
TTAAATTAAGAGTTGATCCTGGCTCAGGACGAACGCTGGCGCGTCTAACACATGCAAGTCAGCGATGAAGCTCCTTC
GGGAGTGGATTAGCGCGGACGGGTGAGTAACACGTGGGTAACCTACCTCAAAAGAGGGGGATAGCCTCCGAAAGGGAGA
TTAATACCGCATAATAATCAGTTTACATGGAGACTGATTTAAAGGAGTAATCCGTTGAGATGGACCCGCGCGCATTAG
CTAGTTGGTAGGGTAACGGCCTACCAAGGGCAGCAGTGCCTAGCCGACCTGAGAGGGGTGATGGCCACATTGAACTGAGAG
ACGGTCCAGACTCCTACGGGAGGGCAGCAGTGGGAATATTGACAATGGCGAAAGCCTGATGCAAGCAACGCCGCGTGA
GAAGAAGGTTTCCGATTGTAAGCTCTGCTTGGGACGATAATGACGGTACCCAGGAGGAAGGCCACGGCTAAGTACGT
GCCAGCAGCCGCGGTAAACGTAGGTGGCGAGCGTTCCGAAATTACTGGCGTAAAGAGTGCCTAGGGGATATTAG
TGAGATGTGAAATACCGGGCTAACCCGGGCACTGCATTCAAACTGGATATCTAGAGTGCAGGGAGAGGAGAATGAAATT
CCTAGTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAAGTGGCGAAGGCATTCTGGACCGTAACTGACGCTGA
GGCACGAAAGCGTGGGTAGCAAACAGGATTAGATAACCTGGTAGTCCACGCCGAAACGATGAGTACTAGGTGTAGGAGGT
ATCGACCCCTTCTGCGCAGTAAACACAATAAGTACTCCGCTGGGAAGTACGATCGCAAGGATTAACACTCAAAGGAATT
GACGGGGGCCGCACAAGCAGCGGAGCATGGTTAACCGAAGCAACGCCCTACCTGGACTGACATACCC
GAATATCTTAGAGATAAGAGAACGCCCTCGGGCAGGGATACAGGTGGTAGGTTGCTAGCTCGTGTGAGATG
TTAGGTTAAGTCCTGCAACGAGCGCAACCCCTGTTAGTTGCTAACATTAGTTGAGCACTCTAGCAAGACTGCCGCGGTT
AACGCGGAGGAAGGTGGGATGACGTAAATCATATGCCCTATGTCCAGGGCAACACACGTGCTACAATGGCAGTAC
AGAGAGAAGCAAGACCGCAAGGTGGAGCAAACCTAAAAACTGCCCTAGTTGGATTGCAAGGCTGAAACTGCCCTACATG
AAGTTGGAGTTGCTAGTAATCGCAATCAGAATGTCGCGGTAAATACGTTCCGGGCTTGACACACCAGCGTCACACCAT
GAGAGCTGGCAACACCGAAGTCCGTAGTCAACTTAGGAGGACGCCGGAAGGTGGGTTAGTAATTGGGTGA

FIGURE 59

58 / 58

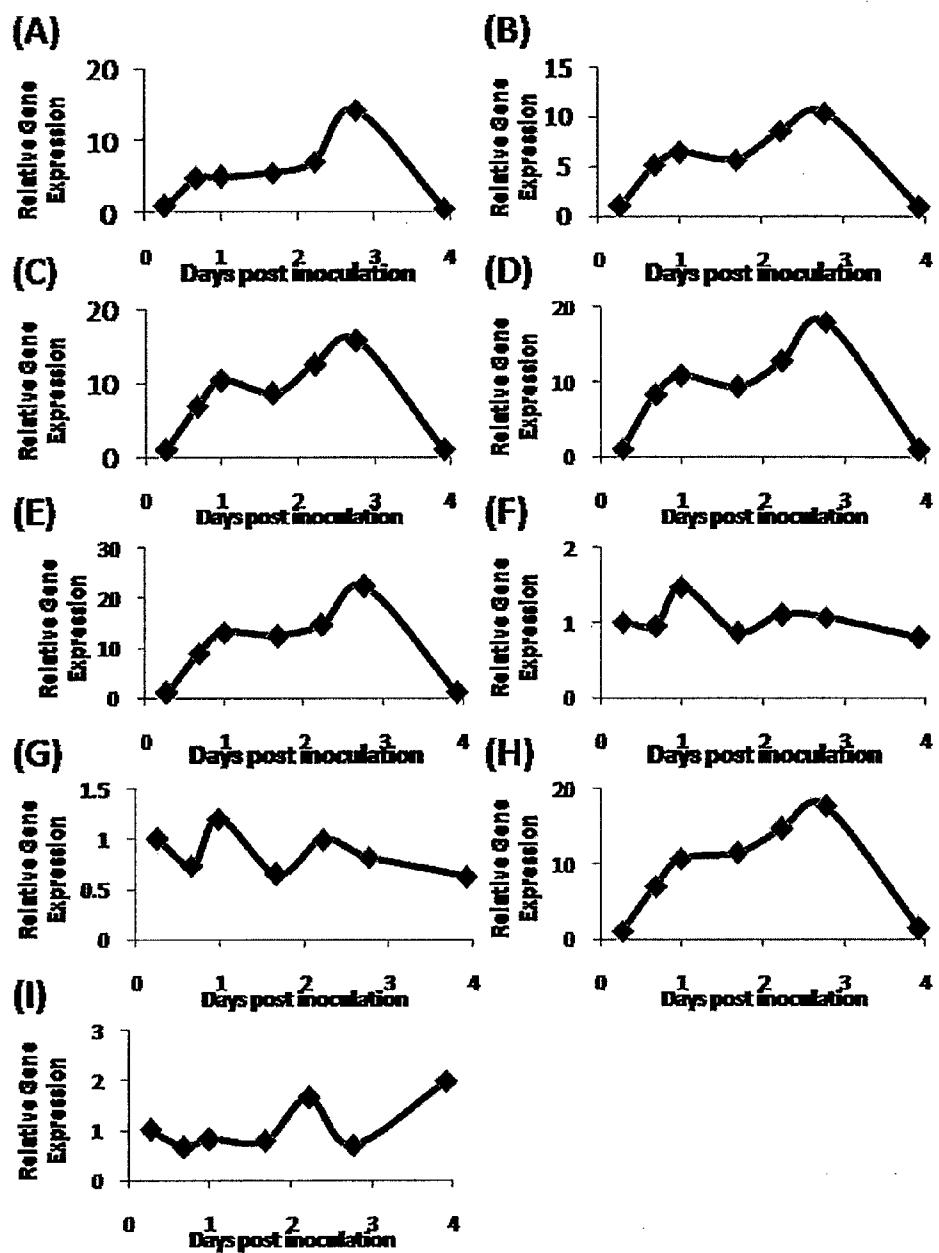


FIGURE 60

Sequence Listing
SEQUENCE LISTING

<110> LanzaTech New Zealand Limited
KOEPKE, Michael
LIEW, FungMin

<120> RECOMBINANT MICROORGANISM AND METHODS OF PRODUCTION THEREOF

<130> 508747PCTPR

<150> US 61/405,871
<151> 2010-10-22

<150> US 13/049,263
<151> 2011-03-16

<160> 154

<170> PatentIn version 3.5

<210> 1
<211> 1179
<212> DNA
<213> C. acetobutylicum

<400> 1	60
atgaaagaag ttgtatagc tagtgcagta agaacagcga ttggatctta tggaaagtct	60
cttaaggatg taccagcagt agattttagga gctacagcta taaaggaagc agttaaaaaaa	120
gcaggaataa aaccagagga tttatgaa gtcattttag gaaatgttct tcaagcaggt	180
ttaggacaga atccagcaag acaggcatct tttaaagcag gattaccagt taaaattcca	240
gctatgacta ttaataaggt ttgtggttca ggacttagaa cagttagctt agcagcacaa	300
attataaaag caggagatgc tgacgtaata atagcaggtg gtatggaaaa tatgtctaga	360
gctccctact tagcgaataa cgctagatgg ggatataaaaa tggaaacgc taaaattgtt	420
gatgaaatga tcactgacgg attgtggat gcatttaatg attaccacat gggataaca	480
gcagaaaaca tagctgagag atgaaacatt tcaagagaag aacaagatga gtttgcttt	540
gcatcacaaa aaaaagctga agaagctata aaatcaggtc aattttaaaga tggaaatagtt	600
cctgtatcaa ttaaaggcag aaaggagaa actgtatgg atacagatga gcaccctaga	660
tttggatcaa ctatagaagg acttgcaaaa taaaacctg cttcaaaaa agatggaaaca	720
gttacagctg gtaatgcattc aggattaaat gactgtgcag cagttttgtt aatcatgagt	780
gcagaaaaag ctaaagagct tggataaaa ccacttgcta agatagtttca ttatggttca	840
gcaggagttt acccagcaat aatggatatt ggaccttct atgcaacaaa agcagctatt	900
gaaaaagcag gttggacagt tggataaaa gatataatg aatcaaataa agctttgca	960
gctcaaaat tagcgtatgc aaaatgttta aaatgtatg tggataaaaat aatgtatgtt	1020
ggaggagcta ttgccttgg tcatccaatt ggagcatcag gtgcaagaat actcgatct	1080
cttgcacacg caatgcacaaa aagagatgca aaaaaggct tagcaacttt atgtatgtt	1140
ggcggacaag gaacagcaat attgtatgg aagtgcgtt	1179

<210> 2

SequenceListing

<211> 849

<212> DNA

<213> c. acetobutylicum

<400> 2
atgaaaaagg tatgtgttat aggtgcaggt actatgggtt caggaattgc tcaggcattt 60
gcagctaaag gatttgaagt agtattaaga gatattaaag atgaatttgt tgatagagga 120
ttagatttta tcaataaaaaa tctttctaaa ttagttaaaa aagggaaagat agaagaagct 180
actaaagttg aaatcttaac tagaatttcc ggaacagttg acctaataat ggcagctgat 240
tgcgatttag ttatagaagc agctgttcaa agaatggata ttaaaaagca gatTTTgct 300
gacttagaca atatatgcaa gccagaaaca attcttgcattt caaatacatc atcactttca 360
ataacagaag tggcatcagc aactaaaaga cctgataagg ttataggtat gcatttcttt 420
aatccagctc ctgttatgaa gcttgttagag gtaataagag gaatagctac atcacaagaa 480
actttgatg cagttaaaga gacatctata gcaataggaa aagatcctgt agaagtagca 540
gaagcaccag gatttgggtt aaatagaata ttaataccaa tgattaatga agcagttgg 600
atattagcag aaggaatagc ttcagttagaa gacatagata aagctatgaa acttggagct 660
aatcacccaa tgggaccatt agaatttagt gattttatag gtcttgatat atgtcttgct 720
ataatggatg ttttatactc agaaactgga gattctaagt atagaccaca tacattactt 780
aagaagtatg taagagcagg atggcttggaa agaaaatcag gaaaaggttt ctacgattat 840
tcaaaataa 849

<210> 3

<211> 786

<212> DNA

<213> c. acetobutylicum

<400> 3
atggaactaa acaatgtcat ccttggaaaag gaaggtaaaag ttgctgttagt taccattaac 60
agacctaaag cattaaatgc gttaaatagt gatacactaa aagaaatgga ttatgttata
ggtaaaattg aaaatgatag cgaagtactt gcagtaattt taactggagc aggagaaaaa 120
tcattttag caggagcaga tatttctgag atgaaggaaa tgaataccat tgaaggtaga 180
aaattcggga tacttgaaa taaagtgttt agaagattag aacttcttga aaagcctgta 240
atagcagctg ttaatggttt tgcttttagga ggcggatgcg aaatagctat gtcttgtat 300
ataagaatag cttcaagcaa cgcaagattt ggtcaaccag aagtaggtct cggaataaca 360
cctggttttg gtgg tacaca aagactttca agattagttg gaatggcat ggcaaagcag 420
cttatattta ctgcacaaaa tataaaggca gatgaagcat taagaatcg acttgtaaat 480
aaggtatgt aaccttagtga attaatgaat acagcaaaag aaattgcaaa caaaatttgt 540
agcaatgctc cagtagctgt taagttaagc aaacaggcta ttaatagagg aatgcagtgt 600
gatattgata ctgcttttagc atttgaatca gaagcatttg gagaatgctt ttcaacagag 660
gatcaaaaagg atgcaatgac agctttcata gaaaaagaaa aaattgaagg cttcaaaaaat 720
gatcaaaaagg atgcaatgac agctttcata gaaaaagaaa aaattgaagg cttcaaaaaat 780

Sequence Listing

agatag

786

<210> 4
<211> 1140
<212> DNA
<213> C. acetobutylicum

<400> 4
atggattta atttaacaag agaacaagaa ttagtaagac agatggtag agaatttgct 60
gaaaatgaag ttaaacctat agcagcagaa attgatgaaa cagaaagatt tccaatggaa 120
aatgtaaaga aaatgggtca gtatggtag atggaaattc cattttcaaa agagtatgg 180
ggcgcaggtg gagatgtatt atcttatata atcgccgtt aggaatttac aaaggttgc 240
gttactacag gagttattct ttcagcacat acatcactt gtgcttcatt aataaatgaa 300
catggtacag aagaacaaaa acaaaaatatt ttagtacctt tagctaaagg tgaaaaaata 360
ggtgctttagt gattgactga gccaaatgca ggaacagatt ctggagcaca acaaacagta 420
gctgtacttg aaggagatca ttatgtattt aatggttcaa aaatattcat aactaatgga 480
ggagttgcag atactttgt tatatttgc atgactgaca gaactaaagg aacaaaaggt 540
atatcagcat ttataataga aaaaggcttc aaaggttct ctattggtaa agttgaacaa 600
aagcttggaa taagagcttc atcaacaact gaacttgc tatgaagatat gatagtacca 660
gtagaaaaaca tgattggtaa agaaggaaaa ggcttcccta tagcaatgaa aactcttgat 720
ggaggaagaa ttggtagatgc agctcaagct ttaggtatag ctgaaggtag tttcaacgaa 780
gcaagagctt acatgaagga gagaaaaacaa tttggaaagaa gccttgacaa attccaaggt 840
cttgcatttgc tatggatgtt gctatagaat cagctagata tttgtatata 900
aaagcagcat atcttaaaca agcaggactt ccatacacag ttgatgctgc aagagctaag 960
cttcatttgc caaatgttagc aatggatgtt acaactaagg cagtacaatt atttggtaga 1020
tacggatata caaaagatta tccagttgaa agaatgtga gagatgctaa gataactgaa 1080
atataatgaa agacttcaga agttcagaaa ttagtttattt cagaaaaat ttttagataa 1140

<210> 5
<211> 1011
<212> DNA
<213> C. acetobutylicum

<400> 5
atgaataaag cagattacaa gggcgtatgg gtgttgctg aacaaagaga cggagaatta 60
caaaaggat cattggatt attaggtaaa ggtaaggaaa tggctgagaa attaggcgaa 120
gaatttaacag ctgtttact tggacataat actgaaaaaaa tgtcaaagga tttattatct 180
catggagcag ataagggtttt agcagcagat aatgaacttt tagcacattt ttcaacagat 240
ggatatgcta aagttatatg tgattttagtt aatgaaagaa agccagaaat attattcata 300
ggagctactt tcatacgttggaa agattttagga ccaagaatag cagcaagact ttctactgg 360
ttaactgctg attgtacatc acttgacata gatgtgaaaa atagagattt attggctaca 420

Sequence Listing

agaccagcgt ttggtgaaa ttgtatagct acaatagttt gttcagacca cagaccacaa	480
atggctacag taagacctgg tgtgttgaa aaattacctg ttaatgatgc aaatgtttct	540
gatgataaaa tagaaaaagt tgcaattaaa ttaacagcat cagacataag aacaaaagtt	600
tcaaaagttg ttaagcttgc taaagatatt gcagatatcg gagaagctaa ggtatttagtt	660
gctggtgta gaggagttgg aagcaaagaa aactttgaaa aacttgaaga gttagcaagt	720
ttacttggtg gaacaatagc cgcttcaaga gcagcaatag aaaaagaatg ggttgcataag	780
gaccttcaag taggtcaaac tggtaaaact gtaagaccaa ctctttatat tgcattgtgg	840
atatcaggag ctatccagca ttttagcaggt atgcaagatt cagattacat aattgctata	900
aataaagatg tagaagcccc aataatgaag gtagcagatt tggctatagt tggtgatgta	960
aataaagttg taccagaatt aatagctcaa gttaaagctg ctaataattta a	1011

<210> 6
<211> 780

<212> DNA

<213> *C. acetobutylicum*

<400> 6	
atgaatatacg ttgtttgttt aaaacaagtt ccagatacag cggaaagtttag aatagatcca	60
gttaaggaa cacttataag agaaggagtt ccatcaataa taaatccaga tgataaaaac	120
gcacttgagg aagcttttagt attaaaagat aattatggtg cacatgtaac agttataagt	180
atgggacctc cacaagctaa aaatgcttta gtagaagctt tggctatggg tgctgatgaa	240
gctgtacttt taacagatag agcatttgga ggagcagata cacttgcac ttcacataca	300
attgcagcag gaattaagaa gctaaaatat gatatagttt ttgctggaag gcaggctata	360
gatggagata cagctcaggt tggaccagaa atagctgagc atcttggaaat acctcaagta	420
acttatgtt agaaagttga agttgatgga gatactttaa agattagaaa agcttggaa	480
gatggatatg aagttgtga agttaagaca ccagttcttt taacagcaat taaagaattta	540
aatgttccaa gatatatgag tggaaaaaa atattcggag catttgataa agaagtaaaa	600
atgtggactg ccgatgatat agatgttagat aaggctaatt taggtcttaa aggttcacca	660
actaaagtta agaagtcatc aactaaagaa gttaaaggac agggagaagt tattgataag	720
cctgttaagg aagcagctgc atatgttgc tcaaaattaa aagaagaaca ctatatttaa	780

<210> 7
<211> 498

<212> DNA

<213> *C. autoethanogenum*

<400> 7	
gagcggccgc aatatgatat ttatgtccat tgtgaaaggg attatattca actattttc	60
cagttacgtt catagaaatt ttcctttcta aaatattttt ttccatgtca agaactctgt	120
ttatttcatt aaagaactat aagtacaaag tataaggcat ttgaaaaat aggcttagtat	180
attgattgat tatttattttt aaaatgccta agtcaaataat atacatattta taacaataaa	240

Sequence Listing

ataagtatta	gtgttaggatt	tttaaataga	gtatctattt	tcagattaaa	tttttgatta	300
tttgatttac	attatataat	attgagtaaa	gtattgacta	gcaaaatttt	ttgatacttt	360
aatttgtcaa	atttcttatac	aaaagttata	tttttgaata	attttattg	aaaaatacaa	420
ctaaaaagga	ttatagtata	agtgtgtga	attttgcgtt	aaatttaaag	ggagggaaatg	480
aacatgaaac	atatggaa					498
<210>	8					
<211>	28					
<212>	DNA					
<213>	synthetic primer					
<400>	8					
gagcggccgc aatatgatat ttatgtcc						28
<210>	9					
<211>	28					
<212>	DNA					
<213>	synthetic primer					
<400>	9					
ttccatatgt ttcatgttca tttcctcc						28
<210>	10					
<211>	26					
<212>	DNA					
<213>	synthetic primer					
<400>	10					
gttcatatga aagaagttgt aatagc						26
<210>	11					
<211>	25					
<212>	DNA					
<213>	synthetic primer					
<400>	11					
caagaattcc tagcactttt ctagc						25
<210>	12					
<211>	27					
<212>	DNA					
<213>	synthetic primer					
<400>	12					
aaggtacccctt aggaggatta gtcatgg						27
<210>	13					
<211>	30					
<212>	DNA					
<213>	synthetic primer					
<400>	13					
gaggatccgg attcttgtaa acttattttg						30
<210>	14					
<211>	2963					
<212>	DNA					

Sequence Listing

<213> E. coli

<400> 14	
cctgcaggat aaaaaaattg tagataaatt ttataaaata gtttatcta caatttttt	60
atcaggaaac agctatgacc gcggccgctg tatccatatg accatgatta cgaattcgag	120
ctcggtaccc ggggatcctc tagagtcgac gtcacgcgtc catggagatc tcgaggcctg	180
cagacatgca agcttggcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg	240
cgttacccaa cttaatcgcc ttgcagcaca tcccccttgc gccagctggc gtaatagcga	300
agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcta	360
gcataaaaaat aagaagcctg catttgcagg cttcttattt ttatggcgcg ccgcattcac	420
ttcttttcta tataaatatg agcgaagcga ataagcgtcg gaaaagcgc aaaaagttc	480
ctttttgctg ttggagcatg ggggttcagg ggggtcagta tctgacgtca atgccgagcg	540
aaagcagcc gaagggttagc atttacgtta gataaccccc tgatatgctc cgacgctta	600
tatagaaaaag aagattcaac tagttaaat cttaatatag gttgagatga taaggttat	660
aaggaatttgc ttgttctaa ttttcactc attttgttct aatttctttt aacaaatgtt	720
ctttttttt tagaacagtt atgatatagt tagaatagtt taaaataagg agtgagaaaa	780
agatgaaaga aagatatgga acagtctata aaggctctca gaggctcata gacgaagaaa	840
gtggagaagt catagaggtt gacaagttt accgtaaaca aacgtctggt aacttcgtaa	900
aggcatatat agtgcatttta ataagtatgt tagatatgtat tggcgaaaa aaacttaaaa	960
tcgttaacta tattccttagt aatgtccact taagtaacaa tacaatgata gctacaacaa	1020
gagaaatagc aaaagctaca ggaacaagtc tacaaacagt aataacaaca cttaaaatct	1080
tagaagaagg aaatattata aaaagaaaaaa ctggagtatt aatgttaaac cctgaactac	1140
taatgagagg cgacgaccaa aaacaaaaat acctttact cgaatttggg aactttgagc	1200
aagaggcaaa tgaaatagat tgacctccca ataacaccac gtagttattt ggaggtcaat	1260
ctatgaaatg cgattaaggg ccggccagtg ggcaagttga aaaattcaca aaaatgtggt	1320
ataatatctt tgttcattag agcgataaac ttgaatttga gagggactt agatggatt	1380
tgaaaaattt gataaaaata gttggaacag aaaagagtat tttgaccact actttgcag	1440
tgtaccttgc acctacagca tgaccgttaa agtggatatc acacaaataa aggaaaaggg	1500
aatgaaacta tattcctgca tgcttttata tattgcaatg attgtaaacc gccattcaga	1560
gtttaggacg gcaatcaatc aagatggtga attggggata tatgatgaga tgataccaag	1620
ctatacaata ttccacaatg atactgaaac attttccagc ctttggactg agtgcgtc	1680
tgactttaaa tcatttttag cagattatga aagtgcatacg caacggatcg gaaacaatca	1740
tagaatggaa ggaaagccaa atgctccgga aaacattttt aatgtatcta tgataccgt	1800
gtcaaccttc gatggctta atctgaattt gcagaaagga tatgattatt tgattcctat	1860
ttttactatg gggaaatattt ataaagaaga taacaaaattt atacttcattt tggcaattca	1920
agttcatcac gcagttatgtg acggatttca catttgcgt tttgtaaacg aattgcagga	1980

Sequence Listing

attgataaat	agttaacttc	aggtttgtct	gtaactaaaaa	acaagtattt	aagcaaaaac	2040
atcgtagaaa	tacgggtttt	tttgttaccc	taagttaaa	ctcccttttg	ataatctcat	2100
gaccaaaaatc	ccttaacgtg	agtttcgtt	ccactgagcg	tcagaccccg	tagaaaagat	2160
caaaggatct	tcttgagatc	cttttttct	gcgcgtaatc	tgctgcttgc	aaacaaaaaa	2220
accaccgcta	ccagcggtgg	tttggggcc	ggatcaagag	ctaccaactc	tttttccgaa	2280
ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtt	cttctagtgt	agccgtagtt	2340
aggccaccac	ttcaagaact	ctgttagcacc	gcctacatac	ctcgctctgc	taatcctgtt	2400
accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	caagacgata	2460
gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	agcccagctt	2520
ggagcgaacg	acctacaccg	aactgagata	cctacagcgt	gagctatgag	aaagcgccac	2580
gcttcccgaa	gggagaaagg	cggacaggt	tccggtaagc	ggcagggtcg	gaacaggaga	2640
gcbcacgagg	gagcttccag	ggggaaacgc	ctggtatctt	tatagtcctg	tcggggttcg	2700
ccacccctga	ctttagcgtc	gattttgtg	atgctcgta	ggggggcgga	gcctatggaa	2760
aaacgccagc	aacgcggcct	tttacggtt	cctggccttt	tgctggcctt	ttgctcacat	2820
gttcttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	ttgagtgagc	2880
tgataccgct	cggcgagcc	gaacgaccga	gcbcagcgt	tcagtgagcg	aggaagcgga	2940
agagcgccca	atacgcaggg	ccc				2963

<210> 15
 <211> 5935
 <212> DNA
 <213> E. coli

<400> 15						
cctgcaggat	aaaaaaattt	tagataaattt	ttataaaaata	gttttatcta	caattttttt	60
atcaggaaac	agctatgacc	gcggccgctg	tatccatatg	gtatttgaaa	aaattgataa	120
aaatagttgg	aacagaaaaag	agtatttga	ccactacttt	gcaagtgtac	cttgcaccta	180
cagcatgacc	gttaaagtgg	atatcacaca	aataaaggaa	aaggaaatga	aactatatcc	240
tgcaatgctt	tattatattt	caatgattgt	aaaccgcatt	tcagagttt	ggacggcaat	300
caatcaagat	ggtgaattgg	ggatatatga	tgagatgata	ccaagctata	caatatttca	360
caatgatact	gaaacatttt	ccagccttt	gactgagtgt	aagtctgact	ttaaatcatt	420
tttagcagat	tatgaaagtg	atacgcaacg	gtatggaaac	aatcatagaa	tggaaggaaa	480
gccaaatgct	ccggaaaaca	tttttaatgt	atctatgata	ccgtggtcaa	ccttcgatgg	540
ctttaatctg	aatttgcaga	aaggatatga	ttatttgatt	cctattttta	ctatggggaa	600
atattataaa	gaagataaca	aaattatact	tcctttggca	attcaagttc	atcacgcagt	660
atgtgacgga	tttcacattt	gccgtttgt	aaacgaattt	caggaatttga	taaatagtt	720
aacgcgtcca	tggagatctc	gaggcctgca	gacatgcaag	cttggcactg	gccgtcgaaa	780

Sequence Listing

tacaacgtcg	tgactggaa	aaccctggcg	ttacccaaact	taatcgccct	gcagcacatc	840	
cccctttcgc	cagctggcgt	aatagcgaag	aggcccgcac	cgatcgccct	tcccaacagt	900	
tgcgcagcct	gaatggcgaa	tggcgctagc	ataaaaataa	gaagcctgca	tttgcaggct	960	
tcttattttt	atggcgcc	gttctgaatc	cttagcta	ggttcaacag	gtaactatga	1020	
cgaagatagc	accctggata	agtctgtaat	ggattctaag	gcatttaatg	aagacgtgta	1080	
tataaaatgt	gcta	aatgaaaatgc	gttaaaagag	cctaaaatga	gttcaa	1140	
ttttgaaatt	gattggtagt	ttaatttaat	atatttttc	tattggctat	ctcgata	1200	
atagaatctt	ctgttca	ttgttttga	aatataaaaa	ggggctttt	agccc	1260	
ttttaaaact	ccggaggagt	ttcttcattc	ttgatactat	acgtaactat	tttcgattt	1320	
acttcattgt	caat	taagct	agtaaaatca	atggtaaaaa	aacaaaaa	1380	
ctacctagta	atttataatt	ttaagtgtcg	agtttaaaag	tataatttac	cagaaagga	1440	
gcaagtttt	taataaggaa	aaattttcc	ttttaaaatt	ctat	ttcg	1500	
ttataatcaa	aaaaatgaaa	ataaacaaga	ggtaaaaact	gc	tttagaga	1560	
taaaaaaaga	aaaaatccta	gatttacgtc	atacatagca	c	tttaacta	1620	
tattgaaagg	acttccactt	gtggagatta	ttt	gtt	atgatg	1680	
acattttaaa	ttacataaaag	gtaat	ttt	gtccaa	tgtgtat	1740	
g	cgacttgct	tgtaaggata	gtt	tagaaat	atctattctt	1800	
agaaaaataaa	gagtttat	ttt	taactct	tacaactcc	aatgtaaaa	1860	
taattattct	attaaacaat	ataataa	atc	ttt	taatggagc	1920	
taaggatata	actaaagg	ttt	acta	ttt	gtaaggaa	1980	
cataacaaag	gatttatgga	aaataaaaaa	agattattat	caaaaaaa	agg	2040	
tgg	tgatttta	gaacctaatt	ttgatactta	taatcctcat	ttt	catgt	2100
taataaaagt	tat	tttacag	ataaaaatt	ttatataa	cgagaa	2160	
atg	gaagttt	gctactaagg	atgattctat	aactcaagtt	gatgttagaa	2220	
taatgattat	aaagagg	ttt	acgaacttgc	gaaatattca	gctaaagaca	2280	
aatatcgagg	ccagtattt	aaatttttta	taa	agcatta	aaaggcaagc	2340	
ttttagtgg	ttttt	aaag	atgcacacaa	attgtacaag	caaggaa	2400	
taaaaagaaa	gatgaa	attt	aatgtcta	tatgtt	tataattgg	2460	
at	gaa	at	actagaataa	ggaaacttac	ggaagatgaa	2520	
ttaatagat	gaaat	at	atagaaa	tagat	tata	2580	
aaaaataaaa	aacaacagcc	tat	taggtt	ttgttttta	tttctt	2640	
aatttttagt	ttttagt	ttt	aaat	aaat	tttca	2700	
aagaaggagt	at	tttgc	atg	ttt	ttctaa	2760	
tatcttctt	cgcc	gg	gt	ttt	gaaactt	2820	
cg	gt	ttt	ttt	ttt	tttataa		

Sequence Listing						
ctttttaat	tgtaacagtt	gcaaaagaag	ctgaacctgt	tccttcaact	agtttatcat	2880
cttcaatata	atattcttga	cctatatagt	ataaaatata	tttttattata	tttttacttt	2940
tttctgaatc	tattatttt	taatcataaa	aagtttacc	acccaaaagaa	ggttgtactc	3000
cttctggtcc	aacatatttt	tttactatat	tatctaaata	attttggga	actgggttg	3060
taatttgatt	aatcgaacaa	ccagttatac	ttaaaggaaat	tataactata	aaaatata	3120
ggattatctt	tttaaatttc	attattggcc	tccttttat	taaattttagt	ttaccataaa	3180
aaggacataa	cggaaatatg	tagaatattt	ttaatgtaga	caaaatttta	cataaata	3240
aagaaaggaa	gtgtttgttt	aaattttata	gcaaaactatc	aaaaatttagg	gggataaaaa	3300
tttatgaaaa	aaaggtttgc	gatgttattt	ttatgtttaa	cttaatagt	ttgtgttta	3360
tttacaattt	cggccggccg	aagcaaactt	aagagtgtgt	tgatagtgc	gtatctttaa	3420
atttgtata	ataggaattt	agatttaaattt	agatgtttaaa	aatttgtat	taagaaggag	3480
tgattacatg	aacaaaaata	taaaatattc	tcaaaacttt	ttaacgagt	aaaaagtact	3540
caaccaaata	ataaaacaat	tgaatttaaa	agaaaccgat	accgtttacg	aaatttggAAC	3600
aggtaaaggg	catttaacga	cgaaactggc	taaaataagt	aaacaggtaa	cgtctattga	3660
attagacagt	catctattca	acttatcg	agaaaaatttta	aaactgaata	ctcggtcac	3720
tttaattcac	caagatattc	tacagttca	attcccta	aaacagaggt	ataaaattgt	3780
tgggagtatt	ccttaccatt	taagcacaca	aattttaaa	aaagtgggtt	ttgaaagcca	3840
tgcgtctgac	atctatctga	ttgttgaaga	aggattctac	aagcgtac	tggatattca	3900
ccgaacacta	gggttgctct	tgcacactca	agtctcgatt	cagcaattgc	ttaagctgcc	3960
agcggaatgc	tttcatccta	aacccaaagt	aaacagtgtc	ttaataaaac	ttacccgcca	4020
taccacagat	gttccagata	aatattggaa	gctatatacg	tactttgttt	caaaatgggt	4080
caatcgagaa	tatcgtaac	tgttactaa	aaatcagttt	catcaagcaa	tgaaacacgc	4140
caaagtaaac	aatttaagta	ccgttactta	tgagcaagta	ttgtctattt	ttaatagtta	4200
tctatttattt	aacgggagga	aataattcta	tgagtcg	ttgtaaattt	ggaaagttac	4260
acgttactaa	aggaaatgt	ttttaactcc	tttttataaa	tctcatgacc	aaaatccctt	4320
aacgtgagtt	ttcggtccac	tgagcgtc	accccgtaga	aaagatcaa	ggatcttctt	4380
gagatccttt	tttctgcgc	gtaatctg	gcttgcaaa	aaaaaaacca	ccgctaccag	4440
cgggttttgc	tttgcggat	caagagctac	caactcttt	tccgaaggta	actggcttca	4500
gcagagcgca	gataccaaat	actgttcttc	tagttagcc	gtagttaggc	caccacttca	4560
agaactctgt	agcaccgc	acatacctcg	ctctgctaa	cctgttacca	gtggctgctg	4620
ccagttggcga	taagtcgt	cttaccgggt	tggactcaag	acgatagtt	ccggataagg	4680
cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	cagctggag	cgaacgac	4740
acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	4800
gaaaggcgg	caggtatccg	gtaagcggca	gggtcggaa	aggagagcgc	acgagggagc	4860

Sequence Listing

ttccaggggg aaacgcctgg tatcttata	gtcctgtcgg gtttcgccac ctctgacttg	4920
agcgtcgatt tttgtatgc tcgtcagggg ggcggagcct atggaaaaac	gccagcaacg	4980
cggcctttt acggttcctg gcctttgct ggcctttgc tcacatgttc	tttcctgcgt	5040
tatcccctga ttctgtggat aaccgtatta	ccgccttga gtgagctgat accgctcgcc	5100
gcagccgaac gaccgagcgc agcgagtcag	tgagcgagga agcggaaagag cgcccaatac	5160
gcagggcccc ctgcttcggg gtcattatag	cgatttttc ggtatatcca tccttttcg	5220
cacgatatac aggatttgc caaagggttc	gtgtagactt tccttggtgt atccaacggc	5280
gtcagccggg caggataggt	gaagtaggcc caccgcgag cgggtgttcc ttcttactg	5340
tcccttattc gcacctggcg gtgctcaacg	ggaatcctgc tctgcgaggc tggccggcta	5400
ccgccggcgt aacagatgag	ggcaagcggta tggctatga aaccaagcca accaggaagg	5460
gcagcccacc tatcaaggtg	tactgccttc cagacgaacg aagagcgatt gagaaaagg	5520
cggcggcggc cggcatgagc	ctgtcggcct acctgctggc cgtcggccag ggctacaaaa	5580
tcacgggcgt cgtggactat	gagcacgtcc gcgagctggc ccgcatcaat ggacacctgg	5640
gccgcctggg cggcctgctg	aaactctggc tcaccgacga cccgcgcacg ggcgggttcg	5700
gtgatgccac gatcctcgcc	ctgctggcga agatcgaaga gaagcaggac gagcttggca	5760
aggtcatgat gggcgtggtc	cggccgaggg cagagccatg acttttttag ccgctaaaac	5820
ggccgggggg tgccgtgtat	tgccaagcac gtccccatgc gctccatcaa gaagagcgac	5880
ttcgcggagc tggtaagta	catcaccgac gagcaaggca agaccgatcg ggccc	5935

<210> 16
<211> 20
<212> DNA
<213> synthetic primer

<400> 16
cagaggatgt taatgaagtc 20

<210> 17
<211> 20
<212> DNA
<213> synthetic primer

<400> 17
gcatcaggat taaatgactg 20

<210> 18
<211> 15
<212> DNA
<213> synthetic primer

<400> 18
atagcgaagt acttg 15

<210> 19
<211> 18
<212> DNA
<213> synthetic primer

Sequence Listing

<400> 19		
gatgcaatga cagtttc		18
<210> 20		
<211> 20		
<212> DNA		
<213> synthetic primer		
<400> 20		
ggaacaaaag gtatatcagc		20
<210> 21		
<211> 19		
<212> DNA		
<213> synthetic primer		
<400> 21		
cggagcattt gataaagaa		19
<210> 22		
<211> 20		
<212> DNA		
<213> synthetic primer		
<400> 22		
gctgattgta catcacttga		20
<210> 23		
<211> 20		
<212> DNA		
<213> synthetic primer		
<400> 23		
ccagaattaa tagctcaagt		20
<210> 24		
<211> 1764		
<212> DNA		
<213> C. Ljungdahlii		
<400> 24		
atgaacagtt ttattgaaga tggtaacaa atttacaatt ttattaaaaa aaatatagat		60
gtagaagaga agatgcattt tatagaaact tataagcaaa aatctaataat gaagaaagaa		120
attagctttt cagaagaata ctataaacag aaaattatga atggaaaaaa tggagtagtg		180
tatactcctc cgaaatggc agcatttatg gttaaaaact tgataaatgt caatgatgta		240
attggaaatc catttataaa aataatagat ctttcgttg gatctggaa tttatgtt		300
aagtgcatttc tatatttaaa tcgaatattt attaagaata ttgaagttat aaatagtaaa		360
aacaatttaa atttggaaact agaagatata agtaccata tagtacgtaa caatctat		420
ggatttgata tagatgaaac tgcaataaaa gttttaaaaa tagacttatt tttgatttg		480
aatcagttta gtggaaaaaa tttcaagta aaggatttc tagtgaaaa tatagataga		540
aaatatgatg tggatattttt aatcctccg tatataggac ataaatctgt agattctat		600
tattcatatg ttttaagaaa aatatatgga agtataatata gagacaaagg agacatatcc		660

Sequence Listing

tactgtttt ttcaaaaatc attaaagtgt ttaaaggagg gagggaaact ggttttgtt	720
acttctaggt attttgtga atcttcgcgc ggaaaagaac ttagaaagtt tttaattgaa	780
aataacctcta tttataaaat tatagattt tatggtataa gacctttaa aagagtaggt	840
atagacccaa tgataatatt tttagtaaga acaaaaaattt ggaacaataa tatagaaatc	900
ataagacccaa ataaaatttga aaaaaatgaa aaaaataaaat ttcttgattc cttgtttta	960
gataaaatctg aaaaatgcaa aaagtttctt atttctcaaa agtctataaa taatgatgga	1020
tgggtatgg ttgacgaagt tgagaaaaat ataatagata aaataaaaga aaaaagtaaa	1080
tttattttaa aggatataatg ccatagttgt cagggtataa taacgggatg tgataggc	1140
tttatagttg atagagacat aataaatagt agaaaaattt aattaaggtt aataaaaccc	1200
tggataaaaa gtagccatat acgaaaaaac gaagtaatta aaggtgaaaa atttattata	1260
tactcaaatt taatagaaaa tgaaacagaa tgccttaatg ctataaagta tatagagcag	1320
tacaaaaaaa ggcttatgga aagaagagaa tggaaaaag gaacaagaaa gtggatgaa	1380
cttcaatggg ggagaaaaacc ggaaattttt gaagaaaaga aaattgtgtt cccatacaag	1440
tcctgtgaca atagatttgc tcttgacaag ggaagctatt ttagtgcaga tatattttcc	1500
tttagtattaa aaaaaatgtt accttttacc tatgaaatac ttttaatatt attaaacagt	1560
cctttgtatg aattttactt taaaacttgc gcaaaaaat taggagaaaa tctatatgag	1620
tattacccta ataatctaataa gaaattgtgtt attccttcta ttgattttgg aggagaaaaat	1680
aatatagaaaa aaaagctgta tgattttttt ggactgacag ataaggaaat tgagattgta	1740
gaaaagataa aagataattt ctga	1764

<210> 25
 <211> 1693
 <212> DNA
 <213> C. autoethanogenum

<400> 25	
atgcattttta tagaaactta taagcaaaaa tctaataatga agaaagaaaat tagctttca	60
gaagaatact ataaacagaa aattatgaat ggaaaaatg gagtagtgtt tactcctccg	120
gaaatggcag catttatggt taaaacttgc ataaatgtca atgatgtat tggaaatcca	180
tttataaaaa taatagatcc ttccgtgga tctggaaatt taattgtaa gtgctttcta	240
tatttaatc gaatattttt taagaatattt gaagttataa atagaaaaa caatttaat	300
ttgaaacttag aagatataag ttaccatata gtacgtaaca atctattttgg atttgtatata	360
gtgaaactg caataaaaatg tttaaaaataa gacttatttt tgatttagcaa tcagtttagt	420
gaaaaaaattt ttcaagttaa ggattttcta gtggaaaata tagatgaaaa atatgtgtg	480
tttataggaa atcctccgtt tataggacat aaatctgttag attctagtttta ttcatatgtt	540
ttaagaaaaa tatatggaag tatatataga gacaaaggag acatatccta ctgtttttt	600
caaaaatcat taaagtgtttt aaaggaggaa ggaaaactgg tttttgttac ttcttaggtat	660

Sequence Listing

ttttgtgaat cttgcagcgg	aaaagaactt agaaaagttt	taattgaaaa tacctctatt	720
tataaaatta tagattttta	tggtataaga ccttttaaaa	gagtaggtat agacccaatg	780
ataatatttt tagtaagaac	aaaaattgg aacaataata	tagaaatcat aagacccaat	840
aaaattgaaa aaaatgaaaa	aaataaattt cttgattcct	tgttttaga taaatctgaa	900
aaatgcaaaa agtttctat	ttctcaaaag tctataaata	atgatggatg ggtatttgtt	960
gacgaagttg agaaaaat	aatagataaa ataaaagaaa	aaagtaaatt tattttaaag	1020
gatatatgcc atagttgtca	gggtataata acgggatgtg	ataggcctt tatagttgat	1080
agagacataa taaatagtag	aaaaattgaa ttaaggttaa	taaaaccctg gataaaaaagt	1140
agccatatac gaaaaaacga	agtaattaaa ggtgaaaaat	ttattatata ctcaaattta	1200
atagaaaatg aaacagaatg	tcctaattgct ataaagtata	tagagcagta caaaaaaaaaag	1260
gcttatggaa agaagagaat	gtaaaaaagg aacaagaaag	ttgtatgaac ttcaatgggg	1320
gagaaaaccg gaaattttt	aaagaaaagaa aattgtgttc	ccatacaagt cctgtgacaa	1380
tagatttgct cttgacaagg	gaagctattt tagtgcagat	atatattcct tagtattaaa	1440
aaaaaaatgta ctttttacct	atgaaaatact tttaaatata	ttaaacagtc ctttgtatga	1500
attttacttt aaaactttcg	caaaaaaaaaatt aggagaaaaat	ctatatgagt attaccctaa	1560
taatctaattg aaattgtgt	ttccttctat tgattttgga	ggagaaaaata atatagaaaa	1620
aaagctgtat gattttttt	gactgacaga taagggaaatt	gagattgttag aaaagataaa	1680
agataattgc tga			1693

<210> 26
 <211> 1805
 <212> DNA
 <213> C. ragsdalei

<400> 26	atgtttccct gtaatgcata tattcagcac ggagatagga atatgaataa ttttattgaa	60
	gatattgaag aaatttataa ttttattaaa aaaaatacag atgtagaaga gaatattcat	120
	tttataaaaa cttataggca aagacttaat atgaagaaaag aaatttagctt ttcagaagaa	180
	tactataaac agaaaattat gaatggaaaa aacggagtag tgtatactcc tccggaaatg	240
	gcagcattta tggtaaaaaa cttgataaat gtcaatgatg taattgaaaa tccattata	300
	aaagtagtag atccttcctg tggatctgga aatttaattt gtaagtgcct tctatactta	360
	aatcaaataat tcattaaaaa tattgaagtt ataaatagta aaaataattt aaatttggaa	420
	ctaaaagata taagttacca tatagtacat aacaatctat ttggatttga tgtagatgaa	480
	actgcaataa aagttttaaa atagacttat ttttattttt caatcagttt agtggaaaaaa	540
	attttcaagt aaaggattttt ctatgtggaaa atatagatag aaaatttgat gtgtttatag	600
	gaaatcccc atatataatgga cataaatctg tagattccag ttattcatat attttaaagga	660
	aaatataatgg aagtatataat agagataaaag gagacatatac ttactgtttt tttcaaaaat	720
	cattaaagtg cttaaaagag ggaggaaaaat tacttttgc tacctccaga tattttgcg	780

Sequence Listing

aatcttcag	cgaaaaagaa	cttagaaagt	tttaattga	aaataccct	atttataaaa	840	
ttatagattt	ttatggata	agaccttta	aaagagtagg	tatagatcca	atgataatat	900	
tttagtaag	aacaaaaat	tggacaata	atataaaaaat	cataagaccc	aataaaagt	960	
gaaaagatga	aaaaaataaa	ttccttgatt	cttgcttt	agataaatct	gaaaataca	1020	
aaaaatttc	tattcctcaa	aagtctataa	atagtatgg	atgggtat	gttaatgaag	1080	
ttgagaaaaa	tataatggat	aaaatagaag	caaaaagtga	atttat	tttaaggatata	1140	
gccatagtt	tcagggtata	ataacgggat	gtgatagggc	ttttagt	gatagagaca	1200	
caataaata	tagaaaaatt	gaattaaggt	taataaaacc	ctgggtgaaa	agcagccata	1260	
tacgaaaaaa	cgaagtaatt	aaaggtgaaa	aatttattat	atactcaa	at ttaatagaaa	1320	
atgagataga	atgtccta	at gctataaagt	atata	agca	gtacaaaaaa	1380	
aaagaagaga	atgtaaaaaa	ggaacgagaa	agtggat	ga	gcttcaatgg	1440	
cggaaat	ttt	cgaagaaaag	aaaattgtat	tcccata	atcgtgtat	aatagattt	1500
ctcttgataa	gggaagctat	tttagtgcag	atata	attc	tttagtatta	aaaaaaaat	1560
tacctttac	ctatgaaatg	ctttaaata	tat	aaatag	ttgt	gaattttact	1620
ttaaaactt	cggaaaaaa	tttaggagaaa	atctat	atg	gtattatc	aataatct	1680
tgaattgt	tattccttct	attggtttc	gagaagaaa	taatgt	gaa	aaaagg	1740
atgat	tttt	tggcgtgaca	gataaggaaa	ttcagatt	gt	agaaaaata	1800
gctga							1805

<210> 27
 <211> 1940
 <212> DNA
 <213> synthetic oligonucleotide

<400> 27	gcggccgc	aacgcaatta	atgtgagtta	gctcactcat	taggcacccc	aggctttaca	60	
	ctttatgctt	ccggctcgta	tgttgtgg	aattgtgagc	ggataacaat	ttcacacagg	120	
	aaacacat	at	ttccgtgc	aatgcctata	tcgaatatgg	tgataaaaat	atgaacagct	180
	ttatcgaaga	tgtggAACAG	atctacaact	tcattaaaaa	gaacattgtat	gtggagaaa	240	
	agatgcattt	cattgaaacc	tataaacaga	aaagcaacat	gaagaaagag	attagctt	300	
	gcgaagaata	ctataaacag	aagattatga	acggcaaaaa	tggcgttgc	tacacccgc	360	
	cggaaatggc	ggcctttagt	gtt	aaaaatc	tgatcaacgt	taacgatgtt	attggcaatc	420
	cgtttattaa	aatcattgac	ccgagctgcg	gtagcggcaa	tctgatttgc	aatgtttc	480	
	tgtatctgaa	tcgcac	ttt	at	taaagaaca	ttgaggtgtat	taacagcaa	540
	atctgaaact	ggaagacatc	agctaccaca	tcgttgc	caa	tctgtt	ggcttcgata	600
	ttgacgaaac	cgcgatcaa	gtgctgaaa	ttgatctgtt	tctgatcagc	aaccaattt	660	
	gcgagaaaaa	tttccaggtt	aaagactt	tc	tggtggaaa	tattgatcgc	aaatatgacg	720

Sequence Listing
tgttcattgg taatccgccc tatatcggtc acaaaaagcgt ggacagcagc tacagctacg 780
tgctgcgcaa aatctacggc agcatctacc gcgacaaagg cgatatcagc tattgtttct 840
ttcagaagag cctgaaatgt ctgaaggaag gtggcaaact ggtgtttgtg accagccgct 900
acttctgcga gagctgcagc ggttaagaac tgcgtaaatt cctgatcgaa aacacgagca 960
tttacaagat cattgatttt tacggcatcc gcccgttcaa acgcgtgggt atcgatccga 1020
tgattatttt tctgggttcgt acgaagaact ggaacaataa cattgaaatt attcgcccga 1080
acaagattga aaagaacgaa aagaacaaat tcctggatag cctgttcctg gacaaaagcg 1140
aaaagtgtaa aaagtttagc attagccaga aaagcattaa taacgatggc tgggtttcg 1200
tggacgaagt ggagaaaaac attatcgaca aaatcaaaga gaaaagcaag ttcattctga 1260
aagatatttgc ccatagctgt caaggcatta tcaccggttg tgcgtgcctt tttattgtgg 1320
accgtgatat catcaatagc cgtaagatcg aactgcgtct gattaaaccg tggattaaaa 1380
gcagccatat ccgtaaagaat gaagtttata agggcggaaa attcatcatc tatagcaacc 1440
tgattgagaa taaaaccgag tgtccgaatg cgattaaata tatcgaacag tacaagaaac 1500
gtctgatgga gcgccgcgaa tgcaaaaagg gcacgcgtaa gtggtatgaa ctgcaatggg 1560
gccgtaaacc ggaaatcttc gaagaaaaga aaattgttt cccgtataaa agctgtgaca 1620
atcgaaaaatgc actggataag ggtagctatt ttagcgcaga catttatagc ctggttctga 1680
agaaaaatgt gccgttcacc tatgagatcc tgctgaatat cctgaatagc ccgctgtacg 1740
agttttactt taagaccttc gcgaaaaagc tgggcgagaa tctgtacgag tactatccga 1800
acaacctgat gaagctgtgc atcccgagca tcgatttcgg cggtgagaac aatattgaga 1860
aaaagctgtta tgatttctt ggtctgacgg ataaagaaaat tgagattgtg gagaagatca 1920
aagataactg ctaagaattc 1940

<210> 28

<211> 601

<212> PRT

<213> synthetic protein

<400> 28

Met Phe Pro Cys Asn Ala Tyr Ile Glu Tyr Gly Asp Lys Asn Met Asn
1 5 10 15

Ser Phe Ile Glu Asp Val Glu Gln Ile Tyr Asn Phe Ile Lys Lys Asn
20 25 30

Ile Asp Val Glu Glu Lys Met His Phe Ile Glu Thr Tyr Lys Gln Lys
35 40 45

Ser Asn Met Lys Lys Glu Ile Ser Phe Ser Glu Glu Tyr Tyr Lys Gln
50 55 60

Lys Ile Met Asn Gly Lys Asn Gly Val Val Tyr Thr Pro Pro Glu Met
65 70 75 80

Sequence Listing

Ala Ala Phe Met Val Lys Asn Leu Ile Asn Val Asn Asp Val Ile Gly
 85 90 95

Asn Pro Phe Ile Lys Ile Ile Asp Pro Ser Cys Gly Ser Gly Asn Leu
 100 105 110

Ile Cys Lys Cys Phe Leu Tyr Leu Asn Arg Ile Phe Ile Lys Asn Ile
 115 120 125

Glu Val Ile Asn Ser Lys Asn Asn Leu Asn Leu Lys Leu Glu Asp Ile
 130 135 140

Ser Tyr His Ile Val Arg Asn Asn Leu Phe Gly Phe Asp Ile Asp Glu
 145 150 155 160

Thr Ala Ile Lys Val Leu Lys Ile Asp Leu Phe Leu Ile Ser Asn Gln
 165 170 175

Phe Ser Glu Lys Asn Phe Gln Val Lys Asp Phe Leu Val Glu Asn Ile
 180 185 190

Asp Arg Lys Tyr Asp Val Phe Ile Gly Asn Pro Pro Tyr Ile Gly His
 195 200 205

Lys Ser Val Asp Ser Ser Tyr Ser Tyr Val Leu Arg Lys Ile Tyr Gly
 210 215 220

Ser Ile Tyr Arg Asp Lys Gly Asp Ile Ser Tyr Cys Phe Phe Gln Lys
 225 230 235 240

Ser Leu Lys Cys Leu Lys Glu Gly Lys Leu Val Phe Val Thr Ser
 245 250 255

Arg Tyr Phe Cys Glu Ser Cys Ser Gly Lys Glu Leu Arg Lys Phe Leu
 260 265 270

Ile Glu Asn Thr Ser Ile Tyr Lys Ile Ile Asp Phe Tyr Gly Ile Arg
 275 280 285

Pro Phe Lys Arg Val Gly Ile Asp Pro Met Ile Ile Phe Leu Val Arg
 290 295 300

Thr Lys Asn Trp Asn Asn Ile Glu Ile Ile Arg Pro Asn Lys Ile
 305 310 315 320

Glu Lys Asn Glu Lys Asn Lys Phe Leu Asp Ser Leu Phe Leu Asp Lys
 325 330 335

Ser Glu Lys Cys Lys Lys Phe Ser Ile Ser Gln Lys Ser Ile Asn Asn
 340 345 350

Sequence Listing

Asp Gly Trp Val Phe Val Asp Glu Val Glu Lys Asn Ile Ile Asp Lys
 355 360 365

Ile Lys Glu Lys Ser Lys Phe Ile Leu Lys Asp Ile Cys His Ser Cys
 370 375 380

Gln Gly Ile Ile Thr Gly Cys Asp Arg Ala Phe Ile Val Asp Arg Asp
 385 390 395 400

Ile Ile Asn Ser Arg Lys Ile Glu Leu Arg Leu Ile Lys Pro Trp Ile
 405 410 415

Lys Ser Ser His Ile Arg Lys Asn Glu Val Ile Lys Gly Glu Lys Phe
 420 425 430

Ile Ile Tyr Ser Asn Leu Ile Glu Asn Glu Thr Glu Cys Pro Asn Ala
 435 440 445

Ile Lys Tyr Ile Glu Gln Tyr Lys Lys Arg Leu Met Glu Arg Arg Glu
 450 455 460

Cys Lys Lys Gly Thr Arg Lys Trp Tyr Glu Leu Gln Trp Gly Arg Lys
 465 470 475 480

Pro Glu Ile Phe Glu Glu Lys Lys Ile Val Phe Pro Tyr Lys Ser Cys
 485 490 495

Asp Asn Arg Phe Ala Leu Asp Lys Gly Ser Tyr Phe Ser Ala Asp Ile
 500 505 510

Tyr Ser Leu Val Leu Lys Lys Asn Val Pro Phe Thr Tyr Glu Ile Leu
 515 520 525

Leu Asn Ile Leu Asn Ser Pro Leu Tyr Glu Phe Tyr Phe Lys Thr Phe
 530 535 540

Ala Lys Lys Leu Gly Glu Asn Leu Tyr Glu Tyr Tyr Pro Asn Asn Leu
 545 550 555 560

Met Lys Leu Cys Ile Pro Ser Ile Asp Phe Gly Gly Glu Asn Asn Ile
 565 570 575

Glu Lys Lys Leu Tyr Asp Phe Phe Gly Leu Thr Asp Lys Glu Ile Glu
 580 585 590

Ile Val Glu Lys Ile Lys Asp Asn Cys
 595 600

<210> 29
 <211> 2781

Sequence Listing

<212> DNA
 <213> Synthetic plasmid

<400> 29
 tttgccacct gacgtctaaag aaaaggaata ttcagcaatt tgcccggtgcc gaagaaaggc 60
 ccacccgtga aggtgagcca gtgagttgat tgctacgtaa ttagtttagtt agcccttagt 120
 gactcgtaat acgactcact atagggctcg agtctagaga attcgatatc acccggaac 180
 tagtctgcag cccttagtg agggtaatt ggagtacta agggtagtt agttagatta 240
 gcagaaagtc aaaagcctcc gaccggaggc ttttgactaa aacttccctt ggggttatca 300
 ttggggctca ctcaaaggcg gtaatcagat aaaaaaaaaatc cttagcttc gctaaggatg 360
 atttctgcta gagatggaat agactggatg gaggcggata aagttgcagg accacttctg 420
 cgctcggccc ttccggctgg ctggtttatt gctgataaat ctggagccgg tgagcgtggg 480
 tctcggta tcattgcagc actggggcca gatggtaagc cctccgtat cgtagttatc 540
 tacacgacgg ggagtcaggc aactatggat gaacgaaata gacagatcgc tgagataggt 600
 gcctcactga ttaagcattt gtaactgtca gaccaagttt actcatatat actttagatt 660
 gatttaaaac ttcatttttta atttaaaagg atcttaggtga agatccttt tgataatctc 720
 atgaccaaaa tcccttaacg tgagtttcg ttccactgag cgtcagaccc cttataaaga 780
 tgatcttctt gagatcgaaa ttggctgcgc gtaatcttt gctctgaaaa cgaaaaaacc 840
 gccttgcagg gcggttttc gaaggttctc tgagctacca actctttgaa ccgaggtaac 900
 tggcttggag gagcgcagtc accaaaaactt gtccttcag tttagcctta accggcgcat 960
 gacttcaaga ctaactcctc taaatcaatt accagtggct gctgccagtg gtgcctttgc 1020
 atgtcttcc gggttggact caagacgata gttaccggat aaggcgcagc ggtcggactg 1080
 aacgggggt tcgtgcatac agtccagctt ggagcgaact gcctaccgg aactgagtgt 1140
 caggcgtgga atgagacaaa cgcggccata acagcggaaat gacaccggta aaccgaaagg 1200
 caggaacagg agagcgcacg agggagccgc cagggaaaac gcctggatc tttatagtcc 1260
 tgtcgggttt cgccaccact gatttgcgc tcagatttcg ttagtgcgtt cagggggcg 1320
 gagcctatgg aaaaacggct ttgccgcggc cctctcaatt ccctgttaag tatcttcctg 1380
 gcatcttcca gaaaaatctcc gccccgttcg taagccattt ccgctcgccg cagtcgaacg 1440
 accgagcgtc gcgagtcagt gagcggagaa gcggaaata tcctgtatca catattctgc 1500
 tgacgcaccg gtgcagcctt ttttctcctg ccacatgaag cacttcactg acaccctcat 1560
 cagtgcacac atagtaagcc agtatacact ccgctagcgc tgaggctgc ctcgtgaaga 1620
 aggtgttgct gactcatacc aggcctgaat cgcggccatca tccagccaga aagtgggg 1680
 gcccacggtt atgagagctt tgggttaggt ggaccaggatg gtgattttga acttttgctt 1740
 tgccacggaa cggtctgcgt tgccggaaat atgcgtgatc ttagtgcctca actcagcaaa 1800
 agttcgattt attcaacaaa gcccacgtgt gtctcaaaat ctctgtatgtt acattgcaca 1860
 agataaaaaat atatcatcat gaacaataaa actgtctgct tacataaaca gtaataacaag 1920

SequenceListing

gggtgtttac tagaggttga tcgggcacgt aagaggttcc aactttcacc ataatgaaat	1980
aagatcacta ccgggcgtat ttttgagtt atcgagattt tcaggagcta aggaagctaa	2040
aatggagaaa aaaatcacgg gatataccac cgttgatata tcccaatggc atcgtaaaga	2100
acatttttag gcatttcagt cagttgctca atgtacctat aaccagaccg ttcagctgga	2160
tattacggcc tttttaaaga ccgtaaagaa aaataagcac aagttttatc cggcctttat	2220
tcacattctt gcccgcctga tgaacgctca cccggagttt cgtatggcca tgaaagacgg	2280
ttagctggtg atctggata gtgttcaccc ttgttacacc gttttccatg agcaaactga	2340
aacgtttcg tccctctgga gtgaatacca cgacgatttc cggcagttc tccacatata	2400
ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat ttccctaaag gtttattga	2460
gaatatgttt tttgtctcag ccaatccctg ggtgagttc accagtttgc atttaaacgt	2520
ggccaatatg gacaacttct tcgccccgt tttcacgatg ggcaaatatt atacgcaagg	2580
cgacaagggtg ctgatgccgc tggcgatcca ggttcatcat gccgtttgtg atggcttcca	2640
tgtcggccgc atgcttaatg aattacaaca gtactgtgat gagtggcagg gcggggcgta	2700
ataatactag ctccggcaaa aaaacggca aggtgtcacc accctgcct tttctttaa	2760
aaccgaaaag attacttcgc g	2781

<210> 30

<211> 1460

<212> DNA

<213> C. autoethanogenum

<400> 30

ggctcaggac gaacgctggc ggcgtgctta acacatgcaa gtcgagcgat gaagctcctt	60
cggagtgga ttagcggcgg acgggtgagt aacacgtggg taacctaccc caaagagggg	120
gatagcctcc cgaaaggag attaataccg cataataatc agttttcaca tggagactga	180
tttaaaggag taatccgctt tgagatggac ccgcggcgca ttagctagtt ggttagggtaa	240
cggcctacca aggcgacgat gcgtagccga cctgagaggg tgatcggcca cattggaact	300
gagagacggt ccagactcct acgggaggca gcagtgggaa atattgcaca atggcgaaa	360
gcctgatgca gcaacgccgc gtgagtgaag aagggtttcg gattgtaaag ctctgtcttt	420
ggggacgata atgacggtac ccaaggagga agccacggct aactacgtgc cagcagccgc	480
ggtaatacgt aggtggcgag cgttgcgtccgg aattactggg cgtaaagagt gcgtaggcgg	540
atatttaagt gagatgtgaa atacccgggc ttaacccggg cactgcattt caaactggat	600
atctagatgt cgggagagga gaatgaaatt cctagtgttag cggtgaaatg cgtagagatt	660
aggaagaaca ccagtggcga aggcgattct ctggaccgta actgacgctg aggcacgaaa	720
gcgtgggtag caaacaggat tagataccct ggtagtcac gccgtaaacg atgagtacta	780
ggtgttaggag gtatcgaccc cttctgtgcc gcagtaaaca caataagtac tccgcctggg	840
aagtacgatc gcaagattaa aactcaaagg aattgacggg ggcccgacca agcagcggag	900
catgtggttt aattcgaagc aacgcgaaga accttacctg gacttgacat accctgaata	960

Sequence Listing

tcttagagat aagagaagcc	cttcggggca	gggatacagg	tggtgcattgg	ttgtcgctcag	1020	
ctcgtgtcgt	gagatgttag	gttaagtccct	gcaacgagcg	caacccctgt	tgtagttgc	1080
taacatttag	ttgagcactc	tagcaagact	gccgcggta	acgcggagga	agggtggggat	1140
gacgtcaa	at catcatgccc	cttatgtcca	gggcaacaca	cgtgctacaa	tgggcagtac	1200
agagagaagc	aagaccgcaa	ggtggagcaa	acctcaaaaaa	ctgccccca	ttcggattgc	1260
aggctgaa	ac tcgcctacat	gaagttggag	ttgctagtaa	tcgcgaatca	aatgtcg	1320
gtgaatacgt	tcccgccct	tgtacacacc	gcccgtcaca	ccatgagagc	tggcaacacc	1380
cgaagtccgt	agtctaactt	aggaggacgc	ggccgaaggt	ggggtagta	attgggtga	1440
agtctgtaaca	aggttagccgt					1460

<210> 31

<211> 9459

<212> DNA

<213> synthetic plasmid

<400> 31						
ataaaaaat	tgtagataaa	ttttataaaa	tagtttatac	tacaattttt	ttatcaggaa	60
acagctatga	ccgcggccgc	aatatgatat	ttatgtccat	tgtgaaaggg	attatattca	120
actattattc	cagttacgtt	catagaaatt	ttcctttcta	aaatattttt	ttccatgtca	180
agaactctgt	ttatttcatt	aaagaactat	aagtacaaag	tataaggcat	ttgaaaaat	240
aggctagat	attgattgat	tatttattt	aaaatgccta	agtgaaatat	atacatatta	300
taacaataaa	ataagtatta	gtgtaggatt	tttaaataga	gtatctattt	tcagattaa	360
ttttgatta	tttgatttac	attatataat	attgagtaaa	gtattgacta	gcaaaatttt	420
ttgatacttt	aatttgtgaa	atttcttatac	aaaagttata	tttttgaata	atttttattt	480
aaaaatacaa	ctaaaaagga	ttatagtata	agtgtgtgta	attttgtgtt	aaatttaaag	540
ggagggaaatg	aacatgaaac	atatgaaaga	agttgtaata	gctagtgcag	taagaacagc	600
gattggatct	tatggaaagt	ctcttaagga	tgtaccagca	gtagatttag	gagctacagc	660
tataaaggaa	gcagttaaaa	aagcaggaat	aaaaccagag	gatgttaatg	aagtcatttt	720
aggaaatgtt	cttcaagcag	gtttaggaca	aatccagca	agacaggcat	cttttaaagc	780
aggattacca	gttggaaattc	cagctatgac	tattaataag	gtttgtggtt	caggacttag	840
aacagttagc	ttagcagcac	aaattataaa	agcaggagat	gctgacgtaa	taatagcagg	900
tggatggaa	aatatgtcta	gagtcctta	cttagcgaat	aacgctagat	ggggatata	960
aatggaaac	gctaaattt	ttgatgaaat	gatcactgac	ggattgtgg	atgcattta	1020
tgattaccac	atggaaataa	cagcagaaaa	catagctgag	agatggaaaca	tttcaagaga	1080
agaacaagat	gagtttgctc	ttgcatcaca	aaaaaaagct	gaagaagcta	taaaatcagg	1140
tcaatttaaa	gatgaaatag	ttcctgttgt	aattaaaggc	agaaaggag	aaactgttagt	1200
tgatacagat	gagcacccta	gatttggatc	aactatagaa	ggacttgcaa	aattaaaacc	1260

Sequence Listing

tgccttcaaa aaagatggaa cagttacagc	tgtaatgca tcaggattaa atgactgtgc	1320
agcagtactt gtaatcatga gtgcagaaaa	agctaaagag cttggagtaa aaccacttgc	1380
taagatagtt tcttatggtt cagcaggagt	tgacccagca ataatggat atggacctt	1440
ctatgcaaca aaagcagcta ttgaaaaagc	aggttggaca gttgatgaat tagatttat	1500
agaatcaa at gaagctttg cagctcaa	ag ttagcagta gcaaaagatt taaaatttga	1560
tatgaataaa gtaaatgtaa atggaggagc	tattgccctt ggtcatccaa ttggagcatc	1620
aggtgcaaga atactcgta ctcttgcata	cgcaatgcaa aaaagagatg caaaaaaagg	1680
cttagcaact ttatgtatag gtggcggaca	aggaacagca atattgctag aaaagtgcta	1740
ggaattcgag ctcggtaacct taggaggatt	agtcatggaa ctaaacaatg tcattcctga	1800
aaaggaaggt aaagttgctg tagttaccat	taacagaccc aaagcattaa atgcgttaaa	1860
tagtgataca ctaaaagaaa tggattatgt	tataggtgaa attgaaaatg atagcgaagt	1920
acttgcagta attttaactg gagcaggaga	aaaatcattt gtagcaggag cagatattc	1980
tgagatgaag gaaatgaata ccattgaagg	tagaaaattc gggatacttg gaaataaagt	2040
gtttagaaga tttagaacttc ttgaaaagcc	tgtaatagca gctgttaatg gtttgctt	2100
aggaggcggta tgcaaatag ctatgtctt	tgatataaga atagcttcaa gcaacgcaag	2160
atttgtcaa ccagaagtag gtctcggaaat	aacaccttgg tttggtgta cacaagact	2220
ttcaagatta gttggatgg gcatggaaa	gcagcttata tttactgcac aaaatataaa	2280
ggcagatgaa gcattaagaa tcggacttgt	aaataaggta gtagaaccta gtgaattaat	2340
gaatacagca aaagaaattt gaaacaaaat	tgtgagcaat gctccagtag ctgttaagtt	2400
aagcaaacag gctattaata gaggaatgca	gtgtgatatt gatactgctt tagcatttga	2460
atcagaagca tttggagaat gctttcaac	agaggatcaa aaggatgcaa tgacagctt	2520
catagagaaa agaaaaattt aaggcttcaa	aaatagatag gaggtaaatg tataatggatt	2580
ttaatttaaac aagagaacaa gaatttagtaa	gacagatggt tagagaatgg gctgaaaatg	2640
aagttaaacc tatagcagca gaaattgatg	aaacagaaaag atttccatgt gaaaatgtaa	2700
agaaaaatgg tcagtaggt atgatggaa	ttccattttc aaaagagtat ggtggcgcag	2760
gtggagatgt attatcttataatcgccg	ttgaggaatt atcaaagggt tgccgtacta	2820
caggagttat tcttcagca catacatcac	tttgtgcctt attaataat gaacatggta	2880
cagaagaaca aaaacaaaaa tatttagtac	ctttagctaa aggtaaaaaa ataggtgctt	2940
atggattgac tgagccaaat gcaggaacag	attctggagc acaacaaaca gtagctgtac	3000
ttgaaggaga tcattatgta attaatggtt	caaaaatatt cataactaat ggaggagtt	3060
cagatacttt tgttatattt gcaatgactg	acagaactaa aggaacaaa ggtatatcag	3120
catttataat agaaaaaggc ttcaaagggt	tctctattgg taaagttgaa caaaagctt	3180
gaataagagc ttcatcaaca actgaacttg	tattgaaga tatgatagta ccagtagaaa	3240
acatgattgg taaagaagga aaaggcttcc	ctatagcaat gaaaactctt gatggaggaa	3300

Sequence Listing	
gaattggat agcagctcaa gctttaggt tagctgaagg tgcttcaac gaagcaagag	3360
cttacatgaa ggagagaaaa caattggaa gaagccttga caaattccaa ggtcttgc	3420
ggatgatggc agatatggat gtagctatag aatcagctag atathtagta tataaagc	3480
catatcttaa acaagcagga cttccataca cagttgatgc tgcaagagct aagcttcatg	3540
ctgcaaatgt agcaatggat gtaacaacta aggcaacta attatggat ggatacggat	3600
atacaaaaaga ttatccagtt gaaagaatga tgagagatgc taagataact gaaatata	3660
aaggaacttc agaagttcag aaattgtta tttcaggaaa aatttttaga taatttaagg	3720
aggtaagag gatgaatata gttgttgc taaaacaagt tccagataca gcggaaagtta	3780
gaatagatcc agttaaggga acacttataa gagaaggagt tccatcaata ataaatccag	3840
atgataaaaa cgcacttgag gaagctttag tattaaaaga taattatggt gcacatgtaa	3900
cagttataag tatggacactt ccacaagcta aaaatgc ttt agtagaagct ttggctatgg	3960
gtgctgatga agctgtactt ttaacagata ggcatttgg aggaggcat acacttgcga	4020
cttcacatac aattgcagca ggaattaaga agctaaaata tgatatagtt tttgctggaa	4080
ggcaggctat agatggagat acagtcagg ttggaccaga aatagcttag catcttgaa	4140
tacctcaagt aacttatgtt gagaaagttt aagttgatgg agatacttta aagattagaa	4200
aagcttggaa agatggatata gaagttgtt aagttaagac accagttctt ttaacagcaa	4260
ttaaagaatt aaatgttcca agatataatga gtgtaaaaaa aatattcggg gcatttgata	4320
aagaagtaaa aatgtggact gccgatgata tagatgtaga taaggctaatt ttaggtctt	4380
aaggttcacc aactaaagtt aagaagtcataactaaaga agttaaagga cagggagaag	4440
ttattgataa gcctgttaag gaagcagctg catatgttgc ctcaaaattta aaagaagaac	4500
actatattta agttaggagg gatTTTCAA tgaataaagc agattacaag ggcgtatgg	4560
tgtttgctga acaaagagac ggagaattac aaaaggtatc attggattta ttaggtaaag	4620
gtaaggaaat ggctgagaaa ttaggcgtt aattaacagc tggcttactt ggacataata	4680
ctgaaaaat gtcaaaggat ttattatctc atggagcaga taaggttta gcagcagata	4740
atgaactttt agcacatttt tcaacagatg gatatgctaa agttagatgt gatTTTGT	4800
atgaaagaaa gccagaaata ttattcatag gagctacttt cataggaaga gatTTTGG	4860
caagaatagc agcaagactt tctactggtt taactgctga ttgtacatca cttgacatag	4920
atgtagaaaa tagagattt ttggctacaa gaccagcggt tggggaaat ttgatagcta	4980
caatagttt ttcagaccac agaccacaaa tggctacagt aagacctgg tggttgaaa	5040
aattacctgt taatgtatgca aatgtttctg atgataaaat agaaaaagtt gcaattaaat	5100
taacagcatc agacataaga acaaaagttt caaaagttgt taagcttgc aaagatattg	5160
cagatatcg agaagctaa gtattagttt ctgggtgg tagaggatgg agcaaagaaa	5220
actttgaaaa acttgaagag ttagcaagtt tacttgggg aacaatagcc gcttcaagag	5280
cagcaataga aaaagaatgg gttgataagg accttcaagt aggtcaaact ggtaaaactg	5340

Sequence Listing

taagaccaac tctttatatt gcatgtggta tatcaggagc tatccagcat ttagcaggt	5400
tgcaagattc agattacata attgctataa ataaagatgt agaagcccc aataatgaagg	5460
tagcagattt ggctatagtt ggtgatgtaa ataaagttgt accagaatta atagctcaag	5520
ttaaagctgc taataattaa gataaataaa aagaattatt taaagcttat tatgccaaa	5580
tacttatata gtatTTGgt gtaatgcat tgatagttc tttaaattta gggaggtctg	5640
tttaatgaaa aaggtatgtg ttataggtgc aggtactatg ggTCAGGAA ttgctcaggc	5700
atTTGcAGCT aaaggattt aagtatgtt aagagatatt aaagatgaat ttgttgatag	5760
aggattagat tttatcaata aaaatcttc taaattagtt aaaaaaggaa agatagaaga	5820
agctactaaa gttgaaatct taactagaat ttccggaca gttgacctt atatggcagc	5880
tgattgcgt ttagttatag aagcagctgt tgaaagaatg gatattaaa agcagatTTT	5940
tgctgactta gacaatatat gcaagccaga aacaattctt gcatcaaata catcatcact	6000
ttcaataaca gaagtggcat cagcaactaa aagacctgtat aaggttata tagtgcattt	6060
ctttaatcca gctcctgtta tgaagcttgc agaggtata agaggaatag ctacatcaca	6120
agaaaactttt gatgcagttt aagagacatc tatacgataa ggaaaagatc ctgtagaagt	6180
agcagaagca ccaggatttgc ttgtaaatag aatattaata ccaatgatta atgaagcagt	6240
tggtatatta gcagaaggaa tagcttcgtt agaagacata gataaagcta tgaaacttgg	6300
agctaattcac ccaatgggac cattagaatt aggtgatTTT ataggtctt atatatgtct	6360
tgctataatg gatgtttat actcagaaac tggagattct aagtatagac cacatacatt	6420
acttaagaag tatgtaaagag caggatggct tggaaagaaaa tcaggaaaag gtttctacga	6480
ttattcaaaa taagtttaca agaatccgga tcctctagag tcgacgtcac gcgtccatgg	6540
agatctcgag gcctgcagac atgcaagctt ggcactggcc gtcgtttac aacgtcgtga	6600
ctggaaaac cctggcgtta cccaaactaa tcgccttgca gcacatcccc cttcgccag	6660
ctggcgtaat agcgaagagg cccgcaccga tcgcccTTCC caacagttgc gcagcctgaa	6720
tggcgaatgg cgcttagataaaa gcctgcattt gcaggcttct tattttatg	6780
gcgcgcgcgc ttcacttctt ttctatataa atatgagcga agcgaataag cgtcggaaaa	6840
gcagcaaaaa gtttccTTT tgctgttggc gcatgggggt tcaggggggt cagtatctga	6900
cgtcaatgcc gagcgaaagc gagccgaagg gtagcattt cgttagataa ccccctgata	6960
tgctccgacg ctttatataatg aaaagaagat tcaacttagt aaaaatcttaa tataggttga	7020
gatgataagg tttataagga atttggTTT tctaattttt cactcattt gttctaattt	7080
cttttaacaa atgttctttt ttttttagaa cagttatgtat atagtttagaa tagttaaaa	7140
taaggagtga gaaaaagatg aaagaaagat atgaaacagt ctataaaggc tctcagaggc	7200
tcatagacga agaaagtggc gaagtcatag aggttagacaa gtttataccgt aaacaaacgt	7260
ctggtaactt cgtaaaggca tatatagtgc aattaataag tatgttagat atgattggcg	7320
gaaaaaaaaact taaaatcgTT aactatatcc tagataatgt ccacttaagt aacaatacaa	7380

Sequence Listing

tgatagctac aacaagagaa atagcaaaag	ctacaggaac aagtctacaa acagtaataa	7440
caacacttaa aatcttagaa gaaggaaata ttataaaaag aaaaactgga	gtattaatgt	7500
taaacccctga actactaatg agaggcgacg	accaaaaaca aaaatacctc ttactcgaat	7560
ttgggaacct tgagcaagag gcaaatacgaa	tagattgacc tcccaataac accacgtgt	7620
tattggagg tcaatctatg aaatgcgatt aagggccggc	cgaagcaaac ttaagagtgt	7680
gttgatagtg cagtatctta aaattttgtta	taataggaat tgaagttaaa ttagatgcta	7740
aaaatttgcgat attaagaagg agtgattaca	tgaacaaaaa tataaaatat tctcaaaact	7800
tttaacgag tgaaaaagta ctcaacccaa	taataaaaca attgaattta aaagaaaccg	7860
ataccgttta cgaardttga acaggtaaag ggcatttaac	gacgaaactg gctaaaataa	7920
gtaaacaggt aacgtctatt gaatttagaca	gtcatctatt caacttatcg tcagaaaaat	7980
taaaactgaa tactcgtgtc actttaattc	accaagatat tctacagttt caattcccta	8040
acaaacagag gtataaaatt gttggagta	ttccttacca tttaagcaca caaatttatta	8100
aaaaagtggt ttttgcggac catgcgtctg	acatctatct gattgttcaa gaaggattct	8160
acaagcgtac cttggatatt caccgaacac	tagggttgccttgcacact caagtctcga	8220
ttcagcaatt gcttaagctg ccagcggaaat	gctttcatcc taaacccaaa gtaaacagtg	8280
tcttaataaa acttacccgc cataccacag	atgttccaga taaatattgg aagctatata	8340
cgtactttgt ttcaaaaatgg gtcaatcgag	aatatcgta actgtttact aaaaatcagt	8400
ttcatcaagc aatgaaacac gccaaagtaa	acaatttaag taccgttact tatgagcaag	8460
tattgtctat tttaatagt tatctattat	ttaacgggag gaaataattc tatgagtcgc	8520
ttttgtaaat ttggaaagtt acacgttact	aaagggaaatg tgttttaact ccttttgat	8580
aatctcatga cccaaatccc ttaacgtgag	tttcgttcc actgagcgtc agacccgtaa	8640
gaaaagatca aaggatcttc ttgagatcct	tttttctgc gcgtaatctg ctgcttgaa	8700
acaaaaaaac caccgctacc agcgggtgtt	tgtttgccgg atcaagagct accaactctt	8760
tttccgaagg taactggctt cagcagagcg	cagataccaa atactgttct tctagtgtag	8820
ccgtagttag gccaccactt caagaactct	gtgcaccgc ctacatacct cgctctgcta	8880
atcctgttac cagtggctgc tgccagtggc	gataagtcgt gtcttaccgg gttggactca	8940
agacgatagt taccggataa ggcgcagcgg	tcgggctgaa cggggggttc gtgcacacag	9000
cccagcttgg agcgaacgcac ctacaccgaa	ctgagatacc tacagcgtga gctatgagaa	9060
agcgccacgc ttcccgaagg gagaaggcg	gacaggtatc cggttaagcgg cagggctgga	9120
acaggagagc gcacgaggga gcttccaggg	ggaaacgcct ggtatctta tagccctgtc	9180
gggttgcgc acctctgact tgagcgtcga	tttttgcgtat gctcgtaagg gggggggagc	9240
ctatggaaaa acgcccagcaa cgcggcctt	ttacgggtcc tggccttttgcgtat ggtatctta	9300
gtcacatgt tctttccctgtc gttatcccct	gattctgtgg ataaccgtat taccgcctt	9360
gagtgagctg ataccgctcg ccgcagccga	acgaccgagc gcagcgtc agtgagcggag	9420

SequenceListing

gaagcggaag	32			
agcgccaaat	37			
acgcaggggc		9459		
ccctgcagg				
<210>	32			
<211>	37			
<212>	DNA			
<213>	synthetic primer			
<400>	32			
cccgggatcc	aagcttacgg	ctaccttgtt	acgactt	37
<210>	33			
<211>	18			
<212>	DNA			
<213>	synthetic primer			
<400>	33			
tttctaattt	agaaggag	18		
<210>	34			
<211>	18			
<212>	DNA			
<213>	synthetic primer			
<400>	34			
gtagaatcct	tcttcaac	18		
<210>	35			
<211>	14			
<212>	DNA			
<213>	synthetic primer			
<400>	35			
gctggagcag	atat	14		
<210>	36			
<211>	14			
<212>	DNA			
<213>	synthetic primer			
<400>	36			
gctgtcattc	cttc	14		
<210>	37			
<211>	18			
<212>	DNA			
<213>	synthetic primer			
<400>	37			
cgtcagaccc	cgtagaaa	18		
<210>	38			
<211>	18			
<212>	DNA			
<213>	synthetic primer			
<400>	38			
ctctcctgtt	ccgaccct	18		
<210>	39			
<211>	2688			

Sequence Listing

<212> DNA
 <213> C. autoethanogenum

<400> 39
 atgagaaaatt tgtttatatt taacagcata aaaaataaga aagaggtgtc attaatgaag 60
 gtaactaagg taactaacgt tgaagaatta atgaaaaagt tagatgaagt aacggctgct 120
 caaaagaaat tttctagcta tactcaagaa caagtggatg aaattttcag gcaggcagct 180
 atggcagcca atagtgttag aatagactta gctaaaatgg cagtggaga aagcggaaatg 240
 ggaattgttag aagacaaggt cattaaaaat cattttgtt cagaatataat atataacaaa 300
 tataagggtg aaaagacctg cggagttctg gaacaagatg aaggcttgg tatggttaga 360
 attgcagaac ctgttaggat tattgcagca gtagttccaa caactaatcc aacatctaca 420
 gcaatattta aatcactaat agctttaaa actagaaatg gtatagttt ttcaccacat 480
 ccaagggcaa aaaaatcaac tattgcagca gctaagatag tacttgatgc agcgttaaa 540
 gctggtgccc ctgaaggaat tataggctgg atagatgaac cttctattga actttcacag 600
 gtggtaatga aagaagcaga tctaattctt gcaactggtg gaccaggtat ggttaaggct 660
 gcctattctt cagggaaagcc tgctatagga gttggtccag gtaatacacc tgctgtatt 720
 gatgaaagtg ccgacattaa aatggcagta aattcaatac tactttcaaa aactttgtat 780
 aatggatgatg tttgtgcttc agagcagtca gtaatagttg caagctcaat atacgatgaa 840
 gtcaagaaag agtttgcaga tagaggagca tatataattaa gtaaggatga aacagataag 900
 gttggaaaaaa caatcatgat taatggagct ttaaatgctg gaattgttagg gcaaagtgcc 960
 tttaaaatag ctcagatggc gggagtcagt gtaccggaaatgctaaaat actttaggatgaa 1020
 gaagttaaat cggtagaaacc tgaagaagag cccttgctc atgaaaagct gtctccagtt 1080
 cttagccatgt acaaagcaaa agattttgat gaagcacttc taaaggctgg aagattagtt 1140
 gaacgaggtg gaatagggca tacatctgta ttgtatgtaa attcgatgac ggaaaaagta 1200
 aaagtagaaaa agttcagaga aactatgaag accggtagaa cattgataaa tatgccttca 1260
 gcgcaggcg ctataggaga tatataaaac tttaaactag ctccttctt gacattaggc 1320
 tgtggttcct ggggaggaaaa ctctgtatca gaaaatgttg gacctaaaca tttgttaaac 1380
 ataaagagtg ttgctgagag gagagaaaat atgctttgtt ttagagtacc tgaaaaggtt 1440
 tatttcaaattt atggcagcct tggagttgca ctaaaagaac tgagaattat ggagaagaaa 1500
 aaggcgttta tagtaacgga taaagttctt tatcaattag gttatgtaga taaaattaca 1560
 aagaacctcg atgaattaag agttcataat aaaatattta cagatgtaga accagatcca 1620
 acccttgcta cagctaaaaa aggtgcagca gaactgctt cctatgaacc agatacaatt 1680
 atagcagttg gtgggtggc ggcaatggat gctgccaaga tcatgtgggt aatgtatgag 1740
 catccagaag taagattga agatttggcc atgagattta tggatataag aaagagagta 1800
 tatgttttc ctaagatggg agaaaaggca atgatgattt cagtagcaac atccgcagga 1860
 acagggtcag aagttactcc atttgcagta attacggacg aaagaacagg agctaaat 1920

Sequence Listing

cctctggctg attatgaatt aactccaaac atggctatag ttgatgcaga acttatgatg	1980
ggaatgccaa agggctaac agcagcttca ggtatagatg cgttgactca tgcactggag	2040
gcctatgtgt caataatggc ttcagaatat accaacggat tggctttga agcaacaaga	2100
ttagtattca aatatttgc aatagctt acagaaggta caattaatgt aaaggcaaga	2160
gaaaaaatgg ctcatgcttc atgtattgca ggtatggcct ttgccaatgc atttttaggg	2220
gtatgccact ctatggcaca taaattggga gcacagcacc acataccaca tggattgcc	2280
aatgcactta tgatagatga agttataaaa ttcaatgctg tagaggctcc aaggaaacaa	2340
gcggcatttc cacaatataa atatccaaat gttaaaagaa gatatgctag aatagctgat	2400
tacctaaatt taggtggaag tacagatgt gaaaaagtac aattgctaatt aatgctata	2460
gatgacttaa aaactaagtt aaatattcca aagactatta aagaagcagg agtttcagaa	2520
gataaattct atgctacttt agatacaatg tcagaactgg ctttgatga tcaatgtaca	2580
ggagctaattc cacgatatcc actaataatgg gaaataaaac aaatgtatat aaatgcattt	2640
gatacaccaa aggcaactgt ggagaagaaa acaagaaaga aaaagtaa	2688

<210> 40

<211> 895

<212> PRT

<213> C. autoethanogenum

<400> 40

Met	Arg	Asn	Leu	Phe	Ile	Phe	Asn	Ser	Ile	Lys	Asn	Lys	Lys	Glu	Val
1					5				10						15

Ser	Leu	Met	Lys	Val	Thr	Lys	Val	Thr	Asn	Val	Glu	Glu	Leu	Met	Lys
					20			25					30		

Lys	Leu	Asp	Glu	Val	Thr	Ala	Ala	Gln	Lys	Lys	Phe	Ser	Ser	Tyr	Thr
					35			40				45			

Gln	Glu	Gln	Val	Asp	Glu	Ile	Phe	Arg	Gln	Ala	Ala	Met	Ala	Ala	Asn
					50			55				60			

Ser	Ala	Arg	Ile	Asp	Leu	Ala	Lys	Met	Ala	Val	Glu	Glu	Ser	Gly	Met
					65			70		75			80		

Gly	Ile	Val	Glu	Asp	Lys	Val	Ile	Lys	Asn	His	Phe	Val	Ala	Glu	Tyr
					85			90				95			

Ile	Tyr	Asn	Lys	Tyr	Lys	Gly	Glu	Lys	Thr	Cys	Gly	Val	Leu	Glu	Gln
					100			105				110			

Asp	Glu	Gly	Phe	Gly	Met	Val	Arg	Ile	Ala	Glu	Pro	Val	Gly	Val	Ile
					115			120				125			

Ala	Ala	Val	Val	Pro	Thr	Thr	Asn	Pro	Thr	Ser	Thr	Ala	Ile	Phe	Lys
					130			135			140				

Sequence Listing

Ser Leu Ile Ala Leu Lys Thr Arg Asn Gly Ile Val Phe Ser Pro His
145 150 155 160

Pro Arg Ala Lys Lys Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp
165 170 175

Ala Ala Val Lys Ala Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp
180 185 190

Glu Pro Ser Ile Glu Leu Ser Gln Val Val Met Lys Glu Ala Asp Leu
195 200 205

Ile Leu Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser
210 215 220

Gly Lys Pro Ala Ile Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile
225 230 235 240

Asp Glu Ser Ala Asp Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser
245 250 255

Lys Thr Phe Asp Asn Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile
260 265 270

Val Ala Ser Ser Ile Tyr Asp Glu Val Lys Lys Glu Phe Ala Asp Arg
275 280 285

Gly Ala Tyr Ile Leu Ser Lys Asp Glu Thr Asp Lys Val Gly Lys Thr
290 295 300

Ile Met Ile Asn Gly Ala Leu Asn Ala Gly Ile Val Gly Gln Ser Ala
305 310 315 320

Phe Lys Ile Ala Gln Met Ala Gly Val Ser Val Pro Glu Asp Ala Lys
325 330 335

Ile Leu Ile Gly Glu Val Lys Ser Val Glu Pro Glu Glu Glu Pro Phe
340 345 350

Ala His Glu Lys Leu Ser Pro Val Leu Ala Met Tyr Lys Ala Lys Asp
355 360 365

Phe Asp Glu Ala Leu Leu Lys Ala Gly Arg Leu Val Glu Arg Gly Gly
370 375 380

Ile Gly His Thr Ser Val Leu Tyr Val Asn Ser Met Thr Glu Lys Val
385 390 395 400

Lys Val Glu Lys Phe Arg Glu Thr Met Lys Thr Gly Arg Thr Leu Ile
405 410 415

Sequence Listing

Asn Met Pro Ser Ala Gln Gly Ala Ile Gly Asp Ile Tyr Asn Phe Lys
 420 425 430

Leu Ala Pro Ser Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser
 435 440 445

Val Ser Glu Asn Val Gly Pro Lys His Leu Leu Asn Ile Lys Ser Val
 450 455 460

Ala Glu Arg Arg Glu Asn Met Leu Trp Phe Arg Val Pro Glu Lys Val
 465 470 475 480

Tyr Phe Lys Tyr Gly Ser Leu Gly Val Ala Leu Lys Glu Leu Arg Ile
 485 490 495

Met Glu Lys Lys Lys Ala Phe Ile Val Thr Asp Lys Val Leu Tyr Gln
 500 505 510

Leu Gly Tyr Val Asp Lys Ile Thr Lys Asn Leu Asp Glu Leu Arg Val
 515 520 525

Ser Tyr Lys Ile Phe Thr Asp Val Glu Pro Asp Pro Thr Leu Ala Thr
 530 535 540

Ala Lys Lys Gly Ala Ala Glu Leu Leu Ser Tyr Glu Pro Asp Thr Ile
 545 550 555 560

Ile Ala Val Gly Gly Ser Ala Met Asp Ala Ala Lys Ile Met Trp
 565 570 575

Val Met Tyr Glu His Pro Glu Val Arg Phe Glu Asp Leu Ala Met Arg
 580 585 590

Phe Met Asp Ile Arg Lys Arg Val Tyr Val Phe Pro Lys Met Gly Glu
 595 600 605

Lys Ala Met Met Ile Ser Val Ala Thr Ser Ala Gly Thr Gly Ser Glu
 610 615 620

Val Thr Pro Phe Ala Val Ile Thr Asp Glu Arg Thr Gly Ala Lys Tyr
 625 630 635 640

Pro Leu Ala Asp Tyr Glu Leu Thr Pro Asn Met Ala Ile Val Asp Ala
 645 650 655

Glu Leu Met Met Gly Met Pro Lys Gly Leu Thr Ala Ala Ser Gly Ile
 660 665 670

Asp Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ser Ile Met Ala Ser
 675 680 685

Sequence Listing

Glu Tyr Thr Asn Gly Leu Ala Leu Glu Ala Thr Arg Leu Val Phe Lys
 690 695 700

Tyr Leu Pro Ile Ala Tyr Thr Glu Gly Thr Ile Asn Val Lys Ala Arg
 705 710 715 720

Glu Lys Met Ala His Ala Ser Cys Ile Ala Gly Met Ala Phe Ala Asn
 725 730 735

Ala Phe Leu Gly Val Cys His Ser Met Ala His Lys Leu Gly Ala Gln
 740 745 750

His His Ile Pro His Gly Ile Ala Asn Ala Leu Met Ile Asp Glu Val
 755 760 765

Ile Lys Phe Asn Ala Val Glu Ala Pro Arg Lys Gln Ala Ala Phe Pro
 770 775 780

Gln Tyr Lys Tyr Pro Asn Val Lys Arg Arg Tyr Ala Arg Ile Ala Asp
 785 790 795 800

Tyr Leu Asn Leu Gly Gly Ser Thr Asp Asp Glu Lys Val Gln Leu Leu
 805 810 815

Ile Asn Ala Ile Asp Asp Leu Lys Thr Lys Leu Asn Ile Pro Lys Thr
 820 825 830

Ile Lys Glu Ala Gly Val Ser Glu Asp Lys Phe Tyr Ala Thr Leu Asp
 835 840 845

Thr Met Ser Glu Leu Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro
 850 855 860

Arg Tyr Pro Leu Ile Gly Glu Ile Lys Gln Met Tyr Ile Asn Ala Phe
 865 870 875 880

Asp Thr Pro Lys Ala Thr Val Glu Lys Lys Thr Arg Lys Lys
 885 890 895

<210> 41

<211> 2613

<212> DNA

<213> c. autoethanogenum

<400> 41

atgaaaagtta caaacgtaga agaactaatg aaaagactag aagaataaaa ggatgctcaa 60
 aagaaaatttg ctacatatac tcaagaacaa gtggatgaaa ttttagaca agcagctatg
 gcagctaata gtgctagaat agaactagct aaaatggcag tagaagaaag cggaatggga 120
 attgtagaag acaaggttat taaaaatcac tttgcttcag aatatatata taacaaatat 180
 240

Sequence Listing

aaggatgaaa	aaacctgtgg	agtttttagag	agagatgcag	gctttggtat	agttagaatt	300
gcggaacctg	taggagttat	tgcagcagta	gttccaaaca	ctaattccaa	atctacagca	360
atatttaat	caactaatgc	tttaaaaact	agaaatggta	taatttttc	accccatcca	420
agggcaaaga	aatcaactat	tgcagcagct	aaaatagtac	ttgacgctgc	agttaaagct	480
ggtgctcctg	aaggaattat	agatggata	gatgaacctt	ccattgaact	ttcacaggtg	540
gtaatgggag	aagcaaattt	aattcttgca	actggtggtc	cgggtatggt	taaggctgcc	600
tattcttcag	gcaaacctgc	tgtggagtt	ggtccaggt	acacacctgc	tgtaatttgat	660
gaaagtgc	acattaaaat	ggcagtaaat	tcaatattac	tatcaaaaac	tttgataat	720
ggtatgattt	gtgcctcaga	gcagtcagta	atagtttag	actcaatata	tgaggaagtt	780
aaaaaagaat	ttgcttata	gggtgctt	atattaagta	agatgaaac	agataagg	840
ggaaaaataa	ttttaaaaaa	tggagcctt	aatgcaggt	ttgttaggaca	acctgcttt	900
aaaatagcac	agctggcagg	agtggatgta	ccagaaaaag	ctaaagtact	tataggagag	960
gtagaatcg	tagaacttga	agaaccattt	tctcatgaaa	agttatctcc	agtttagct	1020
atgtacaggg	caagaaattt	tgaggatgcc	attgcaaaaa	ctgataaact	ggttagggca	1080
ggtggattt	gacatacatc	ttcattgtat	ataaatccaa	tgacagaaaa	agcaaaagta	1140
aaaaaattt	gtactatgat	gaaaacatca	agaactataa	ttaacacacc	ttcatccaa	1200
ggtggtag	gtgatata	taactttaaa	ctagctcctt	cttgacatt	aggctgcggt	1260
tcctgggggg	gaaattctgt	atccgaaaat	gttggccta	aacatttatt	aaacataaaa	1320
agtgttgctg	agaggagaga	aaatatgctt	tggtttagag	tacctgaaaa	ggtttatttc	1380
aaatatggta	gtcttgag	tgcat	gagttaaaag	ttatgaataa	gaagaaagta	1440
tttatagtaa	cagataaagt	tcttatcaa	ttaggttat	tggacaaagt	tacaaaagtt	1500
cttgaggaac	taaaaattt	ctataaggta	tttacagatg	tagaaccaga	tccaccctt	1560
gctacagcta	aaaaaggtgc	agcagaactg	cttcctatg	aaccggatac	aattatatca	1620
gttgggtgt	gttcagcaat	ggatgcagct	aagatcatgt	ggtaatgta	tgagcatcca	1680
gaagtaaaat	ttgaagattt	agctatgaga	tttatggata	taagaaagag	agtatatgtt	1740
ttccctaaga	tgggagaaaa	ggcaatgat	atttcagtag	caacatccgc	aggaacaggg	1800
tcggaagtta	ctccatttgc	agtaatcact	gatgaaaaaa	caggagctaa	atatccatta	1860
gctgattatg	aactaactcc	agacatggct	atagtatgt	cagaacttat	gatggaaatg	1920
ccaagaggac	ttacagcagc	ttcgggtata	gatgcattaa	cccatgcact	ggaggcgtat	1980
gtgtcaataa	tggctacaga	atttaccaat	ggattagccc	ttgaagcagt	aaagttgata	2040
tttgaatatt	tacaaaagc	ttatacagaa	ggtacaacta	atgtaaaggc	aagagaaaag	2100
atggctcatg	tttcatgtat	tgcaggtat	gccttgcaa	atgcatttt	aggggtatgc	2160
cactctatgg	cacataaatt	gggagcacag	catcacatac	cacatggaat	tgccaatgca	2220
cttatgatag	atgaagttat	aaaattcaat	gctgtat	atccaataaa	acaagctgca	2280

Sequence Listing

tttccccaat acgagtatcc aaatgctagg tatagatatg ctcagatagc tgattgtctg	2340
aacttggag gaaatacaga agaggaaaag gtacaactat taataaatgc tatagatgat	2400
ttaaaagcta agttaaatat tccagaaact ataaaagaag caggagttc agaagataaa	2460
ttctatgcta ctttagataa aatgtcagaa ttagctttg atgatcagt tacaggagct	2520
aatccaagat atccactgat aagtcaaata aaacaaatgt atataaatgt tttgataaa	2580
accgaaccaa ttgtagaaga tgaagaaaag taa	2613

<210> 42

<211> 508

<212> PRT

<213> C. autoethanogenum

<400> 42

Met Lys Val Thr Asn Val Glu Glu Leu Met Lys Arg Leu Glu Glu Ile			
1	5	10	15
10	15		

Lys Asp Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp			
20	25	30	
30			

Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Ser Ala Arg Ile Glu			
35	40	45	
45			

Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile Val Glu Asp			
50	55	60	
60			

Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Lys Tyr			
65	70	75	80
75	80		

Lys Asp Glu Lys Thr Cys Gly Val Leu Glu Arg Asp Ala Gly Phe Gly			
85	90	95	
95			

Ile Val Arg Ile Ala Glu Pro Val Gly Val Ile Ala Ala Val Val Pro			
100	105	110	
110			

Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ala Leu			
115	120	125	
125			

Lys Thr Arg Asn Gly Ile Ile Phe Ser Pro His Pro Arg Ala Lys Lys			
130	135	140	
140			

Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala Val Lys Ala			
145	150	155	160
155	160		

Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu			
165	170	175	
175			

Leu Ser Gln Val Val Met Gly Glu Ala Asn Leu Ile Leu Ala Thr Gly			
180	185	190	
190			

Sequence Listing

Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Val
195 200 205

Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile Asp Glu Ser Ala Asp
210 215 220

Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr Phe Asp Asn
225 230 235 240

Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Asp Ser Ile
245 250 255

Tyr Glu Glu Val Lys Lys Glu Phe Ala Tyr Arg Gly Ala Tyr Ile Leu
260 265 270

Ser Lys Asp Glu Thr Asp Lys Val Gly Lys Ile Ile Leu Lys Asn Gly
275 280 285

Ala Leu Asn Ala Gly Ile Val Gly Gln Pro Ala Phe Lys Ile Ala Gln
290 295 300

Leu Ala Gly Val Asp Val Pro Glu Lys Ala Lys Val Leu Ile Gly Glu
305 310 315 320

Val Glu Ser Val Glu Leu Glu Glu Pro Phe Ser His Glu Lys Leu Ser
325 330 335

Pro Val Leu Ala Met Tyr Arg Ala Arg Asn Phe Glu Asp Ala Ile Ala
340 345 350

Lys Thr Asp Lys Leu Val Arg Ala Gly Gly Phe Gly His Thr Ser Ser
355 360 365

Leu Tyr Ile Asn Pro Met Thr Glu Lys Ala Lys Val Glu Lys Phe Ser
370 375 380

Thr Met Met Lys Thr Ser Arg Thr Ile Ile Asn Thr Pro Ser Ser Gln
385 390 395 400

Gly Gly Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala Pro Ser Leu Thr
405 410 415

Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly
420 425 430

Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn
435 440 445

Met Leu Trp Phe Arg Val Pro Glu Lys Val Tyr Phe Lys Tyr Gly Ser
450 455 460

Sequence Listing

Leu Gly Val Ala Leu Lys Glu Leu Lys Val Met Asn Lys Lys Lys Val
 465 470 475 480

Phe Ile Val Thr Asp Lys Val Leu Tyr Gln Leu Gly Tyr Val Asp Lys
 485 490 495

Val Thr Lys Val Leu Glu Glu Leu Lys Asn Phe Leu
 500 505

<210> 43
 <211> 1554
 <212> DNA
 <213> c. autoethanogenum

<400> 43
 ttggaaaatt ttgataaaaga cttacgttct atacaagaag caagagatct tgcacgttta 60
 ggaaaaattt cagcagacca aattgctgat tatactgaag aacaaattga taaaatccta 120
 tctaataatgg ttagggttagc agaagaaaat gcagttgcc ttggtaaaat ggctgcagaa 180
 gaaactggtt ttggaaaagc tgaagataag gcttataaga accatatggc tgctactaca 240
 gtatataatt acatcaagga tatgaagact attgggttta taaaagaaga taaaagtgaa 300
 ggtgtaattt aatttgcaga accagtttgtt ttattatgg gtattgtacc atctacaaat 360
 ccaacatcta ctgttattta taaatcaatc attgcaatta aatcaagaaa tgcaattgtt 420
 ttctcaccac acccagctgc attaaaatgt tcaacaaaag caatagaact tatgcgtgat 480
 gcagcagtag cagcaggagc tcctgcaaattt gtaattggtg gtattgttac accatctata 540
 caagctacaa atgaacttat gaaagctaaa gaagttgcta tgataattgc aactggaggc 600
 cctggaatgg taaaggctgc atatagttca ggaacacctg caataggcgt tgggtctgg 660
 aactctccat cctatattga aagaactgct gatgttcatc aatcgttta agatataata 720
 gctagtaaga gttttgacta tggtactatt tggcatccg agcagtctgt aattgcagaa 780
 gaatgcaacc atgatgaaat agtagctgaa tttaagaaac aaggcggata tttcatgaca 840
 gctgaagaaa ctgcaaaagt ttgcagcgta ctttttaaac ctggcacaca cagcatgagc 900
 gctaagttt taggaagagc tcctcagggtt atagcagaag ctgcagggtt cacagttcca 960
 gaaggaacaa aagtatttaat aggagaacaa ggcggagttt gtaatggta ccctctatct 1020
 tatgagaaac ttacaacagt acttgctttc tatacagtta aagattggca tgaagcatgt 1080
 gagcttagta taagattact tcaaaatggt cttggacata caatgaacat tcatacaaatt 1140
 gatagagact tagtaatgaa gtttgctaaa aaaccagcat cccgtatctt agttaataact 1200
 ggtggaagcc agggaggtac tggtgcaagc acaggattag cacctgcatt tacattaggt 1260
 tgggtacat ggggaggaag ctctgtttct gaaaatgttta ctccattaca tttaatcaat 1320
 ataaagagag tagcatatgg tcttaaagat tgtactacat tagctgcaga cgatacaact 1380
 ttcaatcatc ctgaactttt cggaaagcaaa aatgacttag gattctgtgc tacaagccct 1440
 gcagaatttgcagcaaaagag caattgttat agcactgctg cagataactac tgataatgat 1500

Sequence Listing

aaaccttgcta gactcgtaag tgaatttagta gctgcaatga agggagctaa ctaa

1554

<210> 44

<211> 517

<212> PRT

<213> c. autoethanogenum

<400> 44

Met Glu Asn Phe Asp Lys Asp Leu Arg Ser Ile Gln Glu Ala Arg Asp
1 5 10 15Leu Ala Arg Leu Gly Lys Ile Ala Ala Asp Gln Ile Ala Asp Tyr Thr
20 25 30Glu Glu Gln Ile Asp Lys Ile Leu Cys Asn Met Val Arg Val Ala Glu
35 40 45Glu Asn Ala Val Cys Leu Gly Lys Met Ala Ala Glu Glu Thr Gly Phe
50 55 60Gly Lys Ala Glu Asp Lys Ala Tyr Lys Asn His Met Ala Ala Thr Thr
65 70 75 80Val Tyr Asn Tyr Ile Lys Asp Met Lys Thr Ile Gly Val Ile Lys Glu
85 90 95Asp Lys Ser Glu Gly Val Ile Glu Phe Ala Glu Pro Val Gly Leu Leu
100 105 110Met Gly Ile Val Pro Ser Thr Asn Pro Thr Ser Thr Val Ile Tyr Lys
115 120 125Ser Ile Ile Ala Ile Lys Ser Arg Asn Ala Ile Val Phe Ser Pro His
130 135 140Pro Ala Ala Leu Lys Cys Ser Thr Lys Ala Ile Glu Leu Met Arg Asp
145 150 155 160Ala Ala Val Ala Ala Gly Ala Pro Ala Asn Val Ile Gly Gly Ile Val
165 170 175Thr Pro Ser Ile Gln Ala Thr Asn Glu Leu Met Lys Ala Lys Glu Val
180 185 190Ala Met Ile Ile Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr
195 200 205Ser Ser Gly Thr Pro Ala Ile Gly Val Gly Ala Gly Asn Ser Pro Ser
210 215 220Tyr Ile Glu Arg Thr Ala Asp Val His Gln Ser Val Lys Asp Ile Ile
225 230 235 240

Sequence Listing

Ala Ser Lys Ser Phe Asp Tyr Gly Thr Ile Cys Ala Ser Glu Gln Ser
 245 250 255

Val Ile Ala Glu Glu Cys Asn His Asp Glu Ile Val Ala Glu Phe Lys
 260 265 270

Lys Gln Gly Gly Tyr Phe Met Thr Ala Glu Glu Thr Ala Lys Val Cys
 275 280 285

Ser Val Leu Phe Lys Pro Gly Thr His Ser Met Ser Ala Lys Phe Val
 290 295 300

Gly Arg Ala Pro Gln Val Ile Ala Glu Ala Ala Gly Phe Thr Val Pro
 305 310 315 320

Glu Gly Thr Lys Val Leu Ile Gly Glu Gln Gly Gly Val Gly Asn Gly
 325 330 335

Tyr Pro Leu Ser Tyr Glu Lys Leu Thr Thr Val Leu Ala Phe Tyr Thr
 340 345 350

Val Lys Asp Trp His Glu Ala Cys Glu Leu Ser Ile Arg Leu Leu Gln
 355 360 365

Asn Gly Leu Gly His Thr Met Asn Ile His Thr Asn Asp Arg Asp Leu
 370 375 380

Val Met Lys Phe Ala Lys Lys Pro Ala Ser Arg Ile Leu Val Asn Thr
 385 390 395 400

Gly Gly Ser Gln Gly Gly Thr Gly Ala Ser Thr Gly Leu Ala Pro Ala
 405 410 415

Phe Thr Leu Gly Cys Gly Thr Trp Gly Gly Ser Ser Val Ser Glu Asn
 420 425 430

Val Thr Pro Leu His Leu Ile Asn Ile Lys Arg Val Ala Tyr Gly Leu
 435 440 445

Lys Asp Cys Thr Thr Leu Ala Ala Asp Asp Thr Thr Phe Asn His Pro
 450 455 460

Glu Leu Cys Gly Ser Lys Asn Asp Leu Gly Phe Cys Ala Thr Ser Pro
 465 470 475 480

Ala Glu Phe Ala Ala Lys Ser Asn Cys Asp Ser Thr Ala Ala Asp Thr
 485 490 495

Thr Asp Asn Asp Lys Leu Ala Arg Leu Val Ser Glu Leu Val Ala Ala
 500 505 510

Sequence Listing

Met Lys Gly Ala Asn
515

<210> 45
<211> 1446

<212> DNA
<213> c. autoethanogenum

<400> 45
gtggaaaatg ctgcacgagc acaaaaaatg ttagcaacct ttccacaaga aaagctagat 60
gagattgtt aacgtatggc ggaagaaatc ggaaaacata cccgagagct tgctgtatg
tcacaggatg aaactggta tggaaaatgg caggataaat gcatcaaaaa ccgatttgcc 120
tgtgagtatt tgccagctaa gcttagagga atgcgtatgt taggtattat taatgaaaat
ggtcaggata agaccatgga tgttaggtgt cctatgggtg taattattgc attatgtcct 180
gcaactagtc cggttctac taccatata aaggcattga ttgcaattaa gtctggtaat
gcaattatct tttctccaca tccttagagca aaggagacaa tttgtaaggc gcttgacatc 240
atgattcgtg cagctgaagg atatggcctt ccagaaggag ctcttgcata cttacatact
gtgacgccta gtggaacaat cgaattgtatg aaccatattg cgacttctt gattatgaat 300
acaggtgttc cggggatgct taaagcagca tataattctg ggaaacctgt tataatgga 360
ggaactggta atggaccagc atttattgaa cgtacagctg acatcaaaca ggcggtaaaa 420
gatattattg ctagtaagac ctttgataac ggaatagtac catcagctga acaatctatt
gtttagata gctgtgttgc atctgtatgtt aaacgtgagt tgcaaaataa tggtgcatat 480
ttcatgacag aggaggaagc acaaaaacta gttctctt tttccgttc tcatggcagt
atggattcag aaatggttgg caaatccgca caaagattgg ctaaaaaagc aggttcagc 540
attcctgaaa gtagcacagt gctaattca gagcagaaat atgttctca agataatcct
tattccaagg agaaactttg tccggacta gcttactaca ttgaagatga ttggatgcat 600
gcatgtgaaa agtgtattga actgctgtt agtgagagac atggtcacac tcttgttata 660
cattcaaaag acgaagatgt aattcgccag tttgcattaa aaaaacctgt aggtaggata
cttggtaata cgcctgcttc cttggtagt atgggtgcta caagtaattt atttcctgct 720
ttaactttag gtagtggatc ggcaggtaaa ggtattacct ccgataatgt ttcaccaatg
aatcttattt acgtccgcaa agtcggatat ggcgtacgga atgtagaaga gattgtcaat
actaatggat tgtttacaga agaaaaaaagt gattgaatg gaatgacaaa aaagtcagac 780
tataatccag aggatataca aatgttacag catatttaa aaaaagctat ggaaaaaatt
aaatag 840
1446

<210> 46
<211> 481
<212> PRT
<213> c. autoethanogenum

Sequence Listing

<400> 46

Met Glu Asn Ala Ala Arg Ala Gln Lys Met Leu Ala Thr Phe Pro Gln
 1 5 10 15

Glu Lys Leu Asp Glu Ile Val Glu Arg Met Ala Glu Glu Ile Gly Lys
 20 25 30

His Thr Arg Glu Leu Ala Val Met Ser Gln Asp Glu Thr Gly Tyr Gly
 35 40 45

Lys Trp Gln Asp Lys Cys Ile Lys Asn Arg Phe Ala Cys Glu Tyr Leu
 50 55 60

Pro Ala Lys Leu Arg Gly Met Arg Cys Val Gly Ile Ile Asn Glu Asn
 65 70 75 80

Gly Gln Asp Lys Thr Met Asp Val Gly Val Pro Met Gly Val Ile Ile
 85 90 95

Ala Leu Cys Pro Ala Thr Ser Pro Val Ser Thr Thr Ile Tyr Lys Ala
 100 105 110

Leu Ile Ala Ile Lys Ser Gly Asn Ala Ile Ile Phe Ser Pro His Pro
 115 120 125

Arg Ala Lys Glu Thr Ile Cys Lys Ala Leu Asp Ile Met Ile Arg Ala
 130 135 140

Ala Glu Gly Tyr Gly Leu Pro Glu Gly Ala Leu Ala Tyr Leu His Thr
 145 150 155 160

Val Thr Pro Ser Gly Thr Ile Glu Leu Met Asn His Ile Ala Thr Ser
 165 170 175

Leu Ile Met Asn Thr Gly Val Pro Gly Met Leu Lys Ala Ala Tyr Asn
 180 185 190

Ser Gly Lys Pro Val Ile Tyr Gly Gly Thr Gly Asn Gly Pro Ala Phe
 195 200 205

Ile Glu Arg Thr Ala Asp Ile Lys Gln Ala Val Lys Asp Ile Ile Ala
 210 215 220

Ser Lys Thr Phe Asp Asn Gly Ile Val Pro Ser Ala Glu Gln Ser Ile
 225 230 235 240

Val Val Asp Ser Cys Val Ala Ser Asp Val Lys Arg Glu Leu Gln Asn
 245 250 255

Asn Gly Ala Tyr Phe Met Thr Glu Glu Ala Gln Lys Leu Gly Ser
 260 265 270

Sequence Listing

Leu Phe Phe Arg Ser Asp Gly Ser Met Asp Ser Glu Met Val Gly Lys
 275 280 285

Ser Ala Gln Arg Leu Ala Lys Lys Ala Gly Phe Ser Ile Pro Glu Ser
 290 295 300

Ser Thr Val Leu Ile Ser Glu Gln Lys Tyr Val Ser Gln Asp Asn Pro
 305 310 315 320

Tyr Ser Lys Glu Lys Leu Cys Pro Val Leu Ala Tyr Tyr Ile Glu Asp
 325 330 335

Asp Trp Met His Ala Cys Glu Lys Cys Ile Glu Leu Leu Leu Ser Glu
 340 345 350

Arg His Gly His Thr Leu Val Ile His Ser Lys Asp Glu Asp Val Ile
 355 360 365

Arg Gln Phe Ala Leu Lys Lys Pro Val Gly Arg Ile Leu Val Asn Thr
 370 375 380

Pro Ala Ser Phe Gly Ser Met Gly Ala Thr Ser Asn Leu Phe Pro Ala
 385 390 395 400

Leu Thr Leu Gly Ser Gly Ser Ala Gly Lys Gly Ile Thr Ser Asp Asn
 405 410 415

Val Ser Pro Met Asn Leu Ile Tyr Val Arg Lys Val Gly Tyr Gly Val
 420 425 430

Arg Asn Val Glu Glu Ile Val Asn Thr Asn Gly Leu Phe Thr Glu Glu
 435 440 445

Lys Ser Asp Leu Asn Gly Met Thr Lys Lys Ser Asp Tyr Asn Pro Glu
 450 455 460 465

Asp Ile Gln Met Leu Gln His Ile Leu Lys Lys Ala Met Glu Lys Ile
 465 470 475 480

Lys

<210> 47
 <211> 490
 <212> DNA
 <213> c. autoethanogenum

<400> 47
 aagcggccgc aaaatagttg ataataatgc agagttataa acaaaggtaa aaagcattac 60
 ttgtattctt ttttatatat tattataat taaaatgaag ctgtattaga aaaaatacac 120

SequenceListing

Sequence: 5' acctgtataa taaaattttt aattaattttt taattttttc aaaaatgtatt ttacatgttt 180
agaattttga tgtatattaa aatagtagaa tacataagat acttaattta attaaagata 240
gttaagttact tttcaatgtg cttttttaga tgtttaatac aaatcttaa ttgtaaaaga 300
aatgctgtac tatttactgt actagtgacg ggattaaact gtattaatta taaataaaaa 360
ataagtacag ttgtttaaaa ttatattttg tattaaatct aatagtacga tgtaagttat 420
tttatactat tgcttagttt ataaaaagat ttaatttatat gcttgaaaag gagaggaatc 480
catatgcgtat 490

<210> 48
<211> 500
<212> DNA
<213> c. autoethanogenum

<400> 48 ataccataaaa ttacttgaaa aatagttgat aataatgtag agttataaac aaaggtgaaa 60
agcattactt gtattcttt ttatatatata ttataaatta aatgaagct gtatttagaaa 120
aaatacacac ctgtaatata aaattttaaa ttaattttt atttttcaa aatgtatttt 180
acatgtttag aatttttagt tatattaaaa tagtagaata cataagatac ttaatttaat 240
taaagatagt taagtacttt tcaatgtgct ttttagatg ttaatacaa atcttaatt 300
gtaaaagaaa tgctgtacta tttactgtac tagtgacggg attaaactgt attaattata 360
aataaaaaat aagtacagtt gttaaaatt atatttgtt ttaaatctaa tagtacgatg 420
taagttattt tatactattt ctagttaat aaaaagattt aattatatac ttgaaaagga 480
gaggaatttt tatgcgtaaa 500

<210> 49
<211> 200
<212> DNA
<213> c. autoethanogenum

```
<400> 49
tagaaaaaca tgtatacaaa attaaaaaac tattataaca catagtatca atattgaagg 60
taatactgtt caatatcgat acagataaaa aaaatatata atacagaaga aaaaattata 120
aatttgtggt ataatataaa gtatagtaat ttaagttaa acctcgtgaa aacgctaaca 180
aataatagga ggtgtattat 200
```

<210> 50
<211> 300
<212> DNA
<213> c. autoethanogenum

```
<400> 50
atctgtatat ttttcccat ttttaattatt tgtactataa tattacactg agtgtattgt 60
atatttaaaa aatatttggt acaatttagtt agttaaataa attctaaattt gtaaattatc 120
agaatcccta ttaaggaaat acatagattt aaggagaaat cataaaaagg tgtaatataa 180
actggctaaa attgagcaaattt gagcaat ttaagacttt ttgattgtat ctttttat 240
```

Sequence Listing

attnaaggta tataatctta tttatattgg gggaaacttga tgaataaaaca tattcttagac	300
<210> 51	
<211> 2613	
<212> DNA	
<213> c. autoethanogenum	
<400> 51	
atgaaagtta caaacgtaga agaactaatg aaaagactag aagaaataaa ggatgctcaa	60
aagaaatttg ctacatatac tcaagaacaa gtggatgaaa ttttagaca agcagctatg	120
gcagctaata gtgctagaat agaactagct aaaatggcag tagaagaaag cggaatggga	180
attgtagaag acaaggttat taaaaatcac tttgcttcag aatatatata taacaaatat	240
aaggatgaaa aaacctgtgg agtttttagag agagatgcag gctttggat agttagaatt	300
gcggaacctg taggagttat tgcagcagta gttccaacaa ctaatccac atctacagca	360
atatttaat cactaatagc tttaaaaact agaaatggta taatttttc accccatcca	420
agggcaaaga aatcaactat tgcagcagct aaaatagtac ttgacgctgc agttaaagct	480
ggtgctcctg aaggaattat aggatggata gatgaacctt ccattgaact ttcacaggtg	540
gtaatggag aagcaaattt aattcttgca actggtggtc cgggtatggt taaggctgcc	600
tattcttcag gcaaacctgc tgtggagtt ggtccaggta acacacctgc tctaattgat	660
gaaagtgccg acattaaaat ggcagtaaat tcaatattac tatcaaaaac tttgataat	720
ggtatgattt gtgcctcaga gcagtcagta atagtttag actcaatata tgaggaagtt	780
aaaaaaaagaat ttgcttatac gggcttat atattaagta aggatgaaac agataaggaa	840
ggaaaaataa tttaaaaaaa tggagcctta aatgcaggta ttgtaggaca acctgcttt	900
aaaatagcac agctggcagg agtggatgta ccagaaaaag ctaaagtact tataggagag	960
gtagaatcgg tagaacttga agaaccattt tctcatgaaa agttatctcc agttttagct	1020
atgtacaggg caagaaattt tgaggatgcc attgcaaaaa ctgataaact ggttagggca	1080
ggtgaggattt gacatacatc ttcattgtat ataaatccaa tgacagaaaa agcaaaagta	1140
aaaaaatttta gtactatgat gaaaacatca agaactataa ttaacacacc ttcatccaa	1200
ggtggatatac gtgatatac taactttaaa ctagctcctt ctttgacatt aggctgcgt	1260
tcctgggggg gaaattctgt atccgaaaat gttggcccta aacatttatt aaacataaaa	1320
agtgttgctg agaggagaga aaatatgctt tggtttagag tacctgaaaa ggtttatttc	1380
aaatatggta gtcttggagt tgcattaaaa gagttaaaag ttatgaataa gaagaaagta	1440
tttatagtaa cagataaagt tctttatcaa ttaggttatg tggacaaagt tacaaaagtt	1500
cttgaggaac taaaaatttc ctataaggta tttacagatg tagaaccaga tccaaccctt	1560
gctacagcta aaaaagggtgc agcagaactg ctttcctatg aaccggatac aattatata	1620
gttggtggtg gttcagcaat ggatgcagct aagatcatgt ggtaatgta tgagcatcca	1680
gaagtaaaat ttgaagattt agctatgaga tttatggata taagaaagag agtataatg	1740

Sequence Listing

ttccctaaga	tgggagaaaa	ggcaatgatg	atttcagtag	caacatccgc	aggaacaggg	1800
tcggaagtta	ctccatttgc	agtaatcaact	gatgaaaaaa	caggagctaa	atatccatta	1860
gctgattatg	aactaactcc	agacatggct	atagttgatg	cagaacttat	gatgggaatg	1920
ccaagaggac	ttacagcagc	ttcgggtata	gatgcattaa	cccatgcact	ggaggcgtat	1980
gtgtcaataa	tggctacaga	atttaccaat	ggattagccc	ttgaaggcgt	aaagttgata	2040
tttgaatatt	tacaaaagc	ttatacagaa	ggtacaacta	atgtaaaggc	aagagaaaaag	2100
atggctcatg	cttcatgtat	tgcaggtatg	gccttgcaa	atgcattttt	aggggtatgc	2160
cactctatgg	cacataaatt	gggagcacag	catcacatac	cacatggaat	tgccaatgca	2220
cttatgatag	atgaagttat	aaaattcaat	gctgttagatg	atccaataaa	acaagctgca	2280
tttcccaat	acgagtatcc	aatgctagg	tatagatatg	ctcagatagc	tgattgtctg	2340
aacttggag	gaaatacaga	agagaaaaag	gtacaactat	taataaatgc	tatagatgat	2400
ttaaaagcta	agttaaatat	tccagaaact	ataaaagaag	caggagtttc	agaagataaa	2460
ttctatgcta	cttagataa	aatgtcagaa	ttagctttg	atgatcagtg	tacaggagct	2520
aatccaagat	atccactgat	aagtgaaata	aaacaaatgt	atataaatgt	ttttgataaa	2580
accgaaccaa	ttgtagaaga	tgaagaaaaag	taa			2613

<210> 52

<211> 324

<212> PRT

<213> c. autoethanogenum

<400> 52

Met	Asp	Ala	Ala	Lys	Ile	Met	Trp	Val	Met	Tyr	Glu	His	Pro	Glu	Val
1				5					10					15	

Lys	Phe	Glu	Asp	Leu	Ala	Met	Arg	Phe	Met	Asp	Ile	Arg	Lys	Arg	Val
				20				25					30		

Tyr	Val	Phe	Pro	Lys	Met	Gly	Glu	Lys	Ala	Met	Met	Ile	Ser	Val	Ala
				35			40					45			

Thr	Ser	Ala	Gly	Thr	Gly	Ser	Glu	Val	Thr	Pro	Phe	Ala	Val	Ile	Thr
				50			55				60				

Asp	Glu	Lys	Thr	Gly	Ala	Lys	Tyr	Pro	Leu	Ala	Asp	Tyr	Glu	Leu	Thr
		65			70				75				80		

Pro	Asp	Met	Ala	Ile	Val	Asp	Ala	Glu	Leu	Met	Met	Gly	Met	Pro	Arg
				85				90				95			

Gly	Leu	Thr	Ala	Ala	Ser	Gly	Ile	Asp	Ala	Leu	Thr	His	Ala	Leu	Glu
					100			105				110			

Ala	Tyr	Val	Ser	Ile	Met	Ala	Thr	Glu	Phe	Thr	Asn	Gly	Leu	Ala	Leu
				115			120				125				

Sequence Listing

Glu Ala Val Lys Leu Ile Phe Glu Tyr Leu Pro Lys Ala Tyr Thr Glu
 130 135 140

Gly Thr Thr Asn Val Lys Ala Arg Glu Lys Met Ala His Ala Ser Cys
 145 150 155 160

Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys His Ser
 165 170 175

Met Ala His Lys Leu Gly Ala Gln His His Ile Pro His Gly Ile Ala
 180 185 190

Asn Ala Leu Met Ile Asp Glu Val Ile Lys Phe Asn Ala Val Asp Asp
 195 200 205

Pro Ile Lys Gln Ala Ala Phe Pro Gln Tyr Glu Tyr Pro Asn Ala Arg
 210 215 220

Tyr Arg Tyr Ala Gln Ile Ala Asp Cys Leu Asn Leu Gly Gly Asn Thr
 225 230 235 240

Glu Glu Glu Lys Val Gln Leu Leu Ile Asn Ala Ile Asp Asp Leu Lys
 245 250 255

Ala Lys Leu Asn Ile Pro Glu Thr Ile Lys Glu Ala Gly Val Ser Glu
 260 265 270

Asp Lys Phe Tyr Ala Thr Leu Asp Lys Met Ser Glu Leu Ala Phe Asp
 275 280 285

Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro Leu Ile Ser Glu Ile
 290 295 300

Lys Gln Met Tyr Ile Asn Val Phe Asp Lys Thr Glu Pro Ile Val Glu
 305 310 315 320

Asp Glu Glu Lys

<210> 53

<211> 1194

<212> DNA

<213> c. autoethanogenum

<400> 53		
atggaaataa aattaggggg aataataatg gagagattta cgttgccaaag agacatttac		60
tttggagaag atgctttggg tgcttgaaa acgttaaaag gtaagaaagc tgttagtagtt		120
gttggaggag gatccatgaa gagattcggt ttccttgaca aggtagaaga atacttaaaa		180
gaagcaaaca tagaagttaa actaatagaa ggtgttgaac cagatccgtc tgtggaaacc		240

SequenceListing

Sequence listing
gttatgaaag gtgccaaaat aatgacagaa ttggggccag attggatagt tgctattgga 300
ggaggttcac caatagatgc tgcaaaggct atgtggctat tttatgaata tccagattt 360
actttaaac aagcaattgt tccgttgga ttaccagaat taagacaaaa agctaaat 420
gtagctatag cttctactag tggAACAGCT actgaagtta cttcattttc agtaataact 480
gattataaag ctaaaataaa gtatcTTTA gCTGACTTC atttgacacc ggatatagct 540
atagttgatc cagcatttagc ccagacaatg ccacctaatt taactgcaca tactggat 600
gatgcattaa ctcatgcact agaagctt atgtcatcg ctagatcaga tatttcagat 660
ccacttgcaa tacattccat aattatgaca agggataact tacttaatc ctataagggt 720
gataaagatg ctagaaataa gatgcataata tcacaatgtt tagcaggtat ggcattttct 780
aatgcacttc ttggtaataac tcatagttta gcacataaaaa caggagctgt atggcacata 840
ccacatggat gcgctaattgc aatataatctt ccatatgttt tagattttaa taaaaaaagct 900
tgctcagata gatatgctaa tatacgtaaa atattaggac ttaaaggaac tactgaagat 960
gaattggtag attctctagt taaaatggta caagatatgg ataaggaatt gaatataacct 1020
ttgaccttaa aagattatgg tataagcaaa gatgatttca attcaaattgt tgattttata 1080
gcaaaagaatg cgctctttaga tgcgttaca ggagctaatc caaggcctat agatTTTgat 1140
caaatgaaaa agataacttca atgtatataat gatggaaaaaa aggttaacttt ttaa 1194

<210> 54

<211> 397

<212> PRT

<213> c. autoethanogenum

<400> 54

Met Glu Ile Lys Leu Gly Gly Ile Ile Met Glu Arg Phe Thr Leu Pro
1 5 10 15

Arg Asp Ile Tyr Phe Gly Glu Asp Ala Leu Gly Ala Leu Lys Thr Leu
20 25 30

Lys Gly Lys Lys Ala Val Val Val Val Gly Gly Gly Ser Met Lys Arg
35 40 45

Phe Gly Phe Leu Asp Lys Val Glu Glu Tyr Leu Lys Glu Ala Asn Ile
50 55 60

Glu Val Lys Leu Ile Glu Gly Val Glu Pro Asp Pro Ser Val Glu Thr
65 70 75 80

Val Met Lys Gly Ala Lys Ile Met Thr Glu Phe Gly Pro Asp Trp Ile
85 90 95

Val Ala Ile Gly Gly Gly Ser Pro Ile Asp Ala Ala Lys Ala Met Trp
100 105 110

Sequence Listing

Leu Phe Tyr Glu Tyr Pro Asp Phe Thr Phe Lys Gln Ala Ile Val Pro
 115 120 125

Phe Gly Leu Pro Glu Leu Arg Gln Lys Ala Lys Phe Val Ala Ile Ala
 130 135 140

Ser Thr Ser Gly Thr Ala Thr Glu Val Thr Ser Phe Ser Val Ile Thr
 145 150 155 160

Asp Tyr Lys Ala Lys Ile Lys Tyr Pro Leu Ala Asp Phe Asn Leu Thr
 165 170 175

Pro Asp Ile Ala Ile Val Asp Pro Ala Leu Ala Gln Thr Met Pro Pro
 180 185 190

Lys Leu Thr Ala His Thr Gly Met Asp Ala Leu Thr His Ala Leu Glu
 195 200 205

Ala Tyr Val Ala Ser Ala Arg Ser Asp Ile Ser Asp Pro Leu Ala Ile
 210 215 220

His Ser Ile Ile Met Thr Arg Asp Asn Leu Leu Lys Ser Tyr Lys Gly
 225 230 235 240

Asp Lys Asp Ala Arg Asn Lys Met His Ile Ser Gln Cys Leu Ala Gly
 245 250 255

Met Ala Phe Ser Asn Ala Leu Leu Gly Ile Thr His Ser Leu Ala His
 260 265 270

Lys Thr Gly Ala Val Trp His Ile Pro His Gly Cys Ala Asn Ala Ile
 275 280 285

Tyr Leu Pro Tyr Val Leu Asp Phe Asn Lys Lys Ala Cys Ser Asp Arg
 290 295 300

Tyr Ala Asn Ile Ala Lys Ile Leu Gly Leu Lys Gly Thr Thr Glu Asp
 305 310 315 320

Glu Leu Val Asp Ser Leu Val Lys Met Val Gln Asp Met Asp Lys Glu
 325 330 335

Leu Asn Ile Pro Leu Thr Leu Lys Asp Tyr Gly Ile Ser Lys Asp Asp
 340 345 350

Phe Asn Ser Asn Val Asp Phe Ile Ala Lys Asn Ala Leu Leu Asp Ala
 355 360 365

Cys Thr Gly Ala Asn Pro Arg Pro Ile Asp Phe Asp Gln Met Lys Lys
 370 375 380

Sequence Listing

Ile Leu Gln Cys Ile Tyr Asp Gly Lys Lys Val Thr Phe
 385 390 395

<210> 55

<211> 1191

<212> DNA

<213> c. autoethanogenum

<400> 55

gtgaggatg ttattatgga aaactttatt tttaaaaatg ctacagaaat tattttgggt	60
aaggataccg aaaatcttgt aggaagtaaa gtaaaggagt attcaaagtc agataaaata	120
ctctttgct atgggggagg aagcataaaa agatctggtc tatatgatag agttataaag	180
tccttaaaag aaaatggaat tgaattata gaacttccag gaattaaacc taatccaaga	240
ttaggacctg ttaaagaagg tataagacta tgtagagaaa ataatataaa atttgtacta	300
tctgttaggag gaggaagttc agcagatacg gctaaagcta ttgctgttagg agtacctt	360
aaaggagacg tatggattt ttatacgggc aaagctgaag tgaaagaggc tcttcgtgt	420
ggagttgtaa taacattacc tgctacaggt acagaatcta gtaatagttc tgttattat	480
aatgaagatg gttggtttaa aaaaggatta aatacagttac ttataagacc tgcttttca	540
attatgaatc ctgaacttac tttacacta ccagagtatc aaactgcttgc ttgtgttgc	600
gacattatgg cacatataat gaaaagatat tttacaaatg tgaaacatgt agatataact	660
gataggctt gcgaagctgc acttagaaat gttataaata atgccccat agttttaaa	720
gatcccaaaa actatgatgc tagggcagaa attatgttgc ccggactat agctcataat	780
gatgtgttgc gtgcgggttag aataggtgat tgggcttctc acaaaatttgc acatgttgc	840
agtggggaaa cagacattgc ccatggagca ggacttgcaaa ttgtatttcc tgcatggat	900
aaatatgtat ataaacacga tatcaataga tttgtacaat ttgcagtaag ggtatggat	960
gtagattttat cttatagttc ctgcgaagat attgtacttgc aaggcataag gagaatgaca	1020
gcattttca agagcatggg gttacctgtt actttaaaag aaggaagtat aggagaagat	1080
aaaatttgc aatggctaa taagtgcacg gataatggaa ctaaaactgt aggacaattt	1140
gtaaaattaa ataaagatga tattgtaaaa atattaaatt tagctaaata a	1191

<210> 56

<211> 396

<212> PRT

<213> c. autoethanogenum

<400> 56

Val Arg Asp Val Ile Met Glu Asn Phe Ile Phe Lys Asn Ala Thr Glu	
1 5 10 15	

Ile Ile Phe Gly Lys Asp Thr Glu Asn Leu Val Gly Ser Lys Val Lys	
20 25 30	

Glu Tyr Ser Lys Ser Asp Lys Ile Leu Phe Cys Tyr Gly Gly Ser	
35 40 45	

Sequence Listing

Ile Lys Arg Ser Gly Leu Tyr Asp Arg Val Ile Lys Ser Leu Lys Glu
 50 55 60

Asn Gly Ile Glu Phe Ile Glu Leu Pro Gly Ile Lys Pro Asn Pro Arg
 65 70 75 80

Leu Gly Pro Val Lys Glu Gly Ile Arg Leu Cys Arg Glu Asn Asn Ile
 85 90 95

Lys Phe Val Leu Ser Val Gly Gly Ser Ser Ala Asp Thr Ala Lys
 100 105 110

Ala Ile Ala Val Gly Val Pro Tyr Lys Gly Asp Val Trp Asp Phe Tyr
 115 120 125

Thr Gly Lys Ala Glu Val Lys Glu Ala Leu Pro Val Gly Val Val Ile
 130 135 140

Thr Leu Pro Ala Thr Gly Thr Glu Ser Ser Asn Ser Ser Val Ile Met
 145 150 155 160

Asn Glu Asp Gly Trp Phe Lys Lys Gly Leu Asn Thr Val Leu Ile Arg
 165 170 175

Pro Ala Phe Ser Ile Met Asn Pro Glu Leu Thr Phe Thr Leu Pro Glu
 180 185 190

Tyr Gln Thr Ala Cys Gly Ala Cys Asp Ile Met Ala His Ile Met Glu
 195 200 205

Arg Tyr Phe Thr Asn Val Lys His Val Asp Ile Thr Asp Arg Leu Cys
 210 215 220

Glu Ala Ala Leu Arg Asn Val Ile Asn Asn Ala Pro Ile Val Leu Lys
 225 230 235 240

Asp Pro Lys Asn Tyr Asp Ala Arg Ala Glu Ile Met Trp Thr Gly Thr
 245 250 255

Ile Ala His Asn Asp Val Leu Ser Ala Gly Arg Ile Gly Asp Trp Ala
 260 265 270

Ser His Lys Ile Glu His Glu Leu Ser Gly Glu Thr Asp Ile Ala His
 275 280 285

Gly Ala Gly Leu Ala Ile Val Phe Pro Ala Trp Met Lys Tyr Val Tyr
 290 295 300

Lys His Asp Ile Asn Arg Phe Val Gln Phe Ala Val Arg Val Trp Asp
 305 310 315 320

Sequence Listing

Val Asp Leu Ser Tyr Ser Ser Cys Glu Asp Ile Val Leu Glu Gly Ile
 325 330 335

Arg Arg Met Thr Ala Phe Phe Lys Ser Met Gly Leu Pro Val Thr Leu
 340 345 350

Lys Glu Gly Ser Ile Gly Glu Asp Lys Ile Glu Glu Met Ala Asn Lys
 355 360 365

Cys Thr Asp Asn Gly Thr Lys Thr Val Gly Gln Phe Val Lys Leu Asn
 370 375 380

Lys Asp Asp Ile Val Lys Ile Leu Asn Leu Ala Lys
 385 390 395

<210> 57

<211> 1149

<212> DNA

<213> c. autoethanogenum

<400> 57

atggaagaca	agtttgaaaa	ttttaatttg	aatccaaga	tttattttaa	taggaatct	60
attcaacttt	tagagcaagt	cactggttct	cgagcattta	ttgttgcaga	tgctattatg	120
ggaaaaacttg	gatatcttca	aaaagtaata	gattacctaa	gcaaagctgg	aataagttcc	180
gttgttttta	cgggggtaca	ccctgatcca	gacgtcaatg	taattgcaga	tgcaatgaaa	240
ttgtacaaaa	aaagcgacgc	agatgttctc	gtagcactag	gtggaggatc	cagtattgtat	300
accgctaagg	gaataatgta	ttttgcatgt	aatttaggaa	aagcaatggg	ccaagaaatg	360
aaaaaacctc	tatattattgc	aattccatca	acaagtggta	caggctctga	agtaacaaac	420
tttactgtta	ttacttctca	gaaagaaaag	gtatgcatta	tagatgattt	tattgcacca	480
gatgttgcaa	tacttgactc	aagttgtatt	gatggtctgc	ctcagcgtat	tgttagcagat	540
actggatag	atgttctagt	tcattctatt	gaagcctatg	tttccaaaaaa	agcaactgac	600
tttacagacg	ctcttgctga	aaaagcagtt	aaattaattt	ttgagaatct	tccaaaaatt	660
tataacgata	gtaaggattc	cgaagctcga	gatcatgttc	aaaacgcttc	ctgtatagca	720
ggaatagcat	ttacaaatgc	tggtcttgga	attaatcaca	gcttggctca	tgctatgggt	780
ggatcttcc	acattcctca	cggccgatcc	aatgcacttc	tacttaatgc	agtaatggaa	840
tacaacgcta	gcttggttgg	aaatgcaagc	gaacatgcta	tggaaaaata	cgcaaaacta	900
gcatcaattc	tacaccttcc	agctcgaaca	actcgcgaag	gcgcgttaag	ttttattgaa	960
gctgtagata	attaataaa	atccctaggt	gttgaagata	atattcgatc	tcttgggatt	1020
aaagaagatg	agtttcaaag	tgctctaaat	catatggcag	aaacagcaat	gcaagataga	1080
tgcactccaa	ctaattcctag	aaaaccttct	aaagaagaac	ttatacatat	ttatcaaaaa	1140
tgttattaa						1149

Sequence Listing

<210> 58
 <211> 307
 <212> PRT
 <213> c. autoethanogenum
 <400> 58

Met Glu Asp Lys Phe Glu Asn Phe Asn Leu Lys Ser Lys Ile Tyr Phe
 1 5 10 15

Asn Arg Glu Ser Ile Gln Leu Leu Glu Gln Val Thr Gly Ser Arg Ala
 20 25 30

Phe Ile Val Ala Asp Ala Ile Met Gly Lys Leu Gly Tyr Leu Gln Lys
 35 40 45

Val Ile Asp Tyr Leu Ser Lys Ala Gly Ile Ser Ser Val Val Phe Thr
 50 55 60

Gly Val His Pro Asp Pro Asp Val Asn Val Ile Ala Asp Ala Met Lys
 65 70 75 80

Leu Tyr Lys Lys Ser Asp Ala Asp Val Leu Val Ala Leu Gly Gly
 85 90 95

Ser Ser Ile Asp Thr Ala Lys Gly Ile Met Tyr Phe Ala Cys Asn Leu
 100 105 110

Gly Lys Ala Met Gly Gln Glu Met Lys Lys Pro Leu Phe Ile Ala Ile
 115 120 125

Pro Ser Thr Ser Gly Thr Gly Ser Glu Val Thr Asn Phe Thr Val Ile
 130 135 140

Thr Ser Gln Lys Glu Lys Val Cys Ile Ile Asp Asp Phe Ile Ala Pro
 145 150 155 160

Asp Val Ala Ile Leu Asp Ser Ser Cys Ile Asp Gly Leu Pro Gln Arg
 165 170 175

Ile Val Ala Asp Thr Gly Ile Asp Val Leu Val His Ser Ile Glu Ala
 180 185 190

Tyr Val Ser Lys Lys Ala Thr Asp Phe Thr Asp Ala Leu Ala Glu Lys
 195 200 205

Ala Val Lys Leu Ile Phe Glu Asn Leu Pro Lys Ile Tyr Asn Asp Ser
 210 215 220

Lys Asp Ser Glu Ala Arg Asp His Val Gln Asn Ala Ser Cys Ile Ala
 225 230 235 240

Sequence Listing

Gly Ile Ala Phe Thr Asn Ala Gly Leu Gly Ile Asn His Ser Leu Ala
245 250 255

His Ala Met Gly Gly Ser Phe His Ile Pro His Gly Arg Ser Asn Ala
260 265 270

Leu Leu Leu Asn Ala Val Met Glu Tyr Asn Ala Ser Leu Val Gly Asn
275 280 285

Ala Ser Glu His Ala Met Glu Lys Tyr Ala Lys Leu Ala Ser Ile Leu
290 295 300

His Leu Pro
305

<210> 59
<211> 993
<212> DNA
<213> c. autoethanogenum

<400> 59
atggaaaaaa tttggagtaa ggcaaaggaa gacaaaaaaaaa agattgtctt agctgaagga 60
gaagaagaaa gaactcttca agcttgtcaa aaaataatta aagagggtat tgcaaattta 120
atccctttag ggaatgaaaa ggtataaaaa gaaaaagcgt caaaatttagg tgtaagttt 180
aatggagcag aaatagttaga tccagagatt tcagataaac taaaggcata tgcatgtctt 240
tttatgaat tgagaaagaa gaagggataa acgccagaaa aagcggataa aatagtaaga 300
gatccaatat actttgctac aatgatggtt aaacttggag atgcagatgg attggtttca 360
ggtcgcgttc atactacagg cgatctttt agaccaggac ttcaaataatgaaatgtt 420
ccaggtacat cagtagtttc cagtacattt ataatgaaatg taccaaattt tgatgtttt 480
gacaatggtg tacttctatt tgctgattgt gctgtaaatc catgcccaga tagtgcataa 540
ttggcttcaa ttgcaataag tacagcagaa actgcaaaga acttatgtgg aatggatcca 600
aaagtagcaa tgcttcatt ttctactaag ggaagtgcaa aacacgaatt agtagacaaa 660
gttagaaatg ctgtagagat tgcaaaaaaaaaa gctaaaccag atttaaatgtt agacggagaa 720
ttacaattttag atgcctctat cgtaaaaatg gttgcaagtt taaaggctcc tggaagtggaa 780
gtagcaggaa aagcaaattgt acttgtatcc ccagatctcc aagcaggaaa tataggctat 840
aaactcgttc aaagatttgc aaaagcagat gctataggac ctgtatgcca aggatttgca 900
aaacctataa atgatttgc aagaggatgt aattctgtatg atatagtaaa tgttagtagct 960
gtaacagcag ttcaagcaca agctcaaaag taa 993

<210> 60
<211> 330
<212> PRT
<213> c. autoethanogenum

<400> 60

Sequence Listing

Met Glu Lys Ile Trp Ser Lys Ala Lys Glu Asp Lys Lys Lys Ile Val
1 5 10 15

Leu Ala Glu Gly Glu Glu Arg Thr Leu Gln Ala Cys Glu Lys Ile
20 25 30

Ile Lys Glu Gly Ile Ala Asn Leu Ile Leu Val Gly Asn Glu Lys Val
35 40 45

Ile Lys Glu Lys Ala Ser Lys Leu Gly Val Ser Leu Asn Gly Ala Glu
50 55 60

Ile Val Asp Pro Glu Ile Ser Asp Lys Leu Lys Ala Tyr Ala Asp Ala
65 70 75 80

Phe Tyr Glu Leu Arg Lys Lys Gly Ile Thr Pro Glu Lys Ala Asp
85 90 95

Lys Ile Val Arg Asp Pro Ile Tyr Phe Ala Thr Met Met Val Lys Leu
100 105 110

Gly Asp Ala Asp Gly Leu Val Ser Gly Ala Val His Thr Thr Gly Asp
115 120 125

Leu Leu Arg Pro Gly Leu Gln Ile Val Lys Thr Ala Pro Gly Thr Ser
130 135 140

Val Val Ser Ser Thr Phe Ile Met Glu Val Pro Asn Cys Glu Tyr Gly
145 150 155 160

Asp Asn Gly Val Leu Leu Phe Ala Asp Cys Ala Val Asn Pro Cys Pro
165 170 175

Asp Ser Asp Gln Leu Ala Ser Ile Ala Ile Ser Thr Ala Glu Thr Ala
180 185 190

Lys Asn Leu Cys Gly Met Asp Pro Lys Val Ala Met Leu Ser Phe Ser
195 200 205

Thr Lys Gly Ser Ala Lys His Glu Leu Val Asp Lys Val Arg Asn Ala
210 215 220

Val Glu Ile Ala Lys Lys Ala Lys Pro Asp Leu Ser Leu Asp Gly Glu
225 230 235 240

Leu Gln Leu Asp Ala Ser Ile Val Glu Lys Val Ala Ser Leu Lys Ala
245 250 255

Pro Gly Ser Glu Val Ala Gly Lys Ala Asn Val Leu Val Phe Pro Asp
260 265 270

Sequence Listing

Leu	Gln	Ala	Gly
Asn	Ile	Gly	Tyr
275	280	285	
Lys	Leu	Val	Gln
	Arg	Phe	Ala
			Lys

Ala	Asp	Ala	Ile
Gly	Pro	Val	Gly
290	295	300	
Cys	Gln	Gly	Phe
		Ala	Lys
			Pro
			Ile
			Asn

Asp	Leu	Ser	Arg
Gly	Cys	Asn	Ser
305	310	315	
			Asp
			Ile
			Val
			Asn
			Val
			Val
			Ala

Val	Thr	Ala	Val
Gln		Gln	Ala
325		330	
			Gln
			Lys

<210> 61
<211> 1197
<212> DNA
<213> c. autoethanogenum

atgaaaatat tagtagtaaa ctgtggaagt tcatctttaa aatatcaact tattgatatg	60
caagatgaaa gtgtttagc aaagggtctt gtagaaagaa taggaatgga cggttcaatt	120
ttaacacaca aagttaatgg agaaaagttt gttacagagc aaccaatgga agaccacaaa	180
gttgctatac aattagtatt aaatgctctt gtagataaaa aacatggtgt aataaaagac	240
atgtcagaaa tatccgctgt aggacataga gttttgcacg gtggaaagaa atatgcagca	300
tccattctta ttgacgaaaaa tgtaatgaaa gcaatagaag aatgtatccc actaggacca	360
ctacataatc cagctaatac aatgggaata gatgcttgta aaaaattaat gccaaatact	420
ccaatggtag cagtatttga tacgcattt catcagacaa tgccagatta tgcttatact	480
tatgaatac cttatgatat atctgaaaag tatgatatca gaaaatatgg ttttcatgga	540
acttctcata gattcgtttc aattgaagca gctaaattat taaagaaaga tccaaaagat	600
cttaagttaa taacttgtca ttttagaaat ggagctagca tatgtgcagt aaaccaagga	660
aaagcagtag atacaactat gggacttact cctcttgcag gacttgtaat gggactaga	720
tgcggtgata tagatccagc tatagtacca tttgtaatga aaagaacagg catgtctgta	780
gatgaagtgg ataccttaat gaataaaaag tcaggaatac ttggagtatc aggagtaagc	840
agtgatttttta gagatgtaga agaagctgca aattcaggaa atgatagagc aaaacttgca	900
ttaaatatgt attatcacaa agttaaatct ttcataggag cttatgtgc agttttaaat	960
ggagcagatg ctataatatt tacggcagga cttggagaaa attcagcaac tagcagatct	1020
gctatatgta atggattaag ctatttgga attaaaatag atgaagaaaa gaataagaaa	1080
aggggagagg cactagaaat aagcacaccc gattcaaaga taaaagtatt agtaattcct	1140
acaaatgaag aacttatgat agctagggat acaaaagaaa tagttgaaaa taaataa	1197

<210> 62
<211> 398
<212> PRT
<213> c. autoethanogenum

Sequence Listing

<400> 62

Met Lys Ile Leu Val Val Asn Cys Gly Ser Ser Ser Leu Lys Tyr Gln
 1 5 10 15

Leu Ile Asp Met Gln Asp Glu Ser Val Val Ala Lys Gly Leu Val Glu
 20 25 30

Arg Ile Gly Met Asp Gly Ser Ile Leu Thr His Lys Val Asn Gly Glu
 35 40 45

Lys Phe Val Thr Glu Gln Pro Met Glu Asp His Lys Val Ala Ile Gln
 50 55 60

Leu Val Leu Asn Ala Leu Val Asp Lys Lys His Gly Val Ile Lys Asp
 65 70 75 80

Met Ser Glu Ile Ser Ala Val Gly His Arg Val Leu His Gly Gly Lys
 85 90 95

Lys Tyr Ala Ala Ser Ile Leu Ile Asp Glu Asn Val Met Lys Ala Ile
 100 105 110

Glu Glu Cys Ile Pro Leu Gly Pro Leu His Asn Pro Ala Asn Ile Met
 115 120 125

Gly Ile Asp Ala Cys Lys Lys Leu Met Pro Asn Thr Pro Met Val Ala
 130 135 140

Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Asp Tyr Ala Tyr Thr
 145 150 155 160

Tyr Ala Ile Pro Tyr Asp Ile Ser Glu Lys Tyr Asp Ile Arg Lys Tyr
 165 170 175

Gly Phe His Gly Thr Ser His Arg Phe Val Ser Ile Glu Ala Ala Lys
 180 185 190

Leu Leu Lys Lys Asp Pro Lys Asp Leu Lys Leu Ile Thr Cys His Leu
 195 200 205

Gly Asn Gly Ala Ser Ile Cys Ala Val Asn Gln Gly Lys Ala Val Asp
 210 215 220

Thr Thr Met Gly Leu Thr Pro Leu Ala Gly Leu Val Met Gly Thr Arg
 225 230 235 240

Cys Gly Asp Ile Asp Pro Ala Ile Val Pro Phe Val Met Lys Arg Thr
 245 250 255

Gly Met Ser Val Asp Glu Val Asp Thr Leu Met Asn Lys Lys Ser Gly
 260 265 270

Sequence Listing

Ile Leu Gly Val Ser Gly Val Ser Ser Asp Phe Arg Asp Val Glu Glu
 275 280 285

Ala Ala Asn Ser Gly Asn Asp Arg Ala Lys Leu Ala Leu Asn Met Tyr
 290 295 300

Tyr His Lys Val Lys Ser Phe Ile Gly Ala Tyr Val Ala Val Leu Asn
 305 310 315 320

Gly Ala Asp Ala Ile Ile Phe Thr Ala Gly Leu Gly Glu Asn Ser Ala
 325 330 335

Thr Ser Arg Ser Ala Ile Cys Asn Gly Leu Ser Tyr Phe Gly Ile Lys
 340 345 350

Ile Asp Glu Glu Lys Asn Lys Lys Arg Gly Glu Ala Leu Glu Ile Ser
 355 360 365

Thr Pro Asp Ser Lys Ile Lys Val Leu Val Ile Pro Thr Asn Glu Glu
 370 375 380

Leu Met Ile Ala Arg Asp Thr Lys Glu Ile Val Glu Asn Lys
 385 390 395

<210> 63

<211> 1767

<212> DNA

<213> c. autoethanogenum

<400> 63

gtggaagaat	tgaaaattga	caaagctaaa	aaattttatag	gtgcaagagg	gttaggcgta	60
aaaaccttat	ttgacgaagt	agatccaaag	gtagatccat	tatcacctga	taacaaattt	120
attatacgag	cgggaccact	tacaggtgca	cctgttccaa	caagcggaaag	attcatggta	180
gttactaaat	cacctttaac	aggaactatt	gctattgcaa	attcaggtgg	aaaatgggaa	240
gcagaattca	aaggcgtgg	atacgatatg	ataatcggt	aaggtaatc	tgataaagaa	300
gtttatgtaa	atatagtaga	tgataaagta	gaattttaggg	atgcttctca	tgtttgggaa	360
aaactaacag	aagaaactac	aaaaatgctt	caacagggaaa	cagattcgag	agctaaggtt	420
ttatgcata	gaccagctgg	ggaaaagtta	tcacttatgg	cagcagttat	gaatgatgtt	480
gatagaacag	caggacgtgg	tggtgttgg	gctgttatgg	gttcaaagaa	cttaaaagct	540
attgtatgtt	aaggaagcgg	aaaagtaaaa	ttatttgatg	aacaaaaagt	gaaggaagta	600
gcacttgaga	aaacaaatat	tttaagaaaa	gatccagtag	ctggtgagg	acttccaaca	660
tacggaacag	ctgtacttgt	taatattata	aatgaaaatg	gtgtacatcc	agtaaagaat	720
tttcaaaaat	cttatacaga	tcaagcagat	aagatcagt	gagaaaacttt	aactaaagat	780
tgcttagtta	gaaaaaatcc	ttgctatagg	tgtccaattt	cctgtggaaag	atgggtaaaa	840

Sequence Listing

cttgatgatg gaactgaatg tggaggacca	900
aatatgaaa cattatggtc atttggatct	
gattgtgatg tatacgatat aaatgctgta aatacagcaa	960
atatgttgta taatgaatat	
ggactagata ccattacagc aggatgtact attgcagcag	1020
ctatgaaact ttatcaaaga	
ggtttatatta aggatgaaga aatagcagca gatggattgt	1080
cacttaattg gggagatgct	
aagtccatgg ttgaatgggt aaagaaaatg ggacttagag	1140
aaggatttg agacaagatg	
gcagatggtt catacagact ttgtgactca tacgggtac	1200
ctgagtattc aatgactgta	
aaaaaacagg aacttccagc atatgaccca agaggaatac	1260
agggacatgg cattacttat	
gctgttaaca atagggagg atgtcacatt aagggatata	1320
tggttaagtcc tgaaatactt	
ggctatccag aaaaacttga tagacttgca gtggaaggaa	1380
aaggcaggata tgcttagatg	
ttccatgatt taacagctgt tatagattca cttggattat	1440
gtattttac aacatttgg	
cttggtgac aggattatgt tgatatgtat aatgcagtag	1500
ttggtgaga attacatgat	
gtaaattctt taatgttagc tggagataga atatggactt	1560
tagaaaaat atttaactta	
aaagcaggca tagatagttc acaggatact cttccaaaga	1620
gattgcttga agaacaatt	
ccagaaggac catcaaaagg agaagttcat aagttagatg	1680
tactactacc tgaatattat	
tcagtagtg gatggataa aaatggattt cctacagagg	1740
aaacgttaaa gaaatttagga	
tttagatgaat acgttagtaa gctttag	1767

<210> 64

<211> 588

<212> PRT

<213> c. autoethanogenum

<400> 64

Met Glu Glu Leu Lys Ile Asp Lys Ala Lys Lys Phe Ile Gly Ala Arg	
1 5 10 15	

Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro Lys Val Asp	
20 25 30	

Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly Pro Leu Thr	
35 40 45	

Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val Thr Lys Ser	
50 55 60	

Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly Lys Trp Gly	
65 70 75 80	

Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val Glu Gly Lys	
85 90 95	

Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys Val Glu Phe	
100 105 110	

Sequence Listing

Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu Thr Thr Lys
 115 120 125

Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu Cys Ile Gly
 130 135 140

Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met Asn Asp Val
 145 150 155 160

Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met Gly Ser Lys
 165 170 175

Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val Lys Leu Phe
 180 185 190

Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr Asn Ile Leu
 195 200 205

Arg Lys Asp Pro Val Ala Gly Gly Leu Pro Thr Tyr Gly Thr Ala
 210 215 220

Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro Val Lys Asn
 225 230 235 240

Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser Gly Glu Thr
 245 250 255

Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr Arg Cys Pro
 260 265 270

Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr Glu Cys Gly
 275 280 285

Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp Cys Asp Val
 290 295 300

Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys Asn Glu Tyr
 305 310 315 320

Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala Ala Met Glu
 325 330 335

Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala Ala Asp Gly
 340 345 350

Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu Trp Val Lys
 355 360 365

Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala Asp Gly Ser
 370 375 380

Sequence Listing

Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser Met Thr Val
385 390 395 400

Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile Gln Gly His
405 410 415

Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His Ile Lys Gly
420 425 430

Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys Leu Asp Arg
435 440 445

Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe His Asp Leu
450 455 460

Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr Thr Phe Gly
465 470 475 480

Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val Val Gly Gly
485 490 495

Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp Arg Ile Trp
500 505 510

Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp Ser Ser Gln
515 520 525

Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Gln Ile Pro Glu Gly Pro
530 535 540

Ser Lys Gly Glu Val His Lys Leu Asp Val Leu Leu Pro Glu Tyr Tyr
545 550 555 560

Ser Val Arg Gly Trp Asp Lys Asn Gly Ile Pro Thr Glu Glu Thr Leu
565 570 575

Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Leu
580 585

<210> 65

<211> 1824

<212> DNA

<213> c. autoethanogenum

<400> 65

atgtatggtt atgatggtaa agtattaaga attaatttaa aagaaagaac ttgcaaatca 60

aaaaatttag atttagataa agctaaaaag tttataggtt gtagggact aggtgttaaa 120

actttatgg atgaaataga tcctaaaata gatgcattat caccagaaaa taaatttata 180

attgtaacag gtccttaac tggagctccg gttccaaacta gtgaaagggt tatggtagtt 240

actaaagcac cgcttacagg aactatagga atttcaaatt cgggtggaaa atggggagta 300

Sequence Listing

gactaaaaa aagctggttg ggatatgata atagtagagg ataaggctga ttcaccagtt	360
tacattgaaa tagtagatga taaggtagaa attaaagacg cgtcacagct ttggggaaaa	420
gttacatcg aaactacaaa agagttagaa aagataactg agaataaattc aaaggtatta	480
tgtataggac ctgctggtga acgattgtct cttatggcag cagttatgaa tgatgtagat	540
agaactgcag caagaggcgg cgttggtgca gttatggat ctaaaaactt aaaagctatt	600
acagttaaag gaactggaaa aatagctta gctgataaag aaaaagtaaa aaaagtgtcc	660
gtagaaaaaa ttacaacatt aaaaaatgat ccagtagctg gtcagggaat gccaaacttat	720
ggtacagcta tactggtaa tataataat gaaaatggag ttcatcctgt aaagaatttt	780
caagagtctt atacgaatca agcagataaa ataagtggag agactcttac tgctaaccaa	840
ctagtaagga aaaatcctt ttacagctgt cctatagtt gtggaaagatg gtttagacta	900
aaagatggca cagagtgcgg aggaccagaa tatgaaacac tgtggtgtt tggatctgac	960
tgtggttcat atgatttaga tgctataat gaagctaata tggtatgtaa tgaatatggt	1020
attgatacta ttacttgtgg tgcaacaatt gctgcagcta tggaaacttta tcaaagagga	1080
tatataaaag acgaagaaat agctggagat aacctatctc tcaagtgggg tgatacggaa	1140
tctatgattg gctggataaa gagaatggta tatagtgaag gctttggagc aaagatgaca	1200
aatggttcat ataggctttg tgaaggttat ggagcaccgg agtattctat gacagttaaa	1260
aagcaggaaa ttccagcata tgatccaagg ggaatacagg gacacggat tacctatgca	1320
gttaataata gaggaggctg tcataattaag ggatacatga ttaaccctga aatatttagt	1380
tatcctgaaa aacttgatag atttgcatta gatggtaaag cagttatgc caaatttattt	1440
catgatttaa ctgctgtaat tgattctta ggattgtgca tattcactac atttggctt	1500
ggaatacagg attatgtaga tatgtataat gcagtagtag gagaatctac ttatgtgca	1560
gattcactat tagaggcagg agatagaatc tggactctt agaaattatt taatcttgca	1620
gctggaatag acagcagcca ggatactcta ccaaagagat tgtagaaga acctattcca	1680
gatggcccat caaagggaga agttcatagg ctagatgttc ttctgccaga atattactca	1740
gtacgaggat ggagtaaaga gggatacct acagaagaaa cattaaagaa attaggatta	1800
gatgaatata taggttaagtt ctag	1824

<210> 66

<211> 607

<212> PRT

<213> c. autoethanogenum

<400> 66

Met	Tyr	Gly	Tyr	Asp	Gly	Lys	Val	Leu	Arg	Ile	Asn	Leu	Lys	Glu	Arg
1							5			10				15	

Thr	Cys	Lys	Ser	Glu	Asn	Leu	Asp	Leu	Asp	Lys	Ala	Lys	Lys	Phe	Ile
									25					30	
20															

Sequence Listing

Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro
35 40 45

Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly
50 55 60

Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val
65 70 75 80

Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly
85 90 95

Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val
100 105 110

Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys
115 120 125

Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu
130 135 140

Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu
145 150 155 160

Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met
165 170 175

Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met
180 185 190

Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile
195 200 205

Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile
210 215 220

Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr
225 230 235 240

Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro
245 250 255

Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser
260 265 270

Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr
275 280 285

Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr
290 295 300

Sequence Listing

Glu	Cys	Gly	Gly	Pro	Glu	Tyr	Glu	Thr	Leu	Trp	Cys	Phe	Gly	Ser	Asp
305					310				315					320	
Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys															
	325						330				335				
Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala															
	340					345				350					
Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala															
	355				360				365						
Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly															
	370				375				380						
Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr															
	385				390				395			400			
Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser															
	405					410				415					
Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile															
	420				425				430						
Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His															
	435				440				445						
Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys															
	450				455				460						
Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe															
	465				470				475			480			
His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr															
	485					490				495					
Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val															
	500				505				510						
Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp															
	515				520				525						
Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp															
	530				535				540						
Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro															
	545				550				555			560			
Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro															
	565					570				575					

Sequence Listing

Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu
 580 585 590

Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe
 595 600 605

<210> 67
 <211> 2634
 <212> DNA
 <213> c. ljunghdahl

<400> 67

atgaaggtaa ctaaggtaac taacgttcaa gaattaatga aaaagttaga tgaagtaacg	60
gctgctcaaa agaaattttc tagctatact caagaacaag tggatgaaat tttcaggcag	120
gcagctatgg cagccaatag tgctagaata gacttagcta aaatggcagt ggaagaaagc	180
ggaatggaa ttgtagaaga caaggtcatt aaaaatcatt ttgttgcaga gtatatatat	240
aacaaatata agggtaaaaa aacctgtgga gttctggAAC aagatgaagg ctttggtatg	300
gttagaattt cagaacctgt aggagttatt gcagcagtag tcccaacaac taatccaaca	360
tctacagcaa tatttaatc actaatagct ttaaaaacta gaaatggtat agtttttcg	420
ccacatccaa gggcaaaaaa atcaactatt gcagcagcta agatagtact tgatgctgca	480
gttaaagctg gtgctcctga aggaattata ggatggatag atgaaccttc tattgaactt	540
tcacaggtgg taatgaaaga agcagatcta attcttgcAA ctggtggacc aggtatggtt	600
aaggctgcct attcttcagg aaagcctgct ataggagttt gtccaggtaa cacgcctgct	660
gtaattgatg aaagtgtga cattaaaatg gcagtaaattt caatactatt atcaaaaaact	720
tttgcataatg gtatgattt tgcttcagag cagtcagtag tagttgcAG ctcaatatac	780
gatgaagtca agaaagagtt tgcagataga ggagcatata tattaagtaa ggatgaaaca	840
gagaaggttg gaaaaacaat tataattaat ggagccttaa atgctggcat tgttagggcaa	900
agtgcTTTA aaatagcaca gatggcagga gtgagtgtac cagaagatgc taaagtactt	960
ataggagaag ttaaatcagt agaaccggaa gaagagccct ttgcgcatac aaagctatct	1020
ccagTTTtag ctatgtacaa agcaaaagat tttgacgaag cactcctaaa ggctggaaaga	1080
ttagttgaac gaggtggaaat tgggcataca tctgtattat atgtaaatgc aatgacggaa	1140
aaagtaaagg tagaaaagtt cagagaaact atgaagactg gttagaacatt gataaatatg	1200
ccttcagcac aaggtgctat aggagatata tataacttta agctagctcc ttctttgaca	1260
ctaggttgc gttcctgggg aggaaaactct gtatcagaaa atgttggtcc taaacattta	1320
ttaaacataa agagtgtgc tgagaggaga gaaaatatgc tttggTTtag agtacctgaa	1380
aaggTTTatt tcaaataatgg tagtcttgc gttgcactaa aagaactgag aattatggag	1440
aagaaaaagg cattatagt aacggataaa gttctttatc aattaggtt tgtagataaa	1500
attacaaaaa atctggatga attaagagtt tcatataaaa tatttacaga tgtagaacca	1560
gatccaaaccc ttgctacagc taaaaaaggt gcagcagaac tggtagctt tgaaccagat	1620

Sequence Listing

acaattata	1680						
g cagtcgg	tggttcagca	atggatgcag	ccaagatcat	gtgggtaatg			
tatgagcatc	cagaagtaag	atttgaagat	ttagctatga	gatttatgga	tataagaaag	1740	
agagtgtatg	ttttccctaa	aatgggagaa	aaggcaatga	tgatttcagt	agcaacatcc	1800	
gcaggaacag	ggtcggaa	gt tacgccattt	gcagtaatta	cggatgaaag	aacaggagct	1860	
aaatatcctc	tggctgatta	tgaattgact	ccaaacatgg	ctatagttga	tgcagaactt	1920	
atgatggaa	tgccaaaggg	actaacagca	gcttcaggta	tagatgcatt	aacccatg	1980	
ctggaggcct	atgtatcaat	aatggcttca	gaatatacca	atggattggc	tcttgaagca	2040	
acaagattag	tatttaata	tttgc	ccaata	gcttatacag	aaggtacaac	taatgtaaag	2100
gcaagagaaa	aaatggctca	tgcttcatgt	attgcaggta	tggc	tttgc	caatgcattt	2160
ttaggggtat	gccactccat	ggcacataaa	ttgggagcac	agcaccacat	accacatg	2220	
attgccaatg	cacttatgat	agatgaagtt	ataaagttca	atgctgt	gaga	ggctccaagg	2280
aaacaagcgg	catttccaca	atataaata	ccaaatgtt	aaagaagata	tgctagaata	2340	
gctgattact	taaatttagg	tggaagtaca	gatgatgaaa	aagtacaatt	tttaataa	2400	
gctatagatg	acttgaaaac	caagttaaat	attccaaaga	ctattaaaga	agcggagtt	2460	
tcagaagata	aattctatgc	tactttagat	acaatgtcag	aactggctt	tgatgatcaa	2520	
tgtacaggag	cta	atccatt	ataggagaaa	taaaacaaat	gtatataa	2580	
gcatttgata	caccaaaggc	aactgtggag	aagaaaacaa	gaaagaaaaaa	ataa	2634	

<210> 68

<211> 877

<212> PRT

<213> C. Ljungdahl

<400> 68

Met	Lys	Val	Thr	Lys	Val	Thr	Asn	Val	Glu	Glu	Leu	Met	Lys	Lys	Leu
1				5					10			15			

Asp	Glu	Val	Thr	Ala	Ala	Gln	Lys	Lys	Phe	Ser	Ser	Tyr	Thr	Gln	Glu
				20			25					30			

Gln	Val	Asp	Glu	Ile	Phe	Arg	Gln	Ala	Ala	Met	Ala	Ala	Asn	Ser	Ala
		35				40				45					

Arg	Ile	Asp	Leu	Ala	Lys	Met	Ala	Val	Glu	Glu	Ser	Gly	Met	Gly	Ile
	50				55				60						

Val	Glu	Asp	Lys	Val	Ile	Lys	Asn	His	Phe	Val	Ala	Glu	Tyr	Ile	Tyr
65				70				75			80				

Asn	Lys	Tyr	Lys	Gly	Glu	Lys	Thr	Cys	Gly	Val	Leu	Glu	Gln	Asp	Glu
			85				90		95						

Gly	Phe	Gly	Met	Val	Arg	Ile	Ala	Glu	Pro	Val	Gly	Val	Ile	Ala	Ala
	100				105							110			

Sequence Listing

Val Val Pro Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu
115 120 125

Ile Ala Leu Lys Thr Arg Asn Gly Ile Val Phe Ser Pro His Pro Arg
130 135 140

Ala Lys Lys Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala
145 150 155 160

Val Lys Ala Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro
165 170 175

Ser Ile Glu Leu Ser Gln Val Val Met Lys Glu Ala Asp Leu Ile Leu
180 185 190

Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys
195 200 205

Pro Ala Ile Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile Asp Glu
210 215 220

Ser Ala Asp Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr
225 230 235 240

Phe Asp Asn Gly Met Ile Cys Ala Ser Glu Gln Ser Val Val Val Ala
245 250 255

Ser Ser Ile Tyr Asp Glu Val Lys Glu Phe Ala Asp Arg Gly Ala
260 265 270

Tyr Ile Leu Ser Lys Asp Glu Thr Glu Lys Val Gly Lys Thr Ile Ile
275 280 285

Ile Asn Gly Ala Leu Asn Ala Gly Ile Val Gly Gln Ser Ala Phe Lys
290 295 300

Ile Ala Gln Met Ala Gly Val Ser Val Pro Glu Asp Ala Lys Val Leu
305 310 315 320

Ile Gly Glu Val Lys Ser Val Glu Pro Glu Glu Pro Phe Ala His
325 330 335

Glu Lys Leu Ser Pro Val Leu Ala Met Tyr Lys Ala Lys Asp Phe Asp
340 345 350

Glu Ala Leu Leu Lys Ala Gly Arg Leu Val Glu Arg Gly Gly Ile Gly
355 360 365

His Thr Ser Val Leu Tyr Val Asn Ala Met Thr Glu Lys Val Lys Val
370 375 380

Sequence Listing

Glu Lys Phe Arg Glu Thr Met Lys Thr Gly Arg Thr Leu Ile Asn Met
 385 390 395 400

Pro Ser Ala Gln Gly Ala Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala
 405 410 415

Pro Ser Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Val Ser
 420 425 430

Glu Asn Val Gly Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu
 435 440 445

Arg Arg Glu Asn Met Leu Trp Phe Arg Val Pro Glu Lys Val Tyr Phe
 450 455 460

Lys Tyr Gly Ser Leu Gly Val Ala Leu Lys Glu Leu Arg Ile Met Glu
 465 470 475 480

Lys Lys Lys Ala Phe Ile Val Thr Asp Lys Val Leu Tyr Gln Leu Gly
 485 490 495

Tyr Val Asp Lys Ile Thr Lys Asn Leu Asp Glu Leu Arg Val Ser Tyr
 500 505 510

Lys Ile Phe Thr Asp Val Glu Pro Asp Pro Thr Leu Ala Thr Ala Lys
 515 520 525

Lys Gly Ala Ala Glu Leu Leu Ala Tyr Glu Pro Asp Thr Ile Ile Ala
 530 535 540

Val Gly Gly Ser Ala Met Asp Ala Ala Lys Ile Met Trp Val Met
 545 550 555 560

Tyr Glu His Pro Glu Val Arg Phe Glu Asp Leu Ala Met Arg Phe Met
 565 570 575

Asp Ile Arg Lys Arg Val Tyr Val Phe Pro Lys Met Gly Glu Lys Ala
 580 585 590

Met Met Ile Ser Val Ala Thr Ser Ala Gly Thr Gly Ser Glu Val Thr
 595 600 605

Pro Phe Ala Val Ile Thr Asp Glu Arg Thr Gly Ala Lys Tyr Pro Leu
 610 615 620

Ala Asp Tyr Glu Leu Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu
 625 630 635 640

Met Met Gly Met Pro Lys Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala
 645 650 655

Sequence Listing

Leu Thr His Ala Leu Glu Ala Tyr Val Ser Ile Met Ala Ser Glu Tyr
 660 665 670

Thr Asn Gly Leu Ala Leu Glu Ala Thr Arg Leu Val Phe Lys Tyr Leu
 675 680 685

Pro Ile Ala Tyr Thr Glu Gly Thr Thr Asn Val Lys Ala Arg Glu Lys
 690 695 700

Met Ala His Ala Ser Cys Ile Ala Gly Met Ala Phe Ala Asn Ala Phe
 705 710 715 720

Leu Gly Val Cys His Ser Met Ala His Lys Leu Gly Ala Gln His His
 725 730 735

Ile Pro His Gly Ile Ala Asn Ala Leu Met Ile Asp Glu Val Ile Lys
 740 745 750

Phe Asn Ala Val Glu Ala Pro Arg Lys Gln Ala Ala Phe Pro Gln Tyr
 755 760 765

Lys Tyr Pro Asn Val Lys Arg Arg Tyr Ala Arg Ile Ala Asp Tyr Leu
 770 775 780

Asn Leu Gly Gly Ser Thr Asp Asp Glu Lys Val Gln Phe Leu Ile Asn
 785 790 795 800

Ala Ile Asp Asp Leu Lys Thr Lys Leu Asn Ile Pro Lys Thr Ile Lys
 805 810 815

Glu Ala Gly Val Ser Glu Asp Lys Phe Tyr Ala Thr Leu Asp Thr Met
 820 825 830

Ser Glu Leu Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr
 835 840 845

Pro Leu Ile Gly Glu Ile Lys Gln Met Tyr Ile Asn Ala Phe Asp Thr
 850 855 860

Pro Lys Ala Thr Val Glu Lys Lys Thr Arg Lys Lys Lys
 865 870 875

<210> 69

<211> 2613

<212> DNA

<213> c. ljungdahlii

<400> 69

atgaaagtta caaacgtaga agaactaatg aaaagactag aagaaataaa ggatgctcaa 60

aagaaatttg ctacatatac tcaagaacaa gtggatgaaa ttttagaca agcagctatg

120

Sequence Listing

gcagctaata	gtgctagaat	agaactagct	aaaatggcag	tagaagaaaag	cggaatggga	180
attgtagaag	acaaggtcat	taaaaatcac	tttgcctcg	aatatatata	taacaaatat	240
aaggatgaaa	aaacctgtgg	agtttttagag	agagatgcag	gatttggtat	agttagaatt	300
gcggaacctg	taggagttat	cgcagcagta	gttccaacaa	ctaatccaac	atctacagca	360
atatttaat	cactaatagc	tttaaaaact	agaaatggta	taatttttc	accccatcca	420
agggcaaaga	aatcaactat	tgcagcagct	aaaatagtac	ttgacgctgc	agttaaagct	480
ggtgctcctg	aaggaattat	aggatggata	gatgaacctt	ccattgaact	ttcacaggtg	540
gtaatgggag	aagcaaattt	aattcttgc	actggtgcc	cgggtatgg	taaggctgcc	600
tattcttcag	gcaaacctgc	tgtgggagtt	ggtccaggta	acacacctgc	tgttaattgat	660
gaaagtgcgc	acattaaaat	ggcagtaat	tcaatattac	tatcaaagac	ttttgataat	720
ggtatgattt	gtgcctcaga	gcagtcagta	atagtttag	actcaatata	tgaggaagtt	780
aaaaaagaat	ttgcttata	gggtgctt	atattaagta	aggatgaaac	agataagg	840
ggaaaaataa	ttttaaaaaa	tggagcctt	aatgcaggta	ttgttaggaca	acctgcttt	900
aaaatagcac	agctggcagg	agtggatgt	ccagaaaaag	ctaaagtact	tataggagag	960
gtagaatcg	tagaacttga	agaaccattt	tctcatgaaa	agttatctcc	agttttagct	1020
atgtacaggg	caagaaattt	tgaggatgc	attgcaaaaa	ctgataaact	ggttaggtca	1080
ggtggattt	gacatacatc	ttcattat	gtaaatccaa	tgacagagaa	agcaaaagta	1140
aaaaaattt	gtactatgt	gaaaacatca	agaactataa	ttaacacacc	ttcatccaa	1200
ggtggatag	gtgatata	taactttaaa	ctagctcctt	ctttgacatt	aggctgcgt	1260
tcctggggag	gaaattctgt	atccgaaaat	gttggccta	aacatttatt	aaacataaaa	1320
agtgttgctg	agaggagaga	aaatatgctt	tggtttagag	tacctgaa	ggtttatttc	1380
aaatatggta	gtcttggagt	tgcattaaa	gaattaaaag	ttatgaataa	gaagaaagta	1440
tttata	cagataaagt	tcttatcaa	ttagttatg	tggacaaagt	tacaaaagtt	1500
cttgaggaac	taaaaattt	ctataaggta	tttacagatg	tagaaccaga	tccaccctt	1560
gctacagcta	aaaaagg	gcagactg	cttcctatg	aaccggatac	aattatata	1620
gttggtggt	gctcagcaat	ggatgcagct	aagatcatgt	ggtaatgt	tgagcatcca	1680
gaagtaaaat	ttgaagat	agctatgaga	tttatggata	taagaaagag	agtatatgtt	1740
ttccctaaga	tgggagaaa	ggcaatgt	atttcagtag	caacatccgc	aggaacaggg	1800
tcggaagtt	ctccatttgc	agtaatcact	gatgaaaaaa	caggagctaa	atatccatta	1860
gctgattatg	aactaactcc	agacatggct	atagttatg	cagaactt	gatggat	1920
ccaaggagg	ttacagcagc	ttcggtata	gatgcattaa	cccatgcact	ggaggcatat	1980
gtgtcaataa	tggctacaga	atttaccaat	ggattagccc	ttgaagcagt	aaagttgata	2040
tttgaatatt	tacaaaagc	ttatacagaa	ggtacaacta	atgtaaaggc	aagagaaaag	2100
atggttcatg	cttcatgtat	tgcaggtatg	gcctttgcaa	atgcatttt	agggat	2160

Sequence Listing

cactctatgg cacataaatt gggagcacag catcacatac cacatggaat tgccaatgca	2220
cttagatag atgaagttat aaaattcaat gctgttagatg atccaataaa acaagctgca	2280
tttccccat acgagtatcc aaatgctagg tatagatatg ctcagatagc tgattgtctg	2340
aacttggag gaaatacaga agaggaaaag gtacaactat taataaatgc tatagatgtat	2400
ttaaaagcta agttaaatat tccagaaact ataaaagaag caggagttc agaagataaa	2460
ttctatgcta ctttagataa aatgtcagaa ttagctttg atgatcagt tacaggagct	2520
aatccaagat atccactgat aagtgaaata aaacaaatgt atataaatgt tttgataaa	2580
accgaaccaa ttgtagaaga tgaagaaaag taa	2613

<210> 70

<211> 870

<212> PRT

<213> c. ljunghahl

<400> 70

Met Lys Val Thr Asn Val Glu Glu Leu Met Lys Arg Leu Glu Glu Ile			
1	5	10	15
10	15		

Lys Asp Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp			
20	25	30	
30			

Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Ser Ala Arg Ile Glu			
35	40	45	
45			

Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile Val Glu Asp			
50	55	60	
60			

Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Lys Tyr			
65	70	75	80
75	80		

Lys Asp Glu Lys Thr Cys Gly Val Leu Glu Arg Asp Ala Gly Phe Gly			
85	90	95	
95			

Ile Val Arg Ile Ala Glu Pro Val Gly Val Ile Ala Ala Val Val Pro			
100	105	110	
110			

Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ala Leu			
115	120	125	
125			

Lys Thr Arg Asn Gly Ile Ile Phe Ser Pro His Pro Arg Ala Lys Lys			
130	135	140	
140			

Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala Val Lys Ala			
145	150	155	160
155	160		

Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu			
165	170	175	
175			

Sequence Listing

Leu Ser Gln Val Val Met Gly Glu Ala Asn Leu Ile Leu Ala Thr Gly
 180 185 190

Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Val
 195 200 205

Gly Val Gly Pro Gly Asn Thr Pro Ala Val Ile Asp Glu Ser Ala Asp
 210 215 220

Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr Phe Asp Asn
 225 230 235 240

Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Asp Ser Ile
 245 250 255

Tyr Glu Glu Val Lys Lys Glu Phe Ala Tyr Arg Gly Ala Tyr Ile Leu
 260 265 270

Ser Lys Asp Glu Thr Asp Lys Val Gly Lys Ile Ile Leu Lys Asn Gly
 275 280 285

Ala Leu Asn Ala Gly Ile Val Gly Gln Pro Ala Phe Lys Ile Ala Gln
 290 295 300

Leu Ala Gly Val Asp Val Pro Glu Lys Ala Lys Val Leu Ile Gly Glu
 305 310 315 320

Val Glu Ser Val Glu Leu Glu Glu Pro Phe Ser His Glu Lys Leu Ser
 325 330 335

Pro Val Leu Ala Met Tyr Arg Ala Arg Asn Phe Glu Asp Ala Ile Ala
 340 345 350

Lys Thr Asp Lys Leu Val Arg Ser Gly Gly Phe Gly His Thr Ser Ser
 355 360 365

Leu Tyr Val Asn Pro Met Thr Glu Lys Ala Lys Val Glu Lys Phe Ser
 370 375 380

Thr Met Met Lys Thr Ser Arg Thr Ile Ile Asn Thr Pro Ser Ser Gln
 385 390 395 400

Gly Gly Ile Gly Asp Ile Tyr Asn Phe Lys Leu Ala Pro Ser Leu Thr
 405 410 415

Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly
 420 425 430

Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn
 435 440 445

Sequence Listing

Met Leu Trp Phe Arg Val Pro Glu Lys Val Tyr Phe Lys Tyr Gly Ser
 450 455 460

Leu Gly Val Ala Leu Lys Glu Leu Lys Val Met Asn Lys Lys Lys Val
 465 470 475 480

Phe Ile Val Thr Asp Lys Val Leu Tyr Gln Leu Gly Tyr Val Asp Lys
 485 490 495

Val Thr Lys Val Leu Glu Glu Leu Lys Ile Ser Tyr Lys Val Phe Thr
 500 505 510

Asp Val Glu Pro Asp Pro Thr Leu Ala Thr Ala Lys Lys Gly Ala Ala
 515 520 525

Glu Leu Leu Ser Tyr Glu Pro Asp Thr Ile Ile Ser Val Gly Gly
 530 535 540

Ser Ala Met Asp Ala Ala Lys Ile Met Trp Val Met Tyr Glu His Pro
 545 550 555 560

Glu Val Lys Phe Glu Asp Leu Ala Met Arg Phe Met Asp Ile Arg Lys
 565 570 575

Arg Val Tyr Val Phe Pro Lys Met Gly Glu Lys Ala Met Met Ile Ser
 580 585 590

Val Ala Thr Ser Ala Gly Thr Gly Ser Glu Val Thr Pro Phe Ala Val
 595 600 605

Ile Thr Asp Glu Lys Thr Gly Ala Lys Tyr Pro Leu Ala Asp Tyr Glu
 610 615 620

Leu Thr Pro Asp Met Ala Ile Val Asp Ala Glu Leu Met Met Gly Met
 625 630 635 640

Pro Arg Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala Leu Thr His Ala
 645 650 655

Leu Glu Ala Tyr Val Ser Ile Met Ala Thr Glu Phe Thr Asn Gly Leu
 660 665 670

Ala Leu Glu Ala Val Lys Leu Ile Phe Glu Tyr Leu Pro Lys Ala Tyr
 675 680 685

Thr Glu Gly Thr Thr Asn Val Lys Ala Arg Glu Lys Met Val His Ala
 690 695 700

Ser Cys Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys
 705 710 715 720

Sequence Listing

His Ser Met Ala His Lys Leu Gly Ala Gln His His Ile Pro His Gly
 725 730 735

Ile Ala Asn Ala Leu Met Ile Asp Glu Val Ile Lys Phe Asn Ala Val
 740 745 750

Asp Asp Pro Ile Lys Gln Ala Ala Phe Pro Gln Tyr Glu Tyr Pro Asn
 755 760 765

Ala Arg Tyr Arg Tyr Ala Gln Ile Ala Asp Cys Leu Asn Leu Gly Gly
 770 775 780

Asn Thr Glu Glu Glu Lys Val Gln Leu Leu Ile Asn Ala Ile Asp Asp
 785 790 795 800

Leu Lys Ala Lys Leu Asn Ile Pro Glu Thr Ile Lys Glu Ala Gly Val
 805 810 815

Ser Glu Asp Lys Phe Tyr Ala Thr Leu Asp Lys Met Ser Glu Leu Ala
 820 825 830

Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro Leu Ile Ser
 835 840 845

Glu Ile Lys Gln Met Tyr Ile Asn Val Phe Asp Lys Thr Glu Pro Ile
 850 855 860

Val Glu Asp Glu Glu Lys
 865 870

<210> 71

<211> 1554

<212> DNA

<213> c. 1jundahlii

<400> 71

ttggaaaatt ttgataaaga cttacgttct atacaagaag caagagatct tgcacgttta	60
ggaaaaattt cagcagacca aattgctgat tatactgaag aacaaattga taaaatccta	120
tgtatatgg ttagggtagc agaagaaaat gcagttgcc ttggtaaaat ggctgcagaa	180
gaaactggtt ttggaaaagc tgaagataag gcttataaga accatatggc tgctactaca	240
gtatataatt acatcaagga tatgaagact attgggttta taaaagaaga taaaagtcaa	300
ggtgttaattt aatttgcaga accagtttgtt ttattatgg gtattgtacc atctacaaat	360
ccaacatcta ctgttattta taaatcaatc attgcaatta aatcaagaaa tgcaattgtt	420
ttctcaccac acccagctgc attaaaatgt tcaacaaaag caatagaact tatgcgtgat	480
gcagcagtag cagcaggagc tcctgcaaattt gtaattggtg gtattgttac accatctata	540
caagctacaa atgaacttat gaaagctaaa gaagttgcta tgataattgc aactggaggc	600
cctggaatgg taaaggctgc atatagttca ggaacacctg caataggcgt tggtgctgg	660

Sequence Listing

aactctccat	cctatattga	aagaactgct	gatgttcatc	aatcagttaa	agatataata	720
gctagtaaga	gttttgacta	tggtactatt	tgtgcacccg	agcagtctgt	aattgcagaa	780
gaatgcaacc	atgatgaaat	agtagctgaa	tttaagaaac	aaggcggata	tttcatgaca	840
gctgaagaaa	ctgcaaaagt	ttgcagcgta	cttttaaac	ctggcacaca	cagcatgagc	900
gctaagttg	taggaagagc	tcctcagggtt	atagcagaag	ctgcagggtt	cacagttcca	960
gaaggaacaa	aagtattaat	aggagaacaa	ggcggagttg	gtaatggta	ccctctatct	1020
tatgagaaac	ttacaacagt	acttgcttc	tatacagtta	aagattggca	tgaagcatgt	1080
gagcttagta	taagattact	tcaaaatggt	cttggacata	caatgaacat	tcatacaaata	1140
gatagagact	tagtaatgaa	gttgctaaa	aaaccagcat	cccgatctt	agttaatact	1200
ggtggaaagcc	agggaggtac	tggcgaagc	acaggattag	cacctgcatt	tacatttagt	1260
tgtggtagat	ggggaggaag	ctctgttct	gaaaatgtta	ctccattaca	tttaatcaat	1320
ataaaagagag	tagcatatgg	tcttaagat	tgtactacat	tagctgcaga	cgataacaact	1380
ttcaatcatc	ctgaactttg	cggaagcaaa	aatgacttag	gattctgtgc	tacaagccct	1440
gcagaatttgc	cagcaaagag	caattgtat	agcactgctg	cagatactac	tgataatgat	1500
aaacttgcta	gactcgtaag	tgaatttagta	gctgcaatga	agggagctaa	ctaa	1554

<210> 72

<211> 517

<212> PRT

<213> c. Tjungdahlii

<400> 72

Met	Glu	Asn	Phe	Asp	Lys	Asp	Leu	Arg	Ser	Ile	Gln	Glu	Ala	Arg	Asp
1							5			10				15	

Leu	Ala	Arg	Leu	Gly	Lys	Ile	Ala	Ala	Asp	Gln	Ile	Ala	Asp	Tyr	Thr
			20					25						30	

Glu	Glu	Gln	Ile	Asp	Lys	Ile	Leu	Cys	Asn	Met	Val	Arg	Val	Ala	Glu
			35				40					45			

Glu	Asn	Ala	Val	Cys	Leu	Gly	Lys	Met	Ala	Ala	Glu	Glu	Thr	Gly	Phe
			50			55				60					

Gly	Lys	Ala	Glu	Asp	Lys	Ala	Tyr	Lys	Asn	His	Met	Ala	Ala	Thr	Thr
65								70		75				80	

Val	Tyr	Asn	Tyr	Ile	Lys	Asp	Met	Lys	Thr	Ile	Gly	Val	Ile	Lys	Glu
				85				90					95		

Asp	Lys	Ser	Glu	Gly	Val	Ile	Glu	Phe	Ala	Glu	Pro	Val	Gly	Leu	Leu
			100				105					110			

Met	Gly	Ile	Val	Pro	Ser	Thr	Asn	Pro	Thr	Ser	Thr	Val	Ile	Tyr	Lys
			115				120					125			

Sequence Listing

Ser Ile Ile Ala Ile Lys Ser Arg Asn Ala Ile Val Phe Ser Pro His
 130 135 140

Pro Ala Ala Leu Lys Cys Ser Thr Lys Ala Ile Glu Leu Met Arg Asp
 145 150 155 160

Ala Ala Val Ala Ala Gly Ala Pro Ala Asn Val Ile Gly Gly Ile Val
 165 170 175

Thr Pro Ser Ile Gln Ala Thr Asn Glu Leu Met Lys Ala Lys Glu Val
 180 185 190

Ala Met Ile Ile Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr
 195 200 205

Ser Ser Gly Thr Pro Ala Ile Gly Val Gly Ala Gly Asn Ser Pro Ser
 210 215 220

Tyr Ile Glu Arg Thr Ala Asp Val His Gln Ser Val Lys Asp Ile Ile
 225 230 235 240

Ala Ser Lys Ser Phe Asp Tyr Gly Thr Ile Cys Ala Ser Glu Gln Ser
 245 250 255

Val Ile Ala Glu Glu Cys Asn His Asp Glu Ile Val Ala Glu Phe Lys
 260 265 270

Lys Gln Gly Gly Tyr Phe Met Thr Ala Glu Glu Thr Ala Lys Val Cys
 275 280 285

Ser Val Leu Phe Lys Pro Gly Thr His Ser Met Ser Ala Lys Phe Val
 290 295 300

Gly Arg Ala Pro Gln Val Ile Ala Glu Ala Ala Gly Phe Thr Val Pro
 305 310 315 320

Glu Gly Thr Lys Val Leu Ile Gly Glu Gln Gly Gly Val Gly Asn Gly
 325 330 335

Tyr Pro Leu Ser Tyr Glu Lys Leu Thr Thr Val Leu Ala Phe Tyr Thr
 340 345 350

Val Lys Asp Trp His Glu Ala Cys Glu Leu Ser Ile Arg Leu Leu Gln
 355 360 365

Asn Gly Leu Gly His Thr Met Asn Ile His Thr Asn Asp Arg Asp Leu
 370 375 380

Val Met Lys Phe Ala Lys Lys Pro Ala Ser Arg Ile Leu Val Asn Thr
 385 390 395 400

Sequence Listing

Gly Gly Ser Gln Gly Gly Thr Gly Ala Ser Thr Gly Leu Ala Pro Ala
 405 410 415

Phe Thr Leu Gly Cys Gly Thr Trp Gly Gly Ser Ser Val Ser Glu Asn
 420 425 430

Val Thr Pro Leu His Leu Ile Asn Ile Lys Arg Val Ala Tyr Gly Leu
 435 440 445

Lys Asp Cys Thr Thr Leu Ala Ala Asp Asp Thr Thr Phe Asn His Pro
 450 455 460

Glu Leu Cys Gly Ser Lys Asn Asp Leu Gly Phe Cys Ala Thr Ser Pro
 465 470 475 480

Ala Glu Phe Ala Ala Lys Ser Asn Cys Asp Ser Thr Ala Ala Asp Thr
 485 490 495

Thr Asp Asn Asp Lys Leu Ala Arg Leu Val Ser Glu Leu Val Ala Ala
 500 505 510

Met Lys Gly Ala Asn
 515

<210> 73

<211> 1497

<212> DNA

<213> c. ljunghdahl

<400> 73

atgaatatta ttgataatga tttgctctcc atccaaagaat cccgaatcct tgtggaaaat	60
gctgcacgag cacaaaaaat gtttagcaacc tttccacaag aaaagctaga tgagattgtt	120
gaacgtatgg cgaaagaaat cgaaaaacat acccgagagc ttgctgtaat gtcacaggat	180
gaaactggtt atggaaaatg gcaggataaa tgcataaaaa accgatttgc ctgtgagtt	240
ttgccagcta agcttagagg aatgcgtgt gtaggttata ttaatgaaaa tggtcaggat	300
aagaccatgg atgttaggtgt acctatgggt gtaattattt cattatgtcc tgcaactagt	360
ccggtttcta ctaccatata taaggcattt attgcaatta agtctggtaa tgcaattatc	420
ttttctccac atccttagagc aaaggagaca attttaagg cgcttgacat catgattcgt	480
gcagctgaag gatatggct tccagaagga gctttgcat acttacatac tgtgacgcct	540
agtggAACAA tcgaatttgc gatccatatt ggcacttctt tgattatgaa tacagggttt	600
cccggtatgc ttaaaggcagc atataattct gggaaacctg ttatatatgg aggaactgg	660
aatggaccag catttatttgc acgtacagct gacatcaaacc aggcggtaaa agatatttt	720
gcttagtaaga cctttgataa cggaaatagta ccatcagctg aacaatctat tggtagat	780
agctgtgttgc catctgtatgt taaacgtgag ttgcaaaata atggcata tttcatgaca	840

Sequence Listing

gaggaggaag	cacaaaaact	agttcttc	ttttccgtt	ctgatggcag	tatggattca	900
gaaatggttg	gcaaatccgc	acaaagattg	gctaaaaaag	caggtttcag	cattcctgaa	960
agtagcacag	tgctaatttc	agagcagaaa	tatgtttctc	aagataatcc	ttattccaag	1020
gagaaacttt	gtccggact	agcttactac	attgaagatg	attggatgca	tgcatgtgaa	1080
aagtgtattg	aactgctgtt	aagtggaga	catggtcaca	ctcttgttat	acattcaaaa	1140
gacgaagatg	taattcgcca	gtttgcatta	aaaaaacctg	tagttaggat	acttgttaat	1200
acgcctgctt	ccttggtag	tatgggtgct	acaagtaatt	tatttcctgc	tttaacttta	1260
gttagtggat	cggcaggtaa	aggtattacc	tccgataatg	tttcaccaat	gaatcttatt	1320
tacgtccgca	aagtcggata	tggcgtacgg	aatgtagaag	agattgtcaa	tactaatggaa	1380
ttgtttacag	aagaaaaaaag	tgatttgaat	ggaatgacaa	aaaagtcaga	ctataatcca	1440
gaggatatac	aatgttaca	gcataattta	aaaaaagcta	tggaaaaaat	taaatag	1497

<210> 74
 <211> 498
 <212> PRT
 <213> c. ljunghalii
 <400> 74

Met Asn Ile Ile Asp Asn Asp Leu Leu Ser Ile Gln Glu Ser Arg Ile
 1 5 10 15

Leu Val Glu Asn Ala Ala Arg Ala Gln Lys Met Leu Ala Thr Phe Pro
 20 25 30

Gln Glu Lys Leu Asp Glu Ile Val Glu Arg Met Ala Glu Glu Ile Gly
 35 40 45

Lys His Thr Arg Glu Leu Ala Val Met Ser Gln Asp Glu Thr Gly Tyr
 50 55 60

Gly Lys Trp Gln Asp Lys Cys Ile Lys Asn Arg Phe Ala Cys Glu Tyr
 65 70 75 80

Leu Pro Ala Lys Leu Arg Gly Met Arg Cys Val Gly Ile Ile Asn Glu
 85 90 95

Asn Gly Gln Asp Lys Thr Met Asp Val Gly Val Pro Met Gly Val Ile
 100 105 110

Ile Ala Leu Cys Pro Ala Thr Ser Pro Val Ser Thr Thr Ile Tyr Lys
 115 120 125

Ala Leu Ile Ala Ile Lys Ser Gly Asn Ala Ile Ile Phe Ser Pro His
 130 135 140

Pro Arg Ala Lys Glu Thr Ile Cys Lys Ala Leu Asp Ile Met Ile Arg
 145 150 155 160

Sequence Listing

Ala Ala Glu Gly Tyr Gly Leu Pro Glu Gly Ala Leu Ala Tyr Leu His
 165 170 175

Thr Val Thr Pro Ser Gly Thr Ile Glu Leu Met Asn His Ile Ala Thr
 180 185 190

Ser Leu Ile Met Asn Thr Gly Val Pro Gly Met Leu Lys Ala Ala Tyr
 195 200 205

Asn Ser Gly Lys Pro Val Ile Tyr Gly Gly Thr Gly Asn Gly Pro Ala
 210 215 220

Phe Ile Glu Arg Thr Ala Asp Ile Lys Gln Ala Val Lys Asp Ile Ile
 225 230 235 240

Ala Ser Lys Thr Phe Asp Asn Gly Ile Val Pro Ser Ala Glu Gln Ser
 245 250 255

Ile Val Val Asp Ser Cys Val Ala Ser Asp Val Lys Arg Glu Leu Gln
 260 265 270

Asn Asn Gly Ala Tyr Phe Met Thr Glu Glu Ala Gln Lys Leu Gly
 275 280 285

Ser Leu Phe Phe Arg Ser Asp Gly Ser Met Asp Ser Glu Met Val Gly
 290 295 300

Lys Ser Ala Gln Arg Leu Ala Lys Lys Ala Gly Phe Ser Ile Pro Glu
 305 310 315 320

Ser Ser Thr Val Leu Ile Ser Glu Gln Lys Tyr Val Ser Gln Asp Asn
 325 330 335

Pro Tyr Ser Lys Glu Lys Leu Cys Pro Val Leu Ala Tyr Tyr Ile Glu
 340 345 350

Asp Asp Trp Met His Ala Cys Glu Lys Cys Ile Glu Leu Leu Ser
 355 360 365

Glu Arg His Gly His Thr Leu Val Ile His Ser Lys Asp Glu Asp Val
 370 375 380

Ile Arg Gln Phe Ala Leu Lys Lys Pro Val Gly Arg Ile Leu Val Asn
 385 390 395 400

Thr Pro Ala Ser Phe Gly Ser Met Gly Ala Thr Ser Asn Leu Phe Pro
 405 410 415

Ala Leu Thr Leu Gly Ser Gly Ser Ala Gly Lys Gly Ile Thr Ser Asp
 420 425 430

Sequence Listing

Asn Val Ser Pro Met Asn Leu Ile Tyr Val Arg Lys Val Gly Tyr Gly
 435 440 445

Val Arg Asn Val Glu Glu Ile Val Asn Thr Asn Gly Leu Phe Thr Glu
 450 455 460

Glu Lys Ser Asp Leu Asn Gly Met Thr Lys Lys Ser Asp Tyr Asn Pro
 465 470 475 480

Glu Asp Ile Gln Met Leu Gln His Ile Leu Lys Lys Ala Met Glu Lys
 485 490 495

Ile Lys

<210> 75
 <211> 1167
 <212> DNA
 <213> c. ljunghdahl

<400> 75	
atggcaagat ttactttacc aagagacatt tattttggag aaaattcatt agaaaccttg	60
aaagacctag atggaaaaaa agctgttatt gtcgttaggtg gtggatccat gaaacgattt	120
ggattccttg ataaggttagt aaactactta aaagaagcag gtattgaatc aaaattaata	180
gaaggagttg aaccagatcc atctgtagaa actgttatga atggcgctaa actaatgaga	240
gaatatgaac cagatataat agtatcaata ggtggaggtt caccattga cgcagcaaaa	300
gctatgtgga tattctatga ataccctgag tttactttta aagaggctgt gtttcctttt	360
ggtcttccta aattaagaca aaaagcaaca tttatagcta taccttctac aagtggtact	420
gcaacagaag taacggcatt ttctgtata acagactata aagctaaaat taaatatcct	480
ttagctgact tcaatttaac accagatata gctataattt atccagcatt agctcaaaca	540
atgccaccta aattaactgc acatactgga atggatgcac ttacccatgc tattgaagca	600
tatgttgcag gacttcattc agtttctca gatccttcttgc ctattcaagc tatagtttagt	660
gtaaatcagt attaattaa atcttacaat gaagataaag aagctagaaa ccaaatgcat	720
ttagctcaat gtttagctgg aatggcattt tcaaattgcac ttcttggaaat aactcacagt	780
ttagcacata aaacaggtgc agtattccat atccctcatg gatgtgccaa tgcaatataat	840
cttcctttag ttatagattt caataaaaaa gcttgcac caagatatgc taaaatagct	900
aggagtctta aacttccagg aaatactgat gatgaatttag tagattcatt aaccaacatg	960
attaaagata tgaataagag tatggatatt cctttaacat taaaagatta cggagtagat	1020
aaaaaaagaat taaaagatag tgaagatttt atagctcaca atgccgtatt agatgcctgc	1080
actggatcaa atcctagaag tataaatgat actgaaatga aaaagtttatt agaatacatc	1140
tattatggta aaaaggttga tttttaa	1167

Sequence Listing

<210> 76
 <211> 388
 <212> PRT
 <213> c. 1jundahlii
 <400> 76

Met Ala Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asn Ser
 1 5 10 15

Leu Glu Thr Leu Lys Asp Leu Asp Gly Lys Lys Ala Val Ile Val Val
 20 25 30

Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Val Asn
 35 40 45

Tyr Leu Lys Glu Ala Gly Ile Glu Ser Lys Leu Ile Glu Gly Val Glu
 50 55 60

Pro Asp Pro Ser Val Glu Thr Val Met Asn Gly Ala Lys Leu Met Arg
 65 70 75 80

Glu Tyr Glu Pro Asp Leu Ile Val Ser Ile Gly Gly Ser Pro Ile
 85 90 95

Asp Ala Ala Lys Ala Met Trp Ile Phe Tyr Glu Tyr Pro Glu Phe Thr
 100 105 110

Phe Lys Glu Ala Val Val Pro Phe Gly Leu Pro Lys Leu Arg Gln Lys
 115 120 125

Ala Thr Phe Ile Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val
 130 135 140

Thr Ala Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro
 145 150 155 160

Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Ala
 165 170 175

Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Gly Leu His Ser Val
 195 200 205

Phe Ser Asp Pro Leu Ala Ile Gln Ala Ile Val Met Val Asn Gln Tyr
 210 215 220

Leu Ile Lys Ser Tyr Asn Glu Asp Lys Glu Ala Arg Asn Gln Met His
 225 230 235 240

Sequence Listing

Leu Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
 245 250 255

Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Phe His Ile Pro
 260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
 275 280 285

Lys Lys Ala Cys Ala Pro Arg Tyr Ala Glu Ile Ala Arg Ser Leu Lys
 290 295 300

Leu Pro Gly Asn Thr Asp Asp Glu Leu Val Asp Ser Leu Thr Asn Met
 305 310 315 320

Ile Lys Asp Met Asn Lys Ser Met Asp Ile Pro Leu Thr Leu Lys Asp
 325 330 335

Tyr Gly Val Asp Glu Lys Glu Phe Lys Asp Ser Glu Asp Phe Ile Ala
 340 345 350

His Asn Ala Val Leu Asp Ala Cys Thr Gly Ser Asn Pro Arg Ser Ile
 355 360 365

Asn Asp Thr Glu Met Lys Lys Leu Leu Glu Tyr Ile Tyr Tyr Gly Lys
 370 375 380

Lys Val Asp Phe
 385

<210> 77

<211> 1167

<212> DNA

<213> c. 1jundahlii

<400> 77

atggaaagat ttactttgcc tagggatatt tactttggtg	aaaatgcctt agaaaattta	60
aaaaattttag atggaaataa agcagtagtt gttgttagtg	ggggatctat gaagagattt	120
ggattcttag ccaaagttga aaaatactta aaagaaactg	gtatggaagt taaattaata	180
gaagggtttg agcctgatcc gtctgttgat actgttatga	atggcgctaa aataatgaga	240
gactttaacc cagattggat agtataataa ggtggaggat	ctcccataga tgctgctaaa	300
gcaatgtgga tattttatga ataccccgac tttacattt	aaaaagcggt agtccctttt	360
ggaattccta aattaaggca gaaggcacaa tttgttgcta	tacttctac aagtggaaaca	420
gcaactgaag taacatcatt ttctgtataa acagactata	aagctaaaat aaaatatcct	480
cttgcagatt ttaaccttac ccctgatata gctataatag	atccgtctct tgcagaaaca	540
atgccccaaa agcttacagc acacactgga atggatgcac	ttactcacgc aatagaagca	600
tatgtaccaa gtttacattc agatttctca gatccacttg	ctatgcacgc tataaccatg	660

Sequence Listing

attcataaat	atttattgaa	atcctatgaa	gaagataaaag	aagcttagagg	acatatgcatt	720
atagcccaat	gtcttagctgg	gatggcattt	tcaaattgctc	tccttggaaat	aactcatagt	780
atagcacata	aaactggtgc	agtatttcac	atacctcatg	ggtgtgctaa	tgccatatac	840
ttacctttagt	ttatagattt	taacaagaaa	gcttggttcag	aaagatatgc	taaaatagcc	900
aaaaagctgc	atctatcagg	aaatagtgaa	gatgagctaa	tagattcatt	aactgaaatg	960
attcgtaacta	tgaacaaaaa	gatggatatt	cctctcacca	taaaagatta	tggtataagc	1020
gaaaacgatt	ttaatgaaaa	cctagatttt	atagctcaca	atgccatgat	ggatgcctgc	1080
actggatcca	atcctagagc	aataactgag	gaagaaatga	aaaagctctt	gcagtatatg	1140
tataatgggc	aaaaggttaa	tttctag				1167

<210> 78

<211> 388

<212> PRT

<213> c. ljun dahlii

<400> 78

Met	Gly	Arg	Phe	Thr	Leu	Pro	Arg	Asp	Ile	Tyr	Phe	Gly	Glu	Asn	Ala
1				5					10				15		

Leu	Glu	Asn	Leu	Lys	Asn	Leu	Asp	Gly	Asn	Lys	Ala	Val	Val	Val	Val
				20				25				30			

Gly	Gly	Gly	Ser	Met	Lys	Arg	Phe	Gly	Phe	Leu	Ala	Lys	Val	Glu	Lys
				35			40					45			

Tyr	Leu	Lys	Glu	Thr	Gly	Met	Glu	Val	Lys	Leu	Ile	Glu	Gly	Val	Glu
				50		55				60					

Pro	Asp	Pro	Ser	Val	Asp	Thr	Val	Met	Asn	Gly	Ala	Lys	Ile	Met	Arg
	65				70				75				80		

Asp	Phe	Asn	Pro	Asp	Trp	Ile	Val	Ser	Ile	Gly	Gly	Ser	Pro	Ile	
				85				90				95			

Asp	Ala	Ala	Lys	Ala	Met	Trp	Ile	Phe	Tyr	Glu	Tyr	Pro	Asp	Phe	Thr
				100				105				110			

Phe	Glu	Lys	Ala	Val	Val	Pro	Phe	Gly	Ile	Pro	Lys	Leu	Arg	Gln	Lys
					115		120					125			

Ala	Gln	Phe	Val	Ala	Ile	Pro	Ser	Thr	Ser	Gly	Thr	Ala	Thr	Glu	Val
					130		135					140			

Thr	Ser	Phe	Ser	Val	Ile	Thr	Asp	Tyr	Lys	Ala	Lys	Ile	Lys	Tyr	Pro
				145		150			155				160		

Leu	Ala	Asp	Phe	Asn	Leu	Thr	Pro	Asp	Ile	Ala	Ile	Ile	Asp	Pro	Ser
					165			170				175			

Sequence Listing

Leu Ala Glu Thr Met Pro Lys Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Ser Leu His Ser Asp
 195 200 205

Phe Ser Asp Pro Leu Ala Met His Ala Ile Thr Met Ile His Lys Tyr
 210 215 220

Leu Leu Lys Ser Tyr Glu Glu Asp Lys Glu Ala Arg Gly His Met His
 225 230 235 240

Ile Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
 245 250 255

Ile Thr His Ser Ile Ala His Lys Thr Gly Ala Val Phe His Ile Pro
 260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
 275 280 285

Lys Lys Ala Cys Ser Glu Arg Tyr Ala Lys Ile Ala Lys Lys Leu His
 290 295 300

Leu Ser Gly Asn Ser Glu Asp Glu Leu Ile Asp Ser Leu Thr Glu Met
 305 310 315 320

Ile Arg Thr Met Asn Lys Lys Met Asp Ile Pro Leu Thr Ile Lys Asp
 325 330 335

Tyr Gly Ile Ser Glu Asn Asp Phe Asn Glu Asn Leu Asp Phe Ile Ala
 340 345 350

His Asn Ala Met Met Asp Ala Cys Thr Gly Ser Asn Pro Arg Ala Ile
 355 360 365

Thr Glu Glu Glu Met Lys Lys Leu Leu Gln Tyr Met Tyr Asn Gly Gln
 370 375 380

Lys Val Asn Phe
 385

<210> 79
 <211> 1167
 <212> DNA
 <213> c. Ijundahlii

<400> 79
 atggagagat ttacgttgcc aagagacatt tactttggag aagatgcttt gggtgcttg 60
 aaaacgttaa aaggtaagaa agctgttagta gttgttggag gaggatccat gaagagattc 120

Sequence Listing

ggtttccttg acaaggtaga agaatactta aaagaagcaa acatagaagt taaactaata	180
gaaggtgttg aaccagatcc gtctgtggaa accgttatga aaggtgccaa aataatgaca	240
gaatttgggc cagattggat agttgctatt ggaggagggtt caccaataga tgctgcaaag	300
gctatgtggc tattttatga atatccagat tttactttt aacaagcaat tgttccgttt	360
ggattaccag aattaagaca aaaagctaaa tttgtagcta tagttctac tagtggaca	420
gctactgaag ttacttcatt ttcagtaata actgattata aagctaaaat aaagtatcct	480
ttagctgact tcaatttgac accggatata gctatagttg atccagcatt agcccagaca	540
atgccaccta aattaactgc acatactggt atggatgcat taactcatgc actagaagct	600
tatgttagcat cagctagatc agatattca gatccacttg caatacattc cataattatg	660
acaaggata acttacttaa atccataag ggtgataaag atcttagaaa taagatgcat	720
atatcacaat gtttagcagg tatggcattt tctaattgcac ttcttggtat aactcatagt	780
ttagcacata aaacaggagc tgtatggcac ataccacatg gatgcgctaa tgcaatata	840
cttccatatg ttttagattt taataaaaaa gcttgctcag atagatatgc taatata	900
aaaatattag gacttaaagg aactactgaa gatgaattgg tagattctct agttaaaatg	960
gtacaagata tggataagga attgaatata ccttgaccc taaaagatta tggataagc	1020
aaagatgatt tcaattcaa tggatattt atagcaaaga atgcgcttt agatgcatgt	1080
acaggagcta atccaaggcc tatagattt gatcaaatga aaaagatact tcaatgtata	1140
tatgtggaa aaaaggtaac ttttaa	1167

<210> 80
 <211> 388
 <212> PRT
 <213> c. Ljungdahlii
 <400> 80

Met Glu Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asp Ala
 1 5 10 15

Leu Gly Ala Leu Lys Thr Leu Lys Gly Lys Lys Ala Val Val Val Val
 20 25 30

Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Glu Glu
 35 40 45

Tyr Leu Lys Glu Ala Asn Ile Glu Val Lys Leu Ile Glu Gly Val Glu
 50 55 60

Pro Asp Pro Ser Val Glu Thr Val Met Lys Gly Ala Lys Ile Met Thr
 65 70 75 80

Glu Phe Gly Pro Asp Trp Ile Val Ala Ile Gly Gly Ser Pro Ile
 85 90 95

Sequence Listing

Asp	Ala	Ala	Lys	Ala	Met	Trp	Leu	Phe	Tyr	Glu	Tyr	Pro	Asp	Phe	Thr
100							105					110			
Phe Lys Gln Ala Ile Val Pro Phe Gly Leu Pro Glu Leu Arg Gln Lys															
115				120			125								
Ala Lys Phe Val Ala Ile Ala Ser Thr Ser Gly Thr Ala Thr Glu Val															
130			135			140									
Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro															
145			150			155			160						
Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Val Asp Pro Ala															
165				170			175								
Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp															
180			185			190									
Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ala Ser Ala Arg Ser Asp															
195			200			205									
Ile Ser Asp Pro Leu Ala Ile His Ser Ile Ile Met Thr Arg Asp Asn															
210			215			220									
Leu Leu Lys Ser Tyr Lys Gly Asp Lys Asp Ala Arg Asn Lys Met His															
225			230			235			240						
Ile Ser Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly															
245				250			255								
Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Trp His Ile Pro															
260			265			270									
His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Leu Asp Phe Asn															
275			280			285									
Lys Lys Ala Cys Ser Asp Arg Tyr Ala Asn Ile Ala Lys Ile Leu Gly															
290			295			300									
Leu Lys Gly Thr Thr Glu Asp Glu Leu Val Asp Ser Leu Val Lys Met															
305			310			315			320						
Val Gln Asp Met Asp Lys Glu Leu Asn Ile Pro Leu Thr Leu Lys Asp															
325				330			335								
Tyr Gly Ile Ser Lys Asp Asp Phe Asn Ser Asn Val Asp Phe Ile Ala															
340			345			350									
Lys Asn Ala Leu Leu Asp Ala Cys Thr Gly Ala Asn Pro Arg Pro Ile															
355			360			365									

Sequence Listing

Asp Phe Asp Gln Met Lys Lys Ile Leu Gln Cys Ile Tyr Asp Gly Lys
 370 375 380

Lys Val Thr Phe
 385

<210> 81
 <211> 1176
 <212> DNA
 <213> c. 1jundahlii

<400> 81
 atggaaaact ttattttaa aaatgctaca gaaattattt ttggtaagga taccgaaaat 60
 cttgttagaa gtaaagtaaa ggagtattca aagtcagata aaatactctt ttgctatgg 120
 ggaggaagca taaaaagatc tggctatat gatagaggta taaagtcctt aaaagaaaat 180
 ggaattgaat ttatagaact tccaggaatt aaacctaattc caagattagg acctgttaaa 240
 gaaggatataa gactatgttag agaaaataat ataaaattt tactatctgt aggaggagga 300
 agttcagcag atacggctaa agctattgct gtaggagtagt cttataaagg agacgtatgg 360
 gatTTTTATA cgggcaaagc tgaagtggaa gaggctttc ctgttaggat tgtaataaca 420
 ttacctgcta caggtacaga atctagtaat agttctgtta ttatgaatga agatgggg 480
 tttaaaaaag gattaaatac agtacttata agacctgctt tttcaattat gaatcctgaa 540
 cttactttta cactaccaga gtatcaaact gcttgtggtg cttgtgacat tatggcacat 600
 ataatggaaa gatattttac aaatgtggaa catgtagata taactgtatg gctttgcgaa 660
 gctgcactta gaaatgttat aaataatgcc ccaatagttt taaaagatcc caaaaactat 720
 gatgctaggg cagaaattat gtggaccggt actatagctc ataatgtatg gcttagtgcg 780
 ggtagaatag gtgattgggc ttctcacaaa attgaacatg aattgagtgg ggaaacagac 840
 attgccccatg gaggcaggact tgcaattgtt tttcctgcat ggatgaaata tgtatataaa 900
 cacgatatac atagatttg acaatttgca gtaagggtat gggatgtaga tttatctt 960
 agttcctgctg aagatattgt acttgaaggc ataaggagaa tgacagcatt tttcaagagc 1020
 atgggggttac ctgtaacttt aaaagaagga agtataaggag aagataaaaat tgaagaaaatg 1080
 gctaataagt gcacggataa tggaactaaa actgtaggac aatttgtaaa attaaataaa 1140
 gatgatattg taaaaatattt aaatttagct aaataa 1176

<210> 82
 <211> 391
 <212> PRT
 <213> c. 1jundahlii

<400> 82

Met Glu Asn Phe Ile Phe Lys Asn Ala Thr Glu Ile Ile Phe Gly Lys
 1 5 10 15

Asp Thr Glu Asn Leu Val Gly Ser Lys Val Lys Glu Tyr Ser Lys Ser
 20 25 30

Sequence Listing

Asp Lys Ile Leu Phe Cys Tyr Gly Gly Gly Ser Ile Lys Arg Ser Gly
 35 40 45

Leu Tyr Asp Arg Val Ile Lys Ser Leu Lys Glu Asn Gly Ile Glu Phe
 50 55 60

Ile Glu Leu Pro Gly Ile Lys Pro Asn Pro Arg Leu Gly Pro Val Lys
 65 70 75 80

Glu Gly Ile Arg Leu Cys Arg Glu Asn Asn Ile Lys Phe Val Leu Ser
 85 90 95

Val Gly Gly Ser Ser Ala Asp Thr Ala Lys Ala Ile Ala Val Gly
 100 105 110

Val Pro Tyr Lys Gly Asp Val Trp Asp Phe Tyr Thr Gly Lys Ala Glu
 115 120 125

Val Lys Glu Ala Leu Pro Val Gly Val Val Ile Thr Leu Pro Ala Thr
 130 135 140

Gly Thr Glu Ser Ser Asn Ser Val Ile Met Asn Glu Asp Gly Trp
 145 150 155 160

Phe Lys Lys Gly Leu Asn Thr Val Leu Ile Arg Pro Ala Phe Ser Ile
 165 170 175

Met Asn Pro Glu Leu Thr Phe Thr Leu Pro Glu Tyr Gln Thr Ala Cys
 180 185 190

Gly Ala Cys Asp Ile Met Ala His Ile Met Glu Arg Tyr Phe Thr Asn
 195 200 205

Val Lys His Val Asp Ile Thr Asp Arg Leu Cys Glu Ala Ala Leu Arg
 210 215 220

Asn Val Ile Asn Asn Ala Pro Ile Val Leu Lys Asp Pro Lys Asn Tyr
 225 230 235 240

Asp Ala Arg Ala Glu Ile Met Trp Thr Gly Thr Ile Ala His Asn Asp
 245 250 255

Val Leu Ser Ala Gly Arg Ile Gly Asp Trp Ala Ser His Lys Ile Glu
 260 265 270

His Glu Leu Ser Gly Glu Thr Asp Ile Ala His Gly Ala Gly Leu Ala
 275 280 285

Ile Val Phe Pro Ala Trp Met Lys Tyr Val Tyr Lys His Asp Ile Asn
 290 295 300

Sequence Listing

Arg Phe Val Gln Phe Ala Val Arg Val Trp Asp Val Asp Leu Ser Tyr
 305 310 315 320

Ser Ser Cys Glu Asp Ile Val Leu Glu Gly Ile Arg Arg Met Thr Ala
 325 330 335

Phe Phe Lys Ser Met Gly Leu Pro Val Thr Leu Lys Glu Gly Ser Ile
 340 345 350

Gly Glu Asp Lys Ile Glu Glu Met Ala Asn Lys Cys Thr Asp Asn Gly
 355 360 365

Thr Lys Thr Val Gly Gln Phe Val Lys Leu Asn Lys Asp Asp Ile Val
 370 375 380

Lys Ile Leu Asn Leu Ala Lys
 385 390

<210> 83
 <211> 1149
 <212> DNA
 <213> c. ljunghdahlii

<400> 83	
atggaagaca agtttgaaaa tttaatttg aaatccaaga ttattttaa taggaatct	60
attcaacttt tagagcaagt cactggttct cgagcattta ttgttgcaga tgctattatg	120
ggaaaacttg gatatcttca aaaagtaata gattacctaa gcaaagctgg aataagttcc	180
ttgttttta cgggggtaca ccctgatcca gacgtcaatg taattgcaga tgcaatgaaa	240
ttgtacaaaa aaagcgacgc agatgttctc gtagcactag gtggaggatc cagtattgtat	300
accgctaagg gaataatgta tttgcatgt aatttagaa aagcaatggg ccaagaaatg	360
aaaaaacctc tatttattgc aattccatca acaagtggta caggctctga agtaacaaac	420
tttactgtta ttacttctca gaaagaaaag gtatgcatta tagatgattt tattgcacca	480
gatgttgcaa tacttgactc aagttgtatt gatggtctgc ctcagcgtat tgttagcagat	540
actggatag atgttctagt tcattctatt gaagcctatg tttccaaaaa agcaactgac	600
tttacagacg ctcttgctga aaaagcagtt aaattaattt ttgagaatct tccaaaaatt	660
tataacgata gtaaggattc cgaagctcga gatcatgttc aaaacgcttc ctgtatagca	720
ggaatagcat ttacaaatgc tggcttgaa attaatcaca gctggctca tgctatgggt	780
ggatcttcc acattcctca cggccgatcc aatgcacttc tacttaatgc agtaatggaa	840
tacaacgcta gcttggttgg aaatgcaagc gaacatgcta tggaaaaata cgcaaaaacta	900
gcatcaattc tacacccttcc agctcgaaca actcgcgaag ggcgtgtaaag ttttattgaa	960
gctgttagata aattaataaa atcccttaggt gttgaagata atattcgatc tcttggatt	1020
aaagaagatg agtttcaaag tgctctaaat catatggcag aaacagcaat gcaagataga	1080

Sequence Listing

tgcaactccaa	ctaatcctag	aaaaccttct	aaagaagaac	ttatacatat	ttatcaaaaa	1140										
tgttattaa						1149										
<210> 84																
<211> 382																
<212> PRT																
<213> c. lungdahlii																
<400> 84																
Met	Glu	Asp	Lys	Phe	Glu	Asn	Phe	Asn	Leu	Lys	Ser	Lys	Ile	Tyr	Phe	
1				5					10					15		
Asn	Arg	Glu	Ser	Ile	Gln	Leu	Leu	Glu	Gln	Val	Thr	Gly	Ser	Arg	Ala	
				20				25					30			
Phe	Ile	Val	Ala	Asp	Ala	Ile	Met	Gly	Lys	Leu	Gly	Tyr	Leu	Gln	Lys	
				35			40					45				
Val	Ile	Asp	Tyr	Leu	Ser	Lys	Ala	Gly	Ile	Ser	Ser	Val	Val	Phe	Thr	
				50			55					60				
Gly	Val	His	Pro	Asp	Pro	Asp	Val	Asn	Val	Ile	Ala	Asp	Ala	Met	Lys	
				65			70			75			80			
Leu	Tyr	Lys	Ser	Asp	Ala	Asp	Val	Leu	Val	Ala	Leu	Gly	Gly	Gly		
				85				90				95				
Ser	Ser	Ile	Asp	Thr	Ala	Lys	Gly	Ile	Met	Tyr	Phe	Ala	Cys	Asn	Leu	
				100			105					110				
Gly	Lys	Ala	Met	Gly	Gln	Glu	Met	Lys	Lys	Pro	Leu	Phe	Ile	Ala	Ile	
				115			120					125				
Pro	Ser	Thr	Ser	Gly	Thr	Gly	Ser	Glu	Val	Thr	Asn	Phe	Thr	Val	Ile	
				130			135					140				
Thr	Ser	Gln	Lys	Glu	Lys	Val	Cys	Ile	Ile	Asp	Asp	Phe	Ile	Ala	Pro	
				145				150					155		160	
Asp	Val	Ala	Ile	Leu	Asp	Ser	Ser	Cys	Ile	Asp	Gly	Leu	Pro	Gln	Arg	
				165					170					175		
Ile	Val	Ala	Asp	Thr	Gly	Ile	Asp	Val	Leu	Val	His	Ser	Ile	Glu	Ala	
				180			185					190				
Tyr	Val	Ser	Lys	Lys	Ala	Thr	Asp	Phe	Thr	Asp	Ala	Leu	Ala	Glu	Lys	
				195				200					205			
Ala	Val	Lys	Leu	Ile	Phe	Glu	Asn	Leu	Pro	Lys	Ile	Tyr	Asn	Asp	Ser	
				210			215					220				

SequenceListing

Lys Asp Ser Glu Ala Arg Asp His Val Gln Asn Ala Ser Cys Ile Ala
 225 230 235 240

Gly Ile Ala Phe Thr Asn Ala Gly Leu Gly Ile Asn His Ser Leu Ala
 245 250 255

His Ala Met Gly Gly Ser Phe His Ile Pro His Gly Arg Ser Asn Ala
 260 265 270

Leu Leu Leu Asn Ala Val Met Glu Tyr Asn Ala Ser Leu Val Gly Asn
 275 280 285

Ala Ser Glu His Ala Met Glu Lys Tyr Ala Lys Leu Ala Ser Ile Leu
 290 295 300

His Leu Pro Ala Arg Thr Thr Arg Glu Gly Ala Val Ser Phe Ile Glu
 305 310 315 320

Ala Val Asp Lys Leu Ile Lys Ser Leu Gly Val Glu Asp Asn Ile Arg
 325 330 335

Ser Leu Gly Ile Lys Glu Asp Glu Phe Gln Ser Ala Leu Asn His Met
 340 345 350

Ala Glu Thr Ala Met Gln Asp Arg Cys Thr Pro Thr Asn Pro Arg Lys
 355 360 365

Pro Ser Lys Glu Glu Leu Ile His Ile Tyr Gln Lys Cys Tyr
 370 375 380

<210> 85

<211> 1002

<212> DNA

<213> c. ljunghdahlii

<400> 85

atgaaattga	ttggagtaag	gcaaaggaag	acaaaaaaaaa	gattgtctta	60	
gctgaaggag	aagaagaaag	aactcttcaa	gcttgtaaaa	aaataattaa	agagggtatt	120
gcaaatttaa	tcctttagg	aatgaaaag	gtataaaaag	aaaaagcgtc	aaaattaggt	180
gtaagttaa	atggagcaga	aatagtagat	ccagagactt	cagataaact	aaaggcatat	240
gcagatgctt	tttatgaatt	gagaaagaag	aaggaaataa	cgccagaaaa	agcggataaa	300
atagtaagag	atccaatata	cttgctaca	atgatggta	aacttggaga	tgcagatgga	360
ttggtttcag	gtgcggttca	tactacaggt	gatctttga	gaccaggact	tcaaatacgta	420
aagacagctc	caggtacatc	agtagttcc	agtacattta	taatggaaat	accaaattgt	480
gagtatggtg	acaatggtgt	acttctattt	gctgattgtg	ctgtaaatcc	atgcccagat	540
agtatcaat	ttggcttcaat	tgcaataat	acagcagaaa	ctgcaaagaa	cttatgtgga	600
atggatccaa	aatggatcaat	gttttcattt	tctactaagg	gaagtgc当地	acacgaatta	660

Sequence Listing

gtagacaaag	ttagaaatgc	tgttagagatt	gcaaaaaaag	ctaaaccaga	tttaagttta	720
gacggagaat	tacaattaga	tgcctctatc	gtagaaaagg	ttgcaagttt	aaaggctcct	780
ggaagtgaag	tagcagggaaa	agcaaatgta	cttgttattc	cagatctcca	agcagggaaat	840
ataggctata	aactcgttca	aagatttgca	aaagcagatg	ctataggacc	tgtatgccaa	900
ggatttgcaa	aacctataaa	tgatttgc	agaggatgta	attctgtatga	tatagtaaat	960
gtatgtctg	taacagcagt	tcaagcacaa	gctcaaaagt	aa		1002

<210> 86

<211> 333

<212> PRT

<213> c. 1jungdahlii

<400> 86

Met	Lys	Leu	Met	Glu	Lys	Ile	Trp	Ser	Lys	Ala	Lys	Glu	Asp	Lys	Lys
1				5					10					15	

Lys	Ile	Val	Leu	Ala	Glu	Gly	Glu	Glu	Arg	Thr	Leu	Gln	Ala	Cys
					20		25					30		

Glu	Lys	Ile	Ile	Lys	Glu	Gly	Ile	Ala	Asn	Leu	Ile	Leu	Val	Gly	Asn
					35		40				45				

Glu	Lys	Val	Ile	Lys	Glu	Lys	Ala	Ser	Lys	Leu	Gly	Val	Ser	Leu	Asn
					50		55			60					

Gly	Ala	Glu	Ile	Val	Asp	Pro	Glu	Thr	Ser	Asp	Lys	Leu	Lys	Ala	Tyr
					65		70			75			80		

Ala	Asp	Ala	Phe	Tyr	Glu	Leu	Arg	Lys	Lys	Gly	Ile	Thr	Pro	Glu
					85			90			95			

Lys	Ala	Asp	Lys	Ile	Val	Arg	Asp	Pro	Ile	Tyr	Phe	Ala	Thr	Met	Met
					100			105			110				

Val	Lys	Leu	Gly	Asp	Ala	Asp	Gly	Leu	Val	Ser	Gly	Ala	Val	His	Thr
					115		120			125					

Thr	Gly	Asp	Leu	Leu	Arg	Pro	Gly	Leu	Gln	Ile	Val	Lys	Thr	Ala	Pro
					130		135			140					

Gly	Thr	Ser	Val	Val	Ser	Ser	Thr	Phe	Ile	Met	Glu	Val	Pro	Asn	Cys
					145		150			155			160		

Glu	Tyr	Gly	Asp	Asn	Gly	Val	Leu	Leu	Phe	Ala	Asp	Cys	Ala	Val	Asn
					165			170			175				

Pro	Cys	Pro	Asp	Ser	Asp	Gln	Leu	Ala	Ser	Ile	Ala	Ile	Ser	Thr	Ala
					180			185			190				

Sequence Listing

Glu Thr Ala Lys Asn Leu Cys Gly Met Asp Pro Lys Val Ala Met Leu
195 200 205

Ser Phe Ser Thr Lys Gly Ser Ala Lys His Glu Leu Val Asp Lys Val
210 215 220

Arg Asn Ala Val Glu Ile Ala Lys Lys Ala Lys Pro Asp Leu Ser Leu
225 230 235 240

Asp Gly Glu Leu Gln Leu Asp Ala Ser Ile Val Glu Lys Val Ala Ser
245 250 255

Leu Lys Ala Pro Gly Ser Glu Val Ala Gly Lys Ala Asn Val Leu Val
260 265 270

Phe Pro Asp Leu Gln Ala Gly Asn Ile Gly Tyr Lys Leu Val Gln Arg
275 280 285

Phe Ala Lys Ala Asp Ala Ile Gly Pro Val Cys Gln Gly Phe Ala Lys
290 295 300

Pro Ile Asn Asp Leu Ser Arg Gly Cys Asn Ser Asp Asp Ile Val Asn
305 310 315 320

Val Val Ala Val Thr Ala Val Gln Ala Gln Ala Gln Lys
325 330

<210> 87

<211> 1197

<212> DNA

<213> c. ljunghdahlii

<400> 87

atgaaaatat tagtagtaaa ctgttgaagt tcatcttaa aatatcaact tattgatatg	60
caagatgaaa gtgtttagc aaagggtctt gtagaaagaa taggaatgga cggttcaatt	120
ttaacacaca aagttaatgg agaaaagttt gttacagagc aaacaatgga agaccacaaa	180
gttgctatac aattgttattt aaatgctttt gtagataaaa aacatgggtt aataaaagac	240
atgtcagaaa tatccgctgtt aggacataga gtcttgcacg gtggaaagaa atatgcagca	300
tccattctta ttgacgaaaa tgtaatgaaa gcaatagaag aatgtatccc actaggacca	360
ctacataatc cagctaataat aatggaaata gatgcttgcata aaaaattaat gccaaatact	420
ccaatggtag cagtatttgc tacagcattt catcagacaa tgccagatta tgcttataact	480
tatgcaatac cttatgtat atctgaaaag tatgatatca gaaaatatgg ttttcatgga	540
acttctcata gattcggttc aatttgcgttca gctaaattat taaagaaaga tccaaaagat	600
cttaagttaa taacttgcata tttaggaaat ggagcttagca tatgtgcagt aaaccaagga	660
aaagcagtag atacaacgtt gggacttact cctcttgcag gacttgcata gggacttgcata	720
tgcgggtata tagatccagc tataatgc tttgtatgc aaagaacagg catgtctgcata	780

Sequence Listing

gatgaagtgg ataccttaat gaataaaaag tcaggaatac ttggagtatc aggagtaagc	840
agtgatttta gagatgtaga agaagctgca aattcaggaa atgatagagc aaaacttgca	900
ttaaatatgt attatcacaa agttaaatct ttcataggag cttatgtgc agttttaat	960
ggagcagatg ctataatatt tacagcagga cttggagaaa attcagcaac tagcagatct	1020
gctatatgta atggattaag ctatggaa attaaaatag atgaagaaaa gaataagaaa	1080
aggggagagg cactagaaat aagcacacct gattcaaaga taaaagtatt agtaattcct	1140
acaaatgaag aacttatgat agctagggat acaaaagaaaa tagttgaaaa taaataa	1197

<210> 88

<211> 398

<212> PRT

<213> c. 1jungdahlii

<400> 88

Met Lys Ile Leu Val Val Asn Cys Gly Ser Ser Ser Leu Lys Tyr Gln					
1	5		10		15
	10		15		
	15				

Leu Ile Asp Met Gln Asp Glu Ser Val Val Ala Lys Gly Leu Val Glu			
20	25		30
	30		

Arg Ile Gly Met Asp Gly Ser Ile Leu Thr His Lys Val Asn Gly Glu			
35	40		45
	45		

Lys Phe Val Thr Glu Gln Thr Met Glu Asp His Lys Val Ala Ile Gln			
50	55		60
	60		

Leu Val Leu Asn Ala Leu Val Asp Lys Lys His Gly Val Ile Lys Asp					
65	70		75		80
	75		80		
	80				

Met Ser Glu Ile Ser Ala Val Gly His Arg Val Leu His Gly Gly Lys			
85	90		95
	95		

Lys Tyr Ala Ala Ser Ile Leu Ile Asp Glu Asn Val Met Lys Ala Ile			
100	105		110
	110		

Glu Glu Cys Ile Pro Leu Gly Pro Leu His Asn Pro Ala Asn Ile Met			
115	120		125
	125		

Gly Ile Asp Ala Cys Lys Lys Leu Met Pro Asn Thr Pro Met Val Ala			
130	135		140
	140		

Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Asp Tyr Ala Tyr Thr					
145	150		155		160
	155		160		
	160				

Tyr Ala Ile Pro Tyr Asp Ile Ser Glu Lys Tyr Asp Ile Arg Lys Tyr			
165	170		175
	175		

Gly Phe His Gly Thr Ser His Arg Phe Val Ser Ile Glu Ala Ala Lys			
180	185		190
	190		

Sequence Listing

Leu Leu Lys Lys Asp Pro Lys Asp Leu Lys Leu Ile Thr Cys His Leu
195 200 205

Gly Asn Gly Ala Ser Ile cys Ala Val Asn Gln Gly Lys Ala Val Asp
210 215 220

Thr Thr Met Gly Leu Thr Pro Leu Ala Gly Leu Val Met Gly Thr Arg
225 230 235 240

Cys Gly Asp Ile Asp Pro Ala Ile Val Pro Phe Val Met Lys Arg Thr
245 250 255

Gly Met Ser Val Asp Glu Val Asp Thr Leu Met Asn Lys Lys Ser Gly
260 265 270

Ile Leu Gly Val Ser Gly Val Ser Ser Asp Phe Arg Asp Val Glu Glu
275 280 285

Ala Ala Asn Ser Gly Asn Asp Arg Ala Lys Leu Ala Leu Asn Met Tyr
290 295 300

Tyr His Lys Val Lys Ser Phe Ile Gly Ala Tyr Val Ala Val Leu Asn
305 310 315 320

Gly Ala Asp Ala Ile Ile Phe Thr Ala Gly Leu Gly Glu Asn Ser Ala
325 330 335

Thr Ser Arg Ser Ala Ile Cys Asn Gly Leu Ser Tyr Phe Gly Ile Lys
340 345 350

Ile Asp Glu Glu Lys Asn Lys Lys Arg Gly Glu Ala Leu Glu Ile Ser
355 360 365

Thr Pro Asp Ser Lys Ile Lys Val Leu Val Ile Pro Thr Asn Glu Glu
370 375 380

Leu Met Ile Ala Arg Asp Thr Lys Glu Ile Val Glu Asn Lys
385 390 395

<210> 89
<211> 1824
<212> DNA
<213> c. ljungdahlii

<400> 89		
atgtacggat ataaggtaa ggtattaaga attaatctaa gtagtaaaac ttatatagtg		60
gaagaattga aaattgacaa agctaaaaaa tttataggtg caagagggtt aggcgtaaaa		120
accttatttg acgaagttaga tccaaaggta gatccattat cacctgataa caaatttatt		180
atagcagcgg gaccacttac aggtgcacct gttccaacaa gcggaagatt catggtagtt		240

Sequence Listing

actaaatcac	ctttaacagg	aactattgct	attgcaaatt	caggtggaaa	atggggagca	300
gaattcaaag	cagctggata	cgatatgata	atcggtgaag	gtaaatctga	taaagaagtt	360
tatgtaaata	tagtagatga	taaagtagaa	tttagggatg	cttctcatgt	ttggggaaaa	420
ctaacagaag	aaactacaaa	aatgctcaa	caggaaacag	attcgagagc	taaggtttta	480
tgcataaggac	cagctgggaa	aaagttatca	cttatggcag	cagttatgaa	tgtatgttat	540
agaacacgcag	gacgtggtgg	tgttggagct	gttatgggtt	caaagaactt	aaaagctatt	600
gtagttaaag	gaagcggaaa	agtaaaatta	tttgcgttac	aaaaagtgaa	ggaagtagca	660
cttgagaaaaa	caaataatttt	aagaaaagat	ccagtagctg	gtggaggact	tccacatac	720
ggaacagctg	tacttgttaa	tattataat	gaaaatggtg	tacatccagt	aaagaatttt	780
caaaaatctt	atacagatca	agcagataag	atcgtggag	aaactttAAC	taaagattgc	840
ttagttagaa	aaaatccttg	ctatagggt	ccaattgcct	gtgaaagatg	ggtaaaactt	900
gtatgtggaa	ctgaatgtgg	aggaccagaa	tatgaaacat	tatggtcatt	tggatctgat	960
tgtatgtat	acgatataaa	tgctgttaat	acagcaaata	tgttgcgttac	tgaatatgga	1020
ttagatacca	ttacagcagg	atgtactatt	gcagcagcta	tggaaacttta	tcaaagaggt	1080
tatattaagg	atgaagaaat	agcagcagat	ggattgtcac	ttaattgggg	agatgctaag	1140
tccatggttt	aatgggtaaa	gaaaatggga	cttagagaag	gattggaga	caagatggca	1200
gatggttcat	acagactttg	tgactcatac	gggttacactg	agtattcaat	gactgtaaaa	1260
aaacaggaac	ttccagcata	tgacccaaga	ggaatacagg	gacatggat	tacttatgct	1320
gttaacaata	ggggaggatg	tcacattaag	ggatataatgg	taagtccctga	aatacttggc	1380
tatccagaaa	aacttgatag	acttgcgttac	gaaggaaaag	caggatatgc	tagtatttc	1440
catgatttaa	cagctgttat	agattcactt	ggattatgta	ttttacaac	atttggctt	1500
ggtgcacagg	attatgttac	tatgtataat	gcagtagtttgc	gtggagaatt	acatgtatgt	1560
aattctttaa	tgttagctgg	agatagaata	tggacttttg	aaaaaatatt	taacttaaag	1620
gcaggcatag	atagttcaca	ggatactctt	ccaaagagat	tgcttgaaga	acaaattcca	1680
gaaggaccat	caaaaggaga	agttcataag	ttagatgtac	tactacctga	atattattca	1740
gtacgtggat	gggataaaaaa	tggatttcct	acagaggaaa	cgttaaagaa	attaggatta	1800
gatgaatacg	taggtaaagct	tttag				1824

<210> 90

<211> 607

<212> PRT

<213> c. 1jungdahlii

<400> 90

Met	Tyr	Gly	Tyr	Lys	Gly	Lys	Val	Leu	Arg	Ile	Asn	Leu	Ser	Ser	Lys
1				5				10							15

Thr	Tyr	Ile	Val	Glu	Glu	Leu	Lys	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Ile
				20				25						30	

Sequence Listing

Gly Ala Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Val Asp Pro
 35 40 45

Lys Val Asp Pro Leu Ser Pro Asp Asn Lys Phe Ile Ile Ala Ala Gly
 50 55 60

Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val
 65 70 75 80

Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly
 85 90 95

Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val
 100 105 110

Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys
 115 120 125

Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu
 130 135 140

Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu
 145 150 155 160

Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met
 165 170 175

Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met
 180 185 190

Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val
 195 200 205

Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr
 210 215 220

Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Leu Pro Thr Tyr
 225 230 235 240

Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro
 245 250 255

Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser
 260 265 270

Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr
 275 280 285

Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr
 290 295 300

Sequence Listing

Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp
 305 310 315 320

Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys
 325 330 335

Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala
 340 345 350

Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala
 355 360 365

Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu
 370 375 380

Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala
 385 390 395 400

Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser
 405 410 415

Met Thr Val Lys Lys Gln Glu Leu Pro Ala Tyr Asp Pro Arg Gly Ile
 420 425 430

Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His
 435 440 445

Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys
 450 455 460

Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe
 465 470 475 480

His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr
 485 490 495

Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Met Tyr Asn Ala Val
 500 505 510

Val Gly Gly Glu Leu His Asp Val Asn Ser Leu Met Leu Ala Gly Asp
 515 520 525

Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp
 530 535 540

Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Gln Ile Pro
 545 550 555 560

Glu Gly Pro Ser Lys Gly Glu Val His Lys Leu Asp Val Leu Leu Pro
 565 570 575

SequenceListing

Glu Tyr Tyr Ser Val Arg Trp Asp Lys Asn Gly Ile Pro Thr Glu
 580 585 590

Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Leu
 595 600 605

<210> 91
 <211> 1824
 <212> DNA
 <213> c. ljunghdahlii

<400> 91	
atgtatggtt atgatggtaa agtattaaga attaatttaa aagaaagaac ttgcaa	60
aaaaatttag atttagataa agctaaaaag tttataggtt gtagggact aggtgt	120
actttatgg atgaaataga tcctaaaata gatgcattat caccagaaaa taaattata	180
attgtacacag gtccttaac tggagctccg gttccacta gtggaaaggtt tatggtagtt	240
actaaagcac cgcttacagg aactatagga atttcaaatt cgggtggaaa atggggagta	300
gacttaaaaa aagctggttg ggatatgata atagtagagg ataaggctga ttcaccagtt	360
tacattgaaa tagtagatga taaggttagaa attaaagacg cgtcacagct ttggggaaaa	420
gttacatcag aaactacaaa agagtttagaa aagataactg agaataaaatc aaaggtatta	480
tgtataggac ctgctggta acgattgtct cttatggcag cagttatgaa ttagttagat	540
agaactgcag caagaggcgg ctttggcgtca gttatggat ctaaaaactt aaaagctatt	600
acagttaaag gaactggaaa aatagctta gctgataaag aaaaagtaaa aaaagtgtcc	660
gtagaaaaaa ttacaacatt aaaaaatgtat ccagtagctg gtcaggaaat gccaacttat	720
ggtacagcta tactggtaa tataataat gaaaatggag ttcatcctgt aaagaatttt	780
caagagtctt atacgaatca agcagataaa ataagtggag agactcttac tgctaaccaa	840
ctagtaagga aaaatccttg ttacagctgt cctataggtt gtggaaagatg gtttagacta	900
aaagatggca cagagtgcgg aggaccagaa tatgaaacac tgtggtgttt tggatctgac	960
tgtggttcat atgattttaga tgctataat gaagctaata tgttatgtaa tgaatatggt	1020
attgatacta ttacttgg tgcaacaatt gctgcagcta tggaaacttta tcaaagagga	1080
tatataaaag acgaagaaat agctggagat aacctatctc tcaagtgggg tgatacgaa	1140
tctatgattt gctggataaa gagaatggta tatagtgaag gcttggagc aaagatgaca	1200
aatggttcat ataggcttg tgaaggatggatggaccgg agtattctat gacagttaaa	1260
aagcaggaaa ttccagcata tgatccaagg ggaatacagg gacacggat tacctatgca	1320
gttaataata gaggaggctg tcatattaag ggatataatgaa ttaaccctga aatattaggt	1380
tatcctgaaa aacttgatag atttgcatta gatggtaaag cagcttatgc caaattat	1440
catgatttaa ctgctgtaat tgattctta ggattgtgca tattcactac atttggcattt	1500
ggaatacagg attatgtaga tatgtataat gcagtagtag gagaatctac ttatgtgca	1560

Sequence Listing

gattcaactat tagaggcagg agatagaatc	tggactcttg agaaattatt taatcttgca	1620
gctggaaatag acagcagccca	ggatactcta ccaaagagat tggtagaaga acctattcca	1680
gatggcccat caaagggaga agttcatagg	ctagatgttc ttctgccaga atattactca	1740
gtacgaggat ggagtaaaga gggataacct acagaagaaa cattaaagaa attaggatta		1800
gatgaatata tagtaagtt ctag		1824

<210> 92
<211> 607
<212> PRT
<213> c. lungdahlii

<400> 92

Met Tyr Gly Tyr Asp Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg
1 5 10 15

Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile
20 25 30

Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro
35 40 45

Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly
50 55 60

Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val
65 70 75 80

Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly
85 90 95

Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val
100 105 110

Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys
115 120 125

Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu
130 135 140

Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Lys Ser Lys Val Leu
145 150 155 160

Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met
165 170 175

Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met
180 185 190

Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile
195 200 205

Sequence Listing

Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile
 210 215 220

Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr
 225 230 235 240

Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro
 245 250 255

Val Lys Asn Phe Gln Glu Ser Tyr Thr Asn Gln Ala Asp Lys Ile Ser
 260 265 270

Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr
 275 280 285

Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr
 290 295 300

Glu Cys Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp
 305 310 315 320

Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys
 325 330 335

Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala
 340 345 350

Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala
 355 360 365

Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly
 370 375 380

Trp Ile Lys Arg Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr
 385 390 395 400

Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Ala Pro Glu Tyr Ser
 405 410 415

Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile
 420 425 430

Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His
 435 440 445

Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys
 450 455 460

Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Leu Phe
 465 470 475 480

Sequence Listing

His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr
 485 490 495

Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val
 500 505 510

Val Gly Glu Ser Thr Tyr Asp Ala Asp Ser Leu Leu Glu Ala Gly Asp
 515 520 525

Arg Ile Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp
 530 535 540

Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro
 545 550 555 560

Asp Gly Pro Ser Lys Gly Glu Val His Arg Leu Asp Val Leu Leu Pro
 565 570 575

Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu
 580 585 590

Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe
 595 600 605

<210> 93

<211> 2697

<212> DNA

<213> c. ragsdalei

<400> 93

atgccaagaa atctgtttat atttaacagc atgaaaaata agaaaagaggt gtcattaaatg	60
aaggtaacta aggttaactaa cgttgaagaa ttaatgaaaa agtttagatga agtaacggct	120
gctcaaaaaa aattctctag ttatagtcag gaacaagtgg atgagatctt taggcaggca	180
gctatggcag ccaatagtgc tagaatagat ctagctaaaa tggcagtggaa agaaagcggaa	240
atggaaattt tagaaagacaa ggttattttaa aatcattttt tttcagaata tataatataac	300
aaatataagg atgaaaagac ctgtggagtt ttagaagaag accaaggttt tggtatggtt	360
agaattgcgg aacctgttagg ggttatacgca gcagtagttc caacaactaa tccaaacatcc	420
acagcaatct ttaaatcttt aatagctttt aaaactagaa atggtatagt tttttcacca	480
catccaagag caaaaaatc aactattgca gcagctaaga tagtacttga tgcagcagtt	540
aaagctggtg ctcctgaagg aattatagga tggatagatg aaccttccat tgaactctca	600
caggtggtaa tgaaagaagc agatttaatt cttgcaactg gtggcccccggg tatggtaag	660
gctgcctatt ctgcggaaa gcctgctata ggagttggcc caggttaacac acctgctgta	720
attgatgaaa gtgctgat taaaatggca gtaaattcaa tactcctttc aaaaactttt	780
gataatggta tgatttgc ttcagagcag tcagtagtag ttgtaagctc aatatacgtat	840

Sequence Listing

gaagtcaaga aagaatttgc agatagagga	gcgttatatat taagtaagga	tgaaacagat	900			
aaggttggaa aaacaattat gattaatggc	gctctaaatg ctggcattgt	agggcaaagt	960			
gcttttaaaa tagcacagat ggcaggagtg	agtgtaccag	aggatgctaa	1020			
ggagaagtt aatcagtaga acctgaagaa	gagcccttg	ctcatgaaaaa	1080			
gttttagcta tgtacaaagc aaaagatttt	gatgaagcac	ttctaaaggc	1140			
gttgaacgag gtggaaattgg	gcatacatct	gtattatatg	taaattcaat	gacggaaaaa	1200	
gtaaaagtag aaaagttcag	agaaaactatg	aagactggta	gaacattgat	aatatgcct	1260	
tcagcacaag gtgctataagg	agatatatat	aactttaaac	tagctccttc	tttgacgcta	1320	
ggatgtggtt cctggggagg	aaactctgta	tcagaaaatg	ttggacctaa	acatttatta	1380	
aacataaaaaa gtgttgctga	gaggagagaa	aatatgctt	ggttagagt	acctgaaaaa	1440	
gtttatttca aatatggtag	tcttgagtt	gcattaaagg	aattgagaac	tttggagaag	1500	
aaaaaggcat ttatagtaac	ggataaggtt	ctttatcaat	tagttatgt	agataaaatt	1560	
acaaaaaattc tcgatgaatt	aagagttca	tataaaatat	ttacagatgt	agaaccagat	1620	
ccaacccttg ctacagctaa	aaaaggtgca	tcagaactgc	tttcctatga	accagataca	1680	
attatagcag ttgggtgg	ttcggcaatg	gatgcagcca	agatcatgtg	ggtaatgtat	1740	
gagcatccag aagtaagatt	tgaagattt	gctatgagat	ttatggatat	aagaagaga	1800	
gtatatgttt ttcctaagat	gggtgaaaaaa	gcaatgatga	tttcagtagc	aacatccgca	1860	
ggaacaggat ctgaagttac	tccatttgca	gtaattacgg	atgaaagaac	aggagctaaa	1920	
tatccactgg ctgattatga	attgactcca	aacatggcta	taattgatgc	agaactttag	1980	
atggaatgc caaaagggtctac	tacagcagct	tcgggtatag	atgcattaac	ccatgcactg	2040	
gaggcgtatg	tatcaataat	ggcttcagaa	tataccaatg	gattggctct	tgaagcaaca	2100
agatttagtat	ttaaatat	gccaatagct	tatacagaag	gtacaactaa	tgtaaaggca	2160
agagaaaaaa tggctcatgc	ttcaactata	gcaggtatgg	ctttgccaa	tgcattctta	2220	
gggttatgtc	actctatggc	acataaattt	ggagcacagc	accatataacc	acatggaatt	2280
gccaatgcgc ttatgataga	tgaagttata	aaattcaatg	ctgttagaggc	tccaaggaaa	2340	
caagcggcat ttccacaata	taagtaccca	aatgtaaaaa	gaagatatgc	tagaatagct	2400	
gattacttaa atttaggagg	aagcacagat	gatgaaaaag	tacaattgct	aataaatgct	2460	
atagatgact taaaaactaa	gttaaatattt	ccaaagacta	ttaaagagggc	aggagttca	2520	
gaagataaat tctatgtac	tttagacaca	atgtcagaac	tggctttga	tgatcaatgt	2580	
acaggagcta atccaagata	tccactaata	ggagaaataa	aacaaatgta	tataaatgca	2640	
tttgatacac caaaggcaac	tgtggagaag	aaaacaaaaaa	gaaaaataaa	catataa	2697	

<210> 94
 <211> 898
 <212> PRT
 <213> c. ragsdalei

Sequence Listing

<400> 94

Met Pro Arg Asn Leu Phe Ile Phe Asn Ser Met Lys Asn Lys Lys Glu
 1 5 10 15

Val Ser Leu Met Lys Val Thr Lys Val Thr Asn Val Glu Glu Leu Met
 20 25 30

Lys Lys Leu Asp Glu Val Thr Ala Ala Gln Lys Lys Phe Ser Ser Tyr
 35 40 45

Ser Gln Glu Gln Val Asp Glu Ile Phe Arg Gln Ala Ala Met Ala Ala
 50 55 60

Asn Ser Ala Arg Ile Asp Leu Ala Lys Met Ala Val Glu Glu Ser Gly
 65 70 75 80

Met Gly Ile Val Glu Asp Lys Val Ile Lys Asn His Phe Val Ser Glu
 85 90 95

Tyr Ile Tyr Asn Lys Tyr Lys Asp Glu Lys Thr Cys Gly Val Leu Glu
 100 105 110

Glu Asp Gln Gly Phe Gly Met Val Arg Ile Ala Glu Pro Val Gly Val
 115 120 125

Ile Ala Ala Val Val Pro Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe
 130 135 140

Lys Ser Leu Ile Ala Leu Lys Thr Arg Asn Gly Ile Val Phe Ser Pro
 145 150 155 160

His Pro Arg Ala Lys Lys Ser Thr Ile Ala Ala Ala Lys Ile Val Leu
 165 170 175

Asp Ala Ala Val Lys Ala Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile
 180 185 190

Asp Glu Pro Ser Ile Glu Leu Ser Gln Val Val Met Lys Glu Ala Asp
 195 200 205

Leu Ile Leu Ala Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser
 210 215 220

Ser Gly Lys Pro Ala Ile Gly Val Gly Pro Gly Asn Thr Pro Ala Val
 225 230 235 240

Ile Asp Glu Ser Ala Asp Ile Lys Met Ala Val Asn Ser Ile Leu Leu
 245 250 255

Ser Lys Thr Phe Asp Asn Gly Met Ile Cys Ala Ser Glu Gln Ser Val
 260 265 270

Sequence Listing

Val Val Val Ser Ser Ile Tyr Asp Glu Val Lys Lys Glu Phe Ala Asp
 275 280 285

Arg Gly Ala Tyr Ile Leu Ser Lys Asp Glu Thr Asp Lys Val Gly Lys
 290 295 300

Thr Ile Met Ile Asn Gly Ala Leu Asn Ala Gly Ile Val Gly Gln Ser
 305 310 315 320

Ala Phe Lys Ile Ala Gln Met Ala Gly Val Ser Val Pro Glu Asp Ala
 325 330 335

Lys Val Leu Ile Gly Glu Val Lys Ser Val Glu Pro Glu Glu Pro
 340 345 350

Phe Ala His Glu Lys Leu Ser Pro Val Leu Ala Met Tyr Lys Ala Lys
 355 360 365

Asp Phe Asp Glu Ala Leu Leu Lys Ala Gly Arg Leu Val Glu Arg Gly
 370 375 380

Gly Ile Gly His Thr Ser Val Leu Tyr Val Asn Ser Met Thr Glu Lys
 385 390 395 400

Val Lys Val Glu Lys Phe Arg Glu Thr Met Lys Thr Gly Arg Thr Leu
 405 410 415

Ile Asn Met Pro Ser Ala Gln Gly Ala Ile Gly Asp Ile Tyr Asn Phe
 420 425 430

Lys Leu Ala Pro Ser Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn
 435 440 445

Ser Val Ser Glu Asn Val Gly Pro Lys His Leu Leu Asn Ile Lys Ser
 450 455 460

Val Ala Glu Arg Arg Glu Asn Met Leu Trp Phe Arg Val Pro Glu Lys
 465 470 475 480

Val Tyr Phe Lys Tyr Gly Ser Leu Gly Val Ala Leu Lys Glu Leu Arg
 485 490 495

Thr Leu Glu Lys Lys Ala Phe Ile Val Thr Asp Lys Val Leu Tyr
 500 505 510

Gln Leu Gly Tyr Val Asp Lys Ile Thr Lys Asn Leu Asp Glu Leu Arg
 515 520 525

Val Ser Tyr Lys Ile Phe Thr Asp Val Glu Pro Asp Pro Thr Leu Ala
 530 535 540

Sequence Listing

Thr Ala Lys Lys Gly Ala Ser Glu Leu Leu Ser Tyr Glu Pro Asp Thr
 545 550 555 560

Ile Ile Ala Val Gly Gly Ser Ala Met Asp Ala Ala Lys Ile Met
 565 570 575

Trp Val Met Tyr Glu His Pro Glu Val Arg Phe Glu Asp Leu Ala Met
 580 585 590

Arg Phe Met Asp Ile Arg Lys Arg Val Tyr Val Phe Pro Lys Met Gly
 595 600 605

Glu Lys Ala Met Met Ile Ser Val Ala Thr Ser Ala Gly Thr Gly Ser
 610 615 620

Glu Val Thr Pro Phe Ala Val Ile Thr Asp Glu Arg Thr Gly Ala Lys
 625 630 635 640

Tyr Pro Leu Ala Asp Tyr Glu Leu Thr Pro Asn Met Ala Ile Ile Asp
 645 650 655

Ala Glu Leu Met Met Gly Met Pro Lys Gly Leu Thr Ala Ala Ser Gly
 660 665 670

Ile Asp Ala Leu Thr His Ala Leu Glu Ala Tyr Val Ser Ile Met Ala
 675 680 685

Ser Glu Tyr Thr Asn Gly Leu Ala Leu Glu Ala Thr Arg Leu Val Phe
 690 695 700

Lys Tyr Leu Pro Ile Ala Tyr Thr Glu Gly Thr Thr Asn Val Lys Ala
 705 710 715 720

Arg Glu Lys Met Ala His Ala Ser Thr Ile Ala Gly Met Ala Phe Ala
 725 730 735

Asn Ala Phe Leu Gly Val Cys His Ser Met Ala His Lys Leu Gly Ala
 740 745 750

Gln His His Ile Pro His Gly Ile Ala Asn Ala Leu Met Ile Asp Glu
 755 760 765

Val Ile Lys Phe Asn Ala Val Glu Ala Pro Arg Lys Gln Ala Ala Phe
 770 775 780

Pro Gln Tyr Lys Tyr Pro Asn Val Lys Arg Arg Tyr Ala Arg Ile Ala
 785 790 795 800

Asp Tyr Leu Asn Leu Gly Gly Ser Thr Asp Asp Glu Lys Val Gln Leu
 805 810 815

SequenceListing

Leu Ile Asn Ala Ile Asp Asp Leu Lys Thr Lys Leu Asn Ile Pro Lys
 820 825 830

Thr Ile Lys Glu Ala Gly Val Ser Glu Asp Lys Phe Tyr Ala Thr Leu
 835 840 845

Asp Thr Met Ser Glu Leu Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn
 850 855 860

Pro Arg Tyr Pro Leu Ile Gly Glu Ile Lys Gln Met Tyr Ile Asn Ala
 865 870 875 880

Phe Asp Thr Pro Lys Ala Thr Val Glu Lys Lys Thr Lys Arg Lys Ile
 885 890 895

Asn Ile

<210> 95
 <211> 2613
 <212> DNA
 <213> c. ragsdalei

<400> 95	
atgaaagtta caaacgtgga agaattaatg aaaagactag aagagataaa ggatgctcaa	60
aagaaatttg ctacatatac tcaagaacaa gtggatgaaa ttttagaca agcagctatg	120
gcagccaata gtgctagaat agaactagct aaaatggcag tggaaagaaag cggaaatggaa	180
attgtagaag acaaggttat taaaaatcac tttgcctcag aatatatata taacaaatata	240
aaggatgaaa agacctgtgg agttttagaa agagatgcag gctttggat agttagaatt	300
gcggaacctg tagggttat tgcagcagta gttccaacaa ctaatccaac atctacagca	360
atctttaat cactaatagc tttaaaaact agaaatggta taatttttc accgcattcca	420
agggcaaaga aatcaactat tgcagcagct aaaatagttac ttgatgctgc agttaaagct	480
ggtgctcccg aaggaattat aggtggata gatgaacctt ccattgaact ttcacaggtg	540
gtaatggag aagcaaattt aatttttgca actggtgcc cgggtatggt taaggctgcc	600
tattcttcag gaaaacctgc tggaggatggcc atacacctgc tataattgtat	660
gaaagtgccg atattaaaat ggcagtaat tcaatattac tctaaaaac ttttggataat	720
ggtatgattt gtgcctcaga gcagtcagta atagtttttag actcaatata tgaggaagtt	780
aaaaaagaat ttgcttatacg gggagctt atattgagtg aggtgaaac agataaggaa	840
ggaaaaataa ttttaaaaaa tggagcctta aatgctggta ttgtggaca aagtgccttt	900
aaaatagcac agctggcagg agtgaacgta ccagaaaaag ctaaagtact tataggagag	960
gtagaatcag tagaacttga agaaccattt tctcatgaaa agttatctcc agtttttagct	1020
atgtacaggg caagagattt tgaggatgcc attgcaaaaa ctgataaact ggttagggca	1080

Sequence Listing

ggtggatttg gacatacatc ttcatttatat	gtaaatccaa tgacagaaaa agcaaaagta	1140
gaaaaattta gtactatgtat gaaaacatca agaactataa ttaacacacc	ttcatctcaa	1200
ggtggtagatg gtgacatata taactttaag	ctagctcctt cgctgacgct aggctgcgga	1260
tcttgggag gaaactctgt atccgaaaat	gttgggccta aacatttatt aaacataaaa	1320
agtgttgctg agaggagaga aaatatgctt	tggtttagag tgcctgaaaa ggtttatttc	1380
aaatacgta gtcttgagg tgcattaaaa gaattaaaag ttatgaataa gaagaaagta		1440
tttatagtaa cagataaaagt cctttatcaa	tttaggttatg tggacaaagt tacaaaagtt	1500
cttgaggaac taaaaatttc ctataaagta	tttacagatg tagaaccaga tccaaccctt	1560
gctacagcta aaaaaggtgc agcagaattt	ctgtcatatg aaccggatac aattatatca	1620
gttggtggtg gttcagcaat ggatgcagcc	aagattatgt ggttaatgta tgagcatcca	1680
gaagtaaaat ttgaagattt agctatgaga	tttatggata taagaaagag agtataatgtt	1740
ttccctaaga tggagaaaaa agcaatgatg	atttcagtag caacatccgc aggtacagga	1800
tcagaagtta ctccatttgc agtaattaca	gatgaaaaaa caggagctaa atatccatta	1860
gctgattatg agttaactcc aaacatggct	atagttatg cagaacttat gatggaaatg	1920
ccaagaggac ttacggcagc gtcaggtata	gatgcattaa ctcatgcact ggaagcttat	1980
gtatcaataa tggctacaga atttaccaat	ggattagccc ttgaagcagt aaagttgata	2040
tttgaatatt tacaaaagc ttatacagaa	ggtacaacta atgtaaaggc aagagaaaaa	2100
atggctcatg cttcatgtat tgctggatg	gctttgcaa atgcattctt aggggtatgc	2160
cactctatgg cacataaatt aggagcacag	caccacatac cacatggaat tgctaatgca	2220
cttatgatag atgaagttat aaaattcaat	gctgtatgatg atccaataaa acaagctgca	2280
tttcctcaat acgagtatcc aaatgccaag	tatagatatg ctcagatagc tgattgtctc	2340
aacttaggag gaaatacaga agataaaaag	gtgcaattat taataaatgc tatagatgat	2400
ctaaaagcta agttaaatat tccagaaacg	attaaagaag caggagttc agaagaaaaa	2460
ttctatacta cttagataa aatgtcagaa	ttagctttg atgatcaatg tacaggagct	2520
aacccaaggt atccactaat aagtgaataa	aaacaaatgt atataatgt ttttgataaa	2580
actgaaccaa ttgtagaaga tgaagaaaaag	taa	2613

<210> 96
 <211> 870
 <212> PRT
 <213> c. ragsdalei
 <400> 96

Met Lys Val Thr Asn Val Glu Glu Leu Met Lys Arg Leu Glu Glu Ile
 1 5 10 15

Lys Asp Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp
 20 25 30

Sequence Listing

Glu Ile Phe Arg Gln Ala Ala Met Ala Ala Asn Ser Ala Arg Ile Glu
 35 40 45

Leu Ala Lys Met Ala Val Glu Glu Ser Gly Met Gly Ile Val Glu Asp
 50 55 60

Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Lys Tyr
 65 70 75 80

Lys Asp Glu Lys Thr Cys Gly Val Leu Glu Arg Asp Ala Gly Phe Gly
 85 90 95

Ile Val Arg Ile Ala Glu Pro Val Gly Val Ile Ala Ala Val Val Pro
 100 105 110

Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ala Leu
 115 120 125

Lys Thr Arg Asn Gly Ile Ile Phe Ser Pro His Pro Arg Ala Lys Lys
 130 135 140

Ser Thr Ile Ala Ala Ala Lys Ile Val Leu Asp Ala Ala Val Lys Ala
 145 150 155 160

Gly Ala Pro Glu Gly Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu
 165 170 175

Leu Ser Gln Val Val Met Gly Glu Ala Asn Leu Ile Leu Ala Thr Gly
 180 185 190

Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Val
 195 200 205

Gly Val Gly Pro Gly Asn Thr Pro Ala Ile Ile Asp Glu Ser Ala Asp
 210 215 220

Ile Lys Met Ala Val Asn Ser Ile Leu Leu Ser Lys Thr Phe Asp Asn
 225 230 235 240

Gly Met Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Asp Ser Ile
 245 250 255

Tyr Glu Glu Val Lys Lys Glu Phe Ala Tyr Arg Gly Ala Tyr Ile Leu
 260 265 270

Ser Glu Asp Glu Thr Asp Lys Val Gly Lys Ile Ile Leu Lys Asn Gly
 275 280 285

Ala Leu Asn Ala Gly Ile Val Gly Gln Ser Ala Phe Lys Ile Ala Gln
 290 295 300

Sequence Listing

Leu	Ala	Gly	Val	Asn	Val	Pro	Glu	Lys	Ala	Lys	Val	Leu	Ile	Gly	Glu
305					310				315				320		
Val	Glu	Ser	Val	Glu	Leu	Glu	Glu	Pro	Phe	Ser	His	Glu	Lys	Leu	Ser
									330					335	
Pro	Val	Leu	Ala	Met	Tyr	Arg	Ala	Arg	Asp	Phe	Glu	Asp	Ala	Ile	Ala
					340			345					350		
Lys	Thr	Asp	Lys	Leu	Val	Arg	Ala	Gly	Gly	Phe	Gly	His	Thr	Ser	Ser
					355			360				365			
Leu	Tyr	Val	Asn	Pro	Met	Thr	Glu	Lys	Ala	Lys	Val	Glu	Lys	Phe	Ser
					370		375				380				
Thr	Met	Met	Lys	Thr	Ser	Arg	Thr	Ile	Ile	Asn	Thr	Pro	Ser	Ser	Gln
					385		390			395					400
Gly	Gly	Ile	Gly	Asp	Ile	Tyr	Asn	Phe	Lys	Leu	Ala	Pro	Ser	Leu	Thr
					405			410					415		
Leu	Gly	Cys	Gly	Ser	Trp	Gly	Gly	Asn	Ser	Val	Ser	Glu	Asn	Val	Gly
					420			425				430			
Pro	Lys	His	Leu	Leu	Asn	Ile	Lys	Ser	Val	Ala	Glu	Arg	Arg	Glu	Asn
					435		440				445				
Met	Leu	Trp	Phe	Arg	Val	Pro	Glu	Lys	Val	Tyr	Phe	Lys	Tyr	Gly	Ser
					450		455			460					
Leu	Gly	Val	Ala	Leu	Lys	Glu	Leu	Lys	Val	Met	Asn	Lys	Lys	Lys	Val
					465		470			475					480
Phe	Ile	Val	Thr	Asp	Lys	Val	Leu	Tyr	Gln	Leu	Gly	Tyr	Val	Asp	Lys
					485			490				495			
Val	Thr	Lys	Val	Leu	Glu	Glu	Leu	Lys	Ile	Ser	Tyr	Lys	Val	Phe	Thr
					500			505				510			
Asp	Val	Glu	Pro	Asp	Pro	Thr	Leu	Ala	Thr	Ala	Lys	Lys	Gly	Ala	Ala
					515		520				525				
Glu	Leu	Leu	Ser	Tyr	Glu	Pro	Asp	Thr	Ile	Ile	Ser	Val	Gly	Gly	Gly
					530		535				540				
Ser	Ala	Met	Asp	Ala	Ala	Lys	Ile	Met	Trp	Val	Met	Tyr	Glu	His	Pro
					545		550			555					560
Glu	Val	Lys	Phe	Glu	Asp	Leu	Ala	Met	Arg	Phe	Met	Asp	Ile	Arg	Lys
					565			570					575		

Sequence Listing

Arg Val Tyr Val Phe Pro Lys Met	Gly	Glu	Lys Ala Met	Met Ile Ser
580	585		590	
Val Ala Thr Ser Ala Gly Thr Gly Ser Glu Val Thr Pro Phe Ala Val				
595	600	605		
Ile Thr Asp Glu Lys Thr Gly Ala Lys Tyr Pro Leu Ala Asp Tyr Glu				
610	615	620		
Leu Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu Met Met Gly Met				
625	630	635	640	
Pro Arg Gly Leu Thr Ala Ala Ser Gly Ile Asp Ala Leu Thr His Ala				
645	650	655		
Leu Glu Ala Tyr Val Ser Ile Met Ala Thr Glu Phe Thr Asn Gly Leu				
660	665	670		
Ala Leu Glu Ala Val Lys Leu Ile Phe Glu Tyr Leu Pro Lys Ala Tyr				
675	680	685		
Thr Glu Gly Thr Thr Asn Val Lys Ala Arg Glu Lys Met Ala His Ala				
690	695	700		
Ser Cys Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys				
705	710	715	720	
His Ser Met Ala His Lys Leu Gly Ala Gln His His Ile Pro His Gly				
725	730	735		
Ile Ala Asn Ala Leu Met Ile Asp Glu Val Ile Lys Phe Asn Ala Val				
740	745	750		
Asp Asp Pro Ile Lys Gln Ala Ala Phe Pro Gln Tyr Glu Tyr Pro Asn				
755	760	765		
Ala Lys Tyr Arg Tyr Ala Gln Ile Ala Asp Cys Leu Asn Leu Gly Gly				
770	775	780		
Asn Thr Glu Asp Glu Lys Val Gln Leu Leu Ile Asn Ala Ile Asp Asp				
785	790	795	800	
Leu Lys Ala Lys Leu Asn Ile Pro Glu Thr Ile Lys Glu Ala Gly Val				
805	810	815		
Ser Glu Glu Lys Phe Tyr Thr Leu Asp Lys Met Ser Glu Leu Ala				
820	825	830		
Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro Leu Ile Ser				
835	840	845		

Sequence Listing

Glu	Ile	Lys	Gln	Met	Tyr	Ile	Asn	Val	Phe	Asp	Lys	Thr	Glu	Pro	Ile
850					855							860			
Val	Glu	Asp	Glu	Glu	Lys										
865					870										

<210> 97
 <211> 1569
 <212> DNA
 <213> c. ragsdalei

<400> 97 atggagggaa cacaatttga aaattttgc aaagacttac gctctataca agaagcaaga 60 gatcttgcac gtttagaaaa aattgcagca tgtgaaattt ctgattatac tgaagaacaa 120 attgataaaaa tcctatgtaa tatggtagg gtagcagagg aaaatgcagt ttgccttgg 180 aaaatggctg cagaagaaac tggtttggaa aaagctgaag ataaggctta taagaaccat 240 atggctgcta ctacagtata taatttatatc aaggatatga agactattgg ttttataaaa 300 gaagataaaaa gtcaagggtt aattgaattt gctgaaccag ttggtttatt aatgggtatt 360 gtaccatctt caaatccaaac atctactgtt atctataat caatcattgc aattaaatca 420 agaaatgcaa ttgtattctc accacacccaa gctgcattaa aatgttcaac aaaagcaata 480 gaacttatgc gtgatgcagc agtagcagca ggagctcctg caaatgtaat tggcgttatt 540 gttacaccat ctatacaagc tacaatgaa cttatgaaag ctaaagaatgt tgctatgata 600 attgccactg gaggccctgg aatggtaaag gctgcttata gttcaggaac acctgcaata 660 ggcgttggtg ctggtaactc tccatcttata atagaaagaa ctgctgtatgt tcatcaatca 720 gttaaagata taattgcttag taagagttt gactatggta ctatgtgc atctgagcaa 780 tcaataattt ttgaagaatg caaccatgtat gaagtaatag ctgagttgaa gaaacaaggc 840 ggatatttca tgacagctga agaaactgca aaagtttgcgtatactttt taagcctgg 900 acacacagta tgagtgcata gttttagga agagctcctc aggttatagc agcagctgca 960 ggtttctcagg ttccagaagg aacaaaagtt ttagtaggaa aacaaggcgg agttggtaat 1020 ggttaccctc tatcttatga gaaacttaca acagtacttgc tttctatac agttaaagat 1080 tggcatgaag catgtgatct tagtataaga ttacttcaaa atggcttgg acataactatg 1140 aacattcata caaatgacag agacttagta atgaagtttgc taaaaaaacc agcatccgt 1200 atattagttt atactggtagg aagccaagga ggtactggtag caagcacagg attagcacct 1260 gcatttacat taggttgg tacatgggaa ggaagctctg tttccgaaaa ttacttcca 1320 ttacatttaa tcaatataaa gagagttgca tatggcttta aagatttttc tacattagct 1380 gcagatgata caacttcaa tcattcctgaa ctttggaa gcaaaaatgt ctttagatgc 1440 tgtgctacaa gccctgcaga atttgcagca aatagcaatt gtgcttagc ac tgctgcggat 1500 actactgata atgataaaact tgcttagactc gtaagtgaaat tagtagctgc aatgaaggaa 1560 gcttaactaa 1569	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1569
---	---

Sequence Listing

<210> 98
 <211> 522
 <212> PRT
 <213> c. ragsdalei

<400> 98

Met Glu Gly Thr Gln Leu Glu Asn Phe Asp Lys Asp Leu Arg Ser Ile
 1 5 10 15

Gln Glu Ala Arg Asp Leu Ala Arg Leu Gly Lys Ile Ala Ala Cys Glu
 20 25 30

Ile Ala Asp Tyr Thr Glu Glu Gln Ile Asp Lys Ile Leu Cys Asn Met
 35 40 45

Val Arg Val Ala Glu Glu Asn Ala Val Cys Leu Gly Lys Met Ala Ala
 50 55 60

Glu Glu Thr Gly Phe Gly Lys Ala Glu Asp Lys Ala Tyr Lys Asn His
 65 70 75 80

Met Ala Ala Thr Thr Val Tyr Asn Tyr Ile Lys Asp Met Lys Thr Ile
 85 90 95

Gly Val Ile Lys Glu Asp Lys Ser Gln Gly Val Ile Glu Phe Ala Glu
 100 105 110

Pro Val Gly Leu Leu Met Gly Ile Val Pro Ser Thr Asn Pro Thr Ser
 115 120 125

Thr Val Ile Tyr Lys Ser Ile Ile Ala Ile Lys Ser Arg Asn Ala Ile
 130 135 140

Val Phe Ser Pro His Pro Ala Ala Leu Lys Cys Ser Thr Lys Ala Ile
 145 150 155 160

Glu Leu Met Arg Asp Ala Ala Val Ala Ala Gly Ala Pro Ala Asn Val
 165 170 175

Ile Gly Gly Ile Val Thr Pro Ser Ile Gln Ala Thr Asn Glu Leu Met
 180 185 190

Lys Ala Lys Glu Val Ala Met Ile Ile Ala Thr Gly Gly Pro Gly Met
 195 200 205

Val Lys Ala Ala Tyr Ser Ser Gly Thr Pro Ala Ile Gly Val Gly Ala
 210 215 220

Gly Asn Ser Pro Ser Tyr Ile Glu Arg Thr Ala Asp Val His Gln Ser
 225 230 235 240

Sequence Listing

Val Lys Asp Ile Ile Ala Ser Lys Ser Phe Asp Tyr Gly Thr Ile Cys
 245 250 255

Ala Ser Glu Gln Ser Ile Ile Val Glu Glu Cys Asn His Asp Glu Val
 260 265 270

Ile Ala Glu Leu Lys Lys Gln Gly Gly Tyr Phe Met Thr Ala Glu Glu
 275 280 285

Thr Ala Lys Val Cys Ser Ile Leu Phe Lys Pro Gly Thr His Ser Met
 290 295 300

Ser Ala Lys Phe Val Gly Arg Ala Pro Gln Val Ile Ala Ala Ala Ala
 305 310 315 320

Gly Phe Ser Val Pro Glu Gly Thr Lys Val Leu Val Gly Glu Gln Gly
 325 330 335

Gly Val Gly Asn Gly Tyr Pro Leu Ser Tyr Glu Lys Leu Thr Thr Val
 340 345 350

Leu Ala Phe Tyr Thr Val Lys Asp Trp His Glu Ala Cys Asp Leu Ser
 355 360 365

Ile Arg Leu Leu Gln Asn Gly Leu Gly His Thr Met Asn Ile His Thr
 370 375 380

Asn Asp Arg Asp Leu Val Met Lys Phe Ala Lys Lys Pro Ala Ser Arg
 385 390 395 400

Ile Leu Val Asn Thr Gly Gly Ser Gln Gly Gly Thr Gly Ala Ser Thr
 405 410 415

Gly Leu Ala Pro Ala Phe Thr Leu Gly Cys Gly Thr Trp Gly Gly Ser
 420 425 430

Ser Val Ser Glu Asn Val Thr Pro Leu His Leu Ile Asn Ile Lys Arg
 435 440 445

Val Ala Tyr Gly Leu Lys Asp Cys Ser Thr Leu Ala Ala Asp Asp Thr
 450 455 460

Thr Phe Asn His Pro Glu Leu Cys Gly Ser Lys Asn Asp Leu Gly Cys
 465 470 475 480

Cys Ala Thr Ser Pro Ala Glu Phe Ala Ala Asn Ser Asn Cys Ala Ser
 485 490 495

Thr Ala Ala Asp Thr Thr Asp Asn Asp Lys Leu Ala Arg Leu Val Ser
 500 505 510

Glu Leu Val Ala Ala Met Lys Gly Ala Asn
 515 520

<210> 99
 <211> 1446
 <212> DNA
 <213> c. ragsdalei

<400> 99
 gtggaaaatg ctgcacgagc acaaaaaatg ttagcaactt ttccgcaaga aaagtttagat 60
 gagattgttgc aacgtatggc tgaagaaatc ggaaaacata cccgagagct tgctgtatg
 tcacaggatg aaactggtta tggaaaatgg caggataaaat gcatcaaaaa ccgatttgcc 120
 tgtgaatatt tgccagctaa gcttagagga atgcgatgt taggtattat taacgaaaat
 ggtcaggata agaccatgga tgttaggtgt cctatgggtg taattattgc attatgtcct 180
 gcaactagtc cggttctac taccatata aaggcattaa ttgcaattaa gtctggtaat
 gcaattatct tttctccaca tccttagagca aaggagacaa tttgttaaggc gcttgacatc 240
 atgattcgtg cagctgaagg atatggctg ccagaaggag ctctgcata cttacatact
 gtgacgccta gtggaaacaat cgaattgtat aaccatgagg cgacttcttt gattatgaat 300
 acaggcgttc ccggatgct taaagcgtca tatagatctg gaaaacctgt gatctatgga
 ggaactggta atggaccagc atttattgaa cgtacagctg acatcaagca ggccgttaaga 360
 gatattattt ctagtaagac ctttgataac ggaatagtagc catcatctga acaatctatt
 gttgttagata gctgtgttgc atctgtatgtt aaacgtgagt tgcaaaaatag tggtgcatat 420
 ttcatgacag aggaggaagc acaaaaaactg gttctctt tttccgttc tgatggtagt
 atggattcag aatgggttgg caaatccgca cagagattgg ctaagaaagc aggtttcagt 480
 attcctgaaa gtagcacagt gctaattca gagcagaaat atgtttccca agataatcct
 tattccaagg agaaactttg tccggacta gcttactaca ttgaagatga ttggatgcat 540
 gcatgtgaaa agtgtattga gctgcttta agtgagagac atggtcacac tcttgttata
 cattcaaaag acgaagatgt aattcgccag tttgcattaa aaaaacctgt aggcaggata 600
 cttgttaata cgcctgcttc cttggtagt atgggtgcta caagtaattt atttcctgct
 ttaacttttag gtagtggatc ggcaggtaaa ggtttagctt ccgataatgt ttccaccaatg 660
 aatcttattt acgtccgtaa agtccgatat ggcgtacgaa atgttagaaga gattattaaat
 actaatggat tgtttacaga agaaaaaaatg gatttgagt gtagacaaa gcagtcagac 720
 tataatccag aggatataca aatgttgcag catatttga aaaaagctat ggaaaaaaatt
 aaatag 780
 1446

<210> 100
 <211> 481
 <212> PRT
 <213> c. ragsdalei

<400> 100

Sequence Listing

Val Glu Asn Ala Ala Arg Ala Gln Lys Met Leu Ala Thr Phe Pro Gln
 1 5 10 15

Glu Lys Leu Asp Glu Ile Val Glu Arg Met Ala Glu Glu Ile Gly Lys
 20 25 30

His Thr Arg Glu Leu Ala Val Met Ser Gln Asp Glu Thr Gly Tyr Gly
 35 40 45

Lys Trp Gln Asp Lys Cys Ile Lys Asn Arg Phe Ala Cys Glu Tyr Leu
 50 55 60

Pro Ala Lys Leu Arg Gly Met Arg Cys Val Gly Ile Ile Asn Glu Asn
 65 70 75 80

Gly Gln Asp Lys Thr Met Asp Val Gly Val Pro Met Gly Val Ile Ile
 85 90 95

Ala Leu Cys Pro Ala Thr Ser Pro Val Ser Thr Thr Ile Tyr Lys Ala
 100 105 110

Leu Ile Ala Ile Lys Ser Gly Asn Ala Ile Ile Phe Ser Pro His Pro
 115 120 125

Arg Ala Lys Glu Thr Ile Cys Lys Ala Leu Asp Ile Met Ile Arg Ala
 130 135 140

Ala Glu Gly Tyr Gly Leu Pro Glu Gly Ala Leu Ala Tyr Leu His Thr
 145 150 155 160

Val Thr Pro Ser Gly Thr Ile Glu Leu Met Asn His Glu Ala Thr Ser
 165 170 175

Leu Ile Met Asn Thr Gly Val Pro Gly Met Leu Lys Ala Ser Tyr Arg
 180 185 190

Ser Gly Lys Pro Val Ile Tyr Gly Gly Thr Gly Asn Gly Pro Ala Phe
 195 200 205

Ile Glu Arg Thr Ala Asp Ile Lys Gln Ala Val Arg Asp Ile Ile Ala
 210 215 220

Ser Lys Thr Phe Asp Asn Gly Ile Val Pro Ser Ser Glu Gln Ser Ile
 225 230 235 240

Val Val Asp Ser Cys Val Ala Ser Asp Val Lys Arg Glu Leu Gln Asn
 245 250 255

Ser Gly Ala Tyr Phe Met Thr Glu Glu Glu Ala Gln Lys Leu Gly Ser
 260 265 270

Sequence Listing

Leu Phe Phe Arg Ser Asp Gly Ser Met Asp Ser Glu Met Val Gly Lys
275 280 285

Ser Ala Gln Arg Leu Ala Lys Lys Ala Gly Phe Ser Ile Pro Glu Ser
290 295 300

Ser Thr Val Leu Ile Ser Glu Gln Lys Tyr Val Ser Gln Asp Asn Pro
305 310 315 320

Tyr Ser Lys Glu Lys Leu Cys Pro Val Leu Ala Tyr Tyr Ile Glu Asp
325 330 335

Asp Trp Met His Ala Cys Glu Lys Cys Ile Glu Leu Leu Leu Ser Glu
340 345 350

Arg His Gly His Thr Leu Val Ile His Ser Lys Asp Glu Asp Val Ile
355 360 365

Arg Gln Phe Ala Leu Lys Lys Pro Val Gly Arg Ile Leu Val Asn Thr
370 375 380

Pro Ala Ser Phe Gly Ser Met Gly Ala Thr Ser Asn Leu Phe Pro Ala
385 390 395 400

Leu Thr Leu Gly Ser Gly Ser Ala Gly Lys Gly Ile Thr Ser Asp Asn
405 410 415

Val Ser Pro Met Asn Leu Ile Tyr Val Arg Lys Val Gly Tyr Gly Val
420 425 430

Arg Asn Val Glu Glu Ile Ile Asn Thr Asn Gly Leu Phe Thr Glu Glu
435 440 445

Lys Ser Asp Leu Ser Gly Met Thr Lys Gln Ser Asp Tyr Asn Pro Glu
450 455 460

Asp Ile Gln Met Leu Gln His Ile Leu Lys Lys Ala Met Glu Lys Ile
465 470 475 480

Lys

<210> 101
<211> 1167
<212> DNA
<213> c. ragsdalei

<400> 101
atggcaagat ttactttacc aagagacatt tattttggag aaaattcatt agagaccttg 60
aaaaaacctag atggaaaaaaaa agctgtcatt gtcgttaggtg gaggatccat gaaaagattt 120
ggattccttg ataaggttagt agactactta aaagaagcag gtattgaatc aaaattaata 180

Sequence Listing

gaaggcgtt	agccagatcc	atccgtagaa	actgttatga	atggtgctaa	actaatgagg	240
gaatatggc	cagatttaat	aatatcaata	ggtggagggtt	caccaattga	tgcagcaaaa	300
gctatgtga	tattctatga	ataccctgag	tttacttttta	aagaagctgt	agttcccttt	360
ggtcttccta	aattaagaca	aaaagcaaca	tttatacgta	tcccttctac	aagtggtaact	420
gcaacggaag	taactgcatt	ttctgtata	acagactata	aagctaaaat	taaatatcct	480
ttggctgact	tcaatttaac	accagatata	gctataattg	atccagtatt	agctcaaaca	540
atgccccta	aattaactgc	acatactgga	atggatgcac	ttactcacgc	tattgaagca	600
tatgttgcag	gacttcattc	agtttctcg	gaccacttg	ctattcaagc	tatagtcatg	660
gtaaatcaat	attnaattaa	atcttacaat	gaagataaag	aagctaggaa	tcaaattgcatt	720
ttagctcaat	gtttagctgg	aatggcattt	tcaaattgcac	ttcttggaaat	aactcacagt	780
ttagcacata	aaacaggtgc	agtattccat	atccctcatg	gatgtgctaa	tgcaatataat	840
cttccttatg	ttatagattt	caataaaaaaa	gcttgcac	caagatatgc	tgatatacgat	900
aggagtctta	aacttccagg	aaatactgat	gatgaattag	tagattcatt	aactaatatg	960
attaaagata	tgaacaagag	tatggatatt	ccttgacat	taaaagatta	tggagtagat	1020
gaaaaagaat	ttaaagatag	tgaagatttt	atagctcata	atgccgtatt	agatgcctgt	1080
actggatcaa	atcctagaag	cataaatgat	gctgaaatga	aaaagttgtt	agaatacatc	1140
tattatggta	aaaaggttga	tttttaa				1167

<210> 102

<211> 388

<212> PRT

<213> c. ragsdalei

<400> 102

Met	Ala	Arg	Phe	Thr	Leu	Pro	Arg	Asp	Ile	Tyr	Phe	Gly	Glu	Asn	Ser
1				5					10				15		

Leu	Glu	Thr	Leu	Lys	Asn	Leu	Asp	Gly	Lys	Lys	Ala	Val	Ile	Val	Val
			20					25				30			

Gly	Gly	Gly	Ser	Met	Lys	Arg	Phe	Gly	Phe	Leu	Asp	Lys	Val	Val	Asp
			35			40					45				

Tyr	Leu	Lys	Glu	Ala	Gly	Ile	Glu	Ser	Lys	Leu	Ile	Glu	Gly	Val	Glu
			50			55				60					

Pro	Asp	Pro	Ser	Val	Glu	Thr	Val	Met	Asn	Gly	Ala	Lys	Leu	Met	Arg
65				70				75				80			

Glu	Tyr	Gly	Pro	Asp	Leu	Ile	Ile	Ser	Ile	Gly	Gly	Ser	Pro	Ile	
								85		90		95			

Asp	Ala	Ala	Lys	Ala	Met	Trp	Ile	Phe	Tyr	Glu	Tyr	Pro	Glu	Phe	Thr
							100		105			110			

Sequence Listing

Phe Lys Glu Ala Val Val Pro Phe Gly Leu Pro Lys Leu Arg Gln Lys
 115 120 125

Ala Thr Phe Ile Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val
 130 135 140

Thr Ala Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro
 145 150 155 160

Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Val
 165 170 175

Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Gly Leu His Ser Val
 195 200 205

Phe Ser Asp Pro Leu Ala Ile Gln Ala Ile Val Met Val Asn Gln Tyr
 210 215 220

Leu Ile Lys Ser Tyr Asn Glu Asp Lys Glu Ala Arg Asp Gln Met His
 225 230 235 240

Leu Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
 245 250 255

Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Phe His Ile Pro
 260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
 275 280 285

Lys Lys Ala Cys Ala Pro Arg Tyr Ala Asp Ile Ala Arg Ser Leu Lys
 290 295 300

Leu Pro Gly Asn Thr Asp Asp Glu Leu Val Asp Ser Leu Thr Asn Met
 305 310 315 320

Ile Lys Asp Met Asn Lys Ser Met Asp Ile Pro Leu Thr Leu Lys Asp
 325 330 335

Tyr Gly Val Asp Glu Lys Glu Phe Lys Asp Ser Glu Asp Phe Ile Ala
 340 345 350

His Asn Ala Val Leu Asp Ala Cys Thr Gly Ser Asn Pro Arg Ser Ile
 355 360 365

Asn Asp Ala Glu Met Lys Lys Leu Leu Glu Tyr Ile Tyr Tyr Gly Lys
 370 375 380

Sequence Listing

Lys Val Asp Phe
385

<210> 103
<211> 1167
<212> DNA
<213> c. ragsdalei

<400> 103
atgggaagat ttactttgcc tagggatatt tactttggtg aaaatgcctt agaaaattta 60
aaaaatttag atggaaataa agcagtagtt gttgttaggtg gaggatctat gaagagattt 120
gggttcttag ccaaagttga agaatactta aaagaagcag gtatggaagt taaattaata 180
gaaggtgttg agcctgatcc atctgttgat actgttatga atggtgctaa aataatgaga 240
gactttaatc cagactggat agtatacaata ggtggaggat ctcccatcga tgctgccaaa 300
gcaatgtgga tattttatga ataccctgac tttacattt aaaaagcggt agtccctttt 360
gggattccta aattaaggca aaaggcacaa tttgttgcta taccttctac aagtggaaaca 420
gcaactgaag taacatcatt ttctgtataa acagactata aagctaaaat aaaatatcct 480
cttgcagatt ttaaccttac ccctgatata gctataatag atccgtctct tgcagaaaca 540
atgcctaaaa agcttacagc acacactgga atggatgcac ttactcacgc aatagaagca 600
tatgtggcaa gtttacattc agatttctca gatccacttg ctatgcacgc tataaccatg 660
attcataaat atttattgaa atcctatgaa gaagataaag aagctagggg ccatatgcac 720
atagcccaat gtctagctgg aatggcattt tcaaattgcac tccttggaaat aactcatagt 780
atagcacata aaactggcgc agtattccac atacctcatg ggtgtgctaa tgccatatac 840
ttacctttag ttatagattt taacaagaaa gcttgttcag aaagatatgc taaaatagct 900
aaaaagcttc atctatcagg gaatagtgaa gatgaattaa tagattcatt aacagaaatg 960
atttgtacta tgaataaaaaa gatggatatt cctcttacta taaaagatta tggtataaagc 1020
gaaaacgatt ttaatgaaaa cctagatttt atagctcaca atgctatgat ggatgcttgc 1080
actggatcta atcctagagc aataactgag gaagaaatga aaaagctctt gcagttatgt 1140
tataatgggc aaaaggttaa tttctag 1167

<210> 104
<211> 388
<212> PRT
<213> c. ragsdalei

<400> 104

Met Gly Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asn Ala
1 5 10 15

Leu Glu Asn Leu Lys Asn Leu Asp Gly Asn Lys Ala Val Val Val Val
20 25 30

Sequence Listing

Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Ala Lys Val Glu Glu
 35 40 45

Tyr Leu Lys Glu Ala Gly Met Glu Val Lys Leu Ile Glu Gly Val Glu
 50 55 60

Pro Asp Pro Ser Val Asp Thr Val Met Asn Gly Ala Lys Ile Met Arg
 65 70 75 80

Asp Phe Asn Pro Asp Trp Ile Val Ser Ile Gly Gly Ser Pro Ile
 85 90 95

Asp Ala Ala Lys Ala Met Trp Ile Phe Tyr Glu Tyr Pro Asp Phe Thr
 100 105 110

Phe Glu Lys Ala Val Val Pro Phe Gly Ile Pro Lys Leu Arg Gln Lys
 115 120 125

Ala Gln Phe Val Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val
 130 135 140

Thr Ser Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro
 145 150 155 160

Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Ser
 165 170 175

Leu Ala Glu Thr Met Pro Lys Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Ser Leu His Ser Asp
 195 200 205

Phe Ser Asp Pro Leu Ala Met His Ala Ile Thr Met Ile His Lys Tyr
 210 215 220

Leu Leu Lys Ser Tyr Glu Glu Asp Lys Glu Ala Arg Gly His Met His
 225 230 235 240

Ile Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
 245 250 255

Ile Thr His Ser Ile Ala His Lys Thr Gly Ala Val Phe His Ile Pro
 260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
 275 280 285

Lys Lys Ala Cys Ser Glu Arg Tyr Ala Lys Ile Ala Lys Lys Leu His
 290 295 300

Sequence Listing

Leu Ser Gly Asn Ser Glu Asp Glu Leu Ile Asp Ser Leu Thr Glu Met
305 310 315 320

Ile Cys Thr Met Asn Lys Lys Met Asp Ile Pro Leu Thr Ile Lys Asp
325 330 335

Tyr Gly Ile Ser Glu Asn Asp Phe Asn Glu Asn Leu Asp Phe Ile Ala
340 345 350

His Asn Ala Met Met Asp Ala Cys Thr Gly Ser Asn Pro Arg Ala Ile
355 360 365

Thr Glu Glu Glu Met Lys Lys Leu Leu Gln Tyr Met Tyr Asn Gly Gln
370 375 380

Lys Val Asn Phe
385

<210> 105
<211> 1359
<212> DNA
<213> c. ragsdalei

<400> 105	
atgattttaa aaactaaact ttttggcaa acttatgaat ttaaaaatat gaaggaagta	60
ttggcaaaag ctaatgaaga aaaatcgaaa gatgctttag ctggaatcat agcaaaaagt	120
acagcggaga gagttgcagc aaaggttgtt ttgtctgaaa taactcttga ggaattaagg	180
aataatcctg tagttccctta tgaggaggat gaagtaacaa gagtaataca agatatgatt	240
gataaaagaag cctataataa aatcaaagct atgacagttg gcgaattttag agaattttata	300
ttaaaaatcag aagaagccga tataaaagaa ataagagatg gattaacttc tgagatgata	360
gcaggtgtaa ctaagcttat gagtaatatg gacttagtat atgcttctaa aaaaataaga	420
aatattgcta cttgcaatac tactatttgtt gaaaaggaa cagtctcttc aagacttcag	480
cctaatcatg cagcagatag tatagatgga attatggctt ctgtaatgga agggataagc	540
tatggatag gtgatgctgt aataggttta aaccctgttag tagataccat agataatata	600
tcagagattt tgaaaaattt taagcagttc atgataaaat gggatatacc tacacaaaat	660
tgtgtacttg ctcatataac aacgcaaattg gaggctttaa agaaaggagt tcctatggat	720
ctgatgttcc agagtatagc tggttcacaa aaatccaata aaggctttgg aataagtgtg	780
aagcttatgg atgaagctta tgaacttatg aaggaaaaaa agagctccaa aggtcctaat	840
tttatgtatt ttgaaacagg ccagggttct gagcttctt cagaaggcca taatggagca	900
gatcagctta caatggaagc aagatgttat ggtctgcaa aaaaatataa tccattcctt	960
gtaaactctg tggtgggatt cataggacca gaatatctat atgatggaaa acaaattata	1020
agagcaggct tagaagatca ttttatgggt aagttaacag gacttcctat gggtgttcat	1080
gtatgttata caaaccatat gaaagcagat caaaatgattt tgaaaaattt agcattactc	1140

Sequence Listing

cttgcagcag	ctgactgtac	ttatTTATG	ggTataccTG	gaggAGATGA	cgtaatGCTT	1200
atgtatcaa	ctaccAGCTA	tcATGATGTA	gCTTCTATCA	gggACATTAT	gcgtaaaaAT	1260
cctataaaAG	aatttGAAGA	aAGAATGGAA	gCTCTAGGAA	taATGAAAAA	TGGAAGGCTC	1320
acagaaaATAG	ctggTgatCC	atCTATATTT	atGATTTAG			1359

<210> 106

<211> 452

<212> PRT

<213> c. ragsdalei

<400> 106

Met Ile Leu Lys Thr Lys Leu Phe Gly Gln Thr Tyr Glu Phe Lys Asn
 1 5 10 15

Met Lys Glu Val Leu Ala Lys Ala Asn Glu Glu Lys Ser Gly Asp Ala
 20 25 30

Leu Ala Gly Ile Ile Ala Lys Ser Thr Ala Glu Arg Val Ala Ala Lys
 35 40 45

Val Val Leu Ser Glu Ile Thr Leu Glu Glu Leu Arg Asn Asn Pro Val
 50 55 60

Val Pro Tyr Glu Glu Asp Glu Val Thr Arg Val Ile Gln Asp Met Ile
 65 70 75 80

Asp Lys Glu Ala Tyr Asn Lys Ile Lys Ala Met Thr Val Gly Glu Phe
 85 90 95

Arg Glu Phe Ile Leu Lys Ser Glu Glu Ala Asp Ile Lys Glu Ile Arg
 100 105 110

Asp Gly Leu Thr Ser Glu Met Ile Ala Gly Val Thr Lys Leu Met Ser
 115 120 125

Asn Met Asp Leu Val Tyr Ala Ser Lys Lys Ile Arg Asn Ile Ala Thr
 130 135 140

Cys Asn Thr Thr Ile Gly Glu Lys Gly Thr Val Ser Ser Arg Leu Gln
 145 150 155 160

Pro Asn His Ala Ala Asp Ser Ile Asp Gly Ile Met Ala Ser Val Met
 165 170 175

Glu Gly Ile Ser Tyr Gly Ile Gly Asp Ala Val Ile Gly Leu Asn Pro
 180 185 190

Val Val Asp Thr Ile Asp Asn Ile Ser Glu Ile Leu Lys Asn Phe Lys
 195 200 205

Sequence Listing

Gln Phe Met Ile Lys Trp Asp Ile Pro Thr Gln Asn Cys Val Leu Ala
 210 215 220

 His Ile Thr Thr Gln Met Glu Ala Leu Lys Lys Gly Val Pro Met Asp
 225 230 235 240

 Leu Met Phe Gln Ser Ile Ala Gly Ser Gln Lys Ser Asn Lys Gly Phe
 245 250 255

 Gly Ile Ser Val Lys Leu Met Asp Glu Ala Tyr Glu Leu Met Lys Glu
 260 265 270

 Lys Lys Ser Ser Lys Gly Pro Asn Phe Met Tyr Phe Glu Thr Gly Gln
 275 280 285

 Gly Ser Glu Leu Ser Ser Glu Gly His Asn Gly Ala Asp Gln Leu Thr
 290 295 300

 Met Glu Ala Arg Cys Tyr Gly Leu Ala Lys Lys Tyr Asn Pro Phe Leu
 305 310 315 320

 Val Asn Ser Val Val Gly Phe Ile Gly Pro Glu Tyr Leu Tyr Asp Gly
 325 330 335

 Lys Gln Ile Ile Arg Ala Gly Leu Glu Asp His Phe Met Gly Lys Leu
 340 345 350

 Thr Gly Leu Pro Met Gly Val Asp Val Cys Tyr Thr Asn His Met Lys
 355 360 365

 Ala Asp Gln Asn Asp Leu Glu Asn Leu Ala Leu Leu Ala Ala Ala
 370 375 380

 Asp Cys Thr Tyr Phe Met Gly Ile Pro Gly Gly Asp Asp Val Met Leu
 385 390 395 400

 Met Tyr Gln Thr Thr Ser Tyr His Asp Val Ala Ser Ile Arg Asp Ile
 405 410 415

 Met Arg Lys Asn Pro Ile Lys Glu Phe Glu Glu Arg Met Glu Ala Leu
 420 425 430

 Gly Ile Met Lys Asn Gly Arg Leu Thr Glu Ile Ala Gly Asp Pro Ser
 435 440 445

 Ile Phe Met Ile
 450

<210> 107
 <211> 1176
 <212> DNA
 <213> c. ragsdalei

Sequence Listing

<400> 107
atggaaaact ttatTTTaa aaatgctaca gaaattattt ttggtaagga taccgaagat 60
ctttaggaa gtaaagtaaa ggagtattca aagttagata aaatactctt ttgctatgg 120
ggaggaagta taaagagatc gggcctctat gatagagtta taaagtccctt aaaagaaaat 180
ggaattgaat ttatagaact tccaggaatt aaacctaattc caagattagg acctgttaaa 240
gaaggtataa gactatgttag agaaaataat ataaaattt gactatctgtt aggaggagga 300
agttcagcag atacagctaa agctattgct gtaggagttac cttataaagg agatgtatgg 360
gattttata cgggcaaagc tgaagtaaaa gaggctttc ctgttagagt tgaataaca 420
ttacctgcta caggtacaga atctagtaat agttctgtta ttatgaatga agatggttgg 480
tttaaaaaag gattaaatac ggtacttata agacctgctt tttcaattat gaatcctgaa 540
cttactttta cactaccaga atatcaaact gcttgggtg cttgtgacat tatggcacat 600
ataatggaaa gatattttac aaatgtgaaa catgtagatt taactgatag gctttgcgaa 660
gctgcactta gaaatgttat aaataatgcc ccaatagttt taaaagatcc taaaaattat 720
gatgctaggg cagaaattat gtggactggt actatagctc ataatgatgt gcttagtaca 780
ggtagaatag gtgattgggc ttctcacaaa attgaacatg aattaagtgg ggaaacagat 840
attgcccattg gagcaggact tgcaattgta tttcctgcat ggatgaaata tgtatataaa 900
catgatatca atagatttgta acaatttgca gtaagggtat gggatgtaga tttatctt 960
agttcctgtg aagatattgt acttgaaggc ataaggagaa tgacagcatt tttcaagagc 1020
atggggttac ctataacttt aaaagaagga agtataggag aagataaaaat tgaagaaatg 1080
gctaataagt gcacggataa tggaacccaa actgttaggac aatttgtaaa actaaataaa 1140
gatgatattg taaaaatatt aaattttagct agataa 1176

<210> 108

<211> 391

<212> PRT

<213> c. ragsdalei

<400> 108

Met Glu Asn Phe Ile Phe Lys Asn Ala Thr Glu Ile Ile Phe Gly Lys
1 5 10 15

Asp Thr Glu Asp Leu Val Gly Ser Lys Val Lys Glu Tyr Ser Lys Ser
20 25 30

Asp Lys Ile Leu Phe Cys Tyr Gly Gly Ser Ile Lys Arg Ser Gly
35 40 45

Leu Tyr Asp Arg Val Ile Lys Ser Leu Lys Glu Asn Gly Ile Glu Phe
50 55 60

Ile Glu Leu Pro Gly Ile Lys Pro Asn Pro Arg Leu Gly Pro Val Lys
65 70 75 80

Sequence Listing

Glu Gly Ile Arg Leu Cys Arg Glu Asn Asn Ile Lys Phe Val Leu Ser
 85 90 95

Val Gly Gly Ser Ser Ala Asp Thr Ala Lys Ala Ile Ala Val Gly
 100 105 110

Val Pro Tyr Lys Gly Asp Val Trp Asp Phe Tyr Thr Gly Lys Ala Glu
 115 120 125

Val Lys Glu Ala Leu Pro Val Gly Val Val Ile Thr Leu Pro Ala Thr
 130 135 140

Gly Thr Glu Ser Ser Asn Ser Ser Val Ile Met Asn Glu Asp Gly Trp
 145 150 155 160

Phe Lys Lys Gly Leu Asn Thr Val Leu Ile Arg Pro Ala Phe Ser Ile
 165 170 175

Met Asn Pro Glu Leu Thr Phe Thr Leu Pro Glu Tyr Gln Thr Ala Cys
 180 185 190

Gly Ala Cys Asp Ile Met Ala His Ile Met Glu Arg Tyr Phe Thr Asn
 195 200 205

Val Lys His Val Asp Leu Thr Asp Arg Leu Cys Glu Ala Ala Leu Arg
 210 215 220

Asn Val Ile Asn Asn Ala Pro Ile Val Leu Lys Asp Pro Lys Asn Tyr
 225 230 235 240

Asp Ala Arg Ala Glu Ile Met Trp Thr Gly Thr Ile Ala His Asn Asp
 245 250 255

Val Leu Ser Thr Gly Arg Ile Gly Asp Trp Ala Ser His Lys Ile Glu
 260 265 270

His Glu Leu Ser Gly Glu Thr Asp Ile Ala His Gly Ala Gly Leu Ala
 275 280 285

Ile Val Phe Pro Ala Trp Met Lys Tyr Val Tyr Lys His Asp Ile Asn
 290 295 300

Arg Phe Val Gln Phe Ala Val Arg Val Trp Asp Val Asp Leu Ser Tyr
 305 310 315 320

Ser Ser Cys Glu Asp Ile Val Leu Glu Gly Ile Arg Arg Met Thr Ala
 325 330 335

Phe Phe Lys Ser Met Gly Leu Pro Ile Thr Leu Lys Glu Gly Ser Ile
 340 345 350

Sequence Listing

Gly Glu Asp Lys Ile Glu Glu Met Ala Asn Lys Cys Thr Asp Asn Gly
 355 360 365

Thr Lys Thr Val Gly Gln Phe Val Lys Leu Asn Lys Asp Asp Ile Val
 370 375 380

Lys Ile Leu Asn Leu Ala Arg
 385 390

<210> 109
 <211> 1149
 <212> DNA
 <213> c. ragsdalei

<400> 109		
atggaagaca agtttgaaaa ttttaatttgc aaatccaaga tttattttaa taggaaatcc	60	
atacaacttt tagagcaggt tactggctct cgagcattta ttgttgcaga tgccattatg	120	
ggaaaacttg gatatcttca aaaagtaata gattccctaa gtaaagccgg aataagttcc	180	
gttgtttta cgggagtgaca ccctgatcca gatgtcaatg taattgcaga tgcaatgaaa	240	
ttgtacaaca aaagcgatgc agatgttctc gttgcactag gtggaggctc cagcattgat	300	
accgc当地 gaataatgta ttttgcattgt aatttaggaa aagcaatggg ccagggaaatg	360	
aaaaagcccc tgtttattgc aattccatca acaagtggaa caggctctga agtaacaaac	420	
tttactgtta ttacttctca gaaagaaaag gtatgcattt tagatgattt tattgcacca	480	
gacgttgcaa tacttgactc tagttgtatt gatggctgc ctcaacgtat tgttagcagat	540	
actggatag atgttcttagt tcattctatt gaagcctatg tttccaaaaa agcaactgac	600	
tttacagacg ctcttgctga aaaagcagtt aaattgattt ttgagaatct tccaaaaatt	660	
tataacgata gtaaagattc tgaagctcga gatcatgttc aaaacgc当地 ttgtatagca	720	
ggaatagcat ttacaaatgc tggcttgaa attaatcaca gcttggctca tgctatgggt	780	
ggatctttc acattccatca cggccgatcc aatgcacttt tacttaatgc agtaatggaa	840	
tacaatgcta gcttagtggg aaatgc当地 ac gatcatgcta tgaaaaata cgcaaaaacta	900	
gcatcagttc tacacccctcc agctcgaaca actcgtgaag gcgc当地tgaag ttttatcgaa	960	
gctgtaaata aattaataaa atcccttagt gttgaagata atattcgc当地 tcttgaatt	1020	
aaagaagacg atttcaagg tgctctaaat catatggcag aaacagcaat gcaagataga	1080	
tgcactccaa ctaatccatg aaaacccctc aaagaagaac tgatacatat ttatcaaaaa	1140	
tgcttattaa	1149	

<210> 110
 <211> 382
 <212> PRT
 <213> c. ragsdalei

<400> 110

Sequence Listing

Met Glu Asp Lys Phe Glu Asn Phe Asn Leu Lys Ser Lys Ile Tyr Phe
 1 5 10 15

Asn Arg Glu Ser Ile Gln Leu Leu Glu Gln Val Thr Gly Ser Arg Ala
 20 25 30

Phe Ile Val Ala Asp Ala Ile Met Gly Lys Leu Gly Tyr Leu Gln Lys
 35 40 45

Val Ile Asp Ser Leu Ser Lys Ala Gly Ile Ser Ser Val Val Phe Thr
 50 55 60

Gly Val His Pro Asp Pro Asp Val Asn Val Ile Ala Asp Ala Met Lys
 65 70 75 80

Leu Tyr Asn Lys Ser Asp Ala Asp Val Leu Val Ala Leu Gly Gly
 85 90 95

Ser Ser Ile Asp Thr Ala Lys Gly Ile Met Tyr Phe Ala Cys Asn Leu
 100 105 110

Gly Lys Ala Met Gly Gln Glu Met Lys Lys Pro Leu Phe Ile Ala Ile
 115 120 125

Pro Ser Thr Ser Gly Thr Gly Ser Glu Val Thr Asn Phe Thr Val Ile
 130 135 140

Thr Ser Gln Lys Glu Lys Val Cys Ile Val Asp Asp Phe Ile Ala Pro
 145 150 155 160

Asp Val Ala Ile Leu Asp Ser Ser Cys Ile Asp Gly Leu Pro Gln Arg
 165 170 175

Ile Val Ala Asp Thr Gly Ile Asp Val Leu Val His Ser Ile Glu Ala
 180 185 190

Tyr Val Ser Lys Lys Ala Thr Asp Phe Thr Asp Ala Leu Ala Glu Lys
 195 200 205

Ala Val Lys Leu Ile Phe Glu Asn Leu Pro Lys Ile Tyr Asn Asp Ser
 210 215 220

Lys Asp Ser Glu Ala Arg Asp His Val Gln Asn Ala Ser Cys Ile Ala
 225 230 235 240

Gly Ile Ala Phe Thr Asn Ala Gly Leu Gly Ile Asn His Ser Leu Ala
 245 250 255

His Ala Met Gly Gly Ser Phe His Ile Pro His Gly Arg Ser Asn Ala
 260 265 270

Sequence Listing

Leu Leu Leu Asn Ala Val Met Glu Tyr Asn Ala Ser Leu Val Gly Asn
 275 280 285

Ala Asn Asp His Ala Met Glu Lys Tyr Ala Lys Leu Ala Ser Val Leu
 290 295 300

His Leu Pro Ala Arg Thr Thr Arg Glu Gly Ala Val Ser Phe Ile Glu
 305 310 315 320

Ala Val Asn Lys Leu Ile Lys Ser Leu Gly Val Glu Asp Asn Ile Arg
 325 330 335

Ala Leu Gly Ile Lys Glu Asp Asp Phe Gln Gly Ala Leu Asn His Met
 340 345 350

Ala Glu Thr Ala Met Gln Asp Arg Cys Thr Pro Thr Asn Pro Arg Lys
 355 360 365

Pro Ser Lys Glu Glu Leu Ile His Ile Tyr Gln Lys Cys Tyr
 370 375 380

<210> 111

<211> 993

<212> DNA

<213> c. ragsdalei

<400> 111

atggaaaaaa	tttggataa	ggcaaaggaa	gacaaaaaaaaa	agattgtctt	agctgaagga	60
gaagaagaaa	gaactcttca	agcttgtgaa	aaaataatta	aagaaggat	tgcaaattta	120
atcctttag	ggaatgaaaa	ggtaatagag	gagaaggcat	caaaatttagg	cgtaagttt	180
aatggagcag	aatagtaga	tccagaaacc	tcggataaac	taaaaaata	tgcagatgct	240
ttttatgaat	tgagaaagaa	gaagggata	acaccagaaa	aagcggataa	aatagtaaga	300
gatccaatat	attttgctac	gatgatggtt	aagcttggag	atgcagatgg	attggtttca	360
ggtcagtgc	atactacagg	tgatctttg	agaccaggac	ttcaaatagt	aaagacagct	420
ccaggtacat	cagtagttc	cagcacattt	ataatgaaag	taccaaattt	tgaatatggt	480
gacaatggtg	tacttctatt	tgctgattgt	gctgtaaatc	catgccaga	tagtgatcaa	540
ttggcttcaa	ttgcaataag	tacagcagaa	actgcaaaga	acttatgtgg	aatggatcca	600
aaagtagcaa	tgctttcatt	ttctactaag	ggaagtgcaa	aacacgaatt	agtagataaa	660
gttagaaatg	ctgtagaaat	tgccaaaaaa	gctaaaccag	atthaagttt	ggacggagaa	720
ttacaattag	atgcctctat	cgtagaaaag	gttgcaagtt	taaaggctcc	tgaaagtgaa	780
gtagcaggaa	aagcaaatgt	acttgttattt	ccagatctcc	aagcaggaaa	tataggttat	840
aaacttgttc	aaagatttgc	aaaagctgat	gctataggac	ctgtatgcca	gggatttgca	900
aaacctataa	atgatttgtc	aagaggatgt	aactccgatg	atatagtaaa	tgttagtagct	960
gtaacacgac	ttcaggcaca	agctcaaaag	taa			993

Sequence Listing

<210> 112
 <211> 330
 <212> PRT
 <213> c. ragsdalei
 <400> 112

Met Glu Lys Ile Trp Asn Lys Ala Lys Glu Asp Lys Lys Lys Ile Val
 1 5 10 15

Leu Ala Glu Gly Glu Glu Arg Thr Leu Gln Ala Cys Glu Lys Ile
 20 25 30

Ile Lys Glu Gly Ile Ala Asn Leu Ile Leu Val Gly Asn Glu Lys Val
 35 40 45

Ile Glu Glu Lys Ala Ser Lys Leu Gly Val Ser Leu Asn Gly Ala Glu
 50 55 60

Ile Val Asp Pro Glu Thr Ser Asp Lys Leu Lys Lys Tyr Ala Asp Ala
 65 70 75 80

Phe Tyr Glu Leu Arg Lys Lys Gly Ile Thr Pro Glu Lys Ala Asp
 85 90 95

Lys Ile Val Arg Asp Pro Ile Tyr Phe Ala Thr Met Met Val Lys Leu
 100 105 110

Gly Asp Ala Asp Gly Leu Val Ser Gly Ala Val His Thr Thr Gly Asp
 115 120 125

Leu Leu Arg Pro Gly Leu Gln Ile Val Lys Thr Ala Pro Gly Thr Ser
 130 135 140

Val Val Ser Ser Thr Phe Ile Met Glu Val Pro Asn Cys Glu Tyr Gly
 145 150 155 160

Asp Asn Gly Val Leu Leu Phe Ala Asp Cys Ala Val Asn Pro Cys Pro
 165 170 175

Asp Ser Asp Gln Leu Ala Ser Ile Ala Ile Ser Thr Ala Glu Thr Ala
 180 185 190

Lys Asn Leu Cys Gly Met Asp Pro Lys Val Ala Met Leu Ser Phe Ser
 195 200 205

Thr Lys Gly Ser Ala Lys His Glu Leu Val Asp Lys Val Arg Asn Ala
 210 215 220

Val Glu Ile Ala Lys Lys Ala Lys Pro Asp Leu Ser Leu Asp Gly Glu
 225 230 235 240

Sequence Listing

Leu Gln Leu Asp Ala Ser Ile Val Glu Lys Val Ala Ser Leu Lys Ala
245 250 255

Pro Glu Ser Glu Val Ala Gly Lys Ala Asn Val Leu Val Phe Pro Asp
260 265 270

Leu Gln Ala Gly Asn Ile Gly Tyr Lys Leu Val Gln Arg Phe Ala Lys
275 280 285

Ala Asp Ala Ile Gly Pro Val Cys Gln Gly Phe Ala Lys Pro Ile Asn
290 295 300

Asp Leu Ser Arg Gly Cys Asn Ser Asp Asp Ile Val Asn Val Val Ala
305 310 315 320

Val Thr Ala Val Gln Ala Gln Ala Gln Lys
325 330

<210> 113

<211> 1197

<212> DNA

<213> c. ragsdalei

<400> 113

atgaaaatat tagtagtaaa ctgttgaagt tcatctttaa aatatcaact tattgatatg	60
aaagatgaaa gcgttgtggc aaaaggactt gtagaaagaa taggagcaga aggttcagtt	120
ttaacacata aagttAACGG agaaaaAGTT gttacagAGC agccaaTGGa agatcataaa	180
gttgctatac aattagtatt aaatgctctt gtagataaaa aacatggtgt aataaaaagat	240
atgtcagaaa tatctgttgtt agggcataga gttttgcattg gtggaaaaaaa atatgcggca	300
tccattctta ttgatgacaa tgtaatgaaa gcaatagaag aatgtattcc attaggacca	360
ttacataatc cagctaatac aatggaaata gatgcttgta aaaaactaat gccaaatact	420
ccaatggtag cagtatttga tacagcattt catcagacaa tgccagatta tgcttatact	480
tatgcaatac cttatgatat atctgaaaag tatgatatca gaaaatatgg ttttcatgga	540
acttctcata gattcgtttc aattgaagca gccaagttgt taaagaaaaga tccaaaagat	600
cttaagctaa taacttgcata tttaggaaat ggagcttagta tatgtgcagt aaaccaggga	660
aaagcagtag atacaactat gggacttact ccccttgcag gacttgtaat gggacttaga	720
tgtggtgata tagatccagc tataatacca tttgtaatga aaagaacagg tatgtctgta	780
gatgaaatgg atacttaat gaacaaaaag tcaggaatac ttggagtatc aggagtaagc	840
agcgatttta gagatgtaga agaagctgca aattcaggaa atgatagagc aaaacttgca	900
ttaaatatgt attatcacaat agttaaatct ttcataaggag cttatgttgc agttttaaat	960
ggagcagatg ctataatatt tacagcagga cttggagaaa attcagctac tagcagatct	1020
gctatatgtta agggattaag ctatTTGGA attaaaatag atgaagaaaa gaataagaaa	1080
aggggagaag cactagaaat aagcacaccc tattcaaaaga taaaagtatt agtaattcct	1140

SequenceListing

acaaatgaag aacttatgat agctagggat aaaaaagaaaa tagttgaaaa taaataa

1197

<210> 114
 <211> 398
 <212> PRT
 <213> c. ragsdalei

<400> 114

Met Lys Ile Leu Val Val Asn Cys Gly Ser Ser Ser Leu Lys Tyr Gln
 1 5 10 15

Leu Ile Asp Met Lys Asp Glu Ser Val Val Ala Lys Gly Leu Val Glu
 20 25 30

Arg Ile Gly Ala Glu Gly Ser Val Leu Thr His Lys Val Asn Gly Glu
 35 40 45

Lys Phe Val Thr Glu Gln Pro Met Glu Asp His Lys Val Ala Ile Gln
 50 55 60

Leu Val Leu Asn Ala Leu Val Asp Lys Lys His Gly Val Ile Lys Asp
 65 70 75 80

Met Ser Glu Ile Ser Ala Val Gly His Arg Val Leu His Gly Gly Lys
 85 90 95

Lys Tyr Ala Ala Ser Ile Leu Ile Asp Asp Asn Val Met Lys Ala Ile
 100 105 110

Glu Glu Cys Ile Pro Leu Gly Pro Leu His Asn Pro Ala Asn Ile Met
 115 120 125

Gly Ile Asp Ala Cys Lys Lys Leu Met Pro Asn Thr Pro Met Val Ala
 130 135 140

Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Asp Tyr Ala Tyr Thr
 145 150 155 160

Tyr Ala Ile Pro Tyr Asp Ile Ser Glu Lys Tyr Asp Ile Arg Lys Tyr
 165 170 175

Gly Phe His Gly Thr Ser His Arg Phe Val Ser Ile Glu Ala Ala Lys
 180 185 190

Leu Leu Lys Lys Asp Pro Lys Asp Leu Lys Leu Ile Thr Cys His Leu
 195 200 205

Gly Asn Gly Ala Ser Ile Cys Ala Val Asn Gln Gly Lys Ala Val Asp
 210 215 220

Thr Thr Met Gly Leu Thr Pro Leu Ala Gly Leu Val Met Gly Thr Arg
 225 230 235 240

Sequence Listing

Cys Gly Asp Ile Asp Pro Ala Ile Ile Pro Phe Val Met Lys Arg Thr
 245 250 255

Gly Met Ser Val Asp Glu Met Asp Thr Leu Met Asn Lys Lys Ser Gly
 260 265 270

Ile Leu Gly Val Ser Gly Val Ser Ser Asp Phe Arg Asp Val Glu Glu
 275 280 285

Ala Ala Asn Ser Gly Asn Asp Arg Ala Lys Leu Ala Leu Asn Met Tyr
 290 295 300

Tyr His Lys Val Lys Ser Phe Ile Gly Ala Tyr Val Ala Val Leu Asn
 305 310 315 320

Gly Ala Asp Ala Ile Ile Phe Thr Ala Gly Leu Gly Glu Asn Ser Ala
 325 330 335

Thr Ser Arg Ser Ala Ile Cys Lys Gly Leu Ser Tyr Phe Gly Ile Lys
 340 345 350

Ile Asp Glu Glu Lys Asn Lys Lys Arg Gly Glu Ala Leu Glu Ile Ser
 355 360 365

Thr Pro Asp Ser Lys Ile Lys Val Leu Val Ile Pro Thr Asn Glu Glu
 370 375 380

Leu Met Ile Ala Arg Asp Thr Lys Glu Ile Val Glu Asn Lys
 385 390 395

<210> 115

<211> 1824

<212> DNA

<213> c. ragsdalei

<400> 115

atgtacggat	ataatggtaa	ggtattaaga	attaatctaa	gtagtaaaac	ttatatagtg	60
gaagaattga	aaattgacaa	agctaaaaaa	tttataggtg	caagaggttt	aggcgtaaaa	120
accttatttg	acgaagtaga	tccaaaggta	gatccattat	cacctgataa	caaatttatt	180
atagcagcgg	gaccacttac	aggtgcgcct	gttccaacaa	gcggaagatt	catggtagtt	240
actaaatcac	ctttaacagg	aactattgct	attgcaaatt	caggtggaaa	atggggagca	300
gaattcaaag	cagctggata	cgatatgata	atcggttaag	gtaaatctga	taaagaagtt	360
tatgtaaata	tagtagatga	taaagttagaa	tttagggatg	cttctcatgt	ttggggaaaa	420
ctaacagaag	aaactacaaa	aatgcttcaa	cagggaaacag	attcgagagc	taaggtttta	480
tgcataggac	cagctgggaa	aaaattatca	cttatggcag	cagttatgaa	tgtatgttgc	540
agaacacgac	gacgtggtgg	tgttggagct	gttatggct	caaagaactt	aaaagctatt	600

SequenceListing

gtagttaaag gaagcggaaa agtaaaatta	tttgatgagc aaaaagtgaa agaagtagca	660
cttgagaaaa caaatattt aagaaaagat	ccagtagctg gtggaggact tccaacatac	720
ggaacagctg tacttgttaa tattataaat	gaaaatggcg tacatccagt aaaaaatttc	780
caaaaatctt atacagatca ggcagataag	atcagtggag aaacttaac taaagattgc	840
ttagttagaa aaaatccttg ctataggtgt	ccaattgcct gtggaagatg ggtaaaactt	900
gatgtggaa ctgaatgtgg aggaccagaa	tatgaaacat tatggcatt tggatctgat	960
tgtgtat acgatataaa tgctgttaat	acagcaaata tggatgtta tgaatatgga	1020
ttagatacca ttacagcagg atgtactatt	gcagcagcta tggaaactta tcaaagaggt	1080
tatattaagg atgaagaaat agcagcagat	ggattgtcac ttaattgggg agatgctaag	1140
tccatggttg aatggtaaa gaaaatggga	cttagagaag gattggaga caagatggca	1200
gatggttcat acagactttg tgactcatac	ggtgtacctg agtattcaat gactgtaaaa	1260
aaacaagaaa tcccagcata tgacccaaga	ggaatacagg gacatggtat aacttatgct	1320
gttaacaata ggggagggtg tcatattaag	ggatatatgg taagccctga aatacttggt	1380
tatccagaaa aacttgatag acttgcagtg	gaaggaaaag caggatatgc tagagtattc	1440
catgatttaa cagctgttat agattcactt	ggattatgta ttttacaac atttggctt	1500
ggtgcacagg attatgttga tttgtataat	gcagtagttg gtggagaatt acatgatgta	1560
gactcttaa tgtagctgg agatagaata	tggactttag aaaaaatatt taacttaaag	1620
gcaggcatag atagttcaca ggatactctt	ccaaagagat tgcttgagga accagttcca	1680
gaaggaccat caaaaggaga gattcataga	ttagatgtac ttcttcctga atattattca	1740
gtacgtggat gggataaaaa tggtataacct	acagaggaaa cgttaaagaa attaggatta	1800
gatgaatatg tagtaagtt ttaa		1824

<210> 116

<211> 607

<212> PRT

<213> c. ragsdalei

<400> 116

Met	Tyr	Gly	Tyr	Asn	Gly	Lys	Val	Leu	Arg	Ile	Asn	Leu	Ser	Ser	Lys
1							5			10					15

Thr	Tyr	Ile	Val	Glu	Glu	Leu	Lys	Ile	Asp	Lys	Ala	Lys	Lys	Phe	Ile
								20		25				30	

Gly	Ala	Arg	Gly	Leu	Gly	Val	Lys	Thr	Leu	Phe	Asp	Glu	Val	Asp	Pro
								35		40				45	

Lys	Val	Asp	Pro	Leu	Ser	Pro	Asp	Asn	Lys	Phe	Ile	Ile	Ala	Ala	Gly
									50	55				60	

Pro	Leu	Thr	Gly	Ala	Pro	Val	Pro	Thr	Ser	Gly	Arg	Phe	Met	Val	Val
65								70		75				80	

Sequence Listing

Thr Lys Ser Pro Leu Thr Gly Thr Ile Ala Ile Ala Asn Ser Gly Gly
 85 90 95

Lys Trp Gly Ala Glu Phe Lys Ala Ala Gly Tyr Asp Met Ile Ile Val
 100 105 110

Glu Gly Lys Ser Asp Lys Glu Val Tyr Val Asn Ile Val Asp Asp Lys
 115 120 125

Val Glu Phe Arg Asp Ala Ser His Val Trp Gly Lys Leu Thr Glu Glu
 130 135 140

Thr Thr Lys Met Leu Gln Gln Glu Thr Asp Ser Arg Ala Lys Val Leu
 145 150 155 160

Cys Ile Gly Pro Ala Gly Glu Lys Leu Ser Leu Met Ala Ala Val Met
 165 170 175

Asn Asp Val Asp Arg Thr Ala Gly Arg Gly Gly Val Gly Ala Val Met
 180 185 190

Gly Ser Lys Asn Leu Lys Ala Ile Val Val Lys Gly Ser Gly Lys Val
 195 200 205

Lys Leu Phe Asp Glu Gln Lys Val Lys Glu Val Ala Leu Glu Lys Thr
 210 215 220

Asn Ile Leu Arg Lys Asp Pro Val Ala Gly Gly Leu Pro Thr Tyr
 225 230 235 240

Gly Thr Ala Val Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro
 245 250 255

Val Lys Asn Phe Gln Lys Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser
 260 265 270

Gly Glu Thr Leu Thr Lys Asp Cys Leu Val Arg Lys Asn Pro Cys Tyr
 275 280 285

Arg Cys Pro Ile Ala Cys Gly Arg Trp Val Lys Leu Asp Asp Gly Thr
 290 295 300

Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Ser Phe Gly Ser Asp
 305 310 315 320

Cys Asp Val Tyr Asp Ile Asn Ala Val Asn Thr Ala Asn Met Leu Cys
 325 330 335

Asn Glu Tyr Gly Leu Asp Thr Ile Thr Ala Gly Cys Thr Ile Ala Ala
 340 345 350

Sequence Listing

Ala Met Glu Leu Tyr Gln Arg Gly Tyr Ile Lys Asp Glu Glu Ile Ala
 355 360 365

Ala Asp Gly Leu Ser Leu Asn Trp Gly Asp Ala Lys Ser Met Val Glu
 370 375 380

Trp Val Lys Lys Met Gly Leu Arg Glu Gly Phe Gly Asp Lys Met Ala
 385 390 395 400

Asp Gly Ser Tyr Arg Leu Cys Asp Ser Tyr Gly Val Pro Glu Tyr Ser
 405 410 415

Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile
 420 425 430

Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His
 435 440 445

Ile Lys Gly Tyr Met Val Ser Pro Glu Ile Leu Gly Tyr Pro Glu Lys
 450 455 460

Leu Asp Arg Leu Ala Val Glu Gly Lys Ala Gly Tyr Ala Arg Val Phe
 465 470 475 480

His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr
 485 490 495

Thr Phe Gly Leu Gly Ala Gln Asp Tyr Val Asp Leu Tyr Asn Ala Val
 500 505 510

Val Gly Gly Glu Leu His Asp Val Asp Ser Leu Met Leu Ala Gly Asp
 515 520 525

Arg Ile Trp Thr Leu Glu Lys Ile Phe Asn Leu Lys Ala Gly Ile Asp
 530 535 540

Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Val Pro
 545 550 555 560

Glu Gly Pro Ser Lys Gly Glu Ile His Arg Leu Asp Val Leu Leu Pro
 565 570 575

Glu Tyr Tyr Ser Val Arg Gly Trp Asp Lys Asn Gly Ile Pro Thr Glu
 580 585 590

Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Val Gly Lys Phe
 595 600 605

<210> 117
 <211> 1824

Sequence Listing

<212> DNA
<213> c. ragsdalei

<400> 117	
atgtatggtt ataatggtaa agtattaaga attaatttaa aagaaagaac ttgcaaatca	60
gaaaatttag atttagataa agctaaaaag tttataggct gtagggact aggtgtaaa	120
actttatttg atgaaataga tcctaaaata gatgcattat caccagaaaa taaatttata	180
attgtaacag gtccgttaac tggagctcca gttccaaacta gtggaaggtt tatggtagtt	240
actaaagcac cgcttacagg aactatagga atttcaaatt cgggtggaaa atggggagta	300
gacttgaaaa aagctggctg ggatatgata atagtagagg ataaggctga ttcaccagtt	360
tacattgaaa tagtagatga taaagttagaa attaaagatg cgtcacagct ttggggaaaa	420
gttacatcg aaactacaaa agagttagaa aagataactg agaataagatc aaaggattta	480
tgtataggac ctgctggtga aagattgtcc cttatggcag cagttatgaa ttagttagat	540
agaactgcag caagaggcgg cgttggtgca gttatggat ctaaaaactt aaaagctatt	600
acagttaaag gaactggaaa aatagctta gctgataaag aaaaagtaaa aaaagtgtcc	660
gtagaaaaaa ttacaacatt aaaaatgat ccagtagctg gtcagggaat gccaacttat	720
ggtacagcta tactggtaa tataataat gaaaatggag ttcatcctgt aaataatttt	780
caagaatctt atacggatca agcagataaa ataagtggag agactcttac tgctaaccaa	840
ctagtaagga aaaatccttg ttacagctgt cctataggct gtggaagatg gtttagacta	900
aaagatggta cagagtgcgg aggaccggag tatgaaacac tgtggtgaaa tggctctgac	960
tgtggttcat atgatttataa tgctataat gaagctaata tggatgtaa tgaatatgg	1020
attgatacta ttacctgtgg tgcaacaatt gctgcagcta tggactttt tcaaagagga	1080
tatgtaaaag atgaagaaa agccggagat aacctatctc tcaagtgggg agatacggag	1140
tctatgattt gctggataaa gaaaatggta tatagtgaag gctttggagc aaagatgaca	1200
aatggttcat ataggctttt tgaaggttat ggagtacactg agtattctat gacagttaaa	1260
aagcaagaaa ttccagcata tgatccaagg ggaatacagg gacatggat tacctatgca	1320
gttaataata gaggaggatg tcatattaaat ggatataatga ttaatcctga aatatttagt	1380
tatccggaaa aacttgatag atttgcatta gatggtaaag cagcctatgc caaaatgtg	1440
catgatttaa ctgctgtat tgattctta ggatttgca tattcaactac atttggctt	1500
ggaatacagg attatgtataa tattgtataat gcagtagtag gagaatctac ttgtgattca	1560
gattcactat tagaggcagg agatagatg tggactctt aaaaattatt taatctgca	1620
gctggaatag acagcagcca ggatactcta ccaaagagat tggatgtttt acattttcca	1680
gatggtccat caaagggaca cgatcatagg ctagatgttc ttctgccaga atattactca	1740
gtacgaggat ggagtaaaga gggatatacct acagaagaaa cattaaagaa attaggatta	1800
gatgaatata taggtaaat ctag	1824

<210> 118

Sequence Listing

<211> 607
 <212> PRT
 <213> c. ragsdalei
 <400> 118

Met Tyr Gly Tyr Asn Gly Lys Val Leu Arg Ile Asn Leu Lys Glu Arg
 1 5 10 15

Thr Cys Lys Ser Glu Asn Leu Asp Leu Asp Lys Ala Lys Lys Phe Ile
 20 25 30

Gly Cys Arg Gly Leu Gly Val Lys Thr Leu Phe Asp Glu Ile Asp Pro
 35 40 45

Lys Ile Asp Ala Leu Ser Pro Glu Asn Lys Phe Ile Ile Val Thr Gly
 50 55 60

Pro Leu Thr Gly Ala Pro Val Pro Thr Ser Gly Arg Phe Met Val Val
 65 70 75 80

Thr Lys Ala Pro Leu Thr Gly Thr Ile Gly Ile Ser Asn Ser Gly Gly
 85 90 95

Lys Trp Gly Val Asp Leu Lys Lys Ala Gly Trp Asp Met Ile Ile Val
 100 105 110

Glu Asp Lys Ala Asp Ser Pro Val Tyr Ile Glu Ile Val Asp Asp Lys
 115 120 125

Val Glu Ile Lys Asp Ala Ser Gln Leu Trp Gly Lys Val Thr Ser Glu
 130 135 140

Thr Thr Lys Glu Leu Glu Lys Ile Thr Glu Asn Arg Ser Lys Val Leu
 145 150 155 160

Cys Ile Gly Pro Ala Gly Glu Arg Leu Ser Leu Met Ala Ala Val Met
 165 170 175

Asn Asp Val Asp Arg Thr Ala Ala Arg Gly Gly Val Gly Ala Val Met
 180 185 190

Gly Ser Lys Asn Leu Lys Ala Ile Thr Val Lys Gly Thr Gly Lys Ile
 195 200 205

Ala Leu Ala Asp Lys Glu Lys Val Lys Lys Val Ser Val Glu Lys Ile
 210 215 220

Thr Thr Leu Lys Asn Asp Pro Val Ala Gly Gln Gly Met Pro Thr Tyr
 225 230 235 240

Gly Thr Ala Ile Leu Val Asn Ile Ile Asn Glu Asn Gly Val His Pro
 245 250 255

Sequence Listing

Val Asn Asn Phe Gln Glu Ser Tyr Thr Asp Gln Ala Asp Lys Ile Ser
 260 265 270

Gly Glu Thr Leu Thr Ala Asn Gln Leu Val Arg Lys Asn Pro Cys Tyr
 275 280 285

Ser Cys Pro Ile Gly Cys Gly Arg Trp Val Arg Leu Lys Asp Gly Thr
 290 295 300

Glu Cys Gly Gly Pro Glu Tyr Glu Thr Leu Trp Cys Phe Gly Ser Asp
 305 310 315 320

Cys Gly Ser Tyr Asp Leu Asp Ala Ile Asn Glu Ala Asn Met Leu Cys
 325 330 335

Asn Glu Tyr Gly Ile Asp Thr Ile Thr Cys Gly Ala Thr Ile Ala Ala
 340 345 350

Ala Met Glu Leu Tyr Gln Arg Gly Tyr Val Lys Asp Glu Glu Ile Ala
 355 360 365

Gly Asp Asn Leu Ser Leu Lys Trp Gly Asp Thr Glu Ser Met Ile Gly
 370 375 380

Trp Ile Lys Lys Met Val Tyr Ser Glu Gly Phe Gly Ala Lys Met Thr
 385 390 395 400

Asn Gly Ser Tyr Arg Leu Cys Glu Gly Tyr Gly Val Pro Glu Tyr Ser
 405 410 415

Met Thr Val Lys Lys Gln Glu Ile Pro Ala Tyr Asp Pro Arg Gly Ile
 420 425 430

Gln Gly His Gly Ile Thr Tyr Ala Val Asn Asn Arg Gly Gly Cys His
 435 440 445

Ile Lys Gly Tyr Met Ile Asn Pro Glu Ile Leu Gly Tyr Pro Glu Lys
 450 455 460

Leu Asp Arg Phe Ala Leu Asp Gly Lys Ala Ala Tyr Ala Lys Met Met
 465 470 475 480

His Asp Leu Thr Ala Val Ile Asp Ser Leu Gly Leu Cys Ile Phe Thr
 485 490 495

Thr Phe Gly Leu Gly Ile Gln Asp Tyr Val Asp Met Tyr Asn Ala Val
 500 505 510

Val Gly Glu Ser Thr Cys Asp Ser Asp Ser Leu Leu Glu Ala Gly Asp
 515 520 525

SequenceListing

Arg Val Trp Thr Leu Glu Lys Leu Phe Asn Leu Ala Ala Gly Ile Asp
 530 535 540

Ser Ser Gln Asp Thr Leu Pro Lys Arg Leu Leu Glu Glu Pro Ile Pro
 545 550 555 560

Asp Gly Pro Ser Lys Gly His Val His Arg Leu Asp Val Leu Leu Pro
 565 570 575

Glu Tyr Tyr Ser Val Arg Gly Trp Ser Lys Glu Gly Ile Pro Thr Glu
 580 585 590

Glu Thr Leu Lys Lys Leu Gly Leu Asp Glu Tyr Ile Gly Lys Phe
 595 600 605

<210> 119

<211> 1167

<212> DNA

<213> c. autoethanogenum

<400> 119

atggcaagat ttactttacc aagagacatt tattttggag aaaattcatt agaaaccttg	60
aaagacacctag atggaaaaaa agctgttatt gtcgttaggtg gtggatccat gaaacgattt	120
ggattccttg ataaggttagt aaactactta aaagaagcag gtattgaatc aaaattaata	180
gaaggagttg aaccagatcc atctgttagaa actgttatga atggcgctaa actaatgaga	240
gaatatgaac cagatTTAAT agtatcaata ggtggaggtt caccattga cgcagcaaaa	300
gctatgtgga tattctatga ataccctgag tttactttta aagaggctgt ggTTCCtttt	360
ggTCTTccta aattaagaca aaaagcaaca tttatagcta taccttctac aagtggtaCT	420
gcaacagaag taacggcatt ttctgtataa acagactata aagctaaaat taaatatcct	480
ttagctgact tcaatttaac accagatata gctataattt atccagcatt agctcaaaca	540
atgccaccta aattaactgc acatactgga atggatgcac ttacccatgc tattgaagca	600
tatgttgcag gacttcattt agtttctca gatcctttt ctattcaagc tatagtttatg	660
gtaaatcagt attaattaa atcttacaat gaagataaaag aagctagaaa ccaaATgcAT	720
ttagctcaat gtttagctgg aatggcattt tcaaattgcac ttcttggaaat aactcacagt	780
ttagcacata aaacagggtgc agtattccat attcctcatg gatgtgccaa tgcaatataat	840
tttccctatg ttatagattt caataaaaaaa gcttgcac caagatatgc tgatatagt	900
aggagtctta aacttccagg aaatactgat gatgaattt tagattcatt aactaacatg	960
attaaagata tgaacaagag tatggatatt ccttgacat taaaagatta cggagtagat	1020
gaaaaagaat ttaaagataa tgaagatTTT atagctcata atgccgtatt agatgcctgc	1080
actggatcaa atcctagaag tataaatgtat gctgaaatga aaaaattgtt agaatacatc	1140
tattatggta aaaaggttga tttttaa	1167

Sequence Listing

<210> 120

<211> 388

<212> PRT

<213> c. autoethanogenum

<400> 120

Met Ala Arg Phe Thr Leu Pro Arg Asp Ile Tyr Phe Gly Glu Asn Ser
 1 5 10 15

Leu Glu Thr Leu Lys Asp Leu Asp Gly Lys Lys Ala Val Ile Val Val
 20 25 30

Gly Gly Gly Ser Met Lys Arg Phe Gly Phe Leu Asp Lys Val Val Asn
 35 40 45

Tyr Leu Lys Glu Ala Gly Ile Glu Ser Lys Leu Ile Glu Gly Val Glu
 50 55 60

Pro Asp Pro Ser Val Glu Thr Val Met Asn Gly Ala Lys Leu Met Arg
 65 70 75 80

Glu Tyr Glu Pro Asp Leu Ile Val Ser Ile Gly Gly Ser Pro Ile
 85 90 95

Asp Ala Ala Lys Ala Met Trp Ile Phe Tyr Glu Tyr Pro Glu Phe Thr
 100 105 110

Phe Lys Glu Ala Val Val Pro Phe Gly Leu Pro Lys Leu Arg Gln Lys
 115 120 125

Ala Thr Phe Ile Ala Ile Pro Ser Thr Ser Gly Thr Ala Thr Glu Val
 130 135 140

Thr Ala Phe Ser Val Ile Thr Asp Tyr Lys Ala Lys Ile Lys Tyr Pro
 145 150 155 160

Leu Ala Asp Phe Asn Leu Thr Pro Asp Ile Ala Ile Ile Asp Pro Ala
 165 170 175

Leu Ala Gln Thr Met Pro Pro Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Gly Leu His Ser Val
 195 200 205

Phe Ser Asp Pro Leu Ala Ile Gln Ala Ile Val Met Val Asn Gln Tyr
 210 215 220

Leu Ile Lys Ser Tyr Asn Glu Asp Lys Glu Ala Arg Asn Gln Met His
 225 230 235 240

Sequence Listing

Leu Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
245 250 255

Ile Thr His Ser Leu Ala His Lys Thr Gly Ala Val Phe His Ile Pro
260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
275 280 285

Lys Lys Ala Cys Thr Pro Arg Tyr Ala Asp Ile Ala Arg Ser Leu Lys
290 295 300

Leu Pro Gly Asn Thr Asp Asp Glu Leu Val Asp Ser Leu Thr Asn Met
305 310 315 320

Ile Lys Asp Met Asn Lys Ser Met Asp Ile Pro Leu Thr Leu Lys Asp
325 330 335

Tyr Gly Val Asp Glu Lys Glu Phe Lys Asp Asn Glu Asp Phe Ile Ala
340 345 350

His Asn Ala Val Leu Asp Ala Cys Thr Gly Ser Asn Pro Arg Ser Ile
355 360 365

Asn Asp Ala Glu Met Lys Lys Leu Leu Glu Tyr Ile Tyr Tyr Gly Lys
370 375 380

Lys Val Asp Phe
385

<210> 121
<211> 1167
<212> DNA
<213> c. autoethanogenum

<400> 121	60
atggaaagat ttacttgcc tagggatatt tactttggtg aaaatgcctt agaaaattta	60
aaaaattttag atggaaataa agcagtagtt gttgttaggtg gggatctat gaagagattt	120
ggattcttag ccaaagttga aaaatactta aaagaaactg gtatggaagt taaattaata	180
gaagggttttg agcctgatcc gtctgtttagt actgttatga atggcgctaa aataatgaga	240
gactttaacc cagattggat agtataataa ggtggaggat ctcccataga tgctgctaaa	300
gcaatgtgga tattttatga atacccgac tttacattt aaaaagcggt agtccctttt	360
ggaattccta aattaaggca gaaggcacaa tttgttgcta taccttctac aagtggaaaca	420
gcaactgaag taacatcatt ttctgtataa acagactata aagctaaaat aaaatatcct	480
cttgcagatt ttaaccttac ccctgatata gctataatag atccgtctct tgcagaaaca	540
atgccccaaa agcttacagc acacactgga atggatgcac ttactcacgc aatagaagca	600
tatgttagcaa gtttacattc agatttctca gatccacttg ctatgcacgc tataaccatg	660

Sequence Listing

attcataaat	atttattgaa	atcctatgaa	gaagataaag	aagcttagagg	acatatgcac	720
atagcccaat	gtctagctgg	gatggcattt	tcaaatgctc	tccttggaaat	aactcatagt	780
atagcacata	aaactggtgc	agtatttcac	atacctcatg	ggtgtgctaa	tgccatatac	840
ttacctttagt	ttatagattt	taacaagaaa	gcttggtcag	aaagatatgc	taaaatagcc	900
aaaaagctgc	atctatcagg	aaatagtgaa	gatgagctaa	tagattcatt	aactgaaatg	960
attcgtacta	tgaacaaaaa	gatggatatt	cctctcacca	taaaagattt	tggtataagc	1020
gaaaacgatt	ttaatgaaaa	cctagattt	atagctcaca	atgccatgat	ggatgcctgc	1080
actggatcca	atcctagagc	aataactgag	gaagaaatga	aaaagcttt	gcagtatatg	1140
tataatgggc	aaaaggtaa	tttctag				1167

<210> 122

<211> 388

<212> PRT

<213> c. autoethanogenum

<400> 122

Met	Gly	Arg	Phe	Thr	Leu	Pro	Arg	Asp	Ile	Tyr	Phe	Gly	Glu	Asn	Ala
1					5				10					15	

Leu	Glu	Asn	Leu	Lys	Asn	Leu	Asp	Gly	Asn	Lys	Ala	Val	Val	Val	Val
						20		25				30			

Gly	Gly	Gly	Ser	Met	Lys	Arg	Phe	Gly	Phe	Leu	Ala	Lys	Val	Glu	Lys
				35			40					45			

Tyr	Leu	Lys	Glu	Thr	Gly	Met	Glu	Val	Lys	Leu	Ile	Glu	Gly	Val	Glu
				50		55				60					

Pro	Asp	Pro	Ser	Val	Asp	Thr	Val	Met	Asn	Gly	Ala	Lys	Ile	Met	Arg
65					70			75					80		

Asp	Phe	Asn	Pro	Asp	Trp	Ile	Val	Ser	Ile	Gly	Gly	Ser	Pro	Ile	
				85				90				95			

Asp	Ala	Ala	Lys	Ala	Met	Trp	Ile	Phe	Tyr	Glu	Tyr	Pro	Asp	Phe	Thr
				100				105				110			

Phe	Glu	Lys	Ala	Val	Val	Pro	Phe	Gly	Ile	Pro	Lys	Leu	Arg	Gln	Lys
				115			120				125				

Ala	Gln	Phe	Val	Ala	Ile	Pro	Ser	Thr	Ser	Gly	Thr	Ala	Thr	Glu	Val
				130		135				140					

Thr	Ser	Phe	Ser	Val	Ile	Thr	Asp	Tyr	Lys	Ala	Lys	Ile	Lys	Tyr	Pro
145					150				155			160			

Leu	Ala	Asp	Phe	Asn	Leu	Thr	Pro	Asp	Ile	Ala	Ile	Ile	Asp	Pro	Ser
				165				170				175			

Sequence Listing

Leu Ala Glu Thr Met Pro Lys Lys Leu Thr Ala His Thr Gly Met Asp
 180 185 190

Ala Leu Thr His Ala Ile Glu Ala Tyr Val Ala Ser Leu His Ser Asp
 195 200 205

Phe Ser Asp Pro Leu Ala Met His Ala Ile Thr Met Ile His Lys Tyr
 210 215 220

Leu Leu Lys Ser Tyr Glu Glu Asp Lys Glu Ala Arg Gly His Met His
 225 230 235 240

Ile Ala Gln Cys Leu Ala Gly Met Ala Phe Ser Asn Ala Leu Leu Gly
 245 250 255

Ile Thr His Ser Ile Ala His Lys Thr Gly Ala Val Phe His Ile Pro
 260 265 270

His Gly Cys Ala Asn Ala Ile Tyr Leu Pro Tyr Val Ile Asp Phe Asn
 275 280 285

Lys Lys Ala Cys Ser Glu Arg Tyr Ala Lys Ile Ala Lys Lys Leu His
 290 295 300

Leu Ser Gly Asn Ser Glu Asp Glu Leu Ile Asp Ser Leu Thr Glu Met
 305 310 315 320

Ile Arg Thr Met Asn Lys Lys Met Asp Ile Pro Leu Thr Ile Lys Asp
 325 330 335

Tyr Gly Ile Ser Glu Asn Asp Phe Asn Glu Asn Leu Asp Phe Ile Ala
 340 345 350

His Asn Ala Met Met Asp Ala Cys Thr Gly Ser Asn Pro Arg Ala Ile
 355 360 365

Thr Glu Glu Glu Met Lys Lys Leu Leu Gln Tyr Met Tyr Asn Gly Gln
 370 375 380

Lys Val Asn Phe
 385

<210> 123
 <211> 25
 <212> DNA
 <213> synthetic primer

<400> 123
 ttgatgaaat gatcactgac ggatt

25

<210> 124

SequenceListing

<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 124		
gaaatgttcc atctctcagc tatgt		25
<210> 125		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 125		
catcactttc aataacagaa gtggc		25
<210> 126		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 126		
tacctctaca agcttcataaa cagga		25
<210> 127		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 127		
aaaatgggtc agtatggtat gatgg		25
<210> 128		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 128		
tgttagtaccg caaacctttg ataat		25
<210> 129		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 129		
caagtttact tggtggaaca atagc		25
<210> 130		
<211> 25		
<212> DNA		
<213> synthetic primer		
<400> 130		
gagttgggtct tacagtttta ccagt		25
<210> 131		
<211> 20		
<212> DNA		
<213> synthetic primer		
<400> 131		

		Sequence Listing				
tcaggacctt	ctggaaactgg		20			
<210> 132						
<211> 20						
<212> DNA						
<213> synthetic primer						
<400> 132						
acctccccctt	ttcttgaga		20			
<210> 133						
<211> 20						
<212> DNA						
<213> synthetic primer						
<400> 133						
caggtttcgg	tgctgaccta		20			
<210> 134						
<211> 20						
<212> DNA						
<213> synthetic primer						
<400> 134						
aactccgccg	ttgtatttca		20			
<210> 135						
<211> 37						
<212> DNA						
<213> synthetic primer						
<400> 135						
ccgaattcgt	cgacaacaga	gtttgatcct	ggctcag	37		
<210> 136						
<211> 1461						
<212> DNA						
<213> C. jungdahlii						
<400> 136						
gcactgcatt	tcaaactgga	tatctagagt	gcgggagagg	agaatggaat	tcctagtgt	660
gcggtaaat	gcgttagagat	taggaagaac	accagtggcg	aaggcgattc	tctggaccgt	720
aactgacgct	gaggcacgaa	agcgtggta	gcaaacagga	ttagataccc	tgtagtcca	780
cggcgtaaac	gatgagtact	aggtgttagga	ggtatcgacc	ccttctgtgc	cgcagtaaac	840
acaataagta	ctccgcctgg	gaagtacgat	cgcaagatta	aaactcaaag	gaattgacgg	900
ggcccgcac	aagcagcgg	gcatgtggtt	taattcgaag	caacgcgaag	aaccttacct	960
ggacttgaca	taccctgaat	atcttagaga	taagagaagc	ccttcggggc	agggatacag	1020
gtggtgcatg	gttgcgtca	gctcgtgtcg	tgagatgtta	ggtaagtcc	tgcaacgagc	1080
gcaacccctg	ttgttagttg	ctaacattta	gttgagact	ctagcaagac	tgccgcgg	1140
aacgcggagg	aaggtgggga	tgacgtcaa	tcatcatgcc	ccttatgtcc	agggcaacac	1200
acgtgctaca	atgggcagta	cagagagaag	caagaccgca	aggtggagca	aaccta	1260
actgccccca	gttcggattt	caggctgaaa	ctcgccatca	tgaagttgga	gttgctagta	1320

Sequence Listing

atcgcaatc agaatgtcgc ggtgaatacg ttcccgggcc ttgtacacac cgcccgtaac	1380
accatgagag ctggcaacac ccgaagtccg tagtctaact taggaggacg cggccgaagg	1440
tgggtttagt aattgggttg a	1461
<210> 137	
<211> 26	
<212> DNA	
<213> C. autoethanogenum	
<400> 137	
cggtcgctca aaagaaattt tcttagc	
<210> 138	
<211> 26	
<212> DNA	
<213> C. autoethanogenum	
<400> 138	
ccagaactcc gcaggtcttt tcaccc	
<210> 139	
<211> 23	
<212> DNA	
<213> C. autoethanogenum	
<400> 139	
ggcagtagaa gaaagcggaa tgg	
<210> 140	
<211> 27	
<212> DNA	
<213> C. autoethanogenum	
<400> 140	
aaagcctgca tctctctcta aaactcc	
<210> 141	
<211> 28	
<212> DNA	
<213> C. autoethanogenum	
<400> 141	
taatgatttg ctctccatcc aagaatcc	
<210> 142	
<211> 21	
<212> DNA	
<213> C. autoethanogenum	
<400> 142	
tccgatttct tccgccatac g	
<210> 143	
<211> 28	
<212> DNA	
<213> C. autoethanogenum	
<400> 143	

SequenceListing

agctgttagta gttgttggag gaggatcc

<210> 144
<211> 24
<212> DNA
<213> C. autoethanogenum

<400> 144
cacagacgga tctggttcaa cacc

<210> 145
<211> 32
<212> DNA
<213> C. autoethanogenum

<400> 145
gaatcttattc aacttttaga gcaagtcact gg

<210> 146
<211> 24
<212> DNA
<213> C. autoethanogenum

<400> 146
caacggaact tattccagct ttgc

<210> 147
<211> 31
<212> DNA
<213> C. autoethanogenum

<400> 147
gatgcttttt atgaatttag aagaagaag g

<210> 148
<211> 24
<212> DNA
<213> C. autoethanogenum

<400> 148
tgaaaccaat ccatctgcat ctcc

<210> 149
<211> 27
<212> DNA
<213> C. autoethanogenum

<400> 149
tgcaagatga aagtgtttaga gcaaagg

<210> 150
<211> 24
<212> DNA
<213> C. autoethanogenum

<400> 150
actttgtggc cttccattgg ttgc

<210> 151
<211> 26

SequenceListing

<212> DNA
<213> C. autoethanogenum

<400> 151
cttcaacagg aaacagattc gagagc

<210> 152
<211> 20
<212> DNA
<213> C. autoethanogenum

<400> 152
ccaacaccac cacgtcctgc

<210> 153
<211> 32
<212> DNA
<213> C. autoethanogenum

<400> 153
ggttgggata tgataatagt agaggataag gc

<210> 154
<211> 25
<212> DNA
<213> C. autoethanogenum

<400> 154
gtaacttttc cccaaagctg tgacg