I*I Innovation, Sciences et Innovation, Science and CA 2922490 C 2023/01/24
Développement économique Canada Economic Development Canada

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 922 490

12 BREVET CANADIEN

CANADIAN PATENT

13 C

(86) Date de dépo6t PCT/PCT Filing Date: 2014/09/12

(87) Date publication PCT/PCT Publication Date: 2015/03/26
(45) Date de délivrance/lssue Date: 2023/01/24

(85) Entrée phase nationale/National Entry: 2016/02/25

(86) N° demande PCT/PCT Application No.: US 2014/055290
(87) N° publication PCT/PCT Publication No.: 2015/041930

(30) Priorités/Priorities: 2013/09/17 (US61/879,068),
2014/02/12 (US14/179,378)

(51) CLInt./Int.Cl. GO6F 9/455(2018.01),
GO6F 21/57(2013.01)

(72) Inventeurs/Inventors:
HEPKIN, DAVID A., US;
JOHNSON, KENNETH D., US

(73) Propriétaire/Owner:
MICROSOFT TECHNOLOGY LICENSING, LLC, US

(74) Agent: SMART & BIGGAR LP

(54) Titre : APPLICATION SELECTIVE D'INTEGRITE DE CODE FACILITEE PAR GESTIONNAIRE DE MACHINE

VIRTUELLE

(54) Title: VIRTUAL MACHINE MANAGER FACILITATED SELECTIVE CODE INTEGRITY ENFORCEMENT

200

112—\

208 Operating System

Policy Enforcement
Module

Policy Evaluation
Results 210

Virtual Machine 108

Higher Privileged Entity

202

204

Code Integrity Kernel Mode Code
Verification Module Verification Results 206

(57) Abrégé/Abstract:

A virtual machine manager facilitates selective code integrity enforcement. A virtual machine manager (or other higher privileged
entity) can verify the integrity of code in memory pages, and a virtual processor running in kernel mode executes the code on a
memory page only if the virtual machine manager (or other higher privileged entity) has verified the code integrity of that code.
However, the virtual machine manager need not verify the integrity of code in memory pages when the virtual processor is running

in user mode. Rather, an operating system running on

the virtual processor can apply any of a variety of policies (e.g., optionally

perform any of a variety of different checks or verifications of the code) to determine whether the code can be executed in user

mode.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2015/041930 A1 |1 I} NP0 O A R

(43) International Publication Date

CA 02922490 2016-02-25

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/041930 A1

26 March 2015 (26.03.2015) WIPO | PCT
(51) International Patent Classification: (72) Inventors: HEPKIN, David A.; c¢/o Microsoft Corpora-
GO6F 9/455 (2006.01) GO6F 21/51 (2013.01) tion, LCA - International Patents (8/1172), One Microsoft
(21) International Application Number: Way, Redmond, V.Vashmg.ton 98052-6399 .(US)' JOHN-
PCT/US2014/055290 SON, Kenneth D.; ¢/o Microsoft Corporation, LCA - In-
ternational Patents (8/1172), One Microsoft Way, Red-
(22) International Filing Date: mond, Washington 98052-6399 (US).
12 September 2014 (12.09.2014) (81) Designated States (uniess otherwise indicated, for every
(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
L. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: Enghsh BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
61/879,068 17 September 2013 (17.09.2013) Us HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
14/179,378 12 February 2014 (12.02.2014) Us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(71) Applicant: MICROSOFT CORPORATION [US/US]J; PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
One Microsoft Way, Redmond, Washington 98052-6399 SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (uniess otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: VIRTUAL MACHINE MANAGER FACILITATED SELECTIVE CODE INTEGRITY ENFORCEMENT

200

112
208

Operating System

Policy Enforcement
Module

Policy Evaluation
Results 210

Virtual Machine 106

Higher Privileged Entity 204

202

Code Integrity
Verification Module

Fig. 2

Kernel Mode Code
Verification Results 206

(57) Abstract: A virtual machine manager facilitates select-
ive code integrity enforcement. A virtual machine manager
(or other higher privileged entity) can verify the integrity of
code in memory pages, and a virtual processor running in
kernel mode executes the code on a memory page only it the
virtual machine manager (or other higher privileged entity)
has veritied the code integrity of that code. However, the vir-
tual machine manager need not verity the integrity of code in
memory pages when the virtual processor is running in user
mode. Rather, an operating system running on the virtual pro-
cessor can apply any of a variety of policies (e.g., optionally
perform any of a variety of different checks or verifications of
the code) to determine whether the code can be executed in
user mode.

CA 02922490 2016-02-25

WO 2015/041930 A1 AT 00N VTN A AR

DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, as to the applicant's entitlement to claim the priority of
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, the earlier application (Rule 4.17(iii))

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published:

Declarations under Rule 4.17:

with international search report (Art. 21(3))

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

VIRTUAL MACHINE MANAGER FACILITATED SELECTIVE CODE
INTEGRITY ENFORCEMENT

BACKGROUND

[0001] As computing technology has advanced, computing devices have become
increasingly interconnected. While this interconnection provides many benefits, it is not
without its problems. One such problem is that computing devices are increasingly
exposed to malicious programs. Malicious programs can operate in different ways, such as
by stcaling information from a computing device, disabling a computing device, using a
computing device to launch attacks against other computing devices, and so forth.
Although some techniques have been developed to protect a computing device against
malicious programs, such malicious programs remain and can lead to frustrating user
experiences when they infect a user’s computer.

SUMMARY
[0002] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detdiled Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.
[0003] In accordance with one or more agpects, a memory page including executable
code to be executed by a virtual processor of a virtual machine is identified, the virtual
machine being managed by a virtual machine manager. A determination is made as to
whether the memory page is to be executable in a kernel mode. In response to determining
that the memory page is to be executable in kernel mode, a code integrity check of the
cxccutable code is performed and cxecution of the executable code is allowed for the
kernel mode only if the code integrity check verifics the executable code. In response to
determining that the memory page is not to be executable in kernel mode, an operating
system of the virtual machine is allowed to determine whether to allow execution of the
executable code.
[0004] In accordance with one or more aspects, a computing device includes an
operating system, a virtual machine manager, and a processor. The processor is configured
to allow the virtual machine manager to restrict kernel mode execution of memory pages
to memory pages having code the integrity of which has been verified by a higher

privileged entity that is more privileged than the operating system, but allow user mode

10

15

20

25

30

81794592

execution of memory pages without regard for whether integrity of code on the memory

pages has been verified by the higher privileged entity.

[0004a] According to one aspect of the present invention, there is provided a method
implemented in a computing device, the method comprising: identifying, in response to a
request by a virtual machine or operating system running in the virtual machine to make a
memory page executable, the memory page, the memory page comprising one of a
plurality of memory pages storing code for a program including executable code to be
executed by a virtual processor of the virtual machine, the virtual machine being managed
by a virtual machine manager; determining, in response to the request to make the memory
page cxecutable, whether the identified memory page of the plurality of memory pages
storing code for the program is to be executable in a kemel mode or a user mode;
performing, by a more privileged entity than the operating system of the virtual machine
and in response to determining that the identified memory page of the plurality of memory
pages storing code for the program is to be executable in the kemel mode, a code integrity
check of the executable code stored in the plurality of memory pages and allowing
execution of the executable code only if the code integrity check based on a code integrity
policy verifies the executable code stored in the plurality of memory pages; and allowing,
in response to determining that the identified memory page of the plurality of memory
pages storing code for the program is not to be executable in the kernel mode, the
operating system of the virtual machine to determine whether to allow execution of the
executable code of all of the plurality of memory pages storing code for the program in the

user mode.

[0004b] According to another aspect of the present invention, there is provided a
computing device including an operating system, a virtual machine manager, and a
processor, the processor being programmed with instructions to: determine, in response to
a request by a virtual machine to make a memory page of multiple memory pages storing
code for a program executable and for each memory page of the multiple memory pages
storing code for the program, whether the memory page is to be executable in a kernel
mode or a user mode; allow, if the memory page is to be executable in the kernel mode,
the virtual machine manager to restrict kernel mode execution of all of the multiple
memory pages storing code for the program to allow execution of the code only if the

integrity of the multiple memory pages storing code for the program have been verified by

2

Date Regue/Date Received 2021-10-20

10

15

20

25

30

81794592

a higher privileged entity that is more privileged than the operating system; and allow, if
the memory page is to be executable in the user mode, user mode execution of all of the
multiple memory pages storing code for the program without regard for whether integrity
of code on the memory pages storing code for the program has been verified by the higher

privileged entity.

[0004¢c] According to still another aspect of the present invention, there is provided a
computer-readable storage medium having stored thereon multiple instructions that,
responsive to execution by one or more physical processors of a computing device, cause
the one or more physical processors to perform operations comprising: identifying, in
response to a request by a virtual machine or operating system running in the virtual
machine to make a memory page executable, the memory page, the memory page
comprising one of a plurality of memory pages storing code for a program including
executable code to be executed by a virtual processor of the virtual machine of the
computing device, the virtual machine being managed by a virtual machine manager of the
computing device; determining, in response to the request to make the memory page
executable, whether the identified memory page of the plurality of memory pages storing
code for the program is to be executable in a kernel mode or a user mode; in response to
determining that the memory page of the plurality of memory pages storing code for the
program is to be executable in the kernel mode: performing, by the virtual machine
manager, a code integrity check of the executable code of the identified memory page of
the plurality of memory pages storing code for the program, and allowing execution of the
executable code of all of the plurality of memory pages storing code for the program for
the kernel mode only if the code integrity check verifies the executable code of the
identified memory page based on a code integrity policy; and in response to determining
that the identified memory page of the plurality of memory pages storing code for the
program is not to be executable in the kemel mode, allowing the operating system of the
virtual machine to determine whether to allow execution of the executable code of all of
the plurality of memory pages storing code for the program in the user mode, the operating
system allowing execution of the executable code only if a policy of the operating system

is satisfied.

[0004d] According to yet another aspect of the present invention, there is provided a

method implemented in a computing device, the method comprising: identifying a

2a

Date Regue/Date Received 2021-10-20

10

15

20

25

30

81794592

memory page based at least on a request by a virtual machine or operating system to make
the identified memory page executable, the identified memory page storing exccutable
code to be executed by a virtual processor of the virtual machine; determining, based at
least on the request to make the identified memory page executable, whether the identified
memory page is to be executable in a kernel mode or a user mode; determining whether to
perform a code integrity check of the executable code stored in the identified memory
page based at least on whether the identified memory page is to be executable in the kernel
mode or the user mode; and in instances when the identified memory page is to be
executable in the kemel mode: performing the code integrity check based on a code
integrity policy of the executable code stored in the identified memory page; and provided
the code integrity check verifies the executable code stored in the identified memory page,
allowing execution of the executable code by setting an execution permission attribute to

allow execution of the executable code in the kernel mode.

[0004e] According to a further aspect of the present invention, there is provided a
computing device comprising: a virtual machine, a virtual machine manager, and a
processor, the processor being programmed with instructions to: receive a request by the
virtual machine to make a particular memory page storing code for a program exccutable
and an indication whether the particular memory page is to be executable in a kernel mode
or a user mode; determine whether to perform a code integrity check of the code stored in
the particular memory page based at least on whether the particular memory page is to be
executable in the kernel mode or the user mode; when the particular memory page is to be
executable in the kernel mode, perform the code integrity check of the code stored in the
particular memory page with the virtual machine manager; and when the code integrity

check succeeds, set an execution permission attribute to allow execution of the code.

[0004f] According to yet a further aspect of the present invention, there is provided a
computer-readable storage medium having stored thereon multiple instructions that,
responsive to execution by one or more physical processors of a computing device, cause
the one or more physical processors to perform operations comprising: identifying a
memory page based at least on a request by a virtual machine or operating system running
in the virtual machine to make the identified memory page executable, the identified
memory page storing executable code to be executed by a virtual processor of the virtual

machine of the computing device; determining, based at least on the request to make the

2b

Date Regue/Date Received 2021-10-20

10

15

20

25

30

81794592

identified memory page executable, whether the identified memory page is to be
executable in a kemel mode or a user mode; determining whether to perform a code
integrity check of the executable code stored in the identified memory page based at Ieast
on whether the identified memory page is to be executable in the kernel mode or the user
mode; in instances when the identified memory page is to be executable in the kernel
mode: performing, by a virtual machine manager, the code integrity check of the
executable code stored in the identified memory page, and when the code integrity check
based on a code integrity policy verifies the executable code of the identified memory
page, allowing execution of the executable code in the identified memory page by setting
an execution permission attribute to allow execution of the executable code for the kernel
mode; and in other instances when the identified memory page is not to be executable in
the kermel mode, allowing the operating system to determine whether to allow execution of
the executable code in the identified memory page according to a policy of the operating

system.

[0004g] According to still a further aspect of the present invention, there is provided a
method implemented in a computing device for protecting against malicious programs, the
method being carried out at least in part by a virtual machine manager, and the method
comprising: identifying a memory page including executable code to be executed by a
virtual processor of a virtual machine, the virtual machine being managed by the virtual
machine manager; determining whether the memory page is to be executable in a kemel
mode; performing, by a higher privileged entity than an operating system of the virtual
machine and in response to determining that the memory page is to be executable in the
kernel mode, a code integrity check of the executable code based on a code integrity
policy and allowing execution of the executable code for the kernel mode only if the code
integrity check verifies the executable code; and allowing, in response to determining that
the memory page is not to be executable in kernel mode, the operating system of the
virtual machine to determine whether to allow execution of the executable code in user
mode, wherein the higher privileged entity than the operating system of the virtual
machine is the virtual machine manager and wherein the method further comprises
performing, by the operating system and in response to determining that the memory page
is not to be executable in the kernel mode, the code integrity check of the executable code
and allowing execution of the executable code only if the code integrity check by the

operating system verifies the executable code.
2¢

Date Regue/Date Received 2021-10-20

81794592

[0004h] According to another aspect of the present invention, there is provided a
computing device including a host operating system, a virtual machine manager, a virtual
machine, the virtual machine being managed by the virtual machine manager, the virtual
machine comprising an operating system of the virtual machine, and a processor, the

5 processor being configured to perform a method as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The same numbers are used throughout the drawings to reference like features.

[0006] Fig. 1 is a block diagram illustrating an example computing device
implementing the techniques discussed herein in accordance with one or more

10 embodiments.

[0007] Fig. 2 illustrates an example system implementing the virtual machine manager
facilitated selective code integrity enforcement techniques discussed herein in accordance

with one or more embodiments.

[0008] Fig. 3 is a flowchart illustrating an example process for implementing virtual
15 machine manager facilitated selective code integrity enforcement in accordance with one

or more embodiments.

[0009] Fig. 4 illustrates another example system implementing the virtual machine
manager facilitated selective code integrity enforcement in accordance with one or more

embodiments.

20 [o0010] Fig. 5 illustrates an example system that includes an example computing device
that is representative of one or more systems and/or devices that may implement the

various techniques described herein.
DETAILED DESCRIPTION

[0011] Virtual machine manager facilitated sclective code integrity enforcement is
25 discussed herein. A virtual machine is a software implementation of a physical device that
can run programs analogous to a physical device. The virtual machine, and access to
hardware of the physical device, is managed by a virtual machine manager on the physical
device. The virtual machine and virtual machine manager access memory that is made up

2d

Date Regue/Date Received 2021-10-20

81794592

of multiple blocks or portions referred to as memory pages (or simply pages). Code
integrity is used to facilitate protection against malicious code on the physical device.
Code integrity refers to the integrity of code (e.g., a binary) being verified based on a code
integrity policy. If the code is verified based on the code integrity policy, then the integrity
5 of the code is verified and the code is allowed to execute; otherwise, the integrity of the

code is not verified and the code is not allowed to execute.

[0012] A processor can execute code in a kemel mode or in a user mode. When a
virtual processor of the virtual machine is running in kemel mode, the virtual processor

runs only code the integrity of which is verified by the virtual machine manager (or by

2e

Date Regue/Date Received 2021-10-20

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

another entity more privileged than the operating system running on the virtual processor).
The code integrity of memory pages including code is verified, and the virtual processor
running in kernel mode can execute the code on a memory page only if the virtual
machine manager (or other more privileged entity) has verified the code integrity of the
code on the memory page. However, when the virtual processor is running in user mode,
an operating system running on the virtual processor determines whether the code can be
executed. The operating system can apply any of a variety of policies (e.g., perform any of
a variety of different checks or verifications of the code) to determine whether the code
can be exccuted in user mode, including optionally exccuting the code in user mode
without performing any checks or verifications of the code.

[0013] Fig. 1 is a block diagram illustrating an example computing device 100
implementing the techniques discussed herein in accordance with one or more
embodiments. The computing device 100 can be any of a variety of different types of
devices. For example, the computing device 100 can be a desktop computer, a server
computer, a laptop or netbook computer, a tablet or notepad computer, a mobile station, an
entertainment appliance, a set-top box communicatively coupled o a display device, 4
television or other display device, a cellular or other wireless phone, a game console, an
automotive computer, a wearable computer, and so forth.

[0014] The computing device 100 includes a wvirtual machine manager 102, also
referred to as a hypervisor, and one or more components 104. The virtual machine
manager 102 manages access to the functionality provided by the components 104.
Alternatively, the virtual machine manager 102 can run on a host operating system (not
shown), in which case the host operating system manages access to the functionality
provided by the components 104.

[0015] The components 104 can be a variety of different processor components,
input/output (I/0O) components, and/or other components or devices. For example,
components 104 can include one or more processors or processor cores, one or more
memory components (e.g., volatile and/or nonvolatile memory), one or more storage
devices (e.g., optical and/or magnetic disks, Flash memory drives), one or more
communication components (e.g., wired and/or wireless network adapters), combinations
thereof, and so forth. Although illustrated as part of the computing device 100, one or
more of the components 104 (e.g., one or more storage devices) can be implemented
external to the computing device 100. Various components or modules running on the

computing device 100, including the virtual machine manager 102, can access this

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

functionality provided by the components 104 directly and/or indirectly via other
components or modules.

[0016] The virtual machine manager 102 allows a virtual machine 106 to run on the
computing device 100. A single virtual machine 106 is illustrated in the computing device
100, although alternatively multiple virtual machines can run on the computing device
100. A virtual machine refers to a software implementation of a physical computing
device (or other machine or system) that can run programs analogous to a physical
computing device. The virtual machine includes one or more virtual components that are
similar to (but are softwarc implementations of) the components 104. An opcrating system
as well as other applications can execute using the virtual components as they would using
the components 104, including running on virtual processors or virtual processor cores,
accessing virtual memory, and so forth. The operating system and other applications
executing in the virtual machine 106 need have no knowledge, and typically have no
knowledge, that they are executing in a virtual machine.

[0017] Virtual machine 106 includes an operating system 112, one or more
applications 114, and one or more virtual components 116. The operating system 112 runs
or executes on one or more virtual processors or processor cores included as one or more
of the components 116, and manages execution of the applications 114.

[0018] The virtual machine manager 102 includes a virtual machine (VM) control
module 122 and a page management module 124. Virtual machine control module 122
manages the mapping of the virtual components 116 to the components 104, including
scheduling of virtual processors or processor cores to execute on physical processors or
processor cores. The page management module 124 identifies which pages are executable
in kernel mode, and can optionally perform code integrity checks on code for memory
pages to be cxccutable in kernel mode as discussed in more detail below. Although
illustrated as two separate modules, it should be noted that the functionality of the modules
122 and 124 can be combined into a single module (e.g., the functionality of the page
management module 124 can be included in the VM control module 122).

[0019] The operating system 112 and virtual machine manager 102 manage storage of
and access to memory that is made up of multiple blocks or portions that are referred to as
memory pages (or simply pages). The memory can be, for example, any type of CPU
(Central Processing Unit) addressable memory, such as volatile memory (e.g., RAM) or

nonvolatile memory (e.g., Flash memory). Different programs can be allocated memory

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

pages, and these programs can be applications 114, programs of operating system 112, or
other components or modules.

[0020] The operating system 112 and virtual machine manager 102 can allow different
types of access to memory pages by a program, such as read access, write access, and
execute access. If read access (also referred to as read permission) is given to a memory
page, then the content of the memory page is allowed to be read (e.g., to a particular one
or more programs). If write access (also referred to as write permission) is given to a
memory page, then content is allowed to be written to the memory page (e.g., by a
particular one or more programs). If ecxccute access (also referred to as execute
permission) is given to a memory page, code stored in (also referred to as stored on) the
memory page is allowed to be executed.

[0021] The operating system 112 and/or a more privileged entity than the operating
system 112 (e.g., the virtual machine manager 102) can determine whether to give execute
permission to a memory page based at least in part on verifying the code integrity of the
code on the memory page. Verifying the code integrity refers to verifying the integrity of
the code (e.g., a binary or portions thereof) based on a code integrity policy. Various
different code integrity policies can be used, and the integrity of the code can thus be
verified in various different manners. If the integrity of the code is verified based on the
code integrity policy, then the code integrity is verified and the code is allowed to execute.
However, if the integrity of the code is not verified based on the code integrity policy, then
the code integrity is not verified and the code is not allowed to execute.

[0022] In one or more embodiments, the code integrity policy indicates that the
integrity of code is verified based on the code having been signed using digital certificates
that identify the origin of the code (c.g., an entity that digitally signed the code) and
establish a chain of trust for the code. The code is signed by generating a digital signature
based on the code and a cryptographic key. Without the cryptographic key (or a
corresponding key, such as a private key of a public/private key pair) it is computationally
very difficult to create a signature that can be verified using the cryptographic key.
However, any entity with the cryptographic key (or a corresponding key, such as a public
key of a public/private key pair) can use the key to verify the digital signature by
executing a suitable digital signature verification algorithm on the key, the signature, and
the code that was signed. As the digital signature is based on the code, any change to the

code will result in the digital signature not being verified. Thus, the digital certificate

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

allows an entity verifying the code to verify that the code has not been changed after the
code was digitally signed.

[0023] The entity verifying the code (e.g., the operating system 112 or virtual machine
manager 102) identifies one or more trusted entities. These trusted entities can be
identified in different manners, such as being pre-configured in the verifying entity, being
provided by an administrator of the computing device 100, or being obtained elsewhere. A
chain of trust can be established that identifies the trusted entity as well as one or more
other entities. The chain of trust refers to a series of entities beginning with the entity that
digitally signed the code and ending with an entity that is trusted by the entity verifying
the code. Any number of additional entities can be included in the chain, cach entity
verifying that it trusts the previous entity in the chain. For example, assume that code is
signed by an entity A that is not trusted by the entity verifying the code, but that an entity
D is trusted by the entity verifying the code. The chain of trust can include the entity A
that digitally signed the code, an entity B providing a digital certificate verifying that
entity B trusts entity A, an entity C providing a digital certificate verifying that entity C
trusts entity B, and the entity D providing a digital certificate verifying that entity D (rusts
entity C.

[0024] If the chain of trust is verified and the code has not been modified, then the
code integrity check succeeds — the integrity of the code is verified and the code is allowed
to execute. However, if the chain of trust is not verified and/or the code has been modified,
then the code integrity check fails — the integrity of the code is not verified and the code is
not allowed to execute.

[0025] Alternatively, the integrity of the code can be verified in other manners. For
example, code can be generated by, or at the direction of, the entity that is verifying the
code. The code integrity policy can indicate that such code is automatically trcated as
verified by the entity, and the code integrity check for such code succeeds (the integrity of
the code is verified and the code is allowed to execute). By way of another example, code
can be verified by being analyzed according to various other rules or criteria indicated by
the code integrity policy. If the analysis of the code determines that the code integrity
policy has been satisfied, then the code is verified and the code integrity check succeeds
(the integrity of the code is verified and the code is allowed to execute). However, if the
analysis of the code determines that the code integrity policy has not been satisfied, then
the code is not verified and the code integrity check fails (the integrity of the code is not

verified and the code is not allowed to execute).

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

[0026] In one or more embodiments, the code of a program can be stored in multiple
memory pages, and the code integrity check for those multiple pages is performed as a
whole. The code integrity check for the code of the program is performed, and if the code
integrity check succeeds then execute permission is given to all of the multiple memory
pages in which the code is stored. However, if the code integrity check fails then execute
permission is not given to any of the multiple memory pages in which the code is stored.
[0027] Alternatively, the code integrity check for each of the multiple pages in which
code of a program is stored can be performed individually, and independently of the code
integrity check for code stored in others of the multiple pages. For example, in response to
an attempt to cxecute code in onc of the multiple memory pages, the code integrity check
is performed for at least the code on that memory page and execute permission is given or
not given to that memory page based on whether the code integrity check fails or
succeeds.

[0028] The one or more processors of the computing device 100 support execution of
code in multiple different modes, referred to as kernel mode (also referred to as kernel-
mode, supervisor mode, or supervisor-mode) and user mode (also referred to as user-
mode). The applications 114 typically run in user mode, and the operating system 112 can
include some core components that run in kernel mode and other components that run in
user mode. User mode is less privileged (i.e., more restricted) than kernel mode. Drivers
installed on or otherwise included in the operating system 112 to facilitate communication
with virtual components 116 can run in user mode or in kernel mode. The use of kernel
mode and user mode provides additional protection to code that runs in kernel mode, such
as by a processor executing code preventing code running in user mode from accessing
memory used by code running in kernel mode.

[0029] Although referred to herein as kernel mode and user mode, alternatively onc or
more additional modes may be supported by the processors of the computing device 100.
In such situations, the modes discussed herein can be referred to as kernel mode and non-
kernel mode, with the modes other than kernel mode being treated analogously to the user
mode discussed herein. Alternatively, the modes discussed herein can be referred to as
user mode and non-user mode, with the modes other than user mode being treated
analogously to the kernel mode discussed herein.

[0030] Fig. 2 illustrates an example system 200 implementing the virtual machine
manager facilitated selective code integrity enforcement techniques discussed herein. The

system 200 includes an operating system 112 running in a virtual machine 106, and a code

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

integrity verification module 202 that is part of a higher privileged entity 204. The code
integrity verification module 202 can optionally be included in a page management
module 124 running in a virtual machine manager 102 of Fig. 1. The code integrity
verification module 202 performs code integrity verification for code that a virtual
processor desires to execute when the virtual processor is operating in kernel mode,
providing kernel mode code verification results 206 indicating whether code integrity
verification for the code succeeds or fails. If the code integrity verification succeeds then
the code can be executed in kernel mode, and if the code integrity verification fails then
the code cannot be exccuted in kernel mode.

[0031] The higher privileged entity 204 refers to an entity that is more privileged (less
restricted) than the operating system 112. The higher privileged entity 204 can be the
virtual machine manager 102 of Fig. 1. The higher privileged entity 204 can alternatively
be one or more other entities, such as a virtual processor running in a secure mode that is a
higher privilege than kernel mode of the operating system 112 (e.g., a secure mode
managed by the virtual machine manager 102). The higher privileged entity can be
implemented as soflware, firmware, and/or hardware. In situations in which the higher
privileged entity 204 is an entity other than the virtual machine manager, the kernel mode
code verification results 206 can be provided to the virtual machine manager, allowing the
virtual machine manager to maintain a record identifying code the integrity of which has
been verified and thus can be executed in kernel mode.

[0032] The operating system 112 includes a policy enforcement module 208 that
implements one or more policies to determine whether code that a virtual processor desires
to execute when the virtual processor is operating in user mode can be executed. Various
different policies can be implemented by the policy enforcement module 208, such as
performing code integrity verification analogous to the code integrity verification module
202, checking other characteristics of the code or the operating system 112, and so forth.
The policy implemented by the policy enforcement module 208 can also be to execute all
code in user mode (e.g., execute code in user mode without performing any code integrity
checks or other verifications). The policy enforcement module 208 applies the policy for
code when the virtual processor is operating in user mode, providing policy evaluation
results 210 indicating whether the policy is satisfied (the policy check succeeds) or is not
satisfied (the policy check fails). If the policy check succeeds then the code can be
executed in user mode, and if the policy check fails then the code cannot be executed in

user mode.

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

[0033] Thus, the more privileged entity 204 performs code integrity verification
(enforces code integrity) for pages in kernel mode, whereas the operating system 112 in a
virtual machine 106 performs policy checks (enforces policy) for pages in user mode. In
one or more embodiments, the policy enforcement module 208 is implemented in kernel
mode code of the operating system 112. Thus, policy checks for code running in user
mode are made by code running in kernel mode, with the code integrity of the code
running in kernel mode having been verified by the virtual machine manager 102 or other
more privileged entity.

[0034] Thus, the virtual machine manager 102 is able to restrict exccution of code in
kernel mode to code that has been verified by the higher privileged entity 204, but
execution of code in user mode is controlled separately by the operating system 112
running on the virtual machine 106. The operating system 112 performs any code
verification and/or other policy checks based on the configuration of the policy
enforcement module 208, and independently of the code integrity verification performed
by the higher privileged entity 204.

[0035] The techniques discussed herein thus provide an additional level of security
due to the virtual machine manager preventing compromised code of the operating system
112 from executing in kernel mode. At the same time, however, the techniques discussed
herein allow the code integrity of code executing in user mode to be verified and/or other
policies implemented by the operating system 112 as appropriate. The operating system
112 sets the policies for code executing in user mode, allowing the operating system 112
to support situations where no code verification is performed. For example, the operating
system 112 may desire to allow some code to execute in user mode without being verified,
or allow dynamic code generation to be performed for some code executing in user mode.
Such determinations can be made by the operating system 112, all while the user of the
computing device 100 is assured that the operating system 112 has not been compromised
because the code integrity of the operating system 112 was verified by the virtual machine
manager 102 (or other higher privileged entity).

[0036] Fig. 3 is a flowchart illustrating an example process 300 for implementing
virtual machine manager facilitated selective code integrity enforcement in accordance
with one or more embodiments. Process 300 is carried out at least in part by a virtual
machine manager, such as virtual machine manager 102 of Figs. 1 and 2, and can be
implemented in software, firmware, hardware, or combinations thercof. Process 300 is

shown as a set of acts and is not limited to the order shown for performing the operations

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

of the various acts. Process 300 is an example process for implementing virtual machine
manager facilitated selective code integrity enforcement; additional discussions of
implementing virtual machine manager facilitated selective code integrity enforcement are
included herein with reference to different figures.

[0037] In process 300, a memory page including executable code to be executed by a
virtual processor is identified (act 302). The memory page can be identified at different
times and in response to different events, such as a request by a virtual machine or
operating system managed by a virtual machine to make a memory page executable, a
request by a virtual machine or operating system managed by a virtual machine to allow a
program to be exccuted by the virtual processor, and so forth.

[0038] A determination is made as to whether the memory page is to be executable in
a kernel mode (act 304). This determination can be made in various manners, such as
being identified by the virtual machine or operating system when making the request to
make the memory page executable.

[0039] Responsive to determining that the memory page is to be executable in a kernel
mode, a code integrity check of the executable code is made by 4 higher privileged entity
(act 306). The higher privileged entity is an entity more privileged than an operating
system managed by the virtual machine as discussed above. The more privileged entity
can be the virtual machine manager, or other entity as discussed above. The code integrity
check is made by verifying the integrity of the code based on a code integrity policy in
various manners as discussed above, for example by verifying the code based on a chain
of trust being verified and the digital signature verifying that the code has not been
modified. Execution of the executable code in the memory page is allowed only if the
code integrity check verifies the executable code (act 308). Execution of the exccutable
code in the memory page can be allowed by, for example, the virtual machine manager
giving execution permission to the memory page identified in act 302.

[0040] Returning to act 304, responsive to determining that the memory page is not to
be executable in a kernel mode, an operating system of a virtual machine managed by the
virtual machine manager is allowed to determine whether to allow execution of the
executable code based on policy of the operating system (act 310). The operating system
can implement various different policies to determine whether to execute the code,
including a code integrity check, as discussed above.

[0041] A request to make a memory page executable in act 302 can be directed to the

virtual machine manager, or alternatively to the higher privileged entity (e.g., the higher

10

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

privileged entity 204 of Fig. 2). In one or more embodiments, if the virtual machine
manager is the higher privileged entity, then the request is directed to the virtual machine
manager, and the virtual machine manager performs the code integrity check in act 306.
However, if another entity is the higher privileged entity, then the request is directed to the
higher privileged entity (e.g., directly or via the virtual machine manager), the higher
privileged entity performs the code integrity check in act 306, and if the code integrity
check in act 306 verifies the executable code then the higher privileged entity notifies the
virtual machine manager to make the memory page executable in kernel mode. The virtual
machine manager can make the memory page executable in kernel mode by, for example,
updating a sccond level address translation table as discussed in more detail below.

[0042] Thus, the virtual machine manager facilitates selective code integrity
enforcement. Code integrity of kernel mode code is enforced by the virtual machine
manager (or other higher privileged entity that leverages the virtual machine manager),
whereas enforcement of code integrity of user mode code is left to the operating system
running in the virtual machine managed by the virtual machine manager.

[0043] Returning to Fig. 1, in one or more embodiments the computing device 100
employs virtual memory. Virtual memory refers to an address space that is mapped to
another address space (e.g., physical memory). An application is assigned a virtual
memory space in which the application code is executed and data is stored. A memory
manager (e.g., of a processor) manages mapping the virtual memory addresses in the
virtual memory space to addresses in the other memory space. When mapping virtual
memory addresses from the virtual memory address space to another memory space, an
address translation is performed. An address translation table is used to perform this
mapping, and can be leveraged to implement the techniques discussed herein.

[0044] In onc or morc cmbodiments, an address translation table is implemented in
hardware, such as by a physical processor that is a component 104 of the computing
device 100. The address translation table allows the virtual machine manager 102 to
selectively enforce code integrity as discussed in more detail below. Alternatively,
hardware of the computing device 100 (e.g., a physical processor that is a component 104)
can use various other tables, lists, records, structures, and so forth to allow the virtual
machine manager 102 to selectively enforce code integrity. Alternatively, various other
tables, lists, records, structures, and so forth implemented in software (e.g., as part of

virtual machine manager 102 or as part of another component or module of the computing

11

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

device 100) can be used to allow the virtual machine manager 102 to selectively enforce
code integrity.

[0045] Fig. 4 illustrates an example system 400 implementing the virtual machine
manager facilitated selective code integrity enforcement in accordance with one or more
embodiments. The system 400 can be, for example, computing device 100 of Fig. 1. The
system 400 includes a physical processor 402, a physical memory space 404, a virtual
processor 406, and a program 408. The physical processor 402 can be a component 104 of
Fig. 1, the physical memory space 404 can be a component 104 of Fig. 1, the virtual
processor 406 can be a virtual component 116 of Fig. 1, and the program 408 can be an
application 114 or part of the operating system 112 of Fig. 1. The physical processor 402
includes a memory manager 410 that manages access to the physical memory space 404.
The physical memory space 404 can be various volatile and/or nonvolatile memories, such
as RAM, Flash memory, and so forth.

[0046] The physical processor 402 assigns a virtual machine memory space 412 to the
virtual processor 406, and maintains a second level address translation table 414. The
second level address translation table 414 maps addresses in the virtual machine memory
space 412 to addresses in the physical memory space 404. Which address of the physical
memory space 404 a particular address in the virtual machine memory space 412 maps to
at any given time can change, and is controlled by the memory manger 410. The memory
manager 410 can change mappings, allowing multiple different virtual processors to share
the physical memory space 404 and/or allowing the virtual machine memory space 412 to
be larger than the physical memory space 404, using any of a variety of public and/or
proprietary techniques.

[0047] The virtual processor 406 includes a memory manager 416 that manages access
to the virtual machine memory space 412. The virtual processor 406 assigns a program
memory space 418 to the program 408, and maintains a first level address translation table
420. The first level address translation table 420 maps addresses in the program memory
space 418 to addresses in the virtual machine memory space 412. Which address of the
virtual machine memory space 412 a particular address in the program memory space 418
maps to at any given time can change, and is controlled by the memory manger 416. The
memory manager 416 can change mappings, allowing multiple different programs to share
the virtual machine memory space 412 and/or allowing the program memory space 418 to
be larger than the virtual machine memory space 412, using any of a varicty of public

and/or proprietary techniques.

12

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

[0048] In response to an access to an address in the program memory space 418, the
memory manager 416 uses the first level address translation table 420 to translate the
memory address in the program memory space 418 to an address in the virtual machine
memory space 412. The access can take various different forms, such as the address of
code of the program 408 to be executed by an operating system, the address where data to
be read is stored by the program 408, the address where data to be written by the program
408 is to be stored, and so forth.

[0049] Similarly, in response to an access to an address in the virtual machine memory
space 412, the memory manager 410 uses the second level address translation table 414 to
translate the memory address in the virtual machine memory space 412 to an address in
the physical memory space 404. The access can take various different forms, such as the
address of code of an operating system core (c.g., kernel) managed by the virtual processor
406 to be run, an address of the program 408 to be executed by an operating system, the
address where data to be read is stored by the program 408 or an operating system core,
the address where data to be written by the program 408 or an operating system core is to
be stored, and so forth.

[0050] In one or more embodiments, the first level address translation table 420 and
the second level address translation table 414 map pages of addresses rather than
individual addresses. For example, the first level address translation table 420 maps pages
of the program memory space 418 to pages of the virtual machine memory space 412, and
the second level address translation table 414 maps pages of the virtual machine memory
space 412 to pages of the physical memory space 404. Alternatively, the table 414 and/or
the table 420 can map addresses based on other groupings, such as individually or other
sub-page collections of addresses, in collections of multiple pages, and so forth.

[0051] The virtual processor 406 can run in kernel mode or user mode. The memory
manager 416 can maintain a record of memory pages that can be executed in kernel mode.
This record can be included as part of the first level address translation table 420 or
alternatively maintained in other manners. The memory manager 410 maintains a record
of memory pages in the virtual machine memory space 412 that can be executed in kernel
mode. This record can be included as part of the second level address translation table 414
or alternatively maintained in other manners.

[0052] When an access is made to execute code on the virtual processor 406, the
address of the code to be executed is translated by the first level address translation table

420 to obtain a translated address in the virtual machine memory space 412, and the

13

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

translated address is then translated by the second level address translation table 414 to
obtain an address in physical memory space 404. If the access is made while the virtual
processor 406 is operating in user mode, then an operating system running on the virtual
processor 406 applies the appropriate policy in determining whether the code can be
executed.

[0053] However, if the access is made while the virtual processor is operating in
kernel mode, then a check is made as to whether execute permission for kernel mode has
been given to the page. A record of whether execute permission for kernel mode has
alrecady been given to the page can optionally be maintained in the sccond level address
translation tablc 414, or alternatively clsewhere by the physical processor 402. In such
situations, if execute permission for kernel mode has already been given to the page, then
an indication that execute permission for kernel mode has been given to the page can be
returned to the virtual processor 406 and the operating system running on the virtual
processor 406 allows the code to execute while the virtual processor 406 is in kernel
mode.

[0054] If execule permission for kernel mode has not yel been given o the page, then
the operating system running on the virtual processor 406 can optionally request that the
page be made executable for kernel mode. The virtual processor 406 passes the request to
the virtual machine manager (or other higher privileged entity), which performs a code
integrity check as discussed above. If the code integrity check succeeds then the page is
given execution permission for kernel mode, and if the code integrity check fails then the
page is not given execution permission for kernel mode.

[0055] In one or more embodiments, an attribute is included in the second level
address translation table 414 to allow execution permission for kernel mode to be specified
scparatcly from the cxccution permission or policy for user mode. This attribute can be
encoded in the second level address translation table 414 in a variety of different manners,
but includes the following three characteristics. First, the attribute is implemented in the
second level address translation table so that the attribute can be controlled independently
for each second level translation (each translation performed by the memory manager 410
using the second level address translation table 414). Second, the attribute applies to
kernel mode execution permission — the attribute need not affect (but alternatively could
affect) read and/or write permission in kernel mode (and in user mode). Third, the attribute
allows kernel mode execution to be disabled independently from user mode execution,

allowing at least the following two combinations of execution: 1) disallow execution in

14

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

kernel mode but allow execution in user mode; 2) disallow execution in kernel mode and
disallow execution in user mode.

[0056] The at least one attribute can be included in the second level address translation
table 414 in a variety of different manners. For example, each entry in the second level
address translation table can include two bits, one bit corresponding to user mode
execution and one bit corresponding to kernel mode execution. The bit corresponding to
user mode pages can be assigned one value (e.g., assigned a value of “17, also referred to
as the bit being set) to indicate that permission to execute code on the page in user mode is
given, and assigned another value (c.g., assigned a valuc of “0”, also referred to as the bit
being cleared) to indicate that permission to execute code on the page in user mode is not
given. Similarly, the bit corresponding to kernel mode execution can be assigned one
value (e.g., assigned a value of “1”, also referred to as the bit being set) to indicate that
permission to execute code on the page in kernel mode is given, and assigned another
value (e.g., assigned a value of “0”, also referred to as the bit being cleared) to indicate
that permission to execute code on the page in kernel mode is not given.

[0057] In one or more embodiments, in the second level address translation table 414,
the initial or default value for memory pages is to disallow execution (execution
permission is not given) for kernel mode but allow execution (execution permission is
given) for user mode. If code integrity of code in a memory page has been verified by the
virtual machine manager (or other more privileged entity), then the values for the memory
page can be changed to allow execution (execution permission is given) for kernel mode
for the page as well as for user mode. However, if code integrity of code in a memory
page fails a code integrity check by the operating system, the operating system can
optionally change (or request that the virtual machine manager change) the values for the
memory page to disallow execution (execution permission is not given) for user mode for
the page.

[0058] It should be noted that the second level address translation table 414 is under
control of a virtual machine manager, such as the virtual machine manager 102 of Fig. 1.
The second level address translation table 414 is not accessible by software running in the
virtual machine (e.g., the applications 114 or the operating system 112 of the virtual
machine 106 of Fig. 1). The operating system in the virtual machine has direct control
over its first level address translation table, and the virtual machine manager has exclusive
control over the second level address translation table. Thus, by having a kernel mode

execution control in the second level address translation table, the virtual machine

15

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

manager can efficiently and easily use this control to grant or deny kernel mode execution
access independently of the operating system’s management of the first level address
translation table. By having the ability to restrict kernel mode code execution in the second
level address translation table, the virtual machine manager can enforce its code integrity
policies without directly involving itself in the first level address translation table updates
performed by the operating system in the virtual machine.

[0059] It should also be noted that although first and second level address translation
tables are discussed above, alternatively the virtual machine manager enforced code
integrity can be implemented in software using a single address translation table (c.g., the
first level address translation table). For example, the virtual machine manager can take
control of the first level address translation table (e.g., table 420 of Fig. 4) and prevent the
operating system from within the virtual machine from directly accessing the first level
address translation table. The virtual machine manager can then enforce the policies
discussed above (e.g., the virtual machine manager can ensure that code executable by the
kernel is code that the virtual machine manager has verified, but the virtual machine
manager enforees no restrictions on user mode code execution).

[0060] Although particular functionality is discussed herein with reference to
particular modules, it should be noted that the functionality of individual modules
discussed herein can be separated into multiple modules, and/or at least some functionality
of multiple modules can be combined into a single module. Additionally, a particular
module discussed herein as performing an action includes that particular module itself
performing the action, or alternatively that particular module invoking or otherwise
accessing another component or module that performs the action (or performs the action in
conjunction with that particular module). Thus, a particular module performing an action
includes that particular module itself performing the action and/or another module invoked
or otherwise accessed by that particular module performing the action.

[0061] Fig. 5 illustrates an example system generally at 500 that includes an example
computing device 502 that is representative of one or more systems and/or devices that
may implement the various techniques described herein. The computing device 502 may
be, for example, a server of a service provider, a device associated with a client (e.g., a
client device), an on-chip system, and/or any other suitable computing device or
computing system.

[0062] The example computing device 502 as illustrated includes a processing system

504, one or more computer-readable media 506, and one or more 1/O Interfaces 508 that

16

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

are communicatively coupled, one to another. Although not shown, the computing device
502 may further include a system bus or other data and command transfer system that
couples the various components, one to another. A system bus can include any one or
combination of different bus structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a
variety of bus architectures. A variety of other examples are also contemplated, such as
control and data lines.

[0063] The processing system 504 is representative of functionality to perform one or
morc opcrations using hardware. Accordingly, the processing system 504 is illustrated as
including hardware elements 510 that may be configured as processors, functional blocks,
and so forth. This may include implementation in hardwarc as an application specific
integrated circuit or other logic device formed using one or more semiconductors. The
hardware elements 510 are not limited by the materials from which they are formed or the
processing mechanisms employed therein. For example, processors may be comprised of
semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a
comnlext, processor-execulable instructions may be electronically-executable instructions.
[0064] The computer-readable media 506 is illustrated as including memory/storage
512. The memory/storage 512 represents memory/storage capacity associated with one or
more computer-readable media. The memory/storage 512 may include volatile media
(such as random access memory (RAM)) and/or nonvolatile media (such as read only
memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The
memory/storage 512 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and
so on) as well as removable media (¢.g., Flash memory, a removable hard drive, an optical
disc, and so forth). The computer-readable media 506 may be configured in a varicty of
other ways as further described below.

[0065] Input/output interface(s) 508 are representative of functionality to allow a user
to enter commands and information to computing device 502, and also allow information
to be presented to the user and/or other components or devices using various input/output
devices. Examples of input devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone (e.g., for voice inputs), a scanner, touch functionality (e.g.,
capacitive or other sensors that are configured to detect physical touch), a camera (e.g.,
which may employ visible or non-visible wavelengths such as infrared frequencies to
detect movement that does not involve touch as gestures), and so forth. Examples of

output devices include a display device (e.g., a monitor or projector), speakers, a printer, a

17

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

network card, tactile-response device, and so forth. Thus, the computing device 502 may
be configured in a variety of ways as further described below to support user interaction.
[0066] Computing device 502 also includes a virtual machine manager 514 (also
referred to as a hypervisor). Virtual machine manager 514 allows a virtual machine to run
on computing device 502. Virtual machine manager 514 can be, for example, virtual
machine manager 102 of Fig. 1 or Fig. 2.

[0067] Various techniques may be described herein in the general context of software,
hardware elements, or program modules. Generally, such modules include routines,
programs, objects, clements, components, data structurcs, and so forth that perform
particular tasks or implement particular abstract data types. The terms “module,”
“functionality,” and “component” as used herein generally represent software, firmware,
hardware, or a combination thereof. The features of the techniques described herein are
platform-independent, meaning that the techniques may be implemented on a variety of
computing platforms having a variety of processors.

[0068] An implementation of the described modules and techniques may be stored on
or (ransmitted across some form of compuler-readable media. The computer-readable
media may include a variety of media that may be accessed by the computing device 502.
By way of example, and not limitation, computer-readable media may include “computer-
readable storage media” and “computer-readable signal media.”

[0069] “Computer-readable storage media” refers to media and/or devices that enable
persistent storage of information and/or storage that is tangible, in contrast to mere signal
transmission, carrier waves, or signals per se. Thus. computer-readable storage media
refers to non-signal bearing media. The computer-readable storage media includes
hardware such as volatile and non-volatile, removable and non-removable media and/or
storage devices implemented in a method or technology suitable for storage of information
such as computer readable instructions, data structures, program modules, logic
elements/circuits, or other data. Examples of computer-readable storage media may
include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or other storage device, tangible media, or article of manufacture suitable to store
the desired information and which may be accessed by a computer.

[0070] “Computer-readable signal media™ refers to a signal-bearing medium that is

configured to transmit instructions to the hardware of the computing device 502, such as

18

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

via a network. Signal media typically may embody computer readable instructions, data
structures, program modules, or other data in a modulated data signal, such as carrier
waves, data signals, or other transport mechanism. Signal media also include any
information delivery media. The term “modulated data signal” means a signal that has one
or more of its characteristics set or changed in such a manner as to encode information in
the signal. By way of example, and not limitation, communication media include wired
media such as a wired network or direct-wired connection, and wireless media such as
acoustic, RF, infrared, and other wireless media.

[0071] As previously described, hardware clements 510 and computer-readable media
506 arc representative of instructions, modules, programmable device logic and/or fixed
device logic implemented in a hardware form that may be employed in some embodiments
to implement at least same aspects of the techniques described herein. Hardware elements
may include components of an integrated circuit or on-chip system, an application-specific
integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex
programmable logic device (CPLD), and other implementations in silicon or other
hardware devices. In this conlext, a hardware element may operale as a processing device
that performs program tasks defined by instructions, modules, and/or logic embodied by
the hardware element as well as a hardware device utilized to store instructions for
execution, e.g., the computer-readable storage media described previously.

[0072] Combinations of the foregoing may also be employed to implement various
techniques and modules described herein. Accordingly, software, hardware, or program
modules and other program modules may be implemented as one or more instructions
and/or logic embodied on some form of computer-readable storage media and/or by one or
morc hardware elements 510. The computing device 502 may be configured to implement
particular instructions and/or functions corresponding to the software and/or hardware
modules. Accordingly, implementation of modules as a module that is executable by the
computing device 502 as software may be achieved at least partially in hardware, e.g.,
through use of computer-readable storage media and/or hardware elements 510 of the
processing system. The instructions and/or functions may be executable/operable by one
or more articles of manufacture (for example, one or more computing devices 502 and/or
processing systems 504) to implement techniques, modules, and examples described
herein.

[0073] As further illustrated in Fig. 5, the example system 500 enables ubiquitous

environments for a seamless user experience when running applications on a personal

19

10

15

20

25

30

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

computer (PC), a television device, and/or a mobile device. Services and applications run
substantially similar in all three environments for a common user experience when
transitioning from one device to the next while utilizing an application, playing a video
game, watching a video, and so on.

[0074] In the example system 500, multiple devices are interconnected through a
central computing device. The central computing device may be local to the multiple
devices or may be located remotely from the multiple devices. In one or more
embodiments, the central computing device may be a cloud of one or more server
computers that arc connected to the multiple devices through a network, the Internet, or
other data communication link.

[0075] In one or more embodiments, this interconnection architecture ecnables
functionality to be delivered across multiple devices to provide a common and seamless
experience to a user of the multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the central computing device uses a
platform to enable the delivery of an experience to the device that is both tailored to the
device and yet common to all devices. In one or more embodiments, a class of target
devices is created and experiences are tailored to the generic class of devices. A class of
devices may be defined by physical features, types of usage, or other common
characteristics of the devices.

[0076] In various implementations, the computing device 502 may assume a variety of
different configurations, such as for computer 516, mobile 518, and television 520 uses.
Each of these configurations includes devices that may have generally different constructs
and capabilities, and thus the computing device 502 may be configured according to one
or more of the different device classes. For instance, the computing device 502 may be
implemented as the computer 516 class of a device that includes a personal computer,
desktop computer, a multi-screen computer, laptop computer, netbook, and so on.

[0077] The computing device 502 may also be implemented as the mobile 518 class of
device that includes mobile devices, such as a mobile phone, portable music player,
portable gaming device, a tablet computer, a multi-screen computer, and so on. The
computing device 502 may also be implemented as the television 520 class of device that
includes devices having or connected to generally larger screens in casual viewing
environments. These devices include televisions, set-top boxes, gaming consoles, and so

on.

20

10

15

20

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

[0078] The techniques described herein may be supported by these various
configurations of the computing device 502 and are not limited to the specific examples of
the techniques described herein. This functionality may also be implemented all or in part
through use of a distributed system, such as over a “cloud” 522 via a platform 524 as
described below.

[0079] The cloud 522 includes and/or is representative of a platform 524 for resources
526. The platform 524 abstracts underlying functionality of hardware (e.g., servers) and
software resources of the cloud 522. The resources 526 may include applications and/or
data that can be utilized while computer processing is executed on servers that arc remote
from the computing device 502. Resources 526 can also include services provided over the
Internet and/or through a subscriber network, such as a cellular or Wi-Fi network.

[0080] The platform 524 may abstract resources and functions to connect the
computing device 502 with other computing devices. The platform 524 may also serve to
abstract scaling of resources to provide a corresponding level of scale to encountered
demand for the resources 526 that are implemented via the platform 524. Accordingly, in
an interconnected device embodiment, implementation of functionality described herein
may be distributed throughout the system 500. For example, the functionality may be
implemented in part on the computing device 502 as well as via the platform 524 that
abstracts the functionality of the cloud 522.

[0081] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

cxample forms of implementing the claims.

21

10

15

20

25

81794592

CLAIMS:
1. A method implemented in a computing device, the method comprising:

identifying, in response to a request by a virtual machine or operating system running
in the virtual machine to make a memory page exccutable, the memory page, the memory
page comprising one of a plurality of memory pages storing code for a program including
executable code to be executed by a virtual processor of the virtual machine, the virtual

machine being managed by a virtual machine manager;

determining, in response to the request to make the memory page executable,
whether the identified memory page of the plurality of memory pages storing code for the

program is to be executable in a kernel mode or a user mode;

performing, by a more privileged entity than the operating system of the virtual
machine and in response to determining that the identified memory page of the plurality of
memory pages storing code for the program is to be executable in the kernel mode, a code
integrity check of the executable code stored in the plurality of memory pages and allowing
execution of the executable code only if the code integrity check based on a code integrity

policy verifies the executable code stored in the plurality of memory pages; and

allowing, in response to determining that the identified memory page of the plurality
of memory pages storing code for the program is not to be executable in the kemel mode,
the operating system of the virtual machine to determine whether to allow execution of the
executable code of all of the plurality of memory pages storing code for the program in the

user mode.

2. The method as recited in claim 1, the more privileged entity than the operating
system of the virtual machine comprising the virtual machine manager, the determining
whether the identified memory page is to be executed in the kernel mode being performed
by the virtual machine manager, and the allowing the operating system of the virtual
machine to determine whether to allow execution of the executable code in the user mode

being performed by the virtual machine manager.

3. The method as recited in claim 1, further comprising performing, by the operating

system and in response to determining that the identified memory page is not to be

22

Date Regue/Date Received 2021-10-20

81794592

executable in the kernel mode, the code integrity check of the executable code and allowing
execution of the executable code only if the code integrity check by the operating system

verifies the executable code.

4. The method as recited in claim 1, the allowing execution of the executable code
5 comprising setting an execution permission attribute of a memory page in which the code is
stored, the setting the execution permission attribute comprising setting the execution

permission attribute to allow execution of the executable code for the kernel mode.

5. The method as recited in claim 1, the performing the code integrity check comprising
verifying a chain of trust for the executable code, and using a digital signature to verify that

10 the executable code has not been altered since being digitally signed.

6. The method as recited in claim 1, the virtual processor including a first level address
translation table, the computing device further including a physical processor including a
second level address translation table, an attribute of the second level address translation
table allowing execution permission for the kernel mode ol the virtual processor o be
15 specified separately from execution permission or policy for the user mode of the virtual

Processor.

7. The method as recited in claim 1, the computing device further comprising a
component including an attribute allowing execution permission for the kernel mode of the
virtual processor to be specified separately from execution permission or policy for the user

20 mode of the virtual processor.

8. The method as recited in claim 7, the attribute allowing the execution permission for
the kernel mode of the virtual processor to be specified separately from execution

permission or policy for the user mode of the virtual processor on a per memory page basis.

9. The method as recited in claim 7, the attribute applying to kernel mode execution
25 permission, and the attribute affecting neither kernel mode read permission nor kemnel mode

write permission.

10. The method as recited in claim 7, the attribute allowing one combination of
execution that disallows execution of code in the identified memory page by the virtual

processor in the kernel mode but allows execution of the code in the identified memory page

23

Date Regue/Date Received 2021-10-20

81794592

by the virtual processor in the user mode, and an additional combination of execution that
disallows execution of the code in the identified memory page by the virtual processor in
the kemel mode and disallows execution of the code in the identified memory page by the

virtual processor in the user mode.

5 11. A computing device including an operating system, a virtual machine manager, and

a processor, the processor being programmed with instructions to:

determine, in response to a request by a virtual machine to make a memory page of
multiple memory pages storing code for a program executable and for each memory page
of the multiple memory pages storing code for the program, whether the memory page is to

10 be executable in a kernel mode or a user mode;

allow, if the memory page is to be executable in the kernel mode, the virtual machine
manager to restrict kemel mode execution of all of the multiple memory pages storing code
for the program to allow execution of the code only if the integrity of the multiple memory
pages storing code for the program have been verified by a higher privileged entity that is

15 more privileged than the operating system; and

allow, if the memory page is to be executable in the user mode, user mode execution
of all of the multiple memory pages storing code for the program without regard for whether
integrity of code on the memory pages storing code for the program has been verified by the

higher privileged entity.

20 12. The computing device as recited in claim 11, the operating system being further
configured to allow the user mode execution of all of the multiple memory pages storing
code for the program if the integrity of the multiple memory pages has been verified by the

operating system.

13. The computing device as recited in claim 11, the processor being further
25 programmed with instructions to set an execution permission attribute of a memory page

storing code the integrity of which has been verified by the virtual machine manager.

14. The computing device as recited in claim 11, the processor including an address

translation table an attribute of which allows execution permission for the kemel mode

24

Date Regue/Date Received 2021-10-20

10

15

20

25

81794592

execution of memory pages to be specified separately from execution permission for the

user mode execution of memory pages.

15. The computing device as recited in claim 11, the processor further including a
hardware component having an attribute allowing execution permission for the kernel mode
execution of memory pages to be specified separately from execution policy for the user

mode execution of memory pages.

16. The computing device as recited in claim 15, the attribute allowing execution
permission for kernel mode execution of memory pages to be specified separately from

execution policy for the user mode execution of memory pages on a per memory page basis.

17. The computing device as recited in claim 15, the attribute applying to kernel mode
execution permission for memory pages, and the attribute affecting neither kernel mode read

permission nor kemel mode write permission for memory pages.

18. The computing device as recited in claim 15, the attribute allowing one combination
of exccution that disallows kernel mode execution of code in the memory page but allows
the user mode execution of the code in the memory page, and an additional combination that
disallows both kernel mode execution of the code in the memory page and the user mode

execution of the code in the memory page.

19. A computer-readable storage medium having stored thereon multiple instructions
that, responsive to execution by one or more physical processors of a computing device,

causc the one or more physical processors to perform operations comprising:

identifying, in response to a request by a virtual machine or operating system running
in the virtual machine to make a memory page exccutable, the memory page, the memory
page comprising one of a plurality of memory pages storing code for a program including
executable code to be executed by a virtual processor of the virtual machine of the
computing device, the virtual machine being managed by a virtual machine manager of the

computing device;

determining, in response to the request to make the memory page executable,
whether the identified memory page of the plurality of memory pages storing code for the

program is to be executable in a kernel mode or a user mode;

25

Date Regue/Date Received 2021-10-20

81794592

in response to determining that the memory page of the plurality of memory pages

storing code for the program is to be executable in the kernel mode:

performing, by the virtual machine manager, a code integrity check of the executable
code of the identified memory page of the plurality of memory pages storing code for the
5 program, and

allowing execution of the executable code of all of the plurality of memory pages
storing code for the program for the kernel mode only if the code integrity check verifies the

executable code of the identified memory page based on a code integrity policy; and

in response to determining that the identified memory page of the plurality of

10 memory pages storing code for the program is not to be executable in the kemnel mode,
allowing the operating system of the virtual machine to determine whether to allow
execution of the executable code of all of the plurality of memory pages storing code for the
program in the user mode, the operating system allowing execution of the executable code

only if a policy of the operaling system is satisfied.

15 20. The computer-readable storage medium of claim 19, the computing device further
comprising a component including an attribute allowing execution permission for the kernel
mode of the virtual processor to be specified separately from execution permission or policy

for the user mode of the virtual processor.
21. A method implemented in a computing device, the method comprising:

20 identifying a memory page based at least on a request by a virtual machine or
operating system to make the identified memory page executable, the identified memory

page storing exccutable code to be executed by a virtual processor of the virtual machine;

determining, based at least on the request to make the identified memory page
executable, whether the identified memory page is to be executable in a kernel mode or a

25 user mode;

determining whether to perform a code integrity check of the executable code stored
in the identified memory page based at Ieast on whether the identified memory page is to be

executable in the kernel mode or the user mode; and

26

Date Regue/Date Received 2021-10-20

81794592

in instances when the identified memory page is to be executable in the kermnel mode:

performing the code integrity check based on a code integrity policy of the

executable code stored in the identified memory page; and

provided the code integrity check verifies the executable code stored in the identified
5 memory page, allowing execution of the executable code by setting an execution permission

attribute to allow execution of the executable code in the kernel mode.
22. The method of claim 21, further comprising:

performing, with a virtual machine manager that is more privileged than the
operating system, at least the determining whether the identified memory page is to be

10 executed in the kemel mode and the code integrity check.

23. The method of claim 21, wherein the executable code is stored in multiple memory
pages including the identified memory page, and the code integrity check is performed for

the multiple memory pages.

24. The method of claim 21, wherein the setting the execution permission attribute
15 comprises setting a respective execution permission attribute of the identified memory page

in which the executable code is stored.

25. The method of claim 21, the performing the code integrity check comprising
verilying a chain of trust for the executable code, and using a digital signature to verily that

the executable code has not been altered since being digitally signed.

20 26. The method of claim 21, the virtual processor including a first level address
translation table, the computing device further including a physical processor including a
second level address translation table, the second level address translation table comprising

the execution permission attribute.

27. The method of claim 26, wherein the second level address translation table allows
25 execution permission for the kernel mode of the virtual processor to be specified separately

from execution permission or policy for the user mode of the virtual processor.

27

Date Regue/Date Received 2021-10-20

81794592

28. Themethod of claim 21, wherein the execution permission attribute allows execution
permission for the kemel mode of the virtual processor to be specified separately from

execution permission or policy for the user mode of the virtual processor.

29. The method of claim 28, the execution permission attribute allowing execcution
5 permission for the kernel mode of the virtual processor to be specified separately from
execution permission or policy for the user mode of the virtual processor on a per memory

page basis.

30. The method of claim 28, the execution permission attribute allowing a first
combination of execution permission that disallows code execution by the virtual processor
10 in the kernel mode but allows code execution by the virtual processor in the user mode, and
a second combination of execution permission that disallows code execution in the kemnel

mode and disallows code execution by the virtual processor in the user mode.
31. A computing device comprising:
a virtual machine,
15 a virtual machine manager, and
a processor, the processor being programmed with instructions to:

receive a request by the virtual machine to make a particular memory page storing
code [or a program executable and an indication whether the particular memory page is to

be executable in a kernel mode or a user mode;

20 determine whether to perform a code integrity check of the code stored in the
particular memory page based at least on whether the particular memory page is to be

executable in the kernel mode or the user mode;

when the particular memory page is to be executable in the kernel mode, perform
the code integrity check of the code stored in the particular memory page with the virtual

25 machine manager; and

when the code integrity check succeeds, set an execution permission attribute to

allow execution of the code.

28

Date Regue/Date Received 2021-10-20

81794592

32. The computing device of claim 31, wherein the execution permission attribute is

associated with the particular memory page that stores the code.

33. The computing device of claim 31, the processor including an address translation
table that includes the execution permission attribute, wherein the execution permission
5 attribute allows execution permission for kemel mode execution of memory pages to be

specified separately from execution permission for user mode execution of memory pages.

34. The computing device of claim 31, the processor further including a hardware
component that includes the execution permission attribute, the execution permission
attribute allowing execution permission for kernel mode execution of memory pages to be

10 specified separately from execution policy for user mode execution of memory pages.

35. The computing device of claim 34, the execution permission attribute allowing
execution permission for kernel mode execution of memory pages to be specified separately
from execution policy for user mode execution of memory pages on a per memory page

basis.

15 36. The computing device of claim 34, the execution permission attribute applying to
kernel mode execution permission for memory pages, and the execution permission attribute

affecting neither kernel mode read permission nor kernel mode write permission for memory

pages.

37. The computing device of claim 34, the execution permission attribute allowing a first
20 combination of execution permission that disallows kernel mode code execution but allows
user mode code execution, and a second combination that disallows both kernel mode code

execution and user mode code execution.

38. The computing device of claim 31, the code integrity check comprising verifying a
chain of trust for the code, and using a digital signature to verify that the code has not been
25 altered since being digitally signed.

39. A computer-readable storage medium having stored thercon multiple instructions
that, responsive to execution by one or more physical processors of a computing device,

causc the one or more physical processors to perform operations comprising:

29

Date Regue/Date Received 2021-10-20

81794592

identifying a memory page based at least on a request by a virtual machine or
operating system running in the virtual machine to make the identified memory page
executable, the identified memory page storing executable code to be executed by a virtual

processor of the virtual machine of the computing device;

5 determining, based at least on the request to make the identified memory page
executable, whether the identified memory page is to be executable in a kemel mode or a

user mode;

determining whether to perform a code integrity check of the executable code stored
in the identified memory page based at least on whether the identified memory page is to be

10 executable in the kernel mode or the user mode;
in instances when the identified memory page is to be executable in the kernel mode:

performing, by a virtual machine manager, the code integrity check of the executable

code stored in the identified memory page, and

when the code integrity check based on a code integrity policy verifies the executable
15 code of the identified memory page, allowing execution of the executable code in the
identified memory page by selling an execution permission attribute to allow execution of

the executable code for the kernel mode; and

in other instances when the identified memory page is not to be executable in the
kernel mode, allowing the operating system to determine whether to allow execution of the

20 executable code in the identified memory page according to a policy of the operating system.

40. The computer-readable storage medium of claim 39, wherein the execution
permission attribute allows execution permission for the kemel mode of the virtual processor
to be specified separately from execution permission or policy for the user mode of the

virtual processor.

25 41. A method implemented in a computing device for protecting against malicious
programs, the method being carried out at Ieast in part by a virtual machine manager, and

the method comprising;:

30

Date Regue/Date Received 2021-10-20

10

15

20

25

81794592

identifying a memory page including executable code to be executed by a virtual
processor of a virtual machine, the virtual machine being managed by the virtual machine

manager;
determining whether the memory page is to be executable in a kernel mode;

performing, by a higher privileged entity than an operating system of the virtual
machine and in response to determining that the memory page is to be executable in the
kernel mode, a code integrity check of the executable code based on a code integrity policy
and allowing execution of the executable code for the kernel mode only if the code integrity

check verifies the executable code; and

allowing, in response to determining that the memory page is not to be executable in
kernel mode, the operating system of the virtual machine to determine whether to allow

execution of the executable code in user mode,

wherein the higher privileged entity than the operating system of the virtual machine
is the virtual machine manager and wherein the method further comprises performing, by
the operating system and in response to determining that the memory page is not to be
executable in the kernel mode, the code integrity check of the executable code and allowing
execution of the executable code only if the code integrity check by the operating system

verifies the executable code.

42, The method as recited in claim 41, the computing device further comprising a
component including an attribute allowing execution permission for the kernel mode of the
virtual processor to be specified separately from execution permission or policy for the user

mode of the virtual processor.

43. A computing device including a host operating system, a virtual machine manager,
a virtual machine, the virtual machine being managed by the virtual machine manager, the
virtual machine comprising an operating system of the virtual machine, and a processor, the

processor being configured to perform the method of claim 41.

44. The computing device as recited in claim 43, the processor being further configured
to set an execution permission attribute of a memory page storing code the integrity of which

has been verified by the virtual machine manager.

31

Date Regue/Date Received 2021-10-20

81794592

45. The computing device as recited in claim 43, the processor including an address
translation table an attribute of which allows execution permission for the kemel mode
execution of memory pages to be specified separately from execution permission for the

user mode execution of memory pages.

5 46. The computing device as recited in claim 43, the processor further including a
hardware component having an attribute allowing execution permission for the kernel mode
execution of memory pages to be specified separately from execution policy for the user

mode execution of memory pages.

47. The computing device as recited in claim 46, the attribute allowing execution
10 permission for the kernel mode execution of memory pages to be specified separately from

execution policy for the user mode execution of memory pages on a per memory page basis.

48. The computing device as recited in claim 46, the attribute allowing one combination
of execution that disallows the kernel mode execution of code in a memory page but allows
the user mode execution ol the code in the memory page, and an additional combination that
15 disallows both the kernel mode execution of the code in the memory page and the user mode

execution of the code in the memory page.

32

Date Regue/Date Received 2021-10-20

WO 201

CA 02922490 2016-02-25

100\

112 —

116 —

102
122

104 —

5/041930 PCT/US2014/055290
1/5
114
4 /_
Computing Device /
Virtual (/ |
Machine ~
Application
[Operating System]
\\
Virtual
Component

i

(Virtual Machine Manager

Page

Module Module

\
\\[VM Control

Management}/

\.

N

Component

L— 124

Fig. 1

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

2/5

N
o

112
N
208 —~ Operating System

Policy Enforcement Policy Evaluation
Module Results 210

Virtual Machine 106

Higher Privileged Entity 204

202

Code Integrity Kernel Mode Code
Verification Module Verification Results 20

Fig. 2

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

3/5

300
e 302
Identify A Memory Page Including
Executable Code
l e 304
Determine Whether The Memory Page Is To
Be Executable In Kernel Mode
Memory Page Is To Memory Page Is Not
Be Executable In To Be Executable In
Kernel Mode e 306 310 ~ Kernel Mode
Perform A Code Integrity Allow An Operating System Of
Check Of The Executable A Virtual Machine Managed By
Code By An Entity More The Virtual Machine Manager
Privileged Than An Operating To Determine, Based On
System Of The Virtual Policy Of The Operating
Machine System, Whether To Allow
g Execution Of Executable Code
l 308 In The Memory Page
/— s \. J

Allow Execution Of The
Executable Code In The
Memory Page Only If The
Code Integrity Check Verifies
The Executable Code

Fig. 3

CA 02922490 2016-02-25

WO 2015/041930

PCT/US2014/055290

4/5
400
408 .
Program
A 418
R — 4
| Program |
| Memory Space |
|
— e e e e /J
406 ~
416 “\ Virtual Processor }—420
Memory First Level Address
Manager Translation Table
A Ve 412
(- T == N
| Virtual Machine i
| Memory Space |
|
— e e e e /J
402 ~
- \ 404
410 Physical Processor — 414 /
Second Level Physical
Memory Memory
Address
Manager Space

Translation Table

Fig. 4

CA 02922490 2016-02-25

WO 2015/041930 PCT/US2014/055290

5/5
500
524 Brath
596 atform
Resources J
522 S A
502\ %
[Computing Device]
504~ | Processing System 1 Computer-readable 1 L— 506
Media
510~ Hardware | — 512
\[Elements Memory/Storage
508 | [A] . Y | —514
™ I/O Interfaces Virtual Machine 1
Manager

\. S

N
Television h
520
Mobile
518

200

112
208 Operating System
Policy Enforcement Policy Evaluation
Module Results 210

Virtual Machine 106

Higher Privileged Entity 204

202

Code Integrity Kernel Mode Code
Verification Module Verification Results 20

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - REPRESENTATIVE_DRAWING

