A computer system for the sale of a commodity or service in connection with advertising, which by making maximum use of the equipment takes into account the computer service needs of both the attendant person and the customer, without there having to be more than one computer and a display screen for each customer being served. The computer receives the necessary information and, on the basis of whether any advertising is to be shown in connection with the sale, shows the advertising material and optionally any visual and auditory material and makes a downward adjustment of the price of the commodity or service, or gives the customer other special advantages. In a preferred variant which is especially designed for taxis or other public passenger vehicles, the system according to the invention is designed to show advertising and make a draw in a lottery in which free rides can be won – see Figs. 2 and 3. The display unit (1 in Fig. 1) is so adapted that by means of an adjustable fixing device (2, 9, 10 in Fig. 1) it can be positioned and adjusted towards the attendant person (4) or a customer (4) alternately.
Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
<th>LS</th>
<th>Lesotho</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BI</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td></td>
<td></td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPUTER SYSTEM FOR THE SALE OF A COMMODITY OR SERVICE IN CONNECTION WITH THE DISPLAY OF ADVERTISING MATERIAL

The present invention relates to a new computer system for the sale of a commodity or service in connection with advertising, which system, by being used to the maximum, takes into account the computer service needs of both the attendant person and the customer, without there having to be more than one computer and one display screen. To be more precise, the invention comprises a computer system which receives the necessary information and on the basis of whether advertising is to be shown in connection with the sale, it displays the advertising material and optionally other visual and auditory material, and lastly makes a downward adjustment of the price of the commodity or service, or gives the customer other special advantages such as participation in a lottery. In a preferred variant, the system according to the invention controls also the display of the advertising material and makes the draw in a lottery for free goods or services.

In a taxicab or similar vehicle and also in premises where goods or services are supplied, it is possible to show advertising material to the customers and make money by doing so. This business idea has been put into practice to a certain extent in that advertising has been displayed for many years in, for example, buses, trains etc. and also in waiting rooms and so forth. In some places it has also been the practice to show advertisements on video screens or television screens. Because the display of pictures, especially live pictures, possibly also with sound, is a fairly obtrusive form of advertising, it is not necessarily suitable in all situations without the consent of the customers. In particular in cases where the screen and perhaps loudspeakers are very close to the customer, such as when showing advertising on a screen which is placed directly in front of a person, or a discrete group of people, the advertising may seem overly obtrusive. Problems of this type are among the reasons why today advertising is unlikely to be shown on a screen in, for example, taxis. The problem becomes even more pronounced if in view of the surroundings the customer uses a headset. Existing systems for the display of advertising material, videos, games and so forth to individual persons therefore open up the prospect of individual, preferably user-controlled operation.
Cost considerations, including the danger of a customer in, say, a taxi or a ticket queue damaging the screen or control facilities, are another possible reason why screen-presented advertising is used only to a limited degree.

Systems for the display of advertising etc. in vehicles are known. Patent Publication WO 90/15508 A1 describes a system wherein a computer display screen is mounted on the rear of a seat back in a vehicle. The system is designed for the showing of material such as film clips or the like for entertainment purposes or for gambling, and also various types of services. Advertising may also be shown to the passenger when the system is in use.

US Patent Publication No. 5,618,232 describes a system to be installed in the seat backs of a passenger carrying vehicle and comprises a replaceable device which can be used for entertainment purposes or for gaming or gambling. The system makes use of, inter alia, GPS in order to prevent the system from being used for gambling in areas where it is prohibited.

US Patent Publication No. 4,756,528 describes a system wherein entertainment in the form of various types of television presentations can be shown on a screen that is located in the seat back on board a passenger carrier.

The object of all these systems is to show programs or games on a plurality of screens, so that there is one screen per user. They are quite large systems which are not intended specifically for use in smaller means of transport such as taxis, taxiplanes, taxiboats etc., or in a customer service location where just one customer or a small, discrete group of customers, e.g., 2-4 persons, spends a period of time of at least a few minutes. In a situation of this nature it would entail relatively substantial capital outlays to install a system for several users, and having several display screens, compared with the one screen that is usual in, for example, taxis today. In such situations, it would be an advantage if the one display screen were to be suitable for alternate viewing by the customer or customers or attendant person. An illustration of this is a taxicab where the driver and the customer or customers could use the same display screen in turn if the system was adapted therefor. Furthermore, there is a need for a system which for the customer or customers functions as a medium for the display of advertising material and possibly other material, whilst for the attendant person it functions as an aid for calculations and registrations.
The present invention comprises a computer system which does not have the said weaknesses and limitations of existing systems, but on the contrary has one and only one display screen and other components which in an efficient manner display data, including advertising, to the customer or customers when appropriate and display another attendant-relevant data set to the attendant person or driver when this is appropriate.

Another advantage of the present invention is that assistance in the process involved in fixing the price for the commodity or service takes place automatically on the basis of whether the customer chooses to see a program containing advertising material.

A further advantage of the invention is that it allows the automated display of advertising material on the basis of the choice of whether advertising is to be shown.

Another advantage of the invention is that it allows automated adjustment of the display screen towards the user or users on the basis of the choice of whether advertising is to be shown, and continued adjustment towards the driver if advertising is not to be shown.

A further advantage of the invention is that it allows control of what is to be displayed depending upon who is looking at the screen and upon other significant factors, and depending partly upon whether these relate to the attendant person or driver or customer or customers and partly upon the customer’s age, gender etc. and also the time of day and other factors which help to determine what is suitable for display.

Another advantage of the invention is that it allows the reception of television and/or the display of GPS on the screen when this is not being used to show advertising to the customer or customers.

The system according to the invention comprises a display screen which can be placed in at least two positions which are both very close to the user. This allows the use of a relatively small screen without it seeming small to either the attendant person or driver or the customer or customers, a feature which involves considerable advantages over a conventional screen position very close to one of the users, whilst others can hardly see the information on the screen without going to some trouble to do so.
The aforementioned advantages are obtained according to the invention by means of the features which are disclosed in the independent claims and in the subsidiary claims. Thus, in its basic embodiment the invention comprises:

- a local selection unit which registers whether the customer or customers would like to see some advertising;
- a local computer which receives data as the customer’s choice as regards advertising from the local selection unit, and on the basis thereof carries out an automatic adjustment of the price for the commodity or service;
- one and only one common display screen which is accessible to and is at a suitable viewing distance for both the customer or customers and the attendant person or driver.

The drawings which follow are attached to illustrate the invention. It should be noted that the same or similar parts in the different figures have been given the same reference numerals, but that the reference letters in Figs. 2 and 3 are unique to the individual figures.

Fig. 1 shows, in four sub-figures a, b, c and d, an outline of three combinations of fixing device and fixing point. The fixing devices are shown in this figure in use in a car (that is used as a taxi), but similar devices can be used in taxiplanes, taxiboats and similar means of transport, and also in connection with a service counter in a café, or in a hamburger bar, or for people waiting in a ticket office and in similar situations.

Fig. 2 shows a flow chart of one embodiment which is intended in particular for taxis, taxiplanes, taxiboats or the like, or to be more specific the data flow in a local computer system which is connected to a central computer.

Fig. 3 shows the data flow in the central database which is connected to a plurality of local computers as shown in Fig. 2.

Fig. 4 shows an example of a person-focused selection of script for advertising, news bulletins, weather forecast etc.

Figs. 5-15 show screen images which are relevant in the case of a particular embodiment, more precisely they show screen images relating to the different choices and information which is to be entered in the system in connection with a journey by taxi, taxiplane or taxiboat.
The relation between customer and attendant person which is suitable for the use of the system according to the invention is that the customer and attendant person are on their respective sides of a counter (as in a café), a window (as in taxis with plastic windows between the driver and passenger), a seat (as in certain means of transport) or the like. In this situation it is common today in many instances that the attendant person has a computer system with a single display screen at his or her disposal. An important factor according to the present invention is that by means of a minor improvement and adaptation of an existing system, or by replacing the existing system with a new, still relatively simple system, it is possible to make greater use of the single display screen, so that it is also of benefit to the customers.

A similar consideration applies to the other parts of a computer system as outlined above, in that the actual computer and control facilities can by means of quite small changes be remodeled or improved in order to be accommodated in a system which also directly serves the customers' needs for separate computer services. Thus, whilst they are waiting for the commodity or service, or whilst the service is being performed, the customer or customers can take part in games, see information, entertainment etc. interspersed by advertising. This can in turn be used for commercial purposes. This all means greater utilization of the computer equipment as a whole.

Fig. 1 shows three alternative embodiments of a fixing device which can be adjusted and optionally set at a suitable distance relative to the different users. The simplest embodiment is shown in Fig. 1a, which illustrates a pivotal screen 1 resting on a chair fixing device 2, which in turn is secured to a chair 6 that in this case is vacant. The driver 4 sits in seat 5 behind the instrument panel 3, and by turning to the right can see the display screen 1 whilst he/she talks to the passenger 8 in the back seat 7.

Fig. 1b illustrates a display screen 1 which is fixed via a pivotal arm 9 to the instrument panel 3. It would be an advantage if the arm 9 were arranged so as to be capable of being swung across the right-hand seat back 6.

Figs. 1c-d show the display screen 1 secured to a telescopic device 10 which is fixed in the center of the instrument panel 3. In Fig. 1c the telescopic device 10 has been retracted so that the arm 10 is as short as possible, thereby placing the screen 1 at a suitable distance from the driver 4, and requiring only perhaps to be turned about a point
of suspension outermost on the telescopic arm 10. In Fig. 1d the telescopic arm 10 has
been extended fully so that the screen is in a suitable position for the customer(s).

In addition to the fixing devices which are outlined in Fig. 1 the screen may be secured
and adjusted by means of a number of other devices such as slide rails (for example, in
the roof), flexible arms etc. With all these fixing devices it is important to take into
account the danger of collision if the data system is used in a passenger carrying vehicle.
It would be advantageous therefore if all parts were covered in a shock-absorbing
material. This applies also to the screen surface, where a shell of transparent, elastic
plastic could be used. Alternatively, or in addition, the actual mount of the screen could
be made so as to be flexible or non-rigid.

In order to move the display screen between the different positions, manual power can
be used, but according to the invention, the system may comprise mechanical or
motorized movement of the screen between the positions required, controlled by the
computer, and with the aid of the data which the attendant person - or the driver in the
case of a taxi - enters into the system.

Fig. 2 is a flow chart for an embodiment which is intended specifically for taxis,
taxiplanes, taxiboats or the like, or to be more precise a chart showing the data flow in a
local computer system which is connected to a central database. The customer or
customers choose whether they would like to see some advertising. As a quid pro quo
the customer concerned automatically takes part in a lottery in which he may win a free
ride. The driver registers data which decides which of a plurality of possible program
pack scripts with accompanying advertising is to be shown. In an alternative
embodiment, the customer himself can enter information in order to make this decision.

A more detailed description of an embodiment intended specifically for taxis, but which
may also be used in taxiplanes, taxiboats, around counters in cafés or hamburger bars
etc., now follows. Since the system in question is intended for international use the
screen images and programming language will be English.

In Fig. 2 data registration starts with the registration in box A (the box number is on the
left-hand side, in the margin) that one or more passengers have entered the vehicle (in
this case a taxi). This is registered by the driver, see Fig. 8. Prior to this, the driver has
entered certain other data which are not essential to the understanding of the present
invention - see Figs. 5-7.
The driver enters details about the passenger in boxes B-E. To be more specific, these details include gender (Fig. 9), age (Fig. 10) and whether the passenger in question would like to see some advertising (Fig. 11). On the screen page for the registration of gender (i.e., Fig. 9) it is also possible to select “Universal” - an option which is relevant when there is more than one passenger. The screen page (Fig. 11) for the registration of whether advertising is to be shown is designed in the form of questions re possible participation in a lottery wherein a lotto ride may be won. Here the point is that those who would like to see some advertising can take part in a draw for free rides. In an alternative, simpler embodiment the display of advertising material may involve a price reduction from which all participating passengers - optionally all participating customers - can benefit.

Out of regard for Norwegian-speaking readers whose knowledge of English is limited there follows a simple glossary to be of help in the reading the figures. It should be noted that the glossary is not complete. For instance, it does not contain words which are the same in both languages, or words or phrases which are of little or no importance for the understanding of the present invention.

<table>
<thead>
<tr>
<th>English</th>
<th>Norwegian</th>
<th>English</th>
<th>Norwegian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver</td>
<td>Sjåfør</td>
<td>Time</td>
<td>Tid</td>
</tr>
<tr>
<td>Male</td>
<td>Mann/gutt</td>
<td>Female</td>
<td>Kvinne/jente</td>
</tr>
<tr>
<td>Universal</td>
<td>Universal</td>
<td>Cancel</td>
<td>Avbryt</td>
</tr>
<tr>
<td>Lotto ride</td>
<td>Turlotteri</td>
<td>Lotto ride</td>
<td>Turlotteri</td>
</tr>
<tr>
<td>YES</td>
<td>JA</td>
<td>NO</td>
<td>NEI</td>
</tr>
<tr>
<td>Driver No.</td>
<td>Sjåførnr.</td>
<td>... thanks you for the ride. Welcome back!</td>
<td>... takker for turen. Velkommen tilbage!</td>
</tr>
</tbody>
</table>

When all the necessary information has been entered, the computer decides - on the basis of the information entered in box F - whether advertising etc. is to be shown or not. If advertising material is not to be shown, the further data processing is carried out as if the data system in question has not been introduced, apart from the fact that the data about the ride is entered in the total volume of data which is to be sent to the central processing unit - see the large ellipse at the bottom in the center of Fig. 2.
In the event that advertising is to be shown - and the passenger is to take part in the draw for free rides, the computer then determines the time of day (box G). The day is divided into blocks, i.e., 21:00-04:00, 04:00-12:00 and 12:00-21:00. On the basis of this and the information from boxes C+E+G, the computer selects the script that is appropriate in this case. The screen image (Fig. 12) known as “driver screen” then comes up. Here the driver can check that the information entered is correct. Fig. 13 illustrates the information shown to the driver, providing him/her with a last chance to cancel if the selected script is considered to be inappropriate. The screen can then be turned towards the passenger and the showing of the program containing advertising material can start. This is shown schematically in Fig. 13. The turning of the screen and possible repositioning can take place manually, or in a motorized manner. This is explained in more detail later in the description.

Fig. 14 shows the screen image which appears at the end of the ride. It should be noted that the dark text box at the top contains the following greeting to the customer: “... thanks you for the ride. Welcome back!” In Norwegian translation this reads: “... takker for turen. Velkommen igjen!” This screen image also contains text which is intended both for the driver and for the passenger - such as the fare. This screen image is therefore partly directed towards the attendant person, i.e., in this case the driver, and partly towards the customer(s). Here, it is entirely appropriate that the screen be capable of being directed and possibly distance-adjusted partly towards the driver and partly towards the customer.

In the event that the customer wins a free ride, the screen image in Fig. 14 will have a slightly different appearance, and will instead contain the message shown in the left-hand text box I (Fig. 2). At the top it will say “IT’S YOUR LUCKY DAY!!!!!” Further down it will say: *Driver Number ... thanks you for the trip. Welcome back! * Trip time in minutes. *You don’t have to pay!!! You won this trip! sponsored by ... i.e., Coca Cola. (An approximate Norwegian translation reads: “Dette er din Lykke Dag!!!! *Sjåfører ... takker deg for turen. Velkommen tilbake! *Turtid i minutter. * Du behøver ikke betale!!! Du vant denne turen! sponset av ... det vil si Coca Cola.)

Fig. 15 shows an example of the screen image for the computer in the central processing unit. Fig. 3 shows the data flow in the central processing unit. At the top data arrives from the local units which are connected to the system, in this case the taxis - see box A. This data communication takes place, for example, once every twenty-four hours as is
indicated in free text in the middle of the right-hand margin in Fig. 2. As is also stated in the free text at the bottom in Fig. 2, the data exchanged includes the day’s rides and the version numbers of the scripts (i.e., information about the advertising that has been used). This exchange of data takes place wirelessly, for example, via satellite (as mentioned, the system can and should preferably already include GPS, and thus equipment for satellite communication), cellular telephones or radio.

Fig. 3, box A, shows that the data received from the taxis includes: taxi number, driver number, gender, age group, number of persons, fare, time of day, duration of ride, whether the ride is included the ride lottery and whether the passenger won a prize - i.e., a free ride.

In box B all the taxi fares are added together, i.e., NOK 100,000 and 10% (i.e., NOK 10,000) of this sum is billed to the sponsors based on whether their advertisement has been shown to the customer(s) or not.

Once every twenty-four hours the central processing unit builds up a randomized sorted taxi list - see box C in Fig. 3. Now everything is in place for carrying out the advance draw of the ride lottery for the next day - on the basis of the preceding day’s total income for all the taxis collectively. This is shown further down the flow chart. Box D shows that the total prize sum is distributed to give 50% for rides in the NOK 50 class, 30% for rides in the NOK 100 class and the rest for rides in the NOK 200 class. In the example shown there will be 140 free rides spread over the total number of taxis.

Any remaining amount or overspill will go into a capital fund or treasure fund (box E and the ellipse on the right-hand side).

A randomized time is merged into the list - see box F. All the taxis in the unique taxi list are then merged in box G with the above (groups C and D). This causes a list of the following type to appear:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-004</td>
<td>14:00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>R-002</td>
<td>08:00</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>R-001</td>
<td>18:00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>R-005</td>
<td>06:00</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>R-003</td>
<td>23:00</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
so that all 140 prizes are divided among the taxis and at times for the earliest allocation of the free ride in question.

Lastly this file and updated or new scripts are then sent to all taxis which were in service on the previous day. (Unique taxi list.) As mentioned, this data transmission can take place via satellite, cellular phone or radio - that is, by some convenient, wireless means.

By returning to Fig. 15, it can now quite easily be seen that the large space in the middle includes the day's taxi rides listed according to taxi number. At the bottom on the left is a space which shows the unique taxi list - that is based on the previous day's rides. At the bottom on the right is a list of free groups. This screen image will not be gone into in more detail, but instead one detail, hitherto ignored, will be examined: the choice of the script that is to be shown to the individual customer or the discrete group of customers which are passengers on a particular ride.

Fig. 4 shows an example of person-focused selection of script for advertisements, news bulletins, weather forecast etc. This is the system for selection that is shown in the flow charts (Figs. 2 and 3) and in the exemplary computer program for the computer system. Imagine a ride that begins at 11:00. This time is automatically registered by the computer as **Morning**. Into the taxi climbs a **Woman** aged about 30, i.e., in the age group **18-35**. On the basis of this information, the program makes a selection of script no. **5**, with the content as given in the penultimate box. In the last box there is a more detailed description of what a script of this type includes.

The equipment which is to be used to enter the relevant information in the local computer includes at least one selection unit, i.e., a user interface in the form of a keyboard, a mouse or the like. In one embodiment all data is entered through the one selection unit. By using the exemplary computer program (see below) it may be appropriate to use a keyboard where the keys change function depending on the screen image that comes up. This principle is called "soft key", that means to say that the effect of the keys changes from menu to menu. Another possibility is to use a display screen which can function as an interface, the user pointing with a mouse or arrow keys, alternatively touching with a finger, a pointer, a pencil or the like. In a preferred embodiment only the driver is able to enter information in the local computer.

In another embodiment the customer may be provided with an interface which is limited to only entering information about gender and age, or other user-related or program-
related information which had to be chosen in another embodiment. Because there is a possibility that the customer might damage the equipment, or be uncertain as to how to operate it, the embodiment which involves the attendant person or driver entering all data is preferred. One exception will be games of the type which require active participation on the part of the customer.

The exemplary computer program which has been mentioned several times in the foregoing is designed with a view to being used in the system outlined in Figures 2 to 15 - i.e., tailor-made for taxis. However, it can without any modification also be used in taxiplanes, taxiboats and the like. With some minor changes it can also be used for the service counter in small cafés and in hamburger bars. The computer program is built around a database, using Visual Basic as the programming language, and is reproduced in the attachment.
1. A computer system for means of public transport, cafés and the like, ticket offices or the like, where the sale of a commodity or service takes place, and where there is a desire to link price to the question of whether the customer or a discrete group of customers watches and possibly listens to a program shown on a display screen with optional loudspeakers, and which includes, *inter alia*, advertising, **characterized in** that the system includes:

- a local selection unit which registers whether the customer or customers would like to see the program containing advertising material;
- a local computer (Fig. 2) which receives data regarding the customer’s choice as regards advertising from the local selection unit, and on the basis thereof carries out an automatic adjustment of the price of the commodity and/or service;
- one and only one common display screen (1 on Fig. 1) which is accessible to and at a suitable viewing distance for both the customer or customers (8 in Fig. 1) and the attendant person or driver (4 in Fig. 1).

2. A computer system according to claim 1, **characterized in** that the local computer (Fig. 2) by means of a permanent or temporary wireless connection (ellipse at the bottom of Fig. 2) exchanges data with a central processing unit (Figs. 3A +G).

3. A computer system according to claim 2, **characterized in** that it comprises the following devices which are built up, function separately, are interconnected and function together as follows:

in the local computer (Fig. 2) there is a customer registration device (A) for registering that a customer asks for a commodity or a service; a computer signal confirming this enters a gender registration device (C) which receives and registers data regarding the customer’s gender, or whether more than one customer is attended to simultaneously; the flow then passes into and through an age registration device (E) which receives and registers data regarding age, divided into a number of categories; subsequently the flow enters an advertising criterion device (F) which receives, registers and processes the customer’s decision of whether or not to see some advertising; the flow then passes out of the local part...
of the system and goes to a central computer (Fig. 3) if it has been registered that
the customer does not want to see any advertising; but if the customer would like
to see some advertising, the data flow then passes to a time division device (G)
which computes real time, and on the basis thereof allocates the sale of the
commodity or service to one of a number of time blocks, the day being divided
into a number of time blocks; the flow then passes to a script selector device (H)
which, on the basis of the aforementioned data re gender, age and time block,
chooses which of a number of advertising scripts with optional associated
material is to be seen or heard by the customer(s); from this device data then
passes to a display control device (not illustrated) which via a display screen
(Fig. 1, 1) and accompanying device(s) (Fig. 1, devices marked 2, 9, 10) shows
the selected script; a sub data flow also passes from the script selector device (H)
to a termination device (J) for the input of data to indicate that the commodity is
delivered or the performance of a service is terminated, this device (J) also
giving a signal to the display control device to indicate that the showing of the
program containing advertising is to be ended; and then to a price calculation
device (K) which on the basis of a file containing a draw list received from the
central computer and generated on the basis of the previous day's trips, sends to
the display screen (Fig. 1, 1) a message about a prize and indicating that the
customer is awarded an advantage in the form of a free commodity, service or
the like, or alternatively the price calculation device (K) transmits to the screen a
message re the price of the commodity or service; a marking device (box below
the price calculation device) then marks the prize as used and lastly the data flow
passes with the aid of a communication device (ellipse at the bottom of Fig. 2)
for wireless communication at least once every twenty-four hours to the central
computer (ellipse at the right-hand side in Fig. 2),

and the central computer (Fig. 3) is adapted to receive and collect in a data
receiving device (A) data of the aforementioned type and also the numerical
designation of the individual local computer (Fig. 2) and the numerical
designation of the attendant person from all participating local computers (Fig.
2); from this device the data flow passes to an adder or billing device (Fig. 3 B)
which calculates the total sales of the previous day, and takes out as a percentage
an advertising billing amount to be billed to the sponsors on the basis of the
extent to which the individual advertisement has been shown to the customers;
subsequently a list building device (C) builds up a unique randomized list of the
participating local computers, and on the basis of the advertising billing sum and
a division into different prize amounts, a prize device (D) works out a draw list
of the number of prizes and the size thereof, any excess amount passing into an
account calculation device (oval on the right-hand side in Fig. 3); from the prize
device (D) the data flow passes to a randomized time device (F) which chooses
at random a time from a number of times or periods of time during the course of
the following day and merges this into the draw list, then the unique randomized
list is merged into the draw list to give a list of the numerical designations of the
local computers with associated times or periods of time and prizes, and lastly
this draw list passes together with updated or new scripts for the showing of
advertising into a second transmission device (G) which is adapted to transfer
data wirelessly once every twenty-four hours to the local computers connected
and which were in function on the previous day (corresponds to the unique list).

4.
A data system according to one of the preceding claims, **characterized in** that the
selection unit is not accessible to the customer.

5.
A data system according to one of the preceding claims, **characterized in** that the
display screen (1 in Fig. 1) is placed on an adjustable fixing device (2, 9, 10 in Fig. 1).

6.
A computer system (Fig. 1) according to one of the preceding claims, **characterized in**
that the adjustable fixing device (2, 9, 10 in Fig. 1) is secured to the back of a seat (6) or
other device (3) which is in front of the customer or at a point so that the display screen
on correct adjustment can also be seen by the attendant person in the room or the driver
of the vehicle.

7.
A computer system (Fig. 1) according to the preceding claim, **characterized in** that the
adjustment of the display screen for the customer or customers (8) or for the attendant
person or driver of the vehicle (4) takes place mechanically and automatically with the
aid of a motorized adjustment device controlled by the local computer.
8. A computer system (Fig. 1) according to claim 6 or 7, characterized in that the screen (1) and the associated adjustable fixing device (2, 9, 10) are padded and/or secured in a flexible or non-rigid manner in order to diminish the risk of personal injury.

9. A computer system according to one of the preceding claims, characterized in that when the display screen has been adjusted so as to be seen by the customer or customers, the system shows a program containing advertising.

10. A computer system according to one of the preceding claims, characterized in that it is designed to be located in a means of public transport and comprises equipment for receiving and showing television and equipment for GPS so that when the means of transport is stationary the system can function as a television and/or show GPS-related information.
A passenger or several enters the taxi

The taxi driver enters information about the passenger(s)

Male, Female or Universal (group of people)

Number of persons riding

Under 18, 19-35 or Over 35

Loto ride or not

Computer calculates time of day
(Day divided into groups)
(e.g. 21:00-04:00, 04:00-12:00, 12:00-21:00)

Computer picks up the appropriate script (1...27)
based on the inputs and data from C+E+G

Appropriate script (1...27) is shown

Values
1, 2 or 3

1...11?
1, 2 or 3
1, or 2
1, 2 or 3

See sub flow-chart 1...27

Onsite database
Fig. 2 (Cont.)

Data goes into the onsite database, then transmitted to main database through appropriate media (e.g. satellite, cellular or radio)

Lotto check!!! (e.g. NOK 1-5 under the sum and time is after the randomized time 1-24)

1, or 2

Final data for the trip is shown:
* Driver number thanks you for the trip.
* Welcome back!
* Trip time in minutes.
* You don't have to pay!! You won this trip sponsored by... e.g. Coca-Cola

Mark the free ride as used!

Lotto file is transmitted e.g. once a day with control
THE LOTO ROUTINE

A. The main central database collects data from all of yesterday's taxi rides (all taxis) (Taxi number, Driver number, Sex, Age group, Number of persons, Fare, Time of day, Ridetime, Lotoride?, Free?)

B. All taxi-fares are added together, e.g. NOK 100,000, and e.g. 10% (10,000) of that amount is billed to the sponsored based on if their advertisement is shown or not to the passenger(s).

C. Build an unique randomized sorted taxi list, e.g:
 - R-001
 - R-002 computer
 - R-003 randomize
 - R-004
 - R-005
 - R-003

D. 50% of 10.00 (5,000) generates 100xNOK 50 rides
 30% of --- (3,000) ----- 30xNOK 100 rides
 20% of --- (2,000) ----- 10xNOK 200 rides
 This will generate 140 free rides for the next day

E. Any overspill of amount will go into a treasure fund

F. A randomized time from 1 to 24 is merged into the list

G. All the taxis in the unique taxi list are merged with the above (C + D groups)
 - R-004 14:00 50
 - R-002 08:00 200
 - R-001 18:00 50
 - R-005 06:00 50
 - R-003 23:00 100

G. This file and updated or new scripts is then sent to all the taxis which were operating yesterday (Unique Taxi-list)
 (Transmission could be satellite, cellular or radio)
Fig. 4.

EXAMPLE OF PERSON-FOCUSED SELECTION OF A SCRIPT

TIME OF DAY
(morning 11:00)

MORNING AFTERNOON NIGHT

3 OPTIONS

MALE FEMALE UNIVERSAL

3 OPTIONS

Under 18 18-35 Over 35

3 OPTIONS

THIS EXAMPLE WILL INITIATE SCRIPT NO. 5 WHICH MIGHT BE

30 seconds of Titanic trailer
20 seconds of Tampax advertisement
10 seconds of Coca Cola
30 seconds of Mask trailer
10 seconds of diet chocolate advertisement

Total
3x3x3=27 OPTIONS

This loop consists of 10 minutes of advertisement, film trailers, news bulletin and weather forecast to entertain the passenger until the ride is over.
Fig. 5

New Driver

Same Driver
Enter your unique driver number

Time: 00:21
Shift: 2

1 2 3 4 5 6 7 8 9 0

Your number is: 5678

Fig. 6
Welcome Mr. John Doe

Your driver number is: 5678

Time: 00:25 Shift: 2

You are now ready to pickup your first customer... Drive safely...
Time: 31/03 - 1998 00:28
START
Fig. 8
Fig. 10

18 - 35

Cancel

Under 18

Over 35

11/16
Trip Ends

Show

Cancel

Fig. 12

Start date + time: 31 MAR 98 00:28
End date + time:

Script: 5

Age group: 19 - 35

Sex: Female

Fare:

Driver: 001

Taxi: R-300

Time of the day: Night

1

SUBSTITUTE SHEET (RULE 26)
Driver: 5678 thanks you for the ride. Welcome back.

Start date + time: 31 MAR 98 00:09
End date + time: 31 MAR 98 00:34
Trip time: 25 minutes
Fare: 50 kroner

Cancel