(19) United States

(12) Patent Application Publication Alekseyev et al.
(10) Pub. No.: US 2011/0256610 A1

Pub. Date:
Oct. 20, 2011
(54) COMPOSITIONS AND METHODS

COMPRISING VARIANT MICROBLAL PROTEASES
(76) Inventors:
(21) Appl. No.:
(22) PCT Filed:
(86) PCT No.:
§ 371 (c)(1),
(2), (4) Date: Jun. 14, 2011

Related U.S. Application Data

(60) Provisional application No. 61/059,695, filed on Jun. 6, 2008.

Publication Classification

(51) Int. Cl.

C12N 9/56	(2006.01)
B08B 1/00	(2006.01)
DO6L 1/100	(2006.01)
C12S 1/00	(2006.01)
C11D 3/60	(2006.01)

ABSTRACT

The present invention provides variant subtilisins and compositions comprising at least one variant subtilisin set forth herein, as well as methods for using these variants and compositions. In some embodiments, the present invention provides variant proteases suitable for laundry cleaning applications.

Starting Gens Tagced Tivet

Digesthy Eam104I
FIG. 1A

FIG. 2A

FIG. 2B

COMPOSITIONS AND METHODS COMPRISING VARIANT MICROBIAL PROTEASES

FIELD OF THE INVENTION

[0001] The present invention provides variant subtilisins and compositions comprising at least one variant subtilisin set forth herein, as well as methods for using these variants and compositions.

BACKGROUND OF THE INVENTION

[0002] Serine proteases are a subgroup of carbonyl hydrolases comprising a diverse class of enzymes having a wide range of specificities and biological functions. Much research has been conducted on the subtilisins, due largely to their usefulness in cleaning and feed applications. Additional work has been focused on the adverse environmental conditions (e.g., exposure to oxidative agents, chelating agents, extremes of temperature and/or pH) which can adversely impact the functionality of these enzymes in various applications. Nonetheless, there remains a need in the art for enzyme systems that are able to resist these adverse conditions and retain or have improved activity over those currently known in the art.

SUMMARY OF THE INVENTION

[0003] The present invention provides variant subtilisins and compositions comprising at least one variant subtilisin set forth herein, as well as methods for using these variants and compositions. In particular, the present invention provides variant proteases suitable for laundry cleaning applications.
[0004] The present invention provides subtilisin variants comprising at least one modification, wherein the at least one modification is selected from G100C, S101D, S101H, Q103D, M124G, L126G, S132H, S161N, Q275Z, and/or at least one set of modifications selected from A001T/L096V/ G097S/A098D/D099I, A001V/G097S/A098R/D099G, V004M/A098D/D099G, V004M/D099R/G100S/Z100.01L, V004M/G127C/G128S/P129R, V004M/M119C/D120S, V008I/A098G/D099R, V008I/A098N, V008I/M119C/ D120G, Q010L/G097R/A098C/D099S, K012N/A098R/ D099V, K012R/G097D/A098H/D099G, A013T/S101R/ Q103S, A013V/G097N/A098H/D099G/G160S, A013V/ G097S/Z097.01R/A098R, A013V/G100R/S101G, A013V/ N118G/M119I, A013V/P129Z/S130H/S132G, P014L/ N062D/S101R/Q103S, P014S/A098S/D099G, A015T/ V068N/A069G, L016M/G128R/P129R/Z129.01G, H017Q/ G127R/P129G, H017Y/A098R/D099I, H017Y/A098R/ D099Z/S101G, H017Y/P129R, H017Y/S130Y/G131S/ S132L, Q019H/G128R/Z128.01R/P129D, Q019H/Z128. 01G/Z128.02G, G020D/G097R/A098G/D099C, G020D/ P129Z/S130G/G131R/S132C, N025Y/S101L/Q103N, A029V/G097R/A098S, S033I/T066G/H067R/V068D/ A216E, S038F/A098R/D099S, V044I/G097C/A098D/ D099G, V044I/G097R/A098R, V044I/G100S/S101G, A045V/G097C/A098R/D099S, A048V/G097L/A098G/ D099S, A048V/G100R/S101G, A048V/G128S/P129L/ Z129.01G, M050I/A098G, S053F/S130I/S132G, S053T/ D099H/S101Z, E054D/A098R/D099G, T055I/S101R/ Q103R, T055S/T066I/Z066.01G/Z066.02G, Q059H/ D099S/S101G, Q059H/M119S/D120R, Q059K/M119V/ V121C, Q059L/P129G, N061D/G128R/P129V/Z129.01G, S063T/G097D/A098R/D099S, G065R/Z101.01R/Z101.

02G, T066S/H067S, V068C/A069G, V068C/A069G/ H238Q, V068G/A069G, V068G/A069G/V150I, V068G/ A069S, V068I/A069G/A144V, V068I/G097D/A098G/ D099Z/G100R, V068L/A069G, V068L/A069S, V068S/ A069G, V068S/A069G/A116T, A069G/T071G, A069G/ T071I, L075G/N076G/N077Z, L075R/N076G/N077Z, N076D/D099R/Z100.01G, 1079F/A098G, V081A/S101R/ Q103V, V081I/G097R/A098G/D099C, V084D/G097S/ A098G/D099N, V084I/G127C/P129G, V084I/G127L, A085V/A098G, A085V/G097R/A098S/D099N, A085V/ G128S/P129R/Z129.01G, A085V/N218I, A085V/S101G, A085V/S204P, A085V/Z099.01H/S101R, P086S/G131D/ S132G, P086T/S101D/Q103S/V147I, A088S/S101R/ Q103V, A088T/A098R/D099R, A088T/D099G/Z100.01G, A088T/G127N/P129R, A088T/G127S/P129R/Q206R/ A273S, A088T/P129S/G146D, A088T/S101G, A088T/ S130R/G131H/S132N, A088V/G100Z/S101C/Q103R, A088V/P129Z, A092G/S249R, A092G/V093C, A092G/ V093L, A092G/V093L, A092L/V093G/K094Z, A092S/ K094V, A092S/V093C, A092S/V093G, A092S/V093S, A092V/V093L, V093I/G128D/P129R, V093I/P129Z, V093R/Z093.01G/K094R, K094E/V095D, K094S/V148I, L096I/N118R/M119C/D120G/A151V, Z096.01D/A098R, Z096.01H/A098G, Z096.01N/A098H, Z096.01R/A098C, Z096.01R/A098G, Z096.01R/A098G/V192I, Z096.01R/ A098R, Z096.01R/A098R/V192A, Z096.01R/A098S, Z096. 01R/A098S/G157S, Z096.01R/Z096.02G, Z096.01R/Z096. 02G/V147I, Z096.01S/A098G, Z096.01S/A098N, G097C/ A098D/D099S, G097C/A098G/D099G, G097C/A098G/ D099N, G097C/A098G/D099S, G097C/A098G/D099S/ G100Z, G097C/A098G/D099V, G097C/A098N/D099S, G097C/A098R, G097C/A098R/D099G, G097C/A098R/ D099H, G097C/A098R/D099H, G097C/A098R/D099N, G097C/A098R/D099R, G097C/A098R/D099R/N109D/ A114S, G097C/A098S/D099H/A151V, G097C/A098V/ D099S, G097C/Z097.01G/A098H/T253I, G097C/Z097. 01S/A098G, G097D/A098C, G097D/A098G/D099G, G097D/A098G/D099R, G097D/A098H/D099R, G097D/ A098H/D099V, G097D/A098R/D099G, G097D/A098R/ D099R, G097D/A098R/D099S, G097D/A098R/D099Z, G097D/G100C/S101R, G097D/G100R/S101G, G097H/ A098C/D099G, G097H/A098D/D099N, G097H/A098G, G097H/A098G/D099G, G097H/A098G/D099R, G097H/ A098G/D099Z, G097H/A098G/D099Z/A151V, G097H/ A098G/D099Z/G100R, G097H/A098G/D099Z/G100V, G097H/A098G/D099Z/S101N/G166S, G097H/A098R, G097H/A098R/D099G, G097H/A098R/D099L, G097H/ A098R/D099N, G097H/A098S/D099G, G097H/A098S/ D099I, G097H/A098S/D099L, G097H/A098S/D099S/ K237E, G097L/A098C/D099S, G097L/A098G/D099S, G097L/A098G/D099S/G100Z, G097L/A098G/D099Z, G097L/A098H, G097L/A098R/D099N, G097L/A098V, G097N/A098G/D099C, G097N/A098G/D099R, G097N/ A098G/D099R/V270I, G097N/A098G/D099S, G097N/ A098G/D099V, G097N/A098G/D099V/A151V, G097N/ A098G/D099V/S101F, G097N/A098H/D099N, G097N/ A098R/D099R, G097N/A098R/D099S, G097N/A098R/ D099V, G097N/A098S/D099S, G097R/A098C, G097R/ A098C/D099S, G097R/A098F/A200V, G097R/A098G, G097R/A098G/D099C, G097R/A098G/D099G, G097R/ A098G/D099G/A273T, G097R/A098G/D099S, G097R/ A098G/D099S/A133D, G097R/A098G/D099V, G097R/ A098H/D099C/S182N, G097R/A098H/D099G, G097R/ A098N/D099G, G097R/A098N/D099Z, G097R/A098R,

G097R/A098R/D099C, G097R/A098R/D099G, G097R/ A098R/D099S, G097R/A098S/D099C, G097R/A098S/ D099G, G097R/A098S/D099L, G097R/A098S/D099R, G097R/A098S/D099S, G097R/A098S/D099V, G097R/ A098V/D099G, G097R/Z097.01H/A098C, G097R/Z097. 01R/A098G, G097R/Z097.01R/A098G/V147I, G097R/ Z097.01R/A098S, G097R/Z097.01R, G097R/Z097.01S/ A098G, G097R/Z097.01S/A098R, G097S/A098C, G097S/ A098C/D099G, G097S/A098C/D099H, G097S/A098C/ D099L, G097S/A098C/D099R, G097S/A098C/D099S, G097S/A098C/D099Z, G097S/A098G/D099F, G097S/ A098G/D099G, G097S/A098G/D099G, G097S/A098G/ D099S, G097S/A098G/D099Z, G097S/A098G/D099Z/ G100R, G097S/A098H/D099C, G097S/A098H/D099G, G097S/A098N/D099G, G097S/A098R, G097S/A098R/ D099C, G097S/A098R/D099G, G097S/A098R/D099L, G097S/A098R/D099V, G097S/A098R/D099Y, G097S/ A098S/D099G, G097S/A098S/D099G/A133V/A153V/ S236Y. G097S/A098S/D099G/A153V, G097S/A098S/ D099Z, G097S/Z097.01D/A098G/A144T/Q271H, G097S/ Z097.01G/A098V, G097S/Z097.01S/A098G, G097S/Z097. 01S/A098G/A273T, G097S/Z097.01Y, G097V/A098R, G097V/A098R/D099G, G097V/A098S/D099S, G097Y/ A098H/D099N, G097Z/A098S/D099H, Z097.01D/A098R/ D099G, Z097.01D/A098S/D099L, Z097.01D/A098V/ D099G, Z097.01G, Z097.01G/A098G, Z097.01G/A098G/ D099S, Z097.01G/A098R, Z097.01G/A098R/D099C, Z097.01G/A098R/D099G, Z097.01G/A098R/D099S, A098C/D099G, A098C/D099G/A116T, A098C/D099H, A098C/D099L, A098C/D099L/K213R, A098C/D099L, A098C/D099N, A098C/D099R, A098C/D099S, A098C D099S/P194L, A098D/D099C, A098D/D099G, A098D/ D099G/G100L, A098D/D099H/G100S, A098D/D099H/ H238Y, A098D/D099R, A098D/D099R/G100D, A098D/ D099R/G160S, A098F/D099S/G100L, A098G/D099C, A098G/D099G, A098G/D099G/A228T, A098G/D099G/ G100H, A098G/D099G/N243D, A098G/D099G/S101P, A098G/D099G/T244S, A098G/D099G, A098G/D099H, A098G/D099L, A098G/D099R, A098G/D099R/A116T, A098G/D099R/G100D, A098G/D099R/V148I, A098G/ D099S, A098G/D099S/L267M, A098G/D099V, A098G/ D099Z, A098H/D099C, A098H/D099G, A098H/D099G/ A216T, A098H/D099G/G100D, A098H/D099G/G100N/ L267M, A098H/D099G/G100S, A098H/D099G/V143I, A098H/D099R, A098H/D099R/G100S, A098H/D099S/ G100C, A098H/D099S/G100N, A098H/D099Y, A098H/ D099G, A098I/D099S, A098L/D099G, A098L/D099S, A098N/D099G, A098N/D099L, A098N/D099S, A098R A144T, A098R/A274V, A098R/D099C, A098R/D099G, A098R/D099G/G100C, A098R/D099G/G100D, A098R/ D099G/G100L/S145T, A098R/D099G/G100N, A098R/ D099G/G100R, A098R/D099G/G100S, A098R/D099G/ V150I, A098R/D099H, A098R/D099I, A098R/D099L, A098R/D099N, A098R/D099N/G100L, A098R/D099R, A098R/D099R/G100D, A098R/D099R/S101Z, A098R/ D099R/S130F, A098R/D099R, A098R/D099S, A098R/ D099S/G100L/A153V, A098R/D099S/, A098R/D099V, A098R/D099Z/S101G, A098R/G100C/A137T, A098R/ G100S, A098S/D099C, A098S/D099G, A098S/D099G/ G100C, A098S/D099G/G100D, A098S/D099G/G100R/ L250I, A098S/D099G/G100S, A098S/D099G/Z099.01R, A098S/D099H, A098S/D099H/M124V, A098S/D099H/ Z099.01R/G169A/V180A, A098S/D099R, A098S/D099R/ G100L, A098S/D099R/G154S, A098S/D099R/G166S,

A098S/D099R/Z100.01G, A098S/D099S, A098S/D099S/ Z099.01R, A098S/D099V, A098T/P129Z/S130R/S132G, A098T/S101G, A098V/D099G, A098V/D099G/G100D, A098V/D099G/G100D/A153V, A098V/D099G/G100S, A098Y/D099R/G100L, A098Y/D099R/G100Z/S101Z/ G102D, A098Z/S101R, Z098.01N, Z098.01R, Z098.01R/ G100R, D099C/K136N, D099C/S101D, D099C/S101R, D099C/S101Z, D099C/Z099.01S, D099C/Z100.01G, D099F/S101Z, D099G/G100C, D099G/G100D/S101R, D099G/G100H, D099G/G100R/S101V, D099G/G100S/ S101R, D099G/S101G, D099G/S101H, D099G/S101V, D099G/S101Z, D099G/S101Z/N269D, D099G/Z099.01N, D099G/Z099.01R/G100S, D099G/Z099.01S, D099G/Z100. 01G, D099G/Z100.01G/S183N/Q275K, D099H/S101Z, D099H/S101Z/V150I, D099H/Z100.01G/A273V, D099H/ Z100.01G/Z100.02G, D099I/Z099.01S, D099L/N118D, D099L/S101G, D099L/S101V, D099L/Z100.01G, D099N/ A116T, D099N/G100R/S101V, D099N/S101G, D099N/ S101H, D099N/S101Z, D099N/Z099.01S, D099N/Z100. 01G, D099R/S101D, D099R/S101G, D099R/S101V, D099R/S101Z, D099R/S101Z/A133T, D099R/Z099.01N, D099R/Z099.01S, D099R/Z100.01G, D099R/Z100.01N, D099S/S101G, D099S/S101I, D099S/S101Z, D099S/Z099. 01H, D099S/Z099.01L, D099S/Z099.01V, D099S/Z100. 01G, D099S/Z100.01G/Z100.02G, D099V/S101D, D099V/ S101V, D099V/S101Z, Z099.01H/S101L, Z099.01H/Z099. 02R, Z099.01N/S101R, Z099.01S, Z099.01S/S101V, Z099. 01S/Z099.02G/A228T, G100D/S101G, G100D/S101R, G100H/G102V, G100H/S101G, G100H/S101R, G100L/ S101G, G100L/S101R, G100N/S101D, G100N/S101L, G100N/S101R, G100R/L267R/I268V, G100R/S101G, G100R/S101G/G160S/S182N, G100R/S101G/Q103Z Y104Z/S161N, G100R/S101G/S163N, G100R/S101N, G100R/S101R, G100R/S101R/Q103Z/V270I, G100R/ S101Z/G102C/Q103D, G100S/S101C, G100S/S101G, G100S/S101R, G100S/S101R, G100S/S101V, G100S/ S101V/A231T, Z100.01G, Z100.01L, Z100.01N, Z100.01R, Z100.01R/S101G, S101C/Q103I, S101C/Q103S, S101D/ Q103C, S101D/Q103D, S101D/Q103F, S101D/Q103H, S101D/Q103H, S101D/Q103R, S101D/Q103R/H238Y, S101D/Q103S, S101D/Q103V, S101F/Q103G, S101G/ A151V, S101G/A179V, S101G/G102S, S101G/Q103G, S101G/Q103L, S101G/Q103N, S101G/Q103R, S101G/ Q103R/A179T, S101G/Q103R/G157D, S101G/Q103S, S101G/Q103S/L233S, S101G/Q103S/L233S, S101G/ Q245H, S101G/S249N, S101G/V139I, S101G/Z101.01R, S101G/Z101.01R/A200T, S101G/Z102.01G, S101H/ G102S, S101H/Q103D, S101H/Q103G, S101H/Q103G/ E251Q, S101H/Q103H, S101H/Q103I, S101H/Q103R, S101H/Q103R/A274Z/Q275Z, S101H/Q103S, S101H/ Q103V, S101I/Q103R, S101L/G102S/Q103R, S101L/ Q103D, S101L/Q103G, S101L/Q103R, S101L/Q103R/ A138T, S101L/Q103R/V121I/K213E, S101L/Q103S, S101L/Q103V, S101L/Z101.01R, S101N/Q103R, S101N/ Z102.01G, S101R/A151V, S101R/A273V, S101R/E156G, S101R/G102L/Q103G, S101R/G102S, S101R/G102S/ Q103R, S101R/G102S/Q103V, S101R/G131D, S101R/ Q103C, S101R/Q103D, S101R/Q103D/S248R, S101R/ Q103G, S101R/Q103G/A116T, S101R/Q103G/V147I/ A153V, S101R/Q103G, S101R/Q103L, S101R/Q103N, S101R/Q103R, S101R/Q103R/S161N, S101R/Q103R/ V148I, S101R/Q103S, S101R/Q103S/L126F, S101R/ Q103V, S101V/Q103G, S101V/Q103H, S101V/Q103N/ Z275.01K, S101V/Q103R, S101V/Q103V, S101Y/G102S/

Q103R, S101Y/Q103L, S101Y/Q103S, S101Y/Q103V, S101Z/G102I/Q103H/Y104G/L135F, S101Z/G102V/ Q103R/Y104L, S101Z/Q103D, S101Z/Q103F, S101Z/ Q103L, S101Z/Q103R, G102C/Q103L/Y104S, G102R/ Q103C/Y104C/V192I, G102R/Q103G/Y104R, G102R/ Q103R/Z103.01G, G102Z/Q103S, Z102.01G/Q103R, Z102. 01G/Q103R/L267V, Z102.01G/Z102.02R/Z102.03G, Q103H/Y104N/Q275Z, Q103N/E156D, Q103R/I122L/ N123S/M124V, Q103R/Y104F, Q103Y/S182N, S105G/ P129S/S130H/G131H, W106C/A116D/N117S/N118C, N109S/M119C/D120G/V121L, A116G/N117Z/N118R/ M119C, A116H/N117G/N118R, N117C/N118G/M119S, N117C/N118G/M119S/A216V, N117G/N118G/M119C, N117G/N118R/M19C, N117H/N118C/M119C, N117H/ N118D/M119S, N117H/N118G/M119C, N117H/N118G/ M19L, N117H/N118G/M119S, N117H/N118G/M119V, N117H/N118H/M119V, N117H/N118R/M119C, N117H/ N118R/M119S, N117H/N118S/M119C, N117H/N118S/ M19S, N117H/N118S/M119V, N117I/N118G/M119V, N117L/N118G/M119V, N117R/N118G/M119C, N117R/ N118G/M119I/V270I, N117R/N118G/M119S, N117R/ N118H/M119V, N117R/N118R/M119C, N117R/N118R/ M119I, N117R/N118R/M119S, N117R/N118R/M119V, N117R/N118S/M119I, N117R/N118S/M119L, N117S/ N118G/M119C, N117S/N118G/M119S, N117S/N118H/ M19V, N117S/N118R/M119V, N117V/N118G/M119C, N117V/N118H/M119C, N117Y/N118G/M119S, N117Y/ N118G/M119V, Z117.01G/N118R/M119C, N118C/ M19V/D120S, N118C/Z118.01G/M119C, N118D/ M19C/D120L, N118D/M19S/D120R, N118G/M119C/ D120G, N118G/M119C/D120L, N118G/M119I/D120R, N118G/M119N, N118G/M119S/D120G, N118G/M119S/ D120R, N118G/M119V/D120G, N118G/M119V/D120S/ S182N, N118H/M119C/D120R, N118H/M119I/D120G, N118H/M119N/V148I, N118H/M119S/D120G, N118H/ M19V/D120G, N118R/M119C, N118R/M119C/D120G, N118R/M119C/D120R, N118R/M119S, N118R/M119S/ D120G, N118R/M119S/D120R, N118R/M119S/D120S, N118R/M119V/D120C, N118R/M119V/D120G, N118R/ M19V/D120G/A232T, N118S/M119C/D120R, M119C/ D120G, M119C/D120G/V121I, M119C/D120G/V121L, M119C/D120H, M119C/D120H/A187V, M119C/D120R, M119H/V121I, M119I/D120C, M119I/D120G, M119I/ D120R, M119L/D120G, M119S/D120R, M119S/D120S/ V121I, M119S/V121I, M119V/D120C, M119V/D120G, M119V/D120R, M119V/D120S/V198L, D120G/I122C, D120G/I122C/L217S, D120G/I122G, D120G/I122V, D120H/I122L, D120H/V121C/I122V, D120N/V121L/ I122V, D120R/A151V, D120R/I122V, D120R/V121I, D120R/V121I/I122C, D120R/V121I/I122C/A228T, D120S/ I122C/A133S, V121C/I122C/N123C, V121C/I122G/ N123V, V121C/I122S/N123V, V121C/I122V/N123S, V121I/I122C/N123C, V121I/I122C/V150I, V121I/I122G/ N123C, V121I/I122S/N123C, V121I/I122S/N123I, V121I/ I122V/N123S, V121L/I122S/N123V, V121L/N123C, I122C/N123C, $\quad \mathrm{I} 122 \mathrm{C} / \mathrm{N} 123 \mathrm{~S} / \mathrm{M} 124 \mathrm{~L}, \quad \mathrm{I} 122 \mathrm{D} / \mathrm{N} 123 \mathrm{~V} /$ M124L, I122G/N123C/M124L, I122G/N123G/Z123.01C, I122H/N123V/M124LI122S/N123S, I122V/N123G/ M124C/A138V, I122V/N123S/M124I, I122V/S183G, N123C/M124S, N123C/M124V, N123S/M124L, N123S/ M124S, M124C/L126S, M124C/L126S/T244I, M124C/ L126V, M124I/L126H, L126F/P129Z, L126F/P129Z/ S182N, L126I/P129Z, L126R/G127R, Z126.01S, G127C/ G128S/P129R, G127C/P129G, G127C/P129G/A200T,

G127C/P129R, G127C/P129R/A153T, G127D/P129G, G127D/P129S, G127H/P129G, G127H/P129R, G127L/ P129R, G127N/P129C, G127N/P129G, G127N/P129G/ A133T, G127N/P129G/A151V/K213N, G127N/P129R, G127N/P129S/A273V, G127N/P129V, G127R/A230V, G127R/P129D, G127R/P129D/L217S, G127R/P129G, G127R/P129R, G127R/P129S, G127S/P129D, G127S/ P129F, G127S/P129G, G127S/P129G/G166D, G127S/ P129G/I175T, G127S/P129R, G127S/P129S, G127S/ P129V, G127V/P129G, G127V/P129R, Z127.01G/Z127. 02H/P129D, Z127.01G/Z127.02H/P129G, Z127.01G/Z127. 02H/P129R, Z127.01H/G128C/P129C/A230V, Z127.01H/ P129G, Z127.01H/P129G/V148I, Z127.01H/P129R, Z127. 01N/G128C/P129V, Z127.01N/G128S/P129S, Z127.01N/ G128S/P129V, Z127.01N/P129R, Z127.01R/G128S/P129S, Z127.01R/P129G, Z127.01S/P129D, Z127.01S/P129G, Z127.01S/P129R, G128D/P129G, G128D/P129R/Z129. 01R, G128D/P129S/G154S, G128H/P129C, G128H/P129H/ Z129.01G, G128H/P129H/Z129.01R, G128H/P129R, G128H/P129R/Z129.01G, G128H/P129R/Z129.01R, G128H/P129S/Z129.01G, G128H/P129S/Z129.01R, G128H/P129S/Z129.01R/S248N, G128H/P129Y, G128H/ Z128.01R/P129D, G128H/Z128.01R/P129S, G128H/Z128. 01R/P129S/A144T, G128H/Z129.01R, 128N/P129R/Z129. 01G, G128N/P129R/Z129.01R, G128N/P129S/Z129.01D, G128N/Z128.01R/P129S, G128R/P129G, G128R/P129H/ Z129.01G, G128R/P129L/Z130.01S, G128R/P129R, G128R/P129R/Z129.01G, G128R/P129R/Z129.01G/ A216V, G128R/P129S, G128R/P129S/Z129.01G, 128R/ P129Z/S130R/S132G, G128R/Z128.01R/P129D, G128R/ Z128.01R/P129F, G128S/P129C, G128S/P129C/Z129.01R, G128S/P129D, G128S/P129D/S248R, G128S/P129D/ T244N, G128S/P129G, G128S/P129G/A187V, G128S/ P129H/Z129.01R, G128S/P129R/L209F, G128S/P129R/ Z129.01G, G128S/P129S/Z129.01D, G128S/P129S/Z129. 01R, G128S/P129V, G128Y/P129R/Z129.01G, Z128.01G, Z128.01G/P129D, Z128.01G/P129R, Z128.01G/P129S/ A134T, Z128.01G/Z128.02G, Z128.01R/P129D, Z128.01R/ Z128.02G/P129S, Z128.01R/Z128.02H/P129G/G160S, Z128.01R/Z128.02R/P129D, Z128.01Y/Z128.02H/P129R, P129C/S130C/S132Z, P129D/Z129.01G/Z129.02D/ G160D, P129D/Z129.01G/Z129.02G, P129G/G131Z, P129G/S130G/Z131.01G, P129G/S130H/S132Z, P129G/ S130R/S132Z, P129G/V270I, P129G/Z129.01G, P129G/ Z129.01R/Z129.02G, P129H/G131Z, P129H/G131Z/ S132C, P129H/G131Z/S132H, P129H/S132Z, P129H/ Z130.01D/Z130.02S, P129R/G131Z/S132H, P129R/ S130D/S132Z, P129R/S130N/G131Z, P129R/S132T, P129R/S132Z, P129R/Z129.01G, P129R/Z129.01G/Z129. 02G, P129R/Z129.01G/Z129.02G/A144T, P129R/Z129. 01G/Z129.02G/G146D, P129R/Z129.01G/Z129.02R, P129R/Z129.01G, P129R/Z129.01R/Z129.02G, P129S/ G131ZP129S/S130H/S132Z, P129S/Z129.01C, P129S/ Z129.01R/Z129.02S, P129S/Z130.01N/Z130.02S, P129V/ S132Z, P129Z, P129Z/G131R/S132C, P129Z/S130G, P129Z/S130G/G131H/S132H, P129Z/S130G/G131V, P129Z/S130H, P129Z/S130H/S132G, P129Z/S130H/ S132N, P129Z/S130L, P129Z/S130R, P129Z/S130R/ G131C, P129Z/S130R/G131C, P129Z/S130R/G131D/ S132C, P129Z/S130R/G131H/A144E, P129Z/S130R/ G131H/S132D, P129Z/S130R/G131R/S132D, P129Z/ S130R/L267M, P129Z/S130R/S132C, P129Z/S130R/ S132G, P129Z/S130V/S132G, P129Z/S130Z/G131N/ S132G, S130D/G131C/S132D, S130D/G131R, S130D/

G131R/S132D, S130D/G131Z, S130D/G131Z/S132H, S130F/G131N/S132V, S130F/G131S/S132V, S130F/S132V, S130G/G131D/S132C, S130G/G131H/S132D, S130G/ G131S/S132I, S130G/S132G, S130H/G131C/S132G, S130H/G131H/S132R, S130H/G131R/S132C, S130H/ G131S, S130H/G131S/S132C, S130H/S132Z, S130I/ G131S/S132H, S130I/S132G, S130N/G131S/S132C, S130R/G131R/S132C, S130R/G131S/S132C/S161N, S130R/S132G, S130R/S132G/S183N, S130R/S132Z, S130V/G131D/S132I, S130V/G131H/S132C, S130V/ S132N, S130V/S132Z, S130Y/G131H/S132C, S130Y/ S132G, S130Z/G131H/S132H, G131H/S132L/W241R, G131N/S132C, G131S/S132G, G131Y/S132G, and A142V/ G211V, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
[0005] The present invention also provides subtilisin variants comprising at least one set of modifications, wherein said set of modifications is selected from: V072G/G097A/ G128A/Y217Q, G097A/G128S/Y217Q, G097A/G128S/ P129D/Y217Q, G097A/G128A/A134T/Y217Q, M124V/ L126A/Y217Q, G097A/G128A/P129D/Y217Q/A232P, G097A/G128A/P129D/Y217Q, G097A/G128S/P129V/ A134T/Y217Q, G097A/G128S/P129V/Y217Q, V068I/ G097A/G128S/P129D/Y217Q, G097A/S101D/G128S/ S204F/Y217Q/S236F/T254P, G097A/S101D/G128S/ Y217Q, G097A/G128A/P129V/Y217Q, G097A/S101D/ G128A/Y217Q, G097A/S101D/G128S/P129D/Y217Q, G097A/S101D/G128A/A134T/Y217Q, G097A/Z099.01S/ A114S/G128S/Y217Q, G097A/S101D/G128A/P194L/ Y217Q, G097A/Z099.01S/G128S/Y217Q, G097A/S101D/ G128A/P129D/Y217Q, Q019R/G097A/Z099.01S/G128S/ P129D/Y217Q, G097A/G100S/G128S/Y217Q, G097A/ S101D/G128S/P129V/Y217Q, G097A/Z099.01S/G128A/ A134T/Y217Q, G097A/G100S/I107V/G128S/P129D/ Y217Q, G097A/G100S/G128S/Y217Q/A230V, G097A/ G100S/G128A/Y217Q/K237N, G097A/Z099.01S/G128S/ P129D/Y217Q, G097A/G100S/G128S/P129D/Y217Q, Z096.01D/G097A/A098R/G128A/Y217Q, G097A/Z099. 01S/I122S/N123G/G128A/Y217Q, G097A/Z099.01S/ I122S/N123G/G128A/Y217Q/T220A/A232T, P005S/ G097A/Z099.01S/S101D/G128A/Y217Q, G097A/S101D/ G128A/P129V/Y217Q, V093Z/K094S/V095C/L096S/ G097A/G128A/Y217Q, G097A/G100S/S101D/G128A/ Y217Q/A232P, Z096.01D/G097A/A098R/S101D/G128A/ Y217Q, and G097A/Z099.01S/G100S/G128A/Y217Q, wherein the positions correspond to the positions of BPN subtilisin of SEQ ID NO:2.
[0006] The present invention further provides subtilisin variants comprising at one set of modifications, wherein said set of modifications is selected from: G097A/G128S/P129T/ Y217Q, G097A/G128A/P129S/Y217Q, G097A/G128S/ P129C/Y217Q, G097A/G128S/P129Q/Y217Q, G097A/ G128S/P129E/Y217Q, G097A/P129S/Y217Q, G097A/ G128S/P129A/Y217Q, G097A/G128S/P129K/Y217Q, G097A/P129N/Y217Q, G097A/P129E/Y217Q, G097A/ G128S/P129K/G131S/Y217Q, G097A/G128S/P129R/ Y217Q, G097A/G128S/P129V/Y217Q, G097A/G128S/ P129Y/Y217Q, G097A/G128A/P129R/Y217Q, G097A/ G128H/P129S/Y217Q, G097A/G128N/P129S/Y217Q/ V270A, G097A/G128S/P129L/Y217Q, G097A/P129R/ Y217Q, G097A/P129W/Y217Q, G097A/P129Z/S130A/ Y217Q, G097A/G128H/P129R/Y217Q, G097A/G128H/ P129T/Y217Q, G097A/P129G/Y217Q, G097A/G128N/ P129A/Y217Q, G097A/G128H/Y217Q, G097A/G128S/

P129W/Y217Q, G097A/P129Z/Y217Q, G097A/G128N/ Z128.01A/P129S/Y217Q, G097A/G128N/Y217Q, G097A/ G128A/P129L/Y217Q, G097A/G128T/P129N/Y217Q, G097A/G128H/P129A/Y217Q, G097A/G128M/P129R/ Y217Q, G097A/G128Q/P129K/Y217Q, G097A/G128T/ P129Q/Y217Q, G097A/G128T/P129H/Y217Q, G097A/ G128T/P129R/Y217Q, G097A/G128D/P129E/Y217Q, G097A/G128T/P129T/Y217Q, G097A/G128T/P129A/ Y217Q, G097A/G128Z/P129Z/Y217Q, G097A/G128S/ Z128.01A/P129S/Y217Q, G097A/G128N/P129M/Y217Q, G097A/G128N/P129V/Y217Q, G097A/G128E/P129K/ Y217Q, G097A/G128N/Z128.01A/P129F/Y217Q, G097A/ G128C/P129R/Y217Q, G097A/G128T/P129M/Y217Q, G097A/G128R/Z128.01A/P129S/Y217Q, G097A/G128S/ Z128.01A/P129A/Y217Q, G097A/G128D/Y217Q, G097A/ G128T/P129Y/Y217Q, G097A/G128R/P129S/Y217Q, G097A/G128R/Z128.01A/P129T/Y217Q, G097A/G128R/ Z128.01A/P129A/Y217Q, G097A/G128T/P129W/Y217Q, G097A/G128Y/Z128.01A/P129R/Y217Q, G097A/G128C/ P129D/Y217Q, V084L/G097A/P129Z/Y217Q, G097A/ G128R/P129D/Y217Q, G097A/G128A/Z128.01A/P129H/ E195A/Y217Q, G097A/G128S/Z128.01A/P129Y/Y217Q, G097A/G128N/P129L/Y217Q, G097A/G128C/P129H/ Y217Q, G097A/G128T/Z128.01A/P129T/Y217Q, G097A/ G128C/Z128.01A/P129A/Y217Q, G097A/G128S/Z128. 01A/P129I/Y217Q, G097A/G128S/Z128.01A/P129E/ Y217Q/Q271H, G097A/G128S/Z128.01A/P129L/Y217Q, G097A/G128Y/Z128.01A/P129S/Y217Q, G097A/G128S/ Z128.01A/P129M/R186H/Y217Q, G097A/G128E/Z128. 01A/P129D/Y217Q, G097A/G128T/P129L/Y217Q, G097A/G128F/P129D/Y217Q, G097A/G128V/Z128.01A/ P129R/Y217Q, G097A/G128L/Z128.01A/P129S/Y217Q, G097A/G128Y/P129T/Y217Q, G097A/G128C/P129Y/ Y217Q, G097A/G128C/P129T/Y217Q, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
[0007] The present invention also provides subtilisin variants comprising at least one set of modifications, wherein said set of modifications is selected from: G097A/G128A/ Y217Q/M222Q, M124V/L126A/P129V/Y217Q, G128A/ P129V/Y217Q, G097A/G128A/P129V/Y217Q, N123G/ P129V/Y217Q, V301I/Z096.01D/G097A/A098R/G128A/ Y217Q, Z096.01D/A098R/G128A/Y217Q, Z096.01D/ A098R/M124V/L126A/Y217Q, G097A/Z098.01S/G128A/ Y217Q, Z096.01D/A098R/N123G/Y217Q, Z096.01D/ G097A/A098R/G128A/Y217Q/S236F, Z098.01S/M124V/ L126A/Y217Q, Z098.01S/G128A/Y217Q, Z096.01D/ G097A/A098R/G128A/Y217Q, V093I/Z098.01S/M124V/ L126A/Y217Q, A073V/Z098.01S/N123G/Y217Q, G065D/ Z098.01S/G128A/Y217Q, I011L/Z098.01S/G128A/ Y217Q, L082F/Z096.01D/A098R/N123G/Y217Q, Z098. 01S/N123G/A138V/Y217Q, and Z098.01S/N123G/Y217Q, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
[0008] The present invention also provides subtilisin variants comprising the substitution Y217L and further at least one set of any of the modification sets provided above, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2. The present invention further provides subtilisin variants comprising the substitutions G97A/G128A/Y217Q and further comprising at least one modification of any of the modifications sets provided herein, wherein the positions correspond to the positions of BPN^{\prime} subtilisin of SEQ ID NO:2.
[0009] The present invention also provides cleaning compositions comprising at least one subtilisin variant as provided herein. In some preferred embodiments, the cleaning composition is a laundry detergent. In some particularly preferred embodiments, the laundry detergent is a heavy duty liquid laundry detergent. In some alternative embodiments, the cleaning composition is a dish detergent. In some further embodiments, the cleaning compositions further comprise one or more additional enzymes or enzyme derivatives selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratinases, reductases, oxidases, phenol oxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof. In some further embodiments, the cleaning compositions further comprise at least one stabilizing agent. In still some additional embodiments, the cleaning compositions comprise at least 0.0001 weight percent of at least one of any of the subtilisin variants provided herein, and optionally, at least one suitable adjunct ingredient.
[0010] In some embodiments, the present invention provides methods of cleaning, the method comprising the steps of: contacting a surface and/or an article comprising a fabric with at least one of the cleaning compositions set forth herein and optionally washing and/or rinsing the surface or article. [0011] The present invention also provides animal feeds comprising at least one subtilisin variant provided herein, as well as food processing compositions comprising at least one subtilisin variant provided herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 shows a diagram illustrating the method used for creating in-frame deletions and insertions. Library was designed to have 33% of clones with substitutions; 33% of clones with insertions and 33% of clones with deletions.
[0013] FIG. 2A Plasmid map of pAC-FNA10. The plasmid elements are as follows: pUB110=DNA fragment from plasmid pUB110 (McKenzie et al., Plasmid 15:93-103 [1986], pBR322 $=$ DNA fragment from plasmid pBR322 (Bolivar et al., Gene 2:95-113 [1977]), pC194=DNA fragment from plasmid pC194 (Horinouchi and Weisblum, J. Bacteriol 150: 815-825 [1982]).
[0014] FIG. 2B provides a map of pHPLT-FNA.
[0015] FIG. 2C provides a map of pHPLT-BPN. Vector pHPLT contains the LAT promoter (PLAT), a sequence encoding the LAT signal peptide (preLAT). The origin of replication and neoR are derived from plasmid pUB110.

DESCRIPTION OF THE INVENTION

[0016] The present invention provides variant subtilisins and compositions comprising at least one variant subtilisin set forth herein, as well as methods for using these variants and compositions. The modification of the precursor proteases of the invention to produce these variant subtilisins includes at least one substitution, at least one deletion, or at least one insertion. In some embodiments, the modification comprises a combination of mutations. For example, in some embodiments, the modification includes a combination of at least one substitution and at least one deletion. In some other embodiments, the modification includes a combination of at least one substitution and at least one insertion. In some
further embodiments, the modification includes a combination of at least one deletion and at least one insertion. In yet other embodiments, the modification includes a combination of at least one substitution, at least one deletion, and at least one insertion.
[0017] Several suitable methods are known in the art for generating modified polynucleotide sequences of the present invention, including but not limited to site-saturation mutagenesis, scanning mutagenesis, insertional mutagenesis, deletion mutagenesis, random mutagenesis, site-directed mutagenesis, and directed-evolution, as well as various other recombinatorial approaches. The commonly used methods include DNA shuffling (See, Stemmer, Proc Natl Acad Sci USA. 25:10747-51 [1994]), methods based on non-homologous recombination of genes (e.g. ITCHY) (Ostermeier et al., Bioorg Med Chem. 7:2139-44 [1999]), SCRACHY (Lutz et al. Proc Natl Acad Sci USA. 98:11248-53 [2001]), SHIPREC (Sieber et al., Nat Biotechnol., 19:456-60 [2001]), and NRR (Bittker et al., Nat Biotechnol., 20:1024-9 [2001]; Bittker et al., Proc Natl Acad Sci. USA. 101:7011-6 [2004]), and methods that rely on the use of oligonucleotides to insert random and targeted mutations, deletions and/or insertions (Ness et al., Nat Biotechnol. 20:1251-5 [2002]; Coco et al., Nat Biotechnol., 20:1246-50 [2002]; Zha et al., Chembiochem. 3:34-9 [2003], Glaser et al., J Immunol., 149:3903-13 [1992], Sondek and Shortie, Proc Natl Acad Sci USA 89:3581-5 [1992], Yáñez et al., Nucleic Acids Res., 32:e158 [2004], Osuna et al., Nucleic Acids Res., 32:e136 [2004], Gaytán et a1., Nucleic Acids Res., 29:E9 [2001], and Gaytán et al., Nucleic Acids Res., 30:e84 [2002]).
[0018] In some embodiments, the full-length parent polynucleotide is ligated into an appropriate expression plasmid, and the following mutagenesis method is used to facilitate the construction of the modified protease of the present invention, although other methods may be used. The method is based on that described by Pisarchik et al. (Pisarchik et al., Prot. Eng. Des. Select., 20:257-265 [2007]). In some embodiments, an added advantage is provided, in that the restriction enzyme used herein cuts outside its recognition sequence, which allows digestion of practically any nucleotide sequence and precludes formation of a restriction site scar. First, as described herein, a naturally-occurring gene encoding the full-length protease is obtained and sequenced and scanned for one or more points at which it is desired to make a mutation (deletion, insertion, substitution, or a combination thereof) at one or more amino acids. Mutation of the gene in order to change its sequence to conform to the desired sequence is accomplished by primer extension in accord with generally known methods. Fragments to the left and to the right of the desired point(s) of mutation are amplified by PCR and to include the Eam1 104I restriction site. The left and right fragments are digested with Eam1 104I to generate a plurality of fragments having complementary three base overhangs, which are then pooled and ligated to generate a library of modified sequences containing one or more mutations. This method avoids the occurrence of frame-shift mutations. In addition, this method simplifies the mutagenesis process because all of the oligonucleotides can be synthesized so as to have the same restriction site, and no synthetic linkers are necessary to create the restriction sites as is required by some other methods

Compositions
[0019] The present invention provides variant proteases and compositions comprising at least one of the variant sub-
tilisins set forth herein. In some embodiments, the present invention provides means to produce protease with various commercial applications where degradation or synthesis of polypeptides are desired, including cleaning compositions, as well as feed components, textile processing, leather finishing, grain processing, meat processing, food processing, preparation of protein hydrolysates, digestive aids, microbicidal compositions, bacteriostatic compositions, fungistatic compositions, and personal care products (e.g., oral care, hair care, and/or skin care).
[0020] The present invention further provides enzyme compositions have comparable or improved wash performance, as compared to presently used subtilisin proteases.

Cleaning Compositions

[0021] The cleaning composition of the present invention are advantageously employed for example, in laundry applications. Indeed, due to the unique advantages of increased effectiveness in lower temperature solutions, the enzymes of the present invention are ideally suited for laundry applications. Furthermore, the enzymes of the present invention may be employed in both granular and liquid compositions.
[0022] The variant proteases of the present invention also find use laundry cleaning additive products. In some embodiments, low temperature solution cleaning applications find use. The additive product may be, in its simplest form, one or more proteases. In some embodiments, the additive is packaged in dosage form for addition to a cleaning process. Any suitable single dosage form also finds use with the present invention, including but not limited to pills, tablets, gelcaps, or other single dosage units such as pre-measured powders or liquids. In some embodiments, filler(s) or carrier material(s) are included to increase the volume of such composition. Suitable filler or carrier materials include, but are not limited to, various salts of sulfate, carbonate and silicate as well as talc, clay and the like. Suitable filler or carrier materials for liquid compositions include, but are not limited to water or low molecular weight primary and secondary alcohols including polyols and diols. Examples of such alcohols include, but are not limited to, methanol, ethanol, propanol and isopropanol. In some embodiments, the compositions contain from about 5% to about 90% of such materials. Acidic fillers find use to reduce pH . Alternatively, the cleaning additive include adjunct ingredients as more fully described below.
[0023] The present cleaning compositions and cleaning additives require an effective amount of at least one of the protease variants provided herein, alone or in combination with other proteases and/or additional enzymes. The required level of enzyme is achieved by the addition of one or more protease variants of the present invention. Typically the present cleaning compositions comprise at least about 0.0001 weight percent, from about 0.0001 to about 1 , from about 0.001 to about 0.5 , or even from about 0.01 to about 0.1 weight percent of at least one of the variant proteases of the present invention.
[0024] The cleaning compositions herein are typically formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of from about 5.0 to about 11.5 or even from about 7.5 to about 10.5. Liquid product formulations are typically formulated to have a neat pH from about 3.0 to about 9.0 or even from about 3 to about 5. Granular laundry products are typically formulated to have a pH from about 9 to about 11. Techniques for controlling pH at recom-
mended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
[0025] Suitable low pH cleaning compositions typically have a neat pH of from about 3 to about 5, and are typically free of surfactants that hydrolyze in such a pH environment. Such surfactants include sodium alkyl sulfate surfactants that comprise at least one ethylene oxide moiety or even from about 1 to about 16 moles of ethylene oxide. Such cleaning compositions typically comprise a sufficient amount of a pH modifier, such as sodium hydroxide, monoethanolamine or hydrochloric acid, to provide such cleaning composition with a neat pH of from about 3 to about 5 . Such compositions typically comprise at least one acid stable enzyme. In some embodiments, the compositions are liquids, while in other embodiments, they are solids. The pH of such liquid compositions is typically measured as a neat pH . The pH of such solid compositions is measured as a 10% solids solution of said composition wherein the solvent is distilled water. In these embodiments, all pH measurements are taken at $20^{\circ} \mathrm{C}$.
[0026] In some embodiments, when the variant protease(s) is/are employed in a granular composition or liquid, it is desirable for the variant protease to be in the form of an encapsulated particle to protect the variant protease from other components of the granular composition during storage. In addition, encapsulation is also a means of controlling the availability of the variant protease during the cleaning process. In some embodiments, encapsulation enhances the performance of the variant protease(s) and/or additional enzymes. In this regard, the variant proteases of the present invention are encapsulated with any suitable encapsulating material known in the art. In some embodiments, the encapsulating material typically encapsulates at least part of the catalyst for the variant protease(s) of the present invention. Typically, the encapsulating material is water-soluble and/or water-dispersible. In some embodiments, the encapsulating material has a glass transition temperature (Tg) of $0^{\circ} \mathrm{C}$. or higher. Glass transition temperature is described in more detail in WO $97 / 11151$. The encapsulating material is selected from consisting of carbohydrates, natural or synthetic gums, chitin, chitosan, cellulose and cellulose derivatives, silicates, phosphates, borates, polyvinyl alcohol, polyethylene glycol, paraffin waxes, and combinations thereof When the encapsulating material is a carbohydrate, it is typically selected from monosaccharides, oligosaccharides, polysaccharides, and combinations thereof. Typically, the encapsulating material is a starch. Suitable starches are described in EP 0922 499; U.S. Pat. No. 4,977,252; U.S. Pat. No. $5,354,559$, and U.S. Pat. No. $5,935,826$. In some embodiments, the encapsulating material is a microsphere made from plastic such as thermoplastics, acrylonitrile, methacrylonitrile, polyacrylonitrile, polymethacrylonitrile and mixtures thereof; commercially available microspheres that find use include those supplied by EXPANCEL® (Stockviksverken, Sweden), and PM 6545, PM 6550, PM 7220, PM 7228, EXTENDOSPHERES®, LUXSIL®, Q-CEL®, and SPHERICEL® (PQ Corp., Valley Forge, Pa.)>
[0027] As described herein, the variant proteases of the present invention find particular use in laundry detergents. These applications place enzymes under various environmental stresses. The variant proteases of the present invention provide advantages over many currently used enzymes, due to their stability under various conditions.
[0028] Indeed, there are a variety of wash conditions including varying detergent formulations, wash water vol-
umes, wash water temperatures, and lengths of wash time, to which proteases involved in washing are exposed. In addition, detergent formulations used in different geographical areas have different concentrations of their relevant components present in the wash water. For example, a European detergent typically has about $4500-5000 \mathrm{ppm}$ of detergent components in the wash water, while a Japanese detergent typically has approximately 667 ppm of detergent components in the wash water. In North America, particularly the United States, detergents typically have about 975 ppm of detergent components present in the wash water.
[0029] A low detergent concentration system includes detergents where less than about 800 ppm of detergent components are present in the wash water. Japanese detergents are typically considered low detergent concentration system as they have approximately 667 ppm of detergent components present in the wash water.
[0030] A medium detergent concentration includes detergents where between about 800 ppm and about 2000 ppm of detergent components are present in the wash water. North American detergents are generally considered to be medium detergent concentration systems as they have approximately 975 ppm of detergent components present in the wash water. Brazil typically has approximately 1500 ppm of detergent components present in the wash water.
[0031] A high detergent concentration system includes detergents where greater than about 2000 ppm of detergent components are present in the wash water. European detergents are generally considered to be high detergent concentration systems as they have approximately $4500-5000 \mathrm{ppm}$ of detergent components in the wash water.
[0032] Latin American detergents are generally high suds phosphate builder detergents and the range of detergents used in Latin America can fall in both the medium and high detergent concentrations as they range from 1500 ppm to 6000 ppm of detergent components in the wash water. As mentioned above, Brazil typically has approximately 1500 ppm of detergent components present in the wash water. However, other high suds phosphate builder detergent geographies, not limited to other Latin American countries, may have high detergent concentration systems up to about 6000 ppm of detergent components present in the wash water.
[0033] In light of the foregoing, it is evident that concentrations of detergent compositions in typical wash solutions throughout the world varies from less than about 800 ppm of detergent composition ("low detergent concentration geographies"), for example about 667 ppm in Japan, to between about 800 ppm to about 2000 ppm ("medium detergent concentration geographies"), for example about 975 ppm in U.S. and about 1500 ppm in Brazil, to greater than about 2000 ppm ("high detergent concentration geographies"), for example about 4500 ppm to about 5000 ppm in Europe and about 6000 ppm in high suds phosphate builder geographies.
[0034] The concentrations of the typical wash solutions are determined empirically. For example, in the U.S., a typical washing machine holds a volume of about 64.4 L of wash solution. Accordingly, in order to obtain a concentration of about 975 ppm of detergent within the wash solution about 62.79 g of detergent composition must be added to the 64.4 L of wash solution. This amount is the typical amount measured into the wash water by the consumer using the measuring cup provided with the detergent.
[0035] As a further example, different geographies use different wash temperatures. The temperature of the wash water
in Japan is typically less than that used in Europe. For example, the temperature of the wash water in North America and Japan is typically between 10 and 30° C. (e.g., about 20° C.), whereas the temperature of wash water in Europe is typically between 30 and $60^{\circ} \mathrm{C}$. (e.g., about $40^{\circ} \mathrm{C}$.).
[0036] As a further example, different geographies typically have different water hardness. Water hardness is usually described in terms of the grains per gallon mixed $\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+}$. Hardness is a measure of the amount of calcium $\left(\mathrm{Ca}^{2+}\right)$ and magnesium $\left(\mathrm{Mg}^{2+}\right)$ in the water. Most water in the United States is hard, but the degree of hardness varies. Moderately hard ($60-120 \mathrm{ppm}$) to hard ($121-181 \mathrm{ppm}$) water has 60 to 181 parts per million (parts per million converted to grains per U.S. gallon is ppm \# divided by 17.1 equals grains per gallon) of hardness minerals.

Water	Grains per gallon	Parts per million
Soft	less than 1.0	less than 17
Slightly hard	1.0 to 3.5	17 to 60
Moderately hard	3.5 to 7.0	60 to 120
Hard	7.0 to 10.5	120 to 180
Very hard	Greater than 10.5	greater than 180

[0037] European water hardness is typically greater than 10.5 (for example 10.5-20.0) grains per gallon mixed $\mathrm{Ca}^{2+} /$ Mg^{2+} (e.g., about 15 grains per gallon mixed $\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+}$). NorthAmerican water hardness is typically greater than Japanese water hardness, but less than European water hardness. For example, North American water hardness can be between 3 to 10 grains, 3-8 grains or about 6 grains. Japanese water hardness is typically lower than North American water hardness, usually less than 4 , for example 3 grains per gallon mixed $\mathrm{Ca}^{2+} / \mathrm{Mg}^{2+}$.
[0038] Accordingly, in some embodiments, the present invention provides variant proteases that show surprising wash performance in at least one set of wash conditions (e.g., water temperature, water hardness, and/or detergent concentration). In some embodiments, the variant proteases of the present invention are comparable in wash performance to other subtilisin proteases. In some embodiments, the variant proteases of the present invention exhibit enhanced wash performance as compared to subtilisin proteases currently commercially available. Thus, in some preferred embodiments of the present invention, the variant proteases provided herein exhibit enhanced oxidative stability, enhanced thermal stability, and/or enhanced chelator stability. In addition, the variant proteases of the present invention find use in cleaning compositions that do not include detergents, again either alone or in combination with builders and stabilizers.
[0039] In some embodiments of the present invention, the cleaning compositions comprise at least one variant protease of the present invention at a level from about 0.00001% to about 10% by weight of the composition and the balance (e.g., about 99.999% to about 90.0%) comprising cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention comprises at least one variant protease at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% by weight of the composition and the balance of the cleaning composition (e.g., about 99.9999% to about 90.0%, about
99.999% to about 98%, about 99.995% to about 99.5% by weight) comprising cleaning adjunct materials.
[0040] In some embodiments, preferred cleaning compositions comprise one or more additional enzymes or enzyme derivatives which provide cleaning performance and/or fabric care benefits, in addition to one or more of the variant proteases provided herein. Such enzymes include, but are not limited to other proteases, lipases, cutinases, amylases, cellulases, peroxidases, oxidases (e.g., laccases), and/or mannanases.
[0041] Any other suitable protease finds use in the compositions of the present invention. Suitable proteases include those of animal, vegetable or microbial origin. In some particularly preferred embodiments, microbial proteases are used. In some embodiments, chemically or genetically modified mutants are included. In some embodiments, the protease is a serine protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases include subtilisins, especially those derived from Bacillus (e.g., subtilisin, lentus, amyloliquefaciens, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168). Additional examples include those mutant proteases described in U.S. Pat. Nos. RE 34,606, 5,955,340, 5,700,676, 6,312,936, and $6,482,628$, all of which are incorporated herein by reference. Additional protease examples include, but are not limited to trypsin (e.g., of porcine or bovine origin), and the Fusarium protease described in WO 89/06270. Preferred commercially available protease enzymes include MAXATASE®, MAXACAL ${ }^{\text {TM }}$, MAXAPEM ${ }^{\mathrm{TM}}$, OPTICLEAN®, OPTIMASE®, PROPERASE®, PURAFECT® and PURAFECT® OXP (Genencor); ALCALASE®, SAVINASER, PRIMASE®, DURAZYM ${ }^{\text {TM }}$, RELASE® and ESPERASE® (Novozymes); and BLAP ${ }^{\text {TM }}$ (Henkel Kommanditgesellschaft auf Aktien, Duesseldorf, Germany. Various proteases are described in WO95/23221, WO 92/21760, and U.S. Pat. Nos. 5,801,039, 5,340,735, 5,500,364, 5,855, 625, U.S. RE 34,606, 5,955,340, 5,700,676, 6,312,936, and $6,482,628$, and various other patents.
[0042] In addition, any suitable lipase finds use in the present invention. Suitable lipases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are encompassed by the present invention. Examples of useful lipases include Humicola lanuginosa lipase (See e.g., EP 258 068, and EP 305 216), Rhizomucor miehei lipase (See e.g., EP 238 023), Candida lipase, such as C. antarctica lipase (e.g., the C. antarctica lipase A or B; See e.g., EP 214 761), a Pseudomonas lipase such as P. alcaligenes and P. pseudoalcaligenes lipase (See e.g., EP 218 272), P. cepacia lipase (See e.g., EP 331 376), P. stutzeri lipase (See e.g., GB 1,372,034), P. fluorescens lipase, Bacillus lipase (e.g., B. subtilis lipase [Dartois et al., Biochem. Biophys. Acta 1131:253-260 [1993]); B. stearothermophilus lipase [See e.g., JP 64/744992]; and B. pumilus lipase [See e.g., WO 91/16422]).
[0043] Furthermore, a number of cloned lipases find use in some embodiments of the present invention, including but not limited to Penicillium camembertii lipase (See, Yamaguchi et al., Gene 103:61-67 [1991]), Geotricum candidum lipase (See, Schimada et al., J. Biochem., 106:383-388 [1989]), and various Rhizopus lipases such as R. delemar lipase (See, Hass et al., Gene 109:117-113 [1991]), a R. niveus lipase (Kugimiya et al., Biosci. Biotech. Biochem. 56:716-719 [1992]) and R. oryzae lipase.
[0044] Other types of lipolytic enzymes such as cutinases also find use in some embodiments of the present invention, including but not limited to the cutinase derived from Pseudomonas mendocina (See, WO 88/09367), and the cutinase derived from Fusarium solani pisi (See, WO 90/09446). [0045] Additional suitable lipases include commercially available lipases such as M1 LIPASE ${ }^{\text {TM }}$, LUMA FAST™, and LIPOMAXTM (Genencor); LIPOLASE® and LIPOLASE® ULTRA (Novozymes); and LIPASE PTM "Amano" (Amano Pharmaceutical Co. Ltd., Japan).
[0046] In some embodiments of the present invention, the cleaning compositions of the present invention further comprise lipases at a level from about 0.00001% to about 10% of additional lipase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention also comprise, lipases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% lipase by weight of the composition.
[0047] Any amylase (alpha and/or beta) suitable for use in alkaline solutions also find use in some embodiments of the present invention. Suitable amylases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Amylases that find use in the present invention, include, but are not limited to α-amylases obtained from B. licheniformis (See e.g., GB 1,296,839). Commercially available amylases that find use in the present invention include, but are not limited to DURAMYL®, TERMAMYL®, FUNGAMYL® and BAN ${ }^{\text {TM }}$ (Novozymes) and RAPIDASE® and MAXAMYL(B) P (Genencor).
[0048] In some embodiments of the present invention, the cleaning compositions of the present invention further comprise amylases at a level from about 0.00001% to about 10% of additional amylase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention also comprise, amylases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% amylase by weight of the composition.
[0049] In some further embodiments, any suitable cellulase finds used in the cleaning compositions of the present invention. Suitable cellulases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Suitable cellulases include, but are not limited to Humicola insolens cellulases (See e.g., U.S. Pat. No. 4,435,307). Especially suitable cellulases are the cellulases having color care benefits (See e.g., EP 0495 257). Commercially available cellulases that find use in the present include, but are not limited to CELLUZYME® (Novozymes), and KAC-500(B) ${ }^{\text {TM }}$ (Kao Corporation). In some embodiments, cellulases are incorporated as portions or fragments of mature wild-type or variant cellulases, wherein a portion of the N -terminus is deleted (See e.g., U.S. Pat. No. $5,874,276$). In some embodiments, the cleaning compositions of the present invention further comprise cellulases at a level from about 0.00001% to about 10% of additional cellulase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention also comprise cellulases at a level of about 0.0001% to about 10%, about 0.001%
to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% cellulase by weight of the composition.
[0050] Any mannanase suitable for use in detergent compositions also finds use in the present invention. Suitable mannanases include, but are not limited to those of bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. Various mannanases are known which find use in the present invention (See e.g., U.S. Pat. No. 6,566,114, U.S. Pat. No. 6,602,842, and U.S. Pat. No. $6,440,991$, all of which are incorporated herein by reference). In some embodiments, the cleaning compositions of the present invention further comprise mannanases at a level from about 0.00001% to about 10% of additional mannanase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention also comprise, mannanases at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% mannanase by weight of the composition.
[0051] In some embodiments, peroxidases are used in combination with hydrogen peroxide or a source thereof (e.g., a percarbonate, perborate or persulfate) in the compositions of the present invention. In some alternative embodiments, oxidases are used in combination with oxygen. Both types of enzymes are used for "solution bleaching" (i.e., to prevent transfer of a textile dye from a dyed fabric to another fabric when the fabrics are washed together in a wash liquor), preferably together with an enhancing agent (See e.g., WO 94/12621 and WO 95/01426). Suitable peroxidases/oxidases include, but are not limited to those of plant, bacterial or fungal origin. Chemically or genetically modified mutants are included in some embodiments. In some embodiments, the cleaning compositions of the present invention further comprise peroxidase and/or oxidase enzymes at a level from about 0.00001% to about 10% of additional peroxidase and/ or oxidase by weight of the composition and the balance of cleaning adjunct materials by weight of composition. In other aspects of the present invention, the cleaning compositions of the present invention also comprise peroxidase and/or oxidase enzymes at a level of about 0.0001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.005% to about 0.5% peroxidase and/or oxidase enzymes by weight of the composition.
[0052] In some embodiments, additional enzymes find use, including but not limited to perhydrolases (See e.g., WO 05/056782). In addition, in some particularly preferred embodiments, mixtures of the above mentioned enzymes are encompassed herein, in particular one or more additional protease, amylase, lipase, mannanase, and/or at least one cellulase. Indeed, it is contemplated that various mixtures of these enzymes will find use in the present invention. It is also contemplated that the varying levels of the variant protease(s) and one or more additional enzymes may both independently range to about 10%, the balance of the cleaning composition being cleaning adjunct materials. The specific selection of cleaning adjunct materials are readily made by considering the surface, item, or fabric to be cleaned, and the desired form of the composition for the cleaning conditions during use (e.g., through the wash detergent use).
[0053] Examples of suitable cleaning adjunct materials include, but are not limited to, surfactants, builders, bleaches, bleach activators, bleach catalysts, other enzymes, enzyme stabilizing systems, chelants, optical brighteners, soil release
polymers, dye transfer agents, dispersants, suds suppressors, dyes, perfumes, colorants, filler salts, hydrotropes, photoactivators, fluorescers, fabric conditioners, hydrolyzable surfactants, preservatives, anti-oxidants, anti-shrinkage agents, anti-wrinkle agents, germicides, fungicides, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, alkalinity sources, solubilizing agents, carriers, processing aids, pigments, and pH control agents (See e.g., U.S. Pat. Nos. 6,610, 642, 6,605,458, 5,705,464, 5,710,115, 5,698,504, 5,695,679, $5,686,014$ and $5,646,101$, all of which are incorporated herein by reference). Embodiments of specific cleaning composition materials are exemplified in detail below. In embodiments in which the cleaning adjunct materials are not compatible with the variant proteases of the present invention in the cleaning compositions, then suitable methods of keeping the cleaning adjunct materials and the protease(s) separated (i.e., not in contact with each other) until combination of the two components is appropriate are used. Such separation methods include any suitable method known in the art (e.g., gelcaps, encapsulation, tablets, physical separation, etc.).
[0054] By way of example, several cleaning compositions wherein the variant proteases of the present invention find use are described in greater detail below. In embodiments in which the cleaning compositions of the present invention are formulated as compositions suitable for use in laundry machine washing method(s), the compositions of the present invention preferably contain at least one surfactant and at least one builder compound, as well as one or more cleaning adjunct materials preferably selected from organic polymeric compounds, bleaching agents, additional enzymes, suds suppressors, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. In some embodiments, laundry compositions also contain softening agents (i.e., as additional cleaning adjunct materials). The compositions of the present invention also find use detergent additive products in solid or liquid form. Such additive products are intended to supplement and/or boost the performance of conventional detergent compositions and can be added at any stage of the cleaning process. In some embodiments, the density of the laundry detergent compositions herein ranges from about 400 to about $1200 \mathrm{~g} /$ liter, while in other embodiments, it ranges from about 500 to about 950 $\mathrm{g} /$ liter of composition measured at $20^{\circ} \mathrm{C}$.
[0055] In some embodiments, various cleaning compositions such as those provided in U.S. Pat. No. 6,605,458 find use with the variant proteases of the present invention. Thus, in some embodiments, the compositions comprising at least one variant protease of the present invention is a compact granular fabric cleaning composition, while in other embodiments, the composition is a granular fabric cleaning composition useful in the laundering of colored fabrics, in further embodiments, the composition is a granular fabric cleaning composition which provides softening through the wash capacity, in additional embodiments, the composition is a heavy duty liquid fabric cleaning composition. In some embodiments, the compositions comprising at least one variant protease of the present invention are fabric cleaning compositions such as those described in U.S. Pat. Nos. 6,610,642 and $6,376,450$. In addition, the variant proteases of the present invention find use in granular laundry detergent compositions of particular utility under European or Japanese washing conditions (See e.g., U.S. Pat. No. 6,610,642).
[0056] The cleaning compositions of the present invention are formulated into any suitable form and prepared by any
process chosen by the formulator, non-limiting examples of which are described in U.S. Pat. Nos. 5,879,584, 5,691,297, $5,574,005,5,569,645,5,565,422,5,516,448,5,489,392$, and $5,486,303$, all of which are incorporated herein by reference. When a low pH cleaning composition is desired, the pH of such composition is adjusted via the addition of a material such as monoethanolamine or an acidic material such as HCl . [0057] While not essential for the purposes of the present invention, the non-limiting list of adjuncts illustrated hereinafter are suitable for use in the instant cleaning compositions. In some embodiments, these adjuncts are incorporated for example, to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the cleaning composition as is the case with perfumes, colorants, dyes or the like. It is understood that such adjuncts are in addition to the variant proteases of the present invention. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the cleaning operation for which it is to be used. Suitable adjunct materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, deposition aids, dispersants, additional enzymes, and enzyme stabilizers, catalytic materials, bleach activators, bleach boosters, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids and/or pigments. In addition to the disclosure below, suitable examples of such other adjuncts and levels of use are found in U.S. Pat. Nos. 5,576,282, $6,306,812$, and $6,326,348$, that are incorporated by reference. The aforementioned adjunct ingredients may constitute the balance of the cleaning compositions of the present invention. [0058] In some embodiments, the cleaning compositions according to the present invention comprise a surfactant or surfactant system wherein the surfactant is selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semipolar nonionic surfactants and mixtures thereof.
[0059] In some additional embodiments, the cleaning compositions of the present invention comprise one or more detergent builders or builder systems. Builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates, alkali metal silicates, alkaline earth and alkali metal carbonates, aluminosilicate builders polycarboxylate compounds. ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetracetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, citric acid, oxydisuccinic acid, polymaleic acid, benzene $1,3,5$-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
[0060] In some further embodiments, the cleaning compositions herein contain a chelating agent. Suitable chelating agents include copper, iron and/or manganese chelating agents and mixtures thereof.
[0061] In some still further embodiments, the cleaning compositions provided herein contain a deposition aid. Suitable deposition aids include, polyethylene glycol, polypropylene glycol, polycarboxylate, soil release polymers such as
polytelephthalic acid, clays such as Kaolinite, montmorillonite, atapulgite, illite, bentonite, halloysite, and mixtures thereof.
[0062] In some additional embodiments, the cleaning compositions of the present invention also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N -oxide polymers, copolymers of N -vinylpyrrolidone and N -vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
[0063] In some still additional embodiments, the cleaning compositions of the present invention also contain dispersants. Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
[0064] In some particularly preferred embodiments, the cleaning compositions comprise one or more detergent enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratinases, reductases, oxidases, phenol oxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof. A typical combination is cocktail of conventional applicable enzymes including at least one protease, at least one lipase, at least one cutinase, and/or at least one cellulase in conjunction with at least one amylase.
[0065] In some further embodiments, the enzymes used in the cleaning compositions are stabilized any suitable technique. In some embodiments, the enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions that provide such ions to the enzymes.
[0066] In some still further embodiments, the cleaning compositions of the present invention include catalytic metal complexes. One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat. No. 4,430,243.
[0067] In some embodiments, the compositions herein are catalyzed by means of a manganese compound. Such compounds and levels of use are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. No. 5,576,282. In addition, cobalt bleach catalysts useful herein are known, and are described, for example, in U.S. Pat. Nos. 5,597,936, and 5,595,967. Such cobalt catalysts are readily prepared by known procedures, such as taught for example in U.S. Pat. Nos. 5,597,936, and 5,595,967. In some embodiments, the compositions provided herein also suitably include a transition metal complex of a macropolycyclic rigid ligand (i.e., "MRL"). As a practical matter, and not by way of limitation, the compositions and cleaning processes herein
are adjustable, to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and will preferably provide from about 0.005 ppm to about 25 ppm , more preferably from about 0.05 ppm to about 10 ppm , and most preferably from about 0.1 ppm to about 5 ppm , of the MRL in the wash liquor. Preferred transition-metals in the instant transition-metal bleach catalyst include manganese, iron and chromium. Preferred MRLs herein are a special type of ultra-rigid ligand that is crossbridged such as 5,12-diethyl-1,5,8,12-tetraazabicyclo[6.6.2] hexadecane. Suitable transition metal MRLs are readily prepared by known procedures, such as taught for example in WO 00/332601, and U.S. Pat. No. 6,225,464.
[0068] As indicated above, the cleaning compositions of the present invention are formulated into any suitable form and prepared by any process chosen by the formulator, nonlimiting examples of which are described in U.S. Pat. Nos. $5,879,584,5,691,297,5,574,005,5,569,645,5,516,448$, $5,489,392$, and $5,486,303$, all of which are incorporated herein by reference.
[0069] The cleaning compositions disclosed herein of find use in cleaning a situs (e.g., a surface, dishware, or fabric). Typically, at least a portion of the situs is contacted with an embodiment of the present cleaning composition, in neat form or diluted in a wash liquor, and then the situs is optionally washed and/or rinsed. For purposes of the present invention, "washing" includes but is not limited to, scrubbing, and mechanical agitation. In some embodiments, the cleaning compositions are typically employed at concentrations of from about 500 ppm to about $15,000 \mathrm{ppm}$ in solution. When the wash solvent is water, the water temperature typically ranges from about $5^{\circ} \mathrm{C}$. to about $90^{\circ} \mathrm{C}$. and, when the situs comprises a fabric, the water to fabric mass ratio is typically from about 1:1 to about 30:1.

DEFINITIONS

[0070] Unless otherwise indicated, the practice of the present invention involves conventional techniques commonly used in molecular biology, protein engineering, microbiology, and recombinant DNA, which are within the skill of the art. Such techniques are known to those of skill in the art and are described in numerous texts and reference works (See e.g., Sambrook et al., "Molecular Cloning: A Laboratory Manual", Second Edition (Cold Spring Harbor), [1989]); and Ausubel et al., "Current Protocols in Molecular Biology" [1987]). All patents, patent applications, articles and publications mentioned herein, both supra and infra, are hereby expressly incorporated herein by reference.
[0071] Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. There are various dictionaries available and known to those in the art that provide definitions of these terms. Although any methods and materials similar or equivalent to those described herein find use in the practice of the present invention, the preferred methods and materials are described herein. Accordingly, the terms defined immediately below are more fully described by reference to the Specification as a whole. Also, as used herein, the singular "a", "an" and "the" includes the plural reference unless the context clearly indicates otherwise. Numeric ranges are inclusive of the numbers defining the range. Unless otherwise indicated, nucleic acids are written left to right in 5^{\prime} to 3^{\prime} orientation; amino acid sequences are written left to right in amino to
carboxy orientation, respectively. It is to be understood that this invention is not limited to the particular methodology, protocols, and reagents described, as these may vary, depending upon the context they are used by those of skill in the art.
[0072] The practice of the present invention employs, unless otherwise indicated, conventional techniques of protein purification, molecular biology, microbiology, recombinant DNA techniques and protein sequencing, all of which are within the skill of those in the art.
[0073] Furthermore, the headings provided herein are not limitations of the various aspects or embodiments of the invention which can be had by reference to the specification as a whole. Accordingly, the terms defined immediately below are more fully defined by reference to the specification as a whole. Nonetheless, in order to facilitate understanding of the invention, a number of terms are defined below.
[0074] As used herein, the terms "protease," and "proteolytic activity" refer to a protein or peptide exhibiting the ability to hydrolyze peptides or substrates having peptide linkages. Many well known procedures exist for measuring proteolytic activity (Kalisz, "Microbial Proteinases," In: Fiechter (ed.), Advances in Biochemical Engineering/Biotechnology, [1988]). For example, proteolytic activity may be ascertained by comparative assays which analyze the respective protease's ability to hydrolyze a commercial substrate. Exemplary substrates useful in the analysis of protease or proteolytic activity, include, but are not limited to di-methyl casein (Sigma C-9801), bovine collagen (Sigma C-9879), bovine elastin (Sigma E-1625), and bovine keratin (ICN Biomedical 902111). Colorimetric assays utilizing these substrates are well known in the art (See e.g., WO 99/34011; and U.S. Pat. No. 6,376,450, both of which are incorporated herein by reference). The pNA assay (See e.g., Del Mar et al., Anal. Biochem., 99:316-320 [1979]) also finds use in determining the active enzyme concentration for fractions collected during gradient elution. This assay measures the rate at which p -nitroaniline is released as the enzyme hydrolyzes the soluble synthetic substrate, succinyl-alanine-alanine-pro-line-phenylalanine-p-nitroanilide (sAAPF-pNA). The rate of production of yellow color from the hydrolysis reaction is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. In addition, absorbance measurements at 280 nm can be used to determine the total protein concentration. The active enzyme/total-protein ratio gives the enzyme purity.
[0075] As used herein, "the genus Bacillus" includes all species within the genus "Bacillus," as known to those of skill in the art, including but not limited to B. subtilis, B. licheniformis, B. lentus, B. brevis, B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. clausii, B. halodurans, B. megaterium, B. coagulans, B. circulans, B. lautus, and B. thuringiensis. It is recognized that the genus Bacillus continues to undergo taxonomical reorganization. Thus, it is intended that the genus include species that have been reclassified, including but not limited to such organisms as B. stearothermophilus, which is now named "Geobacillus stearothermophilus." The production of resistant endospores in the presence of oxygen is considered the defining feature of the genus Bacillus, although this characteristic also applies to the recently named Alicyclobacillus, Amphibacillus, Aneurinibacillus, Anoxybacillus, Brevibacillus, Filobacillus, Gracilibacillus, Halobacillus, Paenibacillus, Salibacillus, Thermobacillus, Ureibacillus, and Virgibacillus.
[0076] The terms "polynucleotide" and "nucleic acid", used interchangeably herein, refer to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. These terms include, but are not limited to, a single-, double- or triple-stranded DNA, genomic DNA, cDNA, RNA, DNA-RNA hybrid, or a polymer comprising purine and pyrimidine bases, or other natural, chemically, biochemically modified, non-natural or derivatized nucleotide bases. The following are non-limiting examples of polynucleotides: genes, gene fragments, chromosomal fragments, ESTs, exons, introns, mRNA, tRNA, rRNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. In some embodiments, polynucleotides comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars and linking groups such as fluororibose and thioate, and nucleotide branches. In alternative embodiments, the sequence of nucleotides is interrupted by non-nucleotide components.
[0077] As used herein, the terms "DNA construct" and "transforming DNA" are used interchangeably to refer to DNA used to introduce sequences into a host cell or organism. The DNA may be generated in vitro by PCR or any other suitable technique(s) known to those in the art. In particularly preferred embodiments, the DNA construct comprises a sequence of interest (e.g., as an incoming sequence). In some embodiments, the sequence is operably linked to additional elements such as control elements (e.g., promoters, etc.). The DNA construct may further comprise a selectable marker. It may further comprise an incoming sequence flanked by homology boxes. In a further embodiment, the transforming DNA comprises other non-homologous sequences, added to the ends (e.g., stuffer sequences or flanks). In some embodiments, the ends of the incoming sequence are closed such that the transforming DNA forms a closed circle. The transforming sequences may be wild-type, mutant or modified. In some embodiments, the DNA construct comprises sequences homologous to the host cell chromosome. In other embodiments, the DNA construct comprises non-homologous sequences. Once the DNA construct is assembled in vitro it may be used to: 1) insert heterologous sequences into a desired target sequence of a host cell, and/or 2) mutagenize a region of the host cell chromosome (i.e., replace an endogenous sequence with a heterologous sequence), 3) delete target genes, and/or 4) introduce a replicating plasmid into the host.
[0078] As used herein, the terms "expression cassette" and "expression vector" refer to nucleic acid constructs generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, plastid DNA, virus, or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid sequence to be transcribed and a promoter. In preferred embodiments, expression vectors have the ability to incorporate and express heterologous DNA fragments in a host cell. Many prokaryotic and eukaryotic expression vectors are commercially available. Selection of appropriate expression vectors is within the knowledge of those of skill in the art. The term "expression cassette" is used interchangeably herein with "DNA construct," and their grammatical
equivalents. Selection of appropriate expression vectors is within the knowledge of those of skill in the art.
[0079] As used herein, the term "vector" refers to a polynucleotide construct designed to introduce nucleic acids into one or more cell types. Vectors include cloning vectors, expression vectors, shuttle vectors, plasmids, cassettes and the like. In some embodiments, the polynucleotide construct comprises a DNA sequence encoding the protease (e.g., precursor or mature protease) that is operably linked to a suitable prosequence (e.g., secretory, etc.) capable of effecting the expression of the DNA in a suitable host.
[0080] As used herein, the term "plasmid" refers to a circular double-stranded (ds) DNA construct used as a cloning vector, and which forms an extrachromosomal self-replicating genetic element in some eukaryotes or prokaryotes, or integrates into the host chromosome.
[0081] As used herein in the context of introducing a nucleic acid sequence into a cell, the term "introduced" refers to any method suitable for transferring the nucleic acid sequence into the cell. Such methods for introduction include but are not limited to protoplast fusion, transfection, transformation, conjugation, and transduction (See e.g., Ferrari et al., "Genetics," in Hardwood et al, (eds.), Bacillus, Plenum Publishing Corp., pages 57-72, [1989]).
[0082] As used herein, the terms "transformed" and "stably transformed" refers to a cell that has a non-native (heterologous) polynucleotide sequence integrated into its genome or as an episomal plasmid that is maintained for at least two generations.
[0083] A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA encoding a secretory leader (i.e., a signal peptide), is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
[0084] As used herein the term "gene" refers to a polynucleotide (e.g., a DNA segment), that encodes a polypeptide and includes regions preceding and following the coding regions as well as intervening sequences (introns) between individual coding segments (exons).
[0085] As used herein, "homologous genes" refers to a pair of genes from different, but usually related species, which correspond to each other and which are identical or very similar to each other. The term encompasses genes that are separated by speciation (i.e., the development of new species) (e.g., orthologous genes), as well as genes that have been separated by genetic duplication (e.g., paralogous genes).
[0086] As used herein, "ortholog" and "orthologous genes" refer to genes in different species that have evolved from a common ancestral gene (i.e., a homologous gene) by speciation. Typically, orthologs retain the same function during the course of evolution. Identification of orthologs finds use in the reliable prediction of gene function in newly sequenced genomes.
[0087] As used herein, "paralog" and "paralogous genes" refer to genes that are related by duplication within a genome. While orthologs retain the same function through the course of evolution, paralogs evolve new functions, even though some functions are often related to the original one. Examples of paralogous genes include, but are not limited to genes encoding trypsin, chymotrypsin, elastase, and thrombin, which are all serine proteinases and occur together within the same species.
[0088] As used herein, proteins are defined as having a common "fold" if they have the same major secondary structures in the same arrangement and with the same topological connections. Different proteins with the same fold often have peripheral elements of secondary structure and turn regions that differ in size and conformation. In some cases, these differing peripheral regions may comprise half the structure. Proteins placed together in the same fold category do not necessarily have a common evolutionary origin (e.g., structural similarities arising from the physics and chemistry of proteins favoring certain packing arrangements and chain topologies).
[0089] As used herein, "homology" refers to sequence similarity or identity, with identity being preferred. This homology is determined using standard techniques known in the art (See e.g., Smith and Waterman, Adv. Appl. Math., 2:482 [1981]; Needleman and Wunsch, J. Mol. Biol., 48:443 [1970]; Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 [1988]; programs such as GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, Wis.); and Devereux et al., Nucl. Acid Res., 12:387-395 [1984]).
[0090] As used herein, an "analogous sequence" is one wherein the function of the gene is essentially the same as the gene based on the wild-type subtilisin protease. Additionally, analogous genes include at least about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 97%, about 98%, about 99%, or about 100% sequence identity with the sequence of the wild-type subtilisin protease. Alternately, analogous sequences have an alignment of between about 70 to about 100% of the genes found in the B. amyloliquefaciens subtilisin protease region. In additional embodiments more than one of the above properties applies to the sequence. Analogous sequences are determined by known methods of sequence alignment. A commonly used alignment method is BLAST, although as indicated above and below, there are other methods that also find use in aligning sequences.
[0091] One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pair-wise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng and Doolittle (Feng and Doolittle, J. Mol. Evol., 35:351-360 [1987]). The method is similar to that described by Higgins and Sharp (Higgins and Sharp, CABIOS 5:151-153 [1989]). Useful PILEUP parameters including a default gap weight of 3.00 , a default gap length weight of 0.10 , and weighted end gaps.
[0092] Another example of a useful algorithm is the BLAST algorithm, described by Altschul et al., (Altschul et al., J. Mol. Biol., 215:403-410, [1990]; and Karlin et al., Proc. Natl. Acad. Sci. USA 90:5873-5787 [1993]). A particularly useful BLAST program is the WU-BLAST-2 program (See, Altschul et al., Meth. Enzymol., 266:460-480 [1996]). WU-

BLAST-2 uses several search parameters, most of which are set to the default values. The adjustable parameters are set with the following values: overlap span $=1$, overlap fraction $=0.125$, word threshold $(\mathrm{T})=11$. The HSP S and HSP S2 parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched. However, the values may be adjusted to increase sensitivity. A $\%$ amino acid sequence identity value is determined by the number of matching identical residues divided by the total number of residues of the "longer" sequence in the aligned region. The "longer" sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-Blast-2 to maximize the alignment score are ignored).
[0093] Thus, "percent (\%) nucleic acid sequence identity" is defined as the percentage of nucleotide residues in a candidate sequence that are identical with the nucleotide residues of the starting sequence (i.e., the sequence of interest). A preferred method utilizes the BLASTN module of WU-BLAST- 2 set to the default parameters, with overlap span and overlap fraction set to 1 and 0.125 , respectively.
[0094] As used herein, "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid sequence or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all as a result of deliberate human intervention. "Recombination," "recombining," and generating a "recombined" nucleic acid are generally the assembly of two or more nucleic acid fragments wherein the assembly gives rise to a chimeric gene.
[0095] In some preferred embodiments, mutant DNA sequences are generated with site saturation mutagenesis in at least one codon. In another preferred embodiment, site saturation mutagenesis is performed for two or more codons. In a further embodiment, mutant DNA sequences have more than about 50%, more than about 55%, more than about 60%, more than about 65%, more than about 70%, more than about 75%, more than about 80%, more than about 85%, more than about 90%, more than about 95%, or more than about 98% homology with the wild-type sequence. In alternative embodiments, mutant DNA is generated in vivo using any known mutagenic procedure such as, for example, radiation, nitrosoguanidine and the like. The desired DNA sequence is then isolated and used in the methods provided herein.
[0096] As used herein, the terms "amplification" and "gene amplification" refer to a process by which specific DNA sequences are disproportionately replicated such that the amplified gene becomes present in a higher copy number than was initially present in the genome. In some embodiments, selection of cells by growth in the presence of a drug (e.g., an inhibitor of an inhibitable enzyme) results in the amplification of either the endogenous gene encoding the gene product required for growth in the presence of the drug or by amplification of exogenous (i.e., input) sequences encoding this gene product, or both.
[0097] "Amplification" is a special case of nucleic acid replication involving template specificity. It is to be contrasted with non-specific template replication (i.e., replication that is template-dependent but not dependent on a specific template). Template specificity is here distinguished
from fidelity of replication (i.e., synthesis of the proper polynucleotide sequence) and nucleotide (ribo- or deoxyribo-) specificity. Template specificity is frequently described in terms of "target" specificity. Target sequences are "targets" in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been designed primarily for this sorting out.
[0098] As used herein, the term "primer" refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced, (i.e., in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer is preferably single stranded for maximum efficiency in amplification, but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. Preferably, the primer is an oligodeoxyribonucleotide. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact lengths of the primers will depend on many factors, including temperature, source of primer and the use of the method.
[0099] As used herein, the term "probe" refers to an oligonucleotide (i.e., a sequence of nucleotides), whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification, which is capable of hybridizing to another oligonucleotide of interest. A probe may be single-stranded or double-stranded. Probes are useful in the detection, identification and isolation of particular gene sequences. It is contemplated that any probe used in the present invention will be labeled with any "reporter molecule," so that is detectable in any detection system, including, but not limited to enzyme (e.g., ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. It is not intended that the present invention be limited to any particular detection system or label.
[0100] As used herein, the term "target," when used in reference to the polymerase chain reaction, refers to the region of nucleic acid bounded by the primers used for polymerase chain reaction. Thus, the "target" is sought to be sorted out from other nucleic acid sequences. A "segment" is defined as a region of nucleic acid within the target sequence.
[0101] As used herein, the term "polymerase chain reaction" ("PCR") refers to the methods of U.S. Pat. Nos. 4,683, $1954,683,202$, and 4,965,188, hereby incorporated by reference, which include methods for increasing the concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the double stranded target sequence. To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing and polymerase extension can be repeated many times (i.e., dena-
turation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the "polymerase chain reaction" (hereinafter "PCR"). Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified".
[0102] As used herein, the term "amplification reagents" refers to those reagents (deoxyribonucleotide triphosphates, buffer, etc.), needed for amplification except for primers, nucleic acid template and the amplification enzyme. Typically, amplification reagents along with other reaction components are placed and contained in a reaction vessel (test tube, microwell, etc.).
[0103] As used herein, the term "RT-PCR" refers to the replication and amplification of RNA sequences. In this method, reverse transcription is coupled to PCR, most often using a one enzyme procedure in which a thermostable polymerase is employed, as described in U.S. Pat. No. 5,322,770, herein incorporated by reference. In RT-PCR, the RNA template is converted to cDNA due to the reverse transcriptase activity of the polymerase, and then amplified using the polymerizing activity of the polymerase (i.e., as in other PCR methods).
[0104] As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.
[0105] A "restriction site" refers to a nucleotide sequence recognized and cleaved by a given restriction endonuclease and is frequently the site for insertion of DNA fragments. In certain embodiments of the invention restriction sites are engineered into the selective marker and into 5^{\prime} and 3^{\prime} ends of the DNA construct.
[0106] "Homologous recombination" means the exchange of DNA fragments between two DNA molecules or paired chromosomes at the site of identical or nearly identical nucleotide sequences. In a preferred embodiment, chromosomal integration is homologous recombination.
[0107] As used herein "amino acid" refers to peptide or protein sequences or portions thereof. The terms "protein," "peptide," and "polypeptide" are used interchangeably.
[0108] As used herein, "protein of interest" and "polypeptide of interest" refer to a protein/polypeptide that is desired and/or being assessed. In some embodiments, the protein of interest is expressed intracellularly, while in other embodiments, it is a secreted polypeptide. In particularly preferred embodiments, these enzymes include the serine proteases of the present invention. In some embodiments, the protein of interest is a secreted polypeptide which is fused to a signal peptide (i.e., an amino-terminal extension on a protein to be secreted). Nearly all secreted proteins use an amino-terminal protein extension which plays a crucial role in the targeting to and translocation of precursor proteins across the membrane. This extension is proteolytically removed by a signal peptidase during or immediately following membrane transfer.
[0109] A polynucleotide is said to "encode" an RNA or a polypeptide if, in its native state or when manipulated by methods known to those of skill in the art, it can be transcribed
and/or translated to produce the RNA, the polypeptide or a fragment thereof. The anti-sense strand of such a nucleic acid is also said to encode the sequences. As is known in the art, a DNA can be transcribed by an RNA polymerase to produce RNA, but an RNA can be reverse transcribed by reverse transcriptase to produce a DNA. Thus a DNA can encode a RNA and vice versa.
[0110] "Host strain" or "host cell" refers to a suitable host for an expression vector comprising DNA according to the present invention.
[0111] An enzyme is "overexpressed" in a host cell if the enzyme is expressed in the cell at a higher level that the level at which it is expressed in a corresponding wild-type cell.
[0112] The terms "protein" and "polypeptide" are used interchangeability herein. The 3-letter code for amino acids as defined in conformity with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) is used through out this disclosure. It is also understood that a polypeptide may be coded for by more than one nucleotide sequence due to the degeneracy of the genetic code.
[0113] A "prosequence" is an amino acid sequence between the signal sequence and mature protease that is necessary for the secretion of the protease. Cleavage of the pro sequence results in a mature active protease.
[0114] The term "signal sequence" or "signal peptide" refers to any sequence of nucleotides and/or amino acids which may participate in the secretion of the mature or precursor forms of the protein. This definition of signal sequence is a functional one, meant to include all those amino acid sequences encoded by the N -terminal portion of the protein gene, which participate in the effectuation of the secretion of protein. They are often, but not universally, bound to the N -terminal portion of a protein or to the N -terminal portion of a precursor protein. The signal sequence may be endogenous or exogenous. The signal sequence may be that normally associated with the protein (e.g., protease), or may be from a gene encoding another secreted protein. One exemplary exogenous signal sequence comprises the first seven amino acid residues of the signal sequence from Bacillus subtilis subtilisin fused to the remainder of the signal sequence of the subtilisin from Bacillus lentus (ATCC 21536).
[0115] The term "hybrid signal sequence" refers to signal sequences in which part of sequence is obtained from the expression host fused to the signal sequence of the gene to be expressed. In some embodiments, synthetic sequences are utilized.
[0116] The term "mature" form of a protein or peptide refers to the final functional form of the protein or peptide. For example, the mature form of the BPN' subtilisin protease of the present invention includes at least the amino acid sequence identical to residue positions 1-275 of SEQ ID $\mathrm{NO}: 2$, as set forth below:
(SEQ ID NO:
AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGG

ASMVPSETNPFQDNNSHGTHVAGTVAALNNSIGVLGVAPSASLYAVK
VLGADGSGQYSWI INGI EWAIANNMDVINMSLGGPSGSAALKAAVDK

AVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRAS

FSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALIL

[0117] The term "precursor" form of a protein or peptide refers to a mature form of the protein having a prosequence operably linked to the amino or carbonyl terminus of the protein. The precursor may also have a "signal" sequence operably linked, to the amino terminus of the prosequence. The precursor may also have additional polynucleotides that are involved in post-translational activity (e.g., polynucleotides cleaved therefrom to leave the mature form of a protein or peptide).
[0118] "Naturally occurring enzyme" refers to an enzyme having the unmodified amino acid sequence identical to that found in nature. Naturally occurring enzymes include native enzymes, those enzymes naturally expressed or found in the particular microorganism.
[0119] The terms "derived from" and "obtained from" refer to not only a protease produced or producible by a strain of the organism in question, but also a protease encoded by a DNA sequence isolated from such strain and produced in a host organism containing such DNA sequence. Additionally, the term refers to a protease which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the protease in question.
[0120] A "derivative" within the scope of this definition generally retains the characteristic proteolytic activity observed in the wild-type, native or parent form to the extent that the derivative is useful for similar purposes as the wildtype, native or parent form. Functional derivatives of serine protease encompass naturally occurring, synthetically or recombinantly produced peptides or peptide fragments which have the general characteristics of the serine protease of the present invention.
[0121] The term "functional derivative" refers to a derivative of a nucleic acid which has the functional characteristics of a nucleic acid which encodes serine protease. Functional derivatives of a nucleic acid which encode serine protease of the present invention encompass naturally occurring, synthetically or recombinantly produced nucleic acids or fragments and encode serine protease characteristic of the present invention. Wild type nucleic acid encoding serine proteases according to the invention include naturally occurring alleles and homologues based on the degeneracy of the genetic code known in the art.
[0122] The term "identical" in the context of two nucleic acids or polypeptide sequences refers to the residues in the two sequences that are the same when aligned for maximum correspondence, as measured using one of the following sequence comparison or analysis algorithms.
[0123] The term "optimal alignment" refers to the alignment giving the highest percent identity score.
[0124] "Percent sequence identity," "percent amino acid sequence identity," "percent gene sequence identity," and/or "percent nucleic acid/polynucleotide sequence identity," with respect to two amino acid, polynucleotide and/or gene sequences (as appropriate), refer to the percentage of residues that are identical in the two sequences when the sequences are optimally aligned. Thus, 80% amino acid sequence identity means that 80% of the amino acids in two optimally aligned polypeptide sequences are identical.
[0125] The phrase "substantially identical" in the context of two nucleic acids or polypeptides thus refers to a polynucleotide or polypeptide that comprising at least about 70% sequence identity, preferably at least about 75%, preferably at least about 80%, preferably at least about 85%, preferably at least about 90%, preferably at least about 95%, preferably at
least about 97%, preferably at least about 98%, and preferably at least about 99% sequence identity as compared to a reference sequence using the programs or algorithms (e.g., BLAST, ALIGN, CLUSTAL) using standard parameters. One indication that two polypeptides are substantially identical is that the first polypeptide is immunologically crossreactive with the second polypeptide. Typically, polypeptides that differ by conservative amino acid substitutions are immunologically cross-reactive. Thus, a polypeptide is substantially identical to a second polypeptide, for example, where the two peptides differ only by a conservative substitution. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions (e.g., within a range of medium to high stringency).
[0126] The phrase "equivalent," in this context, refers to serine proteases enzymes that are encoded by a polynucleotide capable of hybridizing to the polynucleotide having the sequence as shown in SEQ ID NO:1, under conditions of medium to maximum stringency. For example, being equivalent means that an equivalent mature serine protease comprises at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, and/or at least about 99% sequence identity to the mature subtilisin protease having the amino acid sequence of SEQ ID NO:2.
[0127] The term "isolated" or "purified" refers to a material that is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, the material is said to be "purified" when it is present in a particular composition in a higher or lower concentration than exists in a naturally occurring or wild type organism or in combination with components not normally present upon expression from a naturally occurring or wild type organism. For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. In some embodiments, such polynucleotides are part of a vector, and/or such polynucleotides or polypeptides are part of a composition, and still be isolated in that such vector or composition is not part of its natural environment. In preferred embodiments, a nucleic acid or protein is said to be purified, for example, if it gives rise to essentially one band in an electrophoretic gel or blot.
[0128] The term "isolated", when used in reference to a DNA sequence, refers to a DNA sequence that has been removed from its natural genetic milieu and is thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5^{\prime} and 3 ' untranslated regions such as promoters and terminators. The identification of associated regions will be evident to one of ordinary skill in the art (See e.g., Dynan and Tijan, Nature 316:774-78 [1985]). The term "an isolated DNA sequence" is alternatively referred to as "a cloned DNA sequence".
[0129] The term "isolated," when used in reference to a protein, refers to a protein that is found in a condition other than its native environment. In a preferred form, the isolated protein is substantially free of other proteins, particularly other homologous proteins. An isolated protein is more than about 10% pure, preferably more than about 20% pure, and even more preferably more than about 30% pure, as determined by SDS-PAGE. Further aspects of the invention encompass the protein in a highly purified form (i.e., more than about 40% pure, more than about 60% pure, more than about 80% pure, more than about 90% pure, more than about 95% pure, more than about 97% pure, and even more than about 99% pure), as determined by SDS-PAGE.
[0130] As used herein, the term, "combinatorial mutagenesis" refers to methods in which libraries of variants of a starting sequence are generated. In these libraries, the variants contain one or several mutations chosen from a predefined set of mutations. In addition, the methods provide means to introduce random mutations which were not members of the predefined set of mutations. In some embodiments, the methods include those set forth in U.S. patent application Ser. No. 09/699,250, filed Oct. 26, 2000, hereby incorporated by reference. In alternative embodiments, combinatorial mutagenesis methods encompass commercially available kits (e.g., QuikChange(${ }^{\text {B }}$ Multisite, Stratagene, San Diego, Calif.).
[0131] As used herein, the term "library of mutants" refers to a population of cells which are identical in most of their genome but include different homologues of one or more genes. Such libraries can be used, for example, to identify genes or operons with improved traits.
[0132] As used herein, the term "starting gene" refers to a gene of interest that encodes a protein of interest that is to be improved and/or changed using the present invention.
[0133] As used herein, the term "multiple sequence alignment" ("MSA") refers to the sequences of multiple homologs of a starting gene that are aligned using an algorithm (e.g., Clustal W).
[0134] As used herein, the terms "consensus sequence" and "canonical sequence" refer to an archetypical amino acid sequence against which all variants of a particular protein or sequence of interest are compared. The terms also refer to a sequence that sets forth the nucleotides that are most often present in a DNA sequence of interest. For each position of a gene, the consensus sequence gives the amino acid that is most abundant in that position in the MSA.
[0135] As used herein, the term "consensus mutation" refers to a difference in the sequence of a starting gene and a consensus sequence. Consensus mutations are identified by comparing the sequences of the starting gene and the consensus sequence resulting from an MSA. In some embodiments, consensus mutations are introduced into the starting gene such that it becomes more similar to the consensus sequence. Consensus mutations also include amino acid changes that change an amino acid in a starting gene to an amino acid that is more frequently found in an MSA at that position relative to the frequency of that amino acid in the starting gene. Thus, the term consensus mutation comprises all single amino acid changes that replace an amino acid of the starting gene with an amino acid that is more abundant than the amino acid in the MSA.
[0136] As used herein, the term "enhanced combinatorial consensus mutagenesis library" refers to a CCM library that is designed and constructed based on screening and/or sequencing results from an earlier round of CCM mutagen-
esis and screening. In some embodiments, the enhanced CCM library is based on the sequence of an initial hit resulting from an earlier round of CCM. In additional embodiments, the enhanced CCM is designed such that mutations that were frequently observed in initial hits from earlier rounds of mutagenesis and screening are favored. In some preferred embodiments, this is accomplished by omitting primers that encode performance-reducing mutations or by increasing the concentration of primers that encode perfor-mance-enhancing mutations relative to other primers that were used in earlier CCM libraries.
[0137] As used herein, the term "performance-reducing mutations" refer to mutations in the combinatorial consensus mutagenesis library that are less frequently found in hits resulting from screening as compared to an unscreened combinatorial consensus mutagenesis library. In preferred embodiments, the screening process removes and/or reduces the abundance of variants that contain "performance-reducing mutations."
[0138] As used herein, the term "functional assay" refers to an assay that provides an indication of a protein's activity. In particularly preferred embodiments, the term refers to assay systems in which a protein is analyzed for its ability to function in its usual capacity. For example, in the case of enzymes, a functional assay involves determining the effectiveness of the enzyme in catalyzing a reaction.
[0139] As used herein, the term "target property" refers to the property of the starting gene that is to be altered. It is not intended that the present invention be limited to any particular target property. However, in some preferred embodiments, the target property is the stability of a gene product (e.g., resistance to denaturation, proteolysis or other degradative factors), while in other embodiments, the level of production in a production host is altered. Indeed, it is contemplated that any property of a starting gene will find use in the present invention.
[0140] The term "property" or grammatical equivalents thereof in the context of a nucleic acid, as used herein, refer to any characteristic or attribute of a nucleic acid that can be selected or detected. These properties include, but are not limited to, a property affecting binding to a polypeptide, a property conferred on a cell comprising a particular nucleic acid, a property affecting gene transcription (e.g., promoter strength, promoter recognition, promoter regulation, enhancer function), a property affecting RNA processing (e.g., RNA splicing, RNA stability, RNA conformation, and post-transcriptional modification), a property affecting translation (e.g., level, regulation, binding of mRNA to ribosomal proteins, post-translational modification). For example, a binding site for a transcription factor, polymerase, regulatory factor, etc., of a nucleic acid may be altered to producedesired characteristics or to identify undesirable characteristics.
[0141] The term "property" or grammatical equivalents thereof in the context of a polypeptide (including proteins), as used herein, refer to any characteristic or attribute of a polypeptide that can be selected or detected. These properties include, but are not limited to oxidative stability, substrate specificity, catalytic activity, thermal stability, alkaline stability, pH activity profile, resistance to proteolytic degradation, $\mathrm{K}_{M}, \mathrm{k}_{\text {cat }}, \mathrm{k}_{\text {cat }} / \mathrm{k}_{M}$ ratio, protein folding, inducing an immune response, ability to bind to a ligand, ability to bind to a receptor, ability to be secreted, ability to be displayed on the surface of a cell, ability to oligomerize, ability to signal, ability to stimulate cell proliferation, ability to inhibit cell
proliferation, ability to induce apoptosis, ability to be modified by phosphorylation or glycosylation, and/or ability to treat disease, etc.
[0142] The terms "modified sequence" and "modified genes" are used interchangeably herein to refer to a sequence that includes a deletion, insertion or interruption of naturally occurring nucleic acid sequence. In some preferred embodiments, the expression product of the modified sequence is a truncated protein (e.g., if the modification is a deletion or interruption of the sequence). In some particularly preferred embodiments, the truncated protein retains biological activity. In alternative embodiments, the expression product of the modified sequence is an elongated protein (e.g., modifications comprising an insertion into the nucleic acid sequence). In some embodiments, an insertion leads to a truncated protein (e.g., when the insertion results in the formation of a stop codon). Thus, an insertion may result in either a truncated protein or an elongated protein as an expression product.
[0143] As used herein, the terms "mutant sequence" and "mutant gene" are used interchangeably and refer to a sequence that has an alteration in at least one codon occurring in a host cell's wild-type sequence. The expression product of the mutant sequence is a protein with an altered amino acid sequence relative to the wild-type. The expression product may have an altered functional capacity (e.g., enhanced enzymatic activity).
[0144] The terms "mutagenic primer" or "mutagenic oligonucleotide" (used interchangeably herein) are intended to refer to oligonucleotide compositions which correspond to a portion of the template sequence and which are capable of hybridizing thereto. With respect to mutagenic primers, the primer will not precisely match the template nucleic acid, the mismatch or mismatches in the primer being used to introduce the desired mutation into the nucleic acid library. As used herein, "non-mutagenic primer" or "non-mutagenic oligonucleotide" refers to oligonucleotide compositions which will match precisely to the template nucleic acid. In one embodiment of the invention, only mutagenic primers are used. In another preferred embodiment of the invention, the primers are designed so that for at least one region at which a mutagenic primer has been included, there is also non-mutagenic primer included in the oligonucleotide mixture. By adding a mixture of mutagenic primers and non-mutagenic primers corresponding to at least one of the mutagenic primers, it is possible to produce a resulting nucleic acid library in which a variety of combinatorial mutational patterns are presented. For example, if it is desired that some of the members of the mutant nucleic acid library retain their precursor sequence at certain positions while other members are mutant at such sites, the non-mutagenic primers provide the ability to obtain a specific level of non-mutant members within the nucleic acid library for a given residue. The methods of the invention employ mutagenic and non-mutagenic oligonucleotides which are generally between $10-50$ bases in length, more preferably about $15-45$ bases in length. However, it may be necessary to use primers that are either shorter than 10 bases or longer than 50 bases to obtain the mutagenesis result desired. With respect to corresponding mutagenic and nonmutagenic primers, it is not necessary that the corresponding oligonucleotides be of identical length, but only that there is overlap in the region corresponding to the mutation to be added. Primers may be added in a pre-defined ratio according to the present invention. For example, if it is desired that the resulting library have a significant level of a certain specific
mutation and a lesser amount of a different mutation at the same or different site, by adjusting the amount of primer added, it is possible to produce the desired biased library. Alternatively, by adding lesser or greater amounts of nonmutagenic primers, it is possible to adjust the frequency with which the corresponding mutation(s) are produced in the mutant nucleic acid library.
[0145] As used herein, the phrase "contiguous mutations" refers to mutations which are presented within the same oligonucleotide primer. For example, contiguous mutations may be adjacent or nearby each other, however, they will be introduced into the resulting mutant template nucleic acids by the same primer.
[0146] The terms "wild-type sequence," or "wild-type gene" are used interchangeably herein, to refer to a sequence that is native or naturally occurring in a host cell. In some embodiments, the wild-type sequence refers to a sequence of interest that is the starting point of a protein engineering project (i.e., the "parent" sequence). The wild-type sequence may encode either a homologous or heterologous protein. A homologous protein is one the host cell would produce without intervention. A heterologous protein is one that the host cell would not produce but for the intervention.
[0147] As used herein, the terms "protease variant," "subtilisin variant," "subtilisin protease variant," are used in reference to proteases that are similar to a wild-type subtilisin or a parent protease (e.g., subtilisin) used as a starting point in protein engineering. These variants are similar to the wildtype or other parent in their function, but have mutations in their amino acid sequence that make them different in sequence from the wild-type or parent protease (e.g., subtili$\sin)$.
[0148] Unless otherwise indicated, the amino acid position numbers refer to those assigned to the mature Bacillus amyloliquefaciens subtilisin sequence of SEQ ID NO:2. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor proteases containing amino acid residues at positions which are "equivalent" to the particular identified residues in the Bacillus amyloliquefaciens subtilisin.
[0149] As used herein, the terms "modification" and "mutation" refers to any change or alteration in an amino acid sequence. It is intended that the term encompass substitutions, deletions, insertions, and/or replacement of amino acid side chains in an amino acid sequence of interest (e.g., a subtilisin sequence). It is also intended that the term encompass chemical modification of an amino acid sequence of interest (e.g., a subtilisin sequence).
[0150] The term "oxidation stable" refers to proteases of the present invention that retain a specified amount of enzymatic activity over a given period of time under conditions prevailing during the proteolytic, hydrolyzing, cleaning or other process of the invention, for example while exposed to or contacted with bleaching agents or oxidizing agents. In some embodiments, the proteases retain at least about 50%, about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 92%, about 95%, about 96%, about 97%, about 98%, or about 99% proteolytic activity after contact with a bleaching or oxidizing agent over a given time period, for example, at least about 1 minute, about 3 minutes, about 5 minutes, about 8 minutes, about 12 minutes, about 16 minutes, about 20 minutes, etc. In some embodiments, the stability is measured as described in the Examples.
[0151] The term "chelator stable" refers to proteases of the present invention that retain a specified amount of enzymatic activity over a given period of time under conditions prevailing during the proteolytic, hydrolyzing, cleaning or other process of the invention, for example while exposed to or contacted with chelating agents. In some embodiments, the proteases retain at least about 50%, about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 92%, about 95%, about 96%, about 97%, about 98%, or about 99% proteolytic activity after contact with a chelating agent over a given time period, for example, at least about 10 minutes, about 20 minutes, about 40 minutes, about 60 minutes, about 100 minutes, etc. In some embodiments, the chelator stability is measured as described in the Examples.
[0152] The terms "thermally stable" and "thermostable" refer to proteases of the present invention that retain a specified amount of enzymatic activity after exposure to identified temperatures over a given period of time under conditions prevailing during the proteolytic, hydrolyzing, cleaning or other process of the invention, for example while exposed altered temperatures. Altered temperatures includes increased or decreased temperatures. In some embodiments, the proteases retain at least about 50%, about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 92%, about 95%, about 96%, about 97%, about 98%, or about 99% proteolytic activity after exposure to altered temperatures over a given time period, for example, at least about 60 minutes, about 120 minutes, about 180 minutes, about 240 minutes, about 300 minutes, etc. In some embodiments, the thermostability is determined as described in the Examples. [0153] The term "enhanced stability" in the context of an oxidation, chelator, thermal and/or pH stable protease refers to a higher retained proteolytic activity over time as compared to other serine proteases (e.g., subtilisin proteases) and/or wild-type enzymes.
[0154] The term "diminished stability" in the context of an oxidation, chelator, thermal and/or pH stable protease refers to a lower retained proteolytic activity over time as compared to other serine proteases (e.g., subtilisin proteases) and/or wild-type enzymes.
[0155] The term "cleaning activity" refers to the cleaning performance achieved by the protease under conditions prevailing during the proteolytic, hydrolyzing, cleaning or other process of the invention. In some embodiments, cleaning performance is determined by the application of various cleaning assays concerning enzyme sensitive stains, for example grass, blood, milk, or egg protein as determined by various chromatographic, spectrophotometric or other quantitative methodologies after subjection of the stains to standard wash conditions. Exemplary assays include, but are not limited to those described in WO 99/34011, and U.S. Pat. No. $6,605,458$ (both of which are herein incorporated by reference), as well as those methods included in the Examples.
[0156] The term "cleaning effective amount" of a protease refers to the quantity of protease described hereinbefore that achieves a desired level of enzymatic activity in a specific cleaning composition. Such effective amounts are readily ascertained by one of ordinary skill in the art and are based on many factors, such as the particular protease used, the cleaning application, the specific composition of the cleaning composition, and whether a liquid or dry (e.g., granular, bar) composition is required, etc.
[0157] The term "cleaning adjunct materials," as used herein, means any liquid, solid or gaseous material selected
for the particular type of cleaning composition desired and the form of the product (e.g., liquid, granule, powder, bar, paste, spray, tablet, gel; or foam composition), which materials are also preferably compatible with the protease enzyme used in the composition. In some embodiments, granular compositions are in "compact" form, while in other embodiments, the liquid compositions are in a "concentrated" form. [0158] The term "enhanced performance" in the context of cleaning activity refers to an increased or greater cleaning activity of certain enzyme sensitive stains such as egg, milk, grass or blood, as determined by usual evaluation after a standard wash cycle and/or multiple wash cycles.
[0159] The term "diminished performance" in the context of cleaning activity refers to an decreased or lesser cleaning activity of certain enzyme sensitive stains such as egg, milk, grass or blood, as determined by usual evaluation after a standard wash cycle.
[0160] The term "comparative performance" in the context of cleaning activity refers to at least about 60%, at least about 70%, at least about 80% at least about 90%, or at least about 95% of the cleaning activity of a comparative subtilisin protease (e.g., commercially available proteases), including but not limited to OPTIMASETM protease (Genencor), PURAFECT ${ }^{\text {TM }}$ protease products (Genencor), SAVINASE ${ }^{\text {TM }}$ protease (Novozymes), BPN'-variants (See e.g., U.S. Pat. No. Re 34,606), RELASETM, DURAZYMETM, EVERLASE ${ }^{\text {TM }}$, KANNASE ${ }^{\text {TM }}$ protease (Novozymes), MAXACAL ${ }^{\text {TM }}$ MAXAPEM ${ }^{\text {TM }}$, PROPERASE ${ }^{\text {TM }}$ proteases (Genencor; See also, U.S. Pat. No. Re 34,606, and U.S. Pat. Nos. $5,700,676 ; 5,955,340 ; 6,312,936$; and $6,482,628$), and B. lentus variant protease products (e.g., those described in WO 92/21760, WO 95/23221 and/or WO 97/07770).
[0161] Cleaning performance can be determined by comparing the proteases of the present invention with those subtilisin proteases in various cleaning assays concerning enzyme sensitive stains such as grass, blood or milk as determined by usual spectrophotometric or analytical methodologies after standard wash cycle conditions.
[0162] As used herein, "cleaning compositions" and "cleaning formulations" refer to compositions that find use in the removal of undesired compounds from items to be cleaned, such as fabric, dishes, contact lenses, other solid substrates, hair (shampoos), skin (soaps and creams), teeth (mouthwashes, toothpastes) etc. The term encompasses any materials/compounds selected for the particular type of cleaning composition desired and the form of the product (e.g., liquid, gel, granule, or spray composition), as long as the composition is compatible with the perhydrolase and other enzyme(s) used in the composition. The specific selection of cleaning composition materials are readily made by considering the surface, item or fabric to be cleaned, and the desired form of the composition for the cleaning conditions during use.
[0163] The terms further refer to any composition that is suited for cleaning, bleaching, disinfecting, and/or sterilizing any object and/or surface. It is intended that the terms include, but are not limited to detergent compositions (e.g., liquid and/or solid laundry detergents and fine fabric detergents; hard surface cleaning formulations, such as for glass, wood, ceramic and metal counter tops and windows; carpet cleaners; oven cleaners; fabric fresheners; fabric softeners; and textile and laundry pre-spotters, as well as dish detergents).
[0164] Indeed, the term "cleaning composition" as used herein, includes unless otherwise indicated, granular or pow-
der-form all-purpose or heavy-duty washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid (HDL) types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, including antibacterial hand-wash types, cleaning bars, mouthwashes, denture cleaners, car or carpet shampoos, bathroom cleaners; hair shampoos and hairrinses; shower gels and foam baths and metal cleaners; as well as cleaning auxiliaries such as bleach additives and "stainstick" or pre-treat types.
[0165] As used herein, the terms "detergent composition" and "detergent formulation" are used in reference to mixtures which are intended for use in a wash medium for the cleaning of soiled objects. In some preferred embodiments, the term is used in reference to laundering fabrics and/or garments (e.g., "laundry detergents"). In alternative embodiments, the term refers to other detergents, such as those used to clean dishes, cutlery, etc. (e.g., "dishwashing detergents"). It is not intended that the present invention be limited to any particular detergent formulation or composition. Indeed, it is intended that in addition to perhydrolase, the term encompasses detergents that contain surfactants, transferase(s), hydrolytic enzymes, oxido reductases, builders, bleaching agents, bleach activators, bluing agents and fluorescent dyes, caking inhibitors, masking agents, enzyme activators, antioxidants, and solubilizers.
[0166] As used herein, "fabric cleaning compositions" include hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics (e.g., clothes, linens, and other textile materials).
[0167] As used herein, "non-fabric cleaning compositions" include non-textile (i.e., fabric) surface cleaning compositions, including but not limited to dishwashing detergent compositions, oral cleaning compositions, denture cleaning compositions, and personal cleansing compositions.
[0168] The "compact" form of the cleaning compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt. Inorganic filler salts are conventional ingredients of detergent compositions in powder form. In conventional detergent compositions, the filler salts are present in substantial amounts, typically about 17 to about 35% by weight of the total composition. In contrast, in compact compositions, the filler salt is present in amounts not exceeding about 15% of the total composition. In some embodiments, the filler salt is present in amounts that do not exceed about 10%, or more preferably, about 5%, by weight of the composition. In some embodiments, the inorganic filler salts are selected from the alkali and alkaline-earth-metal salts of sulfates and chlorides. A preferred filler salt is sodium sulfate.
[0169] As used herein, the term "surfactant" refers to any compound generally recognized in the art as having surface active qualities. Surfactants generally include anionic, cationic, nonionic, and zwitterionic compounds, which are further described, herein.

EXPERIMENTAL

[0170] The present invention is described in further detail in the following Examples which are not in any way intended
to limit the scope of the invention as claimed. The attached Figures are meant to be considered as integral parts of the specification and description of the invention. The following Examples are offered to illustrate, but not to limit the claimed invention
[0171] In the experimental disclosure which follows, the following abbreviations apply: PI or Pi (Performance Index), ppm (parts per million); M (molar); mM (millimolar); $\mu \mathrm{M}$ (micromolar); nM (nanomolar); mol (moles); mmol (millimoles); nmol (micromoles); nmol (nanomoles); gm (grams); mg (milligrams); $\mu \mathrm{g}$ (micrograms); pg (picograms); L(liters); ml and mL (milliliters); $\mu \mathrm{l}$ and $\mu \mathrm{L}$ (microliters); cm (centimeters); mm (millimeters); $\mu \mathrm{m}$ (micrometers); nm (nanometers); U (units); V (volts); MW (molecular weight); sec (seconds); $\min (\mathrm{s})$ (minute/minutes); $\mathrm{h}(\mathrm{s})$ and $\mathrm{hr}(\mathrm{s})$ (hour/ hours); ${ }^{\circ} \mathrm{C}$. (degrees Centigrade); QS (quantity sufficient); ND (not done); NA (not applicable); rpm (revolutions per minute); $\mathrm{H}_{2} \mathrm{O}$ (water); $\mathrm{dH}_{2} \mathrm{O}$ (deionized water); (HCl (hydrochloric acid); aa (amino acid); bp (base pair); kb (kilobase pair); kD (kilodaltons); cDNA (copy or complementary DNA); DNA (deoxyribonucleic acid); ssDNA (single stranded DNA); dsDNA (double stranded DNA); dNTP (deoxyribonucleotide triphosphate); RNA (ribonucleic acid); MgCl_{2} (magnesium chloride); NaCl (sodium chloride); w/v (weight to volume); v/v (volume to volume); g (gravity); OD (optical density); Dulbecco's phosphate buffered solution (DPBS); SOC (2% Bacto-Tryptone, 0.5% Bacto Yeast Extract, $10 \mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}$); Terrific Broth (TB; 12 $\mathrm{g} / 1$ Bacto Tryptone, $24 \mathrm{~g} / 1$ glycerol, $2.31 \mathrm{~g} / 1 \mathrm{KH}_{2} \mathrm{PO}_{4}$, and $12.54 \mathrm{~g} / 1 \mathrm{~K}_{2} \mathrm{HPO}_{4}$); OD_{280} (optical density at 280 nm); OD_{600} (optical density at 600 nm); A_{405} (absorbance at 405 nm); Vmax (the maximum initial velocity of an enzyme catalyzed reaction); PAGE (polyacrylamide gel electrophoresis); PBS (phosphate buffered saline $[150 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ sodium phosphate buffer, pH 7.2$]$); PBST (PBS+0.25\% TWEEN(${ }^{\circledR}$ 20); PEG (polyethylene glycol); PCR (polymerase chain reaction); RT-PCR (reverse transcription PCR); SDS (sodium dodecyl sulfate); Tris (tris(hydroxymethyl) aminomethane); HEPES (N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]); HBS (HEPES buffered saline); Tris- HCl (tris[Hydroxymethyl]aminomethane-hydrochloride); Tricine (N-[tris-(hydroxymethyl)-methyl]-glycine); CHES (2-(N-cyclo-hexylamino) ethane-sulfonic acid); TAPS (3-\{[tris-(hydroxymethyl)-methyl]-amino\}-propanesulfonic acid); CAPS (3-(cyclo-hexylamino)-propane-sulfonic acid; DMSO (dimethyl sulfoxide); DTT (1,4-dithio-DL-threitol); SA (sinapinic acid (s,5-dimethoxy-4-hydroxy cinnamic acid); TCA (trichloroacetic acid); Glut and GSH (reduced glutathione); GSSG (oxidized glutathione); TCEP (Tris[2-carboxyethyl]phosphine); Ci (Curies); mCi (milliCuries); $\mu \mathrm{Ci}$ (microCuries); HPLC (high pressure liquid chromatography); RP-HPLC (reverse phase high pressure liquid chromatography); TLC (thin layer chromatography); MALDI-TOF (matrix-assisted laser desorption/ionization time of flight); Ts (tosyl); Bn (benzyl); Ph (phenyl); Ms (mesyl); Et (ethyl), Me (methyl); Taq (Thermus aquaticus DNA polymerase); Klenow (DNA polymerase I large (Klenow) fragment); EGTA (ethylene glycol-bis(β-aminoethyl ether) $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetraacetic acid); EDTA (ethylenediaminetetracetic acid); bla (β-lactamase or ampicillin-resistance gene); HDL (high density liquid); MJ Research (MJ Research, Reno, Nev.); Baseclear (Baseclear BV, Inc., Leiden, the Netherlands); PerSeptive (PerSeptive Biosystems, Framingham, Mass.); ThermoFinnigan (ThermoFinni-
gan, San Jose, Calif.); Argo (Argo BioAnalytica, Morris Plains, N.J.); Seitz EKS (SeitzSchenk Filtersystems GmbH, Bad Kreuznach, Germany); Pall (Pall Corp., East Hills, N.Y.); Spectrum (Spectrum Laboratories, Dominguez Rancho, Calif.); Molecular Structure (Molecular Structure Corp., Woodlands, Tex.); Accelrys (Accelrys, Inc., San Diego, Calif.); Chemical Computing (Chemical Computing Corp., Montreal, Canada); New Brunswick (New Brunswick Scientific, Co., Edison, N.J.); CFT (Center for Test Materials, Vlaardingen, the Netherlands); Test Fabrics (Test Fabrics, Inc., West Pittiston, Pa.), Procter \& Gamble (Procter \& Gamble, Inc., Cincinnati, Ohio); Epicentre (Epicentre Biotechnologies, Madison, Wis.); GE Healthcare (GE Healthcare, Chalfont St. Giles, United Kingdom); OXOID (Oxoid, Basingstoke, Hampshire, UK); Megazyme (Megazyme International Ireland Ltd., Bray Business Park, Bray, Co., Wicklow, Ireland); Finnzymes (Finnzymes Oy, Espoo, Finland); Kelco (CP Kelco, Wilmington, Del.); Corning (Corning Life Sciences, Corning, N.Y.); (NEN (NEN Life Science Products, Boston, Mass.); Pharma AS (Pharma AS, Oslo, Norway); Dynal (Dynal, Oslo, Norway); Bio-Synthesis (BioSynthesis, Lewisville, Tex.); ATCC (American Type Culture Collection, Rockville, Md.); Gibco/BRL (Gibco/BRL, Grand Island, N.Y.); Sigma (Sigma Chemical Co., St. Louis, Mo.); Pharmacia (Pharmacia Biotech, Piscataway, N.J.); NCBI (National Center for Biotechnology Information); Applied Biosystems (Applied Biosystems, Foster City, Calif.); BD Biosciences and/or Clontech (BD Biosciences CLONTECH Laboratories, Palo Alto, Calif.); Operon Technologies (Operon Technologies, Inc., Alameda, Calif.); MWG Biotech (MWG Biotech, High Point, N.C.); Oligos Etc (Oligos Etc. Inc, Wilsonville, Oreg.); Bachem (Bachem Bioscience, Inc., King of Prussia, Pa.); Difco (Difco Laboratories, Detroit, Mich.); Mediatech (Mediatech, Herndon, Va.; Santa Cruz (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.); Oxoid (Oxoid Inc., Ogdensburg, N.Y.); Worthington (Worthington Biochemical Corp., Freehold, N.J.); GIBCO BRL or Gibco BRL (Life Technologies, Inc., Gaithersburg, Md.); Millipore (Millipore, Billerica, Mass.); Bio-Rad (Bio-Rad, Hercules, Calif.); Invitrogen (Invitrogen Corp., San Diego, Calif.); New England Biolabs and NEB (New England Biolabs, Ipswich, Mass.); Sigma (Sigma Chemical Co., St. Louis, Mo.); Pierce (Pierce Biotechnology, Rockford, Ill.); Takara (Takara Bio Inc. Otsu, Japan); Roche (Hoffmann-La Roche, Basel, Switzerland); EM Science (EM Science, Gibbstown, N.J.); Qiagen (Qiagen, Inc., Valencia, Calif.); Biodesign (Biodesign Intl., Saco, Me.); Aptagen (Aptagen, Inc., Herndon, Va.); Sorvall (Sorvall brand, from Kendro Laboratory Products, Asheville, N.C.); United States Testing (United States Testing Co., Hoboken, N.J.); Molecular Devices (Molecular Devices, Corp., Sunnyvale, Calif.); R\&D Systems (R\&D Systems, Minneapolis, Minn.); Stratagene (Stratagene Cloning Systems, La Jolla, Calif.); Marsh (Marsh Biosciences, Rochester, N.Y.); Geneart (Geneart GmbH, Regensburg, Germany); DNA2.0 (DNA2.0, Menlo Park, Calif.); Gene Oracle (Gene Oracle, Mountain View, Calif.); Zymo Research (Zymo Research, Orange, Calif.); Bio-Tek (Bio-Tek Instruments, Winooski, Vt.); Biacore (Biacore, Inc., Piscataway, N.J.); PeproTech (PeproTech, Rocky Hill, N.J.); SynPep (SynPep, Dublin, Calif.); New Objective (New Objective brand; Scientific Instrument Services, Inc., Ringoes, N.J.); Waters (Waters, Inc., Milford, Mass.); Matrix Science (Matrix Science, Boston, Mass.); Dionex (Dionex, Corp., Sunnyvale, Calif.); Monsanto (Monsanto Co., St. Louis, Mo.); Wintershall (Win-
tershall AG, Kassel, Germany); BASF (BASF Co., Florham Park, N.J.); Huntsman (Huntsman Petrochemical Corp., Salt Lake City, Utah); Enichem (Enichem Iberica, Barcelona, Spain); Fluka Chemie AG (Fluka Chemie AG, Buchs, Switzerland); Gist-Brocades (Gist-Brocades, NV, Delft, the Netherlands); Dow Corning (Dow Corning Corp., Midland, Mich.); and Microsoft (Microsoft, Inc., Redmond, Wash.).

Example 1

Assays

[0172] In the following Examples, various assays were used as set forth below for ease in reading. Any deviations from the protocols provided below are indicated in the Examples. In the present invention, the subtilisin numbering corresponds to that of the mature BPN' sequence, as set forth below:
(SEQ ID NO: 1)
AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGG
ASMVPSETNPFQDNNSHGTHVAGTVAALNNSIGVLGVAPSASLYAVK

VLGADGSGQYSWIINGI EWAIANNMDVINMSLGGPSGSAALKAAVDK
AVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRAS FSSVGPELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALIL

SKHPNWTNTQVRSSLENTTTKLGDS FYYGKGLINVQAAAQ
A. TCA Assay for Protein Content Determination in 96-Well Microtiter Plates
[0173] For BPN' (e.g., reference protease) and BPN' variants, this assay was started using filtered culture supernatant from microtiter plates grown 3-4 days at $33^{\circ} \mathrm{C}$. with shaking at 230 rpm and humidified aeration. A fresh 96 -well flat bottom microtiter plate (MTP) was used for the assay. First, $100 \mu \mathrm{~L} /$ well of 0.25 N HCl was placed in each well. Then, 50 $\mu \mathrm{L}$ of filtered culture broth was added. The light scattering/ absorbance at 405 nm (use 5 sec mixing mode in the plate reader) was then determined, in order to provide the "blank" reading. For the test, $100 \mu \mathrm{~L} / \mathrm{well}$ of 15% (w/v) trichloroacetic acid (TCA) was placed in the plates and incubated between 5 and 30 min at room temperature. The light scattering/absorbance at 405 nm (use 5 sec mixing mode in the plate reader) was then determined.
[0174] The equipment used was a Biomek FX Robot (Beckman Coulter) and a SpectraMAX (type 340; Molecular Devices) MTP Reader; the MTP's were from Costar (type 9017). The equipment used was a Biomek FX Robot (Beckman Coulter) and a SpectraMAX type 340 (Molecular Devices) MTP Reader; and the MTPs were type 9017 (Costar).
[0175] The calculations were performed by subtracting the blank (no TCA) from the test reading with TCA to provide a relative measure of the protein content in the samples. If desired, a standard curve can be created by calibrating the TCA readings with AAPF assays of clones with known conversion factors. However, the TCA results are linear with respect to protein concentration from 50 to 500 protein per ml (ppm) and can thus be plotted directly against enzyme performance for the purpose of choosing good-performing vari-
ants. The turbidity/light scatter increase in the samples correlates to the total amount of precipitable protein in the culture supernatant.

B. AAPF Protease Assay in 96-Well Microtiter Plates

[0176] In order to determine the protease activity of the proteases and variants thereof of the present invention, the hydrolysis of N -succinyl-L-alanyl-L-alanyl-L-prolyl-L-phe-nyl-p-nitroanilide (suc-AAPF-pNA) was measured. The reagent solutions used were: 100 mM Tris $/ \mathrm{HCl}, \mathrm{pH} 8.6$, containing 0.005% TWEEN®-80 (Tris dilution buffer); 100 mM Tris buffer, pH 8.6 , containing 10 mM CaCl 2 and 0.005% TWEEN(B)-80 (Tris/Ca buffer); and 160 mM suc-AAPF-pNA in DMSO (suc-AAPF-pNA stock solution) (Sigma: S-7388). To prepare a suc-AAPF-pNA working solution, 1 ml suc-AAPF-pNA stock solution was added to 100 ml Tris/Ca buffer and mixed well for at least 10 seconds. The assay was performed by adding $10 \mu 1$ of diluted protease solution to each well, immediately followed by the addition of $190 \mu 11 \mathrm{mg} / \mathrm{ml}$ suc-AAPF-pNA working solution. The solutions were mixed for 5 sec., and the absorbance change in kinetic mode (20 readings in 5 minutes) was read at 410 nm in an MTP reader, at $25^{\circ} \mathrm{C}$. The protease activity was expressed as AU (activity $=\Delta \mathrm{OD} \cdot \mathrm{min}^{-1} \mathrm{ml}^{1}$).

C. Surfactant and Chelant Stability Assays

[0177] LAS and LAS/EDTA stability was measured after incubation of the test protease in the presence of LAS and LAS/EDTA respectively, as a function of residual activity determined using the AAPF assay.

LAS Stability Method

Reagents:
[0178] Dodecylbenzenesulfonate, Sodium salt (=LAS): Sigma D-2525

TWEEN(®-80: Sigma P-8074

[0179] TRIS buffer (free acid): Sigma T-1378); 6.35 g is dissolved in about 960 ml water; pH is adjusted to 8.2 with 4 N HCl . Final concentration of TRIS is 52.5 mM .
LAS stock solution: Prepare a 10.5% LAS solution in MQ water ($=10.5 \mathrm{~g}$ per 100 ml MQ)
TRIS buffer- $100 \mathrm{mM} / \mathrm{pH} 8.6$ (100 mM Tris $/ 0.005 \%$ Tween ${ }^{(1)}$ 80)

TRIS-Ca buffer, pH 8.6 (100 mM Tris $/ 10 \mathrm{mM} \mathrm{CaCl}_{2} / 0.005 \%$ Tween-(®)80)

Hardware:
[0180] Flat bottom MTPs (Costar No. 9017)

Biomek FX

ASYS Multipipettor
Spectramax MTP Reader
[0181] iEMS Incubator/Shaker
Innova 4330 Incubator/Shaker
[0182] Biohit multichannel pipette

BMG Thermostar Shaker

[0183] A 0.063% LAS solution was prepared in 52.5 mM Tris buffer pH 8.2. The suc-AAPF-pNA working solution was
prepared by adding 1 ml of $100 \mathrm{mg} / \mathrm{ml}$ suc-AAPF-pNA stock solution (in DMSO) to 100 ml (100 mM) TRIS buffer, pH 8.6 . To dilute the supernatants, flat-bottomed plates were filled with dilution buffer and an aliquot of the supernatant was added and mixed well. The dilution ratio depended on the concentration of the protease controls in the growth plates (AAPF activity). The desired protein concentration was 80 ppm.
[0184] Ten μ l of the diluted supernatant were added to 190 $\mu 10.063 \%$ LAS buffer/well. The MTP was covered with tape, shaken for a few seconds and placed in an incubator (Innova 4230) at $45^{\circ} \mathrm{C}$. for for 60 minutes at 200 rpm agitation. The initial activity ($\mathrm{t}=10$ minutes) was determined after 10 minutes of incubation by transferring 10μ l of the mixture in each well to a fresh MTP containing $190 \mu \mathrm{l}$ suc-AAPF-pNA work solution. These solutions were mixed well and the AAPF activity was measured using a MTP Reader (20 readings in 5 minutes and $25^{\circ} \mathrm{C}$.).
[0185] The final activity ($\mathrm{t}=60$ minutes) was determined by removing another 10μ l of solution from the incubating plate after 60 minutes of incubation. The AAPF activity was then determined as described above. The stability of the samples was determined by calculating the ration of the residual and initial AAPF activity as follows:

$$
\text { Residual Activity }(\%)=[t-60 \text { value }]^{*} 100 /[t-10 \text { value }] .
$$

LAS/EDTA Stability Method

[0186] The stability of protease variants in the presence of a representative anionic surfactant (LAS=linear alkylbene sulfonate, sodium dodecylbenzenesulfonate-DOBS) and disodium EDTA was measured after incubation under defined conditions and the residual activity was determined using the AAPF assay. The reagents used were dodecyllbenzene sulfonate, sodium salt (DOBS, Sigma No. D-2525), TWEEN®)80 (Sigma No. P-8074), di-sodium EDTA (Siegfried Handel No. 164599-02), HEPES (Sigma No. H-7523), unstress buffer: 50 mM HEPES ($11.9 \mathrm{~g} / \mathrm{l})+0.005 \%$ TWEEN® $80, \mathrm{pH}$ 8.0, Stress buffer: 50 mM HEPES ($11.9 \mathrm{~g} / \mathrm{l}$), 0.1% (w/v) DOBS ($1 \mathrm{~g} / \mathrm{l}$), 10 mM EDTA ($3.36 \mathrm{~g} / 1$), pH 8.0, reference protease and protease variant culture supernatants, containing $200-400 \mu \mathrm{~g} / \mathrm{ml}$ protein. The equipment used was V - or U-bottom MTP as dilution plates (Greiner 651101 and 650161 respectively), F-bottom MTP (Corning 9017) for unstress and LAS/EDTA buffer as well as for suc-AAPFpNA plates, Biomek FX (Beckman Coulter), Spectramax Plus 384 MTP Reader (Molecular Devices), iEMS Incubator/ Shaker (1 mm amplitude) from Thermo Electron Corporation, sealing tape: Nunc (236366)
[0187] The iEMS incubator/shaker (Thermo/Labsystems) was set at $29^{\circ} \mathrm{C}$. Culture supernatants were diluted into plates containing unstress buffer to a concentration of $\sim 25 \mathrm{ppm}$ (master dilution plate). $20 \mu \mathrm{l}$ of sample from the master dilution plate was added to plates containing $180 \mu 1$ unstress buffer to give a final incubation concentration of 2.5 ppm . The contents were mixed and kept at room temperature and a AAPF assay was performed on this plate. $20 \mu 1$ of sample from the master dilution plate was also added to plates containing $180 \mu \mathrm{l}$ stress buffer (50 mM HEPES ($11.9 \mathrm{~g} / \mathrm{l}$), 0.1% (w / v) DOBS ($1 \mathrm{~g} / 1$), 10 mM EDTA ($3.36 \mathrm{~g} / 1$), pH 8.0). The solutions were mixed and immediately placed in $29^{\circ} \mathrm{C}$. iEMS shaker for 30 min at 400 rpm . Following 30 minutes of incubation, a AAPF assay was performed on the stress plate. The stability of the samples was determined by calculating the
ration of the residual and initial AAPF activity as follows: Residual Activity (\%)=[mOD•min-1 stressed]*100/ [mOD•min-1 unstressed].

D. Cleaning Performance Assays

[0188] The stain removal performance of the protease variants was determined in commercially available detergents. Heat inactivation of commercial detergent formulas serves to destroy the enzymatic activity of any protein components while retaining the properties of non-enzymatic components. Thus this method was suitable for preparing commercially purchased detergents for use in testing the enzyme variants of the present invention.

Microswatches:

[0189] Microswatches of $1 / 4^{\prime \prime}$ circular diameter were obtained from CFT. Single microswatches or two microswatches were placed vertically in each well of a 96 -well MTP to expose the whole surface area (i.e., not flat on the bottom of the well).

BMI Microswatch Assay

[0190] Microswatches containing blood milk and ink (BMI) of 0.25 inch circular diameter were obtained from CFT. Before cutting of the swatches, the fabric (EMPA 116) was washed with water. One microswatch was vertically placed in each well of a 96-well microliter plate in order to expose the whole surface area (i.e., not flat on the bottom of the well). The desired detergent solution was prepared as described herein. After equilibrating the Thermomixer at 25° C., $190 \mu \mathrm{l}$ of detergent solution was added to each well of the MTP, containing microswatches. To this mixture, $10 \mu 1$ of the diluted enzyme solution was added so that the final enzyme concentration was $1 \mu \mathrm{~g} / \mathrm{ml}$ (determined from BCA assay). The MTP was sealed with tape and placed in the incubator for 30 minutes, with agitation at 1400 rpm . Following incubation under the appropriate conditions, $100 \mu 1$ of the solution from each well was transferred into a fresh MTP. The new MTP containing $100 \mu 1$ of solution/well was read at 405 nm using a MTP SpectraMax reader. Blank controls, as well as a control containing two microswatches and detergent but no enzyme were also included.

"Pre-Washed" Swatch

[0191] This type of microswatch was pre-washed in deionised water for 20 minutes at ambient temperature. After the pre-washing step, the swatches were put on top of paper towels to dry. The air-dried swatches were then punched using a $1 / 4^{\prime \prime}$ circular die on an expulsion press. Finally two microswatches were put into each well of a 96 -well MTP vertically to expose the whole surface area (i.e. not flat on the bottom of the well).

Detergents

[0192] For North American (NA) and Western European (WE) heavy duty liquid laundry (HDL) detergents, heat inactivation was performed by placing pre-weighed liquid detergent (in a glass bottle) in a water bath at $95^{\circ} \mathrm{C}$. for 2 hours. The detergents were purchased from local supermarket stores. Both un-heated and heated detergents were assayed within 5
minutes of dissolving the detergent to accurately determine percentage deactivated. Enzyme activity was tested by the AAPF assay.
[0193] For testing of enzyme activity in heat-inactivated detergents, working solutions of detergents were made from the heat inactivated stocks. Appropriate amounts of water hardness (6 gpg or 12 gpg) and buffer were added to the detergent solutions to match the desired conditions. The solutions were mixed by vortexing or inverting the bottles.

Enzymes and Equipment

[0194] Samples of reference serine proteases variants thereof were obtained from filtered culture broth of cultures grown in MTP plates. The equipment used was a Biomek FX Robot (Beckman Coulter), a SpectraMAX MTP Reader (type 340; Molecular Devices), an iEMS incubator/shaker (Thermo/Labsystems); F-bottom MTPs (Costar type 9017 used for reading reaction plates after incubation); and V-bottom MTPs (Greiner 651101 used for pre-dilution of supernatant). In this assay, the proteases hydrolyze the substrate and liberate pigment and insoluble particles from the substrate. Thus the rate of turbidity is a measure of enzyme activity.
[0195] The stain removal performance of reference serine proteases and variants therefrom on microswatches was determined on a MTP scale in commercially available heatinactivated detergent. The reagents used were: 5 mM HEPES, pH 8.0 or 5 mM MOPS, pH 7 buffer, 3:1 Ca:Mg for medium water hardness. $\left(\mathrm{CaCl}_{2}: \mathrm{MgCl} 2.6 \mathrm{H} 2 \mathrm{O}\right) ; 15000$ grains per gallon (gpg) stock diluted to $6 \mathrm{gpg}, 2 \mathrm{BMI}$ (blood/milk/ink) swatches per plate: EMPA-116 BMI cotton swatches processed by CFT: pre-rinsed and punched 2 swatches per well, and heat inactivated TIDE® $2 \times$ Cold off-the-shelf detergent in which lack of protease activity was confirmed.

TABLE 1-2

Working Detergent Solutions						
Detergent	Temp (C.)	Detergent g / L	pH	Buffer	Gpg	Protease
TIDE (®) 2X Cold	16	0.98	8	5 mM HEPES	6	BPN'
TIDE ® 2 X Cold	32	0.98	8	$\begin{aligned} & 5 \mathrm{mM} \\ & \text { HEPES } \end{aligned}$	6	BPN^{\prime}
TIDE ® 2 X Cold	16	0.98	7	$\begin{aligned} & 5 \mathrm{mM} \\ & \text { MOPS } \end{aligned}$	6	BPN ${ }^{\prime}$

[0196] The incubator was set at the desired temperature $\left(16^{\circ} \mathrm{C}\right.$. or $32^{\circ} \mathrm{C}$.). $10 \mu \mathrm{~L}$ samples from the master dilution plate of $\sim 10 \mathrm{ppm}$ enzyme was added to BMI 2-swatch plates with $190 \mu \mathrm{~L}$ working detergent solutions listed above. The volume was adjusted to give final concentration of 0.5 ppm for variants in the assay plates. The plates were immediately transferred to iEMS incubators and incubated for 30 minutes with 1400 rpm shaking at given temperature. Following incubation, $100 \mu \mathrm{~L}$ of supernatant was transferred into a new 96 -well plate and the absorbance was measured in MTP Reader at 405 nm and/or 600 nm . Control wells, containing 1 or 2 microswatches and detergent without the addition of protease samples were also included in the test. The measurement at 405 nm provides a higher value and tracks pigment removal, while the measurement at 600 nm tracks turbidity and cleaning.
Calculation of the Stain Removal Activity for All Microswatch Assay Methods:
[0197] The absorbance value obtained was corrected for the blank value (substrate without enzyme), providing a mea-
sure of hydrolytic activity. For each sample (variant) the performance index was calculated. The performance index compares the performance of the variant (actual value) and the standard enzyme (theoretical value) at the same protein concentration. In addition, the theoretical values can be calculated, using the parameters of the Langmuir equation of the standard enzyme.

E. Relative Specific Activity of Proteases and Variants Thereof

[0198] In order to discriminate the protease variants, the relative specific activity was calculated using suc-AAPFpNA as a substrate, which enabled the comparison and ranking of the variants versus the wild-type or standard protease. The specific activity on the suc-AAPF-pNA substrate was determined by dividing the proteolytic activity by the measured TCA-values of each sample, using the assays described above. Using these values, the relative specific activity was calculated (specific activity of variant/specific activity of reference protease).

F. Performance Index

[0199] The performance index compares the performance of the variant (actual value) and the standard or reference protease (theoretical value) at the same protein concentration. In addition, the theoretical values can be calculated, using the parameters of the Langmuir equation of the standard protease. A performance index (PI) that is greater than 1 (PI>1) identifies a better variant as compared to the standard (e.g., wild-type), while a PI of $1(\mathrm{PI}=1)$ identifies a variant that performs the same as the standard, and a PI that is less than 1 $(\mathrm{PI}<1)$ identifies a variant that performs worse than the standard. Thus, the PI identifies winners, as well as variants that are less desirable for use under certain circumstances.

Example 2

Targeted ISD (Insertion Substitution Deletion) Library Construction

[0200] A PCR-based method was used to create a library of modified B. amyloliquefaciens subtilisin BPN'-Y217L (commercially available as PURAFECT(B) PRIME subtilisin) polynucleotides containing in-frame insertions, deletions and/or substitutions in two regions of BPN'-Y217L (positions 63-77 and 92-132 of the mature region) as shown in FIG. 1 (See, Pisarchik et al., Prot. Eng. Des. Select., 20:257-265 [2007]). Two sets of oligonucleotides that evenly cover the targeted regions of the BPN'-Y217L gene of a full-length protein of 392 amino acids, in both forward and reverse direction were used to amplify the 5^{\prime} and 3^{\prime} 'segments of the portion of the BPN'-Y217L gene. The coding region of the BPN'-Y217L mature protease contains the KpnI and Xhol restriction sites for cloning purposes:
(SEQ ID NO: 3)
gaattcatctcaaaazaatgggtctactaaaxattattccatctatt
ataataaattcacagmtagtct\#taagtagtctactct
gaatttttttazaaggagayggtaangagtgagaagcaanaaatt

- continued
aatctttacgatggcgttcggcagcacatccagcgcgcaggctgcag ggaaatcaaacggggaaaagaaatatattgtcgggtttaaacagaca atgagcacgatgagcgccgctaagaagaaagacgtcatttctgaaaa aggcgggaaagtgcaaaagcaattcaaatatgtagacgcagctagcg ctacattaaacgaaaaagctgtaaaagaattgaaaaaagacccgagc gtcgettacgttgaagaagatcacgtagcacacgegtacgegcagtc cgtgecatatggegtatcacaaattaaagcecetgetctgcactcte aaggetacaccggttcaaatgttaaagtagcggttatcgacageggt atcgattcttctcatccagatcttaaagtagcaggcggagccagcat ggttcettctgaaacaaatcettecaagacaacaactctcacggaa cacacgttgctggtaccgttgeggetcttaataactcaatcggtgta ttaggegttgegccaagcgcatcactttacgetgtaaaagttctegg cgcegacggttceggccaatacagctggatcattaacggaatcgagt gggegatcgcaaacaatatggacgttattaacatgagcetcggegga ccgtccggttctgctgctttaaaagcggcagttgataaagcogttgc atccggcgtcgtagtcgttgcggcagcoggcaacgaaggcacttcog gcagctcaagcacagtgggctaccetggtaaataccottctgtcatt gcagtaggogctgtcgacagcagcaaccaaagagcatctttctcaag cgtaggacctgagctcgatgtcatggcacctggcgtatctatccaaa gcacgettcctggaaacaaatacggegcgttgaacggtacatcaatg gcatctccgcagegttgceggagecgeggetttgattcttetaage accogaactggacaaacactcaagtccgcagctctctagaaaacacc actacaaaacttggtgattcttetactatggaaaagggctgatcaa tgtacaggcggcagctcagtaaaactcgagataaaaaaccggccttg gecccgccggttttttat
[0201] The amino acid sequence of the BPN'-Y217L precursor protein is provided below. In this sequence, bold indicates the mature BPN'-Y217L protease:
(SEQ ID NO: 4) MRSKKLWISLLFALALIFTMAFGSTSSAQAAGKSNGEKKYIVGFKQT MSTMSAAKKKDVISEKGGKVQKQFKYVDAASATLNEKAVKELKKDPS VAYVEEDHVAHAYAQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSG IDSSHPDLKVAGGASMVPSETNPFQDNNSHGTHVAGTVAALNNSIGV LGVAPSASLYAVKVLGADGSGQYSWIINGIEWAIANNMDVINMSLGG PSGSAALKAAVDKAVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVI AVGAVDSSNQRASFSSVGPELDVMAPGVSIQSTLPGNKYGALNGTSM ASPHVAGAAALILSKHPNWTNTQVRSSLENTTTKLGDSFYYGKGL IN VQAAAQ.
[0202] The amino acid sequence of the mature BPN'Y217L protease was used as the basis for making the variant libraries described herein:
(SEQ ID NO: 5
AQSVPYGVSQIKAPALHSQGYTGSNVKVAVIDSGIDSSHPDLKVAGG ASMVPSETNPFQDNNSHGTHVAGTVAALNNSIGVLGVAPSASLYAVK VLGADGSGQYSWI INGIEWAIANNMDVINMSLGGPSGSAALKAAVDK AVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRAS FSSVGPELDVMAPGVSIQSTLPGNKYGALNGTSMASPHVAGAAALIL SKHPNWTNTQVRSSLENTTTKLGDSFYYGKGLINVQAAAQ.
[0203] Each oligonucleotide contained about 20-24 nucleotides necessary for annealing to the template, targeted codons (with or without degeneracy) and the Eam1104I recognition sequence. Every following primer was moved 3 bp downstream until the end of the targeted region was reached. Two PCR reactions (5^{\prime} and 3^{\prime} ' segments) contained either the 5^{\prime} forward or the 3^{\prime} reverse gene sequence flanking oligonucleotides each in combination with the corresponding oppositely priming oligonucleotides. The 5^{\prime} fragments were amplified from pAC-FNA10 plasmid (See, FIG. 2A) using a single forward primer (P3203, TGGATCAGTTTGCTGTTTGCT; SEQ ID NO:6) and reverse primers P4385P4441 (See, Table 2-1) each containing the Eam1104I restriction site. The 3^{\prime} fragments were amplified using a single reverse primer (P3435, ATGTATCAAGATAAGAAAGAACAAG; SEQ ID NO:7) and forward primers P4328-P4384 (See, Table 2-1) each containing an Eam 1 104I restriction site.

TABLE 2-1

SEQ	
ID PRIMER	
NO. NAME	PRIMER SEQUENCE
8 P 4328	AAACTCTTCANDTNDTCACGGAACTCACGTTGCCGGCACA
9 P 4329	AAACTCTTCANDTINDTGGAACTCACGTTGCCGGCACAGTT
10 P4330	AAACTCTTCANDTNDTACTCACGTTGCCGGCACAGTTG
11 P4331	AAACTCTTCANDTNDTCACGTTGCCGGCACAGTTGCGGCT
12 P 4332	AAACTCTTCANDTNDTGTTGCCGGCACAGTTGCGGCTC'T
13 P4333	AAACTCTTCANDTNDTGCCGGCACAGTTGCGGCTCTTAAT
14 P4334	AAACTCTTCANDTNDTCGGCACAGTTGCGGCTCTTAATAAC
15 P4335	AAACTCTTCANDTNDTACAGTTGCGGCTCTTAATAACTCA
16 P 4336	AAACTCTTCANDTNDTGTTGCGGCTCTTAATAACTCAATC
17 P 4337	AAACTCTTCANDTNDTGCGGCTCTTAATAACTCAATCGGT
18 P4338	AAACTCTTCANDTNDTGCTCTTAATAACTCAATCGGTGTA
19 P4339	AAACTCTTCANDTNDTCTTAATAACTCAATCGGTGTATTA
20 P4340	AAACTCTTCANDTNDTAATAACTCAATCGGTGTATTAG
21 P4341	AAACTCTTCANDTNDTAACTCAATCGGTGTATTAGGCGTT
22 P4342	AAACTCTTCANDTNDTTCAATCGGTGTATTAGGCGTTG
23 P4343	AAACTCTTCANDTTCAATCGGTGTATTAGGCGTTG
24 P4344	AAACTCTTCANDTINDTAAAGTTCTCGGTGCTGACGGTTC

TABLE 2-1-continued

Primers Used for BPN'-Y217L Library Construction
SEQ
ID PRIMER
NO. NAME PRIMER SEQUENCE

25 P4345 AAACTCTTCANDTNDTGTTCTCGGTGCTGACGGTTCC 26 P4346 AAACTCTTCANDTNDTCTCGGTGCTGACGGTTCCGGCCAA 27 P4347 AAACTCTTCANDTNDTGGTGCTGACGGTTCCGGCCAATAC 28 P4348 AAACTCTTCANDTNDTGCTGACGGTTCCGGCCAATACA 29 P4349 AAACTCTTCANDTNDTGACGGTTCCGGCCAATACAGCTG 30 P4350 AAACTCTTCANDTNDTGGTTCCGGCCAATACAGCTGGATC 31 P4351 AAACTCTTCANDTNDTTCCGGCCAATACAGCTGGATCATT 32 P4352 AAACTCTTCANDTNDTGGCCAATACAGCTGGATCATTAAC
33 P4353 AAACTCTTCANDTNDTCAATACAGCTGGATCATTAACGGA
34 P4354 AAACTCTTCANDTNDTTACAGCTGGATCATTAACGGAATC
35 P4355 AAACTCTTCANDTNDTAGCTGGATCATTAACGGAATCGAG
36 P4356 AAACTCTTCANDTNDTTGGATCATTAACGGAATCGAGTG
37 P4357 AAACTCTTCANDTNDTATCATTAACGGAATCGAGTG
38 P4358 AAACTCTTCANDTNDTATTAACGGAATCGAGTGGGCGATC 39 P4359 AAACTCTTCANDTNDTAACGGAATCGAGTGGGCGATCGCA 40 P4360 AAACTCTTCANDTNDTGGAATCGAGTGGGCGATCGCAAAC 41 P4361 AAACTCTTCANDTNDTATCGAGTGGGCGATCGCAAACAAT 42 P4362 AAACTCTTCANDTNDTGAGTGGGCGATCGCAAACAATATG 43 P4363 AAACTCTTCANDTNDTTGGGCGATCGCAAACAATATGGAC 44 P4364 AAACTCTTCANDTNDTGCGATCGCAAACAATATGGACGTT 45 P4365 AАAСTCTTCANDTNDTATCGCAAACAATATGGACGTTATT 46 P4366 AAACTCTTCANDTNDTGCAAACAATATGGACGTTATTAAC 47 P4367 AAACTCTTCANDTNDTAACAATATGGACGTTATTAACATG 48 P4368 AAACTCTTCANDTNDTAATATGGACGTTATTAACATGAG
49 P4369 AAACTCTTCANDTNDTATGGACGTTATTAACATGAGCCTC 50 P4370 AAACTCTTCANDTNDTGACGTTATTAACATGAGCCTC 51 P4371 AAACTCTTCANDTNDTGTTATTAACATGAGCCTCGGCGGA 52 P4372 AAACTCTTCANDTNDTATTAACATGAGCCTCGGCGGACCT 53 P4373 AAACTCTTCANDTNDTAACATGAGCCTCGGCGGACCTTCT 54 P4374 AAACTCTTCANDTNDTATGAGCCTCGGCGGACCTTCTGGT 55 P4375 AAACTCTTCANDTNDTAGCCTCGGCGGACCTTCTGGTTCT 56 P4376 AAACTCTTCANDTNDTCTCGGCGGACCTTCTGGTTCTGCT 57 P4377 AAACTCTTCANDTNDTGGCGGACCTTCTGGTTCTGCTGCT 58 P4378 AAACTCTTCANDTNDTGGACCTTCTGGTTCTGCTGCTTTA 59 P4379 AAACTC'TTCANDTNDTCCTTCTGGTTCTGCTGCTTTAAAA

TABLE 2-1-continued
Primers Used for BPN'-Y217L Library Construction
SEQ
ID PRIMER
NO. NAME PRIMER SEQUENCE

60 P4380 AAACTCTTCANDTNDTTCTGGTTCTGCTGCTTTAAAAG 61 P4381 AAACTCTTCANDTNDTGGTTCTGCTGCTTTAAAAGCGGCA 62 P4382 AAACTCTTCANDTNDTTCTGCTGCTTTAAAAGCGGCAGTT 63 P4383 AAACTCTTCANDTNDTGCTGCTTTAAAAGCGGCAGTTGAT 64 P4384 AAACTCTTCANDTGCTGCTTTAAAAGCGGCAGTTGAT 65 P4385 AAACTCTTCAAHNGTTGTCTTGGAAAGGATTTGTTTC 66 P4386 AAACTCTTCAAHNAHNGTTGTCTTGGAAAGATTTGTTTC 67 P4387 АААСТСТTCAAANAHNGTTGTTGTCTTGGAAAGGATTTGT 68 P4388 AAACTCTTCAAHNAHNAGAGTTGTTGTCTTGGAAAGGATT 69 P4389 AAACTCTTCAAHNAHNGTGAGAGTTGTTGTCTTGGAAAGG 70 P4390 AAACTCTTCAAHNAHNTCCGTGAGAGTTGTTGTCTTGGAA 71 P4391 AAACTCTTCAA.ANAHNAGTTCCGTGAGAGTTGTTGTCTTG 72 P4392 AAACTCTTCAAHNAHNGTGAGTTCCGTGAGAGTTGTTGTC 73 P4393 AAACTCTTCAAHNAHNAACGTGAGTTCCGTGAGAGTTGTT 74 P4394 AAACTCTTCAAHNAHNGGCAACGTGAGTTCCGTGAGAGTT 75 P4395 AAACTCTTCAAHNAHNGCCGGCAACGTGAGTTCCGTGAGA 76 P4396 AAACTCTTCAAHNAHNTGTGCCGGCAACGTGAGTTCCGTG 77 P4397 AAACTCTTCAAHNAHNAACTGTGCCGGCAACGTGAGTTCC 78 P4398 AAACTCTTCAAHNAHNCGCAACTGTGCCGGCAACGTGAGT 79 P4399 AAACTCTTCAAHNAHNAGCCGCAACTGTGCCGGCAACGTG 80 P4400 АААСТСТTCAAHNAHNAAGAGCCGCAACTGTGCCGGCAAC 81 P4401 AAACTCTTCAAHNGTAAAGTGATGCGCTTGGCGCAAC 82 P4402 AAACTCTTCAAHNAHNGTAAAGTGATGCGCTTGGCGCAAC 83 P4403 AAACTCTTCAA.HNAHNAGCGTAAAGTGATGCGCTTG 84 P4404 AAACTCTTCAAHNAHNTACAGCGTAAAGTGATGCGCTTG 85 P4405 AAACTCTTCAAHNAHNTTTTACAGCGTAAAGTGATGCGCT 86 P4406 AAACTCTTCAAHNAHNAACTTTTACAGCGTAAAGTGATG 87 P4407 AAACTCTTCAAHNAHNGAGAACTTTTACAGCGTAAAGTGA 88 P4408 AAACTCTTCAA.HNAHNACCGAGAACTTTTACAGCGTAAAG 89 P4409 AAACTCTTCAAHNAHNAGCACCGAGAACTTTTACAGCGTA 90 P4410 AАAСТСТTCAAHNAHNGTCAGCACCGAGAACTTTTACAG 91 P4411 AAACTCTTCAAHNAHNACCGTCAGCACCGAGAACTTTTAC 92 P4412 AAACTCTTCAAHNAHNGGAACCGTCAGCACCGAGAACTTI 93 P4413 AAACTCTTCAAHNAHNGCCGGAACCGTCAGCACCGAGAAC 94 P4414 AAACTCTTCAAHNAHNTTGGCCGGAACCGTCAGCACCGAG

TABLE 2-1-continued

Primers	Used for BPN'-Y217L Library Construction
SEQ	
ID PRIMER	
NO. NAME	PRIMER SEQUENCE
95P4415	AAACTCTTCAAHNAHNGTATTGGCCGGAACCGTCAGCAC
96 P4416	AAACTCTTCAAHNAHNGCTGTATTGGCCGGAACCGTCAG
97 P 4417	AAACTCTTCAAHNAHNCCAGCTGTATTGGCCGGAACCGTC
98P4418	AAACTCTTCAAHNAHNGATCCAGCTGTATTGGCCGGAAC
99P4419	AAACTCTTCAAHNAHNAATGATCCAGCTGTATTGGCCGGA
100P4420	AAACTCTTCAAHNAHNGTTAATGATCCAGCTGTATTG
101P4421	AAACTCTTCAAHNAHNTCCGTTAATGATCCAGCTGTATTG
102 P 4422	AAACTCTTCAAHNAHNGATTCCGTTAATGATCCAGCTGTA
103 P 4423	AAACTCTTCAAHNAHNCTCGATTCCGTTAATGATCCAGCT
104P4424	AAACTCTTCAAHNAHNCCACTCGATTCCGTTAATGATCCA
105 P 4425	AAACTCTTCAAHNAHNCGCCCACTCGATTCCGTTAATGAT
106 P4426	AAACTCTTCAAHNAHNGATCGCCCACTCGATTCCGTTAAT
107 P 4427	AAACTCTTCAAHNAHNTGCGATCGCCCACTCGATTCCGTT
108P4428	AAACTCTTCAAHNAHNGTTTGCGATCGCCCACTCGATTCC
109P4429	AAACTCTTCAAHNAHNATTGTTTGCGATCGCCCACTCGAT
110 P 4430	AAACTCTTCAAHNAHNCATATTGTTTGCGATCGCCCACTC
111P44.31	AAACTCTTCAAHNAHNGTCCATATTGTTTGCGATCGCCCA
112 P4432	AAACTCTTCAAHNAHNAACGTCCATATTGTTTGCGATCGC
11.3 P443.3	AAACTCTTCAAHNAHNAATAACGTCCATATTGTTTGCGAT
114 P4434	AAACTCTTCAAHNAHNGTTAATAACGTCCATATTGTTTGC
115P4435	AAACTCTTCAAHNAHNCATGTTAATAACGTCCATATTGTT
116 P4436	AAACTCTTCAAHNAHNGCTCATGTTAATAACGTCCATATT
117 P 4437	AAACTCTTCAAHNAHNGAGGCTCATGTTAATAACGTCCAT
118P4438	AAACTCTTCAAHNAHNGCCGAGGCTCATGTTAATAACGTC
119 P 4439	AAACTCTTCAAHNAHNTCCGCCGAGGCTCATGTTAATAAC
120P4440	AAACTCTTCAAHNAHNAGGTCCGCCGAGGCTCATGTTAAT
121 P 4441	AAACTCTTCAAHNAHNAGAAGGTCCGCCGAGGCTCATGTT

[0204] Each amplification reaction contained 30 pmol of each oligonucleotide and 100 ng of pAC-FNA10 template DNA. Amplifications were carried out using Vent DNA polymerase (New England Biolabs). The PCR mix (20 ul) was initially heated at $95^{\circ} \mathrm{C}$. for 2.5 min followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$. for 15 s , annealing at $55^{\circ} \mathrm{C}$. for 15 s and extension at $72^{\circ} \mathrm{C}$. for 40 s . Following amplification, left and right fragments generated by the PCR reactions were gelpurified and mixed (about 200 ng of each fragment). Every mix contained three left fragments targeting three adjacent codons and three right fragments targeting same codons. These mixes were digested with Eam1 104I, ligated with T4

DNA ligase and amplified by flanking primers (P4299 CGTTGAAGAAGATCACGTAGCA; SEQ ID NO:122, and P3246 TTTATTTTATAAACTCATTCCCTGAT; SEQ ID NO:123). The resulting fragments were digested with MluI and XhoI, and cloned into the MluI/XhoI sites in the Bacillus subtilis expression plasmid pHPLT-FNA (FIG. 2B). The BPN'-Y217L expression cassette from the pHPLT vector used has the polynucleotide sequence shown below.
[0205] The polynucleotide sequence of the expression cassette from the pHPLT vector (Plat promoter-pre-pro-BPN'-Y217L-terminator) (SEQ ID NO. 124) is shown below:
(SEQ ID NO: 124)
GCTTTTCTTTTGGAAGAAAATATAGGGAAAATGGTACTTGTTAAAAA TTCGGAATATTTATACAATATCATATGTTTCACATTGAAAGGGGAGG AAAATCGTGAAACAACAAAAACGGCTTTAGTCTAGCAAAAGGAGAGG GTAAAGAGTGAGAAGCAAAAAATTGTGGATCAGTTTGCTGTTTGCTT TAGCGTTAATCTTTACGATGGCGTTCGGCAGCACATCCTCTGCCCAG GCGGCAGGGAAATCAAACGGGGAAAAGAAATATATTGTCGGGTTTAA ACAGACAATGAGCACGATGAGCGCCGCTAAGAAGAAAGATGTCATTT CTGAAAAAGGCGGGAAAGTGCAAAAGCAATTCAAATATGTAGACGCA GCTTCAGCTACATTAAACGAAAAAGCTGTAAAAGAATTGAAAAAAGA CCCGAGCGTCGCTTACGTTGAAGAAGATCACGTAGCACACGCGTACG CGCAGTCCGTGCCTTACGGCGTATCACAAATTAAAGCCCCTGCTCTG САСТСTCAAGGCTACACTGGATCAAATGTTAAAGTAGCGGTTATCGA CAGCGGTATCGATTCTTCTCATCCTGATTTAAAGGTAGCAGGCGGAG CCAGCATGGTTCCTTCTGAAACAAATCCTTTCCAAGACAACAACTCT CACGGAACTCACGTTGCCGGCACAGTTGCGGCTCTTAATAACTCAAT CGGTGTATTAGGCGTTGCGCCAAGCGCATCACTTTACGCTGTAAAAG TTCTCGGTGCTGACGGTTCCGGCCAATACAGCTGGATCATTAACGGA ATCGAGTGGGCGATCGCAAACAATATGGACGTTATTAACATGAGCCI CGGCGGACCTTCTGGTTCTGCTGCTTTAAAAGCGGCAGTTGATAAAG CCGTTGCATCCGGCGTCGTAGTCGTTGCGGCAGCCGGTAACGAAGGC ACTTCCGGCAGCTCAAGCACAGTGGGCTACCCTGGTAAATACCCTTC TGTCATTGCAGTAGGCGCTGTTGACAGCAGCAACCAAAGAGCATCTT TCTCAAGCGTAGGACCTGAGCTTGATGTCATGGCACCTGGCGTATCT ATCCAAAGCACGCTTCCTGGAAACAAATACGGCGCGTTGAACGGTAC ATCAATGGCATCTCCGCACGTTGCCGGAGCGGCTGCTTTGATTCTTT CTAAGCACCCGAACTGGACAAACACTCAAGTCCGCAGCAGTTTAGAA AACACCACTACAAAACTTGGTGATTCTTTCTACTATGGAAAAGGGCT GATCAACGTACAGGCGGCAGCTCAGTAAACTCGAGAGAGGACGGATT TCCTGAAGGAAATCCGTTTTTTTATTTTAAGCTTG
[0206] Ligation mixtures were amplified using rolling circle amplification according to manufacturer's recommendation (Epicentre). One ul of the ligation mixture was mixed with 5 ul of the sample buffer, heated to $95^{\circ} \mathrm{C}$. for 3 min and
cooled on ice. Next, 5 ul of the reaction buffer and 0.2 ul of the enzyme were added to each tube, followed by incubation at $30^{\circ} \mathrm{C}$. for 10 hours. Products of the rolling circle amplification were diluted 100 times and used to transform Bacillus subtilis. Bacillus subtilis cells (genotype: Δ aprE, $\Delta \mathrm{nprE}$, Δ spoIIE, amyE::xylRPxylAcomK-phleo) made competent by the induction of the comK gene under control of a xylose inducible promoter (See e.g., Hahn et al., Mol Microbiol, 21:763-775 [1996]) were transformed with 45 libraries containing DNA sequences encoding BPN'-Y217L protease with mutated regions. The cells were grown in 1 ml of Luria Broth (LB) at $37^{\circ} \mathrm{C}$. for 1 hour and then plated on LB plates containing 1.6% skim milk and $10 \mathrm{mg} / 1$ neomycin, and were incubated overnight at $37^{\circ} \mathrm{C}$. At least 2000 clones from each of the 45 libraries were screened for producing halos. When plated on skim milk plates, 0.05% to 20% of clones generated halos. A limited number of the clones generating halos were sequenced. These clones varied in the ratio of insertions and deletions, but none of them had frame shift mutations. Clones generating halos were further screened for AAPF activity using a 96 -well plate assay as described in Example 1. The BPN'-Y217L variant proteins were produced by growing the B. subtilis transformants in 96 well microtiter plates as described earlier. Protein concentration of culture supernatants was determined by TCA precipitation as described in Example 1.

Example 3

Stain Removal Performance of BPN'-Y217L Variants Generated by Targeted ISD
[0207] Results of experiments conducted to determine stain removal activity (microswatch assay to determine stain removal performance in laundry applications using EMPA 116 swatches (BMI stain, CFT) at $\mathrm{pH} 8 / 16^{\circ} \mathrm{C}$. and protein determination by TCA precipitation (tests of properties of interest) of BPN'-Y217L variants generated as described above are shown in Table 3-1. The results were obtained using the methods described in Example 1, with the following modifications for the stain removal performance assay. The test detergent used was heat inactivated Tide $2 \times$ detergent (Procter \& Gamble).
[0208] Heat inactivation of commercial detergent formulas serves to destroy the endogenous enzymatic activity of any protein components while retaining the properties of nonenzymatic components. Heat inactivation of the detergents was performed by placing pre-weighed amounts of liquid detergent (in a glass bottle) in a water bath at $95^{\circ} \mathrm{C}$. for 2 hours. The detergent was purchased from local supermarket stores. Both unheated and heated detergents were assayed within 5 minutes of dissolving the detergent to accurately determine percentage deactivated. Enzyme activity was tested by AAPF assay. As described throughout functionality of BPN'-Y217L variants was quantified as a performance index ("Pi" or "PI"), which is the ratio of performance of a variant to parent protein BPN'-Y217L. BPN'-Y217L variants showing a PI value greater or equal than 0.5 for BMI stain removal performance and/or TCA precipitation showed improved cleaning benefits and/or expression.
[0209] Mutations are named by the one letter code for the parent amino acid, followed by a three digit position number and then the one letter code for the variant amino acid. For example, mutating glycine (G) at position 87 to serine (S) is represented as "G087S." Multiple mutations are indicated by
inserting a " $/$ " between the mutations. Mutations at positions 87 and 90 are represented as "G087S/A090Y." For deletions, the one letter code " Z " is used. For an insertion relative to the parent sequence, the one letter code " Z " is on the left side of the position number. For a deletion, the one letter code " Z " is on the right side of the position number. For insertions, the position number is the position number before the inserted amino acid(s), plus 0.01 for each amino acid. For example, an insertion of three amino acids alanine (A), serine (S) and tyrosine (Y) between position 87 and 88 is shown as "Z087. 01A/Z087.02S/Z087.03Y." Thus, combining all the mutations above plus a deletion at position 100 is: "G087S/Z087. 01A/Z087.02S/Z087.03Y/A090Y/A100Z."

TABLE 3-1

Mutations and Performance Index for TCA protein and BMI Activity forBPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	$\begin{gathered} \text { PI on BMI } \\ \text { at pH } 8 \\ 16^{\circ} \mathrm{C} \text {. } \end{gathered}$
A001T/L096V/G097S/A098D/D099I	0.45	1.1
A001V/G097S/A098R/D099G	0.66	0.74
S003F	1.08	0.89
V004M/A098D/D099G	0.69	0.97
V004M/D099R/G100S/Z100.01L	0.8	0.75
V004M/G127C/G128S/P129R	0.92	0.52
V004M/M119C/D120S	0.68	1
V008I	0.97	0.985
V008I/A098G/D099R	0.67	0.66
V0081/A098N	0.52	1.14
V008I/M119C/D120G	0.53	0.99
Q010L/G097R/A098C/D099S	0.27	0.52
Q010R	0.91	0.86
K012N/A098R/D099V	0.46	0.8
K012R/G097D/A098H/D099G	0.86	0.96
A013T/S101R/Q103S	0.52	0.68
A013V/G097N/A098H/D099G/G160S	0.46	0.74
A013V/G097S/Z097.01R/A098R	0.46	0.64
A013V/G100R/S101G	0.43	0.79
A013V/N118G/M119I	0.5	0.85
A013V/P129Z/S130H/S132G	0.47	0.58
P014L/N062D/S101R/Q103S	0.41	1.02
P014S/A098S/D099G	0.56	0.99
A015T/V068N/A069G	0.52	0.38
L016M/G128R/P129R/Z129.01G	0.5	0.28
H017Q/G127R/P129G	0.54	0.43
H017R	0.5	1.025
H017Y/A098R/D099I	0.42	0.56
H017Y/A098R/D099Z/S101G	0.6	0.47
H017Y/P129R	0.685	0.85
H017Y/S130Y/G131S/S132L	0.38	0.58
Q019H/G128R/Z128.01R/P129D	0.4	0.78
Q019H/Z128.01G/Z128.02G	0.56	0.29
G020D/G097R/A098G/D099C	0.39	0.8
G020D/P129Z/S130G/G131R/S132C	0.37	0.51
N025Y/S101L/Q103N	1.05	1.13
A029V/G097R/A098S	0.44	0.94
S033G	0.9	1.05
S033I/T066G/H067R/V068D/A216E	0.88	1.01
S038F/A098R/D099S	0.98	0.6
V044I/G097C/A098D/D099G	0.42	0.9
V044I/G097R/A098R	0.83	0.87
V044I/G100S/S101G	0.36	1.09
A045V/G097C/A098R/D099S	0.41	0.88
A048V/G097L/A098G/D099S	0.42	1
A048V/G100R/S101G	0.65	1.085
A048V/G128S/P129L/Z129.01G	0.45	0.68
M0501/A098G	0.2	0.54
S053F/S130I/S132G	0.65	0.54
S053T/D099H/S101Z	0.66	0.74
E054D/A098R/D099G	1.05	0.76
T055I/S101R/Q103R	58	51

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	$\begin{gathered} \text { PI on } \mathrm{BMI} \\ \text { at } \mathrm{pH} 8 \\ 16^{\circ} \mathrm{C} \text {. } \end{gathered}$
T055S/T066I/Z066.01G/Z066.02G	0.33	0.7
Q059H/D099S/S101G	0.36	0.79
Q059H/M119S/D120R	0.37	0.52
Q059K/M119V/V121C	0.23	0.58
Q059L/P129G	0.69	0.87
D060N	0.47	0.9
N061D/G128R/P129V/Z129.01G	0.59	0.43
S063T/G097D/A098R/D099S	0.97	0.95
G065R/Z101.01R/Z101.02G	0.57	1.035
T066S/H067S	0.51	0.61
V068C/A069G	0.42	1.22
V068C/A069G/H238Q	0.32	0.62
V068G/A069G	0.36	0.71
V068G/A069G/V150I	0.33	0.59
V068G/A069S	0.34	0.63
V068I/A069G/A144V	0.46	0.98
V068/G097D/A098G/D099Z/G100R	0.41	0.58
V068L/A069G	0.445	0.905
V068L/A069S	0.47	0.83
V068S/A069G	0.48	1.04
V068S/A069G/A116T	0.4	1.05
A069G	0.7	1.02
A069G/T071G	0.23	0.84
A069G/T071I	0.79	1
L075G/N076G/N077Z	0.29	0.77
L075I	0.78	0.94
L075R/N076G/N077Z	0.34	0.99
N076D/D099R/Z100.01G	0.28	0.63
1079F/A098G	1.16	1.16
V081A/S101R/Q103V	0.4	0.81
V081I/G097R/A098G/D099C	0.36	0.54
V084D/G097S/A098G/D099N	0.42	0.63
V084I/G127C/P129G	1.28	1.01
V084I/G127L	0.88	0.72
A085V/A098G	0.75	1.09
A085V/G097R/A098S/D099N	0.65	0.75
A085V/G128S/P129R/Z129.01G	0.61	0.47
A085V/N2181	0.435	0.845
A085V/S101G	0.59	0.84
A085V/S204P	0.43	0.78
A085V/Z099.01H/S101R	0.46	0.6
P086S/G131D/S132G	0.25	0.64
P086T/S101D/Q103S/V147I	0.35	1.27
A088S/S101R/Q103V	0.63	0.88
A088T	0.855	1.01
A088T/A098R/D099R	0.73	0.36
A088T/D099G/Z100.01G	0.21	0.75
A088T/G127N/P129R	0.99	0.8
A088T/G127S/P129R/Q206R/A273S	1.22	0.67
A088T/P129S/G146D	0.74	1.16
A088T/S101G	1.13	1.08
A088T/S130R/G131H/S132N	1.24	0.78
A088V/G100Z/S101C/Q103R	0.52	0.46
A088V/P129Z	0.61	1.05
A092G	0.61	1.15
A092G/S249R	0.69	1.07
A092G/V093C	0.2	0.855
A092G/V093I	0.5	1.15
A092G/V093L	0.275	0.75
A092L/V093G/K094Z	0.54	0.96
A092S/K094V	0.47	1.13
A092S/V093C	0.72	1.06
A092S/V093G	0.21	0.79
A092S/V093S	0.33	0.67
A092V/V093L	0.34	0.695
V093I/G128D/P129R	0.6	1.22
V093I/P129Z	0.6	0.92
V093R/Z093.01G/K094R	0.28	0.88
K094E/V095D	0.87	0.95

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity forBPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$
K094G	0.33	0.56
K094S/V148I	0.3	0.85
L096I/N118R/M19C/D120G/A151V	0.29	0.58
Z096.01D/A098R	0.66	1.2
Z096.01H/A098G	0.32	1.16
Z096.01N/A098H	0.65	1.05
Z096.01R/A098C	0.47	0.95
Z096.01R/A098G	0.39	0.82
Z096.01R/A098G/V192I	0.4	0.77
Z096.01R/A098R	0.60	0.70
Z096.01R/A098R/V192A	0.61	0.68
Z096.01R/A098S	0.47	0.92
Z096.01R/A098S/G157S	0.3	0.88
Z096.01R/Z096.02G	0.52	0.67
Z096.01R/Z096.02G/V147I	0.41	0.96
Z096.01S/A098G	0.44	1.12
Z096.01S/A098N	0.47	1.04
G097C/A098D/D099S	0.675	1.09
G097C/A098G/D099G	0.42	0.86
G097C/A098G/D099N	0.82	1.07
G097C/A098G/D099S	0.45	0.95
G097C/A098G/D099S/G100Z	0.32	0.64
G097C/A098G/D099V	0.43	0.88
G097C/A098N/D099S	0.45	0.94
G097C/A098R	1.24	1.11
G097C/A098R/D099G	0.40	0.84
G097C/A098R/D099H	0.45	0.64
G097C/A098R/D099H	0.46	0.78
G097C/A098R/D099N	0.79	0.87
G097C/A098R/D099R	0.4	0.55
G097C/A098R/D099R/N109D/A114S	0.56	0.5
G097C/A098S/D099H/A151V	0.32	0.65
G097C/A098V/D099S	0.2	0.81
G097C/Z097.01G/A098H/T253I	0.32	0.58
G097C/Z097.01S/A098G	0.45	1.04
G097D/A098C	1	1.03
G097D/A098G/D099G	0.89	0.985
G097D/A098G/D099R	1.00	0.83
G097D/A098H/D099R	1.24	0.92
G097D/A098H/D099V	0.95	0.86
G097D/A098R/D099G	0.955	0.96
G097D/A098R/D099R	1.29	0.79
G097D/A098R/D099S	1.11	0.87
G097D/A098R/D099Z	0.255	1.09
G097D/G100C/S101R	1.15	0.86
G097D/G100R/S101G	0.47	0.85
G097H/A098C/D099G	0.34	0.76
G097H/A098D/D099N	0.5	1.15
G097H/A098G	0.67	1.1
G097H/A098G/D099G	0.38	0.78
G097H/A098G/D099R	0.42	0.73
G097H/A098G/D099Z	0.39	1.02
G097H/A098G/D099Z/A151V	0.37	0.52
G097H/A098G/D099Z/G100R	0.55	0.49
G097H/A098G/D099Z/G100V	0.2	0.87
G097H/A098G/D099Z/S101N/G166S	0.41	0.68
G097H/A098R	0.60	0.97
G097H/A098R/D099G	0.46	0.67
G097H/A098R/D099L	0.31	0.5
G097H/A098R/D099N	0.48	0.74
G097H/A098S/D099G	0.76	0.84
G097H/A098S/D099I	0.35	0.55
G097H/A098S/D099L	0.36	0.83
G097H/A098S/D099S/K237E	0.53	0.88
G097L/A098C/D099S	0.26	0.68
G097L/A098G/D099S	0.33	0.77
G097L/A098G/D099S/G100Z	0.28	0.53
G097L/A098G/D099Z	0.29	0.56
G097L/A098H	0.71	1.1

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for
BPN'-Y217L Variants

		PI on BMI
Mutations	TCA	at pH 8 PI

G097L/A098R/D099N
G097L/A098V

G097N/A098G/D090C
G097N/A098G/D099R G097N/A098G/D099R/V270I G097N/A098G/D099S G097N/A098G/D099V G097N/A098G/D099V/A151V G097N/A098G/D099V/S101F
G097N/A098H/D099N G097N/A098R/D099R G097N/A098R/D099S G097N/A098R/D099V G097N/A098S/D099S G097R/A098C
G097R/A098C/D099S G097R/A098F/A200V G097R/A098G G097R/A098G/D099C G097R/A098G/D099G G097R/A098G/D099G/A273T G097R/A098G/D099N G097R/A098G/D099S G097R/A098G/D099S/A133D G097R/A098G/D099V G097R/A098H/D099C/S182N G097R/A098H/D099G G097R/A098N/D099G G097R/A098N/D099Z G097R/A098R
G097R/A098R/D099C G097R/A098R/D099G G097R/A098R/D099S G097R/A098S/D099C G097R/A098S/D099G G097R/A098S/D099L G097R/A098S/D099R G097R/A098S/D099S G097R/A098S/D099V G097R/A098V/D099G G097R/Z097.01H/A098C G097R/Z097.01R/A098C G097R/Z097.01R/A098G/V147I
G097R/Z097.01R/A098S G097R/Z097.01R
G097R/Z097.01S/A098G
G097R/Z097.01S/A098R G097S/A098C
G097S/A098C/D099G
G097S/A098C/D099H
G097S/A098C/D099L G097S/A098C/D099R G097S/A098C/D099S G097S/A098C/D099Z G097S/A098G/D099F G097S/A098G/D099G G097S/A098G/D099G G097S/A098G/D099S G097S/A098G/D099Z G097S/A098G/D099Z/G100R
G097S/A098H/D099C G097S/A098H/D099G G097S/A008N/D090G G097S/A098R
G097S/A098R/D099C G097S/A098R/D099G G097S/A098R/D099L
G097S/A098R/D099V
G097S/A098R/D099Y
0.5
0.78

0.74	0.88

0.75	0.7

0.47
0.79

0.59	0.73
0.72	0.675

.72

0.28	0.98
0.305	0.735

析

273 T

```
            A133D
```


\square

V147I

OOR

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
A098H/D099G/G100S	0.355	0.9
A098H/D099G/V143I	0.41	0.84
A098H/D099R	1.07	0.62
A098H/D099R/G100S	0.37	0.54
A098H/D099S/G100C	0.33	0.67
A098H/D099S/G100N	0.43	1.05
A098H/D099Y	0.32	0.81
A098I/D099G	0.54	0.97
A0981/D099S	0.47	0.91
A098L/D099G	0.44	1.15
A098L/D099S	0.5	0.91
A098N	1.05	1
A098N/D099G	1.14	1.01
A098N/D099L	0.32	0.71
A098N/D099S	0.74	1
A098R/A144T	0.81	0.91
A098R/A274V	1.11	0.88
A098R/D099C	0.56	0.82
A098R/D099G	0.94	0.70
A098R/D099G/G100C	0.35	0.68
A098R/D099G/G100D	0.83	0.92
A098R/D099G/G100L/S145T	0.68	0.84
A098R/D099G/G100N	0.66	0.74
A098R/D099G/G100R	0.57	0.25
A098R/D099G/G100S	0.55	0.82
A098R/D099G/V150I	0.84	0.68
A098R/D099H	0.85	0.59
A098R/D099I	0.39	0.665
A098R/D099L	0.54	0.62
A098R/D099N	1	0.895
A098R/D099N/G100L	0.57	0.79
A098R/D099R	0.72	0.32
A098R/D099R/G100D	0.41	0.53
A098R/D099R/S101Z	0.61	0.23
A098R/D099R/S130F	0.23	0.51
A098R/D099R	0.64	0.51
A098R/D099S	0.75	0.80
A098R/D099S/G100L/A153V	0.55	0.79
A098R/D099S	0.87	0.81
A098R/D099V	0.505	0.775
A098R/D099Z/S101G	0.395	0.61
A098R/G100C/A137T	0.64	0.96
A098R/G100S	0.95	1
A098S/D099C	0.655	0.865
A098S/D099G	0.89	0.91
A098S/D099G/G100C	0.35	0.86
A098S/D099G/G100D	0.26	1.26
A098S/D099G/G100R/L250I	0.58	0.55
A098S/D099G/G100S	0.48	0.98
A098S/D099G/Z099.01R	0.25	0.52
A098S/D099H	0.6	0.95
A098S/D099H/M124V	0.53	0.95
A098S/D099H/Z099.01R/G169A/V180A	0.63	0.62
A098S/D099R	0.80	0.78
A098S/D099R/G100L	0.71	0.67
A098S/D099R/G154S	0.41	0.61
A098S/D099R/G166S	1.16	0.75
A098S/D099R/Z100.01G	0.47	0.66
A098S/D099S	0.82	0.97
A098S/D099S/Z099.01R	0.38	0.66
A098S/D099V	0.41	1.03
A098T/P129Z/S130R/S132G	0.33	0.53
A098T/S101G	0.785	0.925
A098V/D099G	0.965	0.96
A098V/D099G/G100D	0.5	0.98
A098V/D099G/G100D/A153V	0.41	0.62
A098V/D099G/G100S	0.66	0.83
A098Y/D099R/G100L	0.31	0.54
A098Y/D099R/G100Z/S101Z/G102D	0.98	0.66

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants

Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	$\begin{gathered} \text { PI on BMI } \\ \text { at pH } 8 \\ 16^{\circ} \mathrm{C} \text {. } \end{gathered}$
A098Z/S101R	0.56	0.62
Z098.01N	0.5	1.31
Z098.01R	0.54	0.97
Z098.01R/G100R	0.55	0.51
D099C/K136N	0.3	0.8
D099C/S101D	0.73	1.08
D099C/S101R	0.655	0.67
D099C/S101Z	0.40	0.61
D099C/Z099.01S	0.3	0.88
D099C/Z100.01G	0.36	0.56
D099F/S101Z	0.35	0.51
D099G/G100C	0.5	0.58
D099G/G100D/S101R	0.54	0.93
D099G/G100H	0.62	0.71
D099G/G100R/S101V	0.45	0.58
D099G/G100S/S101R	0.55	0.79
D099G/S101G	0.67	0.83
D099G/S101H	0.79	0.95
D099G/S101V	0.85	0.95
D099G/S101Z	0.56	0.81
D099G/S101Z/N269D	0.45	0.81
D099G/Z099.01N	0.33	1.21
D099G/Z099.01R/G100S	0.26	0.59
D099G/Z099.01S	0.21	1.17
D099G/Z100.01G	0.26	0.71
D099G/Z100.01G/S183N/Q275K	0.35	0.71
D099H/S101Z	0.49	0.74
D099H/S101Z/V150I	0.56	0.59
D099H/Z100.01G/A273V	1.91	0.38
D099H/Z100.01G/Z100.02G	0.2	0.84
D0991/Z099.01S	0.48	0.805
D099L/N118D	0.5	0.82
D099L/S101G	0.23	0.91
D099L/S101V	0.46	0.88
D099L/Z100.01G	0.26	0.51
D099N/A116T	1	0.92
D099N/G100R/S101V	0.525	0.725
D099N/S101G	0.57	0.95
D099N/S101H	0.98	0.89
D099N/S101Z	0.48	0.94
D099N/Z099.01S	0.69	1
D099N/Z100.01G	0.42	0.94
D099R	0.7	0.71
D099R/S101D	0.78	1
D099R/S101G	0.595	0.58
D099R/S101V	0.75	0.66
D099R/S101Z	0.48	0.52
D099R/S101Z/A133T	0.35	0.52
D099R/Z099.01N	0.28	1.06
D099R/Z099.01S	0.42	0.71
D099R/Z100.01G	0.43	0.66
D099R/Z100.01N	0.44	0.5
D099S/S101G	0.53	0.98
D099S/S101I	0.69	0.925
D099S/S101Z	0.71	0.77
D099S/Z099.01H	0.62	0.67
D099S/Z099.01L	0.35	0.59
D099S/Z099.01V	0.5	0.35
D099S/Z100.01G	0.47	0.85
D099S/Z100.01G/Z100.02G	0.21	1.07
D099V/S101D	0.54	1.24
D099V/S101V	0.33	0.825
D099V/S101Z	0.36	0.51
Z099.01H/S101L	0.56	0.58
Z099.01H/Z099.02R	0.5	0.44
Z099.01N/S101R	0.46	1.09
Z099.01S	0.48	1.17
Z099.01S/S101V	0.51	0.91
Z099.01S/Z099.02G/A228T	0.61	0.24

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
G100C	0.85	0.98
G100D	0.54	1.18
G100D/S101G	0.54	0.68
G100D/S101R	0.74	1.13
G100H/G102V	0.26	1.04
G100H/S101G	0.35	0.91
G100H/S101R	0.74	0.945
G100L/S101G	0.775	1.135
G100L/S101R	1.24	1.01
G100N/S101D	0.5	0.86
G100N/S101L	0.93	1.075
G100N/S101R	1.27	0.99
G100R	0.64	0.84
G100R/L267R/I268V	0.7	1.01
G100R/S101G	0.46	0.78
G100R/S101G/G160S/S182N	0.5	0.69
G100R/S101G/Q103Z/Y104Z/S161N	0.33	0.73
G100R/S101G/S163N	0.55	0.54
G100R/S101N	0.78	0.89
G100R/S101R	0.60	0.87
G100R/S101R/Q103Z/V270I	0.58	1
G100R/S101Z/G102C/Q103D	0.5	0.26
G100S	0.59	1.14
G100S/S101C	0.69	0.96
G100S/S101G	0.47	1.02
G100S/S101R	0.75	0.99
G100S/S101R	0.94	1.01
G100S/S101V	0.53	1.13
G100S/S101V/A231T	0.51	0.46
Z100.01G	0.43	0.76
Z100.01L	0.43	1.05
Z100.01N	0.43	0.67
Z100.01R	0.47	0.76
Z100.01R/S101G	0.45	0.95
S101C	1.48	0.89
S101C/Q103I	0.68	0.91
S101C/Q103S	1.34	0.97
S101D	1.055	1.125
S101D/Q103C	0.85	1.15
S101D/Q103D	0.94	1.1
S101D/Q103F	1.04	1.1
S101D/Q103H	0.89	1.24
S101D/Q103H	0.68	1.09
S101D/Q103R	1.06	0.87
S101D/Q103R/H238Y	0.69	1.11
S101D/Q103S	0.63	1.14
S101D/Q103V	0.41	1.09
S101F/Q103G	0.32	0.75
S101G	0.83	0.99
S101G/A151V	0.41	1.23
S101G/A179V	0.29	0.58
S101G/G102S	0.42	1.13
S101G/Q103G	0.38	0.59
S101G/Q103L	0.74	1.01
S101G/Q103N	0.75	1.14
S101G/Q103R	0.71	0.83
S101G/Q103R/A179T	0.32	0.52
S101G/Q103R/G157D	0.59	0.81
S101G/Q103S	0.57	1.12
S101G/Q103S/L233S	0.8	0.97
S101G/Q103S/L233S	0.45	1.13
S101G/Q245H	0.56	0.93
S101G/S249N	0.77	1.115
S101G/V139I	0.85	1.01
S101G/Z101.01R	0.435	0.965
S101G/Z101.01R/A200T	0.52	0.26
S101G/Z102.01G	0.465	0.69
S101H	0.92	1.03
S101H/G102S	0.68	1.23

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants

Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	$\begin{gathered} \text { PI on BMI } \\ \text { at } \mathrm{pH} 8 \\ 16^{\circ} \mathrm{C} \text {. } \end{gathered}$
S101H/Q103D	0.985	1.185
S101H/Q103G	0.38	0.84
S101H/Q103G/E251Q	0.37	0.7
S101H/Q103H	1.07	0.93
S101H/Q103I	0.715	1.035
S101H/Q103R	0.73	0.82
S101H/Q103R/A274Z/Q275Z	0.67	0.68
S101H/Q103S	0.76	1.07
S101H/Q103V	0.67	1.09
S101I	0.78	0.95
S101/Q103R	0.81	0.91
S101L	1.09	1.04
S101L/G102S/Q103R	0.87	1.07
S101L/Q103D	1.03	1.07
S101L/Q103G	0.33	0.9
S101L/Q103R	0.61	0.75
S101L/Q103R/A138T	0.43	0.73
S101L/Q103R/V121I/K213E	0.81	0.95
S101L/Q103S	1.04	1.04
S101L/Q103V	0.66	1.05
S101L/Z101.01R	0.5	0.99
S101N/Q103R	0.94	0.925
S101N/Z102.01G	0.49	0.65
S101R	0.85	0.90
S101R/A151V	0.4	0.66
S101R/A273V	0.78	0.71
S101R/E156G	1.1	0.66
S101R/G102L/Q103G	0.95	1.04
S101R/G102S	1.58	1.1
S101R/G102S/Q103R	0.81	0.91
S101R/G102S/Q103V	0.54	0.89
S101R/G131D	1.45	0.79
S101R/Q103C	1.05	0.89
S101R/Q103D	0.75	1.01
S101R/Q103D/S248R	0.89	0.75
S101R/Q103G	0.49	0.84
S101R/Q103G/A116T	0.52	0.97
S101R/Q103G/V147I/A153V	0.445	1.075
S101R/Q103G	0.49	0.7
S101R/Q103L	0.80	0.63
S101R/Q103N	1.00	0.89
S101R/Q103R	0.74	0.56
S101R/Q103R/S161N	1.35	0.63
S101R/Q103R/V148I	0.58	0.44
S101R/Q103S	0.93	0.85
S101R/Q103S/L126F	1.23	0.84
S101R/Q103V	0.74	0.83
S101V	0.915	1.05
S101V/Q103G	0.46	0.99
S101V/Q103H	0.75	0.98
S101V/Q103N/Z275.01K	1.17	1.13
S101V/Q103R	0.62	1.03
S101V/Q103V	0.58	1.09
S101Y/G102S/Q103R	0.83	0.94
S101Y/Q103L	0.54	0.75
S101Y/Q103S	0.54	0.93
S101Y/Q103V	0.58	0.95
S101Z	0.34	0.95
S101Z/G102I/Q103H/Y104G/L135F	0.32	0.7
S101Z/G102V/Q103R/Y104L	0.37	0.61
S101Z/Q103D	0.52	0.29
S101Z/Q103F	0.45	1.07
S101Z/Q103L	0.41	1
S101Z/Q103R	0.49	0.76
G102C/Q103L/Y104S	0.96	1.15
G102R/Q103C/Y104C/V192I	0.33	1.26
G102R/Q103G/Y104R	0.25	0.69
G102R/Q103R/Z103.01G	0.655	0.885
G102Z/Q103S	0.33	0.61

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
Z102.01G/Q103R	0.41	1.02
Z102.01G/Q103R/L267V	0.31	0.64
Z102.01G/Z102.02R/Z102.03G	0.53	0.67
Q103D	1.04	1.21
Q103G	0.335	1.04
Q103H/Y104N/Q275Z	0.56	0.81
Q103N/E156D	0.92	1.07
Q103R	0.75	0.82
Q103R/1122L/N123S/M124V	0.68	0.65
Q103R/Y104F	0.7	0.795
Q103S	1.35	0.86
Q103V	0.61	0.955
Q103Y/S182N	0.87	0.77
S105G/P129S/S130H/G131H	1.09	0.78
W106C/A116D/N117S/N118C	0.47	0.73
N109S/M119C/D120G/V121L	0.28	0.97
A116G/N117Z/N118R/M119C	0.37	0.88
A116H/N117G/N118R	0.39	0.94
N117C/N118G/M119S	0.44	1.05
N117C/N118G/M119S/A216V	0.33	0.87
N117G/N118G/M119C	0.43	0.94
N117G/N118R/M119C	0.29	1.03
N117H/N118C/M119C	0.45	0.57
N117H/N118D/M119S	0.63	0.88
N117H/N118G/M119C	0.97	0.83
N117H/N118G/M119L	0.59	0.86
N117H/N118G/M119S	0.72	0.89
N117H/N118G/M119V	0.62	0.95
N117H/N118H/M119V	1.07	0.96
N117H/N118R/M119C	0.98	0.75
N117H/N118R/M119S	0.53	0.77
N117H/N118S/M119C	0.71	0.84
N117H/N118S/M119S	0.4	0.985
N117H/N118S/M119V	0.64	0.89
N117/N118G/M19V	0.38	1.01
N117L/N118G/M119V	0.38	0.77
N117R/N118G/M119C	0.63	0.80
N117R/N118G/M1191/V270I	0.46	0.88
N117R/N118G/M119S	0.375	0.79
N117R/N118H/M119V	0.66	0.91
N117R/N118R/M119C	0.755	0.755
N117R/N118R/M119I	0.67	0.71
N117R/N118R/M119S	0.28	0.605
N117R/N118R/M119V	0.80	0.73
N117R/N118S/M119I	0.38	0.75
N117R/N118S/M119L	0.23	0.72
N117S/N118G/M119C	0.595	1.085
N117S/N118G/M119S	0.3	1.1
N117S/N118H/M119V	0.49	1.01
N117S/N118R/M119V	0.58	0.93
N117V/N118G/M119C	0.47	0.99
N117V/N118H/M119C	0.39	0.71
N117Y/N118G/M119S	0.26	0.74
N117Y/N118G/M119V	0.475	1
Z117.01G/N118R/M119C	0.29	0.65
N118C/M19V/D120S	0.27	0.82
N118C/Z118.01G/M119C	0.485	0.86
N118D/M119C/D120L	0.43	0.98
N118D/M119S/D120R	0.24	0.88
N118G/M119C/D120G	0.63	1.02
N118G/M119C/D120L	0.5	0.99
N118G/M119I/D120R	0.65	0.94
N118G/M119N	0.28	0.73
N118G/M119S/D120G	0.29	0.69
N118G/M119S/D120R	0.38	0.83
N118G/M119V/D120G	0.49	0.94
N118G/M119V/D120S/S182N	0.52	0.99
N118H/M119C/D120R	0.88	0.87
N118H/M119I/D120G	0.54	1.05

TABLE 3-1-continued
Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants

Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	$\begin{gathered} \text { PI on BMI } \\ \text { at } \mathrm{pH} 8 \\ 16^{\circ} \mathrm{C} \text {. } \end{gathered}$
N118H/M119N/V148I	0.38	0.63
N118H/M119S/D120G	0.28	0.62
N118H/M119V/D120G	0.54	1
N118R/M119C	0.97	0.99
N118R/M19C/D120G	0.63	0.85
N118R/M19C/D120R	0.8	0.85
N118R/M119S	0.45	0.99
N118R/M19S/D120G	0.32	0.53
N118R/M19S/D120R	0.29	0.57
N118R/M119S/D120S	0.28	0.82
N118R/M19V/D120C	0.27	0.97
N118R/M19V/D120G	0.56	0.76
N118R/M119V/D120G/A232T	0.32	0.825
N118S/M119C/D120R	0.56	0.91
M119C/D120G	0.58	0.98
M119C/D120G/V121I	0.48	0.95
M119C/D120G/V121L	0.39	0.52
M119C/D120H	0.91	1.01
M119C/D120H/A187V	0.44	0.93
M119C/D120R	0.76	0.95
M119H/V121I	0.42	0.58
M119I/D120C	0.44	0.88
M1191/D120G	0.47	0.96
M119I/D120R	0.67	0.86
M119L/D120G	0.39	0.51
M119S/D120R	0.28	0.97
M119S/D120S/V121I	0.46	0.72
M119S/V121I	0.44	1.15
M119V/D120C	0.27	0.93
M119V/D120G	0.43	1.06
M119V/D120R	0.63	0.86
M119V/D120S/V198L	0.5	0.93
D120G/I122C	0.27	0.83
D120G/I122C/L217S	0.34	0.56
D120G/1122G	0.54	0.23
D120G/I122V	0.5	1
D120H/1122L	0.66	1.03
D120H/V121C/I122V	0.31	0.74
D120N/V121L/122V	0.32	0.93
D120R/A151V	0.37	0.71
D120R/I122V	0.63	0.97
D120R/V121I	0.72	1
D120R/V121//1122C	0.39	0.74
D120R/V121I/I122C/A228T	0.29	0.98
D120S/I122C/A133S	0.31	1.1
V121C	0.63	0.86
$\mathrm{V} 121 \mathrm{C} / 122 \mathrm{C} / \mathrm{N} 123 \mathrm{C}$	0.54	0.2
V121C/I122G/N123V	0.56	0.6
V121C/I122S/N123V	0.56	0.57
V121C/I122V/N123S	0.52	0.59
V121I/I122C/N123C	0.53	0.6
V121/I122C/V150I	0.8	1.13
V121I/1122G/N123C	0.65	1
V121I/I122S/N123C	0.64	1.36
V121I/I122S/N123I	0.95	0.83
V121I/I122V/N123S	0.82	0.98
V121L/122S/N123V	0.53	0.9
V121L/N123C	1.02	1.16
I122C/N123C	0.6	0.6
I122C/N123S/M124L	0.98	1.015
I122D/N123V/M124L	0.55	0.63
I122G/N123C/M124L	0.96	0.96
I122G/N123G/Z123.01C	0.63	0.45
I122H/N123V/M124L	0.65	0.76
I122S/N123S	0.63	1.27
I122V/N123G/M124C/A138V	0.51	0.25
I122V/N123S/M124I	0.81	0.75
I122V/S183G	0.91	0.97
N123C/M124S	0.98	0.785

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
N123C/M124V	1.875	0.745
N123D	0.7	0.89
N123S/M124L	1.55	1.13
N123S/M124S	0.71	0.26
M124C	0.92	1.05
M124C/L126S	0.7	0.51
M124C/L126S/T244I	0.72	0.455
M124C/L126V	1.535	1.085
M124G	0.53	0.3
M124I	1.72	1.16
M124I/L126H	0.87	0.54
M124S	0.6	0.58
M124V	1.08	1.20
L126C	1.8	0.35
L126F/P129Z	1.07	1
L126F/P129Z/S182N	1.47	1.24
L126G	0.67	0.58
L126I/P129Z	0.53	0.71
L126R/G127R	0.54	0.47
L126S	1.08	0.94
L126Y	1.04	1.33
Z126.01S	0.67	0.59
G127C/G128S/P129R	0.77	0.48
G127C/P129G	1.53	0.72
G127C/P129G/A200T	0.56	0.4
G127C/P129R	1.785	0.825
G127C/P129R/A153T	0.76	0.48
G127D/P129G	0.91	0.73
G127D/P129S	0.71	0.69
G127H/P129G	1.65	0.71
G127H/P129R	1.1	0.77
G127L	1.14	0.83
G127L/P129R	1.02	0.80
G127N/P129C	1.05	0.88
G127N/P129G	1.1	0.91
G127N/P129G/A133T	0.87	1.04
G127N/P129G/A151V/K213N	0.37	0.72
G127N/P129R	1.10	0.77
G127N/P129S/A273V	1.07	0.9
G127N/P129V	1.16	0.92
G127R/A230V	0.5	0.58
G127R/P129D	1.01	0.8
G127R/P129D/L217S	0.76	0.78
G127R/P129G	0.57	0.48
G127R/P129R	0.85	0.56
G127R/P129S	0.725	0.725
G127S/P129D	0.67	1.255
G127S/P129F	0.94	0.93
G127S/P129G	1.29	0.99
G127S/P129G/G166D	0.81	0.98
G127S/P129G/I175T	0.33	0.77
G127S/P129R	1.47	0.86
G127S/P129S	1.06	1.09
G127S/P129V	1.16	1.15
G127V/P129G	1.59	0.84
G127V/P129R	1.01	0.89
Z127.01G/Z127.02H/P129D	0.58	0.65
Z127.01G/Z127.02H/P129G	0.55	0.57
Z127.01G/Z127.02H/P129R	0.52	0.61
Z127.01H/G128C/P129C/A230V	0.57	0.57
Z127.01H/P129G	0.59	0.36
Z127.01H/P129G/V148I	0.61	0.27
Z127.01H/P129R	0.57	0.44
Z127.01N/G128C/P129V	0.5	0.2
Z127.01N/G128S/P129S	0.585	1.19
Z127.01N/G128S/P129V	0.57	0.67
Z127.01N/P129R	0.59	1.04
Z127.01R/G128S/P129S	0.67	0.5
Z127.01R/P129G	0.485	0.475

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants

Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
Z127.01S/P129D	0.58	0.5
Z127.01S/P129G	0.65	0.67
Z127.01S/P129R	0.42	0.94
G128D/P129G	0.53	1.00
G128D/P129R/Z129.01R	0.7	0.33
G128D/P129S/G154S	0.5	0.54
G128H/P129C	0.58	0.89
G128H/P129H/Z129.01G	0.65	0.53
G128H/P129H/Z129.01R	0.595	0.44
G128H/P129R	0.78	0.97
G128H/P129R/Z129.01G	0.52	0.54
G128H/P129R/Z129.01R	0.57	0.36
G128H/P129S/Z129.01G	0.66	0.54
G128H/P129S/Z129.01R	0.47	0.88
G128H/P129S/Z129.01R/S248N	0.54	0.62
G128H/P129Y	0.44	1.22
G128H/Z128.01R/P129D	0.66	0.63
G128H/Z128.01R/P129S	0.46	0.755
G128H/Z128.01R/P129S/A144T	0.555	0.705
G128H/Z129.01R	0.46	0.76
G128N/P129R/Z129.01G	0.55	0.83
G128N/P129R/Z129.01R	0.5	0.93
G128N/P129S/Z129.01D	0.67	0.93
G128N/Z128.01R/P129S	0.58	1.01
G128R/P129G	0.54	0.57
G128R/P129H/Z129.01G	0.495	0.755
G128R/P129L/Z130.01S	0.58	0.25
G128R/P129R	0.45	0.53
G128R/P129R/Z129.01G	0.55	0.32
G128R/P129R/Z129.01G/A216V	0.64	0.26
G128R/P129S	0.46	0.78
G128R/P129S/Z129.01G	0.605	0.7
G128R/P129Z/S130R/S132G	0.43	0.51
G128R/Z128.01R/P129D	0.46	0.57
G128R/Z128.01R/P129F	0.52	0.28
G128S/P129C	0.845	1.09
G128S/P129C/Z129.01R	0.575	0.435
G128S/P129D	0.87	1.37
G128S/P129D/S248R	0.9	1.28
G128S/P129D/T244N	1.3	1.13
G128S/P129G	1.05	1.38
G128S/P129G/A187V	0.75	0.89
G128S/P129H/Z129.01R	0.44	0.92
G128S/P129R/L209F	1.2	1.01
G128S/P129R/Z129.01G	0.8	0.76
G128S/P129S/Z129.01D	0.6	0.55
G128S/P129S/Z129.01R	0.59	0.84
G128S/P129V	0.735	1.145
G128Y/P129R/Z129.01G	0.55	0.4
Z128.01G	0.57	0.515
Z128.01G/P129D	0.39	1.04
Z128.01G/P129R	0.46	0.87
Z128.01G/P129S/A134T	0.55	0.62
Z128.01G/Z128.02G	0.59	0.27
Z128.01R/P129D	0.35	0.6
Z128.01R/Z128.02G/P129S	0.5	0.58
Z128.01R/Z128.02H/P129G/G160S	0.59	0.44
Z128.01R/Z128.02R/P129D	0.58	0.74
Z128.01Y/Z128.02H/P129R	0.57	0.34
P129C/S130C/S132Z	0.42	0.6
P129D/Z129.01G/Z129.02D/G160D	0.54	0.61
P129D/Z129.01G/Z129.02G	0.69	0.3
P129G	0.64	0.90
P129G/G131Z	0.57	1.19
P129G/S130G/Z131.01G	0.51	1.02
P129G/S130H/S132Z	0.37	1.17
P129G/S130R/S132Z	0.71	0.3
P129G/V270I	0.7	0.9
P129G/Z129.01G	0.45	0.84

TABLE 3-1-continued

Mutations and Performance Index for TCA protein and BMI Activity for BPN'-Y217L Variants		
Mutations	$\begin{gathered} \text { TCA } \\ \text { PI } \end{gathered}$	PI on BMI at pH 8 $16^{\circ} \mathrm{C}$.
P129G/Z129.01R/Z129.02G	0.69	0.82
P129H	0.79	1
P129H/G131Z	0.6	1.16
P129H/G131Z/S132C	0.52	0.59
P129H/G131Z/S132H	0.43	1.04
P129H/S132Z	0.41	0.51
P129H/Z130.01D/Z130.02S	0.44	1.02
P129L	1	1.22
P129R	0.80	0.87
P129R/G131Z/S132H	0.58	0.78
P129R/S130D/S132Z	0.745	1.04
P129R/S130N/G131Z	1.23	0.95
P129R/S132T	0.37	0.69
P129R/S132Z	0.395	0.745
P129R/Z129.01G	0.42	0.60
P129R/Z129.01G/Z129.02G	0.49	0.57
P129R/Z129.01G/Z129.02G/A144T	0.64	0.49
P129R/Z129.01G/Z129.02G/G146D	0.53	0.31
P129R/Z129.01G/Z129.02R	0.52	0.42
P129R/Z129.01G	0.46	0.65
P129R/Z129.01R/Z129.02G	0.58	0.28
P129S	0.92	1.00
P129S/G131Z	0.75	1.15
P129S/S130H/S132Z	0.52	1.19
P129S/Z129.01C	0.55	0.45
P129S/Z129.01R/Z129.02S	0.59	0.82
P129S/Z130.01N/Z130.02S	0.45	1.1
P129V	1.32	1.09
P129V/S132Z	0.37	0.59
P129Z	0.57	1.16
P129Z/G131R/S132C	0.38	0.51
P129Z/S130G	0.47	1.29
P129Z/S130G/G131H/S132H	1.08	1.18
P129Z/S130G/G131V	0.52	0.82
P129Z/S130H	0.56	1.17
P129Z/S130H/S132G	0.42	0.61
P129Z/S130H/S132N	1.91	0.62
P129Z/S130L	0.49	1.14
P129Z/S130R	0.93	1.00
P129Z/S130R/G131C	0.53	0.75
P129Z/S130R/G131C	0.61	0.89
P129Z/S130R/G131D/S132C	0.7	0.75
P129Z/S130R/G131H/A144E	0.86	0.88
P129Z/S130R/G131H/S132D	0.33	0.52
P129Z/S130R/G131R/S132D	0.37	0.64
P129Z/S130R/L267M	0.67	0.99
P129Z/S130R/S132C	0.72	0.46
P129Z/S130R/S132G	0.42	0.64
P129Z/S130V/S132G	0.37	0.81
P129Z/S130Z/G131N/S132G	0.5	0.9
S130C	1.25	0.86
S130D/G131C/S132D	0.71	0.81
S130D/G131R	0.77	0.87
S130D/G131R/S132D	0.52	0.9
S130D/G131Z	1.53	0.91
S130D/G131Z/S132H	0.68	0.82
S130F/G131N/S132V	0.59	0.64
S130F/G131S/S132V	0.48	0.59
S130F/S132V	0.29	0.53
S130G	0.8	1.1
S130G/G131D/S132C	1.13	0.81
S130G/G131H/S132D	0.51	0.88
S130G/G131S/S132I	0.4	0.67
S130G/S132G	0.635	0.845
S130H	1.01	0.92
S130H/G131C/S132G	0.94	0.98
S130H/G131H/S132R	0.53	0.41
S130H/G131R/S132C	0.74	0.86
S130H/G131S	1.08	0.75

TABLE 3-1-continued

\left.	Mutations and Performance Index for TCA protein and BMI Activity for	
	BPN'-Y217L Variants	$\right)$

Table 3-2 provides a list of the insertions that make up the combinations.

TABLE 3-2

Mutations	
POS	Variant
66.01	Z066.01G
93.01	Z 093.01 G
96.01	Z 096.01 D
96.01	Z 096.01 H
96.01	Z 096.01 N
96.01	Z 096.01 R
96.01	Z 096.01 S
96.02	Z 096.02 G
97.01	Z 097.01 D
97.01	Z 097.01 G
97.01	Z 097.01 H
99.01	Z 097.01 R
97.01	Z 097.01 S
97.01	Z 097.01 Y
98.01	Z 098.01 N
98.01	Z 098.01 R
99.01	Z 099.01 H
99.01	Z 099.01 L

TABLE 3-2-continued

Mutations	
POS	Variant
99.01	Z099.01N
99.01	Z099.01R
99.01	Z099.01S
99.01	Z099.01V
99.02	Z099.02G
99.02	Z099.02R
100.01	Z100.01G
100.01	Z100.01L
100.01	Z100.01N
100.01	Z100.01R
100.02	Z100.02G
101.01	Z101.01R
101.02	Z101.02G
102.01	Z102.01G
102.02	Z102.02R
102.03	Z102.03G
103.01	Z103.01G
117.01	Z117.01G
118.01	Z118.01G
123.01	Z123.01C
126.01	Z126.01S
127.01	Z127.01G
127.01	Z127.01H
127.01	Z127.01N
127.01	Z127.01R
127.01	Z127.01S
127.02	Z127.02H
128.01	Z128.01G
128.01	Z128.01R
128.01	Z128.01Y
128.02	Z128.02G
128.02	Z128.02H
128.02	Z128.02R
129.01	Z129.01C
129.01	Z129.01D
129.01	Z129.01G
129.01	Z129.01R
129.02	Z129.02D
129.02	Z129.02G
129.02	Z129.02R
129.02	Z129.02S
130.01	Z130.01D
130.01	Z130.01N
130.01	Z130.01S
131.01	Z131.01G
275	Q275Z

Example 4

Construction of Combinatorial Variants of BPN' 3
[0210] Using BPN'G97A-G128A-Y217Q ("BPN'3") as a parent, combinatorial variants were created by a strategy that involved extension (fusion) PCR using four fragments of the gene. Fragment 1 was amplified by primers P4974 and P4977 (See, Table 4-1). Fragment 4 was amplified by primers 4978 and P4976 (Table 4-1). Both fragment 1 and 4 did not contain any mutations. Fragments 2 and 3 each were created as a set of 12 and 16 sequences respectively that contained the desired mutations, using either BPN'3 as template or in the absence of template using partially overlapping forward and reverse primers.
[0211] The set of Fragment 2 sequences were amplified by the following primers:
01: P4979 and P4980 (BPN'3 as a template)
02: P4981 and P4982 (no template)
03: P4983 and P4984 (no template)

04: P4985 and P4986 (no template)
05: P4987 and P4988 (no template)
06: P4989 and P4990 (no template)
07: P4991 and P4992 (no template)
08: P4993 and P4994 (no template)
09: P4995 and P4996 (no template)
10: P4997 and P4998 (no template)
11: P4999 and P5000 (no template)
12: P5001 and P5002 (no template)
The set of Fragment 3 sequences were amplified by the following primers:
01: P5003 and P5004 (BPN'3 as a template)
02: P5005 and P5006 (no template)
03: P5007 and P5008 (no template)
04: P5009 and P5010 (no template)
05: P5011 and P5012 (no template)
06: P5013 and P5014 (no template)
07: P5015 and P5016 (no template)
08: P5017 and P5018 (no template)
09: P5019 and P5020 (no template)
10: P5021 and P5022 (no template)
11: P5023 and P5024 (no template)
12: P5025 and P5026 (no template)
13: P5027 and P5028 (no template)
14: P5029 and P5030 (no template)
15: P5031 and P5032 (no template)
16: P5033 and P5034 (no template)
[0212] The primer sequences used in the construction of the combinatorial variants are listed in Table 4-1.

TABLE 4-1

Primer Sequences and Mutations Introduced in combinatorial Variants of BPN'3		
SEQ		
ID	Primer	
NO:	Name	Sequence
125	P4948	GTGTTTTTCTTGGAATTGTGCTG
126	P4974	GCCTCACATTTGTGCCACCTA
127	P4975	CATATGAGTTATGCAGTTTGTAG
128	P4976	CCTCTCGGTTATGAGTTAGTTC
129	P4977	GTAGAGCGAAGCAGACGGGGCTA
130	P4978	CTTAAAGCAGCAGTTGATAAAGCT
131	P4979	CTTGGTGTAGCCCCGTCTGCTT
132	P4980	ATCCATGTTATTCGCGATGGCCCATT
133	P4981	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCTCT
		TGCTCTGCAGCAGACGGATCAGGCCAATACTCATGG ATTATCAA
134	P4982	ATCCATGTTAATTCGCGATGGCCCATTCGATGCCGT
		TGATAATCCATGAGTATTGGCCTGATCCGTCTGCTG CAGAGCAAG
135	P4983	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGATGCACGTGACGGATCAGGCCAATAC
		TCATGGAT
136	P4984	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGATCCGTCACGTGC
		ATCAAGGA

TABLE 4-1-continued

Primer Sequences and Mutations Introduced in Combinatorial Variants of BPN'3		
SEQ		
ID	Primer	
NO:	Name	Sequence
137	P4985	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACTCTGGATCAGGCCAATAC
		TCATGGAT
138	P4986	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGATCCAGAGTCTGC
		TGCAAGAA
139	P4987	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACTCTTCAGGCCAATACTCA
		tGGAttat
140	P4988	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGAAGAGTCTGCTGC
		AAGAACTT
141	P4989	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACGGAGATGGCCAATACTCA
		TGGATtAT
142	P4990	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCATCTCCGTCTGCTGC AAGAACTT
143	P4991	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGATGCACGTGACTCTGGATCAGGCCAA
144	P4992	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGATCCAGAGTCACG TGCATCAA
145	P4993	СTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGATGCACGTGACTCTTCAGGCCAATAC
		tcatggat
146	P4994	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGAAGAGTCACGTGC
		ATCAAGAA
147	P4995	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGATGCACGTGACGGAGATGGCCAATAC
		TCATGGAT
148	P4996	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCATCTCCGTCACGTGC ATCAAGAA
149	P4997	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACTCTTCTTCAGGCCAATAC
		TCATGGAT
150	P4998	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCTGAAGAAGAGTCTGC
		TGCAAGAA
151	P4999	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACTCTGGAGATGGCCAATAC
		TCATGGAT
152	P5000	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCATCTCCAGAGTCTGC
		TGCAAGAA
153	P5001	CTTGGTGTAGCCCCGTCTGCTTCGCTCTACGCCGTT
		AAAGTTCTTGCAGCAGACTCTGATGGCCAATACTCA
		TGGATTAT

TABLE 4-1-continued

Primer Sequences and Mutations Introduced in Combinatorial Variants of BPN'3		
SEQ		
ID	Primer	
NO:	Name	Sequence
154	P5002	ATCCATGTTATTCGCGATGGCCCATTCGATGCCGTT
		GATAATCCATGAGTATTGGCCATCAGAGTCTGCTGC
		AAGAACTT
155	P5003	ATCGAATGGGCCATCGCGAAT
156	P5004	TGCAACAGCTTTATCAACTGCT
157	P5005	ATCGAATGGGCCATCGCGAATAACATGGATGTATCT
		GGAATGAGCCTGGGAGCACCAAGCGGCAGT
158	P5006	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTTGGTGCTCCCAGGCTCATTCCAGAT
159	P5007	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGATCTCCAAGCGGCAGT
160	P5008	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTTGGAGATCCCAGGCTCATGTTGATT
161	P5009	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCAGTTAGCGGCAGT
162	P5010	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTAACTGCTCCCAGGCTCATGTTGATT
163	P5011	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCAGATAGCGGCAGT
164	P5012	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTATCTGCTCCCAGGCTCATGTTGATT
165	P5013	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCAAGCGGCAGTGCGGCA
166	P5014	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTTGCTCCCAGGCTCATGTTGATTACA
167	P5015	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCAGGAGGCAGTGCGGCA
168	P5016	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCTCCTGCTCCCAGGCTCATGTTGATTACA
169	P5017	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCACCAGTTGATAT
170	P5018	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		GATATCAACTGGTGCTCCCAGGCTCATGTTGATT
171	P5019	ATCGAATGGGCCATCGCGAATAACATGGATGTAATC
		AACATGAGCCTGGGAGCACCAAGCGGCAGT
172	P5020	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGTCGC
		ACTGCCGCTTGGTGCTCCCAGGCTCATGTTGATT
173	P5021	ATCGAATGGGCCATCGCGAATAACATGGATGTATCT
		GGAATGAGCCTGGGATCTCCAAGCGGCAGT
174	P5022	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTTGGAGATCCCAGGCTCATTCCAGAT
175	P5023	ATCGAATGGGCCATCGCGAATAACATGGATGTATCT
		GGAATGAGCCTGGGAGCAGTAAGCGGCAGT
176	P5024	TGCAACAGCTTTATCAACTGCTGCTTTAAGTGCCGC
		ACTGCCGCTTACTGCTCCCAGGCTCATTCCAGAT
177	P5025	ATCGAATGGGCCATCGCGAATAACATGGATGTATCT GGAATGAGCCTGGGAGCAGATAGCGGCAGT

TABLE 4-1-continued

| | Primer Sequences and Mutations Introduced in |
| :--- | :--- | :--- |
| | |
| Combinatorial Variants of BPN' 3 | |

TABLE 4-1-continued

	PrimerSequences and Mutations Introduced in Combinatorial Variants of BPN'3 SEQ	
ID	Primer	
NO:	Name	Sequence
187	P5035	TGATCCGTCTGAGCAGGGGCTTTAATTTGTGA
188	P5036	ATTAAAGCCCCTGCTCAGACGGATCAGGCCAATACTC

[0213] Each amplification reaction contained 30 pmol of each oligonucleotide and 100 ng of the template DNA. Amplifications were carried out using Vent DNA polymerase (New England Biolabs). The PCR mix (20 ul) was initially heated at $95^{\circ} \mathrm{C}$. for 2.5 min followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$. for 15 s , annealing at $55^{\circ} \mathrm{C}$. for 15 s and extension at $72^{\circ} \mathrm{C}$. for 40 s . Following amplification all the fragments were purified by the Gel Band Purification kit (Qiagen) and mixed to serve as templates for a fusion PCR using primers P4975 and P4948. The full-length DNA fragment from the fusion PCR reaction was gel-purified by the QIAGEN gel-band purification kit, digested by the BamHI and HindIII restriction enzymes and ligated in the Bacillus expression plasmid pHPLT-BPN partial opt (FIG. 2C), which was cut with the same restriction enzymes.
[0214] Ligation mixtures were amplified using rolling circle amplification according to manufacturer's recommendation (Epicentre). One ul of the ligation mixture was mixed with 5 ul of the sample buffer, heated to $95^{\circ} \mathrm{C}$. for 3 min and cooled on ice. Next, 5 ul of the reaction buffer and 0.2 ul of the enzyme was added to each tube, followed by incubation at 30° C. for 10 hours. Products of the rolling circle amplification were diluted 100 times and 1 ul of this dilution was used to transform Bacillus subtilis cells (genotype: $\Delta \mathrm{aprE}, \Delta \mathrm{nprE}$, Δ spoIIE, amyE::xylRPxylAcomK-phleo) as described in Example 2. Transformations were plated on LB plates containing 1.6% skim milk and 10 ppm Neomycin and incubated overnight at $37^{\circ} \mathrm{C}$. Only colonies with halos were picked and grown in microtiter plates for further analysis as described in Example 2. Protein concentration of culture supernatants was determined by TCA precipitation as described in Example 1.

TABLE 4.5

	Combinatorial Libraries of BPN': G97A-G128A-Y217Q Parent
Variant	Name
1	V093Z/K094S/V095C/L096S/G097A/G128A/Y217Q
2	Z096.01D/G097G/A098R/G128A/Y217Q
3	G097A/Z099.01S/G128A/Y217Q
4	G097A/G100S/G128A/Y217Q
5	G097A/S101D/G128A/Y217Q
6	Z096.01D/G097G/A098R/Z099.01S/G128A/Y217Q
7	Z096.01D/G097G/A098R/G100S/G128A/Y217Q
8	Z096.01D/G097G/A098R/S101D/G128A/Y217Q
9	G097A/Z099.01S/G100S/G128A/Y217Q
10	G097A/Z099.01S/S101D/G128A/Y217Q
11	G097A/G100S//S101D/G128A/Y217Q
12	G097A/I122S/N123G/G128A/Y217Q
13	V093Z/K094S/V095C/L096S/G097A/I122S/N123G/G128A/Y217Q
14	Z096.01D/G097G/A098R/I122S/N123G/G128A/Y217Q
15	G097A/Z099.01S/I122S/N123G/G128A/Y217Q
16	G097A/G100S/I122S/N123G/G128A/Y217Q
17	G097A/S101D/I122S/N123G/G128A/Y217Q
18	Z096.01D/G097G/A098R/Z099.01S/I122S/N123G/G128A/Y217Q
19	Z096.01D/G097G/A098R/G100S/I122S/N123G/G128A/Y217Q
20	Z096.01D/G097G/A098R/S101D/I122S/N123G/G128A/Y217Q
21	G097A/Z099.01S/G100S/I122S/N123G/G128A/Y217Q

TABLE 4.5-continued

Combinatorial Libraries of BPN': G97A-G128A-Y217Q Parent	
Variant	Name
22	G097A/Z099.01S/S101D/[122S/N123G/G128A/Y217Q
23	G097A/G100S/S101D/I122S/N123G/G128A/Y217Q
24	G097A/G128S/Y217Q
25	V093Z/K094S/V095C/L096S/G097A/G128S/Y217Q
26	Z096.01D/G097G/A098R/G128S/Y217Q
27	G097A/Z099.01S/G128S/Y217Q
28	G097A/G100S/G128S/Y217Q
29	G097A/S101D/G128S/Y217Q
30	Z096.01D/G097G/A098R/Z099.01S/G128S/Y217Q
31	Z096.01D/G097G/A098R/G100S/G128S/Y217Q
32	Z096.01D/G097G/A098R/S101D/G128S/Y217Q
33	G097A/Z099.01S/G100S/G128S/Y217Q
34	G097A/Z099.01S/S101D/G128S/Y217Q
35	G097A/G100S/S101D/G128S/Y217Q
36	G097A/G128A/P129V/Y217Q
37	V093Z/K094S/V095C/L096S/G097A/G128A/P129V/Y217Q
38	Z096.01D/G097G/A098R/G128A/P129V/Y217Q
39	G097A/Z099.01S/G128A/P129V/Y217Q
40	G097A/G100S/G128A/P129V/Y217Q
41	G097A/S101D/G128A/P129V/Y217Q
42	Z096.01D/G097G/A098R/Z099.01S/G128A/P129V/Y217Q
43	Z096.01D/G097G/A098R/G100S/G128A/P129V/Y217Q
44	Z096.01D/G097G/A098R/S101D/G128A/P129V/Y217Q
45	G097A/Z099.01S/G100S/G128A/P129V/Y217Q
46	G097A/Z099.01S/S101D/G128A/P129V/Y217Q
47	G097A/G100S/S101D/G128A/P129V/Y217Q
48	G097A/G128A/P129D/Y217Q
49	V093Z/K094S/V095C/L096S/G097A/G128A/P129D/Y217Q
50	Z096.01D/G097G/A098R/G128A/P129D/Y217Q
51	G097A/Z099.01S/G128A/P129D/Y217Q
52	G097A/G100S/G128A/P129D/Y217Q
53	G097A/S101D/G128A/P129D/Y217Q
54	Z096.01D/G097G/A098R/Z099.01S/G128A/P129D/Y217Q
55	Z096.01D/G097G/A098R/G100S/G128A/P129D/Y217Q
56	Z096.01D/G097G/A098R/S101D/G128A/P129D/Y217Q
57	G097A/Z099.01S/G100S/G128A/P129D/Y217Q
58	G097A/Z099.01S/S101D/G128A/P129D/Y217Q
59	G097A/G100S/S101D/G128A/P129D/Y217Q
60	G097A/G128A/P129Z/Y217Q
61	V093Z/K094S/V095C/L096S/G097A/G128A/P129Z/Y217Q
62	Z096.01D/G097G/A098R/G128A/P129Z/Y217Q
63	G097A/Z099.01S/G128A/P129Z/Y217Q
64	G097A/G100S/G128A/P129Z/Y217Q
65	G097A/S101D/G128A/P129Z/Y217Q
66	Z096.01D/G097G/A098R/Z099.01S/G128A/P129Z/Y217Q
67	Z096.01D/G097G/A098R/G100S/G128A/P129Z/Y217Q
68	Z096.01D/G097G/A098R/S101D/G128A/P129Z/Y217Q
69	G097A/Z099.01S/G100S/G128A/P129Z/Y217Q
70	G097A/Z099.01S/S101D/G128A/P129Z/Y217Q
71	G097A/G100S/S101D/G128A/P129Z/Y217Q
72	G097A/G128A/P129G/S130Z/Y217Q
73	V093Z/K094S/V095C/L096S/G097A/G128A/P129G/S130Z/Y217Q
74	Z096.01D/G097G/A098R/G128A/P129G/S130Z/Y217Q
75	G097A/Z099.01S/G128A/P129G/S130Z/Y217Q
76	G097A/G100S/G128A/P129G/S130Z/Y217Q
77	G097A/S101D/G128A/P129G/S130Z/Y217Q
78	Z096.01D/G097G/A098R/Z099.01S/G128A/P129G/S130Z/Y217Q
79	Z096.01D/G097G/A098R/G100S/G128A/P129G/S130Z/Y217Q
80	Z096.01D/G097G/A098R/S101D/G128A/P129G/S130Z/Y217Q
81	G097A/Z099.01S/G100S/G128A/P129G/S130Z/Y217Q
82	G097A/Z099.01S/S101D/G128A/P129G/S130Z/Y217Q
83	G097AG100S/S101D/G128A/P129G/S130Z/Y217Q
84	G097A/G128A/S130V/G131D/S132I/Y217Q
85	V093Z/K094S/V095C/L096S/G097A/G128A/S130V/G131D/S132I/Y217Q
86	Z096.01D/G097G/A098R/G128A/S130V/G131D/S132I/Y217Q
87	G097A/Z099.01S/G128A/S130V/G131D/S132I/Y217Q
88	$\mathrm{G} 097 \mathrm{~A} / \mathrm{G} 100 \mathrm{~S} / \mathrm{G} 128 \mathrm{~A} / \mathrm{S} 130 \mathrm{~V} / \mathrm{G} 131 \mathrm{D} / \mathrm{S} 132 \mathrm{I} / \mathrm{Y} 217 \mathrm{Q}$
89	G097A/S101D/G128A/S130V/G131D/S132I/Y217Q
90	Z096.01D/G097G/A098R/Z099.01S/G128A/S130V/G131D/S132I/Y217Q
91	Z096.01D/G097G/A098R/G100S/G128A/S130V/G131D/S132I/Y217Q
92	Z096.01D/G097G/A098R/S101D/G128A/S130V/G131D/S132I/Y217Q
93	G097A/Z099.01S/G100S/G128A/S130V/G131D/S132/Y217Q

TABLE 4.5-continued

Combinatorial Libraries of BPN': G97A-G128A-Y217Q Parent	
Variant	Name
94	G097A/Z099.01S/S101D/G128A/S130V/G131D/S132LY217Q
95	G097A/G100S/S101D/G128A/S130V/G131D/S1321/Y217Q
96	G097A/G128A/A134T/Y217Q
97	V093Z/K094S/V095C/L096S/G097A/G128A/A134T/Y217Q
98	Z096.01D/G097G/A098R/G128A/A134T/Y217Q
99	G097A/Z099.01S/G128A/A134T/Y217Q
100	G097A/G100S/G128A/A134T/Y217Q
101	G097A/S101D/G128A/A134T/Y217Q
102	Z096.01D/G097G/A098R/Z099.01S/G128A/A134T/Y217Q
103	Z096.01D/G097G/A098R/G100S/G128A/A134T/Y217Q
104	Z096.01D/G097G/A098R/S101D/G128A/A134T/Y217Q
105	G097A/Z099.01S/G100S/G128A/A134T/Y217Q
106	G097A/Z099.01S/S101D/G128A/A134T/Y217Q
107	G097A/G100S/S101D/G128A/A134T/Y217Q
108	G097A/I122S/N123G/G128S/Y217Q
109	V093Z/K094S/V095C/L096S/G097A/1122S/N123G/G128S/Y217Q
110	Z096.01D/G097G/A098R/I122S/N123G/G128S/Y217Q
111	G097A/Z099.01S/I122S/N123G/G128S/Y217Q
112	G097A/G100S/I122S/N123G/G128S/Y217Q
113	G097A/S101D/I122S/N123G/G128S/Y217Q
114	Z096.01D/G097G/A098R/Z099.01S/I122S/N123G/G128S/Y217Q
115	Z096.01D/G097G/A098R/G100S/I122S/N123G/G128S/Y217Q
116	Z096.01D/G097G/A098R/S101D/[122S/N123G/G128S/Y217Q
117	G097A/Z099.01S/G100S/I122S/N123G/G128S/Y217Q
118	G097A/Z099.01SS101D/1122S/N123G/G128S/Y217Q
119	G097A/G100S/S101D/I122S/N123G/G128S/Y217Q
120	G097A/I122S/N123G/G128A/P129V/Y217Q
121	V093Z/K094S/V095C/L096S/G097A/I122S/N123G/G128A/P129V/Y217Q
122	Z096.01D/G097G/A098R/122S/N123G/G128A/P129V/Y217Q
123	G097A/Z099.01S/I122S/N123G/G128A/P129V/Y217Q
124	G097A/G100S/I122S/N123G/G128A/P129V/Y217Q
125	G097A/S101D/1122S/N123G/G128A/P129V/Y217Q
126	Z096.01D/G097G/A098R/Z099.01S/I122S/N123G/G128A/P129V/Y217Q
127	Z096.01D/G097G/A098R/G100S/[122S/N123G/G128A/P129V/Y217Q
128	Z096.01D/G097G/A098R/S101D/I122S/N123G/G128A/P129V/Y217Q
129	G097A/Z099.01S/G100S/1122S/N123G/G128A/P129V/Y217Q
130	G097A/Z099.01S/S101D/I122S/N123G/G128A/P129V/Y217Q
131	G097A/G100S/S101D/I122S/N123G/G128A/P129V/Y217Q
132	G097A/I122S/N123G/G128A/P129D/Y217Q
133	V093Z/K094S/V095C/L096S/G097A/I122S/N123G/G128A/P129D/Y217Q
134	Z096.01D/G097G/A098R/I122S/N123G/G128A/P129D/Y217Q
135	G097A/Z099.01S/I122S/N123G/G128A/P129D/Y217Q
136	G097A/G100S/I122S/N123G/G128A/P129D/Y217Q
137	G097A/S101D/1122S/N123G/G128A/P129D/Y217Q
138	Z096.01D/G097G/A098R/Z099.01S/I122S/N123G/G128A/P129D/Y217Q
139	Z096.01D/G097G/A098R/G100S/I122S/N123G/G128A/P129D/Y217Q
140	Z096.01D/G097G/A098R/S101D/[122S/N123G/G128A/P129D/Y217Q
141	G097A/Z099.01S/G100S/I122S/N123G/G128A/P129D/Y217Q
142	G097A/Z099.01S/S101D/I122S/N123G/G128A/P129D/Y217Q
143	G097A/G100S/S101D/I122S/N123G/G128A/P129D/Y217Q
144	G097A/[122S/N123G/G128A/P129Z/Y217Q
145	V093Z/K094S/V095C/L096S/G097A/I122S/N123G/G128A/P129Z/Y217Q
146	Z096.01D/G097G/A098R/I122S/N123G/G128A/P129Z/Y217Q
147	G097A/Z099.01S/I122S/N123G/G128A/P129Z/Y217Q
148	G097A/G100S/I122S/N123G/G128A/P129Z/Y217Q
149	G097A/S101D/I122S/N123G/G128A/P129Z/Y217Q
150	Z096.01D/G097G/A098R/Z099.01S/I122S/N123G/G128A/P129Z/Y217Q
151	Z096.01D/G097G/A098R/G100S/1122S/N123G/G128A/P129Z/Y217Q
152	Z096.01D/G097G/A098R/S101D/I122S/N123G/G128A/P129Z/Y217Q
153	G097A/Z099.01S/G100S/I122S/N123G/G128A/P129Z/Y217Q
154	G097A/Z099.01S/S101D/I122S/N123G/G128A/P129Z/Y217Q
155	G097A/G100S/S101D/1122S/N123G/G128A/P129Z/Y217Q
156	G097A/G128S/P129V/Y217Q
157	V093Z/K094S/V095C/L096S/G097A/G128S/P129V/Y217Q
158	Z096.01D/G097G/A098R/G128S/P129V/Y217Q
159	G097A/Z099.01S/G128S/P129V/Y217Q
160	G097A/G100S/G128S/P129V/Y217Q
161	G097A/S101D/G128S/P129V/Y217Q
162	Z096.01D/G097G/A098R/Z099.01S/G128S/P129V/Y217Q
163	Z096.01D/G097G/A098R/G100S/G128S/P129V/Y217Q
164	Z096.01D/G097G/A098R/S101D/G128S/P129V/Y217Q
165	G097A/Z099.01S/G100S/G128S/P129V/Y217Q

TABLE 4.5-continued

Combinatorial Libraries of BPN': G97A-G128A-Y217Q Parent	
Variant	Name
166	G097A/Z099.01S/S101D/G128S/P129V/Y217Q
167	G097A/G100S/S101D/G128S/P129V/Y217Q
168	G097A/G128S/P129D/Y217Q
169	V093Z/K094S/V095C/L096S/G097A/G128S/P129D/Y217Q
170	Z096.01D/G097G/A098R/G128S/P129D/Y217Q
171	G097A/Z099.01S/G128S/P129D/Y217Q
172	G097A/G100S/G128S/P129D/Y217Q
173	G097A/S101D/G128S/P129D/Y217Q
174	Z096.01D/G097G/A098R/Z099.01S/G128S/P129D/Y217Q
175	Z096.01D/G097G/A098R/G100S/G128S/P129D/Y217Q
176	Z096.01D/G097G/A098R/S101D/G128S/P129D/Y217Q
177	G097A/Z099.01S/G100S/G128S/P129D/Y217Q
178	G097A/Z099.01S/S101D/G128S/P129D/Y217Q
179	G097A/G100S/S101D/G128S/P129D/Y217Q
180	G097A/G128S/P129Z/Y217Q
181	V093Z/K094S/V095C/L096S/G097A/G128S/P129Z/Y217Q
182	Z096.01D/G097G/A098R/G128S/P129Z/Y217Q
183	G097A/Z099.01S/G128S/P129Z/Y217Q
184	G097A/G100S/G128S/P129Z/Y217Q
185	G097A/S101D/G128S/P129Z/Y217Q
186	Z096.01D/G097G/A098R/099.01S/G128S/P129Z/Y217Q
187	Z096.01D/G097G/A098R/G100S/G128S/P129Z/Y217Q
188	Z096.01D/G097G/A098R//01D/G128S/P129Z/Y217Q
189	G097AZ099.01S/G100S/G128S/P129ZY217Q
190	G097A/Z099.01S/S101D/G128S/P129Z/Y217Q
191	G097AG100S/S101D/G128S/P129Z/Y217Q

Example 5

Stain Removal Performance of Combinatorial Variants of BPN' 3

[0215] The stain removal activity of combinatorial variants of BPN' 3 generated as described in Example 4 was tested as described in Example 3. As described throughout, functionality of BPN' variants, was quantified as a performance index (Pi), which is the ratio of performance of a variant to parent protein BPN'3. BPN'3 variants showing a Pi value greater or equal than 0.5 for BMI stain removal performance and/or TCA precipitation showed improved cleaning benefits and/or expression. Performance indices less than or equal to 0.05 were fixed to 0.05 and indicated in bold italics in the table. Results are shown in Table 5-1.

TABLE 5-1

Stain Removal Performance and Expression of Combinatorial Variants of BPN'3		
		BMI
Variants	TCA	pH 8/16 ${ }^{\circ} \mathrm{C}$.
V072G/G097A/G128A/Y217Q	0.93	1.08
G097A/G128S/Y217Q	1.16	1.06
G128A/Y217Q	1.07	1.05
G097A/G128S/P129D/Y217Q	0.85	1.03
G097A/G128A/A134T/Y217Q	0.56	1.03
M124V/L126A/Y217Q	1.05	1.03
G097A/G128A/P129D/Y217Q/A232P	0.46	1.01
G097A/G128A/P129D/Y217Q	0.57	1.00
G097A/G128S/P129V/A134T/Y217Q	0.29	0.95
G097A//128S/P129V/Y217Q	0.31	0.95
V068/G097A/G128S/P129D/Y217Q	0.41	0.85
G097A/S101D/G128S/S204F/Y217Q/S236F/	0.41	0.79
T254P		
G097A/S101D/G128S/Y217Q	0.43	0.76

TABLE 5-1-continued

Stain Removal Performance and Expression of Combinatorial Variants of BPN'3		
Variants	TCA	pH 8/16
G097A/G128A/P129V/Y217Q	0.30	0.70
G097A/S101D/G128A/Y217Q	0.50	0.64
G097A/S101D/G128S/P129D/Y217Q	0.35	0.63
G097A/S101D/G128A/A134T/Y217Q	0.40	0.58
G097A/Z099.01S/A114S/G128S/Y217Q	0.21	0.53
G097A/S101D/G128A/P194L/Y217Q	0.35	0.49
G097A/Z099.01S/G128S/Y217Q	0.39	0.38
G097A/S101D/G128A/P129D/Y217Q	0.36	0.36
Q019R/G097A/Z099.01S/G128S/P129D/Y217Q	0.33	0.33
G097A/G100S/G128S/Y217Q	0.46	0.25
G097A/S101D/G128S/P129V/Y217Q	0.39	0.22
G097A/Z099.01S/G128A/A134T/Y217Q	0.35	0.16
G097A/G100S/I107V/G128S/P129D/Y217Q	0.37	0.15
G097A/G100S/G128S/Y217Q/A230V	0.38	0.13
G097A/G100S/G128A/Y217Q/K237N	0.39	0.12
G097A/Z099.01S/G128S/P129D/Y217Q	0.37	0.12
G097A/G100S/G128S/P129D/Y217Q	0.37	0.07
Z096.01D/G097A/A098R/G128A/Y217Q	0.36	0.05
G097A/Z099.01S/I122S/N123G/G128A/Y217Q	0.37	0.05
G097A/Z099.01S/I122S/N123G/G128A/Y217Q/	0.38	0.05
T220A/A232T		
P005S/G097A/Z099.01S/S101D/G128A/Y217Q	0.42	0.05
G097A/S101D/G128A/P129V/Y217Q	0.46	0.05
V093Z/K094S/V095C/L096S/G097A/G128A/	0.50	0.05
Y217Q		
G097A/G100S/S101D/G128A/Y217Q/A232P	0.51	0.05
Z096.01D/G097A/A098R/S101D/G128A/Y217Q	0.53	0.05
G097A/Z099.01S/G100S/G128A/Y217Q	0.53	0.05

Example 6

Construction of Combinatorial Variants of BPN' 3 at Positions 128, 129, and 130

[0216] Combinatorial libraries focused around positions 128/129/130 in BPN'G97A-G128A-Y217Q (BPN'3) were created using site specific saturation mutagenesis and/or site specific insertion and/or deletion. The variants generated contain substitution, insertion, and deletion mutations. Libraries L1, L2 and L3 are based on WT position S130S and L4 is based on S130A. Four saturation libraries focused around positions 128/129 and 130 were constructed as shown in Table 6-1

TABLE 6-1

Construction of Saturation Library at Positions 128, 129 and 130 in BPN'3						
Library	$\begin{aligned} & \text { Position } \\ & 128 \end{aligned}$	Insertion	$\begin{aligned} & \text { Position } \\ & 129 \end{aligned}$	$\begin{aligned} & \text { Position } \\ & 130 \end{aligned}$	Short Name	Degenerate Primer Names
L1	NNS		NNS	S	XX	$\begin{aligned} & 128 / 129 \mathrm{deg} \\ & \text { QC F/R } \end{aligned}$
L2	deletion		NNS	S	-X	$\begin{aligned} & 128 / 129 \mathrm{del} \\ & \text { QC F/R } \end{aligned}$
L3	NNS	A	NNS	S	XAX	$\begin{aligned} & 128 \mathrm{~A} 129 \\ & \text { QC F/R } \end{aligned}$
L4	deletion		NNS	A	-XA	$\begin{aligned} & 128 / 129 \mathrm{del} \\ & \text { A QC F/R } \end{aligned}$

[0217] Prior to library construction, two stop codons were introduced at positions 128 and 129 in the BPN3' sequence to inactivate the protease. This was done to ensure a low background of the parent plasmid in the libraries. The parent plasmid ($\mathrm{pHPLT}-\mathrm{BPN}$ '3) was methylated using two micrograms of plasmid DNA and methylase (New England Biolabs), according to the NEB protocol. Methylated DNA was then purified with DNA Clean and Concentrator kit from Zymo Research. Mutagenesis was performed using methods known in the art (See, Amin et al., Biotechniques 35: 11341140 , [2003]) using a modified version of the QuikChange multi site-directed mutagenesis (QCMS) kit from Stratagene.
[0218] The mutagenesis reaction contained 60 ng template plasmid, 0.5 ul forward primer 128/129 Stop F (25 uM), 0.5 ul reverse primer 128/129 Stop R (25 uM), 1 uldNTP's (QCMS kit), 2.5 ul $10 \times$ QCMS reaction buffer, 18.5 ul deionized water, and 1 ul of enzyme blend (QCMS kit), for a total volume of 25 ul . For the mutagenesis reaction, the thermocycler program used was 1 cycle at 95° for 1 min ., followed by 25 cycles of $95^{\circ} \mathrm{C}$. for $1 \mathrm{~min}, 55^{\circ} \mathrm{C}$. for 1 min ., and $68^{\circ} \mathrm{C}$. for 11 minutes (MJ Research thermocycler). The template DNA was digested by DpnI (QCMS kit, Qiagen) and 1.5 uL of the reaction was amplified by rolling circle amplification (RCA) using the Templiphi kit (Amersham) using manufacturer's protocol.

TABLE 6-2

		Primers
SEQ		
ID NO:	Primer Name	Primer Sequence
189	$128 / 129$ Stop F	/5Phos/CATGAGCCTGGGATAATGAA GCGGCAGTGCGGCACTTAAAGCAG

TABLE 6-2-continued

		Primers
SEQ		
ID NO:	Primer Name	Primer Sequence
190	$128 / 129$ Stop R	/5Phos/GTGCCGCACTGCCGCTTCAT

[0219] One microliter of the amplified DNA was used to transform $100 \mu \mathrm{~L}$ of competent Bacillus subtilis cells (genotype: Δ aprE, $\Delta \mathrm{nprE}, \Delta$ spoIIE, amyE::xylRPxylAcomK-phleo). Aliquots of 20 uL or 80 uL of the transformation mixture were plated on Luria Agar plates supplemented with $10 \mu \mathrm{~g} / \mathrm{ml}$ neomycin $+1.6 \%$ skim milk (Teknova). After growth, 4 colonies not forming halos on the skim milk plates were picked to identify the plasmid with the correct sequence. The correct variant with the two stop codons at positions 128/129, called "pHPLT-BPN' 128/129 Stop" was chosen as the parent plasmid for the construction of combinatorial libraries described in Table 6-1.
[0220] Plasmid pHPLT-BPN' 128/129 Stop was methylated and used as template with the degenerate primer pairs shown in Table 6-3.

TABLE 6-3

NNS Mutaqenesis Primer Sequences		
$\begin{gathered} \text { SEQ } \\ \text { ID NO. } \end{gathered}$	Primer Name	Sequence
191	$128 / 129 \mathrm{deg}$ QC F	```/5Phos/CAT GAG CCT GGG ANN SNN SAG CGG CAG TGC GGC ACT TAA AGC AG```
192	$\begin{aligned} & 128 / 129 \mathrm{deg} \\ & \mathrm{QC} R \end{aligned}$	/5Phos/CCG CAC TGC CGC TSN NSN NTC CCA GGC TCA TGT TGA TTA CAT C
193	$\begin{aligned} & 128 / 129 \mathrm{del} \\ & \text { QC F } \end{aligned}$	```/5Phos/CAT GAG CCT GGG ANN SAG CGG CAG TGC GGC ACT TAA AGC AG```
194	$\begin{aligned} & 128 / 129 \mathrm{del} \\ & \text { QC R } \end{aligned}$	/5Phos/CCG CAC TGC CGC TSN NTC CCA GGC TCA TGT TGA TTA CAT C
195	128 A 129 QC F	```/5Phos/CAT GAG CCT GGG ANN SGC GNN SAG CGG CAG TGC GGC ACT TAA AGC AG```
196	128 A 129 QC R	/5Phos/CCG CAC TGC CGC TSN NCG CSN NTC CCA GGC TCA TGT TGA TTA CAT C
197	$\begin{aligned} & 128 / 129 \mathrm{del} \mathrm{~A} \\ & Q \mathrm{~F} \text { F } \end{aligned}$	```/5Phos/CAT GAG CCT GGG ANN SGC AGG CAG TGC GGC ACT TAA. AGC AG```
198	$\begin{aligned} & 128 / 129 \mathrm{del} \mathrm{~A} \\ & \mathrm{QC} R \end{aligned}$	```/5Phos/GTG CCG CAC TGC CTG CSN NTC CCA GGC TCA TGT TGA TTA CAT C```

[0221] Overlapping forward and reverse primers (PAGEpurified) with the NNS codon(s) in the middle and 17-20 flanking bases were designed for each chosen library, and the sequences for each forward (F) and reverse (R) primer are shown in Table 6-3. Quik-change mutagenesis and rolling circle amplification for the 4 reactions was performed as described above. Transformations were plated on Luria Agar
plates supplemented with $10 \mu \mathrm{~g} / \mathrm{ml}$ neomycin $+1.6 \%$ skim milk. All halo forming colonies were picked into two microtiter plates containing 125 ul LB medium supplemented with $10 \mathrm{ug} / \mathrm{ml}$ neomycin. The clones were sequenced by Quintara Biosciences. For protein expression, cultures were grown overnight in micro-filter plates (0.22 um , Millipore) containing 180 ul of a enriched semi-defined media based on MOPs buffer, with urea as major nitrogen source, glucose as the main carbon source, 1% soytone for robust cell growth, and supplemented with $2.5 \mathrm{ug} / \mathrm{ml}$ neomycin. Cultures were grown for 64 hours at $37 \mathrm{C}, 250 \mathrm{rpm}$, and 70% humidity. Protein concentration of culture supernatants was determined by TCA precipitation as described in Example 1.

Example 7

Stain Removal Performance of Combinatorial Variants of BPN' 3 at Positions 128, 129, and 130
[0222] The stain removal activity of combinatorial variants of BPN' 3 at positions 128, 129, and 130 generated as described in Example 6 was tested as described in Example 3. As described throughout, functionality of BPN' variants, was quantified as a performance index (Pi), which is the ratio of performance of a variant to parent protein BPN'3. BPN'3 variants showing a Pi value greater or equal than 0.5 for BMI stain removal performance and/or TCA precipitation showed improved cleaning benefits and/or expression. Results are shown in Table 7-1.

TABLE 7-1

Stain Removal Performance and Expression of BPN			
3 Variants at Positions 128, 129, and 130			

TABLE 7-1-continued

Stain Removal Performance and Expression of BPN' 3 Variants at Positions 128, 129, and 130		
Variant	TCA	BMI
G097A/G128T/P129H/Y217Q	0.41	0.46
G097A/G128T/P129R/Y217Q	0.40	0.44
G097A/G128D/P129E/Y217Q	0.46	0.43
G097A/G128T/P129T/Y217Q	0.37	0.42
G097A/G128T/P129A/Y217Q	0.39	0.38
G097A/G128Z/P129Z/Y217Q	0.45	0.36
G097A/G128S/Z128.01A/P129S/Y217Q	0.42	0.31
$\mathrm{G} 097 \mathrm{~A} / \mathrm{G} 128 \mathrm{~N} / \mathrm{P} 129 \mathrm{M} / \mathrm{Y} 217 \mathrm{Q}$	0.42	0.26
G097A/G128N/P129V/Y217Q	0.46	0.26
G097A/G128E/P129K/Y217Q	0.52	0.25
G097A/G128N/Z128.01A/P129F/Y217Q	0.30	0.22
G097A/G128C/P129R/Y217Q	0.77	0.21
G097A/G128T/P129M/Y217Q	0.34	0.20
G097A/G128R/Z128.01A/P129S/Y217Q	0.41	0.20
G097A/G128S/Z128.01A/P129A/Y217Q	0.33	0.15
G097A/G128D/Y217Q	0.41	0.15
G097A/G128T/P129Y/Y217Q	0.38	0.14
G097A/G128R/P129S/Y217Q	0.47	0.13
G097A/G128R/Z128.01A/P129T/Y217Q	0.42	0.12
G097A/G128R/Z128.01A/P129A/Y217Q	0.38	0.11
G097A/G128T/P129W/Y217Q	0.37	0.11
G097A/G128Y/Z128.01A/P129R/Y217Q	0.41	0.10
G097A/G128C/P129D/Y217Q	0.84	0.10
V084L/G097A/P129Z/Y217Q	0.46	0.10
G097A/G128R/P129D/Y217Q	0.51	0.09
G097A/G128A/Z128.01A/P129H/E195A/Y217Q	0.35	0.09
G097A/G128S/Z128.01A/P129Y/Y217Q	0.40	0.09
G097A/G128N/P129L/Y217Q	0.51	0.08
G097A/G128C/P129H/Y217Q	0.71	0.07
G097A/G128T/Z128.01A/P129T/Y217Q	0.38	0.05
G097A/G128C/Z128.01A/P129A/Y217Q	0.39	0.05
G097A/G128S/Z128.01A/P129I/Y217Q	0.41	0.05
G097A/G128S/Z128.01A/P129E/Y217Q/Q271H	0.41	0.05
G097A/G128S/Z128.01A/P129L/Y217Q	0.42	0.05
G097A/G128Y/Z128.01A/P129S/Y217Q	0.43	0.05
G097A/G128S/Z128.01A/P129M/R186H/Y217Q	0.44	0.05
G097A/G128E/Z128.01A/P129D/Y217Q	0.44	0.05
G097A/G128T/P129L/Y217Q	0.46	0.05
G097A/G128F/P129D/Y217Q	0.47	0.05
G097A/G128V/Z128.01A/P129R/Y217Q	0.47	0.05
G097A/G128L/Z128.01A/P129S/Y217Q	0.49	0.05
G097A/G128Y/P129T/Y217Q	0.51	0.05
G097A/G128C/P129Y/Y217Q	0.53	0.05
G097A/G128C/P129T/Y217Q	0.59	0.05
Parent: G097A/G128A/Y217Q	1.00	1.00

Example 8

Construction of Combinatorial Variants of BPN'
[0223] Combinatorial variants of BPN' were created by extension (fusion) PCR using the following BPN' mutants as parent molecules-BPN' G97A/G128A/Y217Q, BPN' M124V/L126A/Y217Q, BPN' G128A/Y217Q, and BPN' N123G/Y217Q to create insertions or substitutions at positions 96, 98, 129 and/or 222. For each combinatorial mutant created, the parent DNA molecule, mutations introduced and PCR primers used are listed in the Table 8-1. To create each mutant, two fragments 1 and 2 were generated by the PCR primers (Table 8-2) in the 5^{\prime} and 3^{\prime} regions of the gene using the respective parent molecule listed in Table 8-1. These fragments were mixed and amplified by the flanking primers P4973 and P4950 (Table 8-2) to restore the full-length gene.
[0224] Each amplification reaction contained 30 pmol of each PCR primer and 100 ng of the template DNA. Amplifications were carried out using Vent DNA polymerase (New

England Biolabs). The PCR mix (20 ul) was initially heated at $95^{\circ} \mathrm{C}$. for 2.5 min followed by 30 cycles of denaturation at $94^{\circ} \mathrm{C}$. for 15 s , annealing at $55^{\circ} \mathrm{C}$. for 15 s and extension at $72^{\circ} \mathrm{C}$. for 40 s . Following amplification, the 5^{\prime} and 3^{\prime} fragments were gel-purified by the QIAGEN gel-band purification kit, mixed and amplified by the flanking primers P4973 and P4950. The full-length DNA fragment produced was gel-purified by the QIAGEN gel-band purification kit, digested by the BamHI and HindIII restriction enzymes and ligated with the pHPLT-BPN' vector containing the respective parent molecules, which were also cut with the same restriction enzymes. Ligation mixtures were amplified using rolling circle amplification according to manufacturer's recommendation (Epicentre). One microliter of the ligation mixture was mixed with 5 ul of the sample buffer, heated to $95^{\circ} \mathrm{C}$. for 3 min and cooled on ice. Next, 5 ul of the reaction buffer and 0.2 ul of the enzyme was added to each tube, followed by incubation at $30^{\circ} \mathrm{C}$. for 10 hours. Products of the rolling circle amplification were diluted 100 times and used to transform Bacillus subtilis cells (genotype: $\Delta \mathrm{aprE}, \Delta \mathrm{nprE}, \Delta$ spoIIE, amyE::xylRPxylAcomK-phleo) as described in Example 2. Transformations were plated on LB plates containing 1.6\% skim milk and 10 ppm Neomycin and incubated overnight at $37^{\circ} \mathrm{C}$. Only colonies with halos were picked and grown in microtiter plates for further analysis as described in Example 2. Protein concentration of culture supernatants was determined by TCA precipitation as described in Example 1.

TABLE 802-continued

PCR primer Sequences Used for the Creation of Combinatorial Variants of BPN'.		
SEQ		
ID Primer		
NO:	Name	Sequence
203 P4951		AAAGTTCTTGCAGCAAGTGACGGATCAGGCCAATACT
		CA
204 P4952		GCCTGATCCGTCACTTGCTGCAAGAACTTTAACGGCGT
		AG
205 P4953		TAAAGTTCTTGGCGCAAGTGACGGATCAGGCCAATACT
		CA
206 P4954		CCTGATCCGTCACTTGCGCCAAGAACTTTAACGGCGTA
207 P4955		GTTAAAGTTCTTGATGCACGTGACGGATCAGGCCAATA
		CTCA
208	P4956	GATCCGTCACGTGCATCAAGAACTTTAACGGCGTAGAG
		CGA
209	P4957	GTTAAAGTTCTTGATGGTCGTGACGGATCAGGCCAATA
		CTCA
210	P4958	GATCCGTCACGACCATCAAGAACTTTAACGGCGTAGAG
		CGAA

TABLE 8-1

Parent DNA Molecule, Mutations Introduced and PCR Primers for the Generation of Combinatorial Variants in BPN'				
	Parent Molecule/	Mutations	Primers Used for PCR Amplification	
Variant	DNA Template	Introduced	Fragment 1	Fragment 2
1	G97A/G128A/Y217Q	Z098.001S	P4947, P4952	P4951, P4948
2	G97A/G128A/Y217Q	Z096.001D/A098R	P4947, P4956	P4955, P4948
3	G97A/G128A/Y217Q	P129V	P4947, P4960	P4959, P4948
4	M124V/L126A/Y217Q	Z098.001S	P4947, P4954	P4953, P4948
5	M124V/L126A/Y217Q	Z096.001D/A098R	P4947, P4958	P4957, P4948
6	M124V/L126A/Y217Q	P129V	P4947, P4962	P4961, P4948
7	G128A/Y217Q	Z098.001S	P4947, P4954	P4953, P4948
8	G128A/Y217Q	Z096.001D/A098R	P4947, P4958	P4957, P4948
9	G128A/Y217Q	P129V	P4947, P4966	P4965, P4948
10	N123GG217Q	Z098.001S	P4447, P4954	P4953, P4948
11	N123G/Y217Q	Z096.001D/A098R	P4947, P4958	P4957, P4948
12	N123G/Y217Q	P129V	P4947, P4964	P4963, P4948
13	G97A/G128A/Y217Q	M222Q	P4947, P4968	P4967, P4948

TABLE 802
TABLE 802-continued

PCR primer sequences Used for the Creation of
Combinatorial Variants of BPN'.
SEQ
ID Primer
NO: Name Sequence
199 P4947 CTTTAGTCTAGCAAAAGGAGAG
200 P4948 GTGTTTTTCTTGGAATTGTGCTG
201 P4949 CGACTCGAGCCATCCAGATC
202 P4950 CTTGTCTCCAAGCTTAAAATAAAA

PCR primer Sequences Used for the Creation of
Combinatorial Variants of BPN'

TABLE 802-continued

Example 9

Stain Removal Performance of Combinatorial Variants of BPN'
[0225] The stain removal activity of combinatorial variants of BPN' generated as described in Example 8 was tested as described in Example 3. As described throughout, functionality of BPN' variants was quantified as a performance index (Pi), which is the ratio of performance of a variant to BPN'3 (BPN' G97A-G128A-Y217Q). Variants showing a Pi value greater or equal than 0.5 for BMI stain removal performance and/or TCA precipitation showed improved cleaning benefits and/or expression. Performance indices less than or equal to 0.05 were fixed to 0.05 and indicated in bold italics in the table. Results are shown in Table 9-1.

TABLE 9-1

Stain Removal Performance and Expression of BPN' Variants		
Variants	TCA	pH $8 / 16^{\circ} \mathrm{C}$.
G097A/G128A/Y217Q/M222Q	0.56	0.88
M124V/L126A/P129V/Y217Q	0.69	0.79
G128A/P129V/Y217Q	0.36	0.75
G097A/G128A/P129V/Y217Q	0.27	0.75
N123G/P129V/Y217Q	0.47	0.37
V30I/Z096.01D/G097A/A098R/G128A/Y217Q	0.54	0.19
Z096.01D/A098R/G128A/Y217Q	0.47	0.19

TABLE 9-1-continued

Stain Removal Performance and Expression of BPN' Variants		
Variants	TCA	pH $8 / 16^{\circ} \mathrm{C}$.
Z096.01D/A098R/M124V/L126A/Y217Q	0.49	0.17
G097A/Z098.01S/G128A/Y217Q	0.71	0.17
Z096.01D/A098R/N123G/Y217Q	0.54	0.16
Z096.01D/G097A/A098R/G128A/Y217Q/S236F	0.78	0.12
Z098.01S/M124V/L126A/Y217Q	0.45	0.11
Z098.01S/G128A/Y217Q	0.56	0.07
Z096.01D/G097A/A098R/G128A/Y217Q	0.55	0.07
V093I/Z098.01S/M124V/L126A/Y217Q	0.64	0.06
A073V/Z098.01S/N123G/Y217Q	0.52	0.05
G065D/Z098.01S/G128A/Y217Q	0.66	0.05
I011L/Z098.01S/G128A/Y217Q	0.53	0.05
L082F/Z096.01D/A098R/N123G/Y217Q	0.41	0.05
Z098.01S/N123G/A138V/Y217Q	0.44	0.05
Z098.01S/N123G/Y217Q	0.52	0.05

[0226] All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. Those of skill in the art readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The compositions and methods described herein are representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. It is readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention.
[0227] The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by herein.
[0228] The invention has been described broadly and generically herein. Each of the narrower species and subgeneric groupings falling within the generic disclosure also form part of the invention. This includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not excised material is specifically recited herein.

```
<160> NUMBER OF SEQ ID NOS: 221
<210> SEQ ID NO 1
<211> LENGTH: 275
<212> TYPE: PRT
\ll 2 1 3 > ~ O R G A N I S M : ~ B . ~ a m y l o l i q u e f a c i e n s ~
<220> FEATURE:
<221> NAME/KEY: misc_feature
```

$<223>$ OTHER INFORMATION: Mature BPN' sequence
$<400>$ SEOUENCE: 1
$<400>$ SEQUENCE: 1

Ala 1	Gln	Ser	Val	$\begin{aligned} & \text { Pro } \\ & 5 \end{aligned}$	Tyr	Gly	Val	Ser	$\begin{aligned} & \mathrm{Gln} \\ & 10 \end{aligned}$	Ile	Lys	Ala		$\begin{aligned} & \text { Ala } \\ & 15 \end{aligned}$	
His	Ser	Gln	$\begin{aligned} & \text { Gly } \\ & 20 \end{aligned}$	Tyr	Thr	Gly	Ser	$\begin{aligned} & \text { Asn } \\ & 25 \end{aligned}$	Val	Lys	Val	Ala	$\begin{aligned} & \mathrm{Val} \\ & 30 \end{aligned}$	Ile	Asp
Ser	Gly	$\begin{aligned} & \text { Ile } \\ & 35 \end{aligned}$	Asp	Ser	Ser	His	$\begin{aligned} & \text { Pro } \\ & 40 \end{aligned}$	Asp	Leu	Lys	Val	Ala 45		Gly	Ala
Ser	$\begin{aligned} & \text { Met } \\ & 50 \end{aligned}$	Val		Ser	Glu	$\begin{aligned} & \text { Thr } \\ & 55 \end{aligned}$	Asn	Pro	Phe	Gln	Asp 60		Asn		His
$\begin{aligned} & \mathrm{Gly} \\ & 65 \end{aligned}$	Thr	His		Ala	$\begin{aligned} & \text { Gly } \\ & 70 \end{aligned}$	Thr	Val	Ala	Ala	$\begin{aligned} & \text { Leu } \\ & 75 \end{aligned}$	Asn			Ile	$\begin{aligned} & \text { Gly } \\ & 80 \end{aligned}$
Val	Leu	Gly	Val	$\begin{aligned} & \text { Ala } \\ & 85 \end{aligned}$	Pro		Ala	Ser	$\begin{aligned} & \text { Leu } \\ & 90 \end{aligned}$	Tyr	Ala	Val	Lys	$\begin{aligned} & \text { Val } \\ & 95 \end{aligned}$	Leu
Gly	Ala	Asp	$\begin{aligned} & \text { Gly } \\ & 100 \end{aligned}$	Ser	Gly	Gln	Tyr	$\begin{aligned} & \text { Ser } \\ & 105 \end{aligned}$	$\operatorname{Tr} p$	Ile	Ile	Asn	$\begin{aligned} & \text { Gly } \\ & 110 \end{aligned}$	Ile	Glu
Trp	Ala	$\begin{aligned} & \text { Ile } \\ & 115 \end{aligned}$	Ala	Asn	Asn	Met	$\begin{aligned} & \text { Asp } \\ & 120 \end{aligned}$	Val		Asn	Met	$\begin{aligned} & \text { Ser } \\ & 125 \end{aligned}$	Leu	Gly	Gly
Pro	$\begin{aligned} & \text { Ser } \\ & 130 \end{aligned}$	Gly	Ser	Ala	Ala	$\begin{aligned} & \text { Leu } \\ & 135 \end{aligned}$	Lys	Ala	Ala	Val	$\begin{aligned} & \text { Asp } \\ & 140 \end{aligned}$	Lys	Ala	Val	Ala
$\begin{aligned} & \text { Ser } \\ & 145 \end{aligned}$	Gly	Val	Val	Val	$\begin{aligned} & \text { Val } \\ & 150 \end{aligned}$	Ala	Ala	Ala	$\mathrm{Gl} Y$	$\begin{aligned} & \text { Asn } \\ & 155 \end{aligned}$	Glu	Gly	Thr	Ser	$\begin{aligned} & \mathrm{Gly} \\ & 160 \end{aligned}$
Ser	Ser	Ser	Thr	$\begin{aligned} & \text { Val } \\ & 165 \end{aligned}$	Gly	Tyr	Pro	Gly	$\begin{aligned} & \text { Lys } \\ & 170 \end{aligned}$	Tyr	Pro	Ser		$\begin{aligned} & \text { Ile } \\ & 175 \end{aligned}$	Ala
Val	Gly	Ala	$\begin{aligned} & \text { Val } \\ & 180 \end{aligned}$	Asp	Ser	Ser	Asn	$\begin{aligned} & \mathrm{Gln} \\ & 185 \end{aligned}$	Arg	Ala	Ser	Phe	$\begin{aligned} & \text { Ser } \\ & 190 \end{aligned}$	Ser	Val
Gly	Pro	$\begin{aligned} & \text { Glu } \\ & 195 \end{aligned}$	Leu	Asp	Val	Met	$\begin{aligned} & \text { Ala } \\ & 200 \end{aligned}$		Gly	Val	Ser	$\begin{aligned} & \text { Ile } \\ & 205 \end{aligned}$	Gln	Ser	Thr
Leu	$\begin{aligned} & \text { Pro } \\ & 210 \end{aligned}$	Gly	Asn	Lys	Tyr	$\begin{aligned} & \text { Gly } \\ & 215 \end{aligned}$	Ala	Tyr	Asn	Gly	$\begin{aligned} & \text { Thr } \\ & 220 \end{aligned}$	Ser	Met	Ala	Ser
$\begin{aligned} & \text { Pro } \\ & 225 \end{aligned}$	His	Val	Ala	Gly	$\begin{aligned} & \text { Ala } \\ & 230 \end{aligned}$	Ala	Ala	Leu	Ile	$\begin{aligned} & \text { Leu } \\ & 235 \end{aligned}$	Ser	Lys		Pro	$\begin{aligned} & \text { Asn } \\ & 240 \end{aligned}$
Trp	Thr	Asn	Thr	$\begin{aligned} & \text { Gln } \\ & 245 \end{aligned}$	Val	Arg	Ser		$\begin{aligned} & \text { Leu } \\ & 250 \end{aligned}$	Glu	Asn	Thr		$\begin{aligned} & \text { Thr } \\ & 255 \end{aligned}$	Lys
Leu	Gly	Asp	$\begin{aligned} & \text { Ser } \\ & 260 \end{aligned}$	Phe	TYr	Tyr	Gly	$\begin{aligned} & \text { Lys } \\ & 265 \end{aligned}$	Gly	Leu	Ile	Asn	$\begin{aligned} & \mathrm{Val} \\ & 270 \end{aligned}$	Gln	Ala
Ala	Ala	$\begin{aligned} & \text { Gln } \\ & 275 \end{aligned}$													

```
<210> SEQ ID NO 2
<211> LENGTH: 275
<212> TYPE: PRT
<213> ORGANISM: B. amyloliquefaciens
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: Mature form of the BPN' subtilisin protease
<400> SEQUENCE: 2
```



```
<210> SEQ ID NO 3
<211> LENGTH: 1326
<212> TYPE: DNA
<213> ORGANISM: B. amYloliquefaciens
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: Coding region of the BPN'-Y217L mature protease
<400> SEQUENCE: 3
```

gaattcatct caaaaaatg ggtctactaa aatattattc catctattat aataaattca $\quad 60$
cagaatagtc ttttaagtaa gtctactctg aattttttta aaggagagg gtaaagagtg 120
agaagcaaaa aattgtgaga agcaaaaat tgtggatcag tttgctgttt gctttagcgt 180
taatctttac gatggcgttc ggcagcacat ccagcgcgca ggctgcaggg aaatcaaacg 240
gggaaaagaa atatattgtc gggtttaac agacaatgag cacgatgagc gccgctaaga 300
agaaagacgt catttctgaa aaaggcggga aagtgcaaaa gcaattcaaa tatgtagacg 360
cagctagcge tacattaaac gaaaaagctg taaaagaatt gaaaaaagac cogagcgtcg 420
cttacgttga agaagatcac gtagcacacg egtacgcgca gtcogtgcca tatggcgtat 480
cacaaattaa agcccctgct ctgcactctc aaggctacac cggttcaaat gttaaagtag 540

cggttatcga	cageggtatc gattettctc	atcoagatct taaagtagca	ggcggagcea	600
gcatggttcc	ttctgaaaca aatcotttcc	aagacaacaa ctctcacgga	acacacgttg	660
ctggtaccgt	tgcggctctt aataactcaa	tcggtgtatt aggcgttgcg	ccaagcgcat	720
cacttacgc	tgtaaaagtt ctcggcgccg	acggttccgg ccaatacagc	tggatcatta	780
acggaatcga	gtgggcgate gcaaacaata	tggacgttat taacatgagc	cteggcggac	840
cgtccggttc	tgctgcttta aaagcggcag	ttgataaage cgttgcatcc	ggcgtcgtag	900
tegttgcggc	agceggcaac gaaggcactt	ceggcagctc aagcacagtg	ggctaccotg	960
gtaaataccc	ttctgtcatt gcagtaggcg	ctgtcgacag cagcaaccaa	agagcatctt	1020
tetcaagcgt	aggacctgag ctcgatgtca	tggcacctgg cgtatctatc	caaagcacgc	1080
ttcctggaaa	caaatacggc gcgttgaacg	gtacatcaat ggcatctccg	cacgttgceg	1140
gagcegcggc	tttgattctt tctaagcacc	cgaactggac aaacactcaa	gtccgcagct	1200
ctctagaaaa	caccactaca aaacttggtg	attctttcta ctatggaaaa	gggctgatca	1260
atgtacaggc	ggcagctcag taaaactcga	gataaaaaac cggcettggc	cccgecggtt	1320
ttttat				1326

<210	$>$ SEQ ID NO 4
$<211>$	LENGTH: 382
<212	$>$ TYPE : PRT
$<213>$	ORGANISM: B. amyloliquefaciens
$<220>$	FEATURE:
$<221>$	NAME/KEY: misc_feature
$<223>$	OTHER INFORMATION: Amino acid sequence of the BPN'-Y217L precursor
	protein
<400	$>$ SEQUENCE: 4


```
<210> SEQ ID NO 5
<211> LENGTH: 275
<212> TYPE: PRT
<213> ORGANISM: B. amYloliquefaciens
<220> FEATURE:
<221> NAME/KEY: misc_feature
\ll 2 2 3 > ~ O T H E R ~ I N F O R M A T I O N : ~ A m i n o ~ a c i d ~ s e q u e n c e ~ o f ~ t h e ~ m a t u r e ~ B P N ' - Y 2 1 7 L
    protease
<400> SEQUENCE: 5
```


145			150					155					160
Ser	Ser Ser	$\begin{array}{r} \text { Thr } V a l \\ 165 \end{array}$	Gly	Tyr	Pro	Gly	$\begin{aligned} & \text { Lys } \\ & 170 \end{aligned}$	Tyr	Pr	Se	Val	$\begin{aligned} & \text { Ile } \\ & 175 \end{aligned}$	Ala
Val	Gly Ala	$\begin{aligned} & \text { Val Asp } \\ & 180 \end{aligned}$	Ser	Ser	Asn	$\begin{aligned} & \mathrm{Gln} \\ & 185 \end{aligned}$	Arg	Ala	$S \in$	P	$\begin{aligned} & \text { Ser } \\ & 190 \end{aligned}$	Ser	Val
Gly	$\begin{array}{r} \text { Pro Glu } \\ 195 \end{array}$	Leu Asp	Val	Met	$\begin{aligned} & \text { Ala } \\ & 200 \end{aligned}$	Pro	Gly	Val	$S \in$	$\begin{aligned} & \text { Il } \\ & 20 \end{aligned}$	Gln	Ser	Thr
Leu	$\begin{aligned} & \text { Pro Gly } \\ & 210 \end{aligned}$	Asn Lys	Tyx	$\begin{aligned} & \text { Gly } \\ & 215 \end{aligned}$	Ala	Leu	Asn	Gly	$\begin{aligned} & \text { Thנ } \\ & 22 \end{aligned}$	S	Met	Ala	ser
$\begin{aligned} & \text { Pr } \\ & 22 \end{aligned}$	His Val	Ala Gly	$\begin{aligned} & \text { Ala } \\ & 230 \end{aligned}$	Ala	Ala	Leu	Ile	$\begin{aligned} & \text { Leu } \\ & 235 \end{aligned}$	$S \in$	L	His	Pro	$\begin{aligned} & \text { Asn } \\ & 240 \end{aligned}$
Trp	Thr Asn	$\begin{array}{r} \text { Thr Gln } \\ 245 \end{array}$	Val	Arg	Ser	ser	$\begin{aligned} & \text { Leu } \\ & 250 \end{aligned}$	Glu			Thr	$\begin{aligned} & \text { Thr } \\ & 255 \end{aligned}$	Lys
Leu	Gly Asp	$\begin{aligned} & \text { Ser Phe } \\ & 260 \end{aligned}$	Tyr	Tyr	Gly	$\begin{aligned} & \text { Lys } \\ & 265 \end{aligned}$	Gly	Leu		A:	$\begin{aligned} & \text { Val } \\ & 270 \end{aligned}$	Gln	Ala
Al	$\begin{aligned} \text { Ala } G l n \\ 275 \end{aligned}$												

```
<210> SEQ ID NO 6
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P3203
<400> SEQUENCE: 6
```

tggatcagtt tgctgtttgc t
<210> SEQ ID NO 7
$<211\rangle$ LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P3435
<400> SEQUENCE: 7
atgtatcaag ataagaaaga acaag 25

<210> SEQ ID NO 8

<211> LENGTH: 40

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic primer: P4328

<220> FEATURE:

$<221>$ NAME/KEY: misc_feature

$<222>$ LOCATION: (11)..(11)

$<223>$ OTHER INFORMATION: n is a, c, g, or t

<220> FEATURE:

$<221>$ NAME/KEY: misc_feature

<222> LOCATION: (14)..(14)

<223 > OTHER INFORMATION: n is a, c, g, or t

$<400>$ SEQUENCE: 8
aaactcttca ndtndtcacg gaactcacgt tgceggcaca

```
<210> SEQ ID NO 9
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

$<223>$ OTHER INFORMATION: Synthetic primer: P4329
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 9
aaactcttca ndtndtggaa ctcacgttgc cggcacagtt

```
<210> SEQ ID NO 10
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4330
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 10
```

aactcttca ndtndtactc acgttgccgg cacagttg
<210> SEQ ID NO 11
$<211>$ LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
$<223>$ OTHER INFORMATION: Synthetic primer: P4331
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14) . (14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 11
aaactcttca ndtndtcacg ttgccggcac agttgcggct

```
<210> SEQ ID NO 12
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4332
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 12
```

aaactcttca ndtndtgttg ceggcacagt tgcggctett

```
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4333
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (14) . (14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 13
```

aaactcttca ndtndtgceg gcacagttge ggctcttaat

```
<210> SEQ ID NO 14
<211> LENGTH: 41
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4334
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 14
```

aactcttca ndtndtcggc acagttgcgg ctcttaataa c
<210> SEQ ID NO 15
$<211>$ LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4335
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220 > FEATURE
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14) . (14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 15
aaactcttca ndtndtacag ttgcggctct taataactca

```
<210> SEQ ID NO 16
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4336
<220> FEATURE.
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 16
```

```
<210> SEQ ID NO 17
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4337
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 17
```

aaactcttca ndtndtgcgg ctcttaataa ctcaatcggt

```
<210> SEQ ID NO 18
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4338
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 18
```

aaactcttca ndtndtgetc ttaataactc aatcggtgta
$<210>S E Q$ ID NO 19
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4339
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE : 19
aactcttca ndtndtctta ataactcaat cggtgtatta 40

```
<210> SEQ ID NO 20
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4340
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 20
```

aaactcttca ndtndtaata actcaatcgg tgtattag

```
<210> SEQ ID NO 21
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4341
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 21
```

aaactcttca ndtndtaact caatcggtgt attaggegtt
<210> SEQ ID NO 22
<211> LENGTH: 38
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer: P4342
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 22
aaactcttca ndtndttcaa tcggtgtatt aggegttg
$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 35
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4343
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)...(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 23
aaactcttca ndttcaatcg gtgtattagg cqttg

```
<210> SEQ ID NO 24
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4344
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 24
```

aaactcttca ndtndtaaag ttctcggtge tgacggttc

```
<210> SEQ ID NO 25
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4345
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 25
```

aaactcttca ndtndtgttc tcggtgetga cggttcc
<210> SEQ ID NO 26
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4346
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 26
aaactcttca ndtndtctcg gtgctgacgg ttceggccaa
$<210>S E Q$ ID NO 27
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4347
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE : 27
aaactcttca ndtndtggtg etgacggttc cggccaatac

```
<210> SEQ ID NO 28
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4348
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 28
```

aaactcttca ndtndtgctg acggttccgg ccaataca
<210> SEQ ID NO 29
<211> LENGTH: 39
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4349
<220> FEATURE
<221> NAME/KEY: misc_feature
<222 > LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
-220 $>$ FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 29
aaactcttca ndtndtgacg gttccggcea atacagctg

```
<210> SEQ ID NO 30
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4350
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 30
```

aaactcttca ndtndtggtt ccggccaata cagctggatc

```
<210> SEQ ID NO 31
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4351
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 31
```

aaactcttca ndtndttccg gccaatacag ctggatcatt

```
<210> SEQ ID NO 32
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

$<223>$ OTHER INFORMATION: Synthetic primer: P4352
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 32
aaactcttca ndtndtggcc aatacagctg gatcattaac

```
<210> SEQ ID NO 33
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4353
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 33
```

aaactcttca ndtndtcaat acagctggat cattaacgga

```
<210> SEQ ID NO 34
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4354
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 34
```

aaactcttca ndtndttaca gctggatcat taacggaatc
$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4355
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 35aaactcttca ndtndtaget ggatcattaa cggaatcgag40

```
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4356
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14) . (14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 36
```

aaactcttca ndtndttgga tcattaacgg aatcgagtg

```
<210> SEQ ID NO 37
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4357
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 37
```

aaactcttca ndtndtatca ttaacggaat cgagtg
$<210\rangle$ SEQ ID NO 38
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
$<223>$ OTHER INFORMATION: Synthetic primer: P4358
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14) . (14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 38
aaactcttca ndtndtatta acggaatcga gtgggcgatc

```
<210> SEQ ID NO 39
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4359
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 39
```

```
<210> SEQ ID NO 40
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4360
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 40
```

aaactcttca ndtndtggaa tcgagtgggc gatcgcaaac

```
<210> SEQ ID NO 41
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic primer: P4361
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 41
```

aaactcttca ndtndtatcg agtgggcgat cgcaaacaat
$<210>S E Q$ ID NO 42
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4362
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14) . (14)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 42
aaactcttca ndtndtgagt gggegatcgc aaacaatatg 40

```
<210> SEQ ID NO 43
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4363
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 43
```

aaactcttca ndtndttggg cgatcgcaaa caatatggac

```
<210> SEQ ID NO 44
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4364
<220> FEATURE
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 44
```

aaactcttca ndtndtgcga tcgcaaacaa tatggacgtt
<210> SEQ ID NO 45
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4365
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 45
aaactcttca ndtndtatcg caaacaatat ggacgttatt

aaactcttca ndtndtgcaa acaatatgga cgttattaac

```
<210> SEQ ID NO 46
LENGIH: 4
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4366
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
```

```
<210> SEQ ID NO 47
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISN: Artificial Sequence
<220> FEATURE.
<223> OTHER INFORMATION: Synthetic primer: P4367
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) ..(11)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 47
```

aaactcttca ndtndtaaca atatggacgt tattaacatg
$<210>$ SEQ ID NO 48
<211> LENGTH: 39
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4368
<220> FEATURE
<221> NAME/KEY: misc_feature
<222 > LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 48
aaactcttca ndtndtaata tggacgttat taacatgag

```
<210> SEQ ID NO 49
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4369
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14) . (14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 49
```

aaactcttca ndtndtatgg acgttattaa catgagcctc
$<210>$ SEQ ID NO 50
$<211>$ LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4370
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, 9, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, $c, ~ g, ~ o r ~ t ~$
aaactcttca ndtndtgacg ttattaacat gagcetc
$<223>$ OTHER INFORMATION: Synthetic primer: P4371
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 51
aaactcttca ndtndtgtta ttaacatgag cetcggcgga

```
<210> SEQ ID NO 52
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4372
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 52
```

aaactcttca ndtndtatta acatgagcet eggcggacet

```
<210> SEQ ID NO 53
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4373
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 53
```

aaactcttca ndtndtaaca tgagcctcgg cggaccttct

```
<210> SEQ ID NO 54
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4374
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE.
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 54
```

aaactcttca ndtndtatga gcetcggegg accttctggt

```
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4375
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (14) . (14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 55
```

aaactcttca ndtndtagce teggcggace ttctggttct

```
<210> SEQ ID NO 56
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4376
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 56
```

aaactcttca ndtndtctcg geggacettc tggttctget
$<210\rangle$ SEQ ID NO 57
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
<223> OTHER INFORMATION: Synthetic primer: P4377
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14) . (14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 57
aaactcttca ndtndtggcg gaccttctgg ttctgctgct
<210> SEQ ID NO 58
<211> LENGTH: 40
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4378
<220> FEATURE.
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 58

```
<210> SEQ ID NO 59
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4379
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11) . (11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 59
```

aaactcttca ndtndtcctt ctggttctgc tgctttaaaa

```
<210> SEQ ID NO 60
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4380
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 60
```

aaactcttca ndtndttctg gttctgctgc tttaaaag
$<210>S E Q$ ID NO 61
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE :
<223> OTHER INFORMATION: Synthetic primer: P4381
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (11) . (11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (14)..(14)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 61
aactettca ndtndtggtt ctgctgcttt aaaagcggca 40

```
<210> SEQ ID NO 62
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4382
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(14)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 62
```

aaactcttca ndtndttctg ctgctttaaa agcggcagtt
<210> SEQ ID NO 63
<211> LENGTH: 40
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4383
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (11)..(11)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE.
<221> NAME/KEY: misc_feature
<222 > LOCATION: (14)..(14)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 63
aaactcttca ndtndtgctg ctttaaaagc ggcagttgat

```
<210> SEQ ID NO 64
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic primer: P4384
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 64
```

aaactcttca ndtgctgctt taaaagcggc agttgat
$<210>S E Q$ ID NO 65
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4385
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13) . (13)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 65
aaactcttca ahngttgtct tggaaaggat ttgtttc
$<210>S E Q$ ID NO 66
<211> LENGTH: 40
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4386
<220> FEATURE.
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 66
$<210>$ SEQ ID NO 67
$<211>$ LENGTH: 40
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4387
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 67
aaactcttca ahnahngttg ttgtcttgga aaggatttgt

```
<210> SEQ ID NO 68
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic primer: P4388
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) ..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 68
```

aaactcttca ahnahnagag ttgttgtctt ggaaaggatt
$<210>S E Q$ ID NO 69
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4389
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 69
aactcttca ahnahngtga gagttgttgt cttggaaagg 40

```
<210> SEQ ID NO 70
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4390
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) . (16)
```

$<223>$ OTHER INFORMATION: n is a, $c, ~ g$, or t
$<400>$ SEQUENCE: 70
$<400>$ SEQUENCE: 70
aaactcttca ahnahntccg tgagagttgt tgtcttggaa

```
<210> SEQ ID NO 71
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4391
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 71
```

aaactcttca ahnahnagtt cegtgagagt tgttgtcttg
<210> SEQ ID NO 72
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer: P4392
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 72
aaactcttca ahnahngtga gttccgtgag agttgttgtc
$<210>S E Q$ ID NO 73
<211> LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4393
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (16) .. (16)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 73
aaactcttca ahnahnaacg tgagttccgt gagagttgtt

```
<210> SEQ ID NO 74
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4394
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13) . (13)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 74
```

aaactcttca ahnahnggca acgtgagttc cgtgagagtt
$<210>S E Q$ ID NO 75
<211> LENGTH: 40
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4395
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13)..(13)
<223 > OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 75
aaactcttca ahnahngceg gcaacgtgag ttccgtgaga
$<210>$ SEQ ID NO 76
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4396
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 76
aaactcttca ahnahntgtg ccggcaacgt gagttccgtg
$<210>$ SEQ ID NO 77
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4397
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 77
aaactcttca ahnahnaact gtgceggcaa cgtgagttcc
$<223>$ OTHER INFORMATION: Synthetic primer: P4398
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 78
aaactcttca ahnahncgca actgtgccgg caacgtgagt

```
<210> SEQ ID NO 79
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4399
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 79
```

aaactcttca ahnahnagce gcaactgtge cggcaacgtg
<210> SEQ ID NO 80
$<211>$ LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Synthetic primer: P4400
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 LOCATION: (16) . (16)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 80
aaactcttca ahnahnaaga gccgcaactg tgccggcaac

```
<210> SEQ ID NO 81
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4401
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 81
```

aaactettca ahngtaaagt gatgcgettg gcgcaac
$<223>$ OTHER INFORMATION: Synthetic primer: P4402
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 82
aaactcttca ahnahngtaa agtgatgcge ttggcgcaac

```
<210> SEQ ID NO 83
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4403
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 83
```

aaactcttca ahnahnagcg taaagtgatg cgcttg
<210> SEQ ID NO 84
$<211>$ LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4404
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 LOCATION: (16) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 84
aaactcttca ahnahntaca gcgtaaagtg atgcgcttg


```
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4406
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (16) . (16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: }8
```

aaactcttca ahnahnaact tttacagcgt aaagtgatg

```
<210> SEQ ID NO 87
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4407
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 87
```

aaactcttca ahnahngaga acttttacag cgtaaagtga
$<210\rangle$ SEQ ID NO 88
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4408
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (16) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 88

```
<210> SEQ ID NO 89
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4409
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 89
```

aaactcttca ahnahnagca cegagaactt ttacagcgta
$<210>$ SEQ ID NO 90
$<211>$ LENGTH: 39
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4410
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 90
aaactcttca ahnahngtca gcaccgagaa cttttacag

```
<210> SEQ ID NO 91
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic primer: P4411
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) ..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 91
```

aaactcttca ahnahnaccg tcagcaccga gaacttttac
$<210>S E Q$ ID NO 92
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4412
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 92
aaactcttca ahnahnggaa cegtcagcac cgagaacttt

```
<210> SEQ ID NO 93
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4413
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) . (16)
```

$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 93
aaactcttca ahnahngccg gaaccgtcag caccgagaac

```
<210> SEQ ID NO }9
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4414
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: }9
```

aaactcttca ahnahnttgg ccggaaccgt cagcaccgag
<210> SEQ ID NO 95
<211> LENGTH: 39
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4415
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 95
aaactcttca ahnahngtat tggceggaac egtcagcac
$<210>S E Q$ ID NO 96
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4416
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 96
aactcttca ahnahngctg tattggccgg aaccgtcag 39
<210> SEQ ID NO 97
<211> LENGTH: 40
$<212\rangle$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4417
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 97
```

aaactcttca ahnahnccag ctgtattggc cggaaccgtc
<210> SEQ ID NO 98
<211> LENGTH: 39
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4418
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) .. (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
-220 $>$ FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 98
aaactettca ahnahngatc cagetgtatt ggecggaac

```
<210> SEQ ID NO 99
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4419
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) . (16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 99
```

aaactcttca ahnahnaatg atccagctgt attggccgga
$<210>$ SEQ ID NO 100
$<211>$ LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4420
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 100
aaactcttca ahnahngtta atgatccagc tgtattg
$<223>$ OTHER INFORMATION: Synthetic primer: P4421
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 101
aaactcttca ahnahntccg ttaatgatcc agctgtattg

```
<210> SEQ ID NO 102
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4422
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 102
```

aaactcttca ahnahngatt cegttaatga tccagctgta
$<210>S E Q$ ID NO 103
$<211>$ LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
$<223>$ OTHER INFORMATION: Synthetic primer: P4423
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 LOCATION: (16) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 103
aaactcttca ahnahnctcg attccgttaa tgatccagct
aaactcttca ahnahnccac tegattccgt taatgatcca40

```
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4425
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (16) . (16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 105
```

aaactcttca ahnahncgcc cactcgattc cgttaatgat

```
<210> SEQ ID NO 106
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4426
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 106
```

aaactcttca ahnahngatc geccactcga ttccgttaat
$<210\rangle$ SEQ ID NO 107
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4427
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (16) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 107
aaactcttca ahnahntgcg atcgcccact cgattccgtt

```
<210> SEQ ID NO 109
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4429
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13) . (13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 109
```

aaactcttca ahnahnattg tttgcgatcg cccactcgat40
$<210>$ SEQ ID NO 110
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4430
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 110
aaactcttca ahnahncata ttgtttgcga tcgcccactc
<210> SEQ ID NO 111
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4431
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13) . (13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (16) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE : 111
aaactcttca ahnahngtcc atattgtttg cgatcgccca

```
<210> SEQ ID NO 112
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4432
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16) . (16)
```

$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE : 112
aaactcttca ahnahnaacg tccatattgt ttgcgatcge

```
<210> SEQ ID NO 113
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4433
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 113
```

aaactcttca ahnahnaata acgtccatat tgtttgcgat

```
<210> SEQ ID NO 114
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetic primer: P4434
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: }n\mathrm{ is a, c, g, or t
<400> SEQUENCE: 114
```

aaactcttca ahnahngtta ataacgtcca tattgtttgc
$<210>S E Q$ ID NO 115
<211> LENGTH: 40
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4435
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 115
aaactcttca ahnahncatg ttaataacgt ccatattgtt

```
<210> SEQ ID NO 116
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4436
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (13) . (13)
```

```
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 116
```

aaactcttca ahnahngctc atgttaataa cgtccatatt

```
<210> SEQ ID NO 117
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4437
<220> FEATURE
<221> NAME/KEY: misc_feature
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: n is a, c, g, or t
< 220> FEATURE
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 117
```

aaactcttca ahnahngagg ctcatgttaa taacgtccat
$<210>$ SEQ ID NO 118
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4438
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 118
aaactcttca ahnahngccg aggctcatgt taataacgtc
$<210>$ SEQ ID NO 119
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4439
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)...(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 119
aaactcttca ahnahntccg ccgaggetca tgttaataac
$<223>$ OTHER INFORMATION: Synthetic primer: P4440
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (13)..(13)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (16)..(16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
$<400>$ SEQUENCE: 120
aaactcttca ahnahnaggt ccgccgagge tcatgttaat

aaactcttca ahnahnagaa ggtccgccga ggctcatgtt

```
<210> SEQ ID NO 122
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4299
<400> SEQUENCE: 122
```

cgttgaagaa gatcacgtag ca
$<210>$ SEQ ID NO 123
$<211>$ LENGTH: 26
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P3246
$<400>$ SEQUENCE: 123

```
<210> SEQ ID NO 124
<211> LENGTH: 1351
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: POlynucleotide sequence of the expression
    cassette from the pHPLT vector (Plat promoter-pre-pro-BPN'-
    Y217L-terminator)
<400> SEQUENCE: 124
gcttttcttt tggaagaaaa tatagggaaa atggtacttg ttaaaaattc ggaatattta 60
tacaatatca tatgtttcac attgaaaggg gaggaaaatc gtgaaacaac aaaaacggct 120
ttagtctagc aaaaggagag ggtaaagagt gagaagcaaa aaattgtgga tcagtttgct 180
```

gtttgettta	gegttaatct	ttacgatggc	gttcggcagc acatcctctg	cccaggcggc	240
agggaaatca	a acggggaaa	agaaatatat	tgtcgggttt aaacagacaa	tgagcacgat	300
gagcgecget	aagaagaaag	atgtcatttc	tgaaaaaggc gggaaagtgc	aaaagcaatt	360
caatatgta	gacgcagctt	cagctacatt	aaacgaaaaa gctgtaaaag	aattgaaaaa	420
agacccgagc	gtcgettacg	ttgaagaaga	tcacgtagca cacgcgtacg	cgcagtcogt	480
gecttacgge	gtatcacaaa	ttaaagcecc	tgctctgcac tetcaagget	acactggatc	540
aaatgttaaa	gtageggtta	tegacagcgg	tatcgattct tctcatcctg	atttaagggt	600
agcaggcgga	gccagcatgg	ttccttctga	aacaaatcct ttccaagaca	acaactctca	660
cggaactcac	gttgccggca	cagttgcggc	tcttaataac tcaatcggtg	tattaggcgt	720
tgcgecaagc	gcatcacttt	acgctgtaaa	agttctcggt gctgacggtt	ccggceaata	780
cagctggatc	attaacggaa	tcgagtgggc	gatcgcaaac aatatggacg	ttattaacat	840
gagcetcggc	ggaccttctg	gttctgctgc	tttaaaagcg gcagttgata	aagcogttgc	900
atceggegtc	gtagtcgttg	cggcagccgg	taacgaagge acttccggca	getcaagcac	960
agtgggetac	cotggtaaat	accettctgt	cattgcagta ggcgetgttg	acagcagcaa	1020
ccaaagagca	tctttctcaa	gcgtaggacc	tgagcttgat gtcatggcac	ctggcgtatc	1080
tatccaaagc	acgettcctg	gaaacaaata	cggcgegttg aacggtacat	caatggcatc	1140
tccgcacgtt	gccggagcgg	ctgctttgat	tctttctaag caccogaact	ggacaaacac	1200
tcaagtccgc	agcagtttag	aaaacaccac	tacaaaactt ggtgattctt	tetactatgg	1260
aaaagggctg	atcaacgtac	aggcggcagc	tcagtaaact cgagagagga	cggatttcct	1320
gaaggaaatc	cgttetttta	ttttaagctt	g		1351

```
<210> SEQ ID NO 125
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4948
<400> SEQUENCE: 125
```

gtgtttttct tggaattgtg ctg
$<210>$ SEQ ID NO 126
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4974
$<400>$ SEQUENCE: 126
gectcacatt tgtgccacct a
$<210>$ SEQ ID NO 127
$<211>$ LENGTH: 23
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4975
$<400>$ SEQUENCE: 127

```
<210> SEQ ID NO 128
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4976
<400> SEQUENCE: 128
cctctcggtt atgagttagt tc
<210> SEQ ID NO 129
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4977
<400> SEQUENCE: 129
gtagagcgaa gcagacgggg cta
\(<210>\) SEQ ID NO 130
\(<211>\) LENGTH: 24
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetic primer: P4978
\(<400>\) SEQUENCE: 130
```

cttaaagcag cagttgataa agct 24
<210> SEQ ID NO 131

<211> LENGTH: 22

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic primer: P4979

$<400>$ SEQUENCE: 131
cttggtgtag ccccgtctgc tt
$<210>$ SEQ ID NO 132
<211> LENGTH: 26
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4980
$<400>$ SEQUENCE: 132
atccatgtta ttcgegatgg cccatt 26
<210> SEQ ID NO 133
$<211>$ LENGTH: 80
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4981
$<400>$ SEQUENCE: 133
cttggtgtag ceccgtctgc tecgctctac gectcttgct etgcagcaga cggatcaggc 60
caatactcat ggattatcaa 80
$<211>$ LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4982
$<400>$ SEQUENCE: 134
atccatgtta ttcgcgatgg cccattcgat gccgttgata atccatgagt attggcctga 60
tecgtctgct gcagagcaag 80
$<210>$ SEQ ID NO 135
<211> LENGTH: 80
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4983
<400> SEQUENCE: 135
cttggtgtag ccccgtctgc ttcgctctac gccgttaaag ttcttgatgc acgtgacgga 60
tcaggccaat actcatggat 80
<210> SEQ ID NO 136
<211> LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE
<223 > OTHER INFORMATION: Synthetic primer: P4984
$<400>$ SEQUENCE: 136
atccatgtta ttcgegatgg cccattcgat gccgttgata atccatgagt attggcctga 60
tcegtcacgt gcatcaagaa 80

```
<210> SEQ ID NO 137
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4985
<400> SEQUENCE: 137
```

cttggtgtag cccegtctgc ttcgctctac gccgttaag ttcttgcagc agactctgga 60
tcaggccaat actcatggat 80
$<210>$ SEQ ID NO 138
$<211>$ LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4986
$<400>$ SEQUENCE: 138
atccatgtta ttcgcgatgg cecattcgat gccgttgata atccatgagt attggcetga 60
tceagagtct getgcaagaa 80
$<210>$ SEQ ID NO 139
$<211>$ LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4987

$<400>$ SEQUENCE: 139		
cttggtgtag cccogtetgc ttcgetctac gccgttaaag	ttettgcagc agactcttca	60
ggccaatact catggattat		80
$<210\rangle$ SEQ ID NO 140		
$<211\rangle$ LENGTH: 80		
<212> TYPE: DNA		
$<213>$ ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P4988	
<400> SEQUENCE: 140		
atccatgtta ttcgegatgg cecattcgat gecgttgata	atccatgagt attggcctga	60
agagtctgct gcaagaactt		80
$<210>$ SEQ ID NO 141		
<211> LENGTH: 80		
$<212\rangle$ TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P4989	
$<400>$ SEQUENCE : 141		

<400 SEQUETCE: 141
cttggtgtag cccegtctgc ttcgetctac gcegttaaag ttcttgcagc agacggagat 60
ggccaatact catggattat 80
$<210\rangle$ SEQ ID NO 142
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4990
<400> SEQUENCE: 142
atccatgtta ttcgcgatgg eccattcgat gecgttgata atccatgagt attggccatc 60
tccgtctgct gcaagaactt 80
<210> SEQ ID NO 143
<211> LENGTH: 80
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4991
<400> SEQUENCE: 143
cttggtgtag cccogtctgc ttcgctctac gcogttaag ttcttgatgc acgtgactct 60
ggatcaggcc aatactcatg 80

```
<210> SEQ ID NO 144
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4992
<400> SEQUENCE: 144
```

atccatgtta ttegcgatgg eccattcgat gecgttgata atccatgagt attggectga 60
tccagagtca cgtgcatcaa 80

```
<210> SEQ ID NO 145
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4993
<400> SEQUENCE: 145
cttggtgtag ceccgtctgc ttcgctctac gccgttaaag ttcttgatgc acgtgactct 60
tcaggccaat actcatggat 80
\(<210>\) SEQ ID NO 146
\(<211>\) LENGTH: 80
\(<212>\) TYPE : DNA
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetic primer: P4994
\(<400>\) SEQUENCE: 146
atccatgtta ttcgcgatgg cccattcgat gccgttgata atccatgagt attggcctga 60
agagtcacgt gcatcaagaa }8
\(<210>\) SEQ ID NO 147
\(<211>\) LENGTH: 80
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetic primer: P4995
\(<400>\) SEQUENCE: 147
cttggtgtag ceccgtctgc ttcgctctac gcegttaaag ttcttgatgc acgtgacgga 60
gatggccaat actcatggat 80
<210> SEQ ID NO 148
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4996
<400> SEQUENCE: 148
```

atccatgtta ttcgcgatgg cccattcgat gccgttgata atccatgagt attggccatc 60
tccgtcacgt gcatcaagaa 80
$<210>$ SEQ ID NO 149
<211> LENGTH: 80
<212 > TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4997
$<400>$ SEQUENCE: 149
cttggtgtag cecegtctge tegctctac gccgttaag ttcttgcagc agactcttct 60
tcaggceat actcatggat 80
$<210\rangle$ SEQ ID NO 150
$<211\rangle$ LENGTH: 80
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Synthetic primer:	P4998	
$<400>$ SEQUENCE : 150		
atccatgtta ttcgcgatgg cccattcgat gccgttgata	atccatgagt attggcetga	60
agaagagtct gctgcaagaa		80
$<210>$ SEQ ID NO 151		
<211> LENGTH: 80		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
$<220>$ FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P4999	
<400> SEQUENCE: 151		
cttggtgtag ceccgtctgc ttcgctctac gecgttaaag	ttcttgcagc agactctgga	60
gatggccaat actcatggat		80
$<210>$ SEQ ID NO 152		
<211> LENGTH: 80		
$<212>$ TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223) OTHER INFORMATION: Synthetic primer:	P5000	
<400> SEQUENCE: 152		
atccatgtta ttcgcgatgg cecattcgat gccgttgata	atccatgagt attggccatc	60
tccagagtet gctgcaagaa		80

$<210>$ SEQ ID NO 153
$<211>$ LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5001
$<400>$ SEQUENCE: 153
cttggtgtag ccccgtctgc ttcgctctac gccgttaaag ttcttgcagc agactctgat 60
ggccaatact catggattat 80
$<210>$ SEQ ID NO 154
<211> LENGTH: 80
$<212>$ TYPE: DNA
$<213>$ ORGANISM
$<220>$ FEATURE:
<400> SEQUENCE: 154
agagtctgct gcaagaactt 80
$<210>S E Q$ ID NO 155

$<211>$ LENGTH: 21

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

$<223>$ OTHER INFORMATION: Synthetic primer: P5003

$<400>$ SEQUENCE: 155

atcgaatggg ccatcgcgaa t

```
<210> SEQ ID NO 156
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
<223> OTHER INFORMATION: Synthetic primer: P5004
<400> SEQUENCE: 156
```

tgcaacagct ttatcaactg ct 22
$<210>S E Q$ ID NO 157
<211> LENGTH: 66
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5005
<400> SEQUENCE: 157
atcgaatggg ccatcgcgaa taacatggat gtatctggaa tgagcctggg agcaccaagc 60
ggcagt $\quad 66$
<210> SEQ ID NO 158
<211> LENGTH: 70
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer: P5006
$<400>$ SEQUENCE: 158
tgcaacagct ttatcaactg ctgctttaag tgccgcactg cegcttggtg ctcccaggct 60
cattccagat 70
$<210>S E Q$ ID NO 159
<211> LENGTH: 66
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5007
<400> SEQUENCE: 159
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcctggg atctccaagc 60
ggcagt 66
$<210>S E Q$ ID NO 160
<211> LENGTH: 70
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer: P5008
$<400>$ SEQUENCE: 160
tgcaacagct ttatcaactg etgctttaag tgccgcactg cegcttggag atcccaggct 60
catgttgatt 70
$<210>S E Q$ ID NO 161
<211> LENGTH: 66
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5009

$<400>$ SEQUENCE: 161		
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca	tgagcetggg agcagttagc	60
ggcagt		66
$<210\rangle$ SEQ ID NO 162		
<211> LENGTH: 70		
<212> TYPE: DNA		
$<213>$ ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P5010	
$<400>$ SEQUENCE: 162		
tgcaacagct thatcaactg ctgctttaag tgcegcactg cogctaactg ctcccaggct 60		
catgttgatt		70
$<210>$ SEQ ID NO 163		
<211> LENGTH: 66		
<212> TYPE: DNA		
<213 > ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P5011	
$<400>$ SEQUENCE : 163		

atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcetggg agcagatagc 60
ggcagt 66
<210> SEQ ID NO 164

<211> LENGTH: 70

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic primer: P5012

$<400>$ SEQUENCE: 164

tgcaacagct ttatcaactg ctgctttaag tgcegcactg cegctatctg ctcccaggct 60
catgttgatt 70
<210> SEQ ID NO 165
<211> LENGTH: 69
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5013
<400> SEQUENCE: 165
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcctggg agcaagcggc 60
agtgcggca 69

```
<210> SEQ ID NO 166
<211> LENGTH: 70
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5014
<400> SEQUENCE: 166
```

tgcaacagct thatcaactg etgctttaag tgcegcactg ecgcttgctc ccaggetcat 60
gttgattaca 70

<210> SEQ ID NO 167

<211> LENGTH: 69

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic primer: P5015

$<400>$ SEQUENCE: 167
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcctggg agcaggaggc 60
agtgcggca 69
$<210>$ SEQ ID NO 168
<211> LENGTH: 70
$<212>$ TYPE: DNA
$<212>$ TYPE: DNA
$<213>$ ORGANISM:
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5016
<400> SEQUENCE: 168
tgcaacagct ttatcaactg ctgctttaag tgcegcactg cetcctgctc ccaggctcat 60
gttgattaca 70
$<210>$ SEQ ID NO 169
$<211>$ LENGTH: 65
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5017
$<400>$ SEQUENCE: 169
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcctggg agcaccagtt 60
gatat $\quad 65$
$<210>$ SEQ ID NO 170
<211> LENGTH: 70
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5018
$<400>$ SEQUENCE: 170
tgcaacagct ttatcaactg ctgctttaag tgccgcgata tcaactggtg ctcccaggct 60
catgttgatt 70
$<210\rangle S E Q$ ID NO 171
$<211>$ LENGTH: 66
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5019
<400> SEQUENCE: 171
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcetggg agcaccaagc 60
ggcagt $\quad 66$
$<210>S E Q$ ID NO 172
<211> LENGTH: 70
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

```
<223> OTHER INFORMATION: Synthetic primer: P5020
<400> SEQUENCE: 172
tgcaacagct ttatcaactg ctgctttaag tgtcgcactg cogcttggtg ctcccaggct 60
catgttgatt 70
<210> SEQ ID NO 173
<211> LENGTH: }6
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5021
<400> SEQUENCE: 173
atcgaatggg ccatcgcgaa taacatggat gtatctggaa tgagcctggg atctccaagc 60
ggcagt 66
```

$<210>$ SEQ ID NO 174
<211> LENGTH: 70
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P5022
$<400>$ SEQUENCE: 174
tgcaacagct ttatcaactg ctgctttaag tgcegcactg cegcttggag atcccaggct 60
cattccagat 70
$<210>$ SEQ ID NO 175
$<211>$ LENGTH: 66
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5023
$<400>$ SEQUENCE: 175
atcgaatggg ccatcgcgaa taacatggat gtatctggaa tgagcctggg agcagtaagc 60
ggcagt 66
$<210>$ SEQ ID NO 176
$<211>$ LENGTH: 70
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5024
$<400>$ SEQUENCE: 176
tgcaacagct ttatcaactg etgctttag tgcegcactg ecgcttactg etcccagget 60
cattccagat 70
$<210>$ SEQ ID NO 177
$<211>$ LENGTH: 66
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5025
$<400>$ SEQUENCE: 177
atcgaatggg ccatcgcgaa taacatggat gtatctggaa tgagcctggg agcagatagc 60
ggeagt
$<210>$ SEQ ID NO 178
$<211>$ LENGTH: 70
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5026
$<400>$ SEQUENCE: 178
tgcaacagct ttatcaactg ctgctttaag tgccgcactg cegctatctg ctcccaggct 60
cattccagat 70
<210> SEQ ID NO 17

<211> LENGTH: 69

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic primer: P5027

$<400>$ SEQUENCE: 179
atcgaatggg ccatcgcgaa taacatggat gtatctggaa tgagcctggg agcaagcggc 60
agtgeggea 69
<210> SEQ ID NO 180

<211> LENGTH: 78

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic primer: P5028

$<400>$ SEQUENCE: 180
tgcaacagct ttatcaactg ctgctttaag tgcegcactg cegcttgctc ccaggctcat 60
tccagataca tccatgtt 78
<210> SEQ ID NO 18

<211> LENGTH: 66

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic primer: P5029

<400> SEQUENCE: 181
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcetggg atctgttagc 60
ggcagt 66

<210> SEQ ID NO 182

<211> LENGTH: 70

$<212>$ TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223 > OTHER INFORMATION: Synthetic primer: P5030

$<400>$ SEQUENCE: 182
tgcaacagct thatcaactg etgctttaag tgccgcactg cegctaacag atcccaggct 60
catgttgatt 70
$<210>$ SEQ ID NO 183
<211> LENGTH: 66
<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Synthetic primer:	P5031	
$<400>$ SEQUENCE : 183		
atcgaatggg ccatcgcgaa taacatggat gtaatcaaca	tgagcetggg atctgatagc	60
ggcagt		66
$<210>$ SEQ ID NO 184		
<211> LENGTH: 70		
<212> TYPE: DNA		
$<213>$ ORGANISM: Artificial Sequence		
<220> FEATURE:		
$<223>$ OTHER INFORMATION: Synthetic primer:	P5032	
$<400>$ SEQUENCE: 184		
tgcaacagct ttatcaactg ctgctttaag tgccgcactg	ccgctatcag atcccagget	60
catgttgatt		70
$<210>$ SEQ ID NO 185		
<211> LENGTH: 69		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223) OTHER INFORMATION: Synthetic primer:	P5033	
$<400>$ SEQUENCE : 185		

atcgaatggg ccatcgcgaa taacatggat gtaatcaaca tgagcctggg atctagcggc 60
agtgcggca 69
$<210\rangle$ SEQ ID NO 186

<211> LENGTH: 67

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

$<223>$ OTHER INFORMATION: Synthetic primer: P5034

$<400>$ SEQUENCE: 186
tgcaacagct ttatcaactg ctgctttaag tgccgcactg cogctagatc ccaggctcat 60
gttgatt 67
$<210>$ SEQ ID NO 187
$<211>$ LENGTH: 32
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5035
$<400>$ SEQUENCE: 187
tgatcegtct gagcagggge tttaatttgt ga 32
$<210>$ SEQ ID NO 188
$<211>$ LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P5036
$<400>$ SEQUENCE: 188
attaaagccc ctgctcagac ggatcaggcc aatactc

```
<210> SEQ ID NO 189
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128/129 Stop F
<400> SEQUENCE: 189
```

catgagcetg ggataatgaa gcggcagtgc ggcacttaaa gcag
$<210>S E Q$ ID NO 190
<211> LENGTH: 46
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: $128 / 129$ Stop R
<400> SEQUENCE: 190
gtgcegcact gccgettcat tatcccaggc tcatgttgat tacatc

```
<210> SEQ ID NO 191
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128/129 deg QC F
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(15)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (17)..(18)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 191
```

catgagcctg ggannsnnsa geggcagtge ggcacttaaa gcag

```
<210> SEQ ID NO 192
```

<211> LENGTH: 43
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: $128 / 129 \mathrm{deg}$ QC R
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (15) . (16)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222\rangle$ LOCATION: (18)..(19)
$<223>$ OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 192
ccgcactgcc getsnnsnnt cecaggctca tgttgattac atc

```
<210> SEQ ID NO 193
<211> LENGTH: 41
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128/129 del QC F
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (14)..(15)
<223> OTHER INFORMATION: n is a, c, g, or t
```

```
<400> SEQUENCE: 193
catgagcctg ggannsagcg gcagtgcggc acttaaagca g
<210> SEQ ID NO 194
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128/129 del QC R
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (15)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 194
```

cogcactgce getsnntcec aggetcatgt tgattacatc
<210> SEQ ID NO 195
<211> LENGTH: 47
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128 A 129 QC F
<220> FEATURE:
$<221>$ NAME/KEY: misc_feature
<222> LOCATION: (14)..(15)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (20)..(21)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 195
catgagcctg ggannsgcgn nsagcggcag tgcggcactt aaagcag
<210> SEQ ID NO 196
<211> LENGTH: 46
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128 A 129 QC R
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (15)..(16)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (21)..(22)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 196
cegcactgce getsnncges nntcccagge tcatgttgat tacatc

<210> SEQ ID NO 197	
$<211>$ LENGTH: 41	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic primer:	128/129 del A QC F
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (14).. (15)	
<223> OTHER INFORMATION: n is a, c, g, or t	

```
<210> SEQ ID NO 198
<211> LENGTH: 43
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: 128/129 del A QC R
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (18)..(19)
<223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 198
```

gtgcegcact gcetgcsnnt cccaggctca tgttgattac atc
$<210>$ SEO ID NO 199
<211> LENGTH: 22
$<212\rangle$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4947
<400> SEQUENCE: 199
ctttagtcta gcaaaaggag ag
$<210>$ SEQ ID NO 200
$<211>$ LENGTH: 23
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4948
$<400>$ SEQUENCE: 200
gtgttttct tggaattgtg ctg 23

```
<210> SEQ ID NO 201
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4949
<400> SEQUENCE: 201
```

cgactcgagc catccagatc

```
<210> SEQ ID NO 202
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4950
<400> SEQUENCE: 202
```

cttgtctcca agcttaaat aaaa
$<210>$ SEQ ID NO 203
$<211>$ LENGTH: 39
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4951
$<400>$ SEQUENCE: 203
aaagttcttg cagcaagtga cggatcaggc caatactca

```
<210> SEQ ID NO 204
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4952
<400> SEQUENCE: 204
```

gcctgatccg tcacttgctg caagaacttt aacggcgtag
$<210>$ SEQ ID NO 205
<211> LENGTH: 40
$<212\rangle$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4953
<400> SEQUENCE: 205
taaagttctt ggcgcaagtg acggatcagg ccaatactca
$<210>$ SEQ ID NO 206
<211> LENGTH: 38
<212 > TYPE: DNA
$<213>$ ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4954
<400> SEQUENCE: 206
cetgatccgt cacttgcgec aagaacttta acggegta 38
$<210>$ SEQ ID NO 207
$<211>$ LENGTH: 42
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4955
$<400>$ SEQUENCE: 207
gttaaagttc ttgatgcacg tgacggatca ggccaatact ca
<210> SEQ ID NO 208
<211> LENGTH: 41
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4956
<400> SEQUENCE: 208
gatccgtcac gtgcatcaag aactttaacg gcgtagagcg a
<210> SEQ ID NO 209
$<211>$ LENGTH: 42
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic primer: P4957
$<400>$ SEQUENCE: 209
gttaaagttc ttgatggtcg tgacggatca ggccaatact ca
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4958
$<400>$ SEQUENCE: 210
gatccgtcac gaccatcaag aactttaacg gcgtagagcg aa

```
<210> SEQ ID NO 211
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4959
<400> SEQUENCE: 211
```

tgagcctggg agcagtaagc ggcagtgcgg cacttaaa
$<210>$ SEQ ID NO 212
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4960
<400> SEQUENCE: 212
gcactgccgc ttactgctcc caggetcatg ttgattac

```
<210> SEQ ID NO 213
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4961
<400> SEQUENCE: }21
```

ttagcgcagg aggagtaagc ggcagtgcgg cacttaaa 38
<210> SEQ ID NO 214
<211> LENGTH: 37
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4962
<400> SEQUENCE: 214
gcactgccgc ttactcctcc tgcgetaacg ttgatta 37
$<210>$ SEQ ID NO 215
$<211>$ LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4963
$<400>$ SEQUENCE: 215
gagcctggga ggagtaagcg gcagtgcggc acttaaa
<210> SEQ ID NO 216
<211> LENGTH: 40
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4964

```
<400> SEQUENCE: 216
tgccgcactg ccgcttactc ctcccaggct catgcegatt
```

<210> SEQ ID NO 217
<211> LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4965
<400> SEQUENCE: 217
gagcetggga gcagtaagcg gcagtgcggc acttaaa 37
$<210>$ SEQ ID NO 218
<211> LENGTH: 36
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4966
<400> SEQUENCE: 218
gcactgccgc ttactgctcc caggetcatg ttgatt
$<210>$ SEQ ID NO 219
$<211>$ LENGTH: 34
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4967
$<400>$ SEQUENCE: 219
aacgggactt cccaagcetc gcegcatgta gctg 34
$<210>$ SEQ ID NO 220
$<211>$ LENGTH: 37
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetic primer: P4968
$<400>$ SEQUENCE: 220
acatgcggcg aggcttggga agtcccgttt tgcgcac

```
<210> SEQ ID NO 221
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer: P4973
<400> SEQUENCE: 221
```

aaaggatcet aatcggcget tttc

1. A subtilisin variant comprising at least one modification, wherein said modification is selected from: G100C, S101D, S101H, Q103D, M124G, L126G, S132H, S161N, Q275Z, and/or at least set of modifications selected from A001T/ L096V/G097S/A098D/D099I, A001V/G097S/A098R/ D099G, V004M/A098D/D099G, V004M/D099R/G100S/ Z100.01L, V004M/G127C/G128S/P129R, V004M/M119C/ D120S, V008I/A098G/D099R, V008I/A098N, V008I/ M119C/D120G, Q010L/G097R/A098C/D099S, K012N/

A098R/D099V, K012R/G097D/A098H/D099G, A013T/ S101R/Q103S, A013V/G097N/A098H/D099G/G160S, A013V/G097S/Z097.01R/A098R, A013V/G100R/S101G, A013V/N118G/M119I, A013V/P129Z/S130H/S132G, P014L/N062D/S101R/Q103S, P014S/A098S/D099G, A015T/V068N/A069G, L016M/G128R/P129R/Z129.01G, H017Q/G127R/P129G, H017Y/A098R/D099I, H017Y/ A098R/D099Z/S101G, H017Y/P129R, H017Y/S130Y/ G131S/S132L, Q019H/G128R/Z128.01R/P129D, Q019H/

Z128.01G/Z128.02G, G020D/G097R/A098G/D099C, G020D/P129Z/S130G/G131R/S132C, N025Y/S101L/ Q103N, A029V/G097R/A098S, S033I/T066G/H067R/ V068D/A216E, S038F/A098R/D099S, V044I/G097C/ A098D/D099G, V044I/G097R/A098R, V044I/G100S/ S101G, A045V/G097C/A098R/D099S, A048V/G097L/ A098G/D099S, A048V/G100R/S101G, A048V/G128S/ P129L/Z129.01G, M050I/A098G, S053F/S130I/S132G, S053T/D099H/S101Z, E054D/A098R/D099G, T055I/ S101R/Q103R, T055S/T066I/Z066.01G/Z066.02G, Q059H/D099S/S101G, Q059H/M119S/D120R, Q059K/ M119V/V121C, Q059L/P129G, N061D/G128R/P129V/ Z129.01G, S063T/G097D/A098R/D099S, G065R/Z101. 01R/Z101.02G, T066S/H067S, V068C/A069G, V068C/ A069G/H238Q, V068G/A069G, V068G/A069G/V150I, V068G/A069S, V068I/A069G/A144V, V068I/G097D/ A098G/D099Z/G100R, V068L/A069G, V068L/A069S, V068S/A069G, V068S/A069G/A116T, A069G/T071G, A069G/T071I, L075G/N076G/N077Z, L075R/N076G/ N077Z, N076D/D099R/Z100.01G, I079F/A098G, V081A/ S101R/Q103V, V081I/G097R/A098G/D099C, V084D/ G097S/A098G/D099N, V084I/G127C/P129G, V084I/ G127L, A085V/A098G, A085V/G097R/A098S/D099N, A085V/G128S/P129R/Z129.01G, A085V/N218I, A085V/ S101G, A085V/S204P, A085V/Z099.01H/S101R, P086S/ G131D/S132G, P086T/S101D/Q103S/V147I, A088S/ S101R/Q103V, A088T/A098R/D099R, A088T/D099G/ Z100.01G, A088T/G127N/P129R, A088T/G127S/P129R/ Q206R/A273S, A088T/P129S/G146D, A088T/S101G, A088T/S130R/G131H/S132N, A088V/G100Z/S101C/ Q103R, A088V/P129Z, A092G/S249R, A092G/V093C, A092G/V093I, A092G/V093L, A092L/V093G/K094Z, A092S/K094V, A092S/V093C, A092S/V093G, A092S/ V093S, A092V/V093L, V093I/G128D/P129R, V093I/ P129Z, V093R/Z093.01G/K094R, K094E/V095D, K094S/ V148I, L096I/N118R/M119C/D120G/A151V, Z096.01D/ A098R, Z096.01H/A098G, Z096.01N/A098H, Z096.01R/ A098C, Z096.01R/A098G, Z096.01R/A098G/V192I, Z096. 01R/A098R, Z096.01R/A098R/V192A, Z096.01R/A098S, Z096.01R/A098S/G157S, Z096.01R/Z096.02G, Z096.01R/ Z096.02G/V147I, Z096.01S/A098G, Z096.01S/A098N, G097C/A098D/D099S, G097C/A098G/D099G, G097C/ A098G/D099N, G097C/A098G/D099S, G097C/A098G/ D099S/G100Z, G097C/A098G/D099V, G097C/A098N/ D099S, G097C/A098R, G097C/A098R/D099G, G097C/ A098R/D099H, G097C/A098R/D099H, G097C/A098R/ D099N, G097C/A098R/D099R, G097C/A098R/D099R/ N109D/A114S, G097C/A098S/D099H/A151V, G097C/ A098V/D099S, G097C/Z097.01G/A098H/T253I, G097C/ Z097.01S/A098G, G097D/A098C, G097D/A098G/D099G, G097D/A098G/D099R, G097D/A098H/D099R, G097D/ A098H/D099V, G097D/A098R/D099G, G097D/A098R/ D099R, G097D/A098R/D099S, G097D/A098R/D099Z, G097D/G100C/S101R, G097D/G100R/S101G, G097H/ A098C/D099G, G097H/A098D/D099N, G097H/A098G, G097H/A098G/D099G, G097H/A098G/D099R, G097H/ A098G/D099Z, G097H/A098G/D099Z/A151V, G097H/ A098G/D099Z/G100R, G097H/A098G/D099Z/G100V, G097H/A098G/D099Z/S101N/G166S, G097H/A098R, G097H/A098R/D099G, G097H/A098R/D099L, G097H/ A098R/D099N, G097H/A098S/D099G, G097H/A098S/ D099I, G097H/A098S/D099L, G097H/A098S/D099S/ K237E, G097L/A098C/D099S, G097L/A098G/D099S, G097L/A098G/D099S/G100Z,

G097L/A098G/D099Z,

G097L/A098H, G097L/A098R/D099N, G097L/A098V, G097N/A098G/D099C, G097N/A098G/D099R, G097N/ A098G/D099R/V270I, G097N/A098G/D099S, G097N/ A098G/D099V, G097N/A098G/D099V/A151V, G097N/ A098G/D099V/S101F, G097N/A098H/D099N, G097N/ A098R/D099R, G097N/A098R/D099S, G097N/A098R/ D099V, G097N/A098S/D099S, G097R/A098C, G097R/ A098C/D099S, G097R/A098F/A200V, G097R/A098G, G097R/A098G/D099C, G097R/A098G/D099G, G097R/ A098G/D099G/A273T, G097R/A098G/D099S, G097R/ A098G/D099S/A133D, G097R/A098G/D099V, G097R/ A098H/D099C/S182N, G097R/A098H/D099G, G097R/ A098N/D099G, G097R/A098N/D099Z, G097R/A098R, G097R/A098R/D099C, G097R/A098R/D099G, G097R/ A098R/D099S, G097R/A098S/D099C, G097R/A098S/ D099G, G097R/A098S/D099L, G097R/A098S/D099R, G097R/A098S/D099S, G097R/A098S/D099V, G097R/ A098V/D099G, G097R/Z097.01H/A098C, G097R/Z097. 01R/A098G, G097R/Z097.01R/A098G/V147I, G097R/ 7097.01R/A098S, G097R/Z097.01R, G097R/Z097.01S/ A098G, G097R/Z097.01S/A098R, G097S/A098C, G097S/ A098C/D099G, G097S/A098C/D099H, G097S/A098C/ D099L, G097S/A098C/D099R, G097S/A098C/D099S, G097S/A098C/D099Z, G097S/A098G/D099F, G097S/ A098G/D099G, G097S/A098G/D099G, G097S/A098G/ D099S, G097S/A098G/D099Z, G097S/A098G/D099Z/ G100R, G097S/A098H/D099C, G097S/A098H/D099G, G097S/A098N/D099G, G097S/A098R, G097S/A098R/ D099C, G097S/A098R/D099G, G097S/A098R/D099L, G097S/A098R/D099V, G097S/A098R/D099Y, G097S/ A098S/D099G, G097S/A098S/D099G/A133V/A153V/ S236Y, G097S/A098S/D099G/A153V, G097S/A098S/ D099Z, G097S/Z097.01D/A098G/A144T/Q271H, G097S/ 7097.01G/A098V, G097S/Z097.01S/A098G, G097S/Z097. 01S/A098G/A273T, G097S/Z097.01Y, G097V/A098R, G097V/A098R/D099G, G097V/A098S/D099S, G097Y/ A098H/D099N, G097Z/A098S/D099H, Z097.01D/A098R/ D099G, Z097.01D/A098S/D099L, Z097.01D/A098V/ D099G, Z097.01G, Z097.01G/A098G, Z097.01G/A098G/ D099S, Z097.01G/A098R, Z097.01G/A098R/D099C, Z097.01G/A098R/D099G, Z097.01G/A098R/D099S, A098C/D099G, A098C/D099G/A116T, A098C/D099H, A098C/D099L, A098C/D099L/K213R, A098C/D099L, A098C/D099N, A098C/D099R, A098C/D099S, A098C/ D099S/P194L, A098D/D099C, A098D/D099G, A098D/ D099G/G100L, A098D/D099H/G100S, A098D/D099H/ H238Y, A098D/D099R, A098D/D099R/G100D, A098D/ D099R/G160S, A098F/D099S/G100L, A098G/D099C A098G/D099G, A098G/D099G/A228T, A098G/D099G/ G100H, A098G/D099G/N243D, A098G/D099G/S101P, A098G/D099G/T244S, A098G/D099G, A098G/D099H, A098G/D099L, A098G/D099R, A098G/D099R/A116T, A098G/D099R/G100D, A098G/D099R/V148I, A098G/ D099S, A098G/D099S/L267M, A098G/D099V, A098G/ D099Z, A098H/D099C, A098H/D099G, A098H/D099G/ A216T, A098H/D099G/G100D, A098H/D099G/G100N/ L267M, A098H/D099G/G100S, A098H/D099G/V143I, A098H/D099R, A098H/D099R/G100S, A098H/D099S/ G100C, A098H/D099S/G100N, A098H/D099Y, A098I/ D099G, A098I/D099S, A098L/D099G, A098L/D099S, A098N/D099G, A098N/D099L, A098N/D099S, A098R/ A144T, A098R/A274V, A098R/D099C, A098R/D099G, A098R/D099G/G100C, A098R/D099G/G100D, A098R/ D099G/G100L/S145T, A098R/D099G/G100N, A098R/

D099G/G100R, A098R/D099G/G100S, A098R/D099G/ V150I, A098R/D099H, A098R/D099I, A098R/D099L, A098R/D099N, A098R/D099N/G100L, A098R/D099R, A098R/D099R/G100D, A098R/D099R/S101Z, A098R/ D099R/S130F, A098R/D099R, A098R/D099S, A098R/ D099S/G100L/A153V, A098R/D099S, A098R/D099V, A098R/D099Z/S101G, A098R/G100C/A137T, A098R/ G100S, A098S/D099C, A098S/D099G, A098S/D099G/ G100C, A098S/D099G/G100D, A098S/D099G/G100R/ L250I, A098S/D099G/G100S, A098S/D099G/Z099.01R, A098S/D099H, A098S/D099H/M124V, A098S/D099H/ Z099.01R/G169A/V180A, A098S/D099R, A098S/D099R/ G100L, A098S/D099R/G154S, A098S/D099R/G166S, A098S/D099R/Z100.01G, A098S/D099S, A098S/D099S/ Z099.01R, A098S/D099V, A098T/P129Z/S130R/S132G, A098T/S101G, A098V/D099G, A098V/D099G/G100D, A098V/D099G/G100D/A153V, A098V/D099G/G100S, A098Y/D099R/G100L, A098Y/D099R/G100Z/S101Z/ G102D, A098Z/S101R, Z098.01N, Z098.01R, Z098.01R/ G100R, D099C/K136N, D099C/S101D, D099C/S101R, D099C/S101Z, D099C/Z099.01S, D099C/Z100.01G, D099F/S101Z, D099G/G100C, D099G/G100D/S101R, D099G/G100H, D099G/G100R/S101V, D099G/G100S/ S101R, D099G/S101G, D099G/S101H, D099G/S101V, D099G/S101Z, D099G/S101Z/N269D, D099G/Z099.01N, D099G/Z099.01R/G100S, D099G/Z099.01S, D099G/Z100. $01 \mathrm{G}, ~ \mathrm{D} 099 \mathrm{G} / \mathrm{Z} 100.01 \mathrm{G} / \mathrm{S} 183 \mathrm{~N} / \mathrm{Q} 275 \mathrm{~K}, \mathrm{D} 099 \mathrm{H} / \mathrm{S} 101 \mathrm{Z}$, D099H/S101Z/V150I, D099H/Z100.01G/A273V, D099H/ Z100.01G/Z100.02G, D099I/Z099.01S, D099L/N118D, D099L/S101G, D099L/S101V, D099L/Z100.01G, D099N/ A116T, D099N/G100R/S101V, D099N/S101G, D099N/ S101H, D099N/S101Z, D099N/Z099.01S, D099N/Z100. 01G, D099R/S101D, D099R/S101G, D099R/S101V, D099R/S101Z, D099R/S101Z/A133T, D099R/Z099.01N, D099R/Z099.01S, D099R/Z100.01G, D099R/Z100.01N, D099S/S101G, D099S/S101I, D099S/S101Z, D099S/Z099. 01H, D099S/Z099.01L, D099S/Z099.01V, D099S/Z100. 01G, D099S/Z100.01G/Z100.02G, D099V/S101D, D099V/ S101V, D099V/S101Z, Z099.01H/S101L, Z099.01H/Z099. 02R, Z099.01N/S101R, Z099.01S, Z099.01S/S101V, Z099. 01S/Z099.02G/A228T, G100D/S101G, G100D/S101R, G100H/G102V, G100H/S101G, G100H/S101R, G100L/ S101G, G100L/S101R, G100N/S101D, G100N/S101L, G100N/S101R, G100R/L267R/I268V, G100R/S101G, G100R/S101G/G160S/S182N, G100R/S101G/Q103Z/ Y104Z/S161N, G100R/S101G/S163N, G100R/S101N, G100R/S101R, G100R/S101R/Q103Z/V270I, G100R/ S101Z/G102C/Q103D, G100S/S101C, G100S/S101G, G100S/S101R, G100S/S101R, G100S/S101V, G100S/ S101V/A231T, Z100.01G, Z100.01L, Z100.01N, Z100.01R, Z100.01R/S101G, S101C/Q103I, S101C/Q103S, S101D/ Q103C, S101D/Q103D, S101D/Q103F, S101D/Q103H, S101D/Q103H, S101D/Q103R, S101D/Q103R/H238Y, S101D/Q103S, S101D/Q103V, S101F/Q103G, S101G/ A151V, S101G/A179V, S101G/G102S, S101G/Q103G, S101G/Q103L, S101G/Q103N, S101G/Q103R, S101G/ Q103R/A179T, S101G/Q103R/G157D, S101G/Q103S, S101G/Q103S/L233S, S101G/Q103S/L233S, S101G/ Q245H, S101G/S249N, S101G/V139I, S101G/Z101.01R, S101G/Z101.01R/A200T, S101G/Z102.01G, S101H/ G102S, S101H/Q103D, S101H/Q103G, S101H/Q103G/ E251Q, S101H/Q103H, S101H/Q103I, S101H/Q103R, S101H/Q103R/A274Z/Q275Z, S101H/Q103S, S101H/ Q103V, S101I/Q103R, S101L/G102S/Q103R, S101L/

Q103D, S101L/Q103G, S101L/Q103R, S101L/Q103R/ A138T, S101L/Q103R/V121I/K213E, S101L/Q103S, S101L/Q103V, S101L/Z101.01R, S101N/Q103R, S101N/ Z102.01G, S101R/A151V, S101R/A273V, S101R/E156G, S101R/G102L/Q103G, S101R/G102S, S101R/G102S/ Q103R, S101R/G102S/Q103V, S101R/G131D, S101R/ Q103C, S101R/Q103D, S101R/Q103D/S248R, S101R/ Q103G, S101R/Q103G/A116T, S101R/Q103G/V147I/ A153V, S101R/Q103G, S101R/Q103L, S101R/Q103N, S101R/Q103R, S101R/Q103R/S161N, S101R/Q103R/ V148I, S101R/Q103S, S101R/Q103S/L126F, S101R/ Q103V, S101V/Q103G, S101V/Q103H, S101V/Q103N/ Z275.01K, S101V/Q103R, S101V/Q103V, S101Y/G102S/ Q103R, S101Y/Q103L, S101Y/Q103S, S101Y/Q103V, S101Z/G102I/Q103H/Y104G/L135F, S101Z/G102V/ Q103R/Y104L, S101Z/Q103D, S101Z/Q103F, S101Z/ Q103L, S101Z/Q103R, G102C/Q103L/Y104S, G102R/ Q103C/Y104C/V192I, G102R/Q103G/Y104R, G102R/ Q103R/Z103.01G, G102Z/Q103S, Z102.01G/Q103R, Z102. 01G/Q103R/L267V, Z102.01G/Z102.02R/Z102.03G, Q103H/Y104N/Q275Z, Q103N/E156D, Q103R/L122L/ N123S/M124V, Q103R/Y104F, Q103Y/S182N, S105G/ P129S/S130H/G131H, W106C/A116D/N117S/N118C, N109S/M119C/D120G/V121L, A116G/N117Z/N118R/ M119C, A116H/N117G/N118R, N117C/N118G/M119S, N117C/N118G/M119S/A216V, N117G/N118G/M119C, N117G/N118R/M119C, N117H/N118C/M119C, N117H/ N118D/M119S, N117H/N118G/M119C, N117H/N118G/ M119L, N117H/N118G/M119S, N117H/N118G/M119V, N117H/N118H/M119V, N117H/N118R/M119C, N117H/ N118R/M119S, N117H/N118S/M119C, N117H/N118S/ M119S, N117H/N118S/M119V, N117I/N118G/M119V, N117L/N118G/M119V, N117R/N118G/M119C, N117R/ N118G/M119I/V270I, N117R/N118G/M119S, N117R/ N118H/M119V, N117R/N118R/M119C, N117R/N118R/ M119I, N117R/N118R/M119S, N117R/N118R/M119V, N117R/N118S/M119I, N117R/N118S/M119L, N117S/ N118G/M119C, N117S/N118G/M119S, N117S/N118H/ M119V, N117S/N118R/M119V, N117V/N118G/M119C, N117V/N118H/M19C, N117Y/N118G/M119S, N117Y/ N118G/M119V, Z117.01G/N118R/M119C, N118C/ M119V/D120S, N118C/Z118.01G/M119C, N118D/ M119C/D120L, N118D/M119S/D120R, N118G/M119C/ D120G, N118G/M119C/D120L, N118G/M119I/D120R, N118G/M119N, N118G/M119S/D120G, N118G/M119S/ D120R, N118G/M119V/D120G, N118G/M119V/D120S/ S182N, N118H/M119C/D120R, N118H/M119I/D120G, N118H/M119N/V148I, N118H/M119S/D120G, N118H/ M119V/D120G, N118R/M119C, N118R/M119C/D120G, N118R/M119C/D120R, N118R/M119S, N118R/M119S/ D120G, N118R/M119S/D120R, N118R/M119S/D120S, N118R/M119V/D120C, N118R/M119V/D120G, N118R/ M119V/D120G/A232T, N118S/M119C/D120R, M119C/ D120G, M119C/D120G/V121I, M119C/D120G/V121L, M119C/D120H, M119C/D120H/A187V, M119C/D120R, M119H/V121I, M119I/D120C, M119I/D120G, M119I/ D120R, M119L/D120G, M119S/D120R, M119S/D120S/ V121I, M119S/V121I, M119V/D120C, M119V/D120G, M19V/D120R, M119V/D120S/V198L, D120G/I122C, D120G/I122C/L217S, D120G/I122G, D120G/I122V, D120H/I122L, D120H/V121C/I122V, D120N/V121L/ I122V, D120R/A151V, D120R/I122V, D120R/V121I, D120R/V121I/I122C, D120R/V121I/1122C/A228T, D120S/ I122C/A133S, V121C/I122C/N123C, V121C/I122G/

N123V, V121C/I122S/N123V, V121C/I122V/N123S, V121I/I12C/N123C, V121I/I122C/V150I, V121I/I122G/ N123C, V121I/I122S/N123C, V121I//122S/N123I, V121I/ I122V/N123S, V121L/I122S/N123V, V121L/N123C, I122C/N123C, I122C/N123S/M124L, I122D/N123V/ M124L, I122G/N123C/M124L, I122G/N123G/Z123.01C, I122H/N123V/M124LI122S/N123S, I122V/N123G/ M124C/A138V, I122V/N123S/M124I, I122V/S183G, N123C/M124S, N123C/M124V, N123S/M124L, N123S/ M124S, M124C/L126S, M124C/L126S/T244I, M124C/ L126V, M124I/L126H, L126F/P129Z, L126F/P129Z/ S182N, L126I/P129Z, L126R/G127R, Z126.01S, G127C/ G128S/P129R, G127C/P129G, G127C/P129G/A200T, G127C/P129R, G127C/P129R/A153T, G127D/P129G, G127D/P129S, G127H/P129G, G127H/P129R, G127L/ P129R, G127N/P129C, G127N/P129G, G127N/P129G/ A133T, G127N/P129G/A151V/K213N, G127N/P129R, G127N/P129S/A273V, G127N/P129V, G127R/A230V, G127R/P129D, G127R/P129D/L217S, G127R/P129G, G127R/P129R, G127R/P129S, G127S/P129D, G127S/ P129F, G127S/P129G, G127S/P129G/G166D, G127S/ P129G/I175T, G127S/P129R, G127S/P129S, G127S/ P129V, G127V/P129G, G127V/P129R, Z127.01G/Z127. 02H/P129D, Z127.01G/Z127.02H/P129G, Z127.01G/Z127. 02H/P129R, Z127.01H/G128C/P129C/A230V, Z127.01H/ P129G, Z127.01H/P129G/V148I, Z127.01H/P129R, Z127. 01N/G128C/P129V, Z127.01N/G128S/P129S, Z127.01N/ G128S/P129V, Z127.01N/P129R, Z127.01R/G128S/P129S, Z127.01R/P129G, Z127.01S/P129D, Z127.01S/P129G, Z127.01S/P129R, G128D/P129G, G128D/P129R/Z129. 01R, G128D/P129S/G154S, G128H/P129C, G128H/P129H/ Z129.01G, G128H/P129H/Z129.01R, G128H/P129R, G128H/P129R/Z129.01G, G128H/P129R/Z129.01R, $\mathrm{G} 128 \mathrm{H} / \mathrm{P} 129 \mathrm{~S} / \mathrm{Z} 129.01 \mathrm{G}, \quad \mathrm{G} 128 \mathrm{H} / \mathrm{P} 129 \mathrm{~S} / \mathrm{Z} 129.01 \mathrm{R}$, G128H/P129S/Z129.01R/S248N, G128H/P129Y, G128H/ Z128.01R/P129D, G128H/Z128.01R/P129S, G128H/Z128. 01R/P129S/A144T, G128H/Z129.01R, 128N/P129R/Z129. 01G, G128N/P129R/Z129.01R, G128N/P129S/Z129.01D, G128N/Z128.01R/P129S, G128R/P129G, G128R/P129H/ Z129.01G, G128R/P129L/Z130.01S, G128R/P129R, G128R/P129R/Z129.01G, G128R/P129R/Z129.01G/ A216V, G128R/P129S, G128R/P129S/Z129.01G, 128R/ P129Z/S130R/S132G, G128R/Z128.01R/P129D, G128R/ Z128.01R/P129F, G128S/P129C, G128S/P129C/Z129.01R, G128S/P129D, G128S/P129D/S248R, G128S/P129D/ T244N, G128S/P129G, G128S/P129G/A187V, G128S/ P129H/Z129.01R, G128S/P129R/L209F, G128S/P129R/ Z129.01G, G128S/P129S/Z129.01D, G128S/P129S/Z129. 01R, G128S/P129V, G128Y/P129R/Z129.01G, Z128.01G, Z128.01G/P129D, Z128.01G/P129R, Z128.01G/P129S/ A134I, Z128.01G/Z128.02G, Z128.01R/P129D, Z128.01R/ Z128.02G/P129S, Z128.01R/Z128.02H/P129G/G160S, Z128.01R/Z128.02R/P129D, Z128.01Y/Z128.02H/P129R, P129C/S130C/S132Z, P129D/Z129.01G/Z129.02D/ G160D, $\quad \mathrm{P} 129 \mathrm{D} / \mathrm{Z} 129.01 \mathrm{G} / \mathrm{Z} 129.02 \mathrm{G}, \quad \mathrm{P} 129 \mathrm{G} / \mathrm{G} 131 Z$, P129G/S130G/Z131.01G, P129G/S130H/S132Z, P129G/ S130R/S132Z, P129G/V270I, P129G/Z129.01G, P129G/ Z129.01R/Z129.02G, P129H/G131Z, P129H/G131Z/ S132C, P129H/G131Z/S132H, P129H/S132Z, P129H/ Z130.01D/Z130.02, P129R/G131Z/S132H, P129R/S130D/ S132Z, P129R/S130N/G131Z, P129R/S132T, P129R/ S132Z, P129R/Z129.01G, P129R/Z129.01G/Z129.02G, P129R/Z129.01G/Z129.02G/A144T, P129R/Z129.01G/ Z129.02G/G146D, P129R/Z129.01G/Z129.02R, P129R/

Z129.01G, P129R/Z129.01R/Z129.02G, P129S/ G131ZP129S/S130H/S132Z, P129S/Z129.01C, P129S/ Z129.01R/Z129.02S, P129S/Z130.01N/Z130.02S, P129V/ S132Z, P129Z, P129Z/G131R/S132C, P129Z/S130G, P129Z/S130G/G131H/S132H, P129Z/S130G/G131V, P129Z/S130H, P129Z/S130H/S132G, P129Z/S130H/ S132N, P129Z/S130L, P129Z/S130R, P129Z/S130R/ G131C, P129Z/S130R/G131C, P129Z/S130R/G131D/ S132C, P129Z/S130R/G131H/A144E, P129Z/S130R/ G131H/S132D, P1297/S130R/G131R/S132D, P129Z/ S130R/L267M, P129Z/S130R/S132C, P129Z/S130R/ S132G, P129Z/S130V/S132G, P129Z/S130Z/G131N/ S132G, S130D/G131C/S132D, S130D/G131R, S130D/ G131R/S132D, S130D/G131Z, S130D/G131Z/S132H, S130F/G131N/S132V, S130F/G131S/S132V, S130F/S132V, S130G/G131D/S132C, S130G/G131H/S132D, S130G/ G131S/S132I, S130G/S132G, S130H/G131C/S132G, $\mathrm{S} 130 \mathrm{H} / \mathrm{G} 131 \mathrm{H} / \mathrm{S} 132 \mathrm{R}, \quad \mathrm{S} 130 \mathrm{H} / \mathrm{G} 131 \mathrm{R} / \mathrm{S} 132 \mathrm{C}, \mathrm{S} 130 \mathrm{H} /$ G131S, S130H/G131S/S132C, S130H/S132Z, S130I/ G131S/S132H, S130I/S132G, S130N/G131S/S132C, S130R/G131R/S132C, S130R/G131S/S132C/S161N, S130R/S132G, S130R/S132G/S183N, S130R/S132Z, S130V/G131D/S132I, S130V/G131H/S132C, S130V/ S132N, S130V/S132Z, S130Y/G131H/S132C, S130Y/ S132G, S130Z/G131H/S132H, G131H/S132L/V241R, G131N/S132C, G131S/S132G, G131Y/S132G, and A142V/ G211V, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
2. A subtilisin variant comprising at least one modification, wherein said modification is selected from: V072G/G097A/ G128A/Y217Q, G097A/G128S/Y217Q, G097A/G128S/ P129D/Y217Q, G097A/G128A/A134T/Y217Q, M124V/ L126A/Y217Q, G097A/G128A/P129D/Y217Q/A232P, G097A/G128A/P129D/Y217Q, G097A/G128S/P129V/ A134T/Y217Q, G097A/G128S/P129V/Y217Q, V068I/ G097A/G128S/P129D/Y217Q, G097A/S101D/G128S/ S204F/Y217Q/S236F/T254P, G097A/S101D/G128S/ Y217Q, G097A/G128A/P129V/Y217Q, G097A/S101D/ G128V/Y217Q, G097A/S101D/G128S/P129D/Y217Q, G097A/S101D/G128A/A134T/Y217Q, G097A/Z099.01S/ A114S/G128S/Y217Q, G097A/S101D/G128A/P194L/ Y217Q, G097A/Z099.01S/G128S/Y217Q, G097A/S101D/ G128A/P129D/Y217Q, Q019R/G097A/Z099.01S/G128S/ $\mathrm{P} 129 \mathrm{D} / \mathrm{Y} 217 \mathrm{Q}, \quad \mathrm{G} 097 \mathrm{~A} / \mathrm{G} 100 \mathrm{~S} / \mathrm{G} 128 \mathrm{~S} / \mathrm{Y} 217 \mathrm{Q}, \quad \mathrm{G} 097 \mathrm{~A} /$ S101D/G128S/P129V/Y217Q, G097A/Z099.01S/G128A/ $\mathrm{A} 134 \mathrm{~T} / \mathrm{Y} 217 \mathrm{Q}, \quad \mathrm{G} 097 \mathrm{~A} / \mathrm{G} 100 \mathrm{~S} / \mathrm{I} 107 \mathrm{~V} / \mathrm{G} 128 \mathrm{~S} / \mathrm{P} 129 \mathrm{D} /$ Y217Q, G097A/G100S/G128S/Y217Q/A230V, G097A/ G100S/G128A/Y217Q/K237N, G097A/Z099.01S/G128S/ P129D/Y217Q, G097A/G100S/G128S/P129D/Y217Q, Z096.01D/G097A/A098R/G128A/Y217Q, G097A/Z099. 01S/I122S/N123G/G128A/Y217Q, G097A/Z099.01S/ I122S/N123G/G128A/Y217Q/T220A/A232T, P005S/ G097A/Z099.01S/S101D/G128A/Y217Q, G097A/S101D/ G128A/P129V/Y217Q, V0937/K094S/V095C/L096S/ G097A/G128A/Y217Q, G097A/G100S/S101D/G128A/ Y217Q/A232P, Z096.01D/G097A/A098R/S101D/G128A/ Y 217 Q , and G097A/Z099.01S/G100S/G128A/Y217Q, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
3. A subtilisin variant comprising at least two modifications, wherein said modifications are selected from: G097 G128S/P129T/Y217Q, G097A/G128A/P129S/Y217Q, $\mathrm{G} 097 \mathrm{~A} / \mathrm{G} 128 \mathrm{~S} / \mathrm{P} 129 \mathrm{C} / \mathrm{Y} 217 \mathrm{Q}, \quad \mathrm{G} 097 \mathrm{~A} / \mathrm{G} 128 \mathrm{~S} / \mathrm{P} 129 \mathrm{Q} /$ Y217Q, G097A/G128S/P129E/Y217Q, G097A/P129S/

Y217Q, G097A/G128S/P129A/Y217Q, G097A/G128S/ P129K/Y217Q, G097A/P129N/Y217Q, G097A/P129E/ Y217Q, G097A/G128S/P129K/G131S/Y217Q, G097A/ G128S/P129R/Y217Q, G097A/G128S/P129V/Y217Q, G097A/G128S/P129Y/Y217Q, G097A/G128A/P129R/ Y217Q, G097A/G128H/P129S/Y217Q, G097A/G128N/ P129S/Y217Q/V270A, G097A/G128S/P129L/Y217Q, G097A/P129R/Y217Q, G097A/P129W/Y217Q, G097A/ P129Z/S130A/Y217Q, G097A/G128H/P129R/Y217Q, G097A/G128H/P129T/Y217Q, G097A/P129G/Y217Q, G097A/G128N/P129A/Y217Q, G097A/G128H/Y217Q, G097A/G128S/P129W/Y217Q, G097A/P129Z/Y217Q, G097A/G128N/Z128.01A/P129S/Y217Q, G097A/G128N/ Y217Q, G097A/G128A/P129L/Y217Q, G097A/G128T/ P129N/Y217Q, G097A/G128H/P129A/Y217Q, G097A/ G128M/P129R/Y217Q, G097A/G128Q/P129K/Y217Q, G097A/G128T/P129Q/Y217Q, G097A/G128T/P129H/ Y217Q, G097A/G128T/P129R/Y217Q, G097A/G128D/ P129E/Y217Q, G097A/G128T/P129T/Y217Q, G097A/ G128T/P129A/Y217Q, G097A/G128Z/P129Z/Y217Q, G097A/G128S/Z128.01A/P129S/Y217Q, G097A/G128N/ P129M/Y217Q, G097A/G128N/P129V/Y217Q, G097A/ G128E/P129K/Y217Q, G097A/G128N/Z128.01A/P129F/ Y217Q, G097A/G128C/P129R/Y217Q, G097A/G128T/ P129M/Y217Q, G097A/G128R/Z128.01A/P129S/Y217Q, G097A/G128S/Z128.01A/P129A/Y217Q, G097A/G128D/ Y217Q, G097A/G128T/P129V/Y217Q, G097A/G128R/ P129S/Y217Q, G097A/G128R/Z128.01A/P129T/Y217Q, G097A/G128R/Z128.01A/P129A/Y217Q, G097A/G128T/ P129W/Y217Q, G097A/G128Y/Z128.01A/P129R/Y217Q, G097A/G128C/P129D/Y217Q, V084L/G097A/P129Z/ Y217Q, G097A/G128R/P129D/Y217Q, G097A/G128A/ Z128.01A/P129H/E195A/Y217Q, G097A/G128S/Z128. 01A/P129Y/Y217Q, G097A/G128N/P129L/Y217Q, G097A/G128C/P129H/Y217Q, G097A/G128T/Z128.01A/ P129T/Y217Q, G097A/G128C/Z128.01A/P129A/Y217Q, G097A/G128S/Z128.01A/P129I/Y217Q, G097A/G128S/ Z128.01A/P129E/Y217Q/Q271H, G097A/G128S/Z128. 01A/P129L/Y217Q, G097A/G128Y/Z128.01A/P129S/ Y217Q, G097A/G128S/Z128.01A/P129M/R186H/Y217Q, G097A/G128E/Z128.01A/P129D/Y217Q, G097A/G128T/ P129L/Y217Q, G097A/G128F/P129D/Y217Q, G097A/ G128V/Z128.01A/P129R/Y217Q, G097A/G128L/Z128. 01A/P129S/Y217Q, G097A/G128Y/P129T/Y217Q, G097A/G128C/P129Y/Y217Q, G097A/G128C/P129T/ Y217Q, wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
4. A subtilisin variant comprising at least two modifications, wherein said modifications are selected from: G097A/ G128A/Y217Q/M222Q, M124V/L126A/P129V/Y217Q, G128A/P129V/Y217Q G097A/G128A/P129V/Y217Q, N123G/P129V/Y217Q, V30I/Z096.01D/G097A/A098R/

G128A/Y217Q, Z096.01D/A098R/G128A/Y217Q, Z096. 01D/A098R/M124V/L126A/Y217Q, G097A/Z098.01S/ G128A/Y217Q, Z096.01D/A098R/N123G/Y217Q, Z096. 01D/G097A/A098R/G128A/Y217Q/S236F, Z098.01S/ M124V/L126A/Y217Q, Z098.01S/G128A/Y217Q, Z096. 01D/G097A/A098R/G128A/Y217Q, V093I/Z098.01S/ M124V/L126A/Y217Q, A073V/Z098.01S/N123G/Y217Q, G065D/Z098.01S/G128A/Y217Q, I011L/Z098.01S/ G128A/Y217Q, L082F/Z096.01D/A098R/N123G/Y217Q, Z098.01S/N123G/A138V/Y217Q, Z098.01S/N123G/ Y 217 Q , wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
5. A subtilisin variant comprising the substitution Y217L and further comprising at least one modification set forth in claim 1, and wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
6. A subtilisin variant comprising the substitutions G97A/ G128A/Y217Q and further comprising at least one modification set forth in claim 1, and wherein the positions correspond to the positions of BPN' subtilisin of SEQ ID NO:2.
7. A cleaning composition comprising at least one subtili\sin variant of claim 1 .
8. The cleaning composition of claim 7, wherein said cleaning composition is a laundry detergent.
9. The laundry detergent of claim 8 , wherein said laundry detergent is a heavy duty liquid laundry detergent.
10. The cleaning composition of claim 7, wherein said cleaning composition is a dish detergent.
11. The cleaning composition of claim 7, further comprising one or more additional enzymes or enzyme derivatives selected from the group consisting of hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratinases, reductases, oxidases, phenol oxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, β-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and amylases, or mixtures thereof.
12. The cleaning composition of claim 7 , further comprising at least one stabilizing agent.
13. A cleaning composition comprising at least 0.0001 weight percent of at least one subtilisin variant of claim 7 , and optionally, at least one suitable adjunct ingredient.
14. A method of cleaning, said method comprising the steps of:
a) contacting a surface and/or an article comprising a fabric
with the cleaning composition of claim 7; and
b) optionally washing and/or rinsing said surface or article.
15. An animal feed comprising at least one subtilisin variant of claim 7 .
16. A food processing composition comprising at least one subtilisin variant of claim 7

