20107025453 A1 |1 00 O A 010 O 0

S
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization i 1IN NI A0 ALY A0 00 OO0 OO0 00
International Bureau S,/ 0
3\ i 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)

4 March 2010 (04.03.2010) PCT WO 2010/025453 Al
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 11/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
A L. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: HN. HR. HU. ID. IL. IN. IS. JP. KE. KG. KM. KN, KP
PCT/US2009/055524 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
31 August 2009 (31.08.2009) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
.) SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,

(25) Filing Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/092,848 29 August 2008 (29.08.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, 8Z, TZ, UG, ZM,
12/550,025 28 August 2009 (28.08.2009) US %‘1\’/‘[’3 EEuLan;;i ((Q%A»B%Zég‘{C»HK%{ ng N][)% gg, ETEJ
(71) Applicant (for all designated States except US): AVG ES, %I, FR, GB, Gf{, Hi{, Hb, Ié, IS,, IT: LT: LU: LV:
TECHNOLOGIES CZ, S.R.O. [CZ/CZ]; Lidicka 31, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
602 00 Brno (CZ). TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(72) Tnventor; and ML, MR, NE, SN, TD, TG).

(75) Inventor/Applicant (for US only): HICKS, Ryan Declarations under Rule 4.17:
[US/CZ]; Smetanova 10, 602 00 Brno (CZ).

— as to the identity of the inventor (Rule 4.17(1))
(74) Agent: SINGER, James M.; Pepper Hamilton LLP, One Published:
Mellon Center, 50th Floor, 500 Grant Street, Pittsburgh, ’
Pennsylvania 15219 (US). — with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: SYSTEM AND METHOD FOR DETECTION OF MALWARE

Binary file structures
210

Werm defining operations

215
. Expert System
Domain Expert Trojan Horse defining Knoﬁvledgz} Base
2058 operations 200
220
Virus defining

operations

225 ::

FIG. 2

(57) Abstract: A method of automatically identifying malware may include receiving, by an expert system knowledge base, an as-
sembly language sequence from a binary file, identifying an instruction sequence from the received assembly language sequence,
and classifying, by the expert system knowledge base, the instruction sequence as threatening, non-threatening or non-classifiable
by applying one or more rules of the expert system knowledge base to the instruction sequence. If the instruction sequence is clas-
sified as threatening, information may be transmitted to a code analysis component and a user may be notified that the binary file
includes malware. The information may include one or more of the following: the instruction sequence, a label comprising an in-
dication that the instruction sequence is threatening, and a request that one or more other assembly language sequences from the
binary file be searched for at least a portion of the instruction sequence.

WO 2010/025453 PCT/US2009/055524

Al TITLE - SYSTEM AND METHOD FOR DETECTION OF MALWARE

B. CROSS REFERENCE TO RELATED APPLICATIONS
{0001} This application claims the benefit of the filing date of L1.S. Patent
Application No. 12/550,025 filed August 28, 2009, which claims priority to US. Provisional

Patent Application No. 61/092 848 filed August 29, 2008,

C. - E. Not Applicable

F. BACKGROUND

10002} A binary file 1s often transferred between many computing devices. A
compuating device that receives a bmary file is usually not aware of the onigin of the file or
whether the code that it receives is safe. To ensure the security of a computing device, a
binary file can be disassembled to determine if the file contains mabware such as viruses,
worms, Trojan Horses andfor the bike.

{0003} Typically, a disassembler translates a binary file from: machine language into
assembly language. Some disassemblers are interactive and allow an expert progranumer to
mgke annotations, corrections, clarifications or decisions regarding how the disassembler
analyzes a file. For example, a disassembler may signal when a new function or particular
section of code appears. When an identified action occurs, a particular section of the code
may be labeled for future reference. However, analysis of unknown executables can be a
time consuming process that is usually performed manually by specially trained personnel, or

antomatically by the use of statistical wethods.

WO 2010/025453 PCT/US2009/055524

G. SUMMARY

{0804} Before the present methods arve described, 1t is to be understood that this
mvention is not mited to the particular systems, methodologies or protocols described, as
these may vary. It is also to be understood that the terminology used herein is for the purpose
of describing particular embodiments only, and is not intended to limit the scope of the
present disclosure which will be himited only by the appended claims.

0005} It must be noted that as used heretn and tn the appended claims, the singular

T oa

forms “a,” “an,” and “the™ include plaral reference unless the context clearly dictates
otherwise. Unless defined otherwise, all technical and scientific terms used herein have the
same meanings as conunonly understood by one of ordinary skill in the art. As used herein,
the term “comprising” means “including, but not limited 0.7

[0806] In an emabodiment, a method of awtomatically dentitvimg malware may
include receiving, by an expert system knowledge base, an assembly language sequence from
a binary file, identifying an instruction sequence from the received assembly language
sequence, and classifving, by the expert systemn knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more tules of the expert
system knowledge base to the mstruction sequence. i the mstruction sequence is classified
as threatening, tnformation may be transmitted to a code analysis compounent and a user may
be notified that the binary file includes malware. The intformation may include one or more
of the following: the instruction sequence, a label comprising an indication that the
instruction sequence is threatening, and a request that one or more other assembly langnage
sequences from the binary file be searched for at least a portion of the instryction sequence.

{0607} In an embodiment, a method of awtomatically identifving malware may
mnclode receiving, by an expert system knowledge base, an assembly language sequence from

a binary file, identifving an instruction sequence from the received assembly language

%]

WO 2010/025453 PCT/US2009/055524

sequence, and classifving, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more rules of the expernt
systenm knowledge base to the mstruction sequence. I the instruction sequence is classified
as non-threatening, information may be transnitted to a code analysis component and a
second instruction sequence may be requested. The information may elude one or more of
the following: the mstruction sequence and a label comprising an indication that the
mstroction sequence is non-threatening,

{0068} In an embodiment, a method of avtomatically identifyimg malware may

mclnde

receiving, by an expert system knowledge base, an assembly language sequence from a
binary file, identilving an instruction sequence from the recetved assembly langoage
sequence, and classifving, by the expert systemn knowledge base, the instruction sequence as
threatening, non-threatening or non-classifiable by applying one or more rules of the expert
systent to the instruction sequence. 1f the instraction sequence is classified as non-
classifiable, the method may include transmitting a request to a code analysis coraponent that
the assembly language sequence be reanalyzed, receiving a new instruction sequence
corresponding to the reanalvzed assembly language sequence, and classifving the new
tnstruction sequence as threatening, non-threatening or non-classifigble,

[0009] In an embodiment, a method of automatically identifving malware may
inchude analvzing, by a code analysis component, a binary fite to generate an assembly
fanguage sequence and a corresponding instruction sequence, transmitting the instruction
sequence 1o an expert system knowledge base and receiving, from the expert system
knowledge base, classification information associated with the mstruction sequence, 1 the
classification information identifies the mstruction sequence as threatening, the method may

mclude dentifying one or more other assembly language sequences from the bmary file that

WO 2010/025453 PCT/US2009/055524

comprise at least a portion of the instruction sequence, and transmitiing at least one of the
tdentified assembly lanpuage sequences to the expert system knowledge base. [fthe
classification information identifies the instruction sequence as non-threateming, the method
may include fransmitting a second instruction sequence to the expert system knowledge base.
I the classification mformation wdentifies the mstruction sequence as non-~classifiable, the
method may include reanalvaing the assembly language sequence to produce a new instruction
sequence, and transmitting the new justruction sequence to the expert systema knowledge base.
{0018} In an embodiment, a system for automatically dentityving malware may
mctude
a code analysis component configured to identify an assembly language sequence including
one or more instruction seqoences from a biary file, and an expert system knowledge base in
communication with the code analysis component. The expert system knowledge base may
be configured to classify the instruction sequence as threatening, non-threatening or non-

classifiable using one or more rules.

H. BRIEF DESCRIPTION OF THE DRAWINGS

[0811} Aspects, features, benefits and advantages of the embodiments described
herein will be apparent with regard to the following description, appended claims, and
accompanying drawings where:

{0012} FIG. 1 illustrates an exemplary malware detection system according to an
embodiment.

j0013] FIG. 2 illustrates an exemplary expert svstem knowledge base according to an
embodiment,

{0014} FIG. 3 iHustrates a flowchart of an exermplary method for detecting and

analvzing malware according to an embodunent.

WO 2010/025453 PCT/US2009/055524

[0015] FIG. 4 illustrates a block diagram of an exemplary system that may be used to
contain or hmplement program instroctions according to an embodiment.
{0016} FIGS. S and 6 illustrate exemplary instruction sequences according to an

embodiment.

L DETAILED DESCRIPTION

{0017} Before the present methods and svstens are described, it is to be understood
that this mvention is not limited to the particular systems, methodologies or protocols
described, as these may vary. It is also to be understood that the terminology used herein is
for the purpose of describing particular embodiments only, and is not intended to limit the
scope of the present disclosure which will be limited only by the appended clatms.

[0818] As used herein and m the appended claims, the singular forms s, “an,” and
“the” include the plural reference unless the context clearly dictates otherwise. Unless
defined otherwise, all technical and scientific terms used herein have the same meanings as
commonly understood by one of ordinary skill in the art. As used herein, the term
“comprising” means “including, but not limited t0.”

{0819} For the purpose of the description below, a “node” refers to a sequence of
tnstructions within an assembly language sequence that is executed by a processor.

{0020} An “assembly language” refers to a computer programming langeage that
implements a symbolic representation of numeric machine codes.

100211 An “assembly language sequence” refers to a sequence of nodes written in
assembly fanguage.

[0022] A “binary file” refers 10 a computer file that includes data encoded in bivary

format. An executable file s a type of binavy file.

WO 2010/025453 PCT/US2009/055524

[0023} “Malware™ 1s malicious software designed to disrupt, infiltrate or damage a
computer systenm. Examples of malware include viruses, worms, trojan horses, adware,
spyware, root kits andfor the like.

[0024] An “expert system’” is artificial intetligence software and/or firmware that is
designed to sunulate the decision making process of a hwman in a specific problem doman.

j0025] FIG. | illustrates a malware detection system according to an embodiment. A
malware detection system may include a code analysis component 180, an expert system
knowledge base 200 and/or a connector fogic component 150, In an embodiment. the code
analysis component 100, expert svstem knowledge base 200 and/or connector logic
component 1586 may be tmplemented using software, hardware or a combination of software
and hardware. In an embodiment, the code analysis component 108, expert system
knowledge base 200 and/or connector logic component 158 may restde on the same
computing device. Alternatively, the code analysis component 108, expert system knowledge
base 200 and/or connector logic component 158 may reside on different computing devices in
communication with one another.

{0026} In an embodument, a code analysts component 188 may analyze binary files
such as, but not lunited to, executables. In an embodiment, a code analysis component 160
ngy statically or dynamically analyze binary files. Static analysis may inchude analvzing a
binary file that is not corrently betng executed. In comparison, dynamic analysis may mclude
analvzing a binary file while the binary file 15 being executed.

{0027} In an embodiment, a code analysis component may be implemented nsing
software, hardware or a combination of software and hardware. In an embodiment a code
analysis component 100 may include a disasserbler, a debugger, a decompiler and/or the
fike. For example, the code analysis component 108 may be a disassembler, such as IDA

Pro.

G-

WO 2010/025453 PCT/US2009/055524

0028} A code analysis component may analyze a binary file to create an assembly
fanguage sequence. In an embodiment, the assembly language sequence may include a
huntan-readable representation of the binary file. The code analysis component 100 may
mclude mmtemal rules andfor operations which may be used to create an assembly {anguage
sequence from the binary file. The code analysis component 1} may analyze the assembly
language sequence to determine an mstruction segquence.

{00291 In an embodiment, a code analysis component 1080 may interact with external
devices to analvze a binary file. For example. as discussed below, the code analysis
component 100 may communicate with an expert system knowledge base 200,

{0030} As illustrated by FIG. 1, the malware detection system may include an expert
system knowledge base 200, In an embodiment, an expert system knowledge base 200 may
mchude a representation of a human’s expertise m a particular area. For example, an expert
system knowledge base 200 may include information, data, rules and/or the like to maodel the
knowledge and practices of an expertenced conmputer analyst,

[0031] In an emboditaent, the expert system knowledge base 200 mayv be
implemented using the € Language Integrated Production System ("CLIPS™). CLIPSisa
programming language and software tool that may be used to create expert systems.

0032} FIG. 2 llustrates an expert system knowledge base according to an

embodiment. The expert svstem knowledge base 200 may include mternal rules andfor

operations. In an embodiment, these mternal rules andfor operations may be apphied 1o an
instruction sequence from an assembly language sequence to determing whether the assembly
language sequence contging malware. In an embodiment, the internal rules and/or operations
may represeut the encoding of human expertise.

{00331 In an embodiment, a domam expert 208 may populate the expert svstem

knowledge base 200, A domain expert may be, but is not lmited to, a human being who has

WO 2010/025453 PCT/US2009/055524

expertise in analyzing malware. In an embodiment, a domain expert 205 may be a computing
device configured to provide the expert system knowledge base 200 with internal rules andfor
operations that may represent the encoding of human expertise. For example, a computing
device may automatically provide the expert system knowledge base 200 with updates,
enhancements or the like for one or more mteral rules andfor operations.

10034} In an embodiment, the expert systemn knowledge base 200 may be populated
with binary file structures 210, A binary file structure may be a teruplate that depicts one or
more portions of a binary file and/or a seguence of the portions in a binary file. The Binavy
file structures 210 mav be used to analyze whether a file structure is proper. For example, a
binary file structure 210 may be analyzed to determine if the header on the file conforms to a
protocol.

{0035} In an embodiment, the expert system knowledge base 200 may be populated
with worm defining operations 215, Worm defining operations 218 may identify instruction
sequences which replicate an assembly language sequence.

0036} In an embodiment, the expert system knowledge base 200 may be populated
with Trojan Horse defining operations 220. Trojan Horse defining operations 220 may
wdentify mstruction sequences in an assembly language sequence that are associated with one
or more Trojan Horses.

{00371 In an embodiment, the expert system knowledge base 200 may be populated

with virus defining operations 228, Virus defining operations 228 may dentifly self-
replicating instruction seguences in an asserably language sequence. Additional and/or
alternative operations may be included in the expert system knowledge base 200

{0038} Referring back to FIG. 1, the malware detection system may inclode a

connector logic component 150, A connector logic component 130 may enable

WO 2010/025453 PCT/US2009/055524

communication between the code analysis component 100 and the expert system knowledge
base 200,

100391 In an embodiment, the assembly language sequence sent from the code
analysis component 1060 may be in a format which cannot be directly processed by the expert
system knowledge base 200, The code analysis component 180 may communicate the
assembly language seguence 1o the connector logic component 150, The connector logic
component 156 may convert the instruction sequence into a format that the expert system
knowledge base 200 can process. The connector logic component 150 may send the newly
converted instruction sequence to the expert system knowledge base 200.

j0040] Similarly, the connector logic component may obtain information from the
expert system knowledge base 200. The connector logic component may convert the
mformation from the expert svstem knowledge base 200 mto a format that 1s readable by the
code analysis component 100 and transmit the converted mformation to the code analysis
componett,

{0041} FIG. 3 depicts a Howchart of a method for detecting and analyzing malware
accordmg to an embodiment. A binary file may be recetved by the code analysis component.
The code analysis component may analyze the file to obtain an assembly language sequence
and an instruction sequence, The code analysis component may send the assembly language
sequence with the instraction sequence to the expert system knowledge base via the
connector ogic component.

{00421 The expert system knowledge base may receive 300 the assembly language
sequence. In an embodiment, the expert system knowledge base may identify 305 the
mstruction sequence from the assembly language sequence.

{00431 The expert system knowledge base may apply mternal operations and/or rules

to classify 315 the instruction sequence. In an embodiment, the classification may be used to

9.

WO 2010/025453 PCT/US2009/055524

determine if the mstruction sequence contains malware. For example, in an embodiment, the
expert systenm knowledge base may classity the instruction sequence as non-threatening 3185,
threatening 339 or non-classifiable 345, Additional andifor alternate classifications may be
used within the scope of this disclosure.

{0044} In an embodiment, the expert system knowledge base may traverse through
the nodes and branches of a received instruction seguence using one or more iternal rules
andfor operations. In an embodument, the expert svstem knowledge base apply a group of
precedential rules to the received instruction sequence. Each rule in the set of precedential
rules may have a ranking with respect to the other precedential rules in the set. Inan
embodiment, the rules may be ranked based on the number of matches between each rule and
the istraction sequence. For example, the instruyction sequences that are most sumilar to the
match criteria of a rule may cause that rule to be given a highest priority for a given traversal.
Alternatively, the instruction sequences that are least sinnlar to the match criteria of a rule
may cause that rule to be given a lowest priority for a given traversal.

j0045] CLIPS provides contlict resolution strategies such as a complexity strategy
and a simplicity strategy which give precedence to the most and least specific matches,
respectively. In an embodiment, such strategies may be emploved to rank the rules as to
those which most specifically match the instruction sequence.

{0046] In an embodiment, the expert system knowledge base may apply the rude
associated with the highest precedence to the instruction sequence. In an embodiment, one or
more additional precedential rules from the group may be applied, in the order of their
precedence, to the instruction sequence until the instruction segoence is classified or until all
precedential rules have been apphied.

{00471 1 when applying a rule or rules, the expert systern knowledye base traverses

the mstruction sequence from start to finish, then the instruction sequence may be classified

~10-

WO 2010/025453 PCT/US2009/055524

as non-threatening 315, For example, FIG. 5 illustrates an exemplary instruction sequence
according to an embodiment, If the expert syvstem knowledge base is able to raverse the
entire instruction sequence 300 from start (Instruction 1 505) to finish (Instruction 8 310),
then the instruction sequence 308 may be classified as non-threatening.

{0048} In an embodiment, the expert system knowledge base may transmit 320
mformation signifying that the instruction sequence 1s non-threatening to the code analysis
component. In an embodiment, the information may include a label attached to the
mstruction sequence indicating that the mstraction sequence is non-threatening.

{0049} In an embodiment, in response to classifying an instruction sequence as non-
threatening, the expert system knowledge base may request 325 a new assembly sequence
with a new mstruction sequence to analyze from the code analysis component,

{0058} In an embodiment, the expert system knowledge base may classity an
instruction sequence as threatening 330 if the expert system knowledge base 1s unable to
traverse each instruction of the instruction sequence. For example, the expert system
knowledge base may analvze the instruction sequence by traversing the instructions of the
instruction sequence to determine if there is malware. For examiple, a loop may be an
mdicator of malware. If during the traversal, the expert system knowledge base arrives at an
tnstruction that it already analyvzed, the expert system knowledge base may determine that the
mstruction sequence forms a loop. In an embodiment, the expert system knowledge base
may classify an instruction sequence having one or more loops as threatening. FIG. 6
iHustrates an exemplary instruction sequence according to an embodiment. As iflustrated by
FIG. 6, the instruction sequence 680 may be classified as threatening because it includes a
toop from Instroction 6 603 to Instruction 4 610,

{0051} In an embodiment, other activities that mav be indicative of mahware or other

nefarious behaviors may melude encryption/decryption routines, replicating code, key

-1i-

WO 2010/025453 PCT/US2009/055524

logging, independent inttiation of network communication, communication with known
hostile or suspicious network hosts anddor the hke, As such, an mstruction sequence that
micludes one or more of these activities mayv be classified as threatening. Additional and/or
alternate activities may be indicative of malware within the scope of this disclosure.

{00521 In an embodiment, the expert system knowledge base may transmit 338
mformation signifying that the instruction sequence 1s threatening to the code analysis
component. The information may be sent to the code analysis component via the counector
fogic component, which may translate the mformation into a form readable by the code
analysis component. In an embodiment, the mformation may include a label attached to the
instruction sequence indicating that the instruction sequence is threatening,

{0053} In an embodiment, the information may include a request that the code
analysis component search other assembly language sequences for at least a portion of an
instruction sequence that was previously analyzed 340. For example, the code analysis
component may search other assernbly language sequences for the loop discussed in the
previous example. In an embodiment, the code analysis conponent may use s internal
operations and/or rules to translate andfor analyze the information to determine whether at
least a portion of an instruction sequence is present inside the assembly Janguage sequences.
If the code analvsis component finds the same tnstruction sequence or portion thergof, the
code analysis component may send the relevant assembly language sequence and instruction
sequence to the expert system knowledge base.

100341 In an embodiment, the expert system knowledge base may determine 348
whether an instruction sequence is non-¢classifiable. An instruction sequence may be
wdentified as being non~classifiable if the expert system knowledge base ts unable to
determine whether the mstruction sequence 13 threatenung. For example, a programmer who

created a binary file may have intentionally used methods to obfuscate the workings of the

WO 2010/025453 PCT/US2009/055524

file prevent the code analysis component from issuing the correct instruction sequence. As
such, the code analysis component may serd an incomplete or nonsensical instruction
sequence to the expert system knowledge base via the connector logic component,

[0G55] The expert system knowledee base may analyze each node of the mstruction
sequence using is internal rules and/or operations. Based on its analysis, the expert system
knowledge base may transmit 350 a reguest to the code analysis component to reinterpret a
particular node or series of nodes. For example, the expert system knowledge base may
request that the code analysis component genevate a new instruction sequence for a particalar
node.

j0036] In an embodiment, the request may include alternate considerations for the
code analysis component in analyzing the assembly sequence. For example, i some
mstances, the code analysis component may not be able o properly analyze an assembly
sequence. As such, it may be necessary for the expert system knowledge base to provide
mformation to the code analysis component that will allow the analysis to continue. For
example, the expert system knowledge base may detect that an incorrect mstruction sequence
should be altered or ignored to allow the analysis to continue. In an embodiment, this
mformation may be included in a request to the code analysis component.

j0057] In an embodiment, the code analysis component may use its internal rules
and/or operations reanalyze the assembly langoage sequence and instruction sequence. The
expert system knowledge base may receive 3458 the reanalyzed assembly fanguage sequence
and new instruction sequence from the code analysis component via the connector logic
component, The expert system knowledge base may traverse the new instruction sequence to
determine its classification,

{0058] FIG. 4 depicts a block diagram of an exemplary system that may be psed to

contain or implement program instractions according to an embodiment. Referring to FIG. 4,

WO 2010/025453 PCT/US2009/055524

a bus 400 serves ag the main information highway mterconnecting the other ilustrated
components of the hardware, CPU 405 is the central processing unit of the system,
perfornung calculations and logic operations required to execute a program. Read only
memory (ROM) 4160 and random access memory (RAM) 4135 constitute exemplary memory
devices or storage media.

100591 A disk controller 420 interfaces with one or more optional disk drives to the
system bus 400. These disk drives may include, for example, external or imternal DVD drives
425 CH ROM drives 430 or hard drives 435, As indicated previously, these various disk
drives and disk controllers are optional devices.

{0868} Program instructions may be stored in the ROM 418 and/or the RAM 415,
Optionally, program mstructions may be stored on a computer readable storage medium, such
as a bard drive, a compact disk, a digital disk, a memory or any other tangible recording
medium.

j0061] An optional display interface 440 may permit information from the bus 400 to
be displayved on the display 445 m audio, graphic or alphanumenic format. Communication
with external devices may occur using various communication ports 450.

{0862} In addition to the standard computer-type components, the hardware may also
tnclude an interface 453 which allows for receipt of data from input devices such as g
kevboard 460 or other input device 4658 such as a mouse, remote control, touch pad or screen,
pointer and/or joystick.

{00631 1t will be appreciated that various of the above-disclosed and other features
and functions, or alternatives thereof, may be desirably combined into many other differens
systems or applications. Also that various presently unforeseen or unanticipated alternatives,
modifications, variations or improvements therein may be subsequently made by those skilled

m the art which are also intended to be encompassed by the following embodiments.

~14-

WO 2010/025453 PCT/US2009/055524

1 CLAIMS
What Is Clatmed Is:
i A method of automatically identitying malware, the method comprising:
receiving, by an expert system knowledge base, an assembly language sequence from
a binary file;
wentifying an instraction sequence from the received assernbly language sequence;
classifyving, by the expert svstem knowledge base, the instruction sequence as
threatening, non-~threatening or non-classifiable by applyving one or more rules of the expert
system knowledge base to the instruction sequence;
if the instruction sequence is classified as threatening, transmitting information 10 a
code analysis component, wherein the information comprises one or more of the following:
the mstroction sequence,
a label comprising an indication that the instruction sequence is threatening,
and
a request that one or more other assembly language sequences from the binary
file be searched for at least a portion of the instruction sequence; and

notifying a user that the binary file mcludes malware.

i

The method of claim 1, wherem applying one or more rules comprises applyving one

or more rules written in C Language Integrated Production System language.

3. The method of ¢laim 1, wherein classifying the instruction sequence comprises one or
more of the following:
applying one or more rules to the mstruction sequence to determine whether a binary

file structure of the binary file i3 proper;

WO 2010/025453 PCT/US2009/055524

applying one or more worm defining operations to determine whether the instruction
Sequence COmPIIses one of more instructions that rephicate the assembly language sequence;

applying one or more Trojan Horse dehining operations to determine whether the
mstruction sequence comprises one or more instructions assoctated with one or more Trojan
Horses; ang

applying one or more virus defining operations to determuine whether the mstruction

sequence comprises one or more self-replicating instructions,

4. The method of claim 1, wherein applving one or more rules comprises:
applving a set of precedential rules to the instruction sequence, wherein the set of
precedential rules comprises a plurality of precedential rules, wherein each precedential rule

is associated with a precedence with respect to the other precedential roles i the set.

5. The method of claim 4, whereim applving a set of precedential rules comprises
applving the precedential rules to the mstruction sequence, w order of precedence, until the

mstruction sequence is classified or each precedential rule has been applied.

6. The method of claim 4, wherein applying a set of precedential rules comprises
ranking the precedential rules by giving precedence to rules having a higher number of

matches to the mstroction sequence.

7. The method of ¢laim 1, wherein classifying the instruction sequence comprises

classifying the instruction sequence as threalening il the msiraction sequence 1s unable fo be

traversed from start to fimsh

~16-

WO 2010/025453 PCT/US2009/055524

8. The method of claim 1, wherein classifying the instructions sequence comprises, for
gach node i the nstruction sequence:

traversing the node;

determmimng whether the node has previously been traversed; and

if so, classifying the mstruction sequence as threatening.

9, The method of claim 1, wherein classifving the mstruction sequence comprises
classifying the mstruction sequence as threatening if it includes one or more of the following:
encryption routines;
decryption routines; and

one or more mstructions for replicating at least a portion of the instruction sequence.,

0. A method of automatically identifying malware, the method comprising:
receiving, by an expert system knowledge base, an assembly language sequence from
a biary file;
wdentifying an instruction sequence from the received assenmibly language sequence;
classifying, by the expert system knowledge base, the instruction sequence as
threatening, non-threatening or non-¢lassifiable by applying one or more rules of the expert
system knowledge base to the instraction sequence;
if the instruction sequence is classifled as non-threatening, transmutiing information to
a code analysis component, wherein the information comprises one or more of the following:
the instruction sequence, and
a label comprisimg an indication that the nstruction sequence 1s non-
threatening; and

requesting a second instruction sequence.

WO 2010/025453 PCT/US2009/055524

11, The method of claim 10, wherein classifving the mstruction sequence comprises
classifving the wstruction sequence as non-threatemng if the expert system traverses the

mstruction sequence in its entirety.

12, A method of automatically identitying malware, the method comprising:
receiving, by an expert system knowledge base, an assemably language sequence from
a binary file;
identifving an instruction sequence from the received assembly language sequence;
classifving, by the expert system knowledge base, the mstruction sequence as
threatening, non~-threatening or non-~classifiable by applving one or more rules of the expert
systen 1o the mstruction sequence; and
if the instruction sequence is classified as non-classifiable:
transmitting a request to a code analysis compounent that the assembly
language sequence be reanalyzed,
recelving a new mstruction sequence corresponding to the reanalyzed
assembly language sequence, and
classifving the new mstruction sequence as threatening, non-threatening or

non-classifiable.

13, A method of automatically identifving malware, the method comprising:
analvzing, by a code analysis component, @ binary file to generate an assembly
language sequence and a corresponding instruciion sequence;

transmitting the mstruction sequence to an expert system knowledge base;

~18-

WO 2010/025453 PCT/US2009/055524

receiving, from the expert system knowledge base, classification information
associated with the instruction sequence;
it the classification information dentifies the instruction sequence as threatening:
wdentifving one or more other assembly language sequences from the bwary
file that comprise at least a portion of the instruction sequence, and
transnutting at least one of the identified assembly language sequences to the
expert syster knowledge base;
if the classification information dentifies the nstruction sequence as non-threatening,
transmitting a second instruction sequence to the expert system knowledge base; and
if the classification information identifies the instruction sequence as non-classifiable:
reanalyzing the assembly fanguage sequence to produce a new nstruction
sequence, and
transmitting the new instruction sequence to the expert system knowledge

base.

4. The method of claim 13, wherein analyzing a binary file comprises one or more of

statically analvzing the binary file and dynamically analyzing the binary file.

1S, A system for antomatically identifying malware, the system comprising:

a code analysis component configured to identify an assembly language sequence
from a binary file, wherein the assembly language sequence comprises one or more
mstryction sequences; and

an expert system knowledge base in communication with the code analysis

component, wherem the expert system knowledge base ts configured to classify the

~19-

WO 2010/025453 PCT/US2009/055524

mstruction sequence as threatening, non-threatening or non-classifiable using one or more

rules,

16, The system of clamm 13, further comprising a connector logic component in
communication with the code analysis component and the expert system knowledge base,
wherein the connector logic component is configured to enable commuuncation between the

cade analysis component and the expert system knowledge base.

17 The system of claim 16, wherein the connector logic component is configured to
perform one or more of the following:

convert the mstraction sequence o a formal that the expert system knowledge base
Canl Process, and

convert information recerved from the expert system knowledge base mto a format

that the code analysis component can process.,

I8, The system of claim 14, wherein the expert system knowledge base is populated with
one or mare of the followmg:

C Language Integrated Production System rules;

binary file stractures;

worm deflining operations;

Trojan Horse defining operations; and

virus defining operations.

19 The system of claim 14, wherein the expert system knowledge base 15 configured to

classify the instruction sequence by one or more of the following:

-20-

WO 2010/025453 PCT/US2009/055524

applying one or more rules to the instruction sequence to determine whether a binary
file structure of the binary file is proper;

applying one or more worm defining operations to determine whether the wstruction
sequence comprises one or more instructions that replicate the assembly language sequence;

applying one or more Trojan Horse defining operations to determune whether the
HIStUCHion Sequence COMPEises oNe of more instructions associated with one or more Trojan
Horses; and

applymg one or more virus defining operations to determune whether the nstruction

sequence comprises one or more self-replicating instructions.

206, The system of claim 14, wherein the expert system knowledge base 1s configured to
apply a set of precedential rules to the mstruction sequence, wheremn the set of precedential
rufes comprises a plurality of precedential rules, wherein each precedential rule is associated

with a precedence with respect to the other precedential rules in the set.

21, The system of claim 20, wherein the expert system knowledge base is further
configured to apply the precedential rules to the mstruction sequence, in order of precedence,

until the instruction sequence is classified or each precedential rule has been applied.

22, The system of claim 20, wherein the expert system knowledge base is further
configured to rank the precedential rules by giving precedence to rules having a higher

nymber of matches to the instruction sequence.

WO 2010/025453

1/6
| Code Analysis
A Component
A 100
,-*"/ |
f,f
\\
\\ Comectar Logic
\}}' Component .
rd 150
am
f’ﬁf
{
gf
E
5
N\
N,
A - V
| xpert System
4 Knowledge Base [
| 200

FIG. 1

PCT/US2009/055524

e
-~
i

T,

PCT/US2009/055524

WO 2010/025453

2/6

DOZ
aseg obpepanuyy
LWEISAG Madxy

¢ 9Old

- el

suonesado
Buiuysp snaa

i OEZ
sucgeiado
Busunsep esuo uefai

{517
suogriadn Buuysp wioss

—mwm

SEIMONLIS o Aleuwg

51824
MUSUXT W]

WO 2010/025453

ey

Rennree & Hret assemhly
IangUgE SRQURNCE
NG

lade nt:"‘. & frsd imstruciinn sequencs
Baen the firsl agsembiy language
FeunRy
RE

L

Classify the frstingtrection

PCT/US2009/055524

BRGNS
G

Detormine whathar the first
ingtrucion sequence s nons
thepatening

L

3 “Imm“ﬂe‘ whathay “\e c";‘«
strutiion senuenne ig
ihrotaning
334

Trangmat information signifeing
fhat the ﬁmt nstinchion seguenoR
ranireginnng

s \i"
IREAN

y

Faquast ¢ socond o ;«* aenbly
{BNGUALE sequR

e
R¥L

v

Reguest & seoond assembly
language sequenne
340

FIG. 3

A e s s oot

Detening whather the firgt
smirusi 0?‘ a%{;i‘?&“}ﬁ@ 1S -
aaifiakis
:\43
¥
“:’ransm 1 3 edguest Ry 8 spcond
mstrachon x.\.que;.m
RGH

SN

Ragehn o 32000 RSestion sequen
Froun g e an&vﬂd Fnsembly MnguagR
SEpIaTe

WO 2010/025453 PCT/US2009/055524

478
4680 ~§ 468
Keyboard Mouse
{*'"'4‘35
Display
1405 455
CPU interface 440
Display |
nterface
i i] {.‘/\F"V#GG
420~ 410 =, 4155 1. 450~
Digk , 11 Communication
Confroller | RGM RAM | Ports
430~
” 3 435
CD ROM ard
[rive
425
DVD

FIG. 4

WO 2010/025453

PCT/US2009/055524

instruchon
sequence
500

 instruction 1
905

Instruction 2

instruction 3

instruction 4

L

Instruction &

l

Instruction 7

instruction 8
510

]

instruction &

FIG. 5

WO 2010/025453

PCT/US2009/055524

instruction
sequence
800

 instruction 1

Instruction 2

L

nstruction 4
810

l

nstruction 8
805

instruction 3

]

instruction 5

FIG. 6

INTERNATIONAL SEARCH REPORT International app]ication No.
PCT/US 09/55524

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 11/00 (2009.01)
USPC - 726/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F - 11/00 (2009.01)
USPC - 726/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 726/22-25; 713/188; 709/223, 225 (text search)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWest (PGPB, USPT, EPAB, JPAB), Google,

Search terms used: automat, detect, identif, malware, virus, worm, trojan, horse, assembl, language, binary, file, classif, threat, non,
unclassif, ¢, automatically, rules, malware

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008/0005796 A1 (GODWOOD et al.) 03 January 2008 (03.01.2008) entire document, 1,3-17, 19-22

- especially Abstract; para [0025], [0027] {0029], [0036]-{0043] et

Y) 2,18

Y US 2008/0201779 A1 (TAHAN et al.) 21 August 2008 (21.08.2008) entire document, especially | 2, 18

Abstract; para [0036] ’

A US 2005/0086526 A1 (AGUIRRE) 21 April 2005 (21.04.2005) entire document 1-22

A US 2006/0075504 A1 (LIU) 06 April 2006 (06.04.2006) entire document - 1-22
D Further documents are listed in the continuation of Box C. D

* Special categories of cited documents: “T" later document published after the intemational filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international “X” document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone

g"egatlor::s'aozhég ;};C‘I?E:g;a“o" date of ancther citation or other “Y” document of particular relevance; the claimed invention cannot be

pe - . L considered to involve an inventive step when the document is
“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination

means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than

the priority date claimed &” document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
07 October 2009 (07.10.2009) 2 2 0 C T 2009
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
. PCT Helpdesk: 571-272-4300
Facsimile No. 571.273-3201 PCT OSP: §71-272-7774

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report

