
JP 5576798 B2 2014.8.20

10

20

(57)【特許請求の範囲】
【請求項１】
　マルチプロセッシングシステムにおけるマルチスレッドアプリケーションの決定論的実
行を提供するために、前記マルチスレッドアプリケーションを増補するコンピューティン
グシステムにおける方法であって、
　２つ以上のスレッドの実行を指定するマルチスレッドアプリケーションコードにアクセ
スするステップと、
　前記マルチスレッドアプリケーションコードに同期コードを自動的に挿入するステップ
であって、毎回、前記マルチスレッドアプリケーションコードが、特定の入力によって実
行される度に、当該同期コードが、操作の組の中の決定論的順序を指定し、当該組の少な
くとも１つが、前記マルチスレッドアプリケーションコードが実行されるとき、前記２つ
以上のスレッドのうちの少なくとも１つの別のスレッドによってアクセス可能な状態に影
響を与えることができる１つ又は複数の操作を含むものと、
を含む方法。
【請求項２】
　前記決定論的順序が、前記２つ以上のスレッドが作成された順序である請求項１に記載
の方法。
【請求項３】
　前記決定論的順序がトークンの値に従って決定されており、
　前記２つ以上のスレッドの各スレッドについて、前記２つ以上のスレッドのうちの少な

(2) JP 5576798 B2 2014.8.20

10

20

30

40

50

くとも１つによってアクセス可能な状態に影響を与えることができる操作を実行する前に
、
　　前記トークンの前記値を決定するために、前記同期コードを呼び出すステップと、
　　前記トークンの前記決定された値が前記スレッドのスレッド識別子に一致するとき、
前記操作の実行を可能にするステップと、
　　前記トークンの前記決定された値が前記スレッドのスレッド識別子に一致しないとき
、前記スレッドの実行を一時停止するステップと
　をさらに含む請求項１に記載の方法。
【請求項４】
　コンパイラによって実行される請求項１に記載の方法。
【請求項５】
　トランザクショナルメモリシステムを増補するためのコンピューティングシステムにお
ける方法において、
　トランザクショナルメモリシステムのためのコードにアクセスするステップであって、
前記コードがマルチスレッドアプリケーションソースコードからコンパイルされたコード
によって呼び出されるインターフェイスの１つまたは複数の実装を含み、前記マルチスレ
ッドアプリケーションソースコードが１つまたは複数のコードブロックをアトミックブロ
ックと宣言し、前記マルチスレッドアプリケーションソースコードが２つ以上のスレッド
を指定する、ステップと、
　同期コードを含むために前記アクセスされたコードを増補するステップであって、当該
同期コードが、特定の入力により前記マルチスレッドアプリケーションソースコードがマ
ルチプロセッシングシステムによって実行される度に毎回、トランザクションがコミット
するような特定の順序を指定するものであるもの、と、
　を含む方法。
【請求項６】
　メモリ操作の順序を制御するためのマルチプロセッシングシステムで実行される方法で
あって、
　マルチプロセッシングシステムにおいてマルチスレッドアプリケーションコードを実行
するステップであって、前記マルチスレッドアプリケーションコードが複数のスレッドを
指定する、ステップと、
　前記マルチスレッドアプリケーションコードの前記実行を２つ以上の量子に分割するス
テップであって、各量子がメモリ操作を含む決定論的数の操作を指定する、ステップと、
　前記複数のスレッドが前記２つ以上の量子を実行する決定論的順序を指定するステップ
と
　を含み、前記マルチスレッドアプリケーションコードが実行されるとき、メモリ操作を
指定するスレッド間通信が決定論的である。
【請求項７】
　前記複数のスレッドのうちの少なくとも１つのスレッドが前記複数のスレッドの別のス
レッドによってプライベートに保持されるデータをロードするとき、前記スレッド間通信
が行われる請求項６に記載の方法。
【請求項８】
　スレッドが別のスレッドによってプライベートに保持されるデータをロードしようと試
行するとき、前記複数のスレッドのそれぞれがその実行における決定論的ポイントに到達
し、前記スレッドが実行を始めることを前記決定論的順序が指定するまで、前記スレッド
の実行を一時停止するステップをさらに含む請求項７に記載の方法。
【請求項９】
　前記複数のスレッドのうちの１つのスレッドが前記１つのスレッドによってプライベー
トに保持されないデータを格納するとき、前記スレッド間通信が行われる請求項６に記載
の方法。
【請求項１０】

(3) JP 5576798 B2 2014.8.20

10

20

30

40

50

　スレッドが前記スレッドによってプライベートに保持されないデータを格納しようと試
行するとき、前記複数のスレッドのそれぞれがその実行における決定論的ポイントに到達
し、前記スレッドが実行を始めることを前記決定論的順序が指定するまで、前記スレッド
の実行を一時停止するステップをさらに含む請求項９に記載の方法。
【請求項１１】
　決定論的順序を指定するステップが、
　マルチスレッドアプリケーションコードの中に同期コードを挿入するステップを含み、
　前記挿入された同期コードが、１つ又はそれより多いロック又は共有テーブルを実行し
て、スレッド間通信をモニタする、
請求項６に記載の方法。
【請求項１２】
　前記マルチプロセッシングシステムが、トランザクショナルメモリシステムを含み、
　決定論的順序を指定するステップが、マルチスレッドアプリケーションコードの中に同
期コードを挿入するステップを含み、
　同期コードを挿入するステップが、各量子をトランザクション内に封入する（encapsul
ating）ステップを含み、
　前記トランザクショナルメモリシステムが、各トランザクションを、指定された決定論
的順序でコミットする、
請求項６に記載の方法。
【請求項１３】
　前記決定論的順序がトークンの値に従って指定されており、
　前記複数のスレッドごとに、メモリ操作を実行する前に、
　　前記トークンの前記値を決定するステップと、
　　前記トークンの前記決定された値が前記スレッドのスレッド識別子に一致するとき、
前記複数のスレッドの１つおきのスレッドがその実行における決定論的ポイントに到達す
ると、前記メモリ操作の実行を可能にするステップと、
　　前記トークンの前記決定された値が前記スレッドの識別されたスレッドに一致しない
とき、前記スレッドの実行を一時停止するステップと
　をさらに含む請求項６に記載の方法。
【請求項１４】
　マルチスレッドアプリケーションのスレッドのインターリービングを制御するためのマ
ルチプロセッシングシステムであって、
　複数のスレッドを指定するマルチスレッドアプリケーションコードと、
　前記マルチスレッドアプリケーションコードを、決定論的数の操作をそれぞれ指定する
２つ以上の量子に分割するための量子ビルダコンポーネントと、
　前記マルチスレッドアプリケーションのスレッドが前記２つ以上の量子を実行する決定
論的順序を指定するための決定論的コンポーネントと
　を含み、前記マルチスレッドアプリケーションコードの複数の実行中に特定の入力が指
定されたとき、各実行が前記特定の入力について同じ出力を生成する
　マルチプロセッシングシステム。
【請求項１５】
　前記指定された決定論的数の操作内に、制御された操作として指定された特定の操作の
みを含めることによって、前記量子ビルダコンポーネントが前記マルチスレッドアプリケ
ーションコードの実行を選択的にシリアル化する請求項１４に記載のシステム。
【請求項１６】
　請求項１５に記載のシステムであって、制御された操作として指定された操作が、メモ
リ操作を含み、
　前記複数のスレッドのうちの１つのスレッドが、前記複数のスレッドのうちの別のスレ
ッドの状態に影響を与えることができるメモリ操作を実行するとき、前記メモリ操作が前
記決定論的コンポーネントによって指定された前記決定論的順序を侵害するかどうかを前

(4) JP 5576798 B2 2014.8.20

10

20

30

40

50

記量子化ビルダコンポーネントが決定し、
　前記メモリ操作が前記決定論的順序を侵害するとき、前記複数のスレッドの各スレッド
がその実行における決定論的ポイントに到達し、前記スレッドが続行することを前記決定
論的コンポーネントが指定するまで、前記マルチプロセッシングシステムが前記メモリ操
作の実行を一時停止し、
　前記メモリ操作が前記決定論的順序を侵害しないとき、前記マルチプロセッシングシス
テムが前記メモリ操作の実行を許可する、
　請求項１５に記載のシステム。
【請求項１７】
　前記スレッドが別のスレッドによってプライベートに保持されると見なされるデータを
ロードまたは格納することを前記メモリ操作が指定するとき、
　前記スレッドが前記複数のスレッドによって共有されると見なされるデータを格納する
ことを前記メモリ操作が指定するとき、又は、
　前記スレッドが前記複数のスレッドのうちの任意のものによってこれまでアクセスされ
ていないデータをロードまたは格納することを前記メモリ操作が指定するとき、
前記メモリ操作が前記決定論的順序を侵害する請求項１６に記載のシステム。
【請求項１８】
　前記マルチプロセッシングシステムが各スレッドの実行を一時停止したとき、又は、各
スレッドが量子の実行を終了すると、
前記複数のスレッドの各スレッドがその実行における決定論的ポイントに到達する請求項
１６に記載のシステム。
【請求項１９】
　同期コードを前記マルチスレッドアプリケーションコード内に挿入することによって、
前記量子ビルダコンポーネントが前記マルチスレッドアプリケーションコードを２つ以上
の量子に分割する請求項１４に記載のシステム。
【請求項２０】
　前記挿入された同期コードが１つまたは複数のロックを含む、又は、メモリ操作を追跡
するための共有テーブルを含む、請求項１９に記載のシステム。
【請求項２１】
　トランザクショナルメモリシステムをさらに含み、前記挿入された同期コードが各量子
をトランザクション内に封入し、各トランザクションが前記決定論的コンポーネントによ
って指定された前記決定論的順序でコミットされる請求項１９に記載のシステム。
【請求項２２】
　前記トランザクションが並行して実行され、２つ以上の並行して実行されるトランザク
ション間に競合が存在するとき、前記トランザクションのうちの少なくとも１つが、前記
決定論的順序に従って中止され、再開される、請求項２１に記載のシステム。
【請求項２３】
　前記含まれるトランザクショナルメモリシステムがハードウェアトランザクショナルメ
モリシステム、ソフトウェアトランザクショナルメモリシステム、ハイブリッドハードウ
ェア－ソフトウェアトランザクショナルメモリシステム、およびトランザクショナルメモ
リシステムの組み合わせを含むグループから選択される請求項２１に記載のシステム。
【請求項２４】
　前記決定論的順序が、前記複数のスレッドのそれぞれが作成された順序に基づいて指定
される請求項１４に記載のシステム。
【請求項２５】
　前記決定論的順序が、前記マルチスレッドアプリケーションコードのソフトウェア開発
者によって前記決定論的コンポーネントに対して指定される請求項１４に記載のシステム
。
【請求項２６】
　マルチプロセッシングシステムに、マルチスレッドアプリケーションのスレッドによっ

(5) JP 5576798 B2 2014.8.20

10

20

30

40

50

て実行されるメモリ操作の順序を制御させることができるコードを格納するコンピュータ
可読記憶媒体において、前記コードが、
　マルチスレッドアプリケーションコードを複数の量子に分割するためのコードであって
、各量子が決定論的な有限数のメモリ操作を指定する、コードと、
　各量子を、前記マルチスレッドアプリケーションによって指定された２つ以上のスレッ
ドのうちの１つによって決定論的にコミットされるトランザクション内に封入するための
コードと
　を含み、前記マルチプロセッシングシステムがトランザクショナルメモリシステムと共
に動作する
　コンピュータ可読記憶媒体。
【請求項２７】
　トランザクション内に封入される各量子が、前記２つ以上のスレッドが作成される順序
に従って前記２つ以上のスレッドのうちの一方によって決定論的にコミットされる請求項
２６に記載のコンピュータ可読記憶媒体。
【請求項２８】
　請求項２６に記載のコンピュータ可読記憶媒体であって、
　２つ以上の多いスレッドによってトランザクションがコミットされる前に、更に、１つ
のスレッドの実行を一時停止するために、
　前記２つ以上の多いスレッドの各々が、その実行中に、決定論的ポイントに到達し、そ
して、トークンが、前記スレッドが、前記トランザクションをコミットすべきことを指定
するまで、コードを格納する、コンピュータ可読記憶媒体。
【請求項２９】
　各スレッドがトランザクションの実行を完了すると、各スレッドがその実行における決
定論的ポイントに到達する請求項２８に記載のコンピュータ可読記憶媒体。
【請求項３０】
　前記マルチスレッドアプリケーションコードが、前記マルチスレッドアプリケーション
コードのソフトウェア開発者によって指定された１つまたは複数のトランザクショナルメ
モリブロックを含み、前記コードが前記１つまたは複数のトランザクショナルメモリブロ
ックを増補するためにさらに使用される請求項２６に記載のコンピュータ可読記憶媒体。
【請求項３１】
　操作の組の中の決定論的順序が、特定のレジスタに依存すること無しに決定される、請
求項１に記載の方法。
【請求項３２】
　トランザクションがコミットされる特定の順序が、特定のレジスタに依存すること無し
に決定される、請求項５に記載の方法。
【請求項３３】
　複数のスレッドが実行される決定論的順序が、特定のレジスタに依存すること無しに決
定される、請求項６に記載の方法。
【請求項３４】
　特定のレジスタに依存すること無しに、前記決定論的コンポーネントが、マルチスレッ
ドアプリケーションのスレッドが２つ以上の量子を実行する決定論的順序を指定する、請
求項１４に記載のシステム。
【請求項３５】
　決定論的にコミットする各量子が、特定のレジスタに依存することが無い、請求項２６
に記載のコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【０００１】
　本願発明の実施例は、例えば、決定論的マルチプロセッシングに関する。
【背景技術】

(6) JP 5576798 B2 2014.8.20

10

20

30

40

50

【０００２】
　本出願は、参照により本明細書に組み込まれる２００７年１２月１２日出願の「ＤＥＴ
ＥＲＭＩＮＩＳＴＩＣ　ＭＵＬＴＩＰＲＯＣＥＳＳＩＮＧ（決定論的マルチプロセッシン
グ）」という名称の米国特許仮出願第６１／０１３，０１９号の利益を主張する。
【０００３】
　マルチプロセッシングは、２つ以上の処理装置がそれぞれ１つまたは複数のプロセス（
プログラムまたは命令のセット）を同時に実行する動作モードである。マルチプロセッシ
ングシステムの目的は、処理速度を向上させることである。通常、これは、各処理装置が
同じプロセスの異なる命令のセットまたは異なるスレッドを処理することによって達成さ
れる。プロセスは、１つまたは複数のスレッドを実行することができる。各スレッドは、
それ自体のプログラムコンテキストを含むそれ自体のプロセッサコンテキストを有する。
従来、アプリケーションがマルチプロセッシングの利益を利用するためには、ソフトウェ
ア開発者は、アプリケーションをマルチスレッド型で書く必要がある。本明細書で使用す
る場合、マルチスレッドアプリケーションとは、２つ以上のスレッドを同時に実行するこ
とができるプログラムを指す。
【０００４】
　マルチプロセッサまたはマルチコアシステム（まとめて「マルチプロセッシングシステ
ム」と呼ぶ）において、マルチスレッドアプリケーションの２つ以上のスレッドは同時に
実行することができ、各プロセッサまたはコアが特定のスレッドを実行する。マルチスレ
ッドアプリケーションのスレッドが、同時実行中に、例えばメモリなどリソースを共有す
ることは、一般的である。本明細書で使用される場合、同時実行とは、マルチスレッドア
プリケーションの２つ以上のスレッドの同時の実行を指す。同時実行の結果、マルチスレ
ッドアプリケーションの２つ以上のスレッドが同じ共有リソースを読み取り、および／ま
たは更新することができる。例えば、あるスレッドは、共有メモリロケーションの値を変
更することができ、一方、別のスレッドは、共有メモリロケーションに格納された値に応
じて、一連の操作を実行する。
【０００５】
　従来のソフトウェア開発モデル下で、ソフトウェア開発者は、そのマルチスレッドアプ
リケーション内の並列スレッドを識別し、正しく同期しようと試みることにかなりの時間
量を費やす。例えば、開発者は、ロック、セマフォ、バリア、または他の同期機構を明示
的に使用して、共有リソースへのアクセスを制御することができる。スレッドが共有リソ
ースにアクセスするとき、同期機構は、リソースが使用可能になるまで、これらのスレッ
ドを一時停止することによって、他のスレッドがリソースにアクセスするのを防ぐ。同期
機構を明示的に実装するソフトウェア開発者は、通常、同期コードをデバッグするのにも
かなりの時間量を費やす。しかし、通常、同期エラーに起因するソフトウェアの欠陥（バ
グとも呼ばれる）が一時的に表面化する（すなわち、インターリーブされたスレッド操作
の特定のシーケンスにのみバグが現れる可能性がある）。その結果、欠陥のあるソフトウ
ェアは、小さな同期バグが現れる前に、何百回も正しく実行する可能性がある。
【０００６】
　こうしたシステムにおけるスレッドの様々なインターリービングによって非決定論的挙
動が作り出されるため、マルチプロセッシングシステムのためのソフトウェアを開発する
ことは難しい。インターリービングとは、スレッド間の対話を含み得るスレッド操作の順
序を指す。スレッド間の可能なインターリービングの数は、スレッドの数が増すにつれて
、著しく増す。その結果、マルチスレッドアプリケーションは、誤り検出およびモデリン
グプログラムの挙動に関して、追加の問題を提示する。例えば、マルチスレッドアプリケ
ーションに同じ入力が与えられると、マルチプロセッシングシステムは、スレッド操作を
非決定論的にインターリーブし、それによって、マルチスレッドアプリケーションが実行
されるたびに異なる出力を生成する。図１は、マルチプロセッシングシステムにおいて実
行されるマルチスレッドアプリケーションにおける２つの可能なスレッドインターリービ
ングの例を示す高レベル図である。図示されるように、アプリケーションは、少なくとも

(7) JP 5576798 B2 2014.8.20

10

20

30

40

50

２つのスレッド、スレッド１およびスレッド２を含む。アプリケーションが呼び出される
と、ある時点で、スレッド１は、変数Ａの値を１に設定する（Ａ＝１）操作、次いで変数
Ｂの値を変数Ａの値に設定する（Ｂ＝Ａ）操作を実行し、スレッド２は、変数Ｂの値をゼ
ロに設定する（Ｂ＝０）操作、次いで変数Ａの値を変数Ｂの値に設定する（Ａ＝Ｂ）操作
を実行する。図示されるように、スレッド１およびスレッド２の操作は、非決定論的にイ
ンターリーブされ、それによって、アプリケーションが呼び出されるたびに、異なる出力
を生成する。すなわち、最初に示された呼び出し中、操作のインターリービングによって
変数ＡおよびＢがそれぞれゼロに設定され、２番目に示された呼び出し中、操作のインタ
ーリービングによって変数ＡおよびＢがそれぞれ１に設定された。
【０００７】
　マルチスレッド実行における非決定性は、例えば、他のプロセスが同時に実行する、オ
ペレーティングシステムリソースの割り当てにおける差、キャッシュの状態、トランスレ
ーションルックアサイドバッファ（「ＴＬＢ」）、バス、割り込み、および他のマクロア
ーキテクチャ構造など、実行環境におけるわずかな変化に起因し得る。
【発明の概要】
【発明が解決しようとする課題】
【０００８】
　その結果、マルチスレッドアプリケーションを開発することは、シングルスレッドアプ
リケーションを開発するよりかなり難しい。
【課題を解決するための手段】
【０００９】
　従来、この問題に対処するにあたっての取り組みは、以前生成されたログファイルに基
づいてマルチスレッド実行を決定論的に再生することに焦点を当てていた。しかし、決定
論的再生システムは、再生ログファイルの維持に伴うオーバーヘッドの結果、かなりの性
能の低下を受ける。さらに、決定論的再生では、ソフトウェア開発者は、スレッドのイン
ターリービングがどのように実行されるかを制御しない。その結果、ソフトウェアが顧客
に配布される前に、操作の特定のインターリービングに起因する同期バグは、識別（およ
びより重要には修正）されない場合がある。非決定性は、テストカバレージを評価するの
を難しくする点で、ソフトウェア開発プロセスをさらに複雑にする。良好なカバレージは
、広範なプログラム入力と、広範な可能なスレッドインターリービングとを必要とする。
【００１０】
　ファシリティの１つまたは複数の実施形態が、添付の図面の図に例として、かつ限定さ
れないものとして示されている。図中、参照番号は、類似の要素を示す。
【図面の簡単な説明】
【００１１】
【図１】マルチスレッドプログラムにおける、２つの可能なスレッドインターリービング
の一例を示す高レベル図である。
【図２】１つまたは複数の実施形態における、ファシリティによって実行される決定論的
シリアル化プロセスのフロー図である。
【図３】１つまたは複数の実施形態における、ファシリティによって実行される決定論的
選択的シリアル化プロセスのフロー図である。
【図４】１つまたは複数の実施形態における、ファシリティが実行するコンピューティン
グシステムのアーキテクチャ例を示す高レベルブロック図である。
【図５】１つまたは複数の実施形態における、決定論的マルチプロセッシングレイヤの様
々な機能的要素を示す高レベルブロック図である。
【図６】１つまたは複数の実施形態における、マルチプロセッサコードを決定論的にする
ためにファシリティによって使用されるデータ構造を示す高レベルブロック図である。
【図７】１つまたは複数の実施形態における、スレッドを作成し、決定論的に実行する一
例を示す高レベル図である。
【図８】１つまたは複数の実施形態における、マルチプロセッサコードを決定論的にする

(8) JP 5576798 B2 2014.8.20

10

20

30

40

50

ためにトランザクショナルメモリシステムを使用する一例を示す高レベルブロック図であ
る。
【図９】１つまたは複数の実施形態における、アプリケーションを増補（augment）する
ためにファシリティによって実行されるプロセスを示すフロー図である。
【図１０】１つまたは複数の実施形態における、ブロックを構文解析するためにファシリ
ティによって実行されるプロセスを示すフロー図である。
【図１１】１つまたは複数の実施形態における、マルチスレッドアプリケーションの増補
された機能の制御フローグラフの一例である。
【図１２】１つまたは複数の実施形態における、決定論的マルチプロセッシング初期化関
数を示すフロー図である。
【図１３】１つまたは複数の実施形態における、決定論的マルチプロセッシングコミット
関数を示すフロー図である。
【発明を実施するための形態】
【００１２】
　決定論的再生システムなどの従来のシステムは、マルチスレッドアプリケーションの開
発における非決定論的挙動に伴う問題を適切に解決しない。さらに、既存のシステムは、
マルチスレッドアプリケーションの配置における非決定論的挙動に伴う問題を低減するこ
とも、解決しようと試みることもない。したがって、マルチスレッドアプリケーションの
決定論的マルチプロセッシングのためのハードウェアおよび／またはソフトウェアファシ
リティ（「ファシリティ」）が開発された。本明細書で使用される場合、決定論的マルチ
プロセッシングという用語は、マルチスレッドアプリケーションに同じ入力が与えられる
と、マルチスレッドアプリケーションによって同じ出力が生成される技術を指す。例えば
、共有リソースへのスレッドアクセスを同期するための負担から開発者を解放することに
よって、ファシリティは、マルチスレッドアプリケーションを開発する処理を簡略化する
。さらにファシリティは、こうしたマルチスレッドアプリケーションが配置されるとき、
例えば、開発者がバグを再生し、様々なスレッドインターリービングを厳格にテストでき
るようにすることによって、マルチスレッドアプリケーションの信頼性を向上させる。
【００１３】
　いくつかの実施形態において、ファシリティは、マルチスレッドアプリケーションの実
行を決定論的な有限数の操作の組（各組は、本明細書では「量子」と呼ばれる）に分割す
る。量子を識別するとき、ファシリティは、例えば、通信無しのスレッド操作など、並行
して実行され得る操作と、スレッド間通信、システムコールなど、決定論的な順序で実行
されるべき操作とを区別することができる。次いで、ファシリティによって識別される各
量子は、決定論的順序で実行される。マルチスレッドアプリケーションのスレッドによっ
て量子が実行される順序を制御することによって、ファシリティは、マルチスレッドアプ
リケーションが決定論的に挙動できるようにする。すなわち、同じ入力が与えられると、
マルチスレッドアプリケーションのスレッドは、その操作を決定論的にインターリーブし
、それによって同じ出力を提供する。
【００１４】
　いくつかの実施形態において、ファシリティは、マルチスレッドアプリケーションの実
行をシリアル化する。すなわち、ファシリティは、すべてのスレッド操作のグローバルな
インターリービングを制御することができる。例えば、これは、スレッド間に決定論的順
序で渡されるメモリアクセストークンを確立することによって達成され得る。スレッドは
、トークンの値がそのスレッドの識別子に一致するとき、トークンを「保持する」と呼ば
れ得る。トークンの値がスレッドの識別子に一致しないとき、トークンの値がスレッドの
識別子に一致するまで、その実行は一時停止される。トークンの値がスレッドの識別子に
一致するとき、スレッドは、トークンが次のスレッドに渡される前に、決定論的な有限数
の操作（すなわち量子）を実行する。例えば、決定論的順序で次のスレッドの識別子に対
応するように、トークンの値を進めることによって、トークンは、次のスレッドに渡され
得る。

(9) JP 5576798 B2 2014.8.20

10

20

30

40

50

【００１５】
　図２は、１つまたは複数の実施形態における、ファシリティによって実行される決定論
的シリアル化プロセス２００のフロー図である。例えば、決定論的シリアル化プロセス２
００は、マルチスレッドアプリケーションがマルチプロセッシングシステム上で実行して
いる間に実行され得る。マルチスレッドアプリケーションが実行している間、ファシリテ
ィは、スレッドごとにステップ２０５～２１５をループする。ステップ２０５で、トーク
ンの値がスレッドの識別子に一致することをファシリティが決定した場合、ファシリティ
はステップ２１０に進み、そうでない場合、ファシリティは折り返してステップ２０５に
戻る。すなわち、ファシリティは、トークンの値がそのスレッドの識別子に一致するまで
、スレッドの実行を一時停止する。ステップ２１０で、ファシリティは、識別子がトーク
ンに一致するスレッドが決定論的な有限数の操作（すなわち量子）を実行できるようにし
、次いでファシリティは、ステップ２１５に進む。ステップ２１５で、ファシリティは、
トークンの値を、決定論的な順序で次のスレッドの識別子に等しくなるように設定し、次
いでファシリティは、ステップ２０５に進む。ファシリティは、アプリケーションが終了
するまで、シリアル化プロセス２００をループし続けることができることに留意されたい
。
【００１６】
　図２および以下のフロー図のそれぞれに示されるステップは様々な方法で変更され得る
ことを、当業者であれば理解されたい。例えば、いくつかのステップの順序が並べ替えら
れてもよく、いくつかのサブステップが並行して実行されてもよく、いくつかの示された
ステップが省略されてもよく、または他のステップが含まれていてもよい。
【００１７】
　いくつかの実施形態において、ファシリティは、マルチスレッドアプリケーションの実
行を選択的にシリアル化する。すなわち、ファシリティは、他のスレッド操作が並行して
実行される間に、いくつかのスレッド操作のインターリービングを制御する（本明細書で
は「制御された操作」と呼ばれる）ことができる。例えば、ファシリティは、２つ以上の
スレッド間の通信を伴う操作のインターリービングを制御することができる。スレッド間
通信は、スレッドが別のスレッドによってプライベートに保持されるデータを読み取ると
き、またはスレッドが共有データに書き込み、それをプライベート化するときに起こる。
いくつかの実施形態において、スレッドが別のスレッドによってプライベートに保持され
るとみなされるデータを読み取ろうと試みるとき、スレッドは、トークンの値がその識別
子に一致するまで、その実行を一時停止する。同様に、いくつかの実施形態において、ス
レッドは、共有される、または別のスレッドによってプライベートに保持されるとみなさ
れるデータに書き込もうと試みるとき、トークンの値がその識別子に一致し、すべての他
のスレッドがその実行における決定論的ポイントに到達する（例えば、量子の実行を終了
する）まで、その実行を一時停止する。その結果、ファシリティは、すべてのスレッドが
、その実行での決定論的ポイントにおけるデータの状態の変化（共有からスレッドによっ
てプライベートに保持されるまで）を観察することを確実にする。
【００１８】
　いくつかの実施形態において、スレッド間通信を検出するために、ファシリティは、マ
ルチスレッドアプリケーションのアドレス空間におけるメモリロケーションごとに、共有
情報を含む共有メモリデータ構造を維持する。例えば、こうした情報は、メモリロケーシ
ョンが共有である、プライベートであるなどを示すことができる。共有は、操作レベル、
命令レベル、ページレベルなど、様々なレベルで起こり得ることに留意されたい。いくつ
かの実施形態において、スレッドは、それ自体のプライベートに保持されたデータにアク
セスすることも、トークンを保持することなく共有データを読み取ることもできる。しか
し、共有データに書き込むために、または別のスレッドによってプライベートとして保持
されるデータを読み取るために、スレッドは、トークンを保持し、すべての他のスレッド
がブロックされるまで待つ（すなわち、他のスレッドもそのトークンを待っている）。ス
レッドが、プライベートとみなされるメモリロケーションを読み取るとき、共有メモリデ

(10) JP 5576798 B2 2014.8.20

10

20

30

40

50

ータ構造は、読み取られたメモリロケーションを共有されたものとみなすべきであること
を示すために更新される。スレッドがメモリロケーションに書き込むとき、メモリロケー
ションをそのスレッドによってプライベートに保持されているものとみなすべきであるこ
とを示すために、共有メモリデータ構造が更新される。同様に、スレッドが別のスレッド
によってこれまではアクセスされていないメモリロケーションを読み取るとき、共有メモ
リデータ構造は、メモリロケーションをそのスレッドによってプライベートに保持されて
いるものとみなすべきであることを示すために更新される。
【００１９】
　図３は、１つまたは複数の実施形態における、ファシリティによって実行される決定論
的選択的シリアル化プロセス３００のフロー図である。例えば、スレッドまたはプロセッ
サが、メモリ操作、システムコールなど、制御された操作を実行しようと試行すると、選
択的シリアル化プロセス３００が実行され得る。ステップ３０５で、操作がシステムコー
ルである（例えばＩ／Ｏ操作など）ことをファシリティが決定した場合、ファシリティは
ステップ３２５に進み、そうでない場合、ファシリティはステップ３１０に進む。ステッ
プ３１０で、操作がスレッドによってプライベートに保持されていないメモリにアクセス
するとファシリティが決定した場合、ファシリティはステップ３１５に進み、そうでない
場合、ファシリティはステップ３５５に進む。ステップ３１５で、操作が共有メモリにア
クセスしたことをファシリティが決定した場合、ファシリティはステップ３２０に進み、
そうでない場合、ファシリティはステップ３２５に進む。ステップ３２０で、操作が格納
操作であることをファシリティが決定した場合、ファシリティはステップ３２５に進み、
そうでない場合、ファシリティはステップ３５５に進む。ステップ３２５で、トークンの
値がスレッドの識別子に一致することをファシリティが決定した場合、ファシリティはス
テップ３３０に進み、そうでない場合、ファシリティは折り返してステップ３２５に戻る
。すなわち、ファシリティは、トークンの値が選択されたスレッドの識別子に一致するま
で、選択されたスレッドの実行を一時停止する。ステップ３３０で、マルチスレッドアプ
リケーションのすべてのスレッドが一時停止（またはブロック）されたことをファシリテ
ィが決定した場合、ファシリティはステップ３３５に進み、そうでない場合、ファシリテ
ィは折り返してステップ３３０に戻る。トークンを保持するスレッドが実行し得る前に、
すべてのスレッドが一時停止されるのを待つことによって、ファシリティは、実行におけ
る決定論的ポイントで、すべてのスレッドが操作の実行に起因する任意の状態の変化を観
察することを確実にする。ステップ３３５で、操作がシステムコールであることをファシ
リティが決定した場合、ファシリティはステップ３５５に進み、そうでない場合、ファシ
リティはステップ３４０に進む。ステップ３４０で、操作が格納操作であることをファシ
リティが決定した場合、ファシリティはステップ３４５に進み、そうでない場合、ファシ
リティはステップ３５０に進む。ステップ３４５で、ファシリティは、操作によって影響
を受けるメモリロケーションを、スレッドによってプライベートに保持されているものと
みなすべきであることを示すために、共有メモリデータ構造を更新し、次いで、ファシリ
ティはステップ３５５に進む。ステップ３５０で、ファシリティは、操作によってアクセ
スされたメモリロケーションを共有されたものとみなすべきであることを示すために、共
有メモリデータ構造を更新し、次いでファシリティはステップ３５５に進む。ステップ３
５５で、ファシリティによって、スレッドは操作を始めることができ、次いでファシリテ
ィは戻る。
【００２０】
　いくつかの実施形態において、ファシリティは、トランザクショナルメモリシステムと
共に動作して、マルチスレッドアプリケーションの実行をシリアル化または選択的にシリ
アル化する。例えば、ファシリティは、トランザクショナルメモリシステムを使用して、
メモリ操作の決定論的順序を侵害することになるスレッド間通信を検出することができる
。すなわち、共有メモリデータ構造の代わりに、またはそれに加えて、トランザクショナ
ルメモリシステムが使用され得る。トランザクショナルメモリシステムは、ハードウェア
トランザクショナルメモリ（ＨＴＭ）システム、ソフトウェアトランザクショナルメモリ

(11) JP 5576798 B2 2014.8.20

10

20

30

40

50

（ＳＴＭ）システム、またはハイブリッドハードウェア－ソフトウェアトランザクショナ
ルメモリシステム（ＨＳ－ＴＭ）とすることができることに留意されたい。トランザクシ
ョナルメモリシステムと共に動作するとき、ファシリティは、スレッドによって実行され
る各量子をトランザクション内に封入する。各量子をトランザクション内に封入すること
によって、スレッドは、アトミック的に、かつ隔離されて実行するようにみえる。その結
果、トランザクションは、並行して実行され、次いで、決定論的順序に従ってコミットさ
れ得る。通常、トランザクションは、決定論的順序を侵害することになる（本明細書では
「競合」と呼ばれる）スレッド間通信を含む場合、コミットされない。競合が存在すると
き、トランザクションは、中止され、再開される。
【００２１】
　いくつかの実施形態において、ファシリティは、量子ビルダコンポーネント（quantum
builder component）、および決定論的マルチプロセッシング（「ＤＭＰ」）コンポーネ
ントを含む。量子ビルダコンポーネントは、マルチスレッドアプリケーションの実行を量
子（すなわち、決定論的な有限数の操作の組）に分割するために使用される。いくつかの
実施形態において、量子ビルダコンポーネントは、例えば通信無しのスレッド操作など、
並行して実行され得る操作と、スレッド間通信、システムコールなど、決定論的な順序で
実行されるべき操作（例えば、制御された操作）とを区別する。ＤＭＰコンポーネントは
、決定論的順序に従って各量子が実行されることを確実にする。いくつかの実施形態にお
いて、トークンがブロックされた（例えば、別のスレッドによって保持されたロックを待
つ）スレッドに進められると、ファシリティは、トークンを次のスレッドに渡し、それに
よって、開発者がマルチスレッドコード内に含まれる同期プリミティブのブロックに起因
するライブロックを回避する。例えば、トークンがスレッド２に渡されるときにスレッド
２が進むために必要とするロックをスレッド１が保持する場合、トークンは、次のスレッ
ド（例えば、スレッド３）に渡される。トークンが決定論的順序で渡されるため、また各
スレッドが量子を実行する（またはトークンを渡す）ため、量子は、決定論的にインター
リーブされ、それによってコードが同じ入力で実行されるたびに同じ出力を生成し、ライ
ブロックを防ぐ。
【００２２】
　量子ビルダコンポーネントおよびＤＭＰコンポーネントは、ハードウェア、ソフトウェ
ア、またはハードウェアおよびソフトウェアの組み合わせにおいて実装され得る。例えば
、量子ビルダコンポーネントは、命令が後退するにつれてそれらをカウントし、所定の量
子サイズに到達したとき、量子境界を配置することによって実装され得る。実行をシリア
ル化するために、ＤＭＰコンポーネントは、決定論的順序で量子境界においてプロセッサ
間に渡されるトークンとして実装され得る。別の例として、実行を選択的にシリアル化す
るために、量子ビルダコンポーネントは、アクセスがスレッド間通信を伴うかどうか（例
えば、共有データへのアクセスなど）を決定するために、メモリアクセスを監視すること
ができる。例えば、一実施形態において、量子ビルダは、共有テーブルを実装するために
、ＭＥＳＩ（「変更、排他、共有、無効」）キャッシュコヒーレンスプロトコルによって
維持されるキャッシュライン状態を使用する。排他または変更状態のキャッシュラインは
、プロセッサによってプライベートに保持されるものとみなされ、トークンを保持しない
それ自体のスレッドによって自由に読み取られ、または書き込まれ得る。同様に、共有状
態のキャッシュラインは、トークンを保持しないそれ自体のスレッドによって自由に読み
取られ得る。すべてのスレッドがその実行における決定論的ポイントにあるとき（例えば
、すべてのプロセッサがブロックされたとき）、およびプロセッサが決定論的トークンを
取得したとき、プロセッサは、共有状態のキャッシュラインに書き込むことができる。こ
うした実施形態において、各プロセッサは、それがブロックされ、および／またはブロッ
ク解除されると、ブロードキャストする。任意のプロセッサによってキャッシュに入れら
れないラインに対応する共有テーブルにおけるエントリの状態は、メモリに保持され、メ
モリコントローラによって管理することができ、こうしたエントリの状態は、キャッシュ
ミスが処理されるときに転送され得ることに留意されたい。いくつかの実施形態において

(12) JP 5576798 B2 2014.8.20

10

20

30

40

50

、量子ビルダおよびＤＭＰコンポーネントは、ハードウェアトランザクショナルメモリ（
ＨＴＭ）システムなどのトランザクショナルメモリ（ＴＭ）システムと共に動作して、特
定のトランザクションコミット順序、すなわちトランザクション内に封入された量子の決
定論的コミット順序を指定する。こうした実施形態において、ＴＭシステムは、プロセッ
サがトークンを保持するとき、トランザクションをコミットし、トランザクションがコミ
ットされた後、トークンは、決定論的順序で次のプロセッサに渡される。いくつかの実施
形態において、ハードウェアは複数のトークンをサポートすることができ、それによって
、プロセッサ間に渡されるトークンをそれぞれ指定する複数の決定論的プロセスが同時に
実行できるようになることに留意されたい。
【００２３】
　いくつかの実施形態において、ファシリティは、コンパイラまたはバイナリ書き換えイ
ンフラストラクチャを使用して実装され得る。例えば、量子ビルダコンポーネントは、マ
ルチスレッドアプリケーションコード内に同期コードを挿入し、コンパイラによって生成
される制御フローグラフ（「ＣＦＧ」）において操作を追跡することによって、コンパイ
ラを使用して量子を構築することができる。量子は、サイズが決定論的である限り、均一
サイズのものである必要はないことに留意されたい。こうした同期コードは、例えば、関
数呼び出しの最初および最後、およびＣＦＧ後退エッジの最後に挿入することができる。
挿入されたコードは、量子サイズを追跡し、ターゲットサイズに到達したとき、ＤＭＰコ
ンポーネントにコールバックする。例えば、実行のこうした実施形態をシリアル化するた
めに、ＤＭＰコンポーネントは、決定論的順序でスレッド間に渡される待ち行列ロックと
してトークンを実装することができる。別の例として、実行を選択的にシリアル化するた
めに、量子ビルダコンポーネントは、ロード操作および格納操作がＤＭＰコンポーネント
へのコールバックをもたらすように、コンパイラを使用して、コードを挿入することがで
きる。いくつかの実施形態において、ＤＭＰコンポーネントは、ソフトウェアトランザク
ショナルメモリ（ＳＴＭ）システムなどのトランザクショナルメモリシステムと共に動作
し、および／または共有テーブルを実装する。
【００２４】
　いくつかの実施形態において、スレッドによって実行される操作のインターリービング
を制御するために、ファシリティは、ソースコード、ソースコードの中間表現、または実
行ファイルを増補することができる。例えば、ファシリティは、１つまたは複数の決定論
的マルチプロセッシング（「ＤＭＰ」）関数またはデータ構造をアプリケーションコード
に挿入することによって、マルチスレッドアプリケーションコードを増補することができ
る。別の例として、挿入されたＤＭＰ関数は、１つまたは複数のデータ構造（例えば、共
有メモリデータ構造）を維持する、ＤＭＰコンポーネントによって提供されるものなど、
ランタイムシステムにコールバックすることができる。増補されたコードがマルチプロセ
ッシングシステムによって実行されると、挿入されたＤＭＰ関数およびデータ構造は、次
いで、メモリおよびＩ／Ｏ操作、システムコールなど、操作が実行される順序を制御する
ために使用される。スレッドがこうした動作を実行する順序を制御することによって、フ
ァシリティは、マルチスレッドアプリケーションが決定論的に挙動できるようにする（本
明細書では、「増補されたアプリケーション」と呼ばれる）。すなわち、同じ入力が与え
られると、増補されたアプリケーションのスレッドは、操作の一部またはすべてを決定論
的にインターリーブし、それによって同じ出力を提供することができる。ファシリティは
他のスレッド操作を制御するように拡張され得ることを、当業者であれば理解されたい。
【００２５】
　いくつかの実施形態において、ファシリティは、増補されたアプリケーションのスレッ
ドによって実行される量子の決定論的実行を実施する、ＤＭＰライブラリによって提供さ
れる関数を挿入することによって、マルチスレッドアプリケーションコードを増補するコ
ンパイラモジュールとして実装される。いくつかの実施形態において、コードが増補され
た後、コンパイラは、例えば、ＤＭＰライブラリに対するすべての呼び出しをインライン
化するなど、コードを再度最適化する。コンパイラは本明細書では具体的に記載されない

(13) JP 5576798 B2 2014.8.20

10

20

30

40

50

増補されたコードへの他の最適化を実行することができることを、当業者であれば理解さ
れたい。
【００２６】
　いくつかの実施形態において、ファシリティは、本明細書では「スレッドデータ構造」
と呼ばれるＤＭＰデータ構造を含み、その詳細は、図６を参照して以下でより詳しく説明
される。しかし、任意の数のＤＭＰデータ構造が含まれていてよいことに留意されたい。
スレッドデータ構造が複数のＤＭＰデータ構造を表し得ることにさらに留意されたい。い
くつかの実施形態において、スレッドデータ構造は、実行中に増補されたアプリケーショ
ンによって作成される各スレッドに対応するスレッド識別子（「ＩＤ」）を格納する。例
えば、スレッドデータ構造は、配列、リンクリスト、キュー、またはスレッドＩＤの他の
データ構造（本明細書では「スレッドコンテナ」と呼ばれる）を含み得る。
【００２７】
　いくつかの実施形態において、スレッドデータ構造は、量子の実行の順序を制御するた
めに使用され得るトークンを含む。例えば、いくつかの実施形態において、量子を実行す
る前に、スレッドは、トークンの現在の値がスレッドのＩＤに一致するかどうかを決定す
る。スレッドのＩＤがトークンの現在の値に一致するとき、スレッドは、量子を実行する
ことができる。そうでない場合、スレッドは、トークンの現在の値がその識別子に一致す
るまで、量子を実行するのを待つ。
【００２８】
　いくつかの実施形態において、スレッドが作成される順序は、スレッドが決定論的に実
行される順序に対応する。例えば、各スレッドが作成されるとき、スレッドの対応するス
レッドＩＤは、スレッドコンテナ内に順次格納され得る（例えば、最初に作成されたスレ
ッドのスレッドＩＤは１、２番目に作成されたスレッドのスレッドＩＤは２など）。操作
が実行されるとき、スレッドは、（第１のスレッドＩＤから開始して）スレッドＩＤが格
納される順序に基づいてスレッドコンテナに格納されるスレッドＩＤを順次ループするこ
とによって、トークンの値を進めるよう動作するいくつかのＤＭＰ関数を呼び出すことが
できる。スレッドが存在するとき、通常、スレッドの対応するＩＤがスレッドコンテナか
ら削除されることに留意されたい。
【００２９】
　いくつかの実施形態において、スレッドデータ構造は、トークンが進められる前にスレ
ッドＩＤがトークンの現在の値に一致するスレッドによって実行され得る決定論的な有限
数の（すなわち量子）制御された操作またはブロックに対応する値を格納する。制御され
た操作またはブロックのこの数は、本明細書では「コミットブロックサイズ」と呼ばれる
。コミットブロックサイズは、１つからＮ個までの制御された操作またはブロックに及び
得る。大きいコミットブロックサイズおよび小さいコミットブロックサイズには性能のト
レードオフが関連することを、当業者であれば理解されたい。例えば、コミットブロック
サイズが小さすぎるとき、スレッド間でのコンテキストの切り替えに伴うオーバーヘッド
の結果として、増補されたアプリケーションの性能が悪化する。別の例として、コミット
ブロックサイズが大きすぎるとき、多くのまたはすべてのスレッドは、スレッドＩＤがト
ークンに一致するスレッド（およびスレッドＩＤがそのスレッドＩＤに先行するすべての
スレッド）がコミットブロックサイズによって指定された数の制御された操作を終了する
、または実際に実行するのを待つのを余儀なくされ得るため、増補されたアプリケーショ
ンの性能が悪化する。少なくとも１つの実施形態において、コミットブロックサイズは、
１，０００に等しい。
【００３０】
　いくつかの実施形態において、コミットブロックサイズは、構成可能である。例えば、
コミットブロックサイズは、増補されたアプリケーションの様々なスレッドインターリー
ビングをプログラム的に操作し、テストするように、ソフトウェア開発者によって構成さ
れ得る。別の例として、コミットブロックサイズは、増補されたアプリケーションによっ
て作成され得る最大数のスレッド、および／または増補されたアプリケーションが実行す

(14) JP 5576798 B2 2014.8.20

10

20

30

40

50

るマルチプロセッシングシステムのプロセッサまたはコアの数に基づいて、自動的に構成
され得る。スレッドによって実行される制御された操作の数をカウントするために様々な
技術が使用され得ることを、当業者であれば理解されたい。例えば、いくつかの実施形態
において、スレッドデータ構造は、スレッドＩＤが現在のトークンＩＤに一致するスレッ
ドによって実行された制御された操作の数に対応する値を含む。スレッドが制御された操
作を実行するたびに、制御された操作の数は、増分され、コミットブロックサイズと比較
される。制御された操作の数がコミットブロックサイズに等しい場合、トークンは、次の
スレッドＩＤに進められ、制御された操作の数は、ゼロにリセットされる。
【００３１】
　マルチスレッドアプリケーションを増補して、いくつかのスレッドの操作（例えば、制
御されたスレッド操作）の順序を制御することによって、開発プロセスは、かなり簡略化
される。例えば、ファシリティは、マルチスレッドアプリケーションのスレッドインター
リービングを直接操作し、それによってマルチスレッドアプリケーションの実質的により
良いテストカバレージを可能にできるようにするために、ソフトウェア開発者によって使
用され得る。開発者は、例えばコミットブロックサイズを変更することによって、制御さ
れたスレッド操作のインターリービングを操作することができる。別の例として、開発者
は、スレッドコンテナに格納されるスレッドＩＤの順序を変更することによって、制御さ
れたスレッド操作のインターリービングを操作することができる。いくつかの実施形態に
おいて、ファシリティによって、ソフトウェア開発者は、挿入されたコードが量子構築物
に影響を与えないように、増補のために挿入されたとコードをマーク付けすることができ
る。
【００３２】
　いくつかの実施形態において、マルチスレッドアプリケーションは、その増補された形
で配置される。マルチスレッドアプリケーションを増補された形で配置することによって
、アプリケーションの信頼性は、実質的に向上する。というのは、例えば、「現場での」
（すなわち顧客による）増補されたアプリケーションの実行は、社内でのアプリケーショ
ンのテストに、より似たものになるからである。さらに、マルチスレッドアプリケーショ
ンがクラッシュする、または同期バグを経験するとしたら、ソフトウェア開発者は、顧客
から意味のあるクラッシュ情報を集めることによって欠陥を迅速に解決することができる
。すなわち、増補された形で配置されると、クラッシュに先行する顧客によって実行され
るアクションは、ソフトウェア開発者がクラッシュを容易に再生することができるように
なるため、意味がある。その結果、ソフトウェア開発者は、クラッシュまたは同期バグが
スレッドの未知のインターリービングに関連付けられた場合より実質的に早く欠陥を解決
することができる。したがって、ファシリティは、マルチスレッドアプリケーションの開
発および配置の両方を向上させる。
【００３３】
　いくつかの実施形態において、マルチスレッドアプリケーションが開発される、および
／またはマルチスレッドアプリケーションが配置されるコンピューティングシステムは、
共有メモリへのアクセスを制御するためのトランザクショナルメモリ（「ＴＭ」）システ
ムを含む。トランザクショナルメモリシステムは、ハードウェアトランザクショナルメモ
リ（「ＨＴＭ」）、ソフトウェアトランザクショナルメモリ（「ＳＴＭ」）システム、ま
たはハイブリッドハードウェア－ソフトウェア（ＨＳ－ＴＭ）システムとすることができ
る。両方のＴＭシステムは、当分野で知られている。ＳＴＭシステムは、プログラミング
アブストラクション（programming abstraction）を提供し、それを介して、スレッドは
、共有リソースをロックすることなく、または共有リソースが解放されるのを待つことな
く、その一部に１つまたは複数の共有リソース（例えばメモリ）が関与し得る操作のシー
ケンスをアトミック的に実行する。
【００３４】
　従来のＴＭシステムは、他のスレッドが何をしているかに関係なく、スレッドが共有メ
モリへの変更を終了するという点で「楽観的」である。これは、例えば、マルチスレッド

(15) JP 5576798 B2 2014.8.20

10

20

30

アプリケーションのスレッドごとにログを維持することによって達成され、トランザクシ
ョンごとに、各スレッドは、その対応するログにその操作を順次記録する。例えば、ログ
は、メモリロケーションの数、並びにトランザクション中にスレッドが読み取り、および
／または書き込む値を含み得る。トランザクションの最後に、他のスレッドが同じ共有メ
モリロケーションに並行してアクセスしなかった場合、スレッドは、実際に、操作のシー
ケンスを実行する（これは一般に「コミット」と呼ばれる）。しかし、別のスレッドが同
じメモリロケーションのうちの１つまたは複数に並行してアクセスした場合、トランザク
ションは、中止され、再開される。すなわち、従来のＴＭシステムにおいて、同じトラン
ザクション中に共有リソースが複数のスレッドによってアクセスされない限り、トランザ
クションは、並行して実行する。
【００３５】
　従来のＴＭシステムに関連付けられた欠点がいくつかある。例えば、従来のＴＭシステ
ムは、開発者がいくつかの操作、またはいくつかの操作のシーケンスをアトミックとして
宣言できるようにすることによって、開発をある程度簡略化するが、従来のＴＭシステム
は、マルチスレッドアプリケーションの決定論的マルチプロセッシングを提供しない。さ
らに、従来のＴＭシステムでは、ソフトウェア開発者は、マルチスレッドアプリケーショ
ンにおけるスレッドのインターリービングを指定し、または操作することができない。そ
の結果、従来のＴＭシステムは、潜在的な同期バグにも苦しむ。また、ＨＴＭシステムと
比較すると、ＳＴＭシステムは、ログの維持に伴うオーバーヘッド、およびトランザクシ
ョンのコミットに費やされた時間の結果、パフォーマンスヒットを被る。
【００３６】
　いくつかの実施形態において、ファシリティは、ＨＴＭ、ＳＴＭ、ＨＳ－ＴＭシステム
など、共有リソースへのアクセスを制御するためにトランザクショナルメモリシステムを
使用するマルチスレッドアプリケーションのいくつかのスレッド操作の実行の順序を制御
する。すなわち、ファシリティは、スレッドが開始する、および／またはトランザクショ
ナルメモリシステムにおけるトランザクションをコミットする順序を制御することができ
る。いくつかの実施形態において、ファシリティは、ＳＴＭシステムによって提供される
アプリケーションプログラミングインターフェイス（「ＡＰＩ」）を増補する。一例とし
て、ファシリティは、以下の表１に示されたＳＴＭ　ＡＰＩの関数を増補することができ
る。ファシリティのいくつかの実施形態は、表１に提供されるＳＴＭ　ＡＰＩを参照して
記載されるが、ファシリティは様々なトランザクショナルメモリシステムにおいて動作し
得ることを、当業者であれば理解されたい。
【００３７】

(16) JP 5576798 B2 2014.8.20

10

20

30

【表１】

【００３８】
　いくつかの実施形態において、ソフトウェア開発者は、マルチスレッドアプリケーショ
ン内のアトミックブロックを手動で指定する。例えば、ソフトウェア開発者は、以下のア
トミックブロックを含み得る。
【００３９】
【数１】

【００４０】
　コンパイル後、上記のアトミックブロック例は、以下の擬似コードによって置き換えら
れることになる。
【００４１】

(17) JP 5576798 B2 2014.8.20

10

20

30

40

50

【数２】

【００４２】
　いくつかの実施形態において、トランザクションのうちの１つまたは複数（すなわち、
アトミックブロック）は、ソフトウェア開発者に可視ではない。例えば、これらは、コン
パイラ、ランタイム、ＴＭシステム、またはその何らかの組み合わせによって挿入され得
る。いくつかの実施形態において、ブロックがソフトウェア開発者によって指定されたか
、それともコンパイラ、ランタイム、またはＴＭシステムによって挿入されたかにかかわ
らず、アトミックブロックは、増補される。いくつかの実施形態において、スレッドがＳ
ＴＭ　ＡＰＩの増補された関数を呼び出すと、関数は、トークンの現在の値に対応するス
レッドＩＤをチェックするＤＭＰ関数に制御を転送し、これは、トランザクションを開始
し、および／または決定論的にコミットするために使用される。多くの異なる技術はトラ
ンザクションをインターセプトするために使用され得ることを、当業者であれば理解され
たい。例えば、いくつかのＳＴＭ　ＡＰＩは、ＡＰＩ関数の実行前および／または後に、
制御をＤＭＰ関数に転送するために、フックが登録され得るコールバック機構を提供する
。
【００４３】
　増補されたトランザクショナルメモリシステムのトランザクションは、サイズが決定論
的である。すなわち、各スレッドは、ブロックにおいて特定数の操作（本明細書では「コ
ミットブロックサイズ」と呼ばれる）を実行し、次いでスレッドは、ＩＤがトークンの現
在の値に一致するスレッドで開始して、決定論的にコミットしようと試みる。トランザク
ションが有効であり、スレッドＩＤがトークンに一致する場合、スレッドは、ＳＴＭ＿Ｃ
ｏｍｍｉｔ＿Ｔｒａｎｓａｃｔｉｏｎ（）を呼び出す。トランザクションがコミットされ
た後、トークンは、次のスレッドＩＤに進められる。しかし、トランザクションが無効で

(18) JP 5576798 B2 2014.8.20

10

20

30

40

50

ある場合（例えば、スレッドがそのトランザクション中に別のスレッドによって書き込ま
れたロケーションから読み取ったため）、スレッドはＳＴＭ＿Ａｂｏｒｔ＿Ｔｒａｎｓａ
ｃｔｉｏｎ（）を呼び出す。通常、スレッドＩＤがトークンに一致するスレッドがその対
応するトランザクションを正常にコミットするまで、トークンは進められないことに留意
されたい。
【００４４】
　いくつかの実施形態において、トークンの現在の値がトランザクションを実行するスレ
ッドのスレッドＩＤに一致しない場合、いくつかのタイプの操作は、トランザクションに
即座に中止させる。例えば、トランザクションがＩ／Ｏ操作など元に戻すことができない
操作を含むとき、トランザクションを実行するスレッドは、そのスレッドＩＤがトークン
に一致するかどうかを決定する。そのスレッドＩＤがトークンに一致する場合、トランザ
クションは、続行し得る。そうでない場合、トランザクションは、自動的に中止され得る
。
【００４５】
　いくつかの実施形態では、中止されたスレッド以降のスレッドＩＤを有するすべてのス
レッドが中止され、一方、別の実施形態では、並行のトランザクションが同じ共有リソー
スにアクセスしたスレッドのみが中止され、再開される。通常、スレッドＩＤがトークン
に一致するスレッドがその対応するトランザクションを正常にコミットするまで、トーク
ンは進められない。その結果、それらのトランザクションを中止しなかった中止されたス
レッド以降のスレッドＩＤを有する任意のスレッドは、ＳＴＭ＿Ｃｏｍｍｉｔ＿Ｔｒａｎ
ｓａｃｔｉｏｎ（）を呼び出す前に、トークンがそのスレッドＩＤに一致するのを待つ。
【００４６】
　ＨＴＭを有するコンピューティングシステムにおいて増補されたアプリケーションが実
行されると、増補されたアプリケーションは、実質的に性能のペナルティなく、決定論的
に実行され得ることに留意されたい。その結果、ソフトウェア開発者および／または製造
業者は、スレッドインターリービングの可能性について徹底的にテストしたことを知って
いるマルチスレッドアプリケーションを配布することができる。したがって、同期バグが
マルチスレッドコードに残っている場合でさえ、顧客には見えない。
【００４７】
　より詳しくファシリティについて説明する前に、ファシリティを実施することができる
環境について検討することが有用である。図４は、１つまたは複数の実施形態における、
ファシリティが実行するコンピューティングシステム４００のアーキテクチャ例を示す高
レベルブロック図である。説明を曖昧にするのを回避するために、いくつかのよく知られ
ている構造および機能は、詳細に示されても述べられてもいない。コンピューティングシ
ステム４００は、相互接続システム４１５に結合された１つまたは複数のプロセッサ４０
５およびメモリ４１０を含む。プロセッサ４０５は、コンピューティングシステム４００
の中央処理装置（「ＣＰＵ」）であり、したがってその操作全体を制御する。いくつかの
実施形態において、プロセッサ４０５は、メモリ４１０に格納されたソフトウェアを実行
することによってこれを達成する。いくつかの実施形態において、コンピューティングシ
ステム４００は、単一の集積回路（「ダイ」と呼ばれる）から成るパッケージ、ひとまと
めにされた１つまたは複数のダイ、複数のパッケージなどに２つ以上の独立したコアを有
するプロセッサ４０５を含む。いくつかの実施形態において、コンピューティングシステ
ム４００は、単一のコアのみを有するにもかかわらず、マルチコアプロセッサとして実行
することができるハイパースレッドプロセッサ４０５を含む。プロセッサ４０５は、１つ
または複数のプログラム可能な汎用または専用マイクロプロセッサ、デジタル信号プロセ
ッサ（「ＤＰＳ」）プログラム可能コントローラ、特定用途向け集積回路（「ＡＳＩＣ」
）、プログラム可能論理装置（「ＰＬＤ」）など、またはこうした装置の組み合わせとす
ることができ、またはそれらを含み得る。
【００４８】
　図４に示される相互接続システム４１５は、適切なブリッジ、アダプタ、および／また

(19) JP 5576798 B2 2014.8.20

10

20

30

40

50

はコントローラによって接続される任意の１つまたは複数の個別の物理バスおよび／また
はポイントツーポイント接続を表す抽象概念である。相互接続システム４１５は、例えば
、システムバス、ある形の周辺機器コンポーネント相互接続（ＰＣＩ）バス、ハイパート
ランスポートまたは業界標準アーキテクチャ（ＩＳＡ）バス、小型コンピュータシステム
インターフェイス（ＳＣＳＩ）バス、ユニバーサルシリアルバス（ＵＳＢ）、電気電子技
術者協会（ＩＥＥＥ）標準１３９４バス（時として「ＦｉｒｅＷｉｒｅ」と呼ばれる）な
どを含み得る。
【００４９】
　システムメモリ４１０は、プログラムおよびデータが使用されている間にそれらを格納
するためのメモリ４２０、プログラムおよびデータを永続的に格納するためのハードドラ
イブなどの固定記憶装置４２５、およびコンピュータ可読媒体に格納されるプログラムお
よびデータを読み取るためのＣＤ－ＲＯＭまたはＤＶＤ－ＲＯＭドライブなどのコンピュ
ータ可読媒体ドライブ４３０を含む。本明細書で使用される場合、システムメモリ４１０
は、任意の形の揮発性、不揮発性、取外式、および固定式媒体、またはコンピュータ可読
命令、データ構造、プログラムモジュール、およびコンピューティングシステム４００の
他のデータなどの情報を格納することができるこうした媒体装置の任意の組み合わせを含
む。
【００５０】
　また、プロセッサ４０５には、相互接続システム４１５を介して、ネットワークアダプ
タ４３５、１つまたは複数の入力装置および出力装置（「Ｉ／Ｏ装置」）４４０も結合さ
れる。ネットワークアダプタ４３５は、コンピューティングシステム４００に、ネットワ
ークを介して他のコンピューティングシステムと通信することができる機能を提供し、例
えば、Ｅｔｈｅｒｎｅｔ(登録商標)アダプタとすることができる。Ｉ／Ｏ装置４４０は、
コンピューティングシステム４００のユーザに、システムメモリ４１０に格納されるプロ
グラムおよびデータにアクセスすることができる機能を提供する。例えば、Ｉ／Ｏ装置４
４０は、キーボード、ポインティング装置、マイクロフォンなどの入力装置、および表示
装置、スピーカ、プリンタなどの出力装置を含み得る。上述したように構成されたコンピ
ューティングシステムは、通常、ファシリティの操作をサポートするために使用されるが
、様々なタイプおよび構成の装置を使用して、様々なコンポーネントを有するファシリテ
ィが実装され得ることを、当業者であれば理解されたい。
【００５１】
　図５は、１つまたは複数の実施形態における、決定論的マルチプロセッシングレイヤ５
００の様々な機能的要素を示す高レベルブロック図である。決定論的マルチプロセッシン
グレイヤ５００はコンピューティングシステム４００によって実装される必要がないこと
に留意されたい。例えば、いくつかの実施形態において、決定論的マルチプロセッシング
レイヤ５００は、マルチスレッド型ソフトウェアコードが入力として提供される個別のコ
ンピューティングシステムに実装される。
【００５２】
　いくつかの実施形態において、決定論的マルチプロセッシングレイヤ５００は、量子ビ
ルダコンポーネント５０５および決定論的マルチプロセッシング（「ＤＭＰ」）コンポー
ネント５１０を含む。量子ビルダコンポーネント５０５は、例えば、ＤＭＰコンポーネン
ト５１０によって提供される関数５１５～５４０のうちの１つまたは複数を使用して、マ
ルチスレッドアプリケーション５４５のコードを増補するコンパイラモジュールとして実
装され得る。ＤＭＰコンポーネント５１０によって提供される関数は様々な方法で変更さ
れ得ることを、当業者であれば理解されたい。例えば、いくつかの関数がマージまたは分
割されてもよく、いくつかの関数が省略されてもよく、いくつかの関数が追加されてもよ
い。いくつかの実施形態において、量子ビルダコンポーネント５０５は、例えば低レベル
仮想マシン（「ＬＬＶＭ」）コンパイラインフラストラクチャ内など、コンパイラインフ
ラストラクチャ内にコンパイラパスとして実装される。一方、他の実施形態では、量子ビ
ルダコンポーネント５０５は、マルチスレッドアプリケーションコード５４５が入力とし

(20) JP 5576798 B2 2014.8.20

10

20

30

40

て提供される個別のシステムによって実装される。
【００５３】
　示された実施形態において、決定論的マルチプロセッシングレイヤ５００は、マルチス
レッドアプリケーションコード４１０を受信し、および／またはそれにアクセスする。マ
ルチスレッドアプリケーションコード５４５は１つまたは複数のコードファイルを表し得
ることに留意されたい。コード５４５は、マルチスレッドアプリケーションのソースコー
ド、マルチスレッドアプリケーションのソースコードの中間表現（「ＩＲ」）、マルチス
レッドアプリケーションの実行ファイルなどとすることができる。いくつかの実施形態に
おいて、量子ビルダコンポーネント５０５は、マルチスレッドアプリケーションコード５
４５内に同期コードを挿入して、コンパイラによって生成される制御フローグラフ（「Ｃ
ＦＧ」）において操作を追跡することによって、コンパイラを使用して量子を構築するこ
とができる。挿入されたコードは、量子サイズを追跡し、量子サイズに到達したとき、Ｄ
ＭＰコンポーネント５１０によって提供される１つまたは複数の関数を呼び出して、アプ
リケーション内のスレッドの前進を制御する。ＤＭＰコンポーネント５１０は、ランタイ
ムシステムを提供することができ、および／またはＤＭＰ関数５１５～５４０のうちの１
つまたは複数をコード５４５に挿入することができる。いくつかの実施形態において、決
定論的プロセッシングレイヤ５００は、トランザクショナルメモリシステムと共に動作し
、および／または共有テーブルを実装する。
【００５４】
　示された実施形態において、ＤＭＰライブラリは、ＤＭＰ開始関数（「ＤＭＰ＿Ｆｕｎ
ｃｔｉｏｎ＿Ｓｔａｒｔ（）関数５１５」）、ＤＭＰ初期化関数（「ＤＭＰ＿Ｉｎｉｔ（
）関数５２０」）、ＤＭＰ格納関数（「ＤＭＰ＿Ｓｔｏｒｅ（）関数５２５」）、ＤＭＰ
ロード関数（「ＤＭＰ＿Ｌｏａｄ（）関数５３０」）、ＤＭＰコミット関数（「ＤＭＰ＿
Ｃｏｍｍｉｔ（）関数５３５」）、およびＤＭＰ終了関数（「ＤＭＰ＿Ｆｕｎｃｔｉｏｎ
＿Ｅｎｄ（）関数５４０」）を含む。ＤＭＰ開始関数５１５および終了関数５４０は、ア
プリケーション関数が開始し、終了するときを画定するために使用され得る。ＤＭＰロー
ド関数５３０は、ロード操作が実行される、または実行された決定論的マルチプロセッシ
ングレイヤ５００に運ぶために使用され得る。同様に、ＤＭＰ格納関数５２５は、格納操
作が実行される、または実行された決定論的マルチプロセッシングレイヤ５００に運ぶた
めに使用され得る。ＤＭＰ格納関数５２５およびロード関数５３０は、メモリ操作の順序
を制御し、それによってこうした操作の決定論的実行を実施するために使用される。ＤＭ
Ｐ初期化関数５２０およびＤＭＰコミット関数５３５は、メモリ操作の順序を制御する、
またはトランザクションを開始し、または終了するために使用されるコードのブロックを
画定するために使用され得る。ＤＭＰコンポーネント５１０によって提供される関数は様
々な方法で変更され得ることを、当業者であれば理解されたい。例えば、いくつかの関数
がマージまたは分割されてもよく、いくつかの関数が省略されてもよく、いくつかの関数
が追加されてもよい。
【００５５】
　いくつかの実施形態において、量子ビルダコンポーネント５０５は、以下の表２に列挙
されるＤＭＰコンポーネント５１０の関数５１５～５４０を挿入する。
【００５６】

(21) JP 5576798 B2 2014.8.20

10

20

30

40

50

【表２】

【００５７】
　いくつかの実施形態において、量子ビルダコンポーネント５０５は、増補されたコード
の中間表現を作成し、これは、例えば、制御フローグラフ（「ＣＦＧ」）として表され得
る。図１１は、表２に従って増補されるマルチスレッドアプリケーションコード５４５の
関数の制御フローグラフの一例を示す。いくつかの実施形態において、マルチスレッドア
プリケーションコード５４５が増補された後、コンパイラは、例えばＤＭＰ関数５１５～
５４０への呼び出しをインライン化することによって、増補されたコードを再度最適化す
る。コンパイラは本明細書では具体的に記載されない増補されたコードへの他の最適化を
実行することができることを、当業者であれば理解されたい。
【００５８】
　いくつかの実施形態において、マルチスレッドアプリケーションコード５４５は、ＳＴ
Ｍ、ＨＴＭ、またはＨＳ－ＴＭなど、トランザクショナルメモリシステムを使用して、ス
レッドによる共有リソースへのアクセスを制御する。こうした実施形態において、決定論
的マルチプロセッシングレイヤ５００は、トランザクションがマルチスレッドアプリケー
ションのスレッドによってコミットされる順序を制御するために使用され得る。例えば、
量子ビルダ５０５は、ＤＭＰ初期化関数５２０およびＤＭＰコミット関数５３５への呼び
出しを挿入することによってトランザクションにおける各量子を包むことができる。別の
例として、マルチスレッドアプリケーションコード５４５が１つまたは複数のアプリケー
ションレベルトランザクショナルメモリブロックを含むとき、量子ビルダコンポーネント
５０５は、ソフトウェア開発者によって宣言される各アトミックブロックの前にＤＭＰ初
期化関数５２０への呼び出しを挿入することによって、また命令をコミットするためのＴ
Ｍシステムへの任意の呼び出しの前にＤＭＰコミット関数５３５への呼び出しを挿入する
ことによって、マルチスレッドアプリケーションコード５４５を増補することができる。
さらに別の例として、決定論的マルチプロセッシングレイヤ５００は、ＴＭインターフェ
イスの関数への呼び出しをＤＭＰコンポーネント５１０の１つまたは複数の関数５１５～
５４０への呼び出しで包むことによって、ＴＭシステムによって提供されるインターフェ
イスを増補することができる。その結果、決定論的マルチプロセッシングレイヤ５００が
ＴＭシステムと共に動作するとき、トランザクションは、決定論的に開始され、および／
またはコミットされ得る。トランザクショナルメモリシステムがＨＴＭシステムであると
き、ＨＴＭがこうした追跡を実行する限り、ＤＭＰロード関数５３０およびＤＭＰ格納関
数５２５が含まれる必要はないことに留意されたい。
【００５９】
　いくつかの実施形態において、マルチスレッドアプリケーションコード５４５は、実行

(22) JP 5576798 B2 2014.8.20

10

20

30

40

50

可能な増補されたアプリケーション５５０にコンパイルされる。一方、他の実施形態では
、増補されたアプリケーション５５０は、マシンに依存しない中間言語コードであり、こ
れは、実行時に実行可能命令に変換される。増補後、増補されたアプリケーション５５０
は、マルチプロセッシングシステム上で決定論的に実行され得る。すなわち、増補された
アプリケーション５５０に同じ入力が与えられると、マルチプロセッシングシステムは、
スレッド量子を決定論的にインターリーブし、それによって、増補されたアプリケーショ
ン５５０が実行されるたびに同じ入力を生成する。図５に示されるコンポーネントは様々
な方法で変更され得ることを、当業者であれば理解されたい。例えば、コンパイラなど、
いくつかのコンポーネントがマージまたは分割されてもよく、いくつかのコンポーネント
が省略されてもよく、いくつかのコンポーネントが追加されてもよい。
【００６０】
　いくつかの実施形態において、ＤＭＰコンポーネント５１０によって提供される関数５
１５～５４０は、増補されたアプリケーションのスレッド間に決定論的にトークンを渡し
、または進め、それによって各スレッドの前進を決定論的に制御する責任を負う。いくつ
かの実施形態において、これは、スレッドデータ構造６００を使用することによって達成
される。図６は、１つまたは複数の実施形態において、マルチプロセッサコードを決定論
的にするためにファシリティによって使用されるスレッドデータ構造６００を示す高レベ
ルブロック図である。いくつかの実施形態において、スレッドデータ構造６００は、スレ
ッドコンテナ６０５を含む。スレッドコンテナは、実行中に増補されたアプリケーション
によって作成されるスレッドごとにスレッドＩＤを格納する。スレッドコンテナ６０５は
、配列、リンクリスト、キュー、またはスレッドＩＤの他のデータ構造として実装され得
る。
【００６１】
　いくつかの実施形態において、スレッドデータ構造６００は、実行中に増補されたアプ
リケーションのスレッドによるトランザクションまたは制御された操作の実行の順序を制
御するために使用されるトークン６１０を含む。例えば、いくつかの実施形態において、
制御された操作を実行する、またはトランザクションをコミットする前に、スレッドは、
そのスレッドＩＤがトークン６１０の現在の値に一致するかどうかを決定する。トークン
６１０の現在の値がスレッドＩＤに一致するとき、対応するスレッドは、制御された操作
を実行する、またはトランザクションをコミットしようと試行することができる。そうで
ない場合、対応するスレッドは、トークン６１０の現在の値がそのスレッドＩＤに一致す
るまで待つ。
【００６２】
　いくつかの実施形態において、スレッドが作成される順序は、スレッドが決定論的に実
行される順序に対応する。例えば、各スレッドが作成されるとき、スレッドの対応するス
レッドＩＤは、スレッドコンテナ６０５に順次格納され得る。トランザクションまたは制
御された操作が実行されるとき、実行中のスレッドが、例えばＤＭＰ＿Ｃｏｍｍｉｔ（）
５３５などいくつかのＤＭＰ関数を呼び出し、こうした関数は、（第１のスレッドＩＤで
開始して）スレッドＩＤが格納されたシーケンスに基づいてスレッドコンテナ６０５に格
納されたスレッドＩＤを順次ループすることによって、トークン６１０の値を進めるよう
に動作する。スレッドが終了すると、スレッドの対応するＩＤはスレッドコンテナ６０５
から削除されることに留意されたい。
【００６３】
　いくつかの実施形態において、スレッドデータ構造は、コミットブロックサイズ６１５
を格納する。コミットブロックサイズ６１５は、トークンが進められる前に、スレッドＩ
Ｄがトークン６１０の現在の値に一致するスレッドによって実行され得る予め定められた
数のトランザクションまたは制御された操作を表す。コミットブロックサイズ６１５は、
１つのトランザクションまたは制御された操作からＮ個のトランザクションまたは制御さ
れた操作まで及び得る。少なくとも１つの実施形態において、コミットブロックサイズ６
１５は、１，０００に等しい。いくつかの実施形態において、コミットブロックサイズ６

(23) JP 5576798 B2 2014.8.20

10

20

30

40

50

１５は、構成可能である。例えば、コミットブロックサイズ６１５は、マルチスレッドア
プリケーションの様々なスレッドインターリービングをプログラム的に操作し、テストす
るように、ソフトウェア開発者によって構成され得る。別の例として、コミットブロック
サイズ６１５は、増補されたアプリケーションによって作成され得る最大数のスレッド、
および／または増補されたアプリケーションが実行するマルチプロセッシングシステムの
プロセッサまたはコアの数に基づいて、自動的に構成され得る。
【００６４】
　スレッドによって実行される制御された操作の数をカウントするために様々な技術が使
用され得ることを、当業者であれば理解されたい。いくつかの実施形態において、スレッ
ドデータ構造６００は、スレッドコミットブロック６２０を含む。スレッドコミットブロ
ック６２０は、スレッドＩＤが現在のトークンＩＤ６１０に一致するスレッドによって実
行された制御された操作の数を表し得る。スレッドが制御された操作を実行するたびに、
スレッドコミットブロック６２０の値は、増分され、コミットブロックサイズ６１５と比
較される。スレッドコミットブロック６２０の値がコミットブロックサイズ６１５に等し
い場合、トークン６０５は、次のスレッドＩＤに進められ、スレッドコミットブロック６
２０の値は、ゼロにリセットされる。代替例として、スレッドコミットブロック６２０は
、スレッドがその対応するトランザクションをコミットしようと試行する前に残っている
ブロックの数を表し得る。こうした実施形態において、スレッドコミットブロック６２０
は、スレッドコンテナ６０５に格納されたスレッドＩＤを有するスレッドごとに残りのブ
ロックの数を含み得る。次いで、スレッドは、ブロックを実行するたびに、その対応する
スレッドコミットブロックを減分し、残りのブロックの数がゼロに等しいとき、そのトラ
ンザクションをコミットしようと試みる。
【００６５】
　いくつかの実施形態において、スレッドデータ構造は、使用中スレッドブロック６２５
を含み、これは、増補されたアプリケーションで実行中のスレッドの数を表す。いくつか
の実施形態において、使用中スレッドブロック６２５は、スレッドが作成されるたびに増
分される。同様に、使用中スレッドブロック６２５は、スレッドが終了するたびに減分さ
れる。一方、他の実施形態では、使用中スレッドブロック６２５は、スレッドコンテナ６
０５のサイズに基づいて決定される。図６に示されるスレッドデータ構造６００は様々な
方法で変更され得ることを、当業者であれば理解されたい。例えば、いくつかの部分がマ
ージまたは分割されてもよく、いくつかの部分が省略されてもよく、いくつかの部分が追
加されてもよい。
【００６６】
　図７は、１つまたは複数の実施形態における、スレッドを作成し、決定論的に実行する
一例を示す高レベル図である。説明を容易にするために、ある期間にわたるスレッドデー
タ構造６００の一部分の内容が示される。トークン値６１０によって示されるように、ス
レッドが作成される順序は、スレッドが決定論的に実行される順序に対応する。
【００６７】
　示された例において、最初に作成されたスレッド（「スレッド１」）は、マルチスレッ
ドアプリケーションのメインのアプリケーションスレッドを表す。説明を容易にするため
に、各スレッドのスレッドＩＤは、スレッドが作成された順序に等しい。すなわち、最初
に作成されたスレッドのスレッドＩＤは１、２番目に作成されたスレッドのスレッドＩＤ
は２、３番目に作成されたスレッドのスレッドＩＤは３、などとなる。時刻Ｔ０とＴ１と
の間で、スレッド１が実行し、スレッド２が作成される。示された例において、スレッド
の実行は、指定された数の制御された操作（例えば、コミットブロックサイズ６１５によ
って指定された量子）によって表される。したがって、図７に示される時間の増分は、必
ずしも等しくない。各スレッドによって実行された未制御の操作の数は、異なっていても
よく、またその各実行期間中にスレッドごとに異なっていてもよいことにも留意されたい
。
【００６８】

(24) JP 5576798 B2 2014.8.20

10

20

30

40

50

　図７に戻って、スレッド１がその量子の実行を終了する前のある時点でスレッド２が作
成されたため、時刻Ｔ０とＴ１との間の使用中スレッド６２５の数は２である。その結果
、スレッド１が終了すると、トークン６１０は、スレッドコンテナ６０５に格納された次
のスレッドＩＤに進められた（すなわち、スレッド２）。
【００６９】
　時刻Ｔ１とＴ２との間で、スレッド２が実行し、次いでトークン６１０がスレッド１に
戻される。時刻Ｔ２とＴ３との間で、スレッド１が実行し、次いでトークン６１０がスレ
ッド２に進められる。時刻Ｔ３とＴ４との間で、スレッド２が実行し、次いでトークン６
１０がスレッド１に戻される。
【００７０】
　時刻Ｔ４とＴ５との間で、スレッド１が実行し、スレッド２が作成される。時刻Ｔ４と
Ｔ５との間でスレッド３が作成されるが、スレッド２は、時刻Ｔ５とＴ６との間で実行す
る。これは、スレッドが作成された順序が、スレッドが実行される順序に対応するからで
ある。その結果、時刻Ｔ５とＴ６との間でスレッド２が実行し、次いで、トークン６１０
がスレッド３に進められる。次いで時刻Ｔ６とＴ７との間でスレッド３が実行し、次いで
トークン６１０がスレッド１に戻される。
【００７１】
　図８は、１つまたは複数の実施形態における、マルチプロセッサコードを決定論的にす
るためにトランザクショナルメモリシステムを使用する一例を示す高レベルブロック図で
ある。説明を容易にするために、ある期間にわたるスレッドデータ構造６００の一部分の
内容が示される。また、説明を容易にするために、スレッドＩＤがスレッド１、スレッド
２、スレッド３などのようにスレッドコンテナ６０５に配列されると仮定する。ある期間
にわたってトークン値６１０によって示されるように、スレッドがトランザクションをコ
ミットする順序は、決定論的である。説明を容易にするために、トークン６１０の最初の
値は、スレッド１のスレッドＩＤに対応する。示された例において、各スレッドによって
実行されるトランザクションは、サイズが決定論的である。すなわち、各スレッドは、特
定の数のブロックを実行する。説明を容易にするために、コミットブロックサイズ６１５
は２である。
【００７２】
　示されるように、時刻Ｔ０において、スレッド１～３がトランザクションを開始する。
スレッドがその対応するトランザクションを終了した後、スレッドは、そのトランザクシ
ョンを決定論的にコミットしようと試行する。いくつかの実施形態において、各スレッド
は、そのトランザクションが、スレッドにそのトランザクションをコミットさせないよう
にする競合をもたらしたかどうかを決定する。一方、他の実施形態では、この決定は、そ
のスレッドＩＤがトークン６１０の現在の値に一致するとき、スレッドによって行われる
。例えば、これは、ＳＴＭＶａｌｉｄＴｒａｎｓａｃｔｉｏｎ（）を呼び出すことによっ
て達成され得る。
【００７３】
　時刻Ｔ１で、トークン６１０の現在の値は、スレッド１のＩＤに一致する。したがって
、示された例では、スレッド１は、そのトランザクションが、それにトランザクションを
コミットさせないようにする競合をもたらしたかどうかを決定する。スレッド１およびス
レッド２は、同じ共有メモリロケーション（すなわち、アドレスＡ）にアクセスしている
が、スレッド１のトランザクションは有効である。これは、スレッド１がアドレスＡに値
を格納し、トークン６１０がそのスレッドＩＤに一致するからである。すなわち、（スレ
ッド１によって実行される）Ａの格納は、（スレッド２によって実行される）Ａのロード
によって影響されない。その結果、スレッド１は、そのトランザクションをコミットし（
例えば、ＳＴＭＣｏｍｍｉｔＴｒａｎｓａｃｔｉｏｎ（）を呼び出すことによって）、次
いでトークン６１０は、次のスレッドＩＤに進められる。しかし、トークン６１０は、ス
レッド２のスレッドＩＤに一致した場合、スレッド１は、そのトランザクションを中止す
ることになる。これは、スレッド１がＡを格納した後、スレッド２がＡをロードしたかも

(25) JP 5576798 B2 2014.8.20

10

20

30

40

50

しれないからである。トークン６１０がスレッド２のＩＤに一致すると仮定すると、スレ
ッド１およびスレッド２は、そのトランザクションを中止することになる。この場合、ス
レッド２は、スレッド１の中止されたトランザクションを再開する前に、中止されたトラ
ンザクションを開始し、コミットすることになる。
【００７４】
　示されるように、時刻Ｔ１で、スレッド１は、そのトランザクションをコミットし、次
いでトークン６１０は、スレッド２に進められる。しかし、スレッド２は、そのトランザ
クションをコミットすることができない。というのは、スレッド２は、同じトランザクシ
ョン中にスレッド１によって格納された値をロードしたからである。すなわち、スレッド
２は、スレッド１がＡを格納する前に、Ａをロードしたかもしれない。その結果、スレッ
ド２は、そのトランザクションを中止し、再開しなければならない。示された例において
、中止されたスレッド以降のスレッドＩＤを有するすべてのスレッドが中止される。一方
、他の実施形態では、並行のトランザクションが同じ共有リソースにアクセスした以降の
ＩＤを有するスレッドのみが中止され、再開される。したがって、示された例では、スレ
ッド３のトランザクションは、中止され、再開される。しかし、他の実施形態において、
スレッド３のトランザクションは、中止されない。というのは、そのトランザクションは
、並行のトランザクション中にスレッド２またはスレッド１によってアクセスされた共有
リソースにアクセスしなかったからである。代わりに、スレッド３は、単にトークン６１
０がそのスレッドＩＤに一致するのを待つことになる。スレッドＩＤがトークンに一致す
るスレッドが、その対応するトランザクションを正常にコミットするまで、トークン６１
０は進められないことに留意されたい。
【００７５】
　示されるように、時刻Ｔ３で、スレッド２～３は、その中止されたトランザクションを
再開する。時刻Ｔ４で、トークン６１０の現在の値は、スレッド２のＩＤに一致するため
、スレッド２は、その再開されたトランザクションが、それにトランザクションをコミッ
トさせない競合をもたらしたかどうかを決定する。示された例において、スレッド２およ
び３の再開されたトランザクションは、任意の共有メモリロケーションにアクセスしない
。その結果、時刻Ｔ４で、スレッド２は、そのトランザクションを正常にコミットし、次
いでトークン６１０は、スレッド３に進められる。時刻Ｔ５で、スレッド３は、そのトラ
ンザクションを正常にコミットし、次いでトークン６１０は、スレッド１に戻される。
【００７６】
　次に、時刻Ｔ６で、スレッド１～３は、トランザクションを開始し、プロセスは上述し
たように続行する。時刻Ｔ６で、スレッド１および３の並行のトランザクションによって
、スレッド３がそのトランザクションを中止し、再開することに留意されたい。しかし、
スレッド１および２は、決定論的にコミットし、トークン６１０は、上述したように、ス
レッド３に進められる。
【００７７】
　図９は、１つまたは複数の実施形態において、マルチスレッドアプリケーションコード
を増補するためにファシリティによって実行されるプロセス９００を示すフロー図である
。ステップ９０５～９４０で、ファシリティは、マルチスレッドアプリケーションコード
５４５の各関数をループする。ステップ９０５で、ファシリティは、関数を選択し、次い
でステップ９１０に進む。ステップ９１０で、ファシリティは、ＤＭＰ＿Ｆｕｎｃｔｉｏ
ｎ＿Ｓｔａｒｔ（）関数５１５など、決定論的マルチプロセッシング起動関数を挿入し、
次いでステップ９１５に進む。ステップ９１５で、ファシリティは、ＤＭＰ＿Ｉｎｉｔ（
）関数５２０など、決定論的マルチプロセッシング初期化関数を挿入し、次いでステップ
９２０に進む。ステップ９２０～９３０で、ファシリティは、選択されたアプリケーショ
ンの各ブロックをループする。ステップ９２０で、ファシリティは、ブロックを選択し、
次いでステップ９２５に進む。ステップ９２５で、ファシリティは、構文解析ブロック関
数１０００を呼び出し、次いでステップ９３０に進む。ステップ９３０で、追加のブロッ
クが残っている場合、ファシリティはステップ９２０に進み、そうでない場合、ファシリ

(26) JP 5576798 B2 2014.8.20

10

20

30

40

50

ティはステップ９３５に進む。ステップ９３５で、ファシリティは、ＤＭＰ＿Ｆｕｎｃｔ
ｉｏｎ＿Ｅｎｄ（）５４０など、決定論的プロセッシング終了関数を挿入し、次いでステ
ップ９４０に進む。ステップ９４０で、追加の関数が残っている場合、ファシリティはス
テップ９０５に進み、そうでない場合、これらのステップは終了する。
【００７８】
　図１０は、１つまたは複数の実施形態における、ブロックを構文解析するためにファシ
リティによって実行されるプロセス１０００を示すフロー図である。ステップ１００５で
、ブロックがロードブロックであることをファシリティが決定した場合、ファシリティは
ステップ１０１０に進み、そうでない場合、ファシリティはステップ１０１５に進む。ス
テップ１０１０で、ファシリティは、ロードブロックの前にＤＭＰ＿Ｌｏａｄ（）関数５
３０への呼び出しを挿入し、次いでファシリティは戻る。ステップ１０１５で、ブロック
が格納ブロックであることをファシリティが決定した場合、ファシリティはステップ１０
２０に進み、そうでない場合、ファシリティはステップ１０２５に進む。ステップ１０２
０で、ファシリティは、格納ブロックの前にＤＭＰ＿Ｓｔｏｒｅ（）関数５２５への呼び
出しを挿入し、次いでファシリティは戻る。ステップ１０２５で、ブロックがジャンプブ
ロックであることをファシリティが決定した場合、ファシリティはステップ１０３０に進
み、そうでない場合、ファシリティはステップ１０３５に進む。ステップ１０３０で、フ
ァシリティは、ジャンプの前にＤＭＰ＿Ｃｏｍｍｉｔ（）関数５３５への呼び出しを挿入
し、ジャンプ先ポイントでＤＭＰ＿Ｉｎｉｔ（）関数５２０への呼び出しを挿入し、次い
でファシリティは戻る。ステップ１０３５で、ブロックが関数呼び出しであることをファ
シリティが決定した場合、ファシリティはステップ１０４０に進み、そうでない場合、フ
ァシリティはステップ１０４５に進む。ステップ１０４０で、ファシリティは、呼び出し
前にＤＭＰ＿Ｃｏｍｍｉｔ（）関数５３５への呼び出しを挿入し、呼び出し後ＤＭＰ＿Ｉ
ｎｉｔ（）５２０への呼び出しを挿入し、次いでファシリティは戻る。ステップ１０４５
で、ブロックがＩ／Ｏ呼び出しであることをファシリティが決定した場合、ファシリティ
は、上述したようにステップ１０４０に進み、そうでない場合、ファシリティはステップ
１０５０に進む。ステップ１０５０で、ブロックが戻りブロックであることをファシリテ
ィが決定した場合、ファシリティはステップ１０５５に進み、そうでない場合、ファシリ
ティは戻る。ステップ１０５５で、ファシリティは、戻りブロック前にＤＭＰ＿Ｃｏｍｍ
ｉｔ（）５３５への呼び出しを挿入し、次いでファシリティは戻る。
【００７９】
　図１１は、１つまたは複数の実施形態における、マルチスレッドアプリケーションの増
補された関数の制御フローグラフ１１００の一例である。「制御フローグラフ」という用
語は、その実行中にアプリケーションによってトラバースされ得るすべてのパスの表現を
指す。グラフ１１００における各ノード１１０５～１１３０は、基本ブロック、すなわち
、任意のジャンプまたはジャンプターゲットのない直線のコードを表す。ジャンプターゲ
ットは、ブロックを開始し、ジャンプは、ブロックを終了させる。例えば、ＤＭＰ＿Ｉｎ
ｉｔ（）関数５２０を表すブロック１１１０は、ジャンプターゲットである。ブロック１
１０５は、入口ブロックを表し、そこを通ってすべての制御がフローグラフに入る。ブロ
ック１１３０は、出口ブロックを表し、そこを通ってすべての制御フローが出る。有向辺
、例えば、ブロック１１１５と１１２５との間の辺、１１２０と１１２５との間の辺、お
よびブロック１１１０とブロック１１１５、１１２０、および１１２５との間の辺は、制
御フローにおいてジャンプを表すために使用される。
【００８０】
　図１２は、１つまたは複数の実施形態における、決定論的マルチプロセッシング（「Ｄ
ＭＰ」）初期化関数１２００を示すフロー図である。例えば、ＤＭＰ初期化関数１２００
は、ファシリティがトランザクショナルメモリシステムと共に動作するとき、実行され得
る。ＤＭＰ初期化関数は、スレッドがトランザクションの処置を開始または続行できるよ
うに、スレッドが初期化された状態であるかどうかを決定するために実行され得る。スレ
ッドが初期化されない（すなわち、スレッドのｉｎｉｔＳｉｔｅ変数の値がゼロに等しい

(27) JP 5576798 B2 2014.8.20

10

20

30

40

）場合、その実行は、トークンの値がスレッドＩＤに一致するまで一時停止される。スレ
ッドが初期化された場合、スレッドは実行を続ける。
【００８１】
　ステップ１２０５で、ファシリティは、スレッド開始変数（「ｉｎｉｔＳｉｔｅ」）の
値がゼロに等しいことを決定した場合、ファシリティはステップ１２１０に進み、そうで
ない場合、ファシリティは戻る。スレッドの初期化変数は、例えば、スレッドが正常にト
ランザクションをコミットした後、ゼロに割り当てることができる。ステップ１２１０で
、トークンの現在の値がスレッドＩＤに一致することをファシリティが決定した場合、フ
ァシリティはステップ１２１５に進み、そうでない場合、ファシリティは折り返してステ
ップ１２１０に戻る。すなわち、ファシリティは、スレッドＩＤがトークンの値に一致す
るまで、ステップ１２１０におけるスレッド実行を一時停止する。ステップ１２１５で、
ファシリティは、ｉｎｉｔＳｉｔｅ変数を、スレッドがトランザクションを開始するメモ
リアドレスに割り当て、次いでファシリティは戻る。次いでｉｎｉｔＳｉｔｅ変数は、ト
ランザクションをコミットできない場合、明示的なジャンプアドレスとして使用され得る
。
【００８２】
　図１３は、１つまたは複数の実施形態における、決定論的マルチプロセッシング（「Ｄ
ＭＰ」）コミット関数１３００を示すフロー図である。例えば、ＤＭＰコミット関数１３
００は、ファシリティがトランザクショナルメモリシステムと共に動作するとき、実行さ
れ得る。ステップ１３０５で、ファシリティは、コミットブロック変数の値を減分し、次
いでステップ１３１０に進む。コミットブロック変数は、スレッドによって実行された操
作の数をカウントするために使用される。ステップ１３１０で、コミットブロック変数の
値がゼロであることをファシリティが決定した場合、ファシリティはステップ１３１５に
進み、そうでない場合、ファシリティは戻る。ステップ１３１５で、ファシリティが間に
競合があったことを決定した（例えば、トランザクション中に別のスレッドによって書き
込まれたロケーションからスレッドが読み取ったため）場合、ファシリティはステップ１
３２０に進み、そうでない場合、ファシリティはステップ１３２５に進む。ステップ１３
２０で、ファシリティはトランザクションを中止する。ステップ１３２５で、ファシリテ
ィは、トランザクションをコミットし、次いでステップ１３３０に進む。ステップ１３３
０で、ファシリティは、スレッドのｉｎｔｉＳｉｔｅ変数の値をゼロに割り当て、次いで
ステップ１３３５に進む。ステップ１３３５で、ファシリティは、コミットブロック変数
の値をコミットブロックサイズに割り当てることによって、スレッドのコミットブロック
変数の値をリセットし、次いで、ステップ１３４０に進む。ステップ１３４０で、ファシ
リティは、トークンの値を次のスレッドＩＤの値に割り当てることによって、トークンを
進め、次いでファシリティは戻る。
【００８３】
　このように、マルチスレッドアプリケーションの決定論的マルチプロセッシングのため
のファシリティについて説明した。ファシリティについて、特定の実施形態を参照して説
明してきたが、ファシリティは、記載した実施形態に限定されず、添付の特許請求の範囲
の意図および範囲内の修正および変更で実施することができることを理解されたい。した
がって、明細書および図面は、制限的意味ではなく、例示的意味でみなされるものとする
。

(28) JP 5576798 B2 2014.8.20

【図１】 【図２】

【図３】 【図４】

(29) JP 5576798 B2 2014.8.20

【図５】 【図６】

【図７】 【図８】

(30) JP 5576798 B2 2014.8.20

【図９】 【図１０】

【図１１】 【図１２】

(31) JP 5576798 B2 2014.8.20

【図１３】

(32) JP 5576798 B2 2014.8.20

10

20

フロントページの続き

(74)代理人 100119781
 弁理士　中村　彰吾
(72)発明者 セゼ，ルイス・エイチ
 アメリカ合衆国ワシントン州９８１３６，シアトル，ビーチ・ドライブ・サウス・ウエスト　６３
 ０９
(72)発明者 オスキン，マーク・エイチ
 アメリカ合衆国ワシントン州９８１３６，シアトル，ビーチ・ドライブ・サウス・ウエスト　６３
 ０９

 審査官 坂庭　剛史

(56)参考文献 特表２００６－５０２５０５（ＪＰ，Ａ）　　　
 国際公開第２００７／０６７３９０（ＷＯ，Ａ１）　　
 米国特許出願公開第２００７／０１１３２３２（ＵＳ，Ａ１）　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　　９／４５　　　　
 Ｇ０６Ｆ　　　９／４６　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

