(54) 发明名称
L 型同轴连接器

(57) 摘要
一种 L 型同轴插塞式连接器 (100)，具有：与同轴电缆 (110) 的中心导体 (111) 连接的中心接点 (10)、对中心接点 (10) 加以保持的保持绝缘部 (22)、以及具有导向片 (31a) 及 (31b) 的金属壳 (30)。金属壳 (30) 具有以包围保持绝缘部 (22) 周围的形式形成且通过相互嵌缝来对保持绝缘部 (22)、导向片 (31a) 及 (31b) 加以保持的嵌缝保持部 (35a) 及 (35b)、嵌缝保持部 (35a) 及 (35b) 通过矩形的开口部 (35c) 与矩形的突起 (35d) 相互嵌合而相互保持。本发明的 L 型同轴连接器无须对嵌缝保持部施加过大的嵌缝力即能够保持同轴电缆。
1. 一种L型同轴连接器，沿着相对于与对方连接器间的装离方向而交叉的方向引出同轴电缆，其特征在于，具有：

中心接点，该中心接点将中心接触部与中心导体连接部连接，所述中心接触部与所述对方连接器的中心端子接触，所述中心导体连接部则与同轴电缆的中心导体作电连接；

绝缘体，该绝缘体具有本体绝缘体和保持绝缘体，所述本体绝缘体沿着与所述对方连接器间的装离方向设有让所述中心接触部通过的通孔，所述保持绝缘体则对所述中心导体连接部加以保持；

由一块金属板一体形成的金属壳，该金属壳具有筒状接触部、盖部以及一对皱缝保持部，所述筒状接触部沿着所述本体绝缘体的外周而被弯折成筒状，具有沿着所述装离方向延伸的裂缝，且与所述对方连接器的筒状端子接触，所述盖部经过与所述筒状接触部连接的连接部而依次形成，对所述本体绝缘体的与所述对方连接器相反一侧的背面加以覆盖，所述一对皱缝保持部则形成包围所述保持绝缘体的周围的状态，通过相互皱缝面对所述保持绝缘体加以保持，

所述金属壳以所述连接部为弯折位置而弯折，以使所述盖部覆盖所述本体绝缘体的所述背面，

所述一对皱缝保持部分别具有相互抓持的抓持机构。

2. 如权利要求1所述的L型同轴连接器，其特征在于，所述抓持机构由在所述一对皱缝保持部中一方的前端形成的矩形的开口部和在所述一对皱缝保持部中另一方的前端形成的、与所述开口部嵌合的矩形的突起构成。

3. 如权利要求1所述的L型同轴连接器，其特征在于，所述抓持机构由在所述一对皱缝保持部中一方的前端形成的根部较细的凸状部和在所述一对皱缝保持部中另一方的前端形成的、抓住所述凸状部的凹状部构成。

4. 如权利要求1所述的L型同轴连接器，其特征在于，所述抓持机构由在所述一对皱缝保持部中一方的前端形成的沿所述装离方向贯通的通孔和在所述一对皱缝保持部中另一方的前端形成的、钩住所述通孔的内壁的爪部构成，所述一对皱缝保持部中另一方的前端重叠于所述一方皱缝保持部的前端上。

5. 如权利要求1至4中任一一项所述的L型同轴连接器，其特征在于，所述筒状接触部具有向着所述同轴电缆的引出方向形成的导向片，和在所述筒状接触部的外周直径的区域内沿所述装离方向突出的开关保险片，

所述本体绝缘片具有对所述开关保险片加以保持的开关保险片保持部，
所述保持绝缘体具有配置所述导向片的导向片配置面，
所述一对皱缝保持部以所述导向片配置在所述保持绝缘体的侧部的状态，包围所述保持绝缘体的周围的方式进行保持。

6. 如权利要求5所述的L型同轴连接器，其特征在于，所述金属壳在所述盖部与所述一对皱缝保持部之间具有与所述导向片卡合的卡合部。

7. 如权利要求1至6中任一项所述的L型同轴连接器，其特征在于，所述中心导体连接部具有抓持所述同轴电缆的中心导体的抓持部，

所述保持绝缘体具有被所述一对皱缝保持部推压而弯折的一对弯折片，所述一对弯折片在所述一对皱缝保持部相互皱缝时推压所述抓持部，使所述同轴电缆的中心导体被所述
抓捕部抓捕。
L型同轴连接器

技术领域
[0001] 本发明涉及譬如用于移动电话或笔记本电脑等移动设备的L型同轴连接器。

背景技术
[0002] 以往有一种L型同轴连接器，是沿着相对于与对方连接器间的装脱方向而正交的方向引出同轴电缆。（譬如见专利文献1）。这种L型同轴连接器具有；对同轴电缆的中心导体加以保护的中心接点，覆盖该中心接点的绝缘体，以及与对方连接器的筒状端子连接的金属壳。在金属壳上形成一对铰缝保持部，这一对铰缝保持部与绝缘体一同对同轴电缆的中心导体加以保持。
[0003] 作为以往的铰缝保持部的形状，有一种如图10所示。图10表示以往的L型同轴连接器，是同轴电缆的中心导体被保持的部位附近的剖视图，(a)～(c)表示3个结构示例。
[0004] 首先是图10(a)所示的以往的L型同轴连接器，具有；对同轴电缆的中心导体1加以保持的中心接点2、覆盖该中心接点2的绝缘体3，与对方连接器的筒状端子连接的金属壳4，在该金属壳4上形成且对绝缘体3的周围加以保持的一对铰缝保持部4a及4b。
[0005] 然后是图10(b)所示的以往的L型同轴连接器，具有；对同轴电缆的中心导体5的外周面加以包围的中心导体被覆体6、对该中心导体被覆体6加以保持的绝缘体7，与对方连接器的筒状端子连接的金属壳8，在该金属壳8上形成且对绝缘体7的周围加以保持的一对铰缝保持部8a及8b。此处，如图10(b1)所示，铰缝保持部8a及8b在铰缝前分别被预先弯曲加工成L字形。
[0006] 然后是图10(c)所示的以往的L型同轴连接器，具有与图10(b)形状不同的金属壳9、在该金属壳9上形成的铰缝保持部9a及9b，以及铰缝前分别被预先加工成与绝缘体7的侧面一致的形状。
[0007] 不过，在图10(b)及(c)中，省略了对中心导体5加以保持的中心接点的图示。
[0008] 专利文献1：日本专利第4481661号公报
[0009] 然而，以往的L型同轴连接器的铰缝保持部是与通过对1块金属板进行冲压加工而成的金属壳一体成型的，因此如果没有对铰缝保持部施加过大的铰缝力，就会在铰缝之后发生回弹，无法获得图10所示的铰缝后的形状。结果是，以往的L型同轴连接器为了防止回弹而施加过大的铰缝力，可能对同轴电缆带来不良影响。
[0010] 具体是，如果是图10(a)所示的连接器，则对铰缝保持部4a及4b施加过大的铰缝力会导致同轴电缆的中心导体1与中心接点2之间接触不良。而若是图10(b)及(c)所示的连接器，则对铰缝保持部8a及8b施加过大的铰缝力会导致同轴电缆的中心导体5断线或中心导体被覆体（电介质）6破损。

发明内容
[0011] 本发明正是为了解决上述问题，目的在于提供一种L型同轴连接器，无须对铰缝保持部施加过大的铰缝力就能够对同轴电缆加以保持。
本发明的L型同轴连接器是沿着相对于与对方连接器间的装脱方向而交叉的方向引出同轴电缆，其特征在于，具有：中心接点，该中心接点将中心接触部与中心导体连接
部连接，所述中心接触部与所述对方连接器的中心端子接触，所述中心导体连接部则与同
轴电缆的中心导体作电连接；绝缘体，该绝缘体具有本体绝缘部和保持绝缘部，本体绝缘部
着与所述对方连接器间的装脱方向设有让所述中心接触部通过的通孔，保持绝缘部则对
所述中心导体连接部加以保持；由一块金属板一体形成的金属壳，该金属壳具有筒状接触
部，盖部以及一对缝边保持部，所述筒状接触部沿着所述本体绝缘部的外周而被弯折成筒
状，具有沿着所述装脱方向延伸的裂缝，且与所述对方连接器的筒状端子接触，所述盖部经
过与所述筒状接触部连接的联结部而依次形成，对所述本体绝缘部的与所述对方连接器相
反一侧的背面加以覆盖，所述一对缝边保持部则形成包围所述保持绝缘部的周围的状态，
通过相互缝合而对所述保持绝缘部加以保持，所述金属壳以所述联结部为弯折位置而弯
折，以使所述盖部覆盖所述本体绝缘部的所述背面，所述一对缝边保持部分别具有相互抓
持的抓持机构。

[0013] 发明的效果

[0014] 本发明能够提供无须对缝边保持部施加过大的缝接力就能够保持同轴电缆的L
型同轴连接器。

附图说明

[0015] 图1是本发明第1实施例的L型同轴插塞式连接器的立体图。
[0016] 图2是本发明第1实施例的L型同轴插塞式连接器的侧视图、俯视图及剖视图。
[0017] 图3是本发明第1实施例的L型同轴插塞式连接器的中心接点的立体图。
[0018] 图4是本发明第1实施例的L型同轴插塞式连接器的绝缘体的立体图。
[0019] 图5是本发明第1实施例的L型同轴插塞式连接器的金属壳的立体图。
[0020] 图6是本发明第1实施例的L型同轴插塞式连接器的中心接点与绝缘体及金属壳
的组装说明图。
[0021] 图7是表示本发明第1实施例的L型同轴插塞式连接器在装接前的状态的立体
图。
[0022] 图8是本发明第2实施例的L型同轴插塞式连接器的侧视图。
[0023] 图9是本发明第3实施例的L型同轴插塞式连接器的侧视图。
[0024] 图10是以往的L型同轴连接器的剖视图。
[0025] 符号说明
[0026] 10中心接点
[0027] 11中心接触部
[0028] 12中心导体连接部
[0029] 20绝缘体
[0030] 21本体绝缘部
[0031] 21a通孔
[0032] 21b开关保险片保持部
[0033] 21c背面
具体实施方式

以下说明本发明的实施例。不过，以下说明的例子是将本发明的L型同轴连接器用于插接（以下称为“L型同轴插塞式连接器”）。

(第1实施例)

首先结合图1～图7说明本发明第1实施例。图1是本实施例的L型同轴插塞式连接器100的立体图，图2是L型同轴插塞式连接器100的俯视图、侧视图及剖视图，图3是中心接点10的立体图，图4是绝缘体20的立体图，图5是金属壳30的立体图，图6是中心接点10与绝缘体20和金属壳30的组装说明图，图7是表示L型同轴插塞式连接器100在接缝前的状态的立体图。

如图1所示，本实施例中的L型同轴插塞式连接器100具有沿着相对于与对方连接器、亦即塞孔式连接器120间的装接方向近正交的方向引出同轴电缆110的结构。该L型同轴插塞式连接器100构成本发明的L型同轴连接器。

塞孔式连接器120具有中心端子121、筒状端子122、基板123、端子121a及122a。端子121a与中心端子121连接，端子122a与筒状端子122连接。通过将端子121a及122a
与图中所示的印刷基板上预定的焊接部位进行焊接，将塞孔式连接器 120 固定在印刷基板上。

【0063】 如图 2 所示，L 型同轴插塞式连接器 100 具有中心接点 10、绝缘体 20 和金属壳 30。【0064】 如图 3 所示，中心接点 10 具有中心接触部 11 和中心导体连接部 12，中心接触部 11 和中心导体连接部 12 连结成 L 字形。中心接触部 11 用于与图 1 所示的塞孔式连接器 120 的中心端子 121 接触。中心导体连接部 12 用于将同轴电缆 110 的中心导体 111 接触部 12a。图 2(c) 的 C-C 断面图，亦即图 2(c) 所示，用于将中心导体 111 连接部 12a 接合，使中心接点 10 与中心导体 111 之间形成电连接。

【0065】 如图 4 所示，绝缘体 20 具有本体绝缘部 21、保持绝缘部 22 及盖板 23。

【0066】 在本体绝缘部 21 形成：沿着与塞孔式连接器 120 间的装脱方向让中心接点 10 的中心接触部 11 通过的通孔 21a、对设置在后述金属壳 30 上的开关保险片 31c 及 31d 加以保持的开关保险片保持部 21b 及 21c。【0067】 在保持绝缘部 22 形成：槽部 22a、导向片配置部 22b 及 22c、背面 22d、导向片承接部 22e 及 22f、一对弯折片 22g 及 22h。

【0068】 在槽部 22a 配置中心接点 10 的中心导体连接部 12。在导向片配置部 22b 及 22c 分别配置于后述金属壳 30 上的导向片 31a 及 31b。导向片承接部 22e 及 22f 分别承接后述的导向片 31a 及 31b。一对弯折片 22g 及 22h 用于使后述金属壳 30 上所设的狭缝保持部 35a 及 35b 在狭缝时弯折，并推压中心接点 10 的抓持部 12a。

【0069】 如图 5 所示，金属壳 30 具有狭缝接触部 31、结合部 32、盖部 33、卡合结构 34、狭缝保持部 35、外部导体固定部 36、以及外套固定部 37。该金属壳 30 是通过冲压加工将一块金属板（譬如磷青铜板）进行冲压、弯折成形的。

【0070】 狭缝接触部 31 被加工成沿着本体绝缘部 21 的外周弯折成狭缝的形状。另外，狭缝接触部 31 具有沿着装脱方向延伸的狭缝 31e，与塞孔式连接器 120 的狭缝端子 122 接触。另外，狭缝接触部 31 具有一对导向片 31a 及 31b，从与塞孔式连接器 120 相反一侧的端面 31f 以狭缝 31e 为基准对称地向着同轴电缆 110 的引出方向切断折起，由此来形成一对导向片 31a 及 31b。另外，狭缝接触部 31 还具有在狭缝接触部 31 的外周直径更小的区域内沿着装脱方向突出的一对开关保险片 31c 及 31d。

【0071】 在将绝缘体 20 组装到金属壳 30 中后，开关保险片 31c 及 31d 被在绝缘体 20 的本体绝缘部 21 上形成的开关保险片保持部 21b 卡合并固定。结果是，开关保险片保持部 21b 防止了金属壳 30 的狭缝接触部 31 的内径扩大，因此能够防止 L 型同轴插塞式连接器 100 与塞孔式连接器 120 之间的嵌合力降低。

【0072】 结合部 32 形成于狭缝接触部 31 的端面 31f 上与狭缝 31e 相向的部分。通过以结合部 31 为弯折位置将金属壳 30 弯折 90 度来形成图 1 所示的形状。

【0073】 一旦将金属壳 30 在结合部 32 处弯折 90 度，盖部 33 即覆盖本体绝缘部 21 的背面 21c。

【0074】 卡合结构 34 具有狭缝的一对卡合部 34a 及 34b。卡合部 34a 及 34b 分别具有三角锥形的突起 34c 及 34d。一旦在结合部 32 处将金属壳 30 弯折 90 度，卡合部 34a 及 34b 即分别通过突起 34c 及 34d 与一对导向片 31a 及 31b 卡合。采用这种结构，一对卡合部 34a 及 34b 利用金属壳 30 的回弹能够防止金属壳 30 的 A 面与 B 面间形成的角度超过大致 90 度。
不过，突出 34c 及 34d 的形状不限定于三角锥形，只要是使卡合部 34a 及 34b 能够分别与导向片 31a 及 31b 卡合的形状即可。另外，卡合部 34a 及 34b 也可以分别具有替代突出 34c 及 34d 的卡合结构。这种卡合结构犹如使卡合部 34a 及 34b 的内表面间的尺寸小于导向片 31a 及 31b 的外表面间的尺寸，通过压入使二者卡合的结构，以及通过使卡合部 34a 与导向片 31a 相互间的接触面以及卡合部 34b 与导向片 31b 相互间的接触面粗糙化来增大二者间的摩擦阻力，从而使二者卡合的结构等。

在缝保持部 35a 的前端形成矩形的开口部 35c。而在缝保持部 35a 的后部则形成凸部 35e。同样，在缝保持部 35b 的前端形成矩形的突出 35d。而在缝保持部 35b 的后部则形成凸部 35f。此处，开口部 35c 及突出 35d 以能够相互结合的尺寸形成。采用上述结构，在缝保持部 35a 及 35b 缝合时，开口部 35c 与突出 35d 间嵌合，缝保持部 35a 及 35b 相互抓合。而开口部 35c 及突出 35d 便构成发明的抓合机构。

外部导体固定部 36 形成包围同一轴电缆 110 的外部导体 113 周围的状态，通过将外部导体固定部 36 缝合来固定外部导体 113。结果是，同一轴电缆 110 的外部导体 113 与筒状接触部 31 之间实现电气连接。

图 6 显示中心接点 10、绝缘体 20 以及金属壳 30 的组装状态。如图 6 所示，中心接点 10 的中心导体连接部 12 配置于绝缘体 20 的槽部 22a 中。中心接点 10 的中心接触部 11 则插入本体绝缘部 21 的通孔 21a（参照图 2(a)）。

本体绝缘部 21 则插入金属壳 30 的筒状接触部 31。而在金属壳 30 的筒状接触部 31 上形成的导向片 31a 则配置在保持绝缘部 22 的导向片配置面 22b 上（参照图 4），且由导向片承接部 22e 承接导向片 31a 的前端。同样，图中省略的另一个导向片 31b 是配置在保持绝缘部 22 的导向片配置面 22e 上，且由导向片承接部 22f 承接导向片 31b 的前端。

图 7 显示金属壳 30 在连接部 32 处弯折 90 度且在缝合前的状态。如图 7 所示，一旦将金属壳 30 在连接部 32 处弯折 90 度，一对卡合部 34a 及 34b 即分别与一对导向片 31a 及 31b 卡合。结果是维持图 2(a) 所示的金属壳 30 的 A 面与 B 面间的角度为大致 90 度的状态。

以下以图 6 和图 7 为主说明 L 型同轴插塞式连接器 100 的组装工序。

首先，以绝缘体 20 的盖板 23 靠近金属壳 30 的盖部 33 的姿势，将绝缘体 20 的本体绝缘部 21 插入金属壳 30 的筒状接触部 31。此时，筒状接触部 31 上形成的导向片 31a 及 31b 被分别配置在保持绝缘部 22 的导向片配置面 22b 及 22c 上。

接着将中心接点 10 的中心接触部 11 插入本体绝缘部 21 的通孔 21a 中，并将中心接点 10 的中心导体连接部 12 配置于保持绝缘部 22 的槽部 22a 中。

然后，将金属壳 30 在连接部 32 处弯折 90 度，并如图 7 那样将一对卡合部 34a 及 34b 分别与一对导向片 31a 及 31b 卡合来加以固定并保持。此时，盖板 23 成为推压中心导体连接部 12 的状态（参照图 2(a)）。
接着，将在同轴电缆 110 的一端部从中心导体被覆体 112 露出的中心导体 111 插入一对抓持部 12a，成为图 7 所示的状态。

并通过外部导体固定部 36 以及外封固定部 37 间隙，分别将同轴电缆 110 的外部导体 113 及外封 114 固定。

再使}->保持部 35a 及 35b 相互向内侧方向弯起，形成缝隙保持部 35a 及 35b 包围保持绝缘部 22 周围的状态，并使开口部 35c 与起起 35d 间隙安装。此时，凸部 35e 以及 35f 分别推压保持绝缘部 22 的弯折片 22g 及 22h。缝隙保持部 35a 及 35b 通过缝隙而相互嵌合，由此使缝隙保持部 35a 及 35b 相互抓取（参照图 2(c)）。在该缝隙工序中，只要施加使缝隙保持部 35a 及 35b 相互嵌合的力即可，而无须如以往那样施加过大的嵌合力。

如上所述，采用本实施例的 L 型同轴插塞式连接器 100，一对缝隙保持部 35a 及 35b 分别具有开口部 35c 及起起 35d，通过使开口部 35c 与起起 35d 嵌合而使缝隙保持部 35a 及 35b 相互抓取，因此无须对缝隙保持部 35a 及 35b 施加过分的嵌合力即能够对同轴电缆 110 加以保持。

从而，本实施例的 L 型同轴插塞式连接器 100 能够防止在以往缝隙时发生的同轴电缆 110 的中心导体 111 与中心接点 10 之间的接触不良以及中心导体 111 断线、中心导体被覆体 112 破损等情况。

另外，本实施例的 L 型同轴插塞式连接器 100 是用开关保险片保持部 21b 来保持并固定开关保险片 31c 及 31d 的，因此能够防止金属壳 30 的筒状接触部 31 的内径扩大。结果是，L 型同轴插塞式连接器 100 能够防止 L 型同轴插塞式连接器 100 与塞孔式连接器 120 间的嵌合力降低。

还有，本实施例的 L 型同轴插塞式连接器 100 是用一对卡合部 34a 及 34b 分别与一对导向片 31a 及 31b 卡合来进行固定保持，因此能够抑制金属壳 30 的回弹导致的不良影响。结果是，L 型同轴插塞式连接器 100 能够改善将同轴电缆 110 固定在金属壳 30 上时的操作性，且降低与塞孔式连接器 120 之间安装时的高度（低高度化）。

不过，上述实施例说明的是将本发明的 L 型同轴连接器用于插塞的 L 型同轴插塞式连接器 100，但本发明不限于用于插塞，即使是用于塞孔的 L 型同轴塞孔式连接器也能获得同样效果。

另外，上述实施例中关于缝隙保持部 35a 及 35b 在缝隙前的形状，采用的是以往示例，亦即图 10(b1) 所示的样式（参照图 2(d)），但也可以代之以图 10(c1) 所示的样式。

（第 2 实施例）

以下说明本发明的第 2 实施例。如图 8 所示，本实施例的 L 型同轴插塞式连接器 200 是用缝隙保持结构 41 来取代第 1 实施例的缝隙保持结构 35。从而，凡与第 1 实施例相同的结构均用相同符号表示并省略重复说明。

缝隙保持结构 41 用臂状的一对缝隙保持部 41a 及 41b 构成。缝隙保持部 41a 及 41b 形成包围保持绝缘部 22 周围的状态，并通过相互嵌合来保持绝缘部 22。导向片 31a 及 31b 进行保持。不过，作为缝隙保持部 41a 及 41b 在缝隙前的形状，最好采用以往例、亦即图 10(b1) 中所示的样式。

在缝隙保持部 41a 的前端形成前端一侧的开口宽度较窄的凸状部 41c。在缝隙保持部 41b 的前端则形成开口部较细的凸状部 41d。采用上述结构，在缝隙保持部 41a 及 41b 效
缝时，凹状部 41c 与凸状部 41d 相互抓住，使敛缝保持部 41a 及 41b 相互抓持。此处，凹状部 41c 及凸状部 41d 构成本发明的抓持机构。

[0100] 如上所述，采用本实施例的 L 型同轴插接式连接器 200，一对敛缝保持部 41a 及 41b 分别具有凹状部 41c 及凸状部 41d，是通过使凹状部 41c 及凸状部 41d 相互抓住而使敛缝保持部 41a 及 41b 相互抓持，因此无须对敛缝保持部 41a 及 41b 施加过大的敛缝力即能够保持同轴电缆 110。

[0101] （第 3 实施例）

[0102] 以下说明本发明的第 3 实施例。如图 9 所示，本实施例的 L 型同轴插接式连接器 300 是用敛缝保持结构 51 来取代第 1 实施例的敛缝保持结构 35。从而，凡与第 1 实施例相同的结构均用相同符号表示并省略重复说明。

[0103] 敛缝保持结构 51 用臂状的一对敛缝保持部 51a 及 51b 构成。敛缝保持部 51a 及 51b 是在敛缝保持部 51a 的前端部重叠敛缝保持部 51b 的前端部，从而形成包围保持绝缘部 22 周围的状态。另外，敛缝保持部 51a 及 51b 通过相互敛缝来对保持绝缘部 22、导向片 31a 及 31b 进行保持。不过，作为敛缝保持部 51a 及 51b 在敛缝前的形状，最好采用以往例，亦即图 10（c1）中所示的样式。

[0104] 在敛缝保持部 51a 的前端部形成矩形的通孔 51c。在敛缝保持部 51b 的前端部则形成钩住通孔 51c 的内壁的爪部 51d。采用上述结构，在敛缝保持部 51a 及 51b 敛缝时，爪部 51d 钩住通孔 51c 的内壁，使敛缝保持部 51a 及 51b 相互抓持。此处，通孔 51c 及爪部 51d 构成本发明的抓持机构。

[0105] 不过，通孔 51c 的形状不限于矩形，也可以是圆形、椭圆形、三角形等。

[0106] 如上所述，采用本实施例的 L 型同轴插接式连接器 300，一对敛缝保持部 51a 及 51b 分别在前端部具有通孔 51c 及爪部 51d，通过使爪部 51d 钩住通孔 51c 的内壁来使敛缝保持部 51a 及 51b 相互抓持，因此无须对敛缝保持部 51a 及 51b 施加过大的敛缝力即能够对同轴电缆 110 加以保持。

[0107] 工业上的可利用性

[0108] 如上所述，本发明的 L 型同轴连接器无须对敛缝保持部施加过大的敛缝力即能对同轴电缆加以保持，能够作为用于移动电话或笔记本电脑等移动设备的 L 型同轴连接器使用。
图 3
图 4
图 5
图 7
图9