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NEURAL NETWORK SYSTEM FOR AUTONOMOUS VEHICLE CONTROL

RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Patent Application No. 15/295,088,

filed October 17, 2016; and the aforementioned application is hereby incorporated by

reference in its entirety.

BACKGROUND

[0002] Neural networks are being applied in various industries to improve decision-
making and provide solutions to a wide assortment of computational tasks that have been
proven problematic or excessively resource intensive with traditional rule-based
programming. For example, speech recognition, audio recognition, task-oriented
activities (e.g., gaming activities such as chess and checkers), problem solving, and
question answering have seen breakthrough advancements through the use of neural
networks and deep learning. These networks can employ multi-layered, non-linear
processing and adaptation techniques that can offer significant efficiencies in certain
computing functions, especially when certain cognitive human tasks are being substituted

or improved upon.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The disclosure herein is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like reference numerals
refer to similar elements, and in which:

[0004] FIG. 1 is a block diagram illustrating an example self-driving vehicle
implementing a neural network control system, as described herein;

[0005] FIG. 2 is a block diagram illustrating an example neural network navigation
system utilized in connection with a self-driving vehicle, according to examples described
herein;

[0006] FIG. 3 shows an example of an autonomously controlled self-driving vehicle
utilizing sensor data to navigate an environment in accordance with example
implementations;

[0007] FIG. 4 is a flow chart describing an example method of autonomously operating
a self-driving vehicle through use of a neural network, according to examples described

herein;
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[0008] FIG. 5 is a lower level flow chart describing an example method of
autonomously operating a self-driving vehicle through use of a neural network, according
to examples described herein; and

[0009] FIG. 6 is a block diagram illustrating a computer system for a self-driving

vehicle upon which examples described herein may be implemented.

DETAILED DESCRIPTION

[0010] Certain autonomous driving technologies involve the use of very detailed and
preprocessed localization maps that an autonomous vehicle’s control system can
continuously compare to a live sensor view in order to operate the vehicle through road
traffic and detect any potential hazards. As an example, navigation techniques for self-
driving vehicles can involve setting an endpoint location, determining a route from a
current location to the endpoint, and performing dynamic localization and object
detection to safely operate the vehicle to the endpoint. While providing adequate safety,
such methods can be excessively labor-intensive, requiring pre-recorded street view maps
on the roads in a given region, and processing those maps to establish localization
parameters, such as lane positions, static objects (e.g., trees, buildings, curbs, parking
meters, fire hydrants, etc.), objects of interest (e.g., traffic signals and signs), dynamic
objects (e.g., people, other vehicles, etc.), and the like. Furthermore, in order to operate
safely in variable conditions, a suite of sensors is typically required composed of
combinations of LIDAR, radar, stereoscopic and monocular cameras, IR sensors, and
even sonar. However, drawbacks to such autonomous driving methods have become
increasingly evident. For example, in order to implement these methods in new driving
areas, new localization maps must be recorded, processed, and uploaded to the SDVs.
[0011] To address the shortcomings of the current methodologies, disclosed herein are
examples of a neural network system for autonomous control of a self-driving vehicle
(SDV). According to examples provided herein, the neural network system can
implement a machine learning model (e.g., supervised learning) to learn and improve
autonomous driving in public road environments. Certain neural network (or deep
learning) methodologies can involve lane-keeping, or maintaining the SDV within a
certain lane while a data processing system implements traditional instruction-based
control of the SDV’s control mechanisms (e.g., acceleration, braking, and steering
systems). According to examples provided herein, the neural network system can

establish or otherwise be inputted with a destination location in local coordinates relative
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to the SDV (e.g., in an inertial reference frame), and can establish or otherwise be
inputted with one or more navigation points in a forward operational direction of the SDV
along a route to the destination (e.g., in global coordinates and affixed to the non-inertial
reference frame of the SDV). For example, each of the one or more navigation points can
comprise two-dimensional coordinates having values that vary in relation to the
destination location (e.g., Cartesian x-y coordinate values, or distance and angle values in
polar coordinates). In variations, the navigation points can be established in three-
dimensional space (e.g., Cartesian or spherical coordinate systems). Accordingly, the
neural network utilizes the coordinate values of the navigation point(s)—established
persistently ahead of the SDV along the route—to make decisions with regards to
acceleration, braking, steering, lane selection, and signaling.

[0012] In certain aspects, the neural network system can operate as a control system of
the SDV, on processing resources external to the SDV (communicating decisions or
control commands to the SDV over one or more networks), or can operate as a
combination of both. In various implementations, the SDV can include a sensor array
comprising any number of sensors and sensor types, such as LIDAR, stereoscopic and/or
monocular cameras, radar, sonar, certain types of proximity sensors (e.g., infrared
sensors), and the like. In navigating the SDV to a destination, the neural network can
operate the SDV’s acceleration, braking, and steering systems along the route, relying on
both the navigation point(s) and sensor data from the SDV’s sensor array in order to not
only maintain the SDV within a respective lane, but to also react or make decisions with
respect to lane selections, traffic signals, pedestrians, other vehicles, bicyclists, obstacles,
road signs, and the like. Along these lines, the neural network system can undergo
supervised learning through a training phase, a test phase, and eventually an
implementation phase in which the neural network operates the SDV safely on public
roads and highways to transport passengers to sequential destinations (e.g., once the
neural network meets a standardized safety threshold).

[0013] In some examples, the neural network system can utilize a global position
system (GPS) module to set the navigation points in global coordinates and the
destination location in local coordinates. According to examples, the neural network
system can utilize the GPS module to set positioning signals (i.e., the navigation points)
at predetermined distances ahead of the SDV (or temporally ahead of the vehicle based on
traffic and speed). In variations, the navigation points can be set by a backend

management system at persistent distances ahead of the SDV along the route. An
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example backend route management system can comprise a network-based transport
system that manages on-demand transportation arrangement services, such as those
provided by Uber Technologies, Inc., of San Francisco, California.

[0014] Examples described herein recognize that a precise navigation point signal can
result in an overfitting problem by the neural network system, in which the neural
network system becomes too dependent on the navigation points, and thus begins to
blindly follow them as opposed to relying on the sensor data for decision-making. In
order to address the risk of overfitting, the neural network system can introduce noise to
the positioning signals corresponding to the navigation points to cause the neural network
to rely more on image data or sensor data, reducing the potential for overreliance on the
navigation points. The noise can reduce the accuracy of the positioning signal (e.g.,
boosting horizontal error), causing the neural network system to process the sensor data,
stabilizing the SDV’s road performance, and making the neural network more robust.
[0015] A key aspect to the neural network system is the utilization of the navigation
points as “carrots” that enable the neural network system to perform additional
autonomous driving tasks on top of simple lane-keeping, although lane-keeping may be
significantly improved through implementation of examples described herein. In various
aspects, the neural network system can track the navigation points—which themselves
follow the route to the destination—to select lanes, make turns on new roads, and respond
to events, traffic signals, road signs, weather conditions, and other contingencies.
Furthermore, in order to increase robustness, the distance or time of the navigation
point(s) ahead of the vehicle, the number of navigation points, and the amount of noise
introduced to the navigation point signals can be adjusted. Thus, in one example, the
neural network system establishes a pair of navigation points in series along the route
ahead of the SDV (e.g., a first point at 50 meters and a second point at 100 meters). In
operating the SDV along the route, the neural network system can continuously compare
the coordinate values of each navigation signal to make decisions with regard to
acceleration, steering, and braking. In further examples, the neural network system can
further dynamically compare the coordinate values of the navigation points to the
coordinate of the SDV itself in order to determine an immediate route plan.

[0016] For example, each of the vehicle’s coordinates and the coordinates of the
navigation points can be established in global coordinates, such that the coordinate values
of each may be readily compared. The neural network system can take the destination in

local coordinates as an additional input. The nature of the compared coordinate values
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(e.g., whether the individual x-values and y-values of each coordinate are converging or
diverging) can indicate to the neural network system whether a turn is upcoming or the
nature of the overall route to the destination. Accordingly, in tracking or following the
navigation points, the neural network can create a series of successive high level route
plans (e.g., for the next fifty or one hundred meters of the overall route). The neural
network system may conjunctively utilize the sensor data to safely autonomously operate
the SDV along each successive route plan.

[0017] Among other benefits, the examples described herein achieve a technical effect
of improving upon current autonomous driving methodologies by utilizing neural
networks to overcome the challenges apparent in rule-based programming for
autonomous driving, such as the need to record detailed surface maps in all areas of
operation. Using neural network technology enables the use of readily available maps
(e.g., coarse road network maps) as route references, while the neural network system
utilizes the navigation points and sensor data to autonomously operate the vehicle to the
destination. Thus, given a destination, the neural network system can establish a route
and track persistent navigation points to operate the vehicle to the destination.

[0018] As used herein, a computing device refers to devices corresponding to desktop
computers, cellular devices or smartphones, personal digital assistants (PDAs), laptop
computers, tablet devices, virtual reality (VR) and/or augmented reality (AR) devices,
wearable computing devices, television (IP Television), etc., that can provide network
connectivity and processing resources for communicating with the system over a network.
A computing device can also correspond to custom hardware, in-vehicle devices, or on-
board computers, etc. The computing device can also operate a designated application
configured to communicate with the network service.

[0019] One or more examples described herein provide that methods, techniques, and
actions performed by a computing device are performed programmatically, or as a
computer-implemented method. Programmatically, as used herein, means through the
use of code or computer-executable instructions. These instructions can be stored in one
or more memory resources of the computing device. A programmatically performed step
may or may not be automatic.

[0020] One or more examples described herein can be implemented using
programmatic modules, engines, or components. A programmatic module, engine, or
component can include a program, a sub-routine, a portion of a program, or a software

component or a hardware component capable of performing one or more stated tasks or
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functions. As used herein, a module or component can exist on a hardware component
independently of other modules or components. Alternatively, a module or component
can be a shared element or process of other modules, programs or machines.

[0021] Some examples described herein can generally require the use of computing
devices, including processing and memory resources. For example, one or more
examples described herein may be implemented, in whole or in part, on computing
devices such as servers, desktop computers, cellular or smartphones, personal digital
assistants (e.g., PDAs), laptop computers, virtual reality (VR) or augmented reality (AR)
computers, network equipment (e.g., routers) and tablet devices. Memory, processing,
and network resources may all be used in connection with the establishment, use, or
performance of any example described herein (including with the performance of any
method or with the implementation of any system).

[0022] Furthermore, one or more examples described herein may be implemented
through the use of instructions that are executable by one or more processors. These
instructions may be carried on a computer-readable medium. Machines shown or
described with figures below provide examples of processing resources and computer-
readable mediums on which instructions for implementing examples disclosed herein can
be carried and/or executed. In particular, the numerous machines shown with examples
of the invention include processors and various forms of memory for holding data and
instructions. Examples of computer-readable mediums include permanent memory
storage devices, such as hard drives on personal computers or servers. Other examples of
computer storage mediums include portable storage units, such as CD or DVD units, flash
memory (such as those carried on smartphones, multifunctional devices or tablets), and
magnetic memory. Computers, terminals, network enabled devices (e.g., mobile devices,
such as cell phones) are all examples of machines and devices that utilize processors,
memory, and instructions stored on computer-readable mediums. Additionally, examples
may be implemented in the form of computer-programs, or a computer usable carrier
medium capable of carrying such a program.

[0023] Numerous examples are referenced herein in context of an autonomous vehicle
(AV) or self-driving vehicle (SDV). An AV or SDV refers to any vehicle which is
operated in a state of automation with respect to steering and propulsion. Different levels
of autonomy may exist with respect to AVs and SDVs. For example, some vehicles may

enable automation in limited scenarios, such as on highways, provided that drivers are
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present in the vehicle. More advanced AVs and SDVs can drive without any human
assistance from within or external to the vehicle.

[0024] Furthermore, numerous examples described herein reference a “neural network,”
“deep learning,” or “deep neural network.” Such terms may be used throughout the
disclosure interchangeably to represent the execution of one or more machine learning
models (e.g., a set of algorithms) that utilize multiple processing layers (e.g., comprising
any number of linear and/or non-linear mappings or transformations) to infer, adapt,
confirm, and/or make decisions based on any number of inputs. In the context of the
present disclosure, a “neural network™ or “deep neural network™ is provided that
implements one or more machine learning models that causes the network to operate the
control mechanisms of a vehicle autonomously (e.g., the acceleration, braking, steering,
and/or auxiliary systems of the vehicle). Such examples can receive multiple inputs
corresponding to navigation points having global coordinate values, the vehicle’s own
global coordinates, a succession of destination locations (e.g., in local coordinates), and
sensor data that provides a sensor view of the surroundings of the vehicle (e.g., in a
forward operational direction). Furthermore, such examples can be trained, tested, and
implemented to perform human cognitive functions with respect to maintaining the
vehicle within a lane, and making practical, cautious, and safe decisions with respect to
changing lanes, avoiding hazards or hazard threats, following traffic rules and regulations,
and safely making turns to autonomously drive the vehicle on test roads and public roads
and highways.

[0025] SYSTEM DESCRIPTION

[0026] FIG. 1 is a block diagram illustrating an example self-driving vehicle
implementing a neural network control system, as described herein. In an example of
FIG. 1, a control system 120 can autonomously operate the SDV 100 in a given
geographic region for a variety of purposes, including transport services (e.g., transport of
humans, delivery services, etc.). In examples described, the SDV 100 can operate
without human control. For example, the SDV 100 can autonomously steer, accelerate,
shift, brake, and operate lighting components. Some variations also recognize that the
SDV 100 can switch between an autonomous mode, in which the SDV control system
120 autonomously operates the SDV 100, and a manual mode in which a driver takes
over manual control of the acceleration system 152, steering system 154, and braking

system 156.
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[0027] According to some examples, the control system 120 can utilize specific sensor
resources in order to intelligently operate the SDV 100 in a variety of driving
environments and conditions. For example, the control system 120 can operate the
vehicle 100 by autonomously operating the steering, acceleration, and braking systems
152, 154, 156 of the SDV 100 to a specified destination. The control system 120 can
perform vehicle control actions (e.g., braking, steering, accelerating) and route planning
using sensor information, as well as other inputs (e.g., transmissions from remote or local
human operators, network communication from other vehicles, etc.).

[0028] In an example of FIG. 1, the control system 120 includes a computer or
processing system which operates to process sensor data 111 received from a sensor
system 102 of the SDV 100 that provides a sensor view of a road segment upon which the
SDV 100 operates. The sensor data 111 can be used to determine actions which are to be
performed by the SDV 100 in order for the SDV 100 to continue on a route to a
destination. In some variations, the control system 120 can include other functionality,
such as wireless communication capabilities using a communication interface 115, to
send and/or receive wireless communications 117 over one or more networks 160 with
one or more remote sources. In controlling the SDV 100, the control system 120 can
issue commands 135 to control various electromechanical interfaces of the SDV 100.
The commands 135 can serve to control the various control mechanisms 155 of the SDV
100, including the vehicle’s acceleration system 152, steering system 154, braking system
156, and auxiliary systems 158 (e.g., lights and directional signals).

[0029] The SDV 100 can be equipped with multiple types of sensors 101, 103, 105
which can combine to provide a computerized perception of the space and the physical
environment surrounding the SDV 100. Likewise, the control system 120 can operate
within the SDV 100 to receive sensor data 111 from the collection of sensors 101, 103,
105 and to control the various control mechanisms 155 in order to autonomously operate
the SDV 100. For example, the control system 120 can analyze the sensor data 111 to
generate low level commands 135 executable by one or more controllers 140 that directly
control the acceleration system 152, steering system 154, and braking system 156 of the
SDV 100. Execution of the commands 135 by the controllers 140 can result in throttle
inputs, braking inputs, and steering inputs that collectively cause the SDV 100 to operate
along sequential road segments to a particular destination.

[0030] In more detail, the sensors 101, 103, 105 operate to collectively obtain a sensor

view for the vehicle 100 (e.g., in a forward operational direction, or providing a 360
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degree sensor view), and further to obtain situational information proximate to the SDV
100, including any potential hazards or obstacles. By way of example, the sensors 101,
103, 105 can include multiple sets of camera systems (video cameras, stereoscopic
cameras or depth perception cameras, long range monocular cameras), remote detection
sensors such as radar, LIDAR, and sonar, proximity sensors, infrared sensors, touch
sensors, and the like. According to examples provided herein, the sensors can be
arranged or grouped in a sensor system or array 102 (e.g., in a sensor pod mounted to the
roof of the SDV 100) comprising any number of LIDAR, radar, monocular camera,
stereoscopic camera, sonar, infrared, or other active or passive sensor systems.

[0031] Each of the sensors 101, 103, 105 can communicate with the control system 120
utilizing a corresponding sensor interface 110, 112, 114. Each of the sensor interfaces
110, 112, 114 can include, for example, hardware and/or other logical components which
are coupled or otherwise provided with the respective sensor. For example, the sensors
101, 103, 105 can include a video camera and/or stereoscopic camera set which
continually generates image data of the physical environment of the SDV 100. As an
addition or alternative, the sensor interfaces 110, 112, 114 can include dedicated
processing resources, such as provided with field programmable gate arrays (FPGAs)
which can, for example, receive and/or preprocess raw image data from the camera
Sensor.

[0032] According to examples provided herein, the SDV control system 120 can
implement a neural network 124 executing a machine learning model (e.g., a set of
machine learning algorithms) to autonomously operate the control mechanisms 155 of the
SDV 100. In some aspects, the control system 120 can receive a destination 119 either
from an external entity over the network 160 (e.g., a backend route management system),
or via input from a passenger of the SDV 100. The control system 120 can include a
route planner 122 and a database 130 storing coarse road network maps 131, which the
route planner 122 can utilize to determine a route 123 from a current location of the SDV
100 to the destination 119. In some aspects, the route planner 122 can also access third
party network resources 165 over the one or more networks 160 to receive map data
and/or traffic data to determine a most optimal route 123 to the destination 119.

[0033] In further implementations, the route planner 122 can update the route 123
dynamically as traffic conditions change while the SDV 100 is en route to the destination
119. As provided herein, the updates to the route 123 can cause the neural network 124

to adapt certain configurations that enable it to follow or track the updated route 123.
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Specifically, the neural network 124 can receive GPS data 127 from a GPS module 125 of
the SDV 100, and establish one or more navigation points 129 on the route 123 affixed a
certain distance or temporally ahead of the SDV 100. However, as described herein,
examples are not limited to a single navigation point 129, but can comprise a pair, or any
number of navigation points 129 set along the route 123 and in a forward operational
direction of the SDV 100.

[0034] As provided herein, the navigation point(s) 129 can be established in global
coordinates, whereas the destination 119 can be established in local coordinates. In other
words, the navigation point(s) 129 can be set to be persistently ahead of the SDV 100
(e.g., fifty meters ahead), and can have coordinate values that continuously update in
global coordinates as the SDV 100 progresses along the route 123. On the other hand, the
neural network 124 can establish the destination 119 in local coordinates with respect to
the traveling SDV 100. In accordance with examples, the neural network 124 can be
trained to follow the navigation point(s) 129, which can act as a reference for the neural
network 124 to make upcoming decisions, such as lane selections, acceleration and
braking inputs in anticipation of a turn, and the turning actions themselves. In tracking
the navigation point(s) 129, the neural network 124 is provided with a simple framework
that enables the neural network 124 perform mid and high level operations on the control
mechanisms 155 analogous to human decision-making to anticipate upcoming turns (e.g.,
lane selection, deceleration, and braking).

[0035] In variations, once the global coordinates of the SDV 100 are known from the
GPS module 125, a local coordinate system may be established with the SDV’s location
as the origin point (e.g., in a local Cartesian x-y coordinate system). Thereafter, the
navigation points 129 may be generated in this local coordinate system to be persistently
ahead of the SDV 100 along the route 123. Thus, the neural network 124 can readily
compare the coordinate values of the navigation points 129 in the local coordinate system
of the SDV 100 (e.g., to determine an immediate route plan for an upcoming route
segment). Additionally or alternatively, the neural network 124 can compare the
coordinate values of the navigation points 129 with successive destinations set along the
route 123 to identify route features, such as upcoming turns. Based on the comparisons
between the coordinate values, the neural network 124 can modulate the acceleration,
braking, and steering inputs accordingly.

[0036] Itis contemplated that the navigation points 129 may be established to be

persistently ahead of the SDV 100 along the current route, or may be selectively
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established ahead of the SDV 100 when the SDV 100 approaches various decision points
along the route. For example, the navigation points 129 may be excluded when the route
ahead of the SDV 100 provides only limited decision-making (e.g., a straight road with
no intersections), which enables the neural network 124 to focus mainly on the sensor
data 111 to identify an potential hazards and modulate steering, braking, and acceleration
inputs based on observation of the SDV’s situational surroundings. Upon approaching a
decision point along the route—such as an intersection or road fork where the neural
network 124 must decide on two or more directions—the navigation points 129 can be
established, as described herein, to enable the neural network 124 to readily determine the
immediate plan for the decision point (e.g., a turn action), and execute acceleration,
braking, steering, and/or lane changing actions accordingly.

[0037] In some aspects, the one or more navigation points 129 may be triggered based
on a predetermined distance or time prior to the SDV 100 approaching an intersection.
For example, a road network map may be utilized to identify approach zones for decision
areas (e.g., intersections), which can trigger the navigation points 129. In other
implementations, the navigation points 129 may be triggered based on other parameters,
such as a braking input by the neural network 124, a threshold speed being exceeded or
crossed below, and the like.

[0038] For lower level operations, the neural network 124 can analyze the sensor data
111 to detect other vehicles and any potential obstacles, hazards, or objects of interest
(e.g., pedestrians or bicyclists). In variations, the neural network 124 can further analyze
the sensor data 111 to detect traffic lanes, bike lanes, road signs, traffic signals, the
current speed limit, and road markers (e.g., arrows painted on the road). In processing the
sensor data 111, the neural network 124 does not require detailed localization maps or
sub-maps of prerecorded and processed road segments along the route 123. Rather, in
training and testing phases, the neural network 124 can implement machine learning to
analyze the sensor data 111 to detect and identify objects of interest, ignore other objects,
and operate the control mechanisms 155 of the SDV 100 to avoid any potential incidents.
A more detailed discussion of the neural network 124 is provided below with respect to
FIG. 2.

[0039] FIG. 2 is a block diagram illustrating an example neural network navigation
system utilized in connection with a self-driving vehicle, according to examples described
herein. In many aspects, the neural network navigation system 200 of the SDV 201

shown in FIG. 2 can perform one or more functions of the SDV control system 120 and
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neural network 124 as shown and described with respect to FIG. 1. As an example, the
neural network navigation system 200 can comprise neural processing resources 250 that
implement deep learning to train, adapt, and improve autonomous driving capabilities. In
certain examples, the neural network navigation system 200 can include a network
interface 255 that connects the neural network navigation system 200 to one or more
networks 260. In some examples, the network interface 255 can communicate with one
or more external devices over the network 260 to receive successive destinations 262.
[0040] In some implementations, the neural network navigation system 200 can
communicate with a datacenter 290 hosting a backend transportation management system
that deploys a fleet of SDVs throughout a given region (e.g., a metropolitan area) to
provide application-based, on-demand transportation services, such as those provided by
Uber Technologies, Inc. In such implementations, the datacenter 290 can receive driver
and SDV locations throughout the given region, receive pick-up requests from requesting
users 294, match those users with proximate available drivers or SDVs, and send
invitations to those drivers and SDVs to service the pick-up requests. When the SDV 201
is selected to service a particular pick-up request, the datacenter 290 can transmit a
destination 262 to the SDV 201, where the destination 262 corresponds to the pick-up
location in which the SDV 201 is to rendezvous with the requesting user 294. Once the
SDV 201 arrives at the pick-up location, the requesting user 294 or the datacenter 290 can
provide the SDV 201 with a new destination 262—corresponding to a desired drop-off
location for the user. Additionally or alternatively, the neural network navigation system
200 can receive the destination 262 locally from the passenger via an on-board interface,
such as a display screen or a voice input interface (e.g., implementing speech
recognition). Accordingly, the overall journey of the SDV 201 over the course of any
given time frame can comprise a sequence of destinations 262 wherever a road network
exists.

[0041] In any case, the destination 262 can be submitted to a routing engine 240 of the
neural network navigation system 200. The routing engine 240 can access a database 230
storing road network maps 231, and can determine an optimal route 242 for the SDV 201
to travel from a current location to the destination 262. In certain implementations, the
optimal route 242 can comprise a route that minimizes distance or time with regards to
traffic conditions, speed limits, traffic signals, intersections, and the like. In some
aspects, the neural network navigation system 200 can include a GPS module 210 (or

other location-based resource) that can establish one or more navigation point signals 212
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for the SDV 201 at predetermined distances in a forward operational direction of the SDV
201 along the route. As described herein, the navigation points corresponding to the
navigation point signals 212 can be established to be persistently ahead of the SDV 201
along the route 242, either distance-wise or temporally.

[0042] In some examples, the GPS module 210 can provide the neural processing
resources 250 with GPS signals corresponding to the navigation points, which the neural
processing resources 250 can project ahead of the SDV 200 as navigation points to follow
along the route 242 to the destination 262. In such examples, the neural network
processing resources 250 can establish the navigation point signals 212 in global
coordinates, or coordinates with respect to an inertial frame of reference. Accordingly, as
the SDV 201 travels throughout the given region, the coordinate values of the navigation
points will vary with respect to the inertial reference frame. As such, the navigation
points can be affixed to the SDV’s 201 non-inertial reference frame at predetermined
distances ahead of the SDV 201 along the route 242 (e.g., analogous to an L4 Lagrange
point). In one example, the neural network navigation system 200 can establish the
destination coordinates 214 in local coordinates, or as an address point, in the non-inertial
reference frame of the SDV 100. Accordingly, the navigation point coordinates can be
tracked by the neural processing resources 250 to the destination 262 by comparison of
their coordinate values and/or the coordinate values of the vehicle 211.

[0043] In variations, the navigation points 212 can be established in a local coordinate
system having an origin at the SDV’s current location. Furthermore, the neural network
processing resources 250 can readily compare the coordinate values of the navigation
points 212 with the SDV’s current location as the origin. Additionally or alternatively,
the navigation points 212 can be computed based on the current location of the SDV 201
and the map route 242 of the SDV 201 from the current location to an overall destination.
[0044] In various implementations, the coordinates for the navigation points 212 can
comprise two-dimensional coordinates that the neural processing resources 250 can
continuously analyze in order to anticipate and execute turns, make lane selections, speed
up or slow down, and otherwise vary the acceleration, braking, and steering inputs for the
SDV 201. In certain aspects, each navigation point 212 comprises a Cartesian x-
coordinate and y-coordinate, which provides a simple framework for the neural
processing resources 250 to track and make control decisions in autonomously operating

the SDV 201, as described in further detail below.
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[0045] Examples provided herein recognize that neural networks can be trained to
utilize and balance multiple inputs to achieve a desired outcome. In the case of the neural
network navigation system 200, the neural processing resources 250 can execute a
machine learning model 236 to utilize both the navigation point signals 212 and sensor
data 272 from a number of sensor systems 270 of the SDV 201. As described herein, the
SDV sensor systems 270 can comprise monocular and/or stereoscopic cameras.
Additionally or alternatively, the SDV sensor systems 270 can include one or more
LIDAR systems, radar systems, sonar systems, and/or proximity sensors that can generate
the sensor data 272 to be analyzed by the neural processing resources 250 of the neural
network navigation system 200. The sensor data 272 can be received via a SDV sensor
interface 255, and can be submitted in raw form to the neural processing resources 250, or
may be preprocessed by addition processing resources of the SDV 201 to eliminate non-
essential data in order to reduce overall load on the neural processing resources 250.
[0046] Examples provided herein further recognize that with precise navigation point
signals 212, the neural processing resources 250 may end up relying heavily on tracking
the signals 212 without sufficient reliance on the sensor data 272. Thus, the neural
network navigation system 200 can include noise generator 215 to introduce or otherwise
incorporate noise (e.g., Gaussian distributed noise) into the navigation point signals 212
to generate coarse navigation points 217 for the neural processing resources 250 to track
along the route 242. The introduced noise can result in larger horizontal error in the
navigation point signals 212, and can cause the neural network processing resources 250
to desirably rely on the sensor data 272 in order to increase robustness of the system 200.
Accordingly, based on the optimal route 242, the navigation point signals 212 can be run
through a noise generator 215 to add noise, resulting in coarse navigation points 217.
These coarse navigation points 217 can be received as inputs by the neural processing
resources 250—along with the sensor data 272 and destination coordinates 214—to
generate control instructions 242 to autonomously operate the control mechanisms of the
SDV 200.

[0047] Accordingly, the neural processing resources 250 can extract the coarse
navigation points 217 in global coordinates to localize along the optimal route 242 and
continuously compute a future destination for the SDV 200. For example, the neural
processing resources 250 can extract multiple coarse navigation points 217 at
predetermined distances or temporally ahead of the SDV 201 along the optimal route 242

(e.g., based on the SDV’s orientation and/or localization parameters), and continuously
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monitor the coordinate values of each of the coarse navigation points 217. In one aspect,
the neural processing resources 250 compare the coordinate values of the coarse
navigation points 217 to vehicle coordinates 211 of the SDV 201 to make mid or high
level decisions with regard to an immediate route plan for an upcoming route segment.
Additionally or alternatively, the neural processing resources 250 can correlate the
coordinate values of the coarse navigation points 217, which can indicate, among other
things, an upcoming turn. In one example, for Cartesian implementations, converging x-
values between the navigation points 217 can indicate an upcoming or imminent turn,
whereas the positive or negative aspect of the y-value can indicate the direction of the
turn, as illustrated further in FIG. 3. For polar coordinate implementations, diverging
angular values can indicate an upcoming turn and a turn direction. In any case, the neural
processing resources 250 can utilize the coordinate values of the coarse navigation points
217 to adjust inputs for accelerating, braking, and steering the SDV 201.

[0048] The neural processing resources 250 can further receive, as additional input, the
destination coordinates 214 as local coordinates in relation to the SDV 201. Additionally,
each road segment for each immediate route plan can comprise one or more upcoming or
immediate destinations in local coordinates of the SDV’s local coordinate system (i.e.,
with the SDV’s dynamic position as the origin). Each of these destinations can comprise
fixed destination coordinates 214 in the SDV’s local coordinate system. Accordingly, the
neural processing resources 250 can utilize the destination coordinates 214 as successive
targeted endpoints for each immediate route segment, or as an overall endpoint for the
current trip. Thus, in operating the SDV’s control mechanisms, the neural processing
resources 250 can compare the navigation point coordinate values with the SDV’s current
coordinates and orientation (and additional vehicle parameters, such as speed,
acceleration and braking inputs, etc.), and the successive destination coordinates 214. In
executing the machine learning model 236, the neural processing resources 250 can be
trained to balance processing between tracking the coarse navigation points 217 along the
route 242 and analyzing the sensor data 272 for potential hazards. In doing so, the neural
processing resources 250 can generate control instructions 242 executable by an SDV
control unit 280 to operate the steering system 282, braking system 284, acceleration
system 286, and the signaling and auxiliary systems 288 of the SDV 201. In certain
implementations, the neural network navigation system 200 can include a SDV control
interface 245 through which the control instructions 242 are transmitted to the SDV

control unit 280 for execution. The SDV control unit 280 can process the control
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instructions 24?2 to generate control commands 289 for direct implementation on the
steering 282, braking 284, acceleration 286, and/or signaling systems 288 of the SDV
201.

[0049] The logical processes shown in connection with FIG. 2 are discussed in the
context of logical blocks representing various elements and logic flows of the neural
network navigation system 200. However, one or more of the foregoing processes may
be performed by the backend datacenter 290, such as establishing the navigation points
217 based on the current location 297 of the SDV 201 and the optimal route 242,
introducing noise to the navigation point signals 212, and determining the optimal route
242 for the SDV 201 to the destination 262. Thus, in the context of FIG. 2, the coarse
navigation points 217 may be established by the datacenter 290 in global coordinates
fixed to the SDV’s 200 frame of reference, enabling the neural processing resources 250
to utilize basic road network maps 231 to extract and track the coarse navigation points
217 in order to autonomously operate the SDV 200 along the route 242. In doing so, the
neural processing resources 250 may not only follow the route and perform lane-keeping,
but may also make decisions concerning upcoming turns, such as lane selection,
signaling, safety checks (e.g., analyzing the sensor data 272 for safe lane-changing and
turning opportunities), and anticipatory braking and acceleration.

[0050] SELF-DRIVING VEHICLE IN OPERATION

[0051] FIG. 3 shows an example of an autonomously controlled self-driving vehicle
utilizing sensor data to navigate an environment in accordance with example
implementations. In an example of FIG. 3, the autonomous vehicle 310 may include
various sensors, such as a roof-top camera array (RTC) 322, forward-facing cameras 324
and laser rangefinders 330. In some aspects, a data processing system 325, comprising a
combination of one or more processors, FPGAs, and/or memory units, can be positioned
in the cargo space of the vehicle 310.

[0052] According to an example, the vehicle 310 uses one or more sensor views 303
(e.g., a stereoscopic or 3D image of the environment 300) to scan a road segment on
which the vehicle 310 traverses. The vehicle 310 can process image data or sensor data,
corresponding to the sensor views 303 from one or more sensors in order to detect objects
that are, or may potentially be, in the path of the vehicle 310. In an example shown, the
detected objects include a bicyclist 302, a pedestrian 304, and another vehicle 327—each
of which may potentially cross into a road segment 315 along which the vehicle 310

traverses. The vehicle 310 can use information about the road segment and/or image data
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from the sensor views 303 to determine that the road segment includes a divider 317 and
an opposite lane, as well as a sidewalk (SW) 321 and sidewalk structures such as parking
meters (PM) 327.

[0053] The vehicle 310 may determine the location, size, and/or distance of objects in
the environment 300 based on the sensor view 303. For example, the sensor views 303
may be 3D sensor images that combine sensor data from the roof-top camera array 322,
front-facing cameras 324, and/or laser rangefinders 330. Accordingly, the vehicle may
accurately detect the presence of objects in the environment 300, allowing the vehicle to
safely navigate the route while avoiding collisions with other objects.

[0054] According to examples, the vehicle 310 may determine a probability that one or
more objects in the environment 300 will interfere or collide with the vehicle 310 along
the vehicle’s current path or route. In some aspects, the vehicle 310 may selectively
perform an avoidance action based on the probability of collision. The avoidance actions
may include velocity adjustments, lane aversion, roadway aversion (e.g., change lanes or
drive further from the curb), light or horn actions, and other actions. In some aspects, the
avoidance action may run counter to certain driving conventions and/or rules (e.g.,
allowing the vehicle 310 to drive across center line to create space with bicyclist).

[0055] In variations, the vehicle 310 may implement a deep neural network through a
series of training, test, and real-world implementation phases to ultimately build a robust
skillset in autonomously operating the vehicle 310 on par with or exceeding human
ratings or safety standards for autonomous driving. Thus, in analyzing the sensor view
303, the deep neural network can make on-the-fly assessments with regard to each
detected object, and proactively control the autonomous vehicle 310 in accordance with
certain safety standards (e.g., Safe Practices for Motor Vehicle Operations standards). In
doing so, the deep neural network can seek to optimize autonomous driving habits in light
of minimizing risk of collision (e.g., by identifying and anticipating potentially dangerous
situations), implementing an assured clear distance ahead (e.g., a velocity-based
following standard), and even practicing specific driving techniques geared towards
efficiency and safety.

[0056] In an example, the data processing system 325 can implement the deep neural
network (e.g., via execution of a set of machine learning algorithms) to identify static
objects such as parking meters 327, and can accurately determine that the parking meters
327 are fixed objects (e.g., based on their relatively static or stable locations in the sensor

views 303). The deep neural network can further detect and positively identify potential
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hazards, such as the bicyclist 302, pedestrian 304, and other vehicle 327. The deep neural
network can further identify other objects in the sensor view 303 that may affect the
manner in which the autonomous vehicle 310 travels along its given route 366, such as a
crosswalk 315 and traffic signal 340. In performing lane-keeping, the deep neural
network can identify the lane divider markers 317 and other road features indicating the
bounds of the current lane being traveled (e.g., painted lines, curbs, parked cars, bike
lanes, transition zones from concrete or asphalt to dirt or grass, and the like).

[0057] According to examples described herein, the deep neural network can extract
one or more navigation points (e.g., navigation point 360 and navigation point 362) along
the current route 366 of the vehicle 310. In some aspects, the navigation points 360, 362
can comprise two-dimensional Cartesian coordinate points established in global
coordinates, and can be affixed as “carrot” points to the non-inertial reference frame of
the vehicle 310. In the context of FIG. 3, the coordinate values of each navigation point
360, 362 can vary with respect to the global coordinate system 380 as the vehicle 310
travels along the current route 366. Thus, the deep neural network can track the
navigation points 360, 362 along the route 366, dynamically compare the coordinate
values of the navigation points 360, 362 with respect to each other (and/or the vehicle
coordinates 323 of the SDV 310), and utilize the compared values to make decisions
regarding the upcoming road segment of the SDV 310, such as lane selections and
anticipatory actions (e.g., braking, signaling, checking individual portions of the sensor
view, etc.).

[0058] In the example shown in FIG. 3, the global coordinate system 380 can comprise
a mapping grid for a given area (e.g., based on an east/west and north/south grid,
corresponding to the x and y axes respectively) that enables the deep neural network to
determine upcoming characteristics of the route 366—such as road curves and turns—by
following the navigation points 360, 362. In one aspect, the deep neural network can
utilize the vehicle’s own coordinates 323 to compare with one or more navigation points
360, 362 set in the forward direction of the vehicle. As such, converging x-values can
correspond to an upcoming turn, and diverging y-values can correspond to the direction
of the upcoming turn. The x-convergence and y-divergence (assuming current travel in
an x direction) can enable the deep neural network to respond to by selecting an
appropriate lane, signaling using the vehicle’s directional signals, braking at the

upcoming intersection or turn, and steering and accelerating to complete the turn.
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[0059] The use of two-dimensional Cartesian coordinates is provided herein for
illustration only, and is not meant to be limiting in any way. The navigation points 360,
362, the vehicle coordinates 323, and the destination coordinates may be in any two-
dimensional or three-dimensional coordinate system or reference frame, and can utilize
any combination of Cartesian global and local coordinates, two-dimensional polar global
coordinates and local coordinates, and/or three-dimensional spherical global and/or local
coordinates. Thus, the deep neural network implemented on the data processing system
325 can extract the coordinate values of the navigation points 360, 362 (in any set
coordinate system)—as the vehicle 310 travels throughout a given region—for dynamic
comparison in order to determine an immediate route plan (e.g., for the next hundred
meters or the next thirty seconds of driving) and execute any number control actions on
the vehicle 310 to implement the immediate route plan.

[0060] In conjunction with the route following discussion utilizing the navigation points
360, 362, the deep neural network can dynamically analyze the sensor view 303 for lower
level safety concerns, such as potential hazard threats from other vehicles 327, local
pedestrians 304 and bicyclists 302. The deep neural network may further process the
sensor view 303 to identify road and traffic features—such as the traffic signal 340 and
signal state (e.g., red, yellow, or green), crosswalk 315, sidewalk 321, and lane divider
317—in order to make lower level decisions with regards to actual execution of lane
changes, braking for an upcoming intersection, and safely executing upcoming turns
identified by the navigation points 360, 362.

[0061] METHODOLOGY

[0062] FIG. 4 is a flow chart describing an example method of autonomously operating
a self-driving vehicle through use of a neural network, according to examples described
herein. In the below description of FIG. 4, reference may be made to reference characters
representing like features as shown and described with respect to FIGS. 1-3.
Furthermore, the method described in connection with FIG. 4 may be performed by a
neural network 124 or neural network navigation system 200 being implemented on a
self-driving vehicle 100, 200, as shown and described herein. Referring to FIG. 4, the
neural network 124 can establish a destination 119 in local coordinates (400). The neural
network 124 can further identify one or more navigation points 129 in a forward
operational direction of the SDV 100 (405). As provided herein, the navigation points
129 may be extracted and established at affixed distances (or temporally) ahead of the

SDV 100 by a backend entity with knowledge of the destination 119 and optimal route
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123. In variations, the navigation points 129 may be extracted and established by a
separate module of the of the SDV 100, or the neural network 124 itself, once the optimal
route 123 to the destination 119 is determined.

[0063] In operating the control mechanisms 155 of the SDV 100, The neural network
124 may also process sensor data 111 indicating a sensor view from a sensor array 102 of
the SDV 100 (410). According to some aspects described herein, the neural network 124
can utilize the navigation points 129 dynamically for an immediate route plan (415).
Accordingly, the neural network 124 can compare the individual coordinate values of the
navigation points 129 with each other—and/or with the vehicle coordinates of the SDV
100—in order to determine the immediate route plan for the upcoming road segment.
The immediate route plan can comprise a plan for the next fifty or one hundred meters—
or a set time period (e.g., the next thirty seconds)—of the overall route 123 of the SDV
100, and can correlate directly with the location of the navigation points 129 ahead of the
SDV 100. Thus, the immediate route plan can correspond to an upcoming turn in which
the SDV 100 must signal, change lanes, and execute the turn.

[0064] In various implementations, the neural network 124 may utilize the sensor data
111 for immediate action execution (420). The immediate action execution can comprise
generating the individual command inputs 135 executable by the individual control
mechanisms 155 of the SDV 100, such as the SDV’s acceleration 152, steering 154,
braking 156, and auxiliary systems 158. While executing the immediate route plan
determined via comparison of the navigation points 129 (and/or the vehicle’s own
coordinates), the neural network 124 can analyze the sensor data 111 to determine exactly
when to change lanes, brake for an intersection or potential hazard, and accelerate and
steer the SDV 100 when the situation is safe to complete the turn. Thus, the neural
network 124 can autonomously operate the control mechanisms 155 of the SDV 100 to
track the navigation points 129 along the given route 123 (425).

[0065] FIG. 5 is a lower level flow chart describing an example method of
autonomously operating a self-driving vehicle through use of a neural network, according
to examples described herein. In the below description of FIG. 5, reference may be made
to reference characters representing like features as shown and described with respect to
FIGS. 1-3. Furthermore, the method described in connection with FIG. 5 may be
performed by a neural network 124 or neural network navigation system 200 being
implemented on a self-driving vehicle 100, 200, as shown and described herein.

Referring to FIG. 5, the neural network navigation system 200 can receive a destination
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262 (500). The destination 262 can be received from a backend transportation
management system implemented on a datacenter 290 (504), or can be inputted directly
by a passenger of the SDV 201 through use of a local user interface (502).

[0066] In various implementations, the neural network navigation system 200 can
determine a route 242 from a current location to the destination 262 (505), and set the
destination 262 in local coordinates relative to the SDV 201 (510). The neural network
navigation system 200 can further set one or more navigation points 212 in global
coordinates, and affix or otherwise configure the navigation point(s) 212 to the non-
inertial reference frame of the SDV 201 (515). In doing so, the neural network navigation
system 200 can set the navigation points at persistent distances ahead of the SDV 201
along the route 242 (516), or temporally such that the navigation points 212 vary in
distance from the SDV 201 (e.g., based on the SDV’s current speed (517). For example,
the temporal location for each of the navigation points 212 may be based on a
computation of a time step (e.g., one or two seconds ahead of the SDV 201) and the
SDV’s current speed. In variations, the global coordinate values of the SDV 201 (e.g.,
via the GPS module 210) can be utilized to establish a local coordinate system with the
SDV’s current, dynamic location as the origin. In such variations, the navigation points
212, and successive upcoming destination coordinates 214, can be established in the
SDV’s local coordinate system along the route 242. As an example, a local Cartesian
coordinate system (e.g., a two-dimensional x-y system) can be established with the
positive x-axis extending in the forward operational direction of the SDV 201, and
positive y-axis extending to the left of the SDV 201. The navigation point coordinates
212 and/or the successive destination coordinates 214 can be established with respect to
this local Cartesian system, enabling the neural network processing resources 250 to
readily identify, for example, an upcoming turn. In some aspects, the neural network
navigation system 200 can set a combination of distance-based and temporally-based
navigation points 212 to further increase robustness. Furthermore, the neural network
navigation system 200 can set the number of navigation points (518), and can include a
single point, or multiple points at various distances and/or times ahead of the SDV 201
along the route.

[0067] Additionally, the neural network navigation system 200 can include or otherwise
introduce noise into the navigation point signals 212, such that the navigation points 212
comprise coarse navigation points 217 with a certain amount of increased horizontal error

(520). As described herein, this can prevent the neural processing resources 250 of the
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neural network navigation system 200 to over-rely on the navigation points 217 in at least
the training phase of the system 200, resulting in increased robustness of the system 200.
In some aspects, the noise can be included in only the training and/or testing phases of the
system 200. In such aspects, the noise can be excluded or reduced in the implementation
phase. In variations, the noise may also be included during implementation of the system
200 on public roads. The neural network navigation system 250 can further receive
sensor data 272 from the SDV sensor systems (525), which can include LIDAR data
(526), camera or image data (527), and/or radar data (528). It is contemplated that the
neural network navigation system 250 can be agnostic to the type of sensor data sources,
and can utilize data from any individual sensor system (e.g., a single monocular, forward-
facing camera), or combinations of sensor systems described herein.

[0068] In various implementations, the neural network navigation system 200 can
dynamically analyze and compare coordinate values to continuously or periodically (e.g.,
every few seconds) determine an immediate route plan (530). As discussed above, the
neural network navigation system 200 can compare various combinations of individual
coordinate values of the coarse navigation points 217 (531), the vehicle coordinates of the
SDV 201 (532), and the destination coordinates 214 (533). In certain implementations,
the neural processing resources can determine a heading of the SDV 201, and utilize the
heading to make comparisons between the coordinate values to ultimately determine the
immediate route plan. Based on each of the immediate route plans, the neural network
navigation system 200 can operate the SDV control mechanisms in order to track the
coarse navigation points 217 to the destination 262 (535). Accordingly, the neural
network navigation system 200 can operate the acceleration system 286 (536), the
braking system 284 (537), and the steering system 282 (538) of the SDV 201 in order to
perform the low level autonomous actions that progress the SDV 201 along each
immediate route plan along the overall route 242 to the destination 262.

[0069] HARDWARE DIAGRAMS

[0070] FIG. 6 is a block diagram illustrating a computer system upon which example
SDV processing systems described herein may be implemented. The computer system
600 can be implemented using a number of processing resources 610, which can comprise
processors 611, field programmable gate arrays (FPGAs) 613. Furthermore, any number
of processors 611 and/or FPGAs 613 of the computer system 600 can be utilized as
components of a neural network array 617 implementing a machine learning model 662

and utilizing road network maps 664 stored in memory 661 of the computer system 600.
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In the context of FIGS. 1 and 2, the control system 120, neural network 124, and neural
network navigation system 200 can be implemented using one or more components of the
computer system 600 shown in FIG. 6.

[0071] According to some examples, the computer system 600 may be implemented
within an autonomous vehicle or self-driving vehicle (SDV) with software and hardware
resources such as described with examples of FIGS. 1 and 2. In an example shown, the
computer system 600 can be distributed spatially into various regions of the SDV, with
various aspects integrated with other components of the SDV itself. For example, the
processing resources 610 and/or memory resources 660 can be provided in a cargo space
of the SDV. The various processing resources 610 of the computer system 600 can also
execute control instructions and the machine learning model 662 (e.g., comprising a set of
machine learning algorithms) using microprocessors 611, FPGAs 613, or any
combination of the same. In some examples, the machine learning model 662 can be
executed by various combinations of processors 611 and/or FPGAs 613 that make up the
neural network array 617. Along these lines, various executable tasks embedded in the
machine learning model 662 may be distributed amongst the multiple types of processing
resources 610 of the computer system 600 that make up the neural network array 617.
[0072] In an example of FIG. 6, the computer system 600 can include a communication
interface 650 that can enable communications over a network 680. In one
implementation, the communication interface 650 can also provide a data bus or other
local links to electro-mechanical interfaces of the vehicle, such as wireless or wired links
to and from control mechanisms 620 (e.g., via a control interface 622), sensor systems
630, and can further provide a network link to a backend transport management system
(implemented on one or more datacenters) over one or more networks 680. For example,
the processing resources 610 can receive a destination 682 over the one or more networks
680, or via a local user interface of the SDV.

[0073] The memory resources 660 can include, for example, main memory 661, a read-
only memory (ROM) 667, storage device, and cache resources. The main memory 661 of
memory resources 660 can include random access memory (RAM) 668 or other dynamic
storage device, for storing information and instructions which are executable by the
processing resources 610 of the computer system 600. The processing resources 610 can
execute instructions for processing information stored with the main memory 661 of the
memory resources 660. The main memory 661 can also store temporary variables or

other intermediate information which can be used during execution of instructions by the
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processing resources 610. The memory resources 660 can also include ROM 667 or other
static storage device for storing static information and instructions for the processing
resources 610. The memory resources 660 can also include other forms of memory
devices and components, such as a magnetic disk or optical disk, for purpose of storing
information and instructions for use by the processing resources 610. The computer
system 600 can further be implemented using any combination of volatile and/or non-
volatile memory, such as flash memory, PROM, EPROM, EEPROM (e.g., storing
firmware 669), DRAM, cache resources, hard disk drives, and/or solid state drives.
[0074] According to some examples, the memory 661 may store a set of software
instructions and/or machine learning algorithms including, for example, the machine
learning model 662. The memory 661 may also store road network maps 664 in which
the processing resources 610—executing the machine learning model 662—can utilize to
extract and follow navigation points (e.g., via location-based signals from a GPS module
640), introduce noise to the navigation point signals, determine successive route plans,
and execute control actions on the SDV. The machine learning model 662 may be
executed by the neural network array 617 in order to autonomously operate the SDV’s
acceleration 622, braking 624, steering 626, and signaling systems 628 (collectively, the
control mechanisms 620). Thus, in executing the machine learning model 662, the neural
network array 617 can make mid or high level decisions with regard to upcoming route
segments, and the processing resources 610 can receive sensor data 632 from the sensor
systems 630 to enable the neural network array 617 to dynamically generate low level
control commands 615 for operative control over the acceleration, steering, and braking
of the SDV. The neural network array 317 may then transmit the control commands 615
to one or more control interfaces 622 of the control mechanisms 620 to autonomously
operate the SDV through road traffic on roads and highways, as described throughout the
present disclosure.

[0075] Itis contemplated for examples described herein to extend to individual
elements and concepts described herein, independently of other concepts, ideas or
systems, as well as for examples to include combinations of elements recited anywhere in
this application. Although examples are described in detail herein with reference to the
accompanying drawings, it is to be understood that the concepts are not limited to those
precise examples. As such, many modifications and variations will be apparent to
practitioners skilled in this art. Accordingly, it is intended that the scope of the concepts

be defined by the following claims and their equivalents. Furthermore, it is contemplated

24



WO 2018/075325 PCT/US2017/056277

that a particular feature described either individually or as part of an example can be
combined with other individually described features, or parts of other examples, even if
the other features and examples make no mentioned of the particular feature. Thus, the
absence of describing combinations should not preclude claiming rights to such

combinations.
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WHAT IS CLAIMED IS:

1. A neural network system for autonomous control of a self-driving vehicle
(SDV), the neural network system comprising:
one or more processors; and
one or more memory resources storing a machine learning model that, when
executed by the one or more processors, cause the neural network system to:
establish a destination location in local coordinates relative to the SDV;
identify one or more navigation points in a forward operational direction
of the SDV;
process sensor data from a sensor system of the SDV, the sensor data
providing a sensor view of the forward operational direction of the SDV; and
utilizing the sensor data, operate acceleration, braking, and steering
systems of the SDV to continuously follow the one or more navigation points

along an established route to the destination location.

2. The neural network system of claim 1, further comprising:
a location-based resource to determine a current position of the SDV;
wherein the one or more navigation points are computed based on the current

position of the SDV and the established route to the destination location.

3. The neural network system of claim 2, wherein the executed machine
learning model causes the neural network system to identify each of the one or more
navigation points at (i) a constant distance ahead of the SDV along the established route,
or (ii) a temporal location ahead of the SDV, based on a current speed of the SDV, along

the established route.

4. The neural network system of claim 2, wherein noise is incorporated into
location signals corresponding to the one or more navigation points, and wherein the
noise causes the neural network system to rely on processing the sensor data in

conjunction with continuously following the one or more navigation points.

5. The neural network system of claim 1, wherein the one or more navigation

points each comprises a coordinate point in global coordinates, the coordinate point

26



WO 2018/075325 PCT/US2017/056277

having values that vary as the SDV progresses towards the destination location, and
wherein the executed machine learning model causes the neural network system to
continuously follow the one or more navigation points along the established route to the
destination location by continuously comparing the values of the coordinate point with

vehicle coordinates of the SDV.

6. The neural network system of claim 1, wherein the one or more navigation
points comprise a plurality of navigation points established at differing distances ahead of

the SDV along the established route.

7. The neural network system of claim 6, wherein the executed machine
learning model causes the neural network system to (i) utilize the plurality of navigation
points to dynamically determine an immediate route plan, and (ii) analyze the sensor data
to execute control actions on the acceleration, braking, and steering systems of the SDV

in order to dynamically implement the immediate route plan.

8. A self-driving vehicle (SDV) comprising:
a sensor system to detect a situational environment of the SDV;
acceleration, braking, and steering systems; and
a control system comprising a neural network implementing a machine learning
model that causes the control system to:
establish a destination location in local coordinates relative to the SDV;
identify one or more navigation points in a forward operational direction
of the SDV;
process sensor data from a sensor system of the SDV, the sensor data
providing a sensor view of the forward operational direction of the SDV; and
utilizing the sensor data, operate acceleration, braking, and steering
systems of the SDV to continuously follow the one or more navigation points

along an established route to the destination location.

9. The SDV of claim 8, further comprising:
a location-based resource to determine a current position of the SDV;
wherein the one or more navigation points are computed based on the current

position of the SDV and the established route to the destination location.
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10. The SDV of claim 9, wherein the machine learning model implemented by
the neural network causes the control system to identify each of the one or more
navigation points at (i) a constant distance ahead of the SDV along the established route,
or (ii) a temporal location ahead of the SDV, based on a current speed of the SDV, along

the established route.

11. The SDV of claim 9, wherein noise is incorporated into location signals
corresponding to the one or more navigation points, and wherein the noise causes the
neural network system to rely on processing the sensor data in conjunction with

continuously following the one or more navigation points.

12. The SDV of claim 8, wherein the one or more navigation points each
comprises a coordinate point in global coordinates, the coordinate point having values
that vary as the SDV progresses towards the destination location, and wherein the
machine learning model implemented by the neural network causes the control system to
continuously follow the one or more navigation points along the established route to the
destination location by continuously comparing the values of the coordinate point with

vehicle coordinates of the SDV.

13. The SDV of claim 8, wherein the one or more navigation points comprise
a plurality of navigation points established at differing distances ahead of the SDV along

the established route.

14. The SDV of claim 13, wherein the machine learning model implemented
by the neural network causes the control system to (i) utilize the plurality of navigation
points to dynamically determine an immediate route plan, and (ii) analyze the sensor data
to execute control actions on the acceleration, braking, and steering systems of the SDV

in order to dynamically implement the immediate route plan.
15. A computer implemented method of autonomously operating a vehicle, the

method being performed by one or more processors of a neural network system of a self-

driving vehicle (SDV) and comprising:
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establishing a destination location in local coordinates relative to the SDV;

identifying one or more navigation points in a forward operational direction of the
SDV;

processing sensor data from a sensor system of the SDV, the sensor data providing
a sensor view of the forward operational direction of the SDV; and

utilizing the sensor data, operating acceleration, braking, and steering systems of
the SDV to continuously follow the one or more navigation points along an established

route to the destination location.

16. The method of claim 15, wherein the SDV further comprises a location-
based resource that determines current position of the SDV, and wherein the one or more
navigation points are computed based on the current position of the SDV and the

established route to the destination location.

17. The method of claim 16, wherein the neural network system identifies
each of the one or more navigation points at (i) a constant distance ahead of the SDV
along the established route, or (ii) a temporal location ahead of the SDV, based on a

current speed of the SDV, along the established route.

18. The method of claim 16, wherein noise is incorporated into location
signals corresponding to the one or more navigation points, and wherein the noise causes
the neural network system to rely on processing the sensor data in conjunction with

continuously following the one or more navigation points.

19. The method of claim 15, wherein the one or more navigation points each
comprises a coordinate point in global coordinates, the coordinate point having values
that vary as the SDV progresses towards the destination location, and wherein the neural
network system continuously follows the one or more navigation points along the
established route to the destination location by continuously comparing the values of the

coordinate point with vehicle coordinates of the SDV.

20. The method of claim 15, wherein the one or more navigation points
comprise a plurality of navigation points established at differing distances ahead of the

SDV along the established route.
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