发明名称
包括逆病毒表面糖蛋白的可溶复合物

摘要
本发明涉及 HIV 感染的诊断。特别讲述了可溶逆病毒表面糖蛋白（或跨膜糖蛋白） - 伴随分子复合物的生产，以及伴随分子 - 抗原复合物在免疫测试中检测抗 HIV 抗体或作为免疫原的有利应用，所述检测优选地根据双抗原桥连概念。本发明也公开了分别包括 HIV-1 gp41 变异体或 HIV-2 gp36 变异体的可溶复合物，和选自伴随分子的肽基 - 脯氨酰基 - 异构酶类的伴随分子。本发明也描述了分别在 HIV-1 - gp41 或 HIV-2 - gp36 的 N 螺旋区中包括特异性氨基酸取代的变异体。
1. 生产包括基本不溶的靶蛋白和肽基脯氨酰基异构酶类陪伴分子的可溶复合物的方法，包括将所述的蛋白与所述的陪伴分子在蛋白和陪伴分子都溶解的缓冲液中混合，和将缓冲液调节到形成的蛋白 - 陪伴分子复合物溶解的生理条件。

2. 权利要求1所述的方法，其中生理缓冲液包含浓度为10到200 mM的缓冲化合物和总浓度为20-500mM的盐。

3. 权利要求1所述的方法，其中蛋白是重组产生的。

4. 权利要求1所述的方法，其中肽基脯氨酰基异构酶是重组产生的。

5. 权利要求1所述的方法，其中蛋白和肽基脯氨酰基异构酶是重组产生的。

6. 权利要求1所述的方法，其中蛋白是单体蛋白。

7. 权利要求6所述的方法，其中单体蛋白是逆病毒表面糖蛋白。

8. 权利要求1所述的方法，其中蛋白是HIV-2 gp36或HIV-1 gp41。

9. 权利要求1所述的方法，其中肽基脯氨酰基异构酶是肽基脯氨酰基异构酶的结合感应(binding-competent)片段。

10. 生产可溶逆病毒表面糖蛋白 - 陪伴分子复合物的方法，包括在逆病毒表面糖蛋白和肽基脯氨酰基异构酶都溶解的缓冲液中混合逆病毒表面糖蛋白和肽基脯氨酰基异构酶，形成复合物，将缓冲液调节到复合物溶解的生理条件。

11. 权利要求10所述的方法，其中逆病毒表面糖蛋白是重组产生的。

12. 权利要求10所述的方法，其中肽基脯氨酰基异构酶是重组产生的。

13. 权利要求10所述的方法，其中逆病毒表面糖蛋白和肽基脯氨酰基异构酶是重组产生的。

14. 权利要求10所述的方法，其中逆病毒表面糖蛋白是HIV
gp36 或 gp41。

15. 权利要求 10 所述的方法，其中肽基脯氨酰基异构酶包括肽基脯氨酰基异构酶的结合感应片段。

16. 生产可溶逆病毒表面糖蛋白-陪伴分子复合物的方法，包括：在逆病毒表面糖蛋白溶解的缓冲液中使与肽基脯氨酰基异构酶共价连接的逆病毒表面糖蛋白溶解，将缓冲液调节到逆病毒表面糖蛋白-陪伴分子复合物溶解的生理条件。

17. 权利要求 1、10 或 16 所述的方法，其中肽基脯氨酰基异构酶是 FKBP 陪伴分子。

18. 权利要求 17 所述的方法，其中 FKBP 陪伴分子选自 SlyD、FkpA 和引发因子。

19. 一种可溶复合物，其包含逆病毒表面糖蛋白和肽基脯氨酰基异构酶。

20. 一种可溶复合物，其包含逆病毒表面糖蛋白和肽基脯氨酰基异构酶，其中逆病毒表面糖蛋白和肽基脯氨酰基异构酶陪伴分子是共价连接的。

21. 权利要求 20 所述的复合物，其中共价连接包括化学偶联。

22. 权利要求 21 所述的复合物，其中共价连接包括重组连接。

23. 权利要求 22 所述的复合物，其中重组连接包括肽接头。

24. 权利要求 23 所述的复合物，其中肽接头包括至少 10 个氨基酸。

25. 权利要求 23 所述的复合物，其中肽接头包括至少 15 个氨基酸。

26. 权利要求 23 所述的复合物，其中肽接头包括至少 50 个氨基酸。

27. 权利要求 23 所述的复合物，其中肽接头包括至少 40 个氨基酸。

28. 一种药剂组合物，其包含权利要求 19 到 27 的任一项的可溶复合物。

29. 在样品中检测至少一个包被病毒表面糖蛋白的抗体的方法，包括：将样品与包含复合物的组合物接触，其中复合物包含表面
糖蛋白和肽基脯氨酰基异构酶陪伴分子，检测结合的抗体。

30. 权利要求 29 所述的方法，其中接触是在适于结合抗体与表面糖蛋白的条件下进行的。

31. 权利要求 30 所述的方法，其中检测结合的抗体指示了样品中抗病毒抗体的存在。

32. 一种根据双抗原桥连概念的免疫测试，包括：包含第一陪伴分子－抗原复合物的第一抗原，和包含第二陪伴分子－抗原复合物的第二抗原。

33. 权利要求 32 所述的免疫测试，其中第一陪伴分子和第二陪伴分子是来源于不同物种的不同分子。

34. 权利要求 32 所述的免疫测试，其中第一陪伴分子和第二陪伴分子来源于不同物种。

35. 权利要求 32 到 34 任一项所述的免疫测试，其中第一陪伴分子来源于嗜热细菌。

36. 权利要求 32 到 34 任一项所述的免疫测试，其中第二陪伴分子来源于嗜热细菌。

37. 权利要求 32 或 34 所述的免疫测试，其中第一陪伴分子和第二陪伴分子来源于嗜热细菌。

38. 权利要求 32 所述的免疫测试，其中第一抗原复合物包括固相结合基团。

39. 权利要求 32 所述的免疫测试，其中第二抗原复合物包括标记基团。

40. 一种引发免疫应答的方法，包括：向受试者注射包含可溶的逆病毒表面糖蛋白－陪伴分子复合物的疫苗，由此在受试者中引发结合逆病毒表面糖蛋白的抗体。

41. 一种抑制病毒进入细胞的方法，包括：对细胞施用权利要求 10 所述的可溶复合物。

42. 权利要求 41 所述的方法，其中抑制病毒进入包括抑制膜融合。

43. 权利要求 41 所述的方法，其中生理缓冲液包含浓度为 10 到 200mM 的缓冲化合物和总浓度为 20－500mM 的盐。
44. 权利要求41所述的方法，其中蛋白是重组产生的。
45. 权利要求41所述的方法，其中肽基脯氨酰基异构酶是重组产生的。
46. 权利要求41所述的方法，其中蛋白和肽基脯氨酰基异构酶是重组产生的。
47. 权利要求41所述的方法，其中蛋白是淀粉样蛋白。
48. 权利要求41所述的方法，其中蛋白是逆病毒表面淀粉样糖蛋白。
49. 权利要求41所述的方法，其中蛋白是HIV-2 gp36或HIV-1 gp41。
50. 权利要求41所述的方法，其中肽基脯氨酰基异构酶是肽基脯氨酰基异构酶的结合感应片段。
包括逆病毒表面糖蛋白的可溶复合物

本发明涉及 HIV 感染的诊断。本发明特别讲述了可溶逆病毒表面糖蛋白 - (或跨膜糖蛋白 -) 陪伴分子 (chaperone) 复合物的生产，和陪伴分子 - 抗原复合物的有利用途，特别优选根据双抗原桥连的概念在免疫测试中检测 HIV 抗体的用途，或作为免疫原的用途。本发明也公开了分别包括 HIV-1 gp41 的变异体或 HIV-2 gp36 的变异体的可溶复合物和选自陪伴分子的肽基 - 肽键酶基 - 异构酶类的陪伴分子。同时叙述了分别在 HIV-1 gp41 或 HIV-2 gp36 的 N 螺旋区中包括特殊氨基酸取代的变异体。

背景技术

人免疫缺陷病毒 (HIV) 是获得性免疫缺陷综合症（通常以它的首字母缩写 AIDS 简称的病症）的原因。这一病毒有两个主要的毒株，称为 HIV-1 和 HIV-2。HIV 现在已经广泛传播，构成了世界范围的健康和财富的威胁，迫使公共健康系统花费大量的经费诊断 HIV 和治疗 AIDS。

病毒传播的一个途径是感染的血液或血液产品的输入。事实上，现在所有的工业化国家，以及许多发展中国家要求强制性地测试所有的血液供体防止这一病毒的进一步传播。尽可能可靠和快速地在感染后诊断血液中 HIV 感染是该领域中所有诊断方法的任务。

主要有三种不同的诊断方法：

(1) 通过灵敏的核酸诊断方法如聚合酶链式反应 (PCR) 诊断来自血液的病毒基因组物质，

(2) 检测来自血液的病毒抗原，和

(3) 检测来自体液的抗 HIV 的抗体。

在 HIV 感染的过程中，几个诊断上独特和诊断上相关的时期是已知的。在感染的早期，只有源于 HIV 的蛋白或肽是可以发现的 (“病毒感染时期 (viraemic phase)”)，还没有抗 HIV 抗体存在。在随后的时期（称为血清转变时期），抗 HIV 抗原的抗体出现了，而病毒抗
原的量(病毒载荷)降低了。在血清转变的早期中形成的抗体的大部分属于免疫球蛋白 M 类(IgM)。后来抗 HIV 的免疫应答转到免疫球蛋白 G 类(IgG)，构成了大部分的抗 HIV 的抗体。在进一步的感染过程中，抗 HIV 抗体的水平可能降低，而体液中的病毒载荷(病毒颗粒或病毒抗原存在)可以再次升高。筛选是否存在 HIV 感染优选地可以利用检测抗 HIV 抗原的抗体的血清学实验来进行，有时也结合了 HIV 抗原的检测。由于在患者中的免疫应答在感染过程中有变化并且患者与患者之间是不同的，所以检测属于 IgM 和 IgG 亚类的抗 HIV 抗体的特别灵敏而可靠的免疫测试方法是重要的。检测 HIV 感染的许多不同的途径已经叙述过。较早地、可靠地并且灵敏地检测抗病毒蛋白的抗体是关键和十分重要的。

病毒蛋白（经常称为病毒抗原）可能仅仅在感染开始时和在疾病的非常晚的时期可以检测到。所以检测病毒抗原的实验如检测 p24(来自 HIV-1) 或 p26(来自 HIV-2)的实验（这两个蛋白都是病毒的核心蛋白），只能与能可靠检测 HIV 感染的其他诊断方法结合使用。

三组病毒抗原在理论上是可得的，可以诱导宿主中抗体的形成，所以可以用作诊断方法中的抗原。它们是包被蛋白(envelope proteins，由 env 基因区编码)，病毒酶或调节蛋白如逆转录酶或整合酶(由 pol 基因区编码)和结构核心蛋白(由 gag 基因区编码)。在 HIV-1 和 HIV-2 中的病毒包被蛋白是作为多肽前体蛋白(对于 HIV 是 gp160，对于 HIV-2 是 gp140)合成的糖蛋白。这些高分子量前体，在合成后裂解产生 gp120 和 gp41(HIV-1)或 gp110 和 gp36(HIV-2)。更大的多肽(gp120 或 gp110)形成了表面亚单位，通过松弛的接触与跨膜小多肽(gp41 和 gp36)结合。在许多宿主(患者)中，包被糖蛋白优选地是抗病毒免疫应答的靶。Ratner, L. 等, Nature 313(1985)277-84 已经证明，特别是这些包被蛋白（即 gp41 或 gp36）的跨膜在这些病毒蛋白中具有最大的免疫原潜力。

在诊断和筛选中已经广泛利用了 HI 病毒编码的多肽的免疫测试方法如 ELISA(酶联免疫吸附测试)。病毒多肽可以直接从病毒物质制备或利用重组 DNA 技术从体外或体内表达系统中产生。这两个抗原生产方法都受到几个方面的限制。
病毒或感染性遗传物质的污染，所以利用该物质对人有危险。重组产生的物质可能受到非 HIV 宿主蛋白的污染，可能导致这样的测试方法的特异性降低或灵敏度降低。

在抗致病因子（如病毒致病原）的抗体的检测中，频繁并有利地利用了 US 4,945,042 中叙述的双抗原桥连(bridge)形式的抗体检测系统。根据这一桥连概念(bridge concept)的免疫测试需要利用直接或间接结合固相的抗原，和该抗原或直接或间接可检测的容易产生交叉反应的可溶抗原。将研究的抗原，如果存在，就在结合固相的抗原和已标记的检测抗原之间形成了桥。只有两个抗原通过特异的抗体桥连，才产生阳性信号。

利用重组产生的 gp41 作为抗原检测抗 HIV 抗体的几个尝试已被描述。重组产生的 gp41 在一些限制下可以用于检测抗 HIV 抗体。这样的 gp41 可以单独利用或结合其他 HIV 抗原用于检测抗 HIV 抗体。现在，独立地可以检测 HIV 抗原和/或抗 HIV 抗体的测试是已知的。

在 WO 93/21346 中，叙述了同时检测 gp24 抗原和 HIV-1 gp41 和 HIV-2 gp36 的抗体的“组合实验”。在这一测试中，利用了直接包被重组产生的 gp41 的固相。

利用特别高或低的 pH 值在溶液中保持 gp41(或 gp36)的一个途径。重组产生的 gp41 已知在 pH 3.0 周围和以下，或在 pH 11.0 周围或以上时是可溶的。

不幸的是，HIV-1 gp41 和 HIV-2 gp36 在生理缓冲条件下基本上是不溶的。

一般来说，免疫测试是在生理 pH 下进行的。由于在生理缓冲条件下它们的不溶性，在许多免疫测试中利用了直接包被到固相物质上的逆病毒表面糖蛋白抗原。但是，在许多情况中，直接包被抗原到固相物质上是有害的，并且导致一些缺点，如构象变化、分子不折叠、抗原性变化、不稳定并导致背景问题(背景问题)见 Butler, J. E. 等, J. Immunol. Methods 150 (1992) 77-90。

虽然通过强离液试剂或适当的去污剂溶解逆病毒表面糖蛋白(rsgp)是可能的，以这样的方法溶解的物质作为诊断工具的用途是有限的。

如上所述，根据桥连的概念的免疫测试已经证明在目的是检测与致病原有机体反应的抗体的许多不同的实验中是有利的。但是，由于不溶性，在这样的实验中，还不能利用HIV-1的e-gp41分子（即，“糖蛋白 41 的胞外域(ectodomain)”）或e-gp36。

为了弥补直接包裹的缺点，已经设计了不同测试方法，其中不利用e-gp41抗原，而是利用了它的或多或多跨越了免疫显性的所谓的环区的合成或重组产生的部分序列。这样的测试方法的例子在下面所述的专利文献中有叙述。

Gp41的细胞外部分中的环区是连接N末端螺旋区和同样螺旋的C末端区的分子的非螺旋顶端发夹。与gp41的抗血清反应的显著部分包括了顶端环基序的抗体。所以，该二硫桥连的(disulfide bridged)发夹或环结构代表了gp41的免疫显性区。所以，克服与重组产生的gp41相关的问题的一个途径是化学生产代表gp41的部分序列的肽。重要的是应注意到，如本发明中所指的，gp41或gp36被定义为所谓的包括环连接的N-和C-螺旋但没有N末端融合肽和C末端跨膜区段的胞外域。

各种HIV抗原的肽片段在相关的专利文献中公开(澳大利亚专利申请597884(57733/86), 和美国专利4735896和4879212)。特别是，这三个说明书公开了gp41糖蛋白的保守的免疫显性区，HIV-1的主要的包被蛋白的环区。HIV-2的gp36蛋白的类似的免疫显性区也已经合成。对应于这些环区的肽构成了胞外域的顶体(apex)，能够早期诊断HIV-1和HIV-2，提供了有足够的但不是最适当的灵敏性和良好
的特异性的测试方法。但是，在一些患者中的血清转型的第一天中，
相对于 IgM 抗体的检测，它们的限制变得明显了。

WO92/22573 公开了一种免疫特性的肽，通常具有骨架，即具有
各种哺乳动物免疫缺陷病毒的跨膜包被蛋白(例如，gp41 或 gp36)的
免疫活性区。进一步证实，免疫活性区包括在从不同的哺乳动物种
类产生的免疫缺陷病毒分离物中高度保守的二硫环。

EP396 559 涉及含有对应于 HIV 的天然存在的氨基酸序列的人工肽。表位也是产生于对应于 gp41 或 gp36 的环结构的
序列。它们也已经确定是含有通过化学氧化步骤在免疫活性环的两个
半胱氨酸残基之间形成的二硫桥连。

但是，如 HIV 感染的患者的抗 HIV 抗血清中含有的，比例较大的
抗体不与从 gp41 或 gp36 的免疫活性环产生的序列基序或它的变异体反应。而这些肽抗原可以与优势桥连概念结合使用，不检测与 HIV
gp41 的环区域外的表位反应的抗体。不仅 HIV 感染的非常早期的诊
断是关键性的，而且特别重要的是检测尽可能多的 HIV-1 和 HIV-2
的亚型。表位（特别是 lgsg 的正确折叠的构象表位）越多，越不可
能由于假阴性诊断而错过感染的样品。

所以，已经进行了连续的努力提供大部分的逆病毒表面糖蛋白
分子，特别是可溶形式的来自 HIV-1 的 gp41。

gp41 的生物物理以及生物化学特性已经得到广泛的研究。Lu, M.
构。由于在生理条件下 gp41 形成了不溶的聚合体，研究者局限于胞
外域 gp41 的截短版本。

最近通过 NMR 波谱已经证明(Caffrey, M.等，J Biol Chem
275(2000)19877-82)，gp41 的天然三聚体(trimer)形成了包括 C 末端螺
旋包装(pack)的反平行(anti-parallel)方向的三个平行 N 末端中心螺旋
的 6 螺旋束(bundle)。

gp41 的高分子聚合体也已被描述。这样的聚合体最有可能是通
过所谓的 gp41 的顶端环区域的相互作用形成的。

通过蛋白设计，Root, M. J等，Science 291(2001)884-8 已经开发
了进入靶细胞的 HIV-1 的抑制剂。这一抑制剂包括了从来自 gp41 的
N 末端螺旋区产生的三个延伸片段(stretch)和来自这一分子的 C 末端螺旋区的两个延伸片段。但是，这一遗传工程构建体没有天然分子的许多区域和许多抗原表位，特定地，它包含有所谓的已知确定特别的免疫原表位的环基序(参见上面)。

所以，仍然存在巨大的需要，要求提供尽可能多的可溶形式的逆病毒表面糖蛋白表位。特别是，需要提供包括来自 HIV-1 的 gp41 或来自 HIV-2 的 gp36 的这样的可溶抗原，用于各种治疗以及诊断应用。

本发明的一个任务是研究是否可能提供更多的可溶形式的逆病毒表面糖蛋白表位或甚至 c-gp41 分子或 c-gp36。

本发明的另一个任务是研究是否可能分别提供这样的 gp41 和 gp36 的变异体，它们更容易处理，并且/或者它们在进行免疫测试或用于免疫所要求的缓冲条件下，在含有变异体和陪伴分子的复合物的形式下是可溶的，所述陪伴分子是肽基脯氨酰基异构酶类的陪伴分子。

陪伴分子已知是经典的“折叠辅助物”，是辅助其他蛋白折叠并维持结构完整性的多肽。它们具有促进体内和体外的多肽的折叠的能力。通常，折叠辅助物再分成折叠催化剂和陪伴分子。由于它们的催化功能，折叠催化剂加速了在蛋白折叠中的速度限制步骤。催化剂的例子进一步叙述如下。陪伴分子已知结合变性的或部分变性的多肽，所以辅助变性蛋白。所以，不象折叠催化剂，陪伴分子发挥了很小的结合功能(Buchner, J., Faseb J 10(1986)10-19)。

至今，陪伴分子的几个不同的家族是已知的。所有这些陪伴分子的特征是它们有结合未折叠的或部分折叠的蛋白的能力，并且具有连接正确折叠的蛋白或除去变性或聚集的蛋白的生理功能。

陪伴分子的很好表征的例子是所谓的蛋白的热休克家族，是根据它们的相对分子量来命名的，例如，hsp100、hsp90、hsp70 和 hsp60,

已经证明，在不同的独立的系统中，陪伴分子的增强的表达可以简化多肽的重组生产。其例子可以在WO94/08012中找到。

利用陪伴分子提高似天然(native-like)折叠多肽的生产的途径主要归因于陪伴分子结合和增溶的功能。在重组生产陪伴分子和靶蛋白的融合多肽后，陪伴分子通常可以从得到的多肽裂解，产生需要的纯净形式的多肽。相反，本发明是基于当结合逆病毒表面糖蛋白时适当陪伴分子的有益的增溶效果。

令人惊讶的是，我们发现折叠辅助物例如肽基脯氨酰基异构酶(PPI)类的许多成员，特别是来自FKBP家族的，不仅具有催化活性，而且对淀粉状蛋白（或更一般地说是趋向于聚集的蛋白）的溶解性产生强烈的有利的效果。这是通过与在其他条件（即不伴随的（unchaperoned）、分离的形式）下趋向于聚集的蛋白形成可溶的复合物来进行的。这样的蛋白在生理条件下是难于溶解或不溶的，一旦它们与适当的PPI陪伴分子在复合物中结合，在温和的生理条件（即，不需要溶解添加物如去污剂或解旋剂）下变成是可溶的。因此，我们能够生产例如可溶的蛋白-陪伴分子复合物，其中含有例如HIV-1的gp41蛋白作为趋向聚集的靶蛋白和FkpA或其他FKBP作为赋予可溶性的陪伴分子。

另外，我们发现一些充分确定的HIV-1 gp41或HIV-2 gp36的变异体特别适用于与PPI类的陪伴分子形成可溶的复合物。

例如，gp41和FkpA或gp36和FkpA的复合物在例如生理条件下是容易溶解的，它们可以容易地在常规pH范围内标记，并且它们可以非常有利地用于检测分别抗HIV(1或2)中的gp41或gp36的抗体的检测中，所以可以用于HIV感染的诊断。

附图简述

图1A和1B，HIV-1胞外域gp41(535-681)-His₈的远(1A)和近(1B)
紫外 CD

折叠的 gp41(粗线): 缓冲条件(30mM 甲酸钠, pH3.0)的设定能诱导类似天然的所有螺旋构型的 gp41; 变性的 gp41(细线): 缓冲条件(50mM 磷酸钠, pH3.0,7.0M GuHCl)的设定完全变性(非折叠) gp41。

由于高摩尔量的离液盐，于图 1A 中的参考二色信号(细线)不能可靠地于在 215nm 的波长区域中检测。在 Jasco-720 分光偏振仪上记录光谱, 并且 9 次平均以降低噪声。光程对于远紫外 CD 是 0.2cm(图 1A), 对于近紫外 CD 是 0.5cm(图 1B)。各个蛋白浓度是 1.5μM 和 29μM。纵坐标的单位是平均残基椭圆率并且具有尺度(dimension) deg × cm² x dmol⁻¹。

图 2: 在生理缓冲液中“未陪伴”的 gp41 的聚集

显示的是 1 分钟(下面的线)和 10 分钟(上面的线)在 pH 从 3.0 升到 7.5 后 gp41 胞外域的紫外光谱。聚集的分子导致光散射效应，并且引起表观吸收(apparent absorption)在 310nm 以外。该图仅仅证明了 gp41 的强的聚集趋势; 值得注意的是, 聚集的过程不在上面的线表明的时期终止。

图 3A 和 3B FkpA 在中性 pH 溶解 gp41 胞外域

在低的 pH 下将 gp41 和成熟的 FkpA 共温育, 然后转变到最后的缓冲条件 20mM 磷酸钠, pH7.4; 50mM NaCl, 1mM EDTA。在 1 和 10 分钟后(下面和上面的线), 记录紫外光谱, 评估样品中的聚集程度。图 3A 显示了两倍摩尔过量的陪伴分子对聚集的阻遏。图 3B 显示了四倍过量的效果。gp41 的最后浓度约是 1μM。由于散射光(导致表观吸收在 300nm 外)降低到最小, 提供了强的光谱证据, 即 FkpA 有效地以依赖剂量的方式溶解 gp41 胞外域。

图 4 FkpA-gp41 在 pH2.5 时的紫外光谱

在对 50mM 磷酸钠, pH2.5; 50mM NaCl 透析后融合多肽 FkpA-gp41 的紫外光谱。令人惊讶的是, 两个区域的构建体在除了可溶离液试剂 GuHCl 后仍然是完全可溶的。没有证据表明存在光散射聚集体，可以预期引起基线漂移和在 300nm 处波长以外明显的表观吸收。

图 5 在 pH2.5 时 FkpA-gp41 的近紫外 CD 光谱
在 20mM 磷酸钠，pH2.5，50mM NaCl 在 20℃，在 Jasco 720 分
光偏振仪上记录光谱，并且累积 9 次以降低噪声。在光程 0.5cm 时蛋
白浓度是 22.5μM。芳香椭圆率显示是 gp41 的典型的特征（见图 1B)。
在 pH2.5，FkpA 是大的未结构化的，不能产生近紫外-CD 的信号。

图 6 在 pH2.5 时 FkpA-gp41 的近紫外 CD 光谱

在 20mM 磷酸钠，pH2.5；50mM NaCl，在 20℃，在 Jasco 720 分
光偏振仪上记录光谱，并且累积 9 次以提高信噪比。在光程 0.2cm
时蛋白浓度是 2.25μM。在 220 和 208nm 处的最小值指向了融合蛋白
中的 gp41 的主要螺旋结构。低于 197nm 的波谱噪声是由于高的酰胺
吸收并且不报告任何融合蛋白的结构特征。然而，可以猜测典型螺旋
最大值位于 193nm。

图 7 在生理条件下的 FkpA-gp41 的近紫外 CD。

在 20mM 磷酸钠，pH7.4；50mM NaCl 在 20℃，在 Jasco 720 分
光偏振仪上记录光谱，并且累积 9 次以降低噪声。在光程 0.5cm 时蛋
白浓度是 15.5μM。令人惊异的是，gp41 和 FkpA(实线)的共价连接的
蛋白区的芳香椭圆率是 pH3.0 的似天然全螺旋 gp41(下面的虚线)和
pH7.4 的 FkpA(上面的虚线)贡献而成的。这表明，当在多肽融合蛋白
中连接时，载体 FkpA 和靶 gp41(即两个不同的功能折叠单位)可逆地
和准独立地再折叠。

图 8 在生理缓冲条件下 FkpA-gp41 的远紫外 CD

在 20mM 的磷酸钠，pH7.4；50mM NaCl，在 20℃，在 Jasco 720
分光偏振仪上记录了光谱，并且累计 9 次以提高信噪比。在光程 0.2cm
时蛋白浓度是 1.55μM。在 222nm 和 208nm 处的强信号指向了融合构
建体中的 gp41 的主要螺旋结构。低于 198nm 的噪声是由于高的蛋白
吸收，不反映 FkpA-gp41 的任何二级结构特性。

图 9 在 HIV 测试中 FkpA-连接的 gp41 是可溶的和高免疫反应性

FkpA-gp41 是 COBAS CORE HIV 组合测试方法中的强竞争物。
显示的是在与 gp41 胞外域单独比较(空圈)，在用稀释缓冲液(含有
Triton X - 100 作为辅助去污剂)预处理后的可溶 FkpA-gp41 多肽(实心
圈)的抑制潜力。显然，gp41 胞外域(在融合蛋白的分子内复合物内)
甚至在存在去污剂时保留了它的高免疫反应性，而裸露的胞外域差不多完全失去了免疫反应性。测试的 HIV 阳性血清是稀释倍数 1: 3000 的内部血清 21284。

图 10 在复性凝胶过滤后 FF36 的紫外光谱
光谱提供了明确的证据，即 gp36 融合肽是可溶的并且当根据实施例部分所述的复性凝胶过滤方法在 Sux 200 柱上再折叠时不聚集。

图 11 (1+2)FkpA-gp21 是可溶的和免疫反应性融合多肽
在复性凝胶过滤后，再折叠 FkpA-gp21 融合蛋白高度可溶地洗脱，在紫外光谱下显示没有聚集趋势(11/1)。当在 COBAS CORE 与 HTLV 阳性血清 858893-00(1:10 稀释度)的竞争型免疫测试实验中评估时，FkpA-gp21 具有良好的免疫特性(11/2)。

发明内容
本发明涉及生产包括基本不溶的靶蛋白和肽基脯氨酸酰基异构酶类陪伴分子的可溶复合物的方法，包括将所述蛋白和所述陪伴分子在缓冲液中混合，其中蛋白和陪伴分子都溶解于缓冲液中，将缓冲液调节到生理条件，形成的蛋白-陪伴分子复合物是可溶解的。

本发明的 “靶蛋白” 可以是在含有 20mM 磷酸钠和 150mM 氯化钠的 pH7.4 的缓冲溶液中基本不溶的任何蛋白。优选的靶蛋白例如是成淀粉样蛋白(amyloidogenic protein)，成淀粉样病毒的表面糖蛋白，和病毒表面糖蛋白，特别是 HIV-1 gp41、HIV-2 gp36 和 HTLV gp21。

一组重要的靶多肽是所谓的成淀粉样蛋白或多肽。在体液或腔室里已经发现聚集形式的成淀粉样蛋白。已知的例子是血清淀粉样 A(sAA)，所谓的 β-A4 或 Aβ(已知在 Alzheimer 疾病的脑中形成特征性淀粉样沉积物的 42 或 43 个氨基酸的多肽)，所谓的朊病毒蛋白(PrP™在 BSE 或 Creutzfeldt-Jacob 疾病中积累成聚集体)，和逆病毒表面糖蛋白，如 HIV-1 gp41。这是在患 HAD(与痴呆相关的 HIV)的患者的脑中的淀粉样噬菌斑中发现的。在优选的实施方案中，陪伴分子优选地 PPI 陪伴分子是用于形成包括成淀粉样蛋白和陪伴分子的可溶复合物的。非常有利的是，这样的复合物可以用于许多不同的免疫测试方法中。优选地，这样的复合物用于根据双抗原桥连概念的免疫测试方
法中。

HIV和其他被病毒感染，如 HTLV、流感病毒和 Ebola 病毒等表达介导细胞附着和膜融合的表面糖蛋白。为了这些功能，所有这些表面糖蛋白含有极其短的失活区段，使它们难于在体外操作。趋向于聚集，使它们由于体外再折叠而倾向于攻击靶。在其他的优选的实施方面中，本发明涉及可溶的复合物。包括 PPI 陪伴分子和被病毒的表面糖蛋白。特别涉及在检测表面糖蛋白的抗体的免疫测试方法中利用包括 PPI 陪伴分子和被病毒的表面糖蛋白的复合物。

HAD 是已知的 HIV 感染的综合症。如 Caffrey, M. 等 (出处同上) 所述，在组织学现象上，HAD 是非常相似于称为 Creutzfeldt-Jacob 疾病的海绵样脑病。Creutzfeldt-Jacob 疾病的病因学通常认为是从包括修饰的浆病毒蛋白（plaque）的成淀粉样积累产生 (Prusiner, S.B., Proc Natl Acad Sci USA 95 (1998) 13363-83)。HAD 的类似致病机理包括高分子量的 e-gp41 的聚合体是可能的。值得注意的是，HIV 脑病中的神经损伤具有 Binswanger 疾病的病理学和放射学特征。

本发明优选的成淀粉样蛋白是从 HIV-1 产生的 gp41，从 HIV-2 产生的 gp36，或从 HTLV 产生的 gp21。

如果在含有 20mM 的磷酸钠 pH7.4，150mM NaCl 的缓冲液中，蛋白溶解的浓度为 50nM 或更少，则认为蛋白“基本不溶”。

如果在生理缓冲液条件下，例如在包括 20mM 磷酸钠 pH7.4，150mM NaCl 的缓冲液中，包含在 PPI-陪伴分子复合物中的靶蛋白的溶解浓度为 100nM 或更高，则本发明的包含 PPI-陪伴分子和靶蛋白的复合物被认为是“可溶的”。

我们开发了包括在缓冲液中混合靶蛋白和陪伴分子的步骤的方法，在缓冲液中溶解了蛋白和陪伴分子，将缓冲液调节到形成的蛋白-陪伴分子复合物仍然溶解的生理条件。生产可溶的陪伴分子-靶蛋白复合物是从溶解缓冲条件，即从靶蛋白和陪伴分子可溶的缓冲液开始的。可以称为“非生理”或“可溶”缓冲液的适当缓冲液不得不高于靶蛋白和 PPI 陪伴分子不变性或至少不会不可逆地变性的要求。从这些缓冲条件开始，陪伴分子结合靶蛋白，从非生理到生理条件的缓冲液条件的变化在没有靶蛋白的参
与下是可能的。

适当的(非生理)缓冲液，即靶蛋白基本不溶，PPI 陪伴分子可溶的缓冲液利用了高或低 pH，或高离液盐浓度或它们的结合。

在基本不溶的包括 PPI 陪伴分子和靶蛋白的分子间复合物的生产中，非生理缓冲液优选地是高或低 pH 的缓冲液。优选地，这样的缓冲液具有的 pH 在高 pH 范围是 9 到 12，低 pH 范围是 2 到 4.5。

在基本不溶的包括 PPI 陪伴分子和靶蛋白的分子间复合物的生产中，溶解缓冲液优选地是高浓度离液盐，例如 6.0M 盐酸胍，pH 约 6 时的缓冲液。在复性的基础上，靶蛋白假定了它的类似天然的结构和分子间的复合物形式。

在本发明中，生理缓冲液条件确定为 pH 值在 5.0 到 8.5 之间，总盐浓度低于 500mM，至于其他非盐成分是否可以存在于缓冲液中 (如糖，乙醇，去污剂)，只要这样的添加物不妨碍包括靶蛋白和陪伴分子的复合物的可溶性。

在另外的优选的实施方案中，本发明涉及生产可溶的逆病毒表面糖蛋白陪伴分子的方法，包括在逆病毒表面糖蛋白和肽基脯氨酰基异构酶溶解和形成复合物的缓冲液中混合逆病毒表面糖蛋白和肽基脯氨酰基异构酶，调节缓冲液到复合物溶解的生理条件。

用于本发明的术语“逆病毒表面糖蛋白”或“rsgp”应该包括 HIV-1 的 gp41 和 HIV-2 的 gp36，以及从哺乳动物免疫缺陷病毒产生的包被糖蛋白。优选的逆病毒表面糖蛋白是来自 HIV-1 的 gp41 和来自 HIV-2 的 gp36 和 HTLV 的 gp21。特别优选的 rsgp 是 HIV-1 的 gp41 和 HIV-2 的 gp36。如本文所述的术语 rsgp 也不包括天然存在的以及合成工程的 rsgp 变异体。

已经发现，在 gp41 或 gp36 的 N 螺旋区内的一些已经确定的氨基酸取代进一步产生了比 gp41 或 gp39 的野生型序列的多肽更多的分子的整体特性。这些变异体代表了本发明的优选的实施方案。特定地，HIV-1 gp41 的变异体在选自 Leu555、Leu566、Ile573 和 Ile580 的位置的一个或多个位置有至少一个氨基酸取代和最多 4 个氨基酸取代。

其中这些位置是 HIV-1 gp41 野生型序列(SEQ ID NO:1)中的已知位置或对应于其中的已知位置的，特征是取代氨基酸分别选自包括丝氨
酸、苏氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸，或者在
选自包括位置 Leu554、Leu565 和 Val579 的位置有至少一个氨基酸
取代和最多 3 个氨基酸取代的 HIV-2 gp36 的变异体，其中这些位置
已知是来自 HIV-2 gp36 野生型序列 (SEQ ID NO:2) 的位置，或对应于
已知的位置，特征是取代氨基酸分别选自丝氨酸、苏氨酸、天冬酰胺、
谷氨酰胺、天冬氨酸和谷氨酸，这两个变异体适用于至少部分地解决
本领域已知的问题。

与野生型序列对应的多肽相比，gp41 或 gp36 的新变异体更少地
趋向于聚集，更多地溶解，更容易操作。在提供生理缓冲条件下包括
溶解形式的 gp41 或 gp36 的试剂，溶解度的提高变得特别明显。已经
证明，新变异体的有利特性和选自肽基-脯氨酰基异构酶 (PPI) 类陪
伴分子的陪伴分子给予的效果结合起来是特别有利的。所以，本发明
进一步涉及在包括变异体和肽基-脯氨酰基异构酶类陪伴分子的陪伴
分子的可溶复合物的生产中利用如本发明所述的 gp41 的变异体和/或
gp36 的变异体。

包括变异体 HIV 糖蛋白和 PPI 类陪伴分子的可溶复合物优选地
是从包括变异体 HIV gp41 或 HIV-2 gp36 和 PPI 类陪伴分子的单个重
组蛋白中得到的。所以，优选的实施方案是包括如本发明所述的 HIV-1
gp41 或 HIV-2 gp36 的变异体和选自肽基-脯氨酰基-异构酶类陪伴
分子的陪伴分子。

gp41 或 gp36 的新变异体更容易作为野生型多肽进行操作的事实
使它们可用于理想的各种目的，如用作免疫原或用作抗原。在优选的
实施方案中，本发明涉及本发明的 gp41 和/或 gp36 的变异体和包括
PPI 陪伴分子和这样的变异体例如在免疫测试中作为单个重组蛋白的
复合体的用途。最令人感兴趣的是，包括逆病毒表面糖蛋白和 PPI 陪
伴分子的融合蛋白是可溶的，并且在适当的条件下可以复性，已经发
现可以形成能够方便地标记和在 HIV 免疫测试中能可靠地检测的可
溶分子间 rsgp - 陪伴分子复合物。

在逆病毒表面糖蛋白和陪伴分子之间的可溶复合物可以极有利
地用于检测双抗原夹心概念下检测抗体的免疫测试中。

包括来自 HIV-1 的 gp41 或来自 HIV-2 的 gp36 的 rsgp 陪伴分子
复合物可特别有利的用于感染早期中抗 HIV 抗体的检测中。利用可溶的陪伴分子 gp41 复合物或可溶的陪伴分子 gp36 复合物，优选地根据用途的概念进行免疫测试是可能的，允许在体液样品中灵敏和较早地检测抗 HIV 的抗体。

陪伴分子可以与不溶蛋白形成复合物的事实也可以极有利地用于提高免疫测试，优选地在用途概念下的免疫测试方法中。桥连概念允许利用陪伴分子抗原复合物作为第一抗原（通常称为固相侧的捕获抗原）和第二陪伴分子抗原复合物（通常是检测方面的检测抗原）。为了使结合陪伴分子反应抗体引起的背景反应问题最小，这样的桥连的测试方法进一步可以通过利用固相方面的第一陪伴分子和不同种类产生检测方面的第二陪伴分子来有利地修饰。

现在可以根据桥连概念利用标记的陪伴分子-抗原复合物进行免疫测试。也可以制备这样的陪伴分子-抗原复合物，其中只有陪伴分子被标记，以确保抗原不被修饰或被标记不利地影响（例如在构象方面）。

化学偶联的方式和方案可以如需要来选择。在多肽的情况中，靶向-SH，-NH₂，或- COO⁻基团以及组氨酸的-OH 基团，组氨酸的咪唑基团，或色氨酸的杂环亚胺基团的偶联化学正在着手进行。这些功能基团的几个适当的偶联化学是已知的（Aslam, M. 和 Dent, A., 出处同上）。常规蛋白偶联化学需要蛋白在工作缓冲条件下，例如，在约 5 到 8.5 的 pH 范围内溶解，例如 gp41 在这一 pH 范围中除非变性是不溶的，例如通过 SDS，似天然折叠 gp41 是不能修复化学键的。本文叙述的 gp41 伴随复合物提供了生产与利用的检测方式相关的免疫测试中的可溶的标记 HIV 包被蛋白的常规方法。

在优选的实施方案中，本发明涉及生产可溶的 rsgp 陪伴分子复合物的方法，包括以下步骤：在非生理缓冲条件下混合溶解的逆病毒表面糖蛋白和选自肽基脯氨酰基异构酶类的陪伴分子，然后调节缓冲液到生理条件，形成分子间复合物。

陪伴分子和逆病毒表面糖蛋白不仅可以作为单独的多肽使用。我们惊讶地观察到，共价地连接蛋白是有利的。这样的共价键在常规的化学交联方法中是可能的，但是优选地，共价键是通过生产包括逆
病毒表面糖蛋白和陪伴分子的重组多肽来完成的。

在另外的优选的实施方案中，本发明涉及生产可溶的rsgp陪伴分子复合物的方法，包括以下步骤：在适当的缓冲条件下溶解包括共价连接的逆病毒表面糖蛋白和选自肽基脯氨酰基异构酶类的陪伴分子的蛋白，然后调节缓冲液到生理条件。在这一方法下得到了分子间复合物。

在优选的实施方案中，本发明涉及包括逆病毒表面糖蛋白和选自肽基脯氨酰基异构酶类的折叠催化剂的陪伴分子的可溶复合物。

当然，本发明不局限于利用特别提到的肽基脯氨酰基异构酶类成员，但可以利用来自同一类别但从细菌的不同种类产生的陪伴分子
主体(stemming)进行。优选地，可以利用陪伴分子的 PPI 类的 FKBP 家族的成员。

在其他实施方案中，优选地利用从真核生物产生的同源物，利用来源于人的 PPIases 是非常优选的，因为这些 PPIases 应该不是通过来自人血清的抗体识别的，所以应该不干扰血清学实验(即，实验是基于人抗体的检测的)。

同样已知的和令人满意的是，并不需要总是利用分子陪伴分子的完全序列。仍然具有需要的能力和功能的陪伴分子的功能片段(所谓的单元)也可以利用(见 WO98/13496)。

例如，FkpA 是在细菌胞质中作为失活的前体分子合成并且跨细胞质膜转位的周质 PPI。FkpA 的活性形式(成熟的 FkpA 或周质 FkpA)没有信号序列(氨基酸 1 到 25)，所以包括了前体分子的氨基酸 26 到 270。涉及 FkpA 相关序列的信息可以容易地从公共数据库得到，例如从登记号 P 45523 的“SWISS-PROT”。

上面讨论的陪伴分子的变异体，含有一个或几个氨基酸取代或缺失也可以用于进行本发明的方法。

来自可选来源的适当的陪伴分子和陪伴分子的适当片段或突变体可以容易地利用实施例所述的方法来选择。为了生产可溶的 rsgp 陪伴分子复合物，它们可以游离或与卤素病毒表面糖蛋白共价连接的方式利用。在本发明的优选的实施方案中，结合感应 PPIase 陪伴分子是与卤素病毒表面糖蛋白重组连接的，产生了在细菌胞质中高度表达的基因产物。如本发明中所指的结合感应 PPIase 至少包括了介导与扩展的多肽底物结合的有关催化性 PPIase 活性的功能单位(即，底物结合或陪伴分子基序)。
我们也已经观察到一些不属于 PPI 类折叠催化剂的伴随分子可以与逆病毒表面糖蛋白形成可溶的复合物。所以，本发明的其他的选择方案是在 Skp(也称为 OmpH; Missiakas, D等, Mol Microbiol 21(1996)871-84)和逆病毒表面糖蛋白之间的可溶复合物。仍然是其他的选择方案，是包括逆病毒表面糖蛋白和 GcrroEL 或其部分的可溶复合物。也可以利用与 Skp 同源的伴随分子。

已知(例如, Scholz 等, 出处同上), 单元 PPI 与变性或部分变性的蛋白优先结合。现在已经发现 PPIases 具有不仅催化折叠蛋白而且与这样的蛋白形成稳定复合物从而给予可溶性的令人惊异的特性。研究的 PPIases (如 TF, SlyD 和 FkpA) 结合并且例如溶解似天然折叠逆病毒表面糖蛋白。本发明的 “似天然” 或 “似天然折叠” 的 gp41 的特征是远紫外 CD 评估的二级结构中的高螺旋内容和近紫外 CD 评估的三级结构内容。这些分别在图 1B 和 5 中所示的典型 “gp41-签名” 中有反映。另外, 本发明的 “似天然”的 gp41 的紫外光谱在高于 320nm 的波长处不显示有明显的吸收 (这是指光散射颗粒如聚集体)。

在模型生物分子例如在抗体和抗原之间形成复合物上有丰富的信息(综述见 Braden, B.C.和 Poljak, R.J., Faseb J 9(1995)9-16)。通常，复合物的形成和解离是平行发生的，复合物和结合伙伴是在游离平衡中共存的。同样，如本发明所述的 PPI 伴随分子和成淀粉样蛋白之间的复合物似乎是真实的。

如本发明所述，复合物的形成是特别重要的特性，因为在 PPI 陪伴分子和例如在生理缓冲条件下是基本不溶的蛋白之间的复合物已经发现例如在生理缓冲条件下是容易溶解的。在生理条件下溶解的抗原在诊断中有巨大的优点。它们可以直接作为标准物质利用。另外，它们可以与适当的标记物或适当的结合基团结合。

如上所述，来自 HIV-2 的 gp36 有相似的功能 (即，膜融合和病毒进入)，并且与来自 HIV-1 的 gp41 有相似的诊断相关性。利用 HIV-1 的 gp41 作为逆病毒表面糖蛋白的原型例子可以在本申请书中讨论许多技术问题。只是为了说明的缘故，讨论和叙述优先集中到 HIV-1 的 gp41 上。但是，相同的考虑应用于其他逆病毒表面糖蛋白，特别是来自 HIV-2 的 gp36 和来自 HTLV 的 gp21。
已知 HIV-1 或 HIV-2 的天然存在的分离物可以包括原始分离和叙述的氨基酸序列的变异体。这样天然存在以及合成工程化的哺乳动物免疫缺陷的 rsgps 的变异体也是在本发明的范围内的。

在优选的实施方案中的本发明涉及人免疫缺陷病毒(HIV)的 rsgp 或跨膜糖蛋白的变异体。公开了在 HIV-1 gp41 或 HIV-2 gp36 的 N 螺旋区中包括特异氨基酸取代的变异体。

参与螺旋连接螺旋的 N 螺旋以及 C 螺旋区的氨基酸位置可以关于 HIV-1 gp41 的文献中知道，并加入外推 HIV-1 同源物 gp36。已经发现，突变这些位置影响了 gp41 或 gp36 的特性，特别是在包括这一变异体和 PPI 陪伴分子区域的融合蛋白的有关方面中。

在 gp41 亮氨酸拉链的螺旋轮投影(helical wheel projection)中的“a”和“d”氨基酸位置优选地可用于生产本发明的变异体。在“a”位置中的氨基酸残基(根据 Chan,D.C 等，Cell 89(1997)263-73 编号)是 Q552、I559、L566、I573 和 I580；“d”位置是 I548、L555、Q562、T569 和 L576。

为了在不调节拉链基序的螺旋整体性的情况下提高溶解度，优选地将突变位置通过一个以上的螺旋相互分离。这一先决条件是例如通过取代连续的“a”残基 Q552、I559、L566 和 I573，以及通过取代连续的“d”残基 L548、L555、Q562 和 T569 来满足的。用另一句话来说，突变的残基是通过至少 6 个野生型氨基酸残基来相互分离的，所以正确地接着 heptad 基序。在前面提到的条件下在在变异体内突变“a”和“d”残基是可能的，使取代的位置通过一个以上的螺旋相互分离。

同样，当与 SlyD 或 FkpA 融合时，令人惊异地发现在 HIV-2 的 gp36 胞外区中的变化产生了容易溶解的重组蛋白。本文中，“a”位置是 Q551、V558、L565、T572、V579，“d”位置是 I547、I554、Q561、T568 和 L575。

优选地，选自包括 HIV-1 gp41 的位置 Q552、I559、L566、I573、I580、I548、L555、Q562、T569 和 L576 或 HIV-2 gp36 的位置 Q551、V558、L565、T572、V579、I547、I554、Q561、T568 和 L575 的位置的 1 到 6 个氨基酸分别用更小的或更亲水的氨基酸来取代。
优选地，待取代的氨基酸位置选自 HIV-1 的 Q552、I559、L566、I573 和 I580 和 HIV-2 的 L554、Q561、T568 和 L575。

在本发明的优选的实施方案中，涉及了在选自包括 Leu555、Leu566、Ile573 和 Ile580 的位置的(a)位置中包括至少一个和最多 4 个氨基酸取代的 HIV-1 gp41 的变异体，其中这些位置是已知来自 SEQ ID NO: 1 的 gp41 野生型序列的位置，或者对应于其中的已知位置，特征是取代氨基酸分别为或独立地选自丝氨酸、苏氨酸、天冬酰胺、谷氨酰胺、天冬氨酸和谷氨酰胺。

本发明的这一优选的实施方案是基于可以提供野生型 gp41 的变异体的令人惊异的发现，代表了与 gp41 的野生型序列的对应的多肽比较明显的改进。根据已知来自 Chan, D.C. 等，Cell 89(1997)263-73 并且是在 SEQ ID NO: 1 中给出的氨基酸组合物和 gp41 野生型序列的号，叙述了产生本发明的变异体的氨基酸取代。

很明显，本发明叙述的氨基酸取代也可以用于在其他已知的和仍然未鉴定的 HIV-1 分离物内的对应的序列位置取代氨基酸。术语“对应于一个位置”可用于表明，同时发现了或产生了包括其他氨基酸或缺乏一些氨基酸的 HIV-1 分离物和其变异体，在 SEQ ID NO: 1 的序列排列的基础上产生了不同的绝对数目的对应序列位置或序列基序。

本发明的 HIV-1 gp41 多肽的优选的变异体的特征是它包括了位
置 555 的氨基酸取代，其其中 Leu555 被天冬氨酸或谷氨酸取代了，谷氨酸的取代是最优选的取代。

本发明的 HIV-1 gp41 多肽的另外的优选的变体的特征是它包括了在位置 566 的氨基酸取代，其中 Leu566 被天冬氨酸或谷氨酸取代了，谷氨酸的取代是最优选的取代。

本发明的 HIV-1 gp41 多肽的其他的优选的变体的特征是它包括了在位置 573 的氨基酸取代，其中 Ile573 被丝氨酸或苏氨酸取代，丝氨酸的取代是最优选的取代。

本发明的 HIV-1 gp41 多肽的其他优选的变体的特征是它包括了在位置 580 的氨基酸取代，其中 Ile580 被天冬氨酸或谷氨酸取代，谷氨酸的取代是最优选的取代。

本发明也涉及了在选自位置 Leu554、Leu565 和 Val579 的位置至少包括一个氨基酸取代最多包括三个氨基酸取代的 HIV-2 gp36 的变体，其中这些位置已知来自 HIV-2 gp36 野生型序列 (SEQ ID NO:2) 中的位点，或对应于其中的已知位点，特征是取代氨基酸分别和独立地选自丝氨酸、苏氨酸、天冬酰胺、谷氨酰胺、天冬氨酸和谷氨酸。

编号可以根据 Guyader, M. 等, Nature 326(1987)662-9 公开的野生型序列 (SEQ ID NO:2)。对应于这一序列中已知的位置的 gp36 的氨基酸位置是如上述关于 gp41 所述确定的。

本发明的 HIV-2 gp36 多肽的优选的变体的特征是它包括位置 554 的氨基酸取代，其中 Leu554 被天冬氨酸或谷氨酸取代，谷氨酸的取代是最优选的取代。

本发明的 HIV-2 gp36 多肽的优选的变体的特征是它包括了位置 579 的氨基酸取代，其中 Val579 是被天冬氨酸或谷氨酸取代，谷氨酸的取代是最优选的取代。在变体 gp41 或变体 gp36 的优选的实施方案中，分别包括了两个氨基酸位点上的取代，如上所述。包括氨基酸取代的变体也是优选的。在其他的优选的实施方案中，变体 gp41 在上面详细讨论的四个氨基酸位点具有取代。

在优选的实施方案中，gp41 或 gp36 的完全的序列 (即，没有融合肽和跨膜区的胞外域对应的哺乳动物免疫缺陷病毒包被蛋白的完全序列 (例如，来自 HTLV 的 gp21) 可以用于形成与 PPI 陪伴分子的复
合物。同样也可以利用逆病毒表面糖蛋白的片段，如 Lu 等（出处同上）叙述的 HIV-1 的 gp41 中的一个。这样的片段优选地包括 gp41 的细胞外部分的 C 末端螺旋以及 N 末端螺旋。

利用标准方法的重组技术可以生产包括位点 535 到 681（名称按照 Chan, D.C. 等，Cell 89(1997)263-73）的与诊断关联的 gp41。如 Lu 等（出处同上）的图 1 所述，另一个有趣的 gp41 分子跨越了 gp160 前体分子的 540-669。

作为逆病毒表面糖蛋白的典型例子，HIV 的小的包被蛋白是极其难掌握的，具有非常特殊的特性。如已经提到的，c-gp41 分子的一个最关键的特征是它在生理缓冲条件下不溶。重组产生的 gp41 是可溶的，并且在 pH 3.0 时具有似天然结构，和低的离子强度。但是，甚至在这一 pH，它仍然对缓冲液中的盐浓度敏感。根据利用的盐，在存在 100 到 500mM 以上的盐时 gp41 沉淀了。如下面更详细的讨论，它再次可以在离液试剂中溶解（变性形式）。

生理缓冲条件通常可以理解为对应于盐和动物的血浆或血清中发现的 pH 条件的，并且确定是 pH 7.4 左右，盐浓度约 150mM。本发明的 rsgp 陪伴分子复合物容易在这些缓冲条件下溶解。其中存在的 rsgp 是有免疫活性的，所以可指向似天然结构。当有或没有适当的去污剂的预处理时 gp41 在生理缓冲条件下（例如，20mM 磷酸钠 pH 7.4，150mM NaCl）基本不溶时，本发明的所述的复合物在根据适当的方案再折叠后是容易溶解的。如包括在本发明的复合物中的 gp41 胞外域至少在 100nM 浓度下，优选地在 1μM 和以上的浓度下，最优选地在 10μM 或以上的浓度下是可溶的。所以，溶解度基本从亚纳摩尔提高到纳摩尔浓度。

为了更好地理解本发明的范围，必须强调，用于溶解和复性的缓冲条件可以如需要和适当地修改，不一定要理解为是本发明的限制范围，本发明可以在一个大的缓冲条件范围内成功地进行。

生理缓冲液的总盐浓度不是关键，只要陪伴分子-gp41 复合物不解离，gp41 保持在溶液中，优选地，生理缓冲液至少含有 10mM 缓冲液系统，最多含有 200mM 的缓冲系统。其余的缓冲成分，如果可以，可以是盐，没有明显的缓冲容量，例如氯化钠。生理缓冲液优选
地具有 20 和 500mM 之间的盐浓度，更优选地是 50 和 300mM 之间的浓度，最优选地是 100 和 200mM 之间的浓度。

在本发明的方法中，生理缓冲液可以变化，具有的 pH 范围是 5.0 到 8.5 之间，更优选地这样的缓冲液的 pH 范围是 5.5 到 8.3。甚至更优选地，这样的生理缓冲液条件确定为上面给出的盐浓度和 6.0 到 8.0 的 pH 值，最优选地这样的生理缓冲液的 pH 是在 6.5 到 7.8 之间。

根据本发明所述的方法，在非生理缓冲条件下溶解逆病毒表面糖蛋白，加入陪伴分子（或已经作为共价连接另外的蛋白）后，然后，将含有溶解的逆病毒表面糖蛋白和陪伴分子的混合物调节到生理缓冲液条件。当这样做的时候，逆病毒表面糖蛋白将自发地沉淀，令人惊异的是，它将在上面的过程中停留在溶液中。这一重要的发现最有可能是由于在逆病毒表面糖蛋白和陪伴分子之间形成了复合物。

在大肠杆菌中重组生产 gp41 的情况中，得到了包含体形式的重组生产的 gp41。利用高离液剂例如，7.0M 硫酸铵解这一物质。在这些条件下，gp41 多肽还没有构成。通过在适当的步骤中，在 pH3.0 将缓冲液改变成 30mM 甲酸，溶液中的 gp41 假设是作为它的似天然全螺旋结构观察到的。检测蛋白的正确或不正确折叠状态的一个容易的方法是分析酰胺 (185-250nm) 和芳香基 (260-320nm) 区域中的 CD 光谱。另外，在光散射颗粒 (如聚集体) 上的信息可以容易地从标准的紫外光谱中得到。

重要的是，在本文中需要强调这样的事实，本发明的逆病毒表面糖蛋白陪伴分子复合物内的逆病毒表面糖蛋白采取了所谓的似天然折叠。相反，在中性 pH 已经被离液剂溶解的逆病毒表面糖蛋白很大程度上未构成，所以失去了有秩序的构象表位。或选地利用去污剂溶液溶解逆病毒表面糖蛋白也是可能的。例如，已经成功地利用十二烷基硫酸钠 (SDS) 溶解 gp41。但是，这样的 “SDS- 溶解物质” 不是选择的物质，例如用于检测 gp41 的抗体的免疫测试中。另外 (如上讨论)，这样的免疫测试优选地也检测抗 gp41 的构型表位的抗体，不能排除，去污剂确实部分地去除了构型表位。

优选地，本发明的 rsgp- 陪伴分子复合物的特征是 rsgp 是似天然折叠的。在这样的复合物中的似天然 rsgp 例如具有需要的免疫学或
物理特征。

似天然折叠优选地是通过近紫外 CD 光谱评估，是在紧密球状蛋白内的四级结构上报道的。已知 gp41 在约 pH3.0 和低离子强度的盐浓度下容易溶解。近紫外 CD 数据证明，在这样的缓冲条件下，gp41 具有特征性椭圆率信号，具有典型的似天然折叠球状蛋白的信号。如图 5 所示，包括 gp41 和 FkpA 的融合肽的 gp41 部分在酸性缓冲液中具有这一典型的近紫外 CD 光谱。在生理缓冲液条件下，本发明的可溶复合物的近紫外 CD 光谱是正确的折叠的陪伴分子和似天然折叠 gp41 的光谱组成。这在图 7 中以 FkpA-gp41 融合蛋白表示。

在本发明的优选的实施方案中，分析近紫外 CD 评估 gp41 陪伴分子复合物中的 gp41 的似天然折叠。优选地，这一近紫外 CD 是用于证明分子 gp41 和陪伴分子是似天然折叠。

可溶陪伴分子 gp41 复合物的生产是从非生理缓冲液条件下开始的。在陪伴分子和游离靶蛋白(例如来自 HIV-1 的 gp41)之间的复合物形成的情况中，“非生理”缓冲液不得不符合两个要求，(a)gp41 似天然酸性结构存在，和(b)PPI 陪伴分子至少具有部分功能(即结合感应)。从这样的缓冲液条件开始，陪伴分子结合了成淀粉样蛋白，从非生理到或多或少的生理条件地改变缓冲液条件在不沉淀成淀粉样蛋白是可能的。

虽然陪伴分子通常结合变性蛋白，并且作用于它们，从而有助于它们的正确(再)折叠，本发明所基于的情况是非常不同的。在适当的非生理缓冲条件下溶解的 gp41 似乎是以似天然形式存在的(例如图 1A 和 1B 和图 5)。与陪伴分子功能的习惯观点不同，在本发明的方法中，陪伴分子似乎似乎结合了似天然折叠蛋白，在 gp41 不溶和沉淀的缓冲条件下溶解这一蛋白。

在本发明的优选的实施方案中，PPI 陪伴分子选自 FkpA、SlyD 和引发因子。

已经发现，特别地，FkpA 或 SlyD 能提高 gp41 的溶解度，形成稳定的复合物。所以，其他优选的实施方案的特征是陪伴分子选自 FkpA 和 SlyD。最优先的是陪伴分子 FkpA。

如上所述，同样的陪伴分子的片段可以用于产生需要的功能。
在单元陪伴分子的情况中，如 FKBP，包括了催化单元(module)和结合单元，优选的是这样的片段至少包括了结合区，或者这些片段至少基本具有与结合区可比较的功能。

在优选的实施方案中，本发明涉及包括 gp41 和选自 FKBP 家族的陪伴分子的可溶复合物。

如上所述，通过混合 PPI 陪伴分子(例如，通过重组技术生产)和重组生产的 gp41 可以容易地制备包括来自 HIV-1 的 gp41 的可溶复合物或从另一个哺乳动物免疫缺陷病毒产生的同源物。然后，在两个独立的分子之间，即分子间形成了复合物。

复合物的形成是动态过程，其中解离和再结合的发生是并行的。对于分子内和分子间(例如，在融合构建体中)结合，例如 FkpA 和 gp41 之间，这是真实的。由于 gp41 可以立即和定量地从生理缓冲溶液中沉淀出来，不得不选择两个伴侣的浓度，保证只有非关键或非聚集浓度的游离形式的 gp41 存在，所以，大量的 gp41 是以 gp41 陪伴分子复合物的形式结合和溶解的。

根据利用的陪伴分子，已经发现，与 gp41 分子比较，需要混合至少 2 倍摩尔数的陪伴分子。所以，在优选的实施方案中，本发明涉及包括 gp41 和陪伴分子，优选的 FkpA 的混合物的试剂。优选地，这样的混合物含有比 gp41 更多的摩尔数的 FkpA。优选地，含有 3 到 10 倍多的 FkpA。FkpA 与 gp41 最优选的摩尔比例是在 4 到 6 之间。

也已经发现，例如，在包括至少共价结合一个 rsgp 区域和至少一个 PPI 陪伴分子区域的蛋白的不同区域之间形成分子中复合物导致了其他的有利的效果，例如关于稳定性和生产的难易。例如，已经发现，如果两个区域是共价连接的，1: 1 的比例(rsgp 与陪伴分子)足以
形成可溶的复合物。

重组连接形式的包括逆病毒表面糖蛋白和陪伴分子的可溶复合物代表了本发明的另外的一个优选的实施方案。包括在这样的重组多肽中的最优选的是 psgp 是来自 HIV-1 的 gp41 和来自 HIV-2 的 gp36。

对于至少包括一个 rsgp 区域和至少一个 PPI 陪伴分子区域的重组蛋白，从非生理到生理缓冲条件的转变可以不同的方法来完成。通过透析，快速稀释或基质辅助折叠将非生理缓冲条件调节到生理缓冲条件可以容易地得到 gp41 和 FkpA 之间的可溶分子中复合物。包括可溶的 gp41 陪伴分子复合物的混合物可以直接用于修饰。

包括例如本发明的 gp41 和 PPI 陪伴分子的可溶复合物也可以从包括重组技术得到的两个蛋白区域(gp41 和陪伴分子)的一个多肽开始生产。其中的 gp41 陪伴分子复合物是天然的分子中的。优选地，本发明的重组多肽包括 gp41 和陪伴分子或 gp36 和陪伴分子。仍然在本发明的其他优选的实施方案中，涉及了至少包括一个 rsgp 区域和至少两个 PPI 陪伴分子区域的重组蛋白。包括一个 rsgp 区域和两个 PPI 陪伴分子的重组多肽也是优选的。

利用了标准生物学技术表达了本发明的用于得到可溶 gp41-陪伴分子复合物的重组多肽。优选地，陪伴分子基因放置于靶蛋白基因上游框架中的包括 gp41 的遗传信息或者同时包括适当的肽接头序列的遗传信息的表达载体中。这样的重组融合蛋白的优选的大规模生产的宿主是大肠杆菌。

在优选的实施方案中，本发明涉及包括 gp41 或 gp36 和来自陪伴分子的肽基脯氨酰亲构酶类的陪伴分子的可溶复合物。仍然优选的是，可溶复合物是分子间复合物，优选地是包括 gp41 或 gp36 和 PPI 陪伴分子的重组多肽内的分子间复合物。最优选地，重组多肽的 PPI 陪伴分子部分没有任何输出信号肽(对应于前体分子)和对应于成熟的 PPI 陪伴分子。由于在这一优选的实施方案中，重组蛋白没有功能信号序列，基因产物在细菌胞质中积累。

包括在重组产生的 FkpA-gp41 中的 gp41 的令人惊异的特征是它与“没有陪伴分子”的 gp41 的胞外区相比的突出的可溶性。有趣的是，“离液物质“(即，在 6.0-7.0M GuHCl 中的 FkpA-gp41)可以不同
的方式再折叠，导致产生了热动力学稳定的和可溶的似天然形式。再
折叠通过透析和通过快速稀释，以及通过复性大小排除层析或基质辅
助再折叠可以高产量得到。这些发现表明，以这一共价连接形式，
gp41-FkpA 融合多肽是比可转移蛋白更加热动力学稳定。

重组 FkpA-gp41 多肽包括两个具有不同折叠要求的蛋白区域。
由于纯化方案包括最初的变性步骤，陪伴分子的折叠必须是可逆的。
确实，存在共价连接的蛋白复合物中 FkpA 和 gp41 的可逆的和独立
的再折叠的竞争性光谱证据。已经发现，C 末端裁短的 SlyD 的再折
叠是可逆的。

同样优选的是，包括抗病毒表面糖蛋白和陪伴分子的重组多肽
另外包括这两个多肽区域之间的适当的肽接头序列。选择这样的肽接
头序列保证了利用的 rsgp 和陪伴分子区域的最佳分子中结合。优选
地，这样的接头序列是约 20 个氨基酸长，并且包括有灵活性和溶解
性的氨基酸，例如甘氨酸和丝氨酸。优选地，接头是 10 到 50 个氨基
酸长度。更优选地，长度是 12 到 40 个氨基酸。优选地，接头包括
15 到 35 个氨基酸。Rsgp 和陪伴分子总是最接近的(在一起，例如通
过适当的接头)。在优选的实施方案中，重组多肽包括与它的靶蛋白
通过灵活的接头连接的成熟 FkpA。如数据表明的，这产生了其他的
稳定的效果。

令人惊异地发现了，作为 PPI 陪伴分子和 gp41 之间的分子中复
合物的一部分的 gp41 是可溶和稳定的。包括来自 HTLV 的 PPI 陪伴
分子和 gp36 或 PPI 陪伴分子和 gp21 的分子中复合物是相同的。在这
样的复合物中的 gp41 的稳定性的提高带来了其他的优点。例如，可
能非常容易地得到完全复性的重组 gp41 陪伴分子分子。重组蛋白最
初是通过用磷酸盐(例如，盐酸胍)处理来溶解的。在凝胶过滤柱上简
单地通过溶解物质，可以得到用适当的生理缓冲液平衡的包括共价连
接的蛋白区域的完全复性的蛋白(例如，实施例 2.3 和图 7 和 8)。

可溶的分子中 gp41 陪伴分子复合物仍然具有其他令人吃惊的优
点。它对于去滞剂的变性作用是相当稳定的。如果融合蛋白含有两个
陪伴分子和一个 gp41 或一个 gp36，这一效果更加明显。为了降低，
至少部分避免非特异结合引起的问题，大多数免疫测试是在存在去污
剂的情况下进行的。因为前面提到的原因，在 HIV 诊断中，利用了更强的去污剂，同时分解了病毒颗粒，所以简化了病毒抗原如 gp24 的检测。

在常规利用的测试缓冲液中，例如在检测抗 HIV 抗体或 gp4 抗原中，SDS(十二烷基硫酸钠)溶解的重组生产的 gp41 胞外区不是免疫反应的(见图 9)。但是，在相同的缓冲液条件下，作为本发明的 PPI 陪伴分子的分子中复合物的一部分的 gp41 是强烈地不发生免疫反应的。正如可以从图 9 看到的，在相同的测试条件下，和在相同的患者血清中，这一物质产生了良好的竞争曲线，这只有用在存在测试去污剂时稳定的似天然可溶 gp41 的存在来解释。

本发明的复合物的一个非常重要的特征是在生理缓冲条件下(例如，在 pH7.4，在 20mM 磷酸 150mM 氰化钠缓冲液下，可溶的 rsgp 陪伴分子复合物中的 rsgp 是似天然折叠的。这在治疗以及诊断应用中是有巨大的优点的。在优选的实施方案中，本发明涉及到了在生理缓冲条件下可溶的试剂的组合物，包括了逆病毒表面糖蛋白和选自肽基脯氨酰基异构酶类陪伴分子的分子间复合物。

所以，包括来自 HIV-1 的似天然折叠 gp41 和选自肽基脯氨酰基异构酶类陪伴分子的可溶复合物代表了本发明的非常优选的实施方案。

所以包括来自 HIV-2 的似天然折叠 gp36 和选自肽基脯氨酰基异构酶类的陪伴分子的可溶复合物也代表了本发明的非常优选的实施方案。

对治疗而言，提供“可溶的和似天然折叠”的 gp41 或 gp36 带来的进步是十分明显的。第一次，可以在生理缓冲条件下注射例如 gp41。

在优选的实施方案中，如上所述的可溶复合物用于生产用作药物的药剂的组合物。试剂的组合物包括 gp41 陪伴分子复合物和生理可接受赋形剂，如果适当地，包括适当的添加剂和/或常规的辅助物质。

已知，从 gp41 heptad 重复或从 gp41C 末端螺旋产生的肽具有抗病毒活性(Wild, C. 等, Proc Natl Acad Sci USA 89(1992)10537-41)。通

它代表了包括 gp41 陪伴分子复合物的试剂的组合物的另外的优选的治疗应用，其中利用了这样的组合物在哺乳动物中引发免疫应答。所述的复合物可以有利地用于任何 HIV 免疫原更多的 gp41 表位(例如 Root 等，出处同上)。所以，新的免疫原可以预期诱导更广泛的免疫应答。

关于诊断方法，本发明的可溶的 rsgp-陪伴分子复合物的明显的优点是例如逆病毒表面糖蛋白例如 gp41 在生理缓冲条件下稳定性提高，和/或诊断的灵敏性提高，和/或存在的构象表位的数目增加，和/或更有可能容易地标记其正确折叠的 rsgp，如 gp41。

已知的标记物是标记基团或效应基团，如固相结合基团。被标记的可溶 rsgp-陪伴分子复合物代表了本发明的进一步优选的实施方案。

标记基团可以选自任何已知的可检测标记基团，如染料，发光标记基团，如化学发光基团，例如丫啶酯或 dioxetanes，或荧光染料，例如，荧光素、香豆素、罗丹明、噁嗪、试卤灵、花青和它们的衍生物。标记基团的其他例子是发光金属复合物，如钌或铕复合物，酶，例如 ELISA 或 CEDIA 中利用的(克隆酶供体免疫测试，例如，EP-A-0 061 888)，和放射性同位素。

效应基团包括例如，生物素和结合对的一个伴侣(partner)。在进行测试时，效应物基团特异地和优选地与生物素和结合对非共价地相互作用。适当的结合对的例子是半抗原或/抗原/抗体，生物素或生物素类似物如氨基生物素，亚胺生物素或脱硫生物素/抗生物素蛋白或链霉抗生物素蛋白，糖/植物凝集素，核酸或核酸类似物/互补核酸和受体/配体，例如固醇类激素受体/固醇类激素。优选的结合对成员包括半抗原，抗原和激素。特别优选的是半抗原，如地高辛和生物素和
其类似物。

包括 rsgp 和 PPI 陪伴分子的可溶的复合物优选地用于检测 rsgp 的抗体的检测的免疫测试。优选地，利用了 gp41-和/或 gp36-陪伴分子复合物。在非常优选的实施方案中，在检测 gp41 的抗体免疫测试中利用了包括 gp41 和 PPI 陪伴分子的标记可溶复合物。最优先地，标记复合物是包括 PPI 陪伴分子和 gp41 的重组多肽中的分子间复合物。

新的可溶 rsgp-PPI 陪伴分子复合物可以用于改良与检测方式无关的抗 HIV 抗体的检测的测试中(例如，放射性同位素测试、酶免疫测试、电化学发光测试等等)或测试原理中(例如，测试条测试、三明治测试或同源测试，等等)。

对于 HIV 感染的可靠而灵敏的早期检测，必须测量体液样品中的病毒抗原以及抗病毒抗体。本发明的可溶的复合物能在生理缓冲条件下检测抗 gp41 和/或抗 gp36 抗体。抗 gp41 和/或抗 gp36 抗体的检测在这样的结合 HIV 检测系统中是有价值的。所以在优选的实施方案中，本发明涉及包括根据 gp41 和/或 gp36 陪伴分子的用途检测抗 gp41/或抗 gp36 抗体的检测的 HIV 检测系统。最优先地，基于这样的复合物的抗 gp41 和/或抗 gp36 抗体的检测是与 HIV 抗原优选地 p24 抗原一起检测的。

如本领域已知，抗感染因子如细菌、真菌或病毒的抗体优选地通过双抗原桥连概念进行的测试来进行检测(有时，测试概念也称为双抗原桥连概念，因为两个抗原是通过抗体连接的)。在这样的一个测试中，至少结合给定抗原的两个不同分子与它的两个(IgG, IgA, IgE)或 10(IgM)的互补位的抗体的能力是要求的和可利用的。
根据桥连概念检测来自体液的抗体的检测可以在不同的测试步骤中进行。简单的步骤包括直接将抗原包被到固相上，和利用标记形式的相同抗原。在适当的测试条件下，样品中的抗体形成了固相结合抗原和标记抗原之间的连接。所以，只有当在研究中的抗体是存在于样品中的，是形成桥连的，才可以检测信号。

“固相抗原”和“检测抗原”的基本结构优选地是相同的。例如，包括一个或几个表位的多肽可以直接或间接地包被到固相上，但是同样的合成多肽结合到标记和标记物上可以用作检测抗原。同样可以利用相似但不同的抗原，可以在双抗原桥连测试中免疫交叉反应。进行这样的测试的基本要求是在两个抗原上存在相关的表位或相关的几个表位。很明显，双抗原桥连测试形式中有许多变体。这样的变体包括例如，直接包被到固相的抗原。优选地，特异的结合对，最优选本地生物素-链霉抗生物素蛋白(或抗生物素蛋白)系统用于间接结合抗原到固相上。用另一句话说，在这样的系统中用于检测的抗原可以不直接携带标记(例如，放射性同位素，酶，荧光分子等等)，但可以通过例如携带半抗原(例如，地高辛)来检测。然后，间接的检测可以通过标记的抗地高辛抗体进行。

在本发明的优选的实施方案中，涉及了双抗原桥连概念的免疫测试，包括第一抗原，其中包括了第一陪伴分子抗原复合物，和第二抗原，其中包括了第二陪伴分子抗原复合物。

在其他优选的实施方案中，本发明涉及了双抗原桥连概念下的免疫测试，特征是第一抗原复合物用作捕获抗原，第二陪伴分子抗原复合物用作检测抗原。

如本发明所述的陪伴分子抗原复合物不仅带来在其他条件下难于掌握的各种多肽的可溶性，而且也允许双抗原桥连概念下的非常有利的免疫测试。

双抗原桥连概念下的这样的免疫测试的一个特别吸引人的特征是，现在可以利用不同的陪伴分子用于与固相结合抗原的复合物的形成和与检测抗原的复合物的形成。这样的一个测试的改进进一步在非特异结合的问题上提高了。如果不同的陪伴分子用于复合固相抗原和检测抗原，与陪伴分子反应并且所以引起了假阳性信号的样品中的抗
体将不会形成桥。所以，在这一发明方式中，由于非特异结合的阳性信号的类似可能性大大地降低了。所以，在优选的实施方案中，本发明涉及双抗原桥连概念下的免疫测试，特征是第一和第二陪伴分子—抗原复合物的第一陪伴分子和第二陪伴分子相互不同。

已经从广泛用于生物技术研究中的大肠杆菌中分离了已经很好表征的大多数陪伴分子。由于大肠杆菌是广泛分布的细菌种类，许多哺乳动物已经发展了抗这一细菌产生的蛋白的抗体。为了降低这样的抗体引起的假阳性反应的可能性，优选地至少利用一个从不同细菌种类优选地是嗜热细菌产生的 PPI 陪伴分子。优选地，陪伴分子是从嗜极 (extremophilic) 细菌（特别是 Thermatoga maritima, Aquifex aeolicus 和栖热菌）产生的。

一般在免疫测试中，优选地在桥连概念的免疫测试中利用陪伴分子—抗原复合物同样提供了产生这样的复合物的陪伴分子的可能性，并且不要求抗原本身的修饰。通常接受的是，第二化学成分对多肽的修饰，例如标记到该分子的偶联包括有负面影响多肽的危险。例如，在研究中的表位可以调节，或者可以通过这样的标记来导致非特异结合。根据本发明，现在已有可能在陪伴分子抗原复合物中特异地产生陪伴分子。

在优选的实施方案中，双抗原桥连概念下的免疫测试另外的特征是用作捕获抗原的第一陪伴分子抗原复合物包括了固相结合基。

在另外的优选的实施方案，进行了桥连概念下的免疫测试，其另外的特征是用作检测抗原的第二陪伴分子抗原复合物包括了标记基团。

在另一个实施方案中，包括 rsgp 和 PPI 陪伴分子的可溶复合物，如 gp41-和/gp36-陪伴分子复合物也可以用于引发受试者中如人或非人动物中的免疫应答。可以对受试者施用包含在组合物中的可溶复合物，如那些可能含有赋形剂或载体的那些。这样的组合物也可以包括佐剂，常规佐剂的例子包括但不限于，Freund 不完全佐剂，Freund 完全佐剂，Merck 65, AS-2, 铝, 磷酸铝, 矿质凝胶, 如氢氧化铝, 和表面活性物质，如溶血卵磷脂，pluronic 多元醇，聚阴离子，肽，油乳胶，酸孔虫血蓝蛋白和二硝基苯酚。其他有用的佐剂包括但不
限于，细菌荚膜多糖，葡聚糖，IL-12，GM-CSF，CD40配体，IFN-γ，IL-1，IL-2，IL-3，IL-4，IL-10，IL-13，IL-18或任何细胞因子或细菌DNA片段。

可以给予一个剂量(给药)的可溶复合物组合物。但是，第一次给药后可以给予加强剂量，如一次，两次，三次或更多。施用给受试者的剂量的数目部分地依据受试者对可溶复合物组合物的应答。在本发明的范围内，适当的剂量数目包括免疫动物要求的任何可溶复合物的量。

第二次给药(加强给药)可溶复合物组合物可以在第一次给药后7天到1年之间给予。第一次和第二次给药之间的时间可以是最初给药后14天到6个月，21天到3个月，经常在28天到2个月之间。第3次给药(第二次加强给药)可以在第一次给药后约14天到10年之间给予，例如在14天到3年，经常在约21天到1年，更经常在第一次给药后28天到6个月。随后的加强给药可以间隔2星期，或1个月，3个月或6个月到10年的间隔。

通常，对受试者施用的可溶复合物的量是足以免疫动物抗抗原的量(即“免疫有效量”或“治疗有效量”)。完成“免疫有效量”的适当的量将取决于受试者的体重，和一般的健康状况，和医生或其他质量人员的判断。

可以在动物模型中配制可溶复合物的有效剂量来完成免疫应答的诱导，这样的数据可以用于在动物数据的基础上容易地使对人的给药最佳化。剂量典型地是在约1fg到约100μg之间，经常在约1pg到约100μg之间，更经常地在约1ng到约50μg之间，通常在约100ng到约50μg之间。在一些实施方案中，剂量在每kg受试者体重约1fg到约100μg之间，经常在约1pg到约100μg，更经常在约1ng到约50μg之间，通常在约100ng到约50μg之间每kg受试者体重。

本发明的含有可溶复合物的组合物可以各种方式和各种形式给药。可溶复合物组合物可以包括载体和赋形剂，如缓冲液，碳水化合物，甘露醇，蛋白，多肽或氨基酸，如甘氨酸，抗氧化剂，抑细菌剂，螯合剂，悬浮剂，增稠剂，和或防腐剂；水，油，盐溶液，葡聚糖，和甘油溶液，其他药物可接受辅助物质如适当的生理条件所要求，如
缓冲试剂，张力调节试剂，增湿剂等等。常规的佐剂也可以掺入组合物中。

适当的载体可以用于施用本发明的组合物，载体的类型将取决于给药的方式。化合物也可以包裹在脂质体中。可生物降解微球体在一些情况中常规的是载体，例如在(Tice 等, US 专利 5,942,252, 1999)中所述。

组合物的灭菌是必要的，如常规技术完成的，如无菌过滤。得到的水溶液可以包装使用或冻干。

本发明的组合物的可溶复合物可以各种方式来给药，包括注射(例如，在皮内、皮下、肌肉内、腹膜内等等)，通过吸入，通过局部给药，通过栓剂，通过经皮的膏药，或通过口腔。

当通过注射给药时，组合物可以配制成水溶液，优选地是在生理相容缓冲液中，如 Hanks 溶液，Ring 溶液，20mM 磷酸 150mM 氯化钠缓冲液(pH7.4)，或生理盐缓冲液中。溶液可以含有配制试剂，如悬浮液，稳定剂或分散剂。或者，组合物可以是粉末形式，用于在使用之前与适当的载体的构成，例如无菌的无热原的水。吸入递送组合物可以是来自利用适当的推进剂的压力包装气雾器的气雾喷洒，推进剂如二氯二氟甲烷，三氟氯甲烷，二氧化碳或其他适当的气体。在压力气雾的情况中，剂量单位可以通过一个阀来决定递送量。

胶囊和柱体例如用于吸入器的明胶可以配制成含有蛋白的粉末混合物或适当的粉末基质如乳糖或淀粉。对于局部给药，组合物可以配制成溶液、凝胶、油膏、乳液、悬浮液，等等，如本领域已知的。在一些实施方案中，给药是通过经皮的膏药的。栓剂组合物也可以配制成含有常规栓剂基质的。

当给药是口服时，组合物可以通过将组合物与药物可接受载体结合容易地配制。固体载体包括甘露醇，乳糖，硬脂酸镁等；这样的载体能配制成片剂，丸剂，糖丸，胶囊，液体凝胶，糖浆，糖液，悬浮液等等用于口服摄入。这样的制剂可以是粉末，胶囊和片剂；适当的赋形剂包括填充剂如糖，纤维素制剂，颗粒剂和结合剂剂。

生产包括结合片段(例如，F(ab)2)和单链形式的多克隆和单克隆抗体的方法是已知的。但是，许多抗体是不能引发适当的抗体应答的。
在一个实施方案中，包括本发明的可溶复合物的组合物和抗体是对动物给药的，因此引发了动物中的免疫应答。多克隆和单克隆抗体随后通过标准的技术制备。

包括 rsgp 和 PPI 陪伴分子的可溶复合物，如 gp41-和或 gp36 陪伴分子复合物也可以用于抑制病毒进入细胞，如通过抑制膜融合。细胞可以是体外，体内或间接体内(ex vivo)。给药的组合物和方法相似于用于引发免疫应答的组合物和方法所述的那些。如果抑制病毒进入细胞是利用接种来完成的，则可以利用佐剂。对于体外和来自体内的给药，本领域的一个技术人员将部分地根据细胞培养条件和时间的限制来选择适当的方法。例如，一个这样的有用的方法将配制携带可溶复合物的脂质体。

下面的实施例，参考文献和附图是提供用于辅助理解本发明的，真正的范围在附加的权利要求中给出。可以理解，在不脱离本发明的精神范围的情况下可以在所述方法中进行各种修改。

实施例

实施例 1: 包括 gp41 和 PPI 陪伴分子的可溶的分子间复合物的生产

1.1 大肠杆菌 FkpA 的生产

根据 Bothmann, H. 和 Pluckthun, A., J Bio Chem 275(2000)17100-5,进行一些小的修改后克隆、表达、纯化 FkpA。为了存储，用 20mM NaH₂PO₄/NaOH(pH6.0), 100mM NaCl 透析蛋白溶液，浓缩到 26mg/ml(1mM)。

对于胞质表达，修改上面的表达载体的 FkpA 编码序列，使缺失编码信号肽序列部分，只包括成熟 FkpA 的编码区。

1.2 gp41(535-681)-His6 的生产

在 T7 启动子基础的表达系统中表达 gp41(535-681)-His6，并且在宿主细胞的内涵体中积累。在 6M 盐酸胍中溶解分离的内涵体。在 Ni-螯合柱上纯化 His-标记的蛋白，接着在 Sephacryl 100 上在 6M 胱中凝胶过滤。如 Wingfield, P.T. 等, Protein Sci 6(1997)1653-60 所述的快速修饰再折叠蛋白。最后的缓冲液条件是 30mM 甲酸钠，pH3.0。对两个缓冲液条件，利用近和远紫外 CD 评估折叠的状态。如图 1A
和 1B 可以看到的，运和近紫外 CD 光谱表明，gp41 只在 pH3.0 和没有离液剂的情况下采取似天然折叠。

1.3 在存在大肠杆原 FkpA 时，从 pH3.0 到生理 pH，gp41 胞外域(HIV)的 pH 改变

1.3.1 对照实验

在对照实验中，在最后缓冲条件为 20mM 磷酸钠(pH7.5)，50mM NaCl，1mM EDTA 中将可溶 e-gp41(在 30mM 甲酸，pH3.0)稀释 100 倍。最后的蛋白浓度约为 1μM。在 1 分钟和 10 分钟后记录紫外光谱。来自图 2 的紫外光谱很明显，在 pH 转变到中性时非陪伴子的胞外域自发聚集。图 2 指强调了 gp41 的特别的聚集趋势；分子的自发聚集进行到上面的线表明的时期以外。

1.3.2 在 pH3.0 用 FkpA 预温育 gp41 能转变到中性 pH

为了测试分子陪伴分子 FkpA 的溶解潜力，以摩尔比 1:2 和 1:4(在 30mM 的甲酸，在 pH 约 3.5)时混合 gp41 和 FkpA，共温育 1 分钟。然后，通过在 20mM 磷酸钠 pH(7.4)，50mM NaCl，1mM EDTA 的缓冲液条件下稀释 12 倍，将得到的复合物转变到中性 pH。在试管中的结合伴侣的最后浓度是 1μM gp41, 2μM 和 4μM FkpA。所有反应是在室温下进行的。在 1 和 10 分钟后，记录紫外光谱，测试 gp41 样品的聚集。从图 3A 和 3B 可知，有迹象 FkpA 基本降低了依赖剂量的方式下 gp41 的聚集。利用来自 Thermatoga maritima 的引发因子和利用来自大肠杆原的 C 末端截短的 SlyD 已经得到比较数据。

实施例 2 共价连接的 gp41-FkpA 的重组生产

2.1 包括 FkpA 和 gp41 的表达质粒的构建

在第一步，利用 Stratagene(La Jolla, CA; USA)的 QuikChange 定点诱变试剂盒删除实施例 1.1 质粒中的成熟大肠杆原 FkpA 的编码区中的限制位点 BamHI。引物如下:

5’-gcttggtgttccggtatcccaccgaattc-3’(SEQ ID NO:3)
5’-gattcgggtggatacaccggaacccg-3’(SEQ ID NO:4)

构建体命名为 EcFkpA(ΔBamHI)[GGGS]3。

在第二步中，通过 PCR，从实施例 1.2 扩增编码来自 HIV-1 包被蛋白的氨基酸 535 - 681 的基因片段，其中利用了如下的引物:
5'-cgggatccggtgcggctagctggctagctgtaagcctgacggtacggtcagcgtgctagcgtgactagcgtgcggttagcgtgctgacggtaacagcccag-3' (SEQ ID NO:5)
5'-cgggtcctaggctacacgcttgtgctgtgtgtgctgtgtaagcctgacggtacggtcagcgtgctagcgtgactagcgtgctgacggtaacagcccag-3' (SEQ ID NO:6)

利用 BamHI 和 XhoI 限制位点，在 EcFkpA(AΔBamHI)[GGGS]3 中插入片段。

用逆引物插入 FkpA 和 e-gp41 之间的甘氨酸-丝氨酸接头的密码子，用于克隆 FkpA，用正向引物克隆 e-gp41。

将得到的构建体测序，发现编码需要的蛋白。

2.2 融合蛋白的纯化

将含有表达质粒的大肠杆菌 BL21 细胞生长到 OD_{600} 0.7，胞质过度表达是通过在生长温度 37℃时加入 1mM IPTG 诱导的。离心收获细胞(在 5000g 20 分钟)。在 50mM 磷酸钠 pH7.8、6.0M GuHCl(盐酸胍)，5M 咪唑中再悬浮细菌沉淀，在室温下搅拌(10 分钟)，完全溶解。在重复离心后(Sorvall SS534，2000rpm，4℃)，过滤(0.8/0.2μm) 上清液，应用到 Ni-NTA 柱(NTA：硝基三乙酸 Qiagen; Germantown, MD)，在溶菌缓冲液中预平衡。加 10 柱体积的溶解缓冲液，在洗涤步骤中除去非特异的结合蛋白。最后，用 50mM 磷酸钠，pH2.5, 6.0M GuHCl 洗脱结合的靶蛋白，以 4ml 一部分回收。在 280nm 记录吸光值。

可以在 4℃存储得到的酸和离液溶液，用于进一步纯化，或进行体外的再折叠实验。

从这一非折叠的物质开始，可以利用不同的再折叠方法，如透析，快速稀释，复性大小排除层析或基质辅助再折叠。成功地进行，所有步骤都能产生最终的相同的似天然折叠和可溶蛋白。

2.3 透析和快速稀释的复性

将如上所述溶解的物质通过透析转移到生理缓冲条件下。选择的透析试管的切出值是 4000~6000 道尔顿。

为了诱导胞外域(共价连接的 gp41 的 gp41 部分和 FkpA 蛋白区域)，通过对 50mM 磷酸钠，pH2.5, 50mM NaCl(氯化钠)透析从洗脱的蛋白中除去 GuHCl。已知分离的胞外域是全螺旋并且在这一极端 pH 形成四级接触，当分析通过近紫外 CD 重组分析产生的 FkpA 时，FkpA
在相同的条件下基本是未构成。令人惊异的是，通过透析再折叠gp41-FkpA 产生了包括共价连接的 gp41 和 FkpA 蛋白区域的容易溶解的蛋白复合物。紫外光谱(图 4)没有散射光，即在 300nm 有明显的吸收。散射光表明发生了聚集，所以图 4 显示的光谱表明，再折叠物质含有明显量的聚集体。

圆二色光谱(CD)是评估蛋白中的二级和三级结构的选择。在芳香区域(260-320nm)的椭圆率报道了在蛋白中有三级接触(即，调节折叠的蛋白的球体结构)，而在酰胺区的椭圆率反映了在蛋白骨架中有调节重复元素，即二级结构。

在图 5 中显示了近紫外 CD 光谱提供了有说服力的证据，胞外域(在融合蛋白的情况中)在 pH2.5 具有似天然的四级接触。共价连接的 gp41/FkpA 蛋白区的光谱差不多与相同条件下的分离的胞外域的光谱相同(数据未显示)。Gp4 1 的典型的信号发现：椭圆率的最大值是 290nm，特征肩在 285nm，另一个最大值是 260nm，反映了最适合的活性二硫桥连。重要的是，注意到 FkpA 在完全的独立的条件下对近紫外信号没有作用。事实上，FkpA，在 pH2.5 时的芳香椭圆率最终等于基线(数据未显示)。

与来自近紫外区的结果一致，在 pH2.5 的融合构建体的远紫外 CD 指向了大部分结构化的 gp41 分子。在 220nm 和 208nm 的两个最大值构成了，并对应于全螺旋胞外域(图 6)的典型信号。从指示的条件(50mM 磷酸钠，pH2.5，50mM NaCl)，通过快速稀释，FkpA-gp41 融合多肽可以容易地转移到生理缓冲条件。结论是，近和远紫外 CD 都强调了似天然结构的 gp41 以非常方便的形式是可得的(在融合蛋白的内容中也含有 FkpA)。有趣的是，我们发现 SlyD(1-165)-gp41 的似天然融合多肽可以更简单地通过对 50mM 磷酸钠，pH7.4，150mM NaCl，室温下透析离液物质来得到。特别好地完成本发明的两个陪伴分子 - gp41 融合构建体的核苷酸序列描述在 SEQ ID NO: 7 和 SEQ ID NO: 8。

2.4 通过大小排除层析(SEC)复性

用 20mM 磷酸钠，pH7.4，50mM NaCl，1mM EDTA 平衡 Superdex 200 凝胶过滤柱，将未折叠的 gp41-FkpA 多肽(溶解在 50mM 磷酸钠
中，pH7.8, 7.0M GuHCl)加到其上。在三个主要的级分基本洗脱了FkpA-gp41，高分子结合，表现六聚体种类和表现三聚体种类。浓缩表观三聚体级分，在近紫外CD测量中评估它的三级结构(图 7)。

得到的图是载体蛋白 FkpA 和靶蛋白 gp41 的比例为 1: 1 的交迭的曲线。最幸运的是，gp41 在中性 pH 具有四级结构，并且明显地被共价结合的载体分子所溶解。换句话说，载体分子 FkpA 似乎是接受了作为底物的天然结构细胞外域，并且在中性工作 pH 下溶解了难于折叠的蛋白。所以，生产大量的可溶 gp41 抗原用于诊断目的的的关键的要求是满足了。

在 pH7.4(图 8)FkpA-gp41 的远紫外 CD 证明了近紫外 CD 导致了。它显示 FkpA 和 gp41 的信号作用的增加。如期望的，光谱中主要的是高螺旋 gp41 胞外域(最大的椭圆率分别为 220nm 和 208nm)。

在上面提到的条件下，在 pH7.4 溶解的共价连接的 gp41/FkpA 蛋白区域得到的数据表明，FkpA 和 gp41 在多肽构建体中是作为独立折叠的单位起作用的。

实施例 3：不同的去污剂对在免疫测试中用作抗原的重组 gp41 和重组 FkpA-gp41 复合物的效果

3.1 竞争型免疫测试

COBAS CORE HIV Combi 测试(Roche Diagnostics GmbH, Germany)提供了测试重组 gp41 的免疫反应性的常规方法。原则上来说，这一测试也根据双抗原桥接概念工作，检测抗 HIV 的 gp41 的抗体。因相抗原被直接包被。但是，检测抗原是含有 SDS 溶解的 gp41 物质的过氧化物酶标记的 gp41。

在检测 HIV 的免疫测试中，非常需要的是在含有相当高浓度的去污剂的温育缓冲液中容易溶解和稳定的试剂。这样的去污剂例如，Triton X-100®或 Nonidet P-40®, 在 0.1 到 0.2%的浓度下用于裂解病毒颗粒。

如实施例 1 所述产生的 SDS 溶解的 gp41 以及 FkpA-gp41 已经测试作为 COBAS CORE HIV Combi 测试中的竞争抗原。为了这样做，没有利用商业温育缓冲液，而是利用在无人血清的缓冲基质中含 有 0.1% Triton X 100®的温育缓冲液。待测试的抗原是与已知与 gp41
反应的人血清共温育的。

以依赖剂量的方式，gp41-FkpA 抗原强烈地淬灭了竞争类型测试中的信号，而 SDS 溶解的 gp41 基本上是无反应性的(图 9)。在 0.1μg/ml 的 FkpA-gp41 抗原浓度得到了 50% 的抑制，对应于 2.2nM 的摩尔浓度。

明显，在含有 0.1% Triton X-100 作为去污剂(辅助去污剂)的稀释缓冲液预处理后，FkpA-gp41 保留了它的良好的免疫反应性，并且在测试中分解了完整的病毒膜。这与单独存在 gp41 胞外分(在 SDS 中的 gp41)明显相反，因为它在存在辅助去污剂下几乎完全失去了免疫反应性(图 9)。

在共价连接的 gp41-FkpA 构建体的开发中主要的问题是由于结合动力不够，FkpA 将覆盖关键的表位，或者实验固有(test-inherent)的去污剂 Triton X-100 通过诱导 gp41 抗原的聚集而破坏实验的表现。对 COBAS CORE 平台上许多竞争性实验的实验结果提供了在共价连接的蛋白区域中很容易得到关键的 gp41 表位的强制性证据。另外，在分子内的结合分子-gp41 复合物内的 gp41 的免疫反应性在存在辅助去污剂如 Triton X-100 时保留了。

3.2 电化学发光实验

双抗原桥连形式下的免疫测试在感染因子的血清学诊断中有巨大的优点。由于本发明的 FkpA-gp41 在生理缓冲条件下是可溶的，因此可以研究是否该物质适用于利用电化学发光进行检测的双抗原桥连实验中。

试图偶联 SDS 溶解的 gp41 与钌标记还没有成功。但是，由于 FkpA-gp41 在生理缓冲条件下是容易溶解的，这一物质与疏水的钌标记结合被证明是简单的(straightforward)。值得注意的是，甚至以所述方式修饰的靶陪伴分子复合物仍然是可溶的。为了进行对 Elecsys® 实验系统(Roche Diagnostics GmbH, Germany)的实验，分别将 FkpA-gp41 生物素化和钌化，并且测试双抗原桥连实验中的免疫反应性。

测试了主要含有 IgG(免疫球蛋白 G)类抗体的几个代表性的抗 HIV 血清与共价连接的 FkpA-gp41 蛋白区域的高度阳性。同时也已经发现，背景信号甚至在高达 500ng/ml 的抗原浓度时也能达到内在
的 gadget 背景。信噪比变得特别好。另外，没有证据表明，载体蛋白，来自大肠杆菌的分子陪伴分子 FkpA 导致这些人血清中含有的抗体的非特异结合。

如上所述，血清转变的早期的检测对于可靠的 HIV 诊断是关键。在感染过程中，IgM 类抗体首先出现。为了尽早地可靠地检测 HIV 感染，可以因此设计用于 IgM 识别和结合的高表位密度的抗原单元。确立，通过典型的抗 HIV，IgM 型血清可以很好地识别 FkpA-gp41。甚至更重要的是，难以测试阳性的样品，如来自 NABI(Miami, Florida) 供应的 9003 和 4009 血清转变组的 B 和 C 血清，用本发明的融合构建体测试是阳性的。这是重要的的收获，因为在肽基础上的 gp41 抗原用这些 IgM 血清测试时是完全不反应的。

实施例 4 可溶的陪伴分子-gp41 复合物抑制病毒的进入

评估不同的 gp41-陪伴分子融合蛋白抑制体外实验中 HIV-1 介导的膜融合的能力。简要地说，用 HIV-1 毒株 NL4-3 感染表达 CD4, CCR5 和 CXCR4 的 MAGI P4 - CCR5 报告因子细胞系，根据 Meister 等，Virology(2001)284(2)287-296 评估依赖 Tat 的β-半乳糖苷酶活性。确实，我们观察到了在 nM 范围内 IC_{50} 值的基本的感染的抑制。例如(参见 SEQ ID NO: 6)SlyD-gp41 明显抑制了病毒的进入，IC_{50}<70nM。

总之，分别包括 HIV-1 gp41 或 HIV-2 gp36 的可溶分子内复合物和肽基脯氨酰基异构酶陪伴分子在可溶性和构象完整性上具有突出的特性，使得可以设计改进的抗 HIV 抗体实验和其他商业应用。

实施例 5 陪伴分子 FkpA 与 gp36 胞外域的融合产生了可以容易地在体外再折叠的胞质多肽

为了得到可溶的和免疫活性形式的 gp36（gp41 的 HIV-2 同源物），我们克隆了命名为 FF36 的构建体。这一融合多肽包括了两个 FkpA 单位和一个 gp36 单位，每个都通过灵活的富甘氨酸片段伸展。为了便于纯化，融合构建体是用 His_6 C 末端标记的。蛋白基本上是根据前面提到的方案纯化的：在离液裂解后，蛋白结合到了 Ni-NTA 柱上，并且在用 50mM 磷酸钠，pH7.8, 7.0M GuHCl-过量洗涤后，通过降低 pH 洗脱。然后，将它通过用 50mM 磷酸钠，pH7.8, 100mM
氯化钠，1mM EDTA 平衡的凝胶过滤柱进行再折叠。从这一“复性凝胶过滤”方法得到的天然蛋白具有对应于 gp41 部分如 F41 或 FF41 的免疫学和光谱特性（参见图 10）。如本文所述的纯化和再折叠方案是用在 gp36 的 N 末端 heptad 重复区含有三个点突变的 FF36 来进行的（对于序列参见 SEQ ID NO: 9）。相同的方案也成功地用于含有 wt gp36 胞外域的融合构建体，尽管可溶蛋白的产量较低。

实施例 6 可以以方便的和可再生生产的方式得到可溶的、免疫反应性的 FkpA-gp21

生长可以过量产生 FkpA-gp21 大肠杆菌细胞（包括，SEQ ID NO: 10），和如前所述诱导收集。为了完全裂解，在 50mM 磷酸钠，pH7.8，7.0M GuHCl，在室温下搅拌细胞沉淀 1 小时。在裂解缓冲液中预平衡的 Ni-NTA 柱上应用离液细胞裂解物。在洗涤步骤后，通过降低 pH 洗脱靶蛋白（含有 C 末端 Hexa-His-Tag）。为了再折叠，在 50mM 磷酸钠 pH7.8，100mM 氯化钠中预平衡的 Superdex 200 凝胶过滤柱上通过 FkpA-gp21（存储于 50mM 磷酸钠，pH6.0，7.0M GuHCl，4°C）。紫外光谱证明，FkpA-gp21 作为可溶蛋白洗脱，与无伴侣的 gp21 相反，不趋向于聚集（图 11/1）。另外，当在竞争型 COBAS CORE 实验中评估时，FkpA-gp21 具有良好的免疫学活性（图 11/2）。

实施例 7：其他 FkpA 亚单位与 FkpA-gp41 的融合提高了 gp41 胞外域的免疫学特性

我们针对的问题是，在融合多肽的有关方面内其他 PPIase 亚单位是否可以提高 gp41 胞外域 - 陪伴分子复合物的整体特性。为此，我们根据上述方案制备了 F41（定位在 gp41 变体上游的一个 FkpA 区）和 FF41（定位在 gp41 变体上游的两个 FkpA 区域）。然后，在 Elecsys® E2010 系统中评估生物素化和钉化的融合蛋白。结果强烈表明了含有其他陪伴分子区域的 FF41 构建体的特性加强。

当 FF41（约 1600 计数）与 F41（约 3800 计数）比较时，发现决定信噪比和低效价血清的可靠测量的阴性血清背景信号降低了 50% 以上。
表 1: F41 和 FF41 的比较

<table>
<thead>
<tr>
<th></th>
<th>F41</th>
<th>FF41</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1:</td>
<td>EMHR220</td>
<td>EMHR221</td>
</tr>
<tr>
<td>ESS in R1</td>
<td>F-41-Bi(UE)25</td>
<td>FF-41-Bi-UEEK</td>
</tr>
<tr>
<td>β(AL)</td>
<td>500ng/ml</td>
<td>750ng/ml</td>
</tr>
<tr>
<td>R2</td>
<td>EMHR221</td>
<td>EMHR222</td>
</tr>
<tr>
<td>ESS in R2</td>
<td>F-41-RU(UE)25</td>
<td>FF41-2Ru-SK(4)</td>
</tr>
<tr>
<td>β(AL)</td>
<td>500ng/ml</td>
<td>750ng/ml</td>
</tr>
<tr>
<td>7 个阴性血清的平均计数</td>
<td>3,768</td>
<td>1,589</td>
</tr>
</tbody>
</table>

用 SS41 融合蛋白，即含有陪伴分子区域 C 末端的两个 SlyD 区域和一个 gp41 区域已经得到相似的阳性结果。
参考文献

Braden, B.C. and Poijak, R. J., Faseb J 9 (1995) 9-16

Chan, D.C. et al., Cell 89 (1997) 263-73

Crooke, E. and Wickner, W., Proc Natl Acad Sci USA 84 (1987) 5216-20

Fischer, G. et al., Nature 337 (1989) 476-8

Lane, W. S. et al., I Protein Chem 10 (1991) 151-60

Schnidt, F. X., Molecular chaperones in the life cycle of proteins in "-
Scholz, C. et al., Embo J 16 (1997) 54-8
Stoller, G. et al., Embo 114 (1995) 4939-48
Caplan and S. P., Academic Press
Tijssen, P., Preparation of enzyme-antibody or other enzyme-
molecule conjugates in “Practice and theory of enzyme
interaction assays” (1990) 221-278, Eds. R. H. Burdon and V.P. H.
Kriippenberg, Elsevier, Amsterdam
AU 597884
EP 0280211
EP396559
US 4,735,896
US 4,879,212
WO 92/22573
WO 93/21346
WO 94/08012
<110> Roche Diagnostics GmbH
F. Hoffmann-La Roche AG

<120> 包括逆病毒表面糖蛋白的可溶复合物

<130> 19290WO-WN

<140>
<141>

<150> EP01115225.3
<151> 2001-06-22

<150> EP01120939.2
<151> 2001-08-31

<160> 10

<170> PatentIn Ver. 2.1

<210> 1
<211> 147
<212> PRT
<213> 人工序列

<220>
<223> 人工序列的描述：相应于 HIV-1 包被蛋白的第 535-681 位

<400> 1
Met Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln
 1 5 10 15
Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu
 20 25 30
Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Ile Leu Ala
 35 40 45
Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys
 50 55 60
Ser Gly Lys Leu Ile Cys Thr Thr Ala Val Pro Trp Asn Ala Ser Trp

51
序列

65 70 75 80
Ser Asn Lys Ser Leu Glu Gln Ile Trp Asn Asn Met Thr Trp Met Glu
 85 90 95

Trp Asp Arg Glu Ile Asn Asn Tyr Thr Ser Leu Ile His Ser Leu Ile
 100 105 110

Glu Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Gln Glu Leu Leu Glu
 115 120 125

Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Asn Ile Thr Asn Trp
 130 135 140

Leu Trp Tyr
 145

＜210＞2
＜211＞143
＜212＞PRT
＜213＞人工序列

＜220＞
＜223＞人工序列的描述：相应于 HIV-1 包被蛋白的第 534-676 位

＜400＞2
Leu Thr Val Ser Ala Gln Ser Arg Thr Leu Ala Gly Ile Val Gln
 1 5 10 15

Gln Gln Gln Gln Leu Asp Val Val Lys Arg Gln Gln Glu Leu Leu
 20 25 30

Arg Leu Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg Val Thr Ala
 35 40 45

Ile Glu Lys Tyr Leu Gln Asp Gln Ala Arg Asn Ser Trp Gly Cys
 50 55 60

Ala Phe Arg Gln Val Cys His Thr Thr Val Pro Trp Val Asn Asp Ser
 65 70 75 80

Leu Ala Pro Asp Trp Asp Asn Met Thr Trp Glu Trp Glu Lys Gln
 85 90 95

52
Val Arg Tyr Leu Glu Ala Asn Ile Ser Lys Ser Leu Glu Gln Ala Gln
100 105 110

Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu Asn Ser Trp
115 120 125

Asp Ile Phe Gly Asn Trp Phe Asp Leu Thr Ser Trp Val Lys Tyr
130 135 140

＜210＞3
＜211＞29
＜212＞DNA
＜213＞人工序列

＜220＞
＜223＞人工序列的描述：引物1

＜400＞3
gcggtgttccggtatatccacgaattc 29

＜210＞4
＜211＞29
＜212＞DNA
＜213＞人工序列

＜220＞
＜223＞人工序列的描述：引物2

＜400＞4
gaatcgggtggatacccggaacaccgcag 29

＜210＞5
＜211＞61
＜212＞DNA
＜213＞人工序列

＜220＞
＜223＞人工序列的描述：引物3

＜400＞5
eggratcgg tggccttca ggcggtggtc ctggtgccc tgaagtgaa cctgaagc 60

gatcagtct 30

<210> 6
<211> DNA
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述: 引物 4

<400> 6
ccgtcggag taccacagcc aatattatat 30

<210> 7
<211> DNA
<212> DNA
<213> 人工序列

<220>
<223> 人工序列的描述: 编码 FkpA-gp41 混合蛋白

<400> 7
atggtgaag ctcgaaaaac tgctacact cgtgacagca aagcagcgtt caaaatgac 60
gatcagaaat cagcttatgc acctgttgct ctgctgtggtc gtacatggga aaacctcttt 120
aaagaaaaag aaaaactggg cataaactctg gataaagatc agctgtagcg cgggttgcag 180
gatcagtct ccgtaagag caaactctcc gacccagaga tctgaacagc tctgcaagca 240
tctggagctc gcgtgaagtc tcttgctgag gccaagagc aaaaaggag cacccatcgtcg 300
gagcagaaa gtaagagtag aacgagaaaa ttagttagcag cgggtgaaag aagcgacagc 420
gatcgggtgc tgggttatca ggaagtaag gcgggttaag gccaagaccc gaaaaagac 480
tccacccgtt tattggcact cagagttcag cgcaagcagc gaaagacgtt ccaacntct 480
tccacccgtt tattggcact cagagttcag cgcaagcagc gaaagacgtt ccaacntct 480
gggtctgaga acaactcaga aagggtttaag atcacaactgg ttattccacc aagaactggct 600
taagcctcag eggtgtgccg sgggtatcctc caggggcctca cccgtggttt tcggtagagc 660
tccagttggag tgaaacacca gggcagagtt gcggagagac ggggtcaggtg tgggtagac 720
gcttagttcg cttaaaaaag tggcgttcctg ggcgggtggtg cttggtgccc aggctcggg 780
gggtgatcgg cgctgtggtg tggccttgg tggcctggag cggccagca aacttggtctt 840
gggtggtagt gcctgggtaa cagcaagcagc caaggggttc ggtgtaggc ctaaagctatc 900
cgttgggtag gcggggtagtt ggtgtaggtc gtttggtctc ctttaaaggtg cctggtatct 960
cctggtataa cagcaagcagc caaggggttc ggtgtaggc ctaaagctatc 1020
cctggtataa cagcaagcagc caaggggttc ggtgtaggc ctaaagctatc 1080
ccggggtagt caggggtagc agagattaac aattaccaaa ggaattaata tctgcttaatt 1140
gaagaactgc aaaaaccgca agaagaagat gaagaagat tatgggaatt agataaatg 1200
gaagtgggtg ggaattgggt taacataaca aattggcttg ggtacactga gcaccacccaa 1260
caccaccac 1269

(210) 8
(211) 1026
(212) DNA
(213) 人工序列

(220)
(223) 人工序列的描述：编码 SlyD-gp41 融合蛋白

(400) 8
atgaaagtag caaaagacct ggtggtcaac ctggcctacct aggtacgtac agaagaaggt 60
gtgggtgtg atgatctcct cgggtgatgac cggctggaact acctgtagtg ttcaggttcc 120
cgatcctcg ggtgataaaac cggcgactga ggtgcaagaa tggccgacaa aatggatgtc 180
ggtggtgag cgacagcactc tcagggctcg tacagcaaaa acctgtggtca aacgtgttcc 240
aaagaagttg ttatgcggct tgtgtaacctg cagtaggtta tgcgtttccc ggctgaaacc 300
gcaccaccgct cggtacaggtcg tgacacactg cgggtgaaag agatacaagct cgtggttggt 360
ggtgcaaca acgtggcggg ttgcaacagct aatctcaagcg tggaaattgt ggcggagttc 420
gagacagagt cagaaagaca agatcattgt gcgtctacg ggcgcacgga tcacacccca 480
gtacaagcgg cgcagcggcg gtgggtcctg gccgtggattgc cggtggtgctg 540
tcggtggtgg gcgtggtcctg cgggtgacag cggagtacagg cccagcaatttt aatgtgctgt 600
atagctgcag gacagcaaaac gtagctggag ggctttgagg cgcaacagca cttggagcaaa 660
cctacacgtc ggggcaaaaa gcaagctccag gcaagagaacgt tgtggtgga aagataacca 720
aagagctcag agctctgagg gatttgagg tggctggca aaccttatttg ccaacactgt 780
ggctcttggc atgtctgtg tagtaataaag tgtctttggac aatggatggg aacagtgccc 840
tgtgtggat ggcggagcag aatctcaactg tcaacacccgt caaatctcct tgtaggttaga 900
ggtgcggaaa cccggcagaa aaagaagataa ccgagaatttt tgtgatttaga taatggga 960
agattttggg attttgtttgataa cattaaata tgtgctgtggt acctgagaca ccacaccaca 1020
cacccac 1026

(210) 9
(211) 688
(212) PRT
(213) 人工序列

(220)
(223) 人工序列的描述：FkpAFkpAgp36
（3mut）融合蛋白

(400) 9

55
<table>
<thead>
<tr>
<th>Met Ala Glu Ala Ala Lys Pro Ala Thr Thr Ala Asp Ser Lys Ala Ala</th>
<th>1 5 10 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe Lys Asn Asp Asp Glu Lys Ser Ala Tyr Ala Leu Gly Ala Ser Leu</td>
<td>20 25 30</td>
</tr>
<tr>
<td>Gly Arg Tyr Met Glu Asn Ser Leu Lys Glu Glu Glu Lys Leu Gly Ile</td>
<td>35 40 45</td>
</tr>
<tr>
<td>Lys Leu Asp Lys Asp Glu Leu Ile Ala Gly Val Gln Asp Ala Phe Ala</td>
<td>50 55 60</td>
</tr>
<tr>
<td>Asp Lys Ser Lys Leu Ser Asp Gln Glu Ile Glu Gln Thr Leu Gln Ala</td>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Phe Glu Ala Arg Val Lys Ser Ser Ala Gln Ala Lys Met Glu Lys Asp</td>
<td>85 90 95</td>
</tr>
<tr>
<td>Ala Ala Asp Asn Glu Ala Lys Gly Lys Glu Tyr Arg Glu Lys Phe Ala</td>
<td>100 105 110</td>
</tr>
<tr>
<td>Lys Glu Lys Gly Val Lys Thr Ser Ser Thr Gly Leu Val Tyr Gln Val</td>
<td>115 120 125</td>
</tr>
<tr>
<td>Val Glu Ala Gly Lys Gly Glu Ala Pro Lys Asp Ser Asp Thr Val Val</td>
<td>130 135 140</td>
</tr>
<tr>
<td>Val Asn Tyr Lys Gly Thr Leu Ile Asp Gly Lys Glu Phe Asp Asn Ser</td>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Tyr Thr Arg Gly Glu Pro Leu Ser Phe Arg Leu Asp Gly Val Ile Pro</td>
<td>165 170 175</td>
</tr>
<tr>
<td>Gly Trp Thr Glu Gly Leu Lys Asn Ile Lys Lys Gly Gly Lys Ile Lys</td>
<td>180 185 190</td>
</tr>
<tr>
<td>Leu Val Ile Pro Pro Glu Leu Ala Tyr Gly Ala Gly Val Pro Gly</td>
<td>195 200 205</td>
</tr>
<tr>
<td>Ile Pro Pro Asn Ser Thr Leu Val Phe Asp Val Glu Leu Leu Asp Val</td>
<td>210 215 220</td>
</tr>
<tr>
<td>Lys Pro Ala Pro Lys Ala Asp Ala Lys Pro Glu Ala Asp Ala Lys Ala</td>
<td>225 230 235 240</td>
</tr>
</tbody>
</table>
Ala Asp Ser Ala Lys Lys Gly Gly Gly Gly Ser Gly Gly Ser Gly
245 250 255
Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly Ala Glu Ala
260 265 270
 Ala Lys Pro Ala Thr Thr Ala Asp Ser Lys Ala Ala Phe Lys Asn Asp
275 280 285
Asp Gln Lys Ser Ala Tyr Ala Leu Gly Ala Ser Leu Gly Arg Tyr Met
290 295 300
Glu Asn Ser Leu Lys Glu Gln Glu Lys Leu Gly Ile Lys Leu Asp Lys
305 310 315 320
Asp Gln Leu Ile Ala Gly Val Gln Asp Ala Phe Ala Asp Lys Ser Lys
325 330 335
Leu Ser Asp Gln Glu Ile Glu Gln Thr Leu Gln Ala Phe Glu Ala Arg
340 345 350
Val Lys Ser Ser Ala Gln Ala Lys Met Glu Lys Asp Ala Ala Asp Asn
355 360 365
Glu Ala Lys Gly Lys Glu Tyr Arg Glu Lys Phe Ala Lys Glu Lys Gly
370 375 380
Val Lys Thr Ser Ser Thr Gly Leu Val Tyr Gln Val Val Glu Ala Gly
385 390 395 400
Lys Gly Glu Ala Pro Lys Asp Ser Asp Thr Val Val Val Asn Tyr Lys
405 410 415
Gly Thr Leu Ile Asp Gly Lys Glu Phe Asp Asn Ser Tyr Thr Arg Gly
420 425 430
Glu Pro Leu Ser Phe Arg Leu Asp Gly Val Ile Pro Gly Trp Thr Glu
435 440 445
Gly Leu Lys Asn Ile Lys Lys Gly Gly Lys Ile Lys Leu Val Ile Pro
450 455 460
Pro Glu Leu Ala Tyr Gly Lys Ala Gly Val Pro Gly Ile Pro Pro Asn
Ser Thr Leu Val Phe Asp Val Glu Leu Leu Asp Val Lys Pro Ala Pro
 485 490 495
Lys Ala Asp Ala Lys Pro Glu Ala Asp Ala Asp Ser Ala
 500 505 510
 515 520 525
Gly Ser Gly Gly Ser Gly Gly Gly Leu Thr Val Ser Ala Gln Ser
 530 535 540
Arg Thr Leu Leu Ala Gly Ile Val Glu Gln Gln Gln Gln Glu Leu Asp
 545 550 555 560
Val Val Lys Arg Gln Gln Glu Leu Glu Arg Leu Thr Val Trp Gly Thr
 565 570 575
Lys Asn Leu Gln Ala Arg Glu Thr Ala Ile Glu Tyr Leu Gln Asp
 580 585 590
Gln Ala Arg Leu Asn Ser Trp Gly Cys Ala Phe Arg Gln Val Cys His
 595 600 605
Thr Thr Val Pro Trp Val Asn Asp Ser Leu Ala Pro Asp Trp Asp Asn
 610 615 620
Met Thr Trp Glu Trp Glu Lys Glu Val Arg Tyr Leu Glu Ala Asn
 625 630 635 640
Ile Ser Lys Ser Leu Glu Glu Ala GLn Gln Ile Gln Gln Glu Lys Asn Met
 645 650 655
Tyr Glu Leu Gln Lys Leu Asn Ser Trp Asp Ile Phe Gly Asn Trp Phe
 660 665 670
Asp Leu Thr Ser Trp Val Lys Tyr Leu Glu His His His His His
 675 680 685
<210> 10
<211> 385
<212> PRT
<213> 人工序列

<220>
<223> 人工序列的描述：FkpA-gp21融合蛋白

<400> 10
Met Ala Glu Ala Ala Lys Pro Ala Thr Thr Ala Asp Ser Lys Ala Ala
1 5 10 15
Phe Lys Asn Asp Asp Gln Lys Ser Ala Tyr Ala Leu Gly Ala Ser Leu
20 25 30
Gly Arg Tyr Met Glu Asn Ser Leu Lys Glu Gln Glu Lys Leu Gly Ile
35 40 45
Lys Leu Asp Lys Asp Gln Leu Ile Ala Gly Val Gln Asp Ala Phe Ala
50 55 60
Asp Lys Ser Lys Leu Ser Asp Gln Glu Ile Glu Gln Thr Leu Gln Ala
65 70 75 80
Phe Glu Ala Arg Val Lys Ser Ser Ala Gln Ala Lys Met Glu Lys Asp
85 90 95
Ala Ala Asp Asn Glu Ala Lys Gly Lys Glu Tyr Arg Glu Lys Phe Ala
100 105 110
Lys Glu Lys Gly Val Lys Thr Ser Ser Thr Gly Leu Val Tyr Gln Val
115 120 125
Val Glu Ala Gly Lys Gly Glu Ala Pro Lys Asp Ser Asp Thr Val Val
130 135 140
Val Asn Tyr Lys Gly Thr Leu Ile Asp Gly Lys Glu Phe Asp Asn Ser
145 150 155 160
Tyr Thr Arg Gly Glu Pro Leu Ser Phe Arg Leu Asp Gly Val Ile Pro
165 170 175
Gly Trp Thr Glu Gly Leu Lys Asn Ile Lys Lys Gly Gly Lys Ile Lys
<table>
<thead>
<tr>
<th></th>
<th>180</th>
<th>185</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Ile</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Tyr</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Lys</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>Val</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>195</td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Il</td>
<td>e Pro</td>
<td>Pro Asn</td>
<td>Ser Thr</td>
</tr>
<tr>
<td></td>
<td>Leu Val Phe Asp</td>
<td>Val Glu Leu Leu Asp Val</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Pro Ala Pro Lys Ala Asp Ala Lys Pro Glu Ala Asp Ala Lys Ala</td>
<td>225</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser Gly</td>
<td>Lys Ser Leu Leu His Glu Val Asp Asp Ile Ser Gln Leu</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr Gln</td>
<td>Ala Ile Val Lys Asn His Lys Asn Leu Lys Ile Ala Gln</td>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr Ala</td>
<td>Ala Gln</td>
<td>Asn Arg Arg Gly Leu Asp Leu Leu Phe Trp Glu Gln</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Gly</td>
<td>Leu Cys</td>
<td>Lys Ala Leu Gln Glu Gln Cys Cys Phe Leu Asn Ile</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr Asn</td>
<td>Ser His Val Ser Ile Leu Gln Glu Arg Pro Pro Leu Glu Asn</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg Val</td>
<td>Leu Thr Gly Trp Gly Leu Asn Trp Asp Leu Gly Leu Ser Gln</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp Ala Arg Glu Ala Leu Gln Thr Gly Leu Glu His His His His</td>
<td>370</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
图 9
图 10