

(12) Oversættelse af ændret
europæisk patentsskriftPatent- og
Varemærkestyrelsen(51) Int.Cl.: **A 47 J 31/36 (2006.01)**(45) Oversættelsen bekendtgjort den: **2019-05-13**(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om opretholdelse af patentet i ændret form: **2019-02-13**(86) Europæisk ansøgning nr.: **09796115.5**(86) Europæisk indleveringsdag: **2009-12-30**(87) Den europæiske ansøgnings publiceringsdag: **2011-04-06**(86) International ansøgning nr.: **NL2009050822**(87) Internationalt publikationsnr.: **WO2010137954**(30) Prioritet: **2009-06-17 EP 09162895** **2009-06-17 EP 09162914**
2009-06-17 EP 09162931 **2009-06-19 EP 09163310**
2009-08-13 EP 09167851 **2009-09-17 EP 09170590**(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC**
MK MT NL NO PL PT RO SE SI SK SM TR(73) Patenthaver: **Koninklijke Douwe Egberts B.V., Vleutensevaart 35, NL-3532 AD Utrecht, Holland**(72) Opfinder: **Kamerbeek, Ralf, Ten Veldestraat 59, 3454 EJ De Meern, Holland**
FLAMAND, John Henri, Meulunterseweg 72, 6741 HP Lunteren, Holland
POST VAN LOON, Angenita Dorothea, Weerschijnvlinder 11, 3544 DT Utrecht, Holland
KOELING, Hendrik Cornelis, Harderwijkkade 11, 3826 BE Amersfoort, Holland
BIESHEUVEL, Arend Cornelis Jacobus, Raadhuislaan 7, 4251 VS Werkendam, Holland(74) Fuldmægtig i Danmark: **NORDIC PATENT SERVICE A/S, Bredgade 30, 1260 København K, Danmark**(54) Benævnelse: **KAPSEL, SYSTEM OG FREMGANGSMÅDE TIL FREMSTILLING AF EN FORUDBESTEMT MÆNGDE**
DRIKKEVARE, DER ER EGNET TIL INDTAGELSE

(56) Fremdragne publikationer:

EP-A1- 2 070 828**WO-A2-2006/137737****WO-A2-2010/084475****DE-T2- 60 114 050****EP-A- 1 849 715****WO-A-2007/137974****WO-A-2008/078990****CH-A- 434 609****FR-A- 2 213 757**

DK/EP 2303077 T4

DESCRIPTION

[0001] The invention relates to a capsule, system and method for preparing a predetermined quantity of beverage suitable for consumption using an extractable product.

[0002] Systems for preparing a beverage, such as coffee, using a brewing device for supplying a liquid, such as water, under pressure to a capsule comprising a dose of a beverage ingredient are known. Commonly, the brewing device comprises an enclosing member for enclosing the capsule. In use a sealing engagement is provided between the capsule and the enclosing member, so as to prevent leaking of a liquid, e.g. water or the beverage. The sealing engagement is usually obtained by pressing the capsule and the enclosing member against each other along a circumferential line of contact.

[0003] It is possible that the material of the enclosing member at the location of the sealing engagement, e.g. an elastomeric material, is softer than the material of the capsule at the location of the sealing engagement, e.g. aluminium. Such system is for instance known from EP 1 203 554. In such case the material of the enclosing member at the location of the sealing engagement may be compressed. Such systems may have the disadvantage that the material of the enclosing member at the location of the sealing engagement can subject to wear, degradation and/or fouling, so that the quality of the sealing engagement may deteriorate if the age of the brewing device increases.

[0004] This disadvantage seems to be, at least partially, overcome by other known systems, wherein the material of the enclosing member at the location of the sealing engagement, e.g. a metal, is harder than the material of the capsule at the location of the sealing engagement, e.g. a plastics material. Such system is for instance known from FR 2 617 389. EP 1 849 715 A1 discloses a capsule having a premade sealing member attached to a flange-like rim of the capsule by crimping a portion of the flange-like rim on a portion of the sealing member. In such cases the material of the capsule at the location of the sealing engagement may be compressed. Such systems have the advantage that the material of the enclosing member at the location of the sealing engagement may be less subject to wear, degradation and/or fouling, while good sealing engagement may be obtained. Especially when the material of the capsule at the location of the sealing engagement is the same material as the material of the circumferential wall, the capsule may be manufactured with great ease. This may, however, provide the disadvantage that such sealing engagement may be upset if the enclosing member, at the location of the sealing engagement, possesses irregularities, such as scratches, crevices, caked-on foul, protrusions or the like.

[0005] It is an object of the invention to at least partially meet the above disadvantage.

[0006] Thereto, according to the invention a capsule according to claim 1 is provided. The capsule is provided for preparing a predetermined quantity of beverage suitable for consumption using an extractable product, comprising a cup comprising a circumferential wall,

a bottom closing the circumferential wall at a first end, and a flange-like rim extending outwardly of the circumferential wall at a second end opposite the bottom, and a lid in use connected to the flange-like rim, wherein the wall, bottom and lid, in use, enclose an inner space comprising the extractable product, and wherein the cup further comprises a plurality of substantially concentric circumferential ridges extending outwardly of the cup, wherein the ridges are made of the same material as the cup.

[0007] In use, at least one of the circumferential ridges may abut against at least a portion of the enclosing member, such that the sealing engagement is formed between, e.g. the top of, at least one of the ridges and the at least one portion of the enclosing member. Since the plurality of ridges is provided, a misalignment between the capsule and the enclosing member may be allowed while still obtaining the sealing engagement.

[0008] The ridges are arranged on the flange-like rim, on the side of the flange-like rim facing away from the lid. Hence, the ridges abut against a leading edge of the enclosing member. Thus, the sealing engagement is formed at the location of the flange-like rim.

[0009] The ridges are integral with the flange-like rim. The ensemble of the ridges and the cup may be a unitary piece. Thus manufacture of the cup may include manufacture of the ridges, e.g. by injection moulding the ensemble of the cup and the ridges. Hence, easy manufacture of the cup of the capsule may be obtained.

[0010] In one embodiment, each ridge of the plurality of ridges has substantially the same height prior to use. Hence, each of the ridges of the plurality of ridges may contribute to the sealing engagement between the capsule and the enclosing member. Optionally, each ridge of the plurality of ridges has substantially the same width. It is not excluded, however, that the ridges have mutually different heights and/or widths.

[0011] It is possible that a width of a ridge, of the plurality of ridges is smaller than a height of that ridge. Preferably this applies to each ridge of the plurality of ridges. Hence the ridge has a slender form, allowing easy deformation of the ridge, e.g. by compression of a top edge of the ridge towards a base of the ridge. Hence, the ridge may easily follow an irregularity of the enclosing member at the location of the sealing engagement, e.g. a dent and/or a protrusion at the leading edge of the enclosing member.

[0012] Preferably, a ridge of the plurality of the ridges has a width that is equal to or less than a thickness of the flange-like rim. Preferably, a ridge of the plurality of ridges has a height that is equal to or less than a thickness of the flange-like rim. Preferably, a ridge of the plurality of ridges has a height that is equal to or less than a minimum thickness of the flange-like rim at the location where the ridges are present. Preferably this applies to each ridge of the plurality of ridges. Hence, a resistance of the ridge against compression may be less than a resistance against compression of the rim. Thus, the rim may be rigid relative to the ridge, while the ridge may possess enough compressibility due to its shape and/or dimensions to provide the sealing engagement with the enclosing member even if the enclosing member comprises an

irregularity at the location of the sealing engagement.

[0013] It is possible that a ridge of the plurality of ridges has a height of less than 0.4 mm, preferably less than 0.3 mm, more preferably less than 0.21 mm, even more preferably less than 0.15 mm. It is also possible that a ridge of the plurality of ridges has a maximum width of less than 0.3 mm, preferably less than 0.21 mm, more preferably less than 0.15 mm. Preferably this applies to each ridge of the plurality of ridges. These dimensions have been found to provide good sealing engagement between the ridge and the enclosing member.

[0014] A ridge of the plurality of ridges has a tapered, e.g. a substantially triangular, cross section. Preferably this applies to each ridge of the plurality of ridges. This provides the advantage that compression of the ridge requires a progressively increasing force. Hence, the ridge can easily follow the contour of an irregularity of the enclosing member since this will exert a locally increased force on the ridge. Other cross sections, such as a semicircular cross section or a beam-shaped cross section, possibly with rounded corners, are conceivable too.

[0015] Preferably all ridges of the plurality of ridges have the same cross sectional shape.

[0016] In an embodiment, a (mutual) radial distance between two neighbouring ridges is less than a maximum width of the ridges, preferably less than 50% of the maximum width, more preferably less than 25% of the maximum width. Thus, the ridges are spaced closely together, allowing a good chance that at least one of the ridges properly abuts against the enclosing member, while still allowing ample space for the ridges to widen due to compression. Also, the closely spaced ridges allow for increased tolerance to misalignment of the capsule with respect to the enclosing member, since the narrow space between the ridges may form a labyrinth providing sufficient resistance against fluid flow to provide a sufficient sealing engagement between the capsule and the enclosing member, even if not one single ridge fully abuts against the enclosing member.

[0017] Preferably, the lid is connected to the flange-like rim and the inner space is at least partially filled with the extractable product. Hence, the capsule ready for use is provided. The capsule may be hermetically closed, e.g. so as to improve shelf life of the capsule. The hermetically closed capsule holds the extractable product out of contact with the environment of the capsule, as opposed to an open capsule in which the extractable product is in contact with the environment.

[0018] Alternatively, the lid and/or bottom is porous and/or comprises openings for allowing a liquid to enter and/or exit the inner space.

[0019] In an embodiment, the capsule is disposable. The disposable capsule is designed and intended to be disposed after single use. Thus, problems associated with hygiene, e.g. microbial growth, may be minimised. The capsule may also be biodegradable to minimise environmental load.

[0020] Preferably, the capsule is designed for preparing a single serving of the beverage.

[0021] The invention also relates to a system according to claim 24. The system for preparing a predetermined quantity of beverage suitable for consumption using an extractable product, comprises i) a capsule comprising a cup comprising a circumferential wall, a bottom closing the circumferential wall at a first end, and a flange-like rim extending outwardly of the circumferential wall at a second end opposite the bottom, and a lid connected to the flange-like rim, wherein the wall, bottom and lid enclose an inner space comprising the extractable product, and wherein the cup further comprises a plurality of substantially concentric circumferential ridges extending outwardly of the cup, wherein the ridges are made of the same material as the cup; and ii) a beverage brewing device comprising an enclosing member for enclosing the capsule, wherein, in use, at least one of the ridges abuts against at least a portion of the enclosing member, such that a sealing engagement between the capsule and the enclosing member is formed.

[0022] At least a portion of a leading edge of the enclosing member is arranged to abut against at least one of the ridges. Herein the ridges are arranged on the flange-like rim of the capsule.

[0023] Preferably, the ridges each have an individual width that is less than the width of the leading edge of the enclosing member. This provides the advantage that the ridges are narrow relative to the leading edge of the enclosing member. Thus, the ridges may easily adapt to a, e.g. small, irregularity, such as a dent, scratch, crevice and/or protrusion, on the leading edge of the enclosing member.

[0024] Preferably, the plurality of ridges has a combined width that is larger than the width of the leading edge of the enclosing member. Hence, considerable tolerance for misalignment of the capsule with respect to the leading edge of the enclosing member is provided.

[0025] It is possible that a ridge of the plurality of ridges has a height that is less than the width of the leading edge of the enclosing member. Preferably this applies to each ridge of the plurality of ridges. Thus, the ridge has a small height relative to the width of the leading edge of the enclosing member. This may prevent buckling of the ridges so that good sealing engagement between the leading edge of the enclosing member and the ridges may be obtained.

[0026] The invention also relates to a method for preparing a predetermined quantity of beverage suitable for consumption using a system according to the invention.

[0027] The invention will now be further elucidated by means of, nonlimiting, examples referring to the drawing, in which

Fig. 1 shows a schematic representation of a first example of a system according to the invention;

Fig. 2 shows a schematic representation of a second example of a system according to the invention;

Fig. 3a shows an enlarged detail of a part of the system according to the invention;

Fig. 3b shows an enlarged detail of a part of the system according to the invention;

Fig. 4 shows an enlarged detail of a part of the system according to the invention;

Fig. 5a shows a schematic representation of a further example of a system; and

Fig. 5b shows a schematic representation of further example of a system;

Fig. 6a shows a schematic representation of a further example of a system according to the invention; and

Fig. 6b shows a schematic representation of an even further example of a system according to the invention.

[0028] In the Figures and the following description, like reference numerals refer to like features.

[0029] Fig. 1 shows a schematic representation, in cross sectional view, of a first example of a system 1 for preparing a predetermined quantity of beverage suitable for consumption using an extractable product. The system 1 comprises an exchangeable capsule 2, and a beverage brewing device 4. The device 4 comprises enclosing member 6 for holding the exchangeable capsule 2. In this example, the device 4 further comprises a support member 8 for supporting the capsule 2.

[0030] In Fig. 1 a gap is drawn between the capsule 2, the enclosing member 6 and the support member 8 for clarity. It will be appreciated that, in use, the capsule 2 may lie in contact with the enclosing member 6 and the support member 8. Commonly, the enclosing member 6 has a shape complementary to the shape of the capsule 2. The apparatus 4 further comprises a fluid dispensing device 10 for supplying an amount of a fluid, such as water, under a pressure, of e.g. 9 bars, to the exchangeable capsule 2.

[0031] In the example shown in Fig. 1, the exchangeable capsule 2 comprises a cup 12 and a lid 14. In this example, the cup 12 comprises a circumferential wall 16, a bottom 18 closing the circumferential wall 16 at a first end, and a flange-like rim 20 extending outwardly of the circumferential wall 16 at a second end opposite the bottom 18 wall. The circumferential wall 16, the bottom 18 and the lid 14 enclose an inner space 22 comprising the extractable product. In this example, the capsule is initially sealed, i.e. is hermetically closed prior to use.

[0032] The system 1 of Fig. 1 comprises bottom piercing means 24 for piercing the bottom 18 of the capsule 2 for creating at least one entrance opening 25 in the bottom 18 for supplying

the fluid to the extractable product through the entrance opening 25.

[0033] The system 1 of Fig. 1 further comprises lid piercing means 26, here embodied as protrusions of the support member 8, for piercing the lid 14 of the capsule 2. The lid piercing means 26 may be arranged to tear the lid 14 once a (fluid) pressure inside the inner space 22 exceeds a threshold pressure and presses the lid 14 against the lid piercing means 26 with sufficient force. The lid 14 may e.g. comprise a tearable foil, e.g. made of aluminium.

[0034] In this example, the cup 12 further comprises a plurality of substantially concentric circumferential ridges 28.i (i=1,2,3). In this example, the ridges 28.i are arranged on the flange-like rim 20. Here the ridges 28.i are arranged on the side of the flange-like rim 20 facing away from the lid 14. More generally put, the ridges 28.i extend outwardly of the cup 12. In this example the ridges 28.i are made of the same material as the cup 12. In this example, the ridges 28.i are integral with the cup 12. It will be appreciated that in this example, the circumferential ridges at least partially circumscribe the inner space 22 of the capsule 2.

[0035] As can be seen from Fig. 1, in use the ridges 28.i may abut against a leading edge 30 of the enclosing member 6. When in this example at least one ridge 28.i abuts against at least a portion of the leading edge 30 of the enclosing member 6, a sealing engagement is obtained between the enclosing member 6 and the capsule 2 at the location where the at least one ridge 28.i abuts against at least the portion of the leading edge 30 of the enclosing member 6.

[0036] The system 1 shown in Fig. 1 is operated as follows for preparing a cup of coffee, wherein the extractable product is roasted and ground coffee.

[0037] The capsule 2 is placed in the enclosing member 6. The support member 8 is brought into contact with the capsule 2. The bottom piercing means 24 pierce the bottom 18 of the capsule 2 for creating the entrance openings 25. The fluid, here hot water under pressure, is supplied to the extractable product in the inner space 22 through the entrance openings 25. The water will wet the coffee grounds and extract the desired substances to form the coffee beverage.

[0038] During supplying the water under pressure to the inner space 22, the pressure inside the capsule 2 will rise. The rise in pressure will cause the lid 14 to deform and be pressed against the lid piercing means 26. Once the pressure reaches a certain level, the tear strength of the lid 14 will be surpassed and the lid will rupture against the lid piercing means 26, creating exit openings. The prepared coffee will drain from the capsule 2 through the exit openings and outlets 32 of the support member 8, and may be supplied to a container such as a cup (not shown).

[0039] Fig. 2 shows a schematic representation, in cross sectional view, of a second example of a system 1 for preparing a predetermined quantity of beverage suitable for consumption using an extractable product. The system 1 comprises an exchangeable capsule 2, and a beverage brewing device 4. The device 4 comprises enclosing member 6 for holding the

exchangeable capsule 2. In this example, the device 4 further comprises a support member 8 for supporting the capsule 2.

[0040] In Fig. 2 a gap is drawn between the capsule 2, the enclosing member 6 and the support member 8 for clarity. It will be appreciated that, in use, the capsule 2 may lie in contact with the enclosing member 6 and the support member 8. Commonly, the enclosing member 6 has a shape complementary to the shape of the capsule 2. The apparatus 4 further comprises a fluid dispensing device 10 for supplying an amount of a fluid, such as water, under a pressure, of e.g. 9 bars, to the exchangeable capsule 2.

[0041] In the example shown in Fig. 2, the exchangeable capsule 2 comprises a cup 12 and a lid 14. In this example, the cup 12 comprises a circumferential wall 16, a bottom 18 closing the circumferential wall 16 at a first end, and a flange-like rim 20 extending outwardly of the circumferential wall 16 at a second end opposite the bottom 18 wall. The circumferential wall 16, the bottom 18 and the lid 14 enclose an inner space 22 comprising the extractable product. In this example, the capsule is initially open. Hence, the capsule 2 comprises pre-made entrance openings 25. The entrance openings 25 may be through holes in the bottom 18. Further, the capsule 2 comprises premade exit openings 27. The exit holes 27 may be through holes in a foil-like lid 14, e.g. manufactured from plastics material, or may be pores in a porous lid, e.g. manufactured from a non-woven material such as filter paper.

[0042] The system 1 of Fig. 2 does not comprise bottom piercing means nor lid piercing means 26.

[0043] In this example, the cup 12 further comprises a plurality of substantially concentric circumferential ridges 28.i (i=1,2,3,...). In this example, the ridges 28.i are arranged on the flange-like rim 20. Here the ridges 28.i are arranged on the side of the flange-like rim 20 facing away from the lid 14. More generally put, the ridges 28.i extend outwardly of the cup 12. In this example the ridges 28.i are made of the same material as the cup 12. In this example, the ridges 28.i are integral with the cup 12.

[0044] As can be seen from Fig. 2, in use the ridges 28.i may abut against a leading edge 30 of the enclosing member 6. When in this example at least one ridge 28.i abuts against at least apportion of the leading edge 30 of the enclosing member 6, a sealing engagement is obtained between the enclosing member 6 and the capsule 2 at the location where the at least one ridge 28.i abuts against at least the portion of the leading edge 30 of the enclosing member 6.

[0045] The system 1 shown in Fig. 2 is operated as follows for preparing a cup of coffee, wherein the extractable product is roasted and ground coffee.

[0046] The capsule 2 is placed in the enclosing member 6. The support member 8 is brought into contact with the capsule 2. The fluid, here hot water under pressure, is supplied to the extractable product in the inner space 22 through the entrance opening 25. The water will wet the coffee grounds and extract the desired substances to form the coffee beverage.

[0047] During supplying the water under pressure to the inner space 22, the pressure inside the capsule 2 may rise. The prepared coffee will drain from the capsule 2 through the exit openings 27 and outlets 32 of the support member 8, and may be supplied to a container such as a cup (not shown).

[0048] Figs. 3a and 3b show an enlarged detail of a part of the system 1 according to the invention. In this example four circumferential ridges 28.i are arranged on the flange-like rim 20. Here, the ridges 28.i are integral with the rim 20. In this example the ridges 28.i are arranged concentrically with respect to each other. In this example the ridges 28.i are also arranged concentrically with an axis of the cup 12. It will be appreciated that the ridges 28.i need not be exactly concentric as long as in use, at least one of the ridges 28.i abuts against at least a portion of the enclosing member 6, such that the sealing engagement is formed between, e.g. the top of, at least one of the ridges and the at least one portion of the enclosing member. Since the plurality of ridges is provided, a misalignment between the capsule and the enclosing member may be allowed while still obtaining the sealing engagement.

[0049] In Fig. 3a the leading edge 30 of the enclosing member 6 comprises an irregularity in the form of a protrusion 34, e.g. a bulge, a burr or a lump (e.g. caked-on debris). It can be seen that in this example one particular ridge 28.3 of the ridges 28.i abuts the protrusion 34 and is locally more compressed. Hence, the ridges 28.i and the enclosing member 6 are in sealing engagement despite the presence of the protrusion 34.

[0050] In Fig. 3b the leading edge 30 of the enclosing member 6 comprises an irregularity in the form of a recess 35, e.g. a dent, scratch or a crevice. It can be seen that in this example one particular ridge 28.2 of the ridges 28.i faces the recess 35. A neighbouring ridge 28.3 will, accordingly be locally more compressed and abut the leading edge 30 of the enclosing member 6. Hence, the ridges 28.i and the enclosing member 6 are in sealing engagement despite the presence of the recess 35.

[0051] In the examples of Figs. 3a and 3b, each of the ridges 28.i has a substantially triangular cross section. This provides the advantage that compression of the ridges 28.i requires a progressively increasing force. Hence, each ridge 28.i can easily follow the contour of the irregularity of the enclosing member 6.

[0052] In the examples of Figs. 3a and 3b, all ridges have substantially the same height H_R prior to use, e.g. prior to being compressed. Hence, all ridges 28.i may equally contribute to the sealing engagement between the capsule 2 and the enclosing member 6. Hence, a misalignment between the capsule 2 and the enclosing member 6 may be tolerated, without the leading edge 30 failing to abut any ridge 28.i.

[0053] In the examples of Figs. 3a and 3b the ridges 28.i each have a maximum individual width W_R that is less than the width W_{LE} of the leading edge 30 of the enclosing member 6. Thus, each ridge 28.i is narrow relative to the leading edge 30, so that each ridge 28.i can

easily be compressed by the leading edge 30. Further, here the plurality of ridges 28.i has a combined width W_C that is larger than the width W_{LE} of the leading edge 30 of the enclosing member 6. Hence, a misalignment between the capsule 2 and the enclosing member 6 may be tolerated, without the leading edge 30 failing to abut any ridge 28.i.

[0054] In these examples, the width W_R of each of the ridges 28.i is smaller than the height H_R of that ridge prior to use. Hence the ridges 28.i have a slender form, allowing easy deformation of the ridges 28.i, e.g. by compression of a top edge 36 of the ridges towards a base 38 of the ridges 28.i. Hence, the ridges 28.i may easily follow the irregularity in the enclosing member 6 at the location of the sealing engagement. It is noted that herein the width W_R of the ridge is measured parallel to the plane onto which the ridge is arranged and that the height H_R of the ridge is measured orthogonal to the width.

[0055] In these examples, the width W_R each of the ridges 28.i is less than a thickness H_F of the flange-like rim 20. In these examples, the width W_R each of the ridges 28.i is less than a minimum thickness H_F of the flange-like rim 20 at the location where the ridges are present. Also in these examples, the height H_R of each of the ridges 28.i prior to use is less than the thickness H_F of the flange-like rim 20. Hence, a resistance against compression of the ridges 28.i may be less than a resistance against compression of the rim 20. In these examples the rim 20 will be rigid relative to the ridges 28.i, while the ridges 28.i may possess enough compressibility due to their shape and dimensions to provide the sealing engagement with the enclosing member 6 even if the enclosing member comprises the irregularity at the location of the sealing engagement. It will be appreciated that the ratio of the resistance against compression of the ridges 28.i to the resistance against compression of the rim 20 may be further improved by increasing the thickness of the rim 20 at least locally at the position of the ridges 28.i.

[0056] The geometry of the ridges 28.i allows the ridges 28.i to adapt to an irregularity at the enclosing member 6, even if a material is chosen which allows the remainder of the cup 12 to be substantially rigid. Such substantially rigid cup 12 may increase the ease of handling of the capsule 2. It is for instance possible that the ridges 28.i are unitary with the flange-like rim 20, circumferential wall 16, and optionally the bottom 18, e.g. of a plastics material. It has been found that in such case the cup 12 may be substantially rigid, while the ridges 28.i may cooperate with the enclosing member 6 to provide the sealing engagement even if the chosen plastics material has a shore D hardness of 70 or more.

[0057] In these examples, the thickness of the rim 20 is approximately 0.2 mm. In these examples, the width of the leading edge 30 of the enclosing member 6 is approximately 0.7 mm. In these examples the height H_R of each of the ridges 28.i is approximately 0.2 mm prior to use. Preferably the height H_R is less than 0.3 mm, more preferably less than 0.21 mm, it is also possible that the height H_R is less than 0.15 mm prior to use. In these examples the maximum width W_R of each of the ridges 28.i is approximately 0.14 mm. Preferably, the width

W_R is less than 0.3 mm, more preferably less than 0.21 mm, most preferably less than 0.15 mm. These dimensions have been found to provide good sealing engagement between the ridges 28.i and the enclosing member 6.

[0058] In the examples of Figs. 3a and 3b the ridges 28.i are spaced radially such that two neighbouring ridges substantially abut radially. More in general, the radial distance between two neighbouring ridges 28.i is preferably less than the maximum width W_R of the ridges 28.i, more preferably less than 50% of the maximum width W_R , most preferably less than 25% of the maximum width W_R . Thus, the ridges 28.i are spaced closely together, allowing a good chance that at least one of the ridges 28.i properly abuts against the leading edge 30 of the enclosing member 6. Also, the closely spaced ridges 28.i allow for increased tolerance to misalignment of the capsule 2 with respect to the enclosing member 6, since the narrow space between the ridges 28.i may form a labyrinth providing sufficient resistance against fluid flow to provide a sufficient sealing engagement, even if not one single ridge 28.i fully abuts against the enclosing member 6.

[0059] In a preferred embodiment according to Fig. 3a or Fig. 3b, the ridges 28.i are integrally formed with the cup 12. The ensemble of the cup 12 and ridges 28.i may e.g. be injection moulded in one piece. The ensemble may be formed from a plastics material, such as for instance polypropylene.

[0060] In a preferred embodiment the material of the ridges 28.i is chosen to be plastically deformable. Preferably, the ridges 28.i, at least the tops 36 of the ridges may be plastically deformed upon contact with the enclosing member 6. The plastically deforming ridges 28.i may easily adapt to an irregularity of the enclosing member 6 at the location of the sealing engagement.

[0061] It will be appreciated that the details of Figs. 3a and 3b may be applied to the system described in view of Fig. 1 as well as to the system described in view of Fig. 2.

[0062] Fig. 4 shows an enlarged detail of a part of an elaborate system 1 according to the invention. In this example, in addition to the plurality of ridges 28.i, the capsule 2 comprises a further ridge 40.

[0063] In Fig. 4 the further ridge 40 is arranged on the flange-like rim 20, on the side facing away from the lid 14. Here, the further ridge 40 is integral with the flange-like rim 20. In this example, the further ridge 40 is substantially concentric with the ridges 28.i. Here the further ridge 40 is positioned circumscribing the ridges 28.i. It will be noted that a height H_{FR} of the further ridge 40 is different from the height H_R of the ridges 28.i. In this example, the height H_{FR} of the further ridge 40 is larger than the height H_R of the ridges 28.i.

[0064] In this example, the further ridge 40 is arranged to abut against an outer circumferential surface 42 of the enclosing member 6. The outer circumferential surface 42 may be wedged

against the inner circumferential surface 44 of the further ridge 40. In order to facilitate insertion of the enclosing member 6 within the perimeter of the further ridge 40, the further ridge 40 may comprise a conical section 46 on the inner circumferential surface 44.

[0065] Thus, in this example at least one of the ridges 28.i abuts against the enclosing member 6, and additionally, the further ridge 40 abuts against the enclosing member 6. Hence, an improved sealing engagement between the capsule 2 and the enclosing member 6 may be obtained.

[0066] It will be appreciated that the further ridge 40 may also be applied in the situations described with respect to Figs. 1, 2, 3a and 3b.

[0067] Fig. 5a shows a schematic representation of a further example of a system 1. The system 1 shown in Fig. 5a is substantially identical to the system shown in Fig. 1. In Fig. 5a, however, the location of the ridges 28.i on the cup 12 is different. In this example, the ridges 28.i are located on the circumferential side wall 16 of the cup 12. Here, the ridges 28.i abut against an inner circumferential surface 48 of the enclosing member 6. In Fig. 5a the ridges 28.i and the inner circumferential surface 48 are in sealing engagement. It will be appreciated that also in the system shown in Fig. 2 the ridges 28.i may be located on the circumferential side wall 16 of the cup 12.

[0068] Fig. 5b shows a schematic representation of a further example of a system 1. The system 1 shown in Fig. 5b is substantially identical to the system shown in Fig. 2. In Fig. 5b, however, the location of the ridges 28.i on the cup 12 is different. In this example, the ridges 28.i are located on the outer surface of the bottom 18 of the cup 12. Here, the ridges 28.i abut against an inner back surface 50 of the enclosing member 6. In Fig. 5b the ridges 28.i and the inner back surface 50 are in sealing engagement. It will be appreciated that also in the system shown in Fig. 1 the ridges 28.i may be located on the outer surface of the bottom 18 of the cup 12.

[0069] Fig. 6a shows a schematic representation of a further example of a system 1 according to the invention. The system 1 shown in Fig. 6a is substantially identical to the system shown in Fig. 3a and Fig. 3b. In Fig. 6a, however, the flange-like rim comprises a thickened portion at the location where the ridges 28.i are present. That is a thickness H_F of the flange-like rim is greater at the location where the ridges are present than a thickness H_{Fa} of the flange-like rim at a location adjacent thereto. This embodiment may prove useful when a height H_R of the ridges would otherwise become so large that the ridges might become unstable.

[0070] Fig. 6b shows a schematic representation of a further example of a system 1 according to the invention. The system 1 shown in Fig. 6b is substantially identical to the system shown in Fig. 3a and Fig. 3b. In Fig. 6b, however, the flange-like rim comprises a thinned portion at the location where the ridges 28.i are present. That is a thickness H_F of the flange-like rim is smaller at the location where the ridges are present than a thickness H_{Fa} of the flange-like rim

at a location adjacent thereto. This embodiment may prove useful when a height H_R of the ridges would otherwise become too small to be properly deformed.

[0071] In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.

[0072] It is for instance possible that the capsule as shown in fig. 2 is used in the system of Fig. 1. It is possible that in such instance the capsule is designed such that the bottom is not pierced by the bottom piercing means. It is also possible that the lid and the lid piercing means are designed such that the lid is not torn under the effect of fluid pressure in the inner space of the capsule.

[0073] It will be appreciated that if the enclosing member has the leading edge for abutting the flange-like rim of the capsule, this leading edge may also comprise irregularities in the form of a plurality of radially extending grooves. Also in such case a sealing engagement may be obtained between the leading edge of the enclosing member and the ridges of the capsule according to the invention.

[0074] It is possible that the capsule is provided as a fillable or refillable capsule that can be filled or refilled by a user, respectively. Such capsule may be provided as a separate cup and lid that may be connected to the cup by the user after filling the capsule with a beverage ingredient. Alternatively, the lid may be partially, e.g. hingedly, connected to the cup so the user can connect the lid to substantially the entire perimeter of the flange-like rim after filling the cup with the beverage ingredient.

[0075] In the examples, the plurality of ridges comprises three or four ridges. It will be appreciated that also another number of ridges may be used, such as two, five, six, seven, eight, nine or ten ridges.

[0076] In the examples the capsules are substantially rotation symmetric about a central axis. It will be appreciated that the capsule may also have different shapes. In the examples, the ridges are substantially circular about the central axis. It will be appreciated that the ridges also may have other shapes.

[0077] However, other modifications, variations and alternatives are also possible. The specifications, drawings and examples are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.

[0078] In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word 'comprising' does not exclude the presence of other features or steps than those listed in a claim. Furthermore, the words 'a' and 'an' shall not be construed as limited to 'only one', but instead are used to mean 'at least one', and do not exclude a plurality.

The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [EP1203554A \[0003\]](#)
- [FR2617389 \[0004\]](#)
- [EP1849715A1 \[0004\]](#)

Patentkrav

1. Kapsel (2) til fremstilling af en forudbestemt mængde drikkevare, der er egnet til indtagelse, ved anvendelse af et ekstraherbart produkt, omfattende en kop (12), der omfatter en periferisk væg (16), en bund (18), der lukker den periferiske væg ved en første ende, og en flangelignende kant (20), der strækker sig udefter fra den periferiske væg ved en anden ende modsat bunden, og et låg (14) i anvendelse forbundet med den flangelignende kant (20), hvor væggen, bunden og låget, i anvendelse, omslutter et indre rum (22), der omfatter det ekstraherbare produkt, **kendetegnet ved, at** koppen (12) endvidere omfatter en flerhed af i det væsentlige koncentriske perifere fremspring (28.i), der strækker sig udefter fra koppen, hvor fremspringene er fremstillet af det samme materiale som koppen, hvor fremspringene (28.i) er anbragt på den flangelignende kant (20), hvor fremspringene (28.i) er anbragt på siden af den flangelignende kant (20) vendende væk fra låget (14), hvor fremspringene (28.i) er integreret med den flangelignende kant (20), hvor et fremspring af flerheden af fremspring (28.i) har et tilspidset, f.eks. et i det væsentlige trekantet tværsnit.
15
2. Kapsel (2) ifølge krav 1, hvor hvert fremspring af flerheden af fremspring (28.i) i det væsentlige har den samme højde.
3. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor hvert fremspring af flerheden af fremspring (28.i) i det væsentlige har den samme bredde.
20
4. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor en bredde af et fremspring af flerheden af fremspring (28.i) er mindre end en højde af dette fremspring.
- 25 5. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor et fremspring af flerheden af fremspring (28.i) har en bredde, der svarer til eller er mindre end en tykkelse af den flangelignende kant (20).
- 30 6. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor et fremspring af flerheden af fremspring (28.i) har en højde, der svarer til eller er mindre end en tykkelse af den flangelignende kant (20).
7. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor tykkelsen af den flangelignende kant (20) er større på det sted, hvor fremspringene (28.i) er til stede end på et sted

stødende op dertil.

8. Kapsel (2) ifølge et hvilket som helst af krav 1-7, hvor tykkelsen af den flangelignende kant (20) er mindre på det sted, hvor fremspringene (28.i) er til stede end på et sted stødende op 5 dertil.
9. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor hvert fremspring af flerheden af fremspring (28.i) i det væsentlige har den samme tværsnitsform.
10. 10. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor en radial afstand mellem to tilstødende fremspring (28.i) er mindre end en maksimal bredde af fremspringene, fortrinsvis mindre end 50 % af den maksimale bredde, mere fortrinsvis mindre end 25 % af den maksimale bredde.
15. 11. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor flerheden af fremspring (28.i) omfatter to, tre, fire, fem, seks, syv eller otte fremspring.
20. 12. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor et fremspring af flerheden af fremspring (28.i) har en højde på mindre end 0,4 mm, fortrinsvis mindre end 0,3 mm, mere fortrinsvis mindre end 0,21 mm, endnu mere fortrinsvis mindre end 0,15 mm.
25. 13. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor et fremspring af flerheden af fremspring (28.i) har en maksimal bredde på mindre end 0,3 mm, fortrinsvis mindre end 0,21 mm, mere fortrinsvis mindre end 0,15 mm.
14. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor fremspringene (28.i) er fremstillet af et plastmateriale.
30. 15. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor fremspringene (28.i) er plastisk deformerbare.
16. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor kapslen omfatter et yderligere fremspring (40), der i det væsentlige er koncentrisk med flerheden af fremspring (28.i), hvor en højde af den yderligere kant adskiller sig fra højden af fremspringene.

17. Kapsel (2) ifølge krav 21, hvor højden af det yderligere fremspring (40) er større end højden af fremspringene (28.i).

5 18. Kapsel (2) ifølge krav 21 eller 22, hvor det yderligere fremspring (40) omfatter en konisk sektion på en indre periferisk overflade (44) deraf.

10 19. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor låget (14) er forbundet med den flangelignende kant (20) og det indre rum (22) er mindst delvist fyldt med det ekstraherbare produkt.

20. Kapsel (2) ifølge et hvilket som helst af krav 1-19, hvor kapslen er hermetisk lukket.

15 21. Kapsel (2) ifølge et hvilket som helst af krav 1-19, hvor låget (14) og/eller bunden (18) er porøs og/eller omfatter åbninger (25, 27) til at gøre det muligt for en væske at trænge ind i og/eller forlade det indre rum (22).

22. Kapsel (2) ifølge et hvilket som helst af de foregående krav, hvor kapslen er til engangsbrug og/eller biologisk nedbrydelig.

20 23. System (1) til fremstilling af en forudbestemt mængde drikkevare, der er egnet til indtagelse, ved anvendelse af et ekstraherbart produkt, omfattende

- en kapsel (2) ifølge et hvilket som helst af krav 1-22; og

- en drikkevarebryggeindretning (4), der omfatter et omsluttende element (6) til

25 omslutning af kapslen, hvor, i anvendelse, mindst ét af fremspringene (28.i) ligger an mod mindst en del af det omsluttende element (6), således at der dannes et tætnende indgreb mellem kapslen og det omsluttende element;

hvor mindst en del af en forkant (30) af det omsluttende element (6) er indrettet til at ligge an mod mindst ét af fremspringene (28.i).

30 24. System (1) ifølge et hvilket som helst af krav 23, hvor fremspringene (28.i) hvert har en individuel bredde, der er mindre end bredden af forkanten (30) af det omsluttende element (6).

25. System (1) ifølge et hvilket som helst af krav 23-24, hvor flerheden af fremspring (28.i)

har en kombineret bredde, der er større end bredden af forkanten (30) af det omsluttende element (6).

26. System (1) ifølge et hvilket som helst af krav 23-25, hvor et fremspring af flerheden af fremspring (28.i) har en højde, der er mindre end bredden af forkanten (30) af det omsluttende element (6).

27. System (1) ifølge et hvilket som helst af krav 23-26, hvor kapslen (2) er en kapsel ifølge krav 16 eller 17, hvor det yderligere fremspring (40) er indrettet til at ligge an mod en ydre 10 periferisk overflade (42) af det omsluttende element (6).

28. System (1) ifølge et hvilket som helst af krav 28-33, hvor kapslen (2) er en kapsel ifølge krav 19, 20 eller 21, og hvor kapslen er omsluttet i det omsluttende element (6), således at det mindst ene af fremspringene (28.i) ligger an mod mindst delen af det omsluttende element, 15 således at der dannes et tætnende indgreb mellem kapslen og det omsluttende element.

29. System (1) ifølge krav 28, hvor det mindst ene fremspring deformeres plastisk af det omsluttende element (6).

20 30. Fremgangsmåde til fremstilling af en forudbestemt mængde drikkevare, der er der er egnet til indtagelse, ved anvendelse af et ekstraherbart produkt, omfattende følgende trin
- tilvejebringelse af en kapsel (2) ifølge et hvilket som helst af krav 1-22;
- tilvejebringelse af en drikkevarebryggeindretning (4) omfattende et omsluttende element (6) til omslutning af kapslen (2);

25 - indsætning af kapslen i det omsluttende element, således at mindst ét af fremspringene (28.i) ligger an mod mindst en del af en forkant af det omsluttende element (6), således at der dannes et tætnende indgreb mellem kapslen og det omsluttende element;

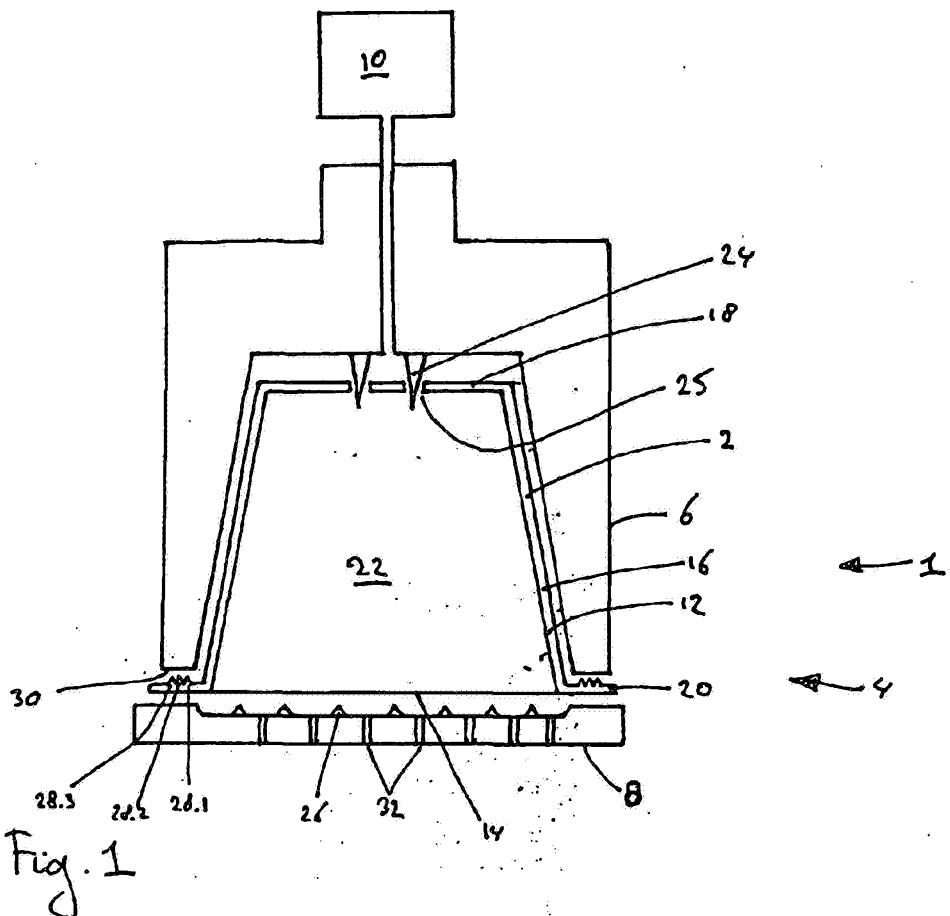
30 - sammenpresning af det mindst ene af fremspringene (28.i) og mindst delen af forkanten af det omsluttende element (6), således at der dannes det tætnende indgreb mellem kapslen og det omsluttende element;

- tilvejebringelse af en væske, såsom vand, til det indre rum (22) af kapslen for fremstilling af drikkevaren; og

- dræning af drikkevaren fra kapslen (2).

31. Fremgangsmåde ifølge krav 30, hvor fremspringene (28.i) hvert har en individuel bredde, der er mindre end bredden af forkanten (30) af det omsluttende element (6).

32. Fremgangsmåde ifølge et hvilket som helst af krav 30-31, hvor flerheden af fremspring (28.i) har en kombineret bredde, der er større end bredden af forkanten (30) af det omsluttende element (6).


33. Fremgangsmåde ifølge et hvilket som helst af krav 30-32, hvor et fremspring af flerheden af fremspring (28.i) har en højde, der er mindre end bredden af forkanten (30) af det omsluttende element (6).

34. Fremgangsmåde ifølge et hvilket som helst af krav 30-33, hvor kapslen (2) er en kapsel ifølge krav 16 eller 17, hvilken fremgangsmåde endvidere omfatter at lade det yderligere fremspring (40) ligge an mod en ydre periferisk overflade (42) af det omsluttende element (6).

35. Fremgangsmåde ifølge et hvilket som helst af krav 30-34, hvor kapslen (2) er en kapsel ifølge krav 20, hvor kapslen lukkes hermetisk før anvendelse.

36. Fremgangsmåde ifølge et hvilket som helst af krav 30-35, der omfatter plastisk deformation af det mindst ene fremspring ved hjælp af det omsluttende element (6).

DRAWINGS

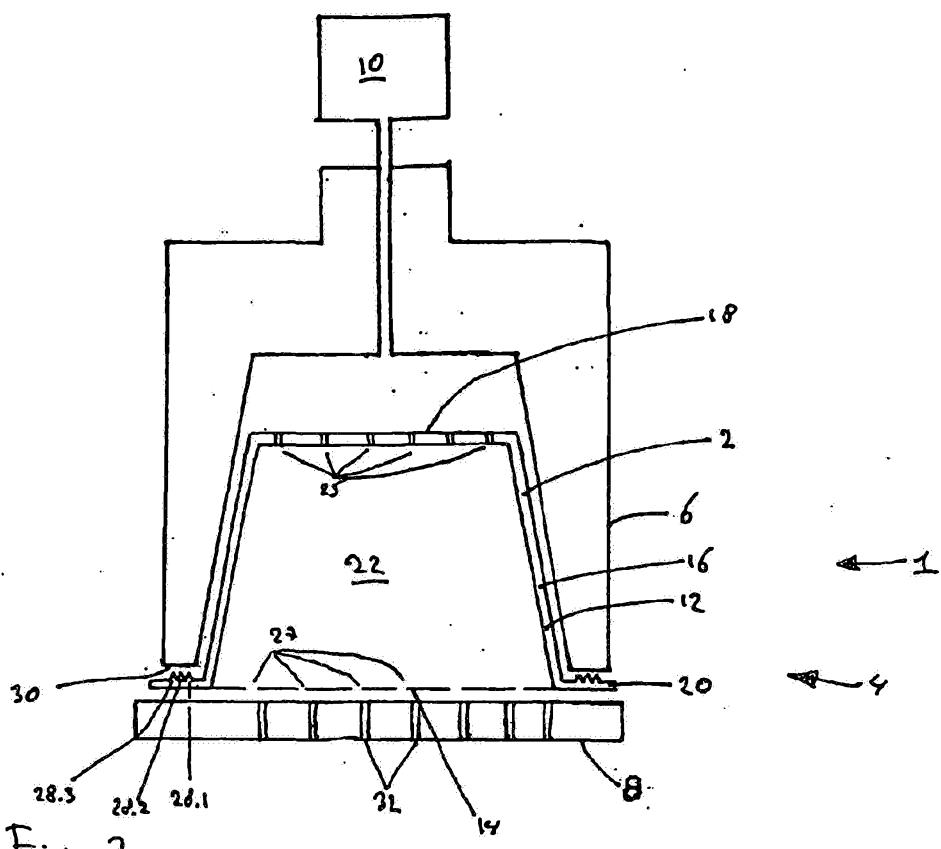
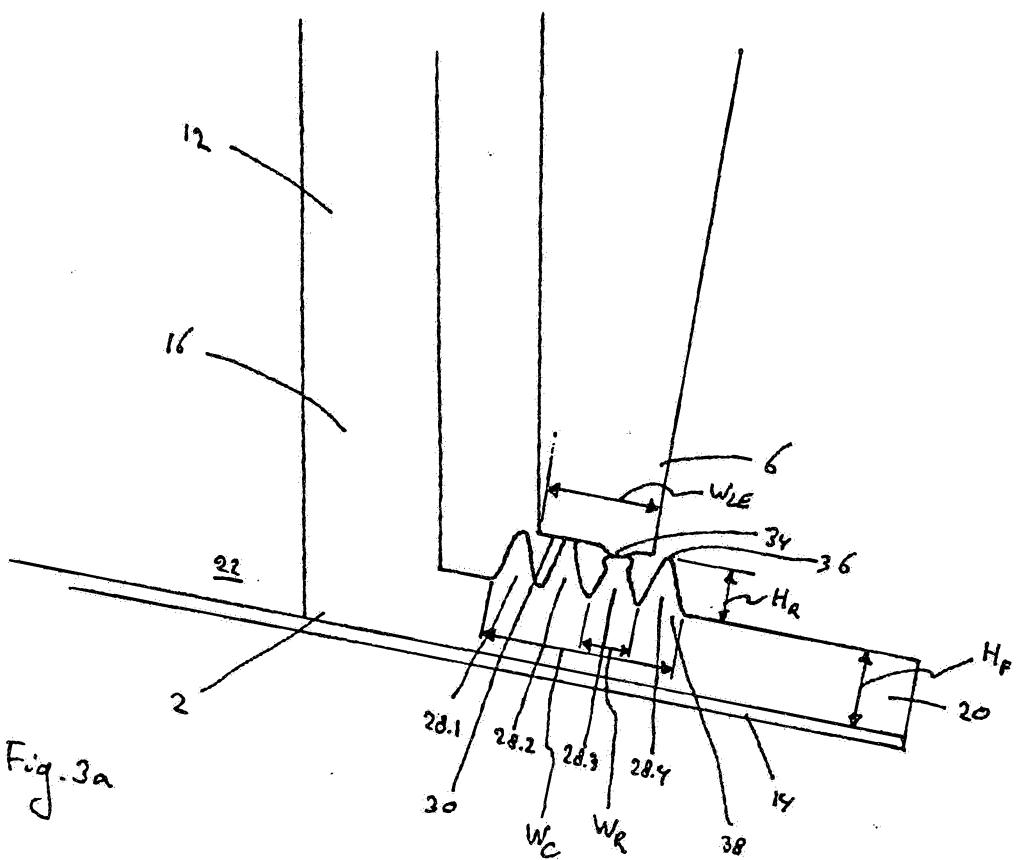
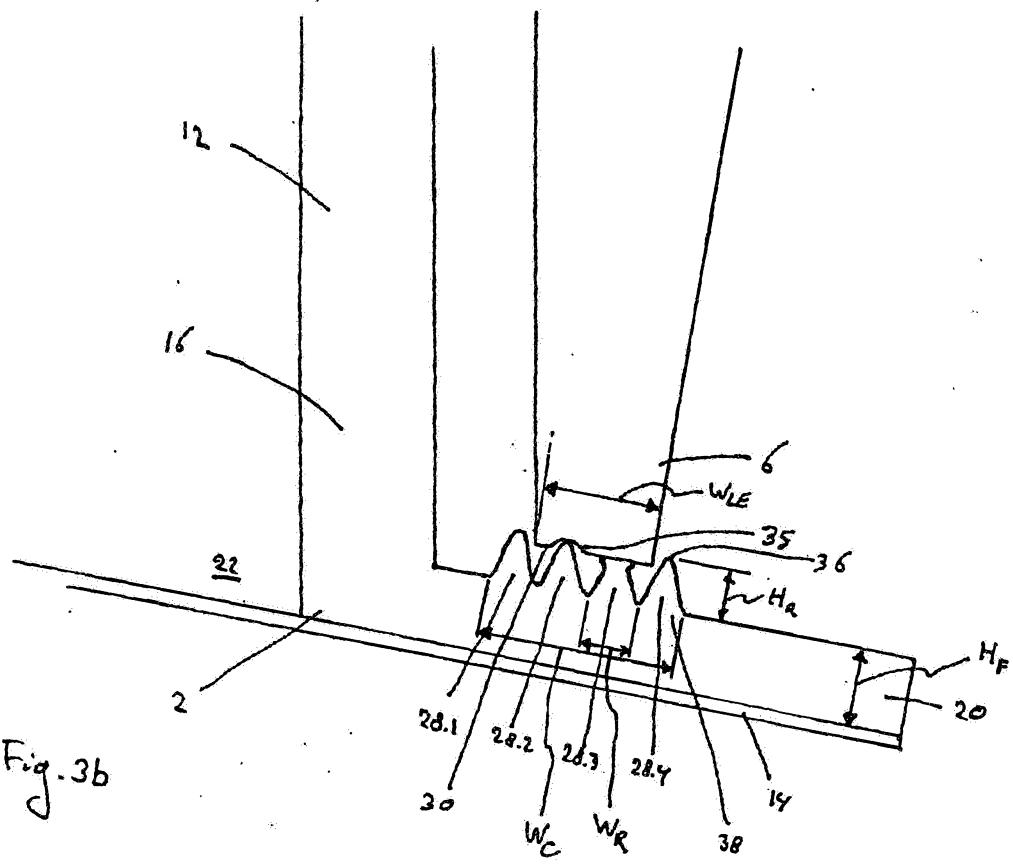
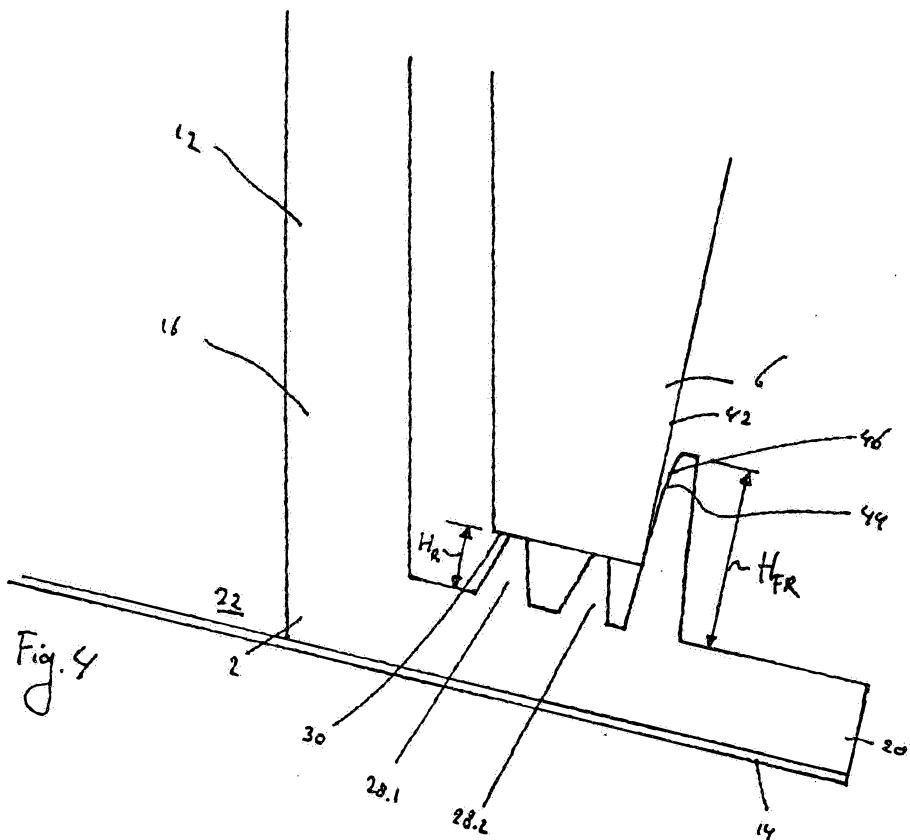




Fig. 2


DK/EP 2303077 T4

DK/EP 2303077 T4

DK/EP 2303077 T4

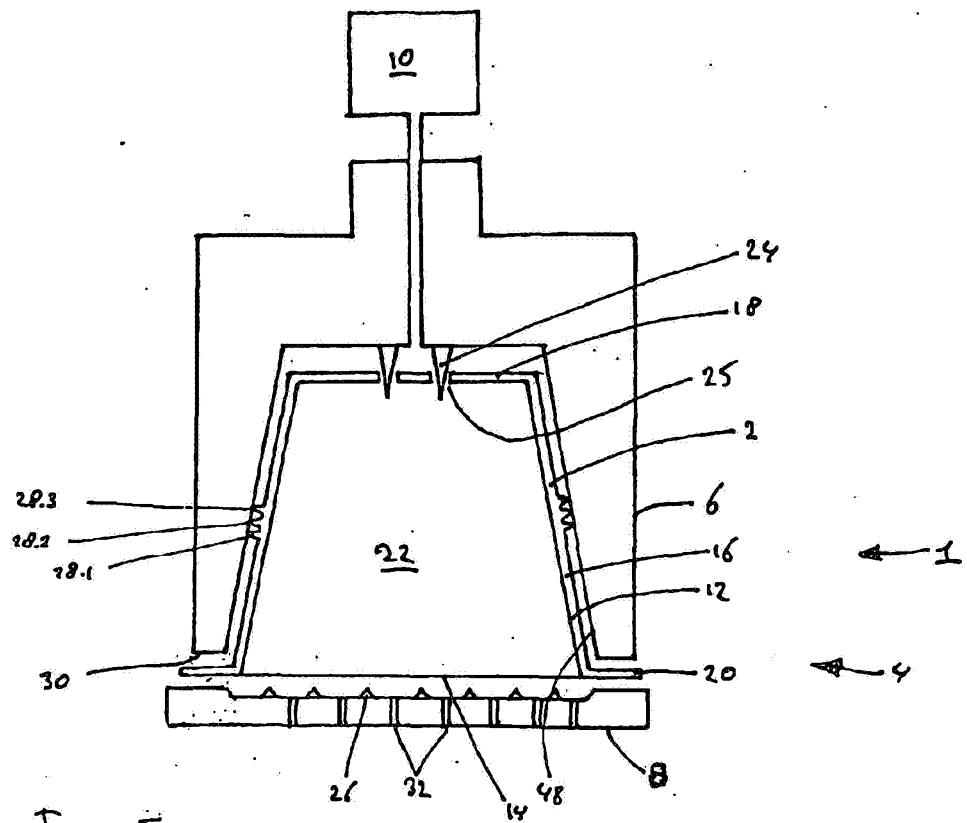
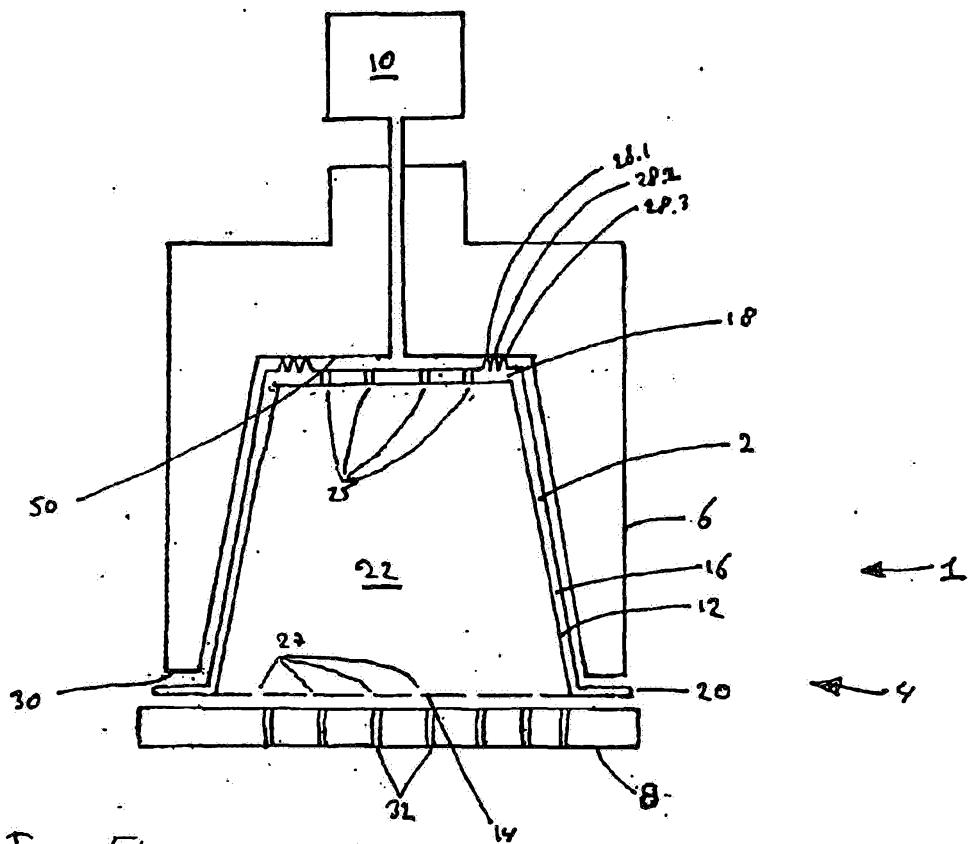



Fig. 5a

DK/EP 2303077 T4

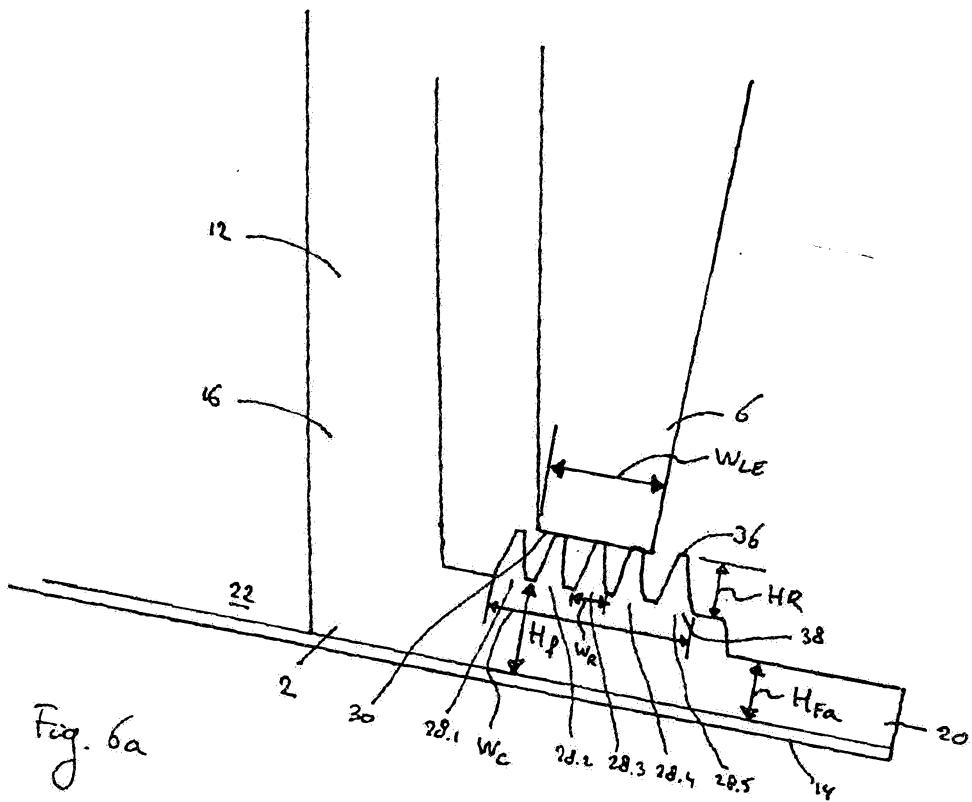
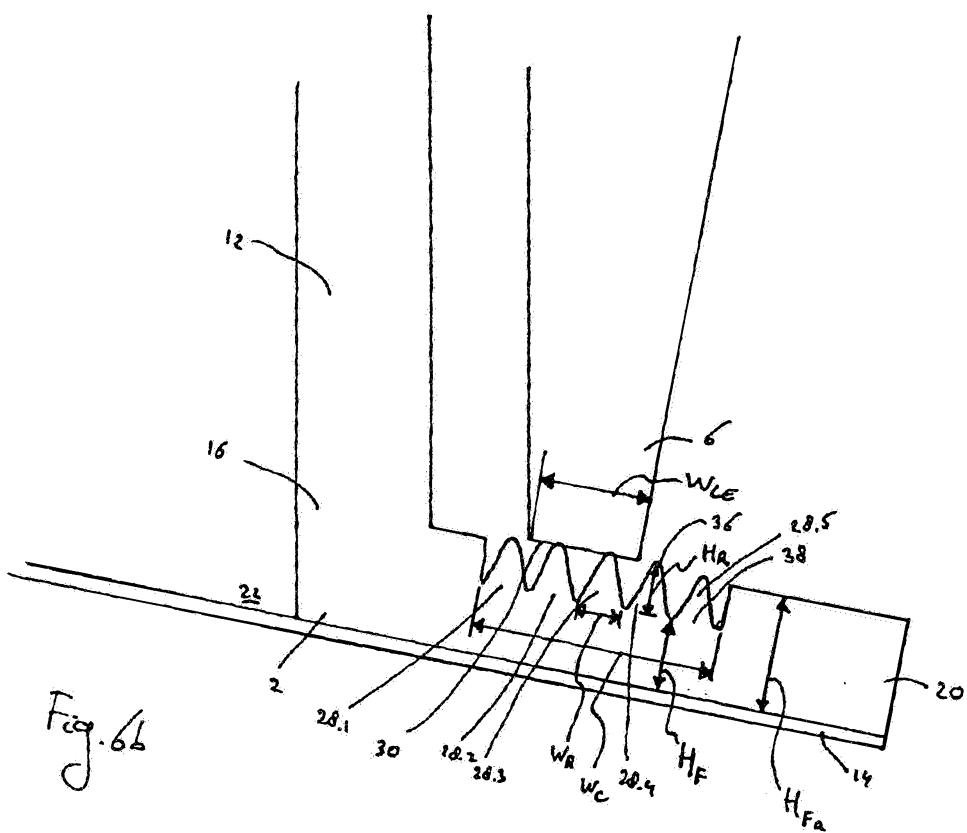



Fig. 6a

DK/EP 2303077 T4

