WO 2006/012007 A1 |0 |00 00 0 000 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 February 2006 (02.02.2006)

// S
0 00000 00 A O AR

(10) International Publication Number

WO 2006/012007 A1l

(51) International Patent Classification : GOGF 9/445,
12/02, 9/46
(21) International Application Number:
PCT/US2005/021113
(22) International Filing Date: 15 June 2005 (15.06.2005)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
10/882,483 30 June 2004 (30.06.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MATHENY, David,
L. [US/US]; 1613 Sienna Drive, Cedar Park, TX 78613
(Us).

(74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 12400 Wilshire Boulevard, 7th
Floor, Los Angeles, CA 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title:
EXTENDED MEMORY

REAL MODE I PROTECTED MODE
621 —\
623
ROM Initialization |
601 ' Memory gets accessed
" using real mode
I segment format
Allocate extended I
1 memory for data I
storage
603 9 General Protection
' Fault is issued by
1 processor
631
Create and initalize | 627
I requl:ed.tc‘—‘;‘l:;'ll‘l.-gl‘ and Use an empty No Are fast
605 ot ' descriptor from the 3 bits of segment
LDT and fil it out address 0 and non-null
I with segment info segment?
: 633 l 629
Create a new
Switch processor to -—I— risg;?wsitigli:}; descriptor in the
protected mode ‘oreated LDT GDT that points to
613 descriptor the comrect
I extended memory
| Enter task through ISR I
611 841 Return from GPF handler so
| program will access memory
and execute memory instruction
| again
Exit to previously
running task
651 '
I Restore processor
] 1o real-mode and
T put back original
i GDTADT
645 ;

A SYSTEM AND METHOD FOR SIMULATING REAL-MODE MEMORY ACCESS WITH ACCESS TO

(57) Abstract: In some embodiments, the invention involves
a system and method relating to switching to protected mode
to access extended memory while executing instruction code
that is designed for real mode memory access. In at least one
embodiment, the present invention is intended to enable com-
plex option-ROM code to be executed during pre-boot with-
out corrupting system memory used by the BIOS or other op-
tion-ROMs. Other embodiments are described and claimed.

WO 2006/012007 A1 1M1 A0VOH0 T 000 00 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2006/012007 PCT/US2005/021113

A SYSTEM AND METHOD FOR SIMULATING REAL-MODE
MEMORY ACCESS WITH ACCESS TO EXTENDED MEMORY

FIELD OF INVENTION

[0001] An embodiment of the present invention relates generally to computing
systems and, more specifically, to accessing extended memory during protected mode

execution while simulating real mode memory accesses.

BACKGROUND INFORMATION

[0002] Even though computers have been shipping with several megabytes of
random access memory (RAM) for years now, the total memory available for pre-boot
add-in devices is still limited to a mere 1MB of memory when operating in real mode.
This 1MB limit becomes a burden during pre-boot because there is no standard method
for allocating memory from the 640K base memory area. In many cases, the memory
allocated by one program will be overwritten by another program because the program
either is not aware of the memory allocation method being used or the program has a
bug. Noﬂﬁng prevents one program from overwriting the data of another program in
memory because there is no protection scheme during pre-boot. Every program has
access to all of the available memory in real mode. Some of the programs competing
for the memory are device-specific option-ROMs, the basic input/output system
(BIOS), and the operating system (OS) boot loader. There are ways to get past the
1MB boundary in order to use extended memory, but this typically requires significant

changes to a program that was previously written to run in real mode.

WO 2006/012007 PCT/US2005/021113

[0003] When a computer system starts up, the BIOS takes control and the processor
executes in real mode. Real mode is typically a 16-bit mode for the processor, but 20-
bit addresses can be accessed because of segment addresses. 16-bit mode implies
being able to access 16-bit addresses. Segment addressing gives access to 1MB of
memory as opposed to only 64K of memory which would be accessible using only 16-
bit addresses with no segments. 1MB is the total memory space available in real
mode. Traditionally the lower 640K of memory is available to applications in real
mode. Extended memory, or memory above 1MB, is not available in real mode.

[0004] Referring now to Figure 1, there is shown a method for using 20-bit segment
addresses and offsets to access 1MB of memory in real mode. The segment register
101 is 16-bits. The offset register 103 is also 16-bits. These registers are combined by
shifting the segment register left 4-bits so it is now a 20-bit number 105. The offset
register 103 is added to this segment address 105 to generate a 20-bit segment+offset
memory reference 107.

[0005] A simple way to understand this addressing scheme is to imagine that the
segment register 105 always has 4 additional bits on the low order end 109 that cannot
be changed. Therefore, the segment register is aétually 20 bits, but only 16 are visible
outside of the processor. The 16-bit offset 103 is added as follows, according to the
example values in Figure 1. The actual 20-bit Segment Register is

[0006] 1001 1101 1111 0000 0000

[0007] where the bolded bits 0-3 are not visible outside of the processor. The

segment register and offset are added as below to generate the physical address in the

WO 2006/012007 PCT/US2005/021113

1MB range.
Visible Segment Register: 1001 1101 1111 0000 (9DFOh)
Real Offset: + 0000 0100 0000 0000 (400h)
Physical (or linear) address = 1001 1110 0011 0000 0000 (9E300h, also
written as 9DF0:0400)

[0008] A new potential segment starts every 16 bytes in memory. Each segment is
64K long. Thus, segments may overlap each other, i.e., offsets added to a segment
address may span more than one segment. There may be over 4000 combinations of
segment + offset combinations that will result in an actual address in memory. In other
words, each physical address may be within more than one segment.

[0009] Figure 2 illustrates the overlap of 16K segment addresses with segment
addresses and 64K offsets. For instance, segment address 0 (201), segment address 1
(203) and segment address 2 (205) are shown. Adding an offset of up to 64K to
segment address 0, for example, references memory 207 that overlaps memory
referenced using segment address 2 (209). This addressing scheme is well known in
the art.

[0010] Protected mode enables programs to access more than 1IMB of memory. The
processor may switch to protected mode at anytime. The executing software initiates a
switch to protected mode. The executing software may also switch Eack to real mode.
This switch to protected mode typically is executed by the boot loader upon loading
the operating system (OS) so that all of memory is available to the OS. During

protected mode, extended memory can be addressed using a selector and offset

WO 2006/012007 PCT/US2005/021113

combination.

[0011] There is a need in the industry to enable pre-boot applications, such as those
found on device-specific option-ROMs, to use extended memory in lieu of the lower 1
MB of memory when memory requirements of the application are high. There is also
a need for pre-boot applications which have been designed to run in real mode to

execute in protected mode without being rewritten.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The features and advantages of the present invention will become apparent
from the following detailed description of the present invention in which:

[0013] Figure 1 is a block diagram illustrating real mode memory addressing using
segments and offsets;

[0014] Figure 2 is a block diagram illustrating that segment addresses may overlap
in memory;

[0015] Figure 3 is block diagram showing an embodiment of protected mode
memory addressing using selector registers, offsets and descriptor tables;

[0016] Figure 4 is a block diagram showing an exemplary embodiment of a system
using protected mode memory addrgssing for applications expecting real mode
addressing;

[0017] Figure 5 is a block diagram illustrating differences in accessing lower 1IMB
and extended memory using both real and protected mode addressing; and

[0018] Figure 6 is a flow diagram illustrating an embodiment of the method

WO 2006/012007 PCT/US2005/021113

described herein for using protected mode to enable pre-boot applications to use

extended memory.

DETAILED DESCRIPTION

[0019] An embodiment of the present invention is a system and method relating to
switching to protected mode to access extended memory while executing instruction
code that is designed for real mode memory access. In at least one embodiment, the
present invention is intended to enable complex option-ROM code to be executed
during pre-boot without corrupting system memory used by the BIOS or other option-
ROMs.

[0020] Reference in the specification to “one embodiment™ or “an embodiment” of
the present invention means that a particular feature, structure or characteristic
described in connection with the embodiment is included in at least one embodiment of
the present invention. Thus, the appearances of the phrase “in one embodiment”
appearing in various places throughout the specification are not necessarily all
referring to the same embodiment.

[0021] An embodiment of the method described herein maps extended memory over
memory in the base memory area. This will allow existing option-ROMs to use more
base memory without colliding with usage of the base memory of other programs, or
having their own memory overwriiten by other programs. This technique is especially
useful for option-ROMs that require a large amount of data storage that must be

maintained throughout the pre-boot phase.

WO 2006/012007 PCT/US2005/021113

[0022] An embodiment of the disclosed method allocates extended memory for data
storage to a pre-boot application, where the pre-boot application is designed to operate
in real mode. The processor may be switched to protected mode. The real mode
memory address referenced by the pre-boot application may be translated to an
extended memory address reference, and the pre-boot application instruction may be
executed using the translated extended memory address instead of the real mode
memory address.

[0023] An embodiment of the method described herein involves switching the
processor periodically to protected mode from real mode during pre-boot. In order to
eliminate programming changes to existing option-ROMs, protected mode selectors
may be used with the limit set to less than or equal to 64KB and the base set to the
extended memory address that is available. This eliminates the need to interface with
gate A20. Gate A20 controls the IMB address wrap-around feature and affects other
pre-boot systems such as the POST Memory Manager (PMM), as discussed below.

[0024] Referring to Figure 3, there is shown a virtual memory scheme used to access
memory in protected mode. In protected mode, addressing uses a 16-bit selector 301
and an offset 303. A selector is different from the segment address used in real mode
because a selector is not an address, but an index into a descriptor table such as the
Global Descriptor Table (GDT) 305. Each descriptor in the GDT contains a linear
base address 307 and a limit 309 for that selector. The GDT itself is typically limited
to 64KB and each entry is 8 bytes which leaves room for a total of 8192 descriptors.

Each descriptor is 8 bytes long, and the bottom 3 bits of a selector 311 are used as

WO 2006/012007 PCT/US2005/021113

flags. As an example, if the selector is set to 8h and the offset is 400h then the second
descriptor in the GDT is used. The first location in the descriptor table at the zero
location is not used. In this example, the second descriptor contains a base address of
3F00000h and a limit of OFFFFh (64K segment). Since the offset 400h is less than the
limit, the offset is added directly to the base address to form a linear address as such:
3F00000h + 400h = 3F00400h. Other methods may be used if boundaries less than 16
bytes must be addressed, since there is no provision for using the bottom 3 bits of the
selector, as further described below. |

[0025] An embodiment of the present invention uses protected mode selectors as
pseudo real-mode segment addresses. This method requires a switch to protected
mode. A 64KB GDT may be allocated and either initialized to zero or initialized with
every descriptor referencing the correct linear address. It is preferable for each
descriptor to have a limit of OFFFFh (64KB) to make sure real-mode acts as it
normally does. In one example, the entire GDT may be initialized to zero. After
initializing the table, the extended memory addresses may be mapped into a pseudo-
real-mode address by replacing the desired selector. For example, in order to map
address 3F00000h over segment address 9DFOh, the selector at offset 9DFOh from the
beginning of the GDT may be configured with base address 3F00000h and limit
OFFFFh. Once this is done, real mode programs that access segment 9DFOh will
actually be accessing the extended memory address 3F00000h. This translation is
transparent to the executing option-ROM.

[0026] When the GDT is initialized to zero, the descriptors are all initially null. Ifa

WO 2006/012007 PCT/US2005/021113

program attempts to access a null descriptor in the GDT, then a general protection fault
(GPF) occurs. This fault may be trapped while in protected mode by installing an
Interrupt Descriptor Table (IDT) and installing a GPF handler in the IDT. The return
address on the stack when a GPF handler is called is the address of the offending
instruction. In this way, the offending instruction may be re-executed upon returning
from the GPF handler after the original problem is corrected. If the descriptor is
initialized to the linear address, or has already been filled in with the linear address, ;
then the instruction may execute immediately, without causing a GPF, by using the
address referenced in the descriptor.

[0027] A GRF handler may be installed to handle the errors that occur when one of
the null descriptors gets used. This handler may fill in the descriptor that was used and
then re-execute the instruction. For example, if the segment £egister contains 40h
which should point to the BIOS Data Area (BDA), then the descriptor at offset 40h
from the beginning of the GDT should be filled in with base address 400h and a limit
of OFFFFh. With segment addressing, the address is shifted left 4 bits and the lowest 4
bits are not used as part of the address. When the instruction is re-executed after the
GPF handler finishes, the program will be accessing the real BDA directly. If the
memory access occurs in the range that has been re-mapped, the base address should
point to the appropriate offset in extended memory and the limit can be shrunk so the
program cannot access past the end of the allocated extended memory.

[0028] There are other additional problems that must be addressed in order for this

method to work. First, selectors may only access 8192 entries in the GDT because

WO 2006/012007 PCT/US2005/021113

only the most significant 13 bits are used as an index. In one embodiment, the first 3-
bits in a selector (311) are protection flags for memory and are always zero. For other
applications, this flag is used to indicate whether memory is read-only or read/write,
etc. Thus, there are no valid selectors for any address ending with a 1-7, since the
lowest 3 bits must be 0. For instance, 9DF1h through 9DF7h cannot be represented
using this 13-bit selector. Inreal mode, all segment addresses are valid since the
segment address is shifted left 4 bits before being used. Thus, there are actually 16
bytes between segment address 9DFOh and 9DF1h, but 9DF1h is a valid address.
Second, the first descriptor, which is referenced by selector 0, must always be null.
This may cause a problem because the real mode interrupt vector table (IVT) typically
resides at address 0000:0000 and requires a zero selector reference. Possible solutions
to these problems are described in exemplary embodiments, below.

[0029] In one embodiment, a range of descriptors is designated from the GDT that
are known to never be used by the option-ROM or any dependent drivers. For
instance, if this method is applied to only one option-ROM, then an unused address
range can be reserved, such as 3000:0 to 3FFF:0. Another embodiment sets up another
descriptor table called a Local Descriptor Table (LDT) to represent those segment
addresses that are not divisible by 8. In either case, the installed GPF handler must
replace the value in the invalid segment register with a descriptor that represents the
memory that needs to be addressed. Other methods may be used to trap the odd
segment addresses as long as the GPF handler appropriately associates the correct

physical memory location with the instruction being executed. It will be readily

WO 2006/012007 PCT/US2005/021113

apparent to one of ordinary skill in the art that various methods may be used to
translate these odd addresses and the methods are implementation dependent.

[0030] Inan embodiment, when an entry-point to the option-ROM is called, for
instance through a call to an interrupt service routine (ISR), the processor is switched
to protected mode and the GDT and optional LDT which have been discussed above
are installed. Before the option-ROM exits, the processor is restored to its previous
state, including restoration of any previously installed descriptor tables.

[0031] Referring now to Figure 4, there is shown an exemplary system which
enables extended memory to be accessed by code that is designed for real mode
memory access. A pfocessor 401 is operatively connected to a non-volatile memory
403 having a basic input/output system (BIOS) 405 for booting the system 400. An
add-in device 407 is communicatively coupled with the processor 401 and may have
an option-ROM 409 for initializing an add-in device 407. The BIOS 405 scans the
system 400 during pre-boot and loads and executes the device option-ROM code 409.
The processor is connected to system memory 411. During real mode, only 1MB of
the system memory 411 may be accessed. The processor may experience a general
protection fault (GPF) 413 which initiates an interrupt service routine (ISR) 415. In
embodiments, the ISR 415 handles memory access during protected mode to simulate
access of real mode memory as further discussed herein.

[0032] Figure 5 further illustrates the differences in access to system memory 411
during real and protected modes. System memory 411 comprises 640K of

conventional memory 501 and upper memory 503. In existing systems, conventional

10

WO 2006/012007 PCT/US2005/021113

memory 501 and upper memory 503 combined comprise IMB of memory. Extended
memory 505 may exist in various amounts. Real mode'memory access 510 enables an
instruction to access conventional and upper memory. Protected mode access 520
enables the instruction to additionally access extended memory using a GDT 530, i.e.,
virtual memory. The virtual address used in protected mode uses the GDT to access
extended memory 505 by translating the base address in the GDT.

[0033] Inan embodiment, a process, such as ‘instructions stored in an option-ROM,
is designed for real mode, e.g., limited to IMB. When loading the instructions, the
BIOS allocates 1MB of extended memory for executing the option-ROM. The
processor switches to protected mode and the option-ROM real mode addressing may
be translated to protected mode extended memory addresses using GPFs, ISRs and
descriptor tables. This method may give an option-ROM the illusion of having access
to the entire IMB real mode address space without causing conflicts with other loaded
option-ROMs or the system BIOS. In this way, existing real mode programs may use
more memory without having to be re-written to explicitly access extended memory.

[0034] Embodiments of the present invention may be used to reduce the ’amount of
conventional memory that is used by a program. Embodiments of the present
invention may also allow a program shrink its upper memory block (UMB) code
image. This enables more option-ROMs be loaded by the system BIOS.

[0035] In existing systems, there are two types of option-ROMs: (1) boot
connection vector (BCV) devices (i.e., for devices like a small computer system

interface (SCSI) card) that typically use int13 interrupt for disk access, and (2) boot

11

WO 2006/012007 PCT/US2005/021113

entry vector (BEV) devices. The BCV devices must be present in memory from the
beginning of power-on self test (POST), because they may contain boot instructions.
These devices do not typically use much memory.

[0036] The BEV devices are typically pre-boot execution environment (PXE)
devices which do not need to be present through(;ut the entire pre-boot process, but are
available to boot the system. The BIOS will not attempt to start these PXE devices
until the BIOS and all other ROMs have finished using real mode memory. PXE
devices may use a great deal of memory. However, since they are not started until
other devices have completed their need for memory, there is no worry that other pre-
boot applications will corrupt the memory needed by the PXE device.

[0037] Internet SCSI (iSCSI) is a serialization of the SCSI protocol to operate over
the Internet or Internet protocol (IP) network. iSCSI enables the processor to run from
a remote disk on some other computer across the network, as if the processor were
local. AniSCSI drive appears to be just another drive on the system. AniSCSI boot
device must be present throughout the entire pre-boot execution, and has the same
memory requirements as a PXE device. Thus, it presents a challenge when executing
other option-ROMs or instructions that require a portion of real memory during pre-
boot. Existing systems do not have an adequate memory management system to
accommodate a device with high memory requirements which prevents memory from
being overwritten by another module or device. Thus, existing iSCSI devices cannot
be used as boot devices.

[0038] For iSCSI, many buffers are required to get network traffic to work, so more

12

WO 2006/012007 PCT/US2005/021113

memory is required. If buffers are allocated in real mode, they take up so much
memory that when the BIOS takes control again the buffers will be overwritten by the
BIOS. Future remote IDE protocol may experience the same problems as iSCSI.
Also, other remote boot protocols may experience these problems. Embodiments of
the present invention enable iSCSI devices to be boot devices and may accommodate
future remote IDE protocols.

[0039] An advantage of an embodiment of the disclosed method is that Gate A20 is
not affected. Gate A20 controls the 1MB address wrap-around feature. Real mode
addressing wraps around from the bottom when addresses over IMB are referenced
when the wrap-around feature is enabled. To access extended memory, this feature
needs to be disabled. Turning off this feature may corrupt the POST memory manager
(PMM) which is available on many current systems. The PMM allows memory above
1MB to be accessed in an organized manner. If PMM is operating on the platform,
one should not directly change the A20 settings. Even though an embodiment of this
invention may access addresses above 1MB in protected mode, the selector limits in
the GDT may be set at 64KB or less so the A20 wrap-around is never used. The
virtual address will not be over IMB, but the physical address may be. Inan
embodiment, the gate A20 affects only the virtual address. Once the virtual address is
decoded using the GDT, it may be above 1MB. Gate A20 is typically only used in
Real mode, but because this technique is used during pre-boot, the gate may be set or
unset for other processes.

[0040] Referring now to Figure 6, there is shown a flow diagram illustrating an

13

WO 2006/012007 PCT/US2005/021113

embodiment of a method for enabling applications written for real mode to access
extended memory transparently in protected mode. When the processor is booted, it
proceeds with ROM initialization in block 601. The BIOS scans the devices and
executes option-ROMs from the devices when necessary.

[0041] Before executing the option-ROMs, the BIOS may allocate extended
memory for data storage for each option-ROM in block 603. It may be preferable to
allocate the full 1IMB for each option-ROM so that it appears that all of real memory is
allocated to the option-ROM execution. Each option-ROM may be allocated unique
portions of extended memory so that there is no possibility that one option-ROM can
corrupt the memory area of another option-ROM. If a POST memory manager (PMM)
is available, then PMM may be uséd to allocate the memory. If not, other methods of
allocation may be used.

[0042] In one embodiment, global description tables (GDTs), an interrupt descriptor
table (IDT), and optional local descriptor tables (LDTs) are created and initialized in
block 605. Processor instructions are used to install the tables. Installing the GDTs is
equivalent to making it known to the processor where the tables reside. When
necessary, the processor looks up the virtual addresses in the GDT and then performs
the translations. The interrupt service routines (ISRs) for handling general protection
faults (GPFs) due to accessing null descriptors, etc. are loaded into the IDT and
associated with the appropriate GPF handler. When the processor is actually running
in real mode, there will be no GPF, and the ISR will not run. The currently executing

option-ROM is to be associated with the current GDT. Only one extra GDT may be

14

WO 2006/012007 PCT/US2005/021113

required for this process. There may be a stack of GDTs associated with various
option-ROMs and pre-boot instructions, but no special handling is involved.

[0043] When the processor runs option-ROM instructions, or other pre-boot
instructions that are set up to use the disclosed method, a GPF may be generated before
instructions requiring memory access may be performed. An interrupt service routine
(ISR) may be executed to handle the memory access so that extended memory is used
instead of the lower 1MB in block 611. If the descriptor has already been filled in, i.e.,
this memory address has already been translated, then the instruction may execute
without causing a GPF. In an example, the instruction pointer may reference a move
instruction, i.e., move some data into memory A(X), which requires a memory access
to real mode memory address A(x). The memory location referenced by the
instruction will be mapped to extended memory by an embodiment of the disclosed
method. The memory access itself causes the exception, or fault, and initiates the fault
handler, or interrupt service routine. The ISR switches the processor to protected
mode, but keeps track of which mode it was in before the switch, in block 613.

[0044] Once in protected mode, memory is accessed using selector and offset
methods, but the instructions are using real mode segment format in block 621. The
memory references must be translated by the processor before actual memory is
accessed. The fault handler determines whether the memory can be mapped using the
GDT. If not, then the data segment (DS) is changed to be an index into the LDT. The
ISR still knows which physical address is referenced.

[0045] The option-ROM environment does not change. The option-ROMs operates

15

WO 2006/012007 PCT/US2005/021113

on real mode segment addresses. If the segment address has not been set up yet in the
GDT when the option-ROM code attempts an access, then the descriptor is null. The
processor uses the segment address as a selector into a GDT. The processor then
determines whether the referenced descriptor is null, in block 623. If the descriptor is
null, then a GPF is issued by the processor in block 625. The ISR associated with this
GPF maps the selector used by the option-ROM code to a different physical address in
extended memory and then attempts to execute the instruction again. The ISR maps
the segments and offsets into selectors and offsets for accessing extended memory via
the GDT.

[0046] A local descriptor table (LDT) may be used to fill in the gaps in addressing,
due to the lower 3 bits being zero, if a GPF occurs, but the GDT cannot be used.
Instead, the LDT may be used to map a new selector to the virtual memory and then
re-execute the instruction using the appropriate selector/offset combination. One of
ordinary skill in the art will appreciate that other methods may be used to map
segments that are not addressable using the GDT scheme. The LDT may work the
same way as the GDT, i.e., it has a descriptor with a base address and a limit. The
LDT may not often be used because memory is typically referenced in chunks on
boundaries that are accommodated by the GDT. If necessary, a descriptor may be set
up in the LDT with the referenced physical address into the LDT and the DS is
changed to be an index into the LDT.

[0047] To determine whether a LDT is necessary, a determination is made as to

whether the last 3 bits of the segment address are zero and it is a non-null segment in

16

WO 2006/012007 PCT/US2005/021113

block 627. Ifthe last 3 bits are zero, then the GDT may be used and a new descriptor
is created in the GDT to point to the correct location in extended memory for that
segment address, in block 629.

[0048] If the last 3. bits of the segment address are non-zero, then an alternate
method must be used to translate the address to extended memory in blocks 631 and
633. In one embodiment, an empty descriptor from the LDT is used to fill in with the
segment information in block 631. The segment registe%' may then be replaced with the
newly created LDT descriptor in block 633.

[0049] In one embodiment, the LDT has one valid descriptor. The first element in
the LDT may be used. The descriptor is set up and the address is accessed. The
segment address is changed to be the pointer into the LDT. When a GDT is used, the
segment need not be changed. In one example, the segment is changed to be 8. The
LDT may be the same size as the GDT. Descriptor 1 is the first usable descriptor in
the LDT. This descriptor is set up to reference the memory intended to be accessed in
real mode. The segment address is replaced with the new descriptor in the LDT.. The
processor then exits from the fault handler and re-executes the single instruction in
block 641. A processor trap may be used to execute a single instruction. The segment
address may then be replaced with the original address for future use. It is determined
whether the task is complete in block 643. If so, the processor is restored to its
previous mode and the original descriptor tables (GDT/LDT) are restored in block 645.
In one embodiment, each process has a unique GDT/LDT and they are stored in a

stack or other data structure to ensure that the appropriate tables are used. Execution

17

WO 2006/012007 PCT/US2005/021113

continues where it left off in block 651. However, if the task is not complete, i.e.,
additional memory accesses are required, then processing continues with block 621.

[0050] In another embodiment, the LDT may be pre-loaded with a hash table and
then the LDT operates the same as the GDT. When an address is referenced, if there is
an exception, a descriptor is allocated in the LDT the same as with the GDT and then
returns and lets the ISR access the memory through the LDT as normal. This method
has the disadvantage of using more memory because each segment must have a hash
location that is not reused. Thus, the full 64K must be allocated for the table. Since
each option-ROM needs to allocate its own LDT, this method may be undesirable. .

[0051] In another embodiment, the processor and BIOS are also subject to this
method, so that the BIOS code would execute in IMB of extended memory instead of
the lower 1MB. In an embodiment, the option-ROM initiates the change to protected
mode. In another embodiment, the BIOS initiates the change to protected mode and
uses the disclosed technique for accessing extended memory. The translation is
transparent to the executing code.

[0052] Another complication is that the interrupt vector table (IVT) typically resides
at 0000h. Descriptor location 0 is unavailable. However, the IVT is almost always
accessed using a segment address of 0. In an embodiment, accessing this table is done
by setting up a non-zero descriptor which maps to the zero address, accessing the table,
and then resetting the address for later use. The reason this is necessary is because the
programs to be executed expect to be in real mode, but are executed in protected mode

instead.

18

WO 2006/012007 PCT/US2005/021113

[0053] An example of where an embodiment of the disclosed invention may be
desirable is to implement an Internet Small Computer System Interface (iSCSI) boot
option-ROM. There are several large items that must be kept in memory for iSCSI
boot to function, including: a network interface card (NIC) or local area network
(LAN) on motherboard (LOM) driver to provide network access, and fully functional
Transfer Control Protocol / Internet Protocol (TCP/IP) and iSCSI stacks for
communicating with an iSCSI target. iSCSI boot presents a problem in existing
systems because the memory must be allocated very early in the boot process and must
remain available until the OS boot loader has executed the switch to a protected mode
iSCSI initiator. Because the memory must be maintained for such a long period (by
pre-boot standards), memory must be allocated that will not be used as scratch memory
by other programs. Another problem exists simply because it is possible to use
existing NIC/LOM drivers to provide network access, and it may not be possible to
change these drivers to use extended memory. Embodiments of the disclosed method
allow iSCSI and LOM drives to access extended memory without being rewritten.

[0054] The techniques described herein are not limited to any particular hardware or
software configuration; they may find applicability in any computing, consumer
electronics, or processing environment. The techniques may be implemented in
hardware, software, or a combination of the two. The techniques may be implemented
in programs executing on programmable machines such as mobile or stationary
computers, personal digital assistants, set top boxes, cellular telephones and pagers,

consumer electronics devices (including DVD players, personal video recorders,

19

WO 2006/012007 PCT/US2005/021113

personal video players, satellite receivers, stereo receivers, cable TV receivers), and
other electronic devices, that may include a processor, a storage medium readable by
the processor (including volatile and non-volatile memory and/or storage elements), at
least one input device, and one or more output devices. Program code is applied to the
data entered using the input device to perform the functions described and to generate
output information. The output information may be applied to one or more output
devices. One of ordinary skill in the art may appreciate that the invention can be
practiced with various system configurations, including multiprocessor systems,
minicomputers, mainframe computers, independent consumer electronics devices, and
the like. The invention can also be practiced in distributed computing environments
where tasks may be performed by remote processing devices that are linked through a
communications network.

[0055] Each program may be implemented in a high level procedural or object
oriented programming language to communicate with a processing system. However,
programs may be implemented in assembly or machine language, if desired. Inany
case, the language may be compiled or interpreted.

[0056] Program instructions may be used to cause a general-purpose or special-
purpose processing system that is programmed with the instructions to perform the
operations described herein. Alternatively, the operations may be performed by
specific hardware components that contain hardwired logic for performing the
operations, or by any combination of programmed computer components and custom

hardware components. The methods described herein may be provided as a computer

20

WO 2006/012007 PCT/US2005/021113

program product that may include a machine accessible medium having stored thereon
instructions that may be used to program a processing system or other electronic
device to perform the methods. The term “machine accessible medium” used herein
shall include any medium that is capable of storing or encoding a sequence of
instructions for execution by the machine and that cause the machine to perform any
one of the methods described herein. The term “machine accessible medium” shall
accordingly include, but not be limited to, solid-state memories, optical and magnetic
disks, and a carrier wave that encodes a data signal. Furthermore, it is common in the
art to speak of software, in one form or another (e.g., program, procedure, process,
application, module, logic, and so on) as taking an action or causing a result. Such
expressions are merely a shorthand way of stating the execution of the software by a
processing system cause the processor to perform an action of produce & result.

[0057] While this invention has been described with reference to illustrative
embodiments, this description is not intended to be construed in a limiting sense.
Various modifications of the illustrative eﬁlbodiments, as well as other embodiments
of the invention, which are apparent to persons skilled in the art to which the invention

pertains are deemed to lie within the spirit and scope of the invention.

21

WO 2006/012007 PCT/US2005/021113

WHAT IS CLAIMED IS:

1. A method, comprising:

allocating extended memory for data storage to a pre-boot application, the pre-
boot application being designed to operate in real mode;

switching the processor to protected mode;

translating a real mode memory address used by the pre-boot application into an
extended memory address reference; and

executing a pre-boot application instruction using the translated extended
memory address instead of the real mode memory address.

2. The method as recited in claim 1, wherein allocating extended memory
further comprises:

creating descriptor tables; and

initializing the descriptor tables.

3. The method as recited in claim 2, wherein the descriptor tables comprise
at least one global descriptor table (GDT), at least one interrupt descriptor table (IDT) ,
and at least one local descriptor table (LDT).

4. The method as recited in claim 1, wherein translating is performed by an
interrupt service routine (ISR).

5. The method as recited in claim 4, further comprising:

accessing memory using a real mode segment register;

22

WO 2006/012007 PCT/US2005/021113

issuing a general protection fault (GPF) if a null descriptor is referenced in a
global descriptor table (GDT); and

creating a new descriptor in the GDT that points to a location in extended
memory.

6. The method as recited in claim 5, further comprising:

using a local descriptor table (LDT) to translate addresses where flag bits of the
segment register are non-zero; and

replacing the segment register with a newly created LDT descriptor.

7. A machine accessible medium containing instructions for translating real
mode addressing to protected mode addressing, that when executed cause a machine to:

allocéte extended memory for data storage to a pre-boot application, the pre-
boot application being designed to operate in real mode;

switch the processor to protected mode;

translate a real mode memory address used by the pre-boot application into an
extended memory address reference; and

executing a pre-boot application instruction using the translated extended
memory address instead of the real mode memory address.

8. The machine accessible medium as recited in claim 7, having
instructions which further cause the machine to: |

create descriptor tables; and

initialize the descriptor tables.

23

WO 2006/012007 PCT/US2005/021113

9. The machine accessible medium as recited in claim 8, wherein the
descriptor tables comprise at least one global descriptor table (GDT), at least one
interrupt descriptor table (IDT) , and at least one local descriptor table (LDT).

10. The machine accessible medium as recited in claim 7, wherein
translating is performed by an interrupt service routine (ISR).

11. The machine accessible medium as recited in claim 10, having
instructions further causing the machine to:

access memory using real mode segment register;

issue a generél protection fault (GPF) if a null descriptor is referenced in a
global descriptor table (GDT); and

create a new descriptor in the GDT that points to a location in extended
memory.

12. The machine accessible medium as recited in claim 11, having
instructions further causing the machine to:

use a local descriptor table (LDT) to translate addresses where flag bits of the
segment register are non-zero; and

replace the segment register with a newly created LDT descriptor.

13. A system, comprising:

a processor operatively coupled to a non-volatile memory storing pre-boot
instructions;

a system memory operatively coupled to the processor, wherein the system

memory comprises a conventional memory block and an upper memory block

24

WO 2006/012007 PCT/US2005/021113

accessible in both real and protected modes, and an extended memory block accessible
only in protected mode; and

an interrupt service routine (ISR) to translate real mode segment addressing to
protected mode selector addressing, wherein the ISR is automatically initiated when a
pre-boot application attempts to access memory during execution.

14. The system as recited in claim 13, wherein the pre-boot application is an
option-ROM for an add-in device.

15. The system as recited in claim 13, wherein the ISR uses descriptor tables
during the translation of real mode segment addressing to protected mode selector
addressing, and wherein a null descriptor causes a general protection fault to initiate an
interrupt handler to generate a descriptor for the segment address which references a
physical memory location in extended memory.

16. The system as recited in claim 13, wherein the pre-boot application is a

basic input/output system (BIOS).

25

PCT/US2005/021113

WO 2006/012007

1/6

(v 1014d)

. MN 00%0:04a6 10 (4o0oe36) i
[‘olJ 19810 + Juswbag 1q-0Z
01

DNOONNNDnNoNoEENnoonT

0 14 6l
| (yoo4as)
_ Juswbas 1g-0z oL
_o_c_o_o o_o_o_o_r_—_;—_—_o_v_F_F_c_o_r_:v
0 _ Gl 6l
— |
601
S}iq-{ uappiH
(yoov) (uodase)
19840 <ol yswbeg ™

0

_o_c_o_o_c_o_o_o_c_c_,_o_o_o_c_iv_“_o_o_o_,__T_,_;o_,_,_,_o_o_,,.u

Sl

WO 2006/012007

1MB

16

2/6

Segment address 2
205

Segment address 1
203

Segment address 0
201

Fig. 2
(prior art)

r 207

PCT/US2005/021113

> 209

Segment address 2 +
64K offset

J

Segment address 0 +
64K offset

PCT/US2005/021113

WO 2006/012007

3/6

£ S i .
mom - s
8
VA
9
G
14
€
e
u44440 4000004E l
uoor004€ pasn JoN pasn joN 0
= 400 + 400000 ﬂ nwiyyibusy ssaIppy J
'SSaIppy [eo1sAud s|qeL
60€e 10jduosaq jeqojo 08
(uoot) e (ug)
19sjj0 coe | bBe|d Jojosjes Loe
! Ngg
[ofofofofofo]ofo]o]o]t]o]o]o]0]o0 ofofolv]ofoo]o]o]o]o]o]a]a]o0 ﬂv
0 gl 10 Sl

PCT/US2005/021113

WO 2006/012007

4/6

154

P8

>
WOoY .
uopdo 0¥ Sly J
|/
soed sl
Aowspy we)sAg
12104
h
soid \\/
10Ss8201d N d4d9
Aowa yse|4 \
L L ey
€0 Loy

0or

PCT/US2005/021113

WO 2006/012007

5/6

0x0

105
Aiowsayy [euonuanuos

0000vx0

€05
Aowspy Jeddn

00000LX0

00000¥X0

G0S
Aloway pspusixg

009%0
Q)
$S900Y P8I

(354 ,\

Aowsy wvysAg

00x%0

80%0

01x0

81X0

Jdd44x0=wi
00000%*0=aseg
02x0

82x0

109

J0SS3d04d

00¥00¥X0
0} pajejsues]
0ov'0C

J0sSsS300.1d

S 31y

00¥:02 10} sS200y Alowiayy apoyy [esy

J

oLs

00$:0Z 10} SS200Y AIOWaY\ SpON Pa10810Id

J

0zs

WO 2006/012007

REAL MODE

/QOM Initialization)
601

1 memory for data

1 required GDT, IDT and

605

| protected mode

613

611

Allocate extended

storage

Create and initialize

optional LDT

6/6

PCT/US2005/021113

PROTECTED MODE

621\

Memory gets accessed

Switch processor to

A

— Enter task through ISB

Exit to prev:ously
runmng task
651

> using real mode
segment format

631\

Use an empty
descriptor from the
LDT and fill it out
with segment info

W~ v

Replace segment
register with newly
created LDT
descriptor

623

Null

descriptor
?

625'\

General Protection
Fault is issued by
processor

627

Are last
3 bits of segment
address 0 and non-null
- segment?

Create a new
descriptor in the
GDT that points to
the correct
extended memory

<
-

Y

y

641'\

Return from GPF handler so
program will access memory
and execute memory instruction
again

No

Done with task

Restore processor

to real-mode and

?

| Yes

Fig. 6

put back original
GDTADT

o45__ "

INTERNATIONAL SEARCH REPORT

Int ional Application No

PCT/US2005/021113

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO06F9/445 GO6F12/02

GO6F9/46

According to International Patent Classification {IPC) or to both national classification and IPG

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

figures 1,5,9,10,14,15

61

12, 1ine 64 - column 13, line 50
14, 1ine 40 - column 20, line 10

column 3, line 13 - column 4, l1ine 6
column 6, line 8 — column 8, line 35
column 10, 1ine 21 - 1ine

column

column

Sy

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 237 669 A (SPEAR ET AL) 1-4,
17 August 1993 (1993-08-17) 6-10,
12-14,16
Y column 1, Tine 66 - column 2, line 31; 5,11,15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

g

“we

wye

7Y

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
meﬁts, ﬁuch combination being obvious to a person skilled
in the art,

document member of the same patent family

Date of the actual completion of the international search

20 October 2005

Date of mailing of the international search report

04/11/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lelait, S

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

ional Application No

Int
’ PCT/US2005/021113

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

GAREAU J: "Embedded x86 Programming:
Protected Mode"

EMBEDDED SYSTEMS PROGRAMMING, MILLER
FREEMAN, SAN FRANCISCO, CA, US,

April 1998 (1998-04), pages 80-82,84,86,8,
XP002242939

ISSN: 1040-3272

the whole document

INTEL CORP: "Intel Architecture Software
Developer’s Manual - Volume 3: System
Programming Guide"

INTEL ARCHITECTURE SOFTWARE DEVELOPER’S
MANUAL,

vol. 3, 1997, XP002348789

pages 2-1, paragraph 2.1 - pages 2-7,
paragraph 2.2; figures 2-1

pages 3-15, paragraph 3.5.1 - pages 3-17
pages 4-6, paragraph 4.4.1

pages 5-9, paragraph 5.8 - pages 5-19,
paragraph 5.12

pages 5-38

pages 8-9, paragraph 8.6 - pages 8-16,
paragraph 8.9

pages 15-1, paragraph 15.1 - pages 15-8
US 5 642 491 A (ROSE ET AL)

24 June 1997 (1997-06-24)

the whole document

US 5 125 087 A (RANDELL ET AL)

23 June 1992 (1992-06-23)

column 5, Tine 20 - 1ine 23

column 6, Tine 4 - column 8, Tine 15;
claims 6,7

US 5 255 379 A (MELO ET AL)

19 October 1993 (1993-10-19)

column 5, Tine 47 - column 12, line 62

5,11,15

5,11,15

1,2,7,8

1-16

1-16

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

"~ Information on patent family members

Int

ional Application No

PCT/US2005/021113
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5237669 A 17-08-1993 AT 174137 T 15-12-1998
AU 2339592 A 23~-02-1993
BR 9206286 A 08-11-1994
CA 2113565 Al 16-01-1993
DE 69227774 D1 14-01-1999
DE 69227774 T2 22-07-1999
EP 0595880 Al 11-05-1994
FI 940168 A 04-03-1994
JP 3268310 B2 25-03-2002
JP 6508952 T 06-10-1994
JP 3571667 B2 29-09-2004
JP 2002024003 A 25-01-2002
KR 132696 Bl 24-04-1998
Wo 9302417 Al 04-02-1993
us 5367658 A 22-11-1994

US 5642491 A 24-06-1997 NONE

uS 5125087 A 23-06-1992 NONE

US 5255379 A 19-10-1993 NONE

Form PCT/ISA/210 (patent family annex) {(January 2004}

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

