
US 20100328425A1

United States (19)

(12) Patent Application Publication (10) Pub. No.: US 2010/0328425A1
Nagaraj et al. (43) Pub. Date: Dec. 30, 2010

(54) TEXTURE COMPRESSION IN AVIDEO Publication Classification
DECODER FOR EFFICIENT 2D-3D (51) Int. Cl.
RENDERING H04N 7/26 (2006.01)

H04N I3/04 (2006.01) (75) Inventors: Raghavendra C. Nagaraj, San
Diego, CA (US); Stephen A. H04N 7/0 (2006.01)
Molloy, Carisbad, CA (US) (52) U.S. Cl. 348/42: 375/240.25; 348/441:

(73)

(21)

(22)

Correspondence Address: 375/E07.027; 348/E13.075; 348/E07.003
QUALCOMMINCORPORATED
S775 MOREHOUSE DR. (57) ABSTRACT
SANDIEGO CA 92.121 US

9 (US) In a video decoding system, a method and system for decod
Assignee: QUALCOMM Incorporated, San ing previously encoded frames of video into a compressed

Diego, CA (US) and uncompressed format. The uncompressed format frames
may be further stored and utilized to decode additional frames

Appl. No.: 12/494,839 of video. The compressed format frames may be further
stored and provided to a display processor to be rendered with

Filed: Jun. 30, 2009 additional textures.

500

Y
5O2 512 residual 504 506 508

Inverse Inverse Inverse Deblock Peted
Scan Quantization Transform Filtering

514

516

Spatial 524.
Compensation

Bitstream Decoding intra pred
520

Reframe
Store

Motion
Compensation intra pred

Patent Application Publication Dec. 30, 2010 Sheet 1 of 5 US 2010/0328425 A1

SOURCE DESTINATION
DEVICE DEVICE

18

VIDEO DEVICE

DISPLAY
O PROCESSOR 2

VIDEO
ENCODER

VIDEO
DECODER

2

TRANSMITTER RECEIVER

FIG. 1

Patent Application Publication Dec. 30, 2010 Sheet 2 of 5 US 2010/0328425 A1

s

8

Patent Application Publication Dec. 30, 2010 Sheet 3 of 5 US 2010/0328425 A1

300

N

READ BLOCKS IN
UNCOMPRESSED FORMAT

UPSAMPLE BLOCKS

COLOR SPACE CONVERT
OF BLOCKS

COMPRESS BLOCKS

FIG. 3

Patent Application Publication Dec. 30, 2010 Sheet 4 of 5 US 2010/0328425 A1

400

N
402

RECEIVE ENCODED FRAME

DECODE FRAME INTO
COMPRESSED AND

UNCOMPRESSED FORMAT

406

SEND COMPRESSED
FRAME TO PIPELINE

408

OVERLAY TEXTURES ON
COMPRESSED FRAME

410

GENERATE OUTPUT
SUITABLE FOR DISPLAY

412

DISPLAY 3D SCENE
WITH VIDEO

FIG. 4

US 2010/0328425 A1 Dec. 30, 2010 Sheet 5 of 5 Patent Application Publication

SseuduuOO /*
009

809

909

Z09

US 2010/0328425 A1

TEXTURE COMPRESSION IN AVIDEO
DECODER FOREFFICIENT 2D-3D

RENDERING

FIELD OF THE INVENTION

0001. The present invention relates to a video decoder
configured to output video data in compressed and uncom
pressed formats.

BACKGROUND

0002 Many of the current day graphical user interfaces
(GUIs) involve rendering video as a part of a 3D graphical
scene. For example, a video playback device may contain a
GUI that utilizes 3D rendered graphics to create a 3D graphi
cal scene. A user may navigate through the GUI to find videos
that are stored on the video playback device. As the user
navigates through the GUI, the videos may playback as a
preview clip within the 3D graphical scene.
0003. In order to display the video within the 3D GUI, the
frames of video are first decoded, then a video processor
renders a 3D scene using the decoded video frames. The video
processor then outputs the scene to a display.
0004 Currently, video decoders decode video in a single
uncompressed format such as the YUV 4:2:0 format. The
decoded video is output from the video decoder and into the
display processor. The display processor may overlay 2D
images (i.e., textures in the 3D context) and then output a
signal to the display where the images are displayed. In some
cases, the display processor converts the video from the YUV
4:2:0 format to the RGB 8:8:8 format before overlaying tex
tures and rendering the video for display on the display
device.
0005. However, in order to render video in a 3D graphical
scene, the above model is inefficient. As stated above, video is
traditionally input into the graphics pipeline of the display
processor from the video decoder in the YUV 4:2:0 format,
which is uncompressed. The display processor must then
convert the video frames to a compressed format and then use
the compressed format to render the 3D GUI by overlaying
textures. This leads to extra bandwidth required to load
uncompressed video textures into the graphics pipeline and
extra instruction in the graphics pipeline to convert uncom
pressed textures into compressed textures.
0006 Previous solutions to reducing the bandwidth and
instructions required in the graphics pipeline have included
generating a second copy of the video offline in a compressed
format that would not require conversion by the display pro
cessor. Such solutions, however, do not allow for on-the-fly
display of videos in the video display device such as from a
Source sending live content to the video display device in an
uncompressed format. Further, extra external processing and
memory is required to store the additional formats of the
video.

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 is a block diagram illustrating a source device
and destination device for encoding and decoding of a video
signal.
0008 FIG. 2 is an embodiment of a rendered 3D scene
with decoded video incorporated therein.
0009 FIG. 3 is a flowchart of an embodiment of a process
for compressing frames of video.

Dec. 30, 2010

0010 FIG. 4 is a flowchart of a process of rendering a
scene using video decoded by the process of FIG. 3.
0011 FIG. 5 is a block diagram of an embodiment of a
video decoder of FIG. 1.

DETAILED DESCRIPTION

0012. The following detailed description is directed to
certain specific embodiments. However, the teachings herein
can be applied in a multitude of different ways. In this
description, reference is made to the drawings wherein like
parts are designated with like numerals throughout.
0013. One embodiment is directed to a video decoder
designed to output decoded video informats suitable for both
2D and 3D graphics rendering. By decoding a video into both
an uncompressed and compressed format, it is possible to
send video frames to a display processor, which in one
embodiment may comprise a 2D and 3D graphics processor,
in the right format for reducing the processing required by the
display processor to incorporate a video in a rendered 3D
graphical user interface (GUI).
0014 FIG. 1 is a block diagram illustrating an embodi
ment of a video encoding and decoding system 10 that per
forms coding techniques as described in this disclosure. As
shown in FIG. 1, system 10 includes a source device 12 that
transmits encoded video data to a destination device 14 via a
communication channel 16. Source device 12 may include a
video source 18, a video encoder 20, and a transmitter 22.
Video source 18 of source device 12 may include a video
capture device, such as a video camera, a video archive con
taining previously captured video, or a video feed from a
video content provider. As a further alternative, video source
18 may generate computer graphics-based data as the Source
Video, or a combination of live video and computer-generated
Video. In some cases, source device 12 may be a wireless
phone or video phone, in which case video source 18 may be
a video camera on the phone. In each case, the captured,
pre-captured, or computer-generated video may be encoded
by video encoder 20 for transmission from source device 12
to destination device 14 via transmitter 22 and communica
tion channel 16.
00.15 Video encoder 20 receives video data from video
source 18. The video data received from video source 18 may
be a series of video frames. Video encoder 20 divides the
series of frames into coding units and processes the coding
units to encode the series of video frames. The coding units
may, for example, be entire frames or portions of the frames
(i.e., slices). Thus, in some instances, the frames may be
divided into slices. Video encoder 20 divides each coding unit
into blocks of pixels (referred to herein as video blocks or
blocks) and operates on the video blocks within individual
coding units in order to encode the video data. As such, a
coding unit (e.g., a frame or slice) may contain multiple video
blocks. In other words, a video sequence may include mul
tiple frames, a frame may include multiple slices, and a slice
may include multiple video blocks.
0016. The video blocks may have fixed or varying sizes,
and may differ in size according to a specified coding stan
dard. As an example, the International Telecommunication
Union Standardization Sector (ITU-T) H.264/MPEG-4, Part
10, Advanced Video Coding (AVC) (hereinafter “H.264/
MPEG-4 Part 10 AVC standard) supports intra prediction in
various block sizes, such as 16x16, 8x8, or 4x4 pixels for
luma components, and 8x8 pixels for chroma components.
Interprediction can be performed in various block sizes. Such

US 2010/0328425 A1

as 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 pixels for luma
components and corresponding scaled sizes for chroma com
ponents. In H.264, for example, each video block of 16 by 16
pixels, often referred to as a macroblock (MB), may be sub
divided into sub-blocks of smaller sizes and intra or inter
predicted in sub-blocks. In general, MBs and the various
sub-blocks may be considered to be video blocks. Thus, MBS
may be considered to be video blocks, and if partitioned or
sub-partitioned, MBs can themselves be considered to define
sets of video blocks.

0017 For each of the video blocks, video encoder 20
selects a block type for the block. The block type may indicate
whether the block is predicted using inter-prediction or intra
prediction as well as apartition size of the block. For example,
the H.264/MPEG-4 Part 10 AVC standard supports a number
of inter- and intra-prediction block types including Inter
16x16, Inter 16x8, Inter 8x16, Inter 8x8, Inter 8x4, Inter 4x4,
Intra 16x16, Intra 8x8, and Intra 4x4. As described in detail
below, video encoder 20 may select one of the block types for
each of the video blocks to be encoded.

0018 Video encoder 20 also selects a prediction mode for
each of the video blocks. In the case of an intra-coded video
block, the prediction mode may determine the manner in
which to predict the current video block using one or more
previously encoded video blocks. In the H.264/MPEG-4 Part
10 AVC standard, for example, video encoder 20 may select
one of nine possible unidirectional prediction modes for each
Intra 4x4 block; a vertical prediction mode, horizontal pre
diction mode, DC prediction mode, diagonal down/left pre
diction mode, diagonal down/right prediction mode, Vertical
right prediction mode, horizontal-down predication mode,
vertical-left prediction mode and horizontal-up prediction
mode. Similar prediction modes are used to predict each Intra
8x8 block. For an Intra 16x16 block, video encoder 20 may
select one of four possible unidirectional modes; a vertical
prediction mode, a horizontal prediction mode, a DC predic
tion mode, and a plane prediction mode. In some instances,
video encoder 20 may select the prediction mode from a set of
prediction modes that includes not only unidirectional pre
diction modes, but also one or more multi-directional predic
tion modes that define combinations of the unidirectional
modes. For example, the one or more multi-directional pre
diction modes may be bidirectional prediction modes that
combine two unidirectional prediction modes as described in
further detail below.

0019. After selecting the prediction mode for the video
block, video encoder 20 generates a predicted video block
using the selected prediction mode. The predicted video
block is subtracted from the original video block to form a
residual block. The residual block includes a set of pixel
difference values that quantify differences between pixel val
ues of the original video block and pixel values of the gener
ated prediction block. The residual block may be represented
in a two-dimensional block format (e.g., a two-dimensional
matrix or array of pixel difference values).
0020. Following generation of the residual block, video
encoder 20 may perform a number of other operations on the
residual block before encoding the block. Video encoder 20
may apply a transform, Such as an integer transform, a DCT
transform, a directional transform, or a wavelet transform to
the residual block of pixel values to produce a block of trans
form coefficients. The transform coefficients may be a fre
quency-domain representation of the residual block. Thus,
video encoder 20 converts the residual pixel values to trans

Dec. 30, 2010

form coefficients (also referred to as residual transform coef
ficients). The residual transform coefficients may be referred
to as a transform block or coefficient block. The residual
transform coefficients may be a one-dimensional representa
tion of the coefficients when non-separable transforms are
applied or a two-dimensional representation of the coeffi
cients when separable transforms are applied. Non-separable
transforms may include non-separable directional trans
forms. Separable transforms may include separable direc
tional transforms, DCT transforms, integer transforms, and
wavelet transforms.

0021 Following transformation, video encoder 20 per
forms quantization to generate quantized transform coeffi
cients (also referred to as quantized coefficients or quantized
residual coefficients). Again, the quantized coefficients may
be represented in one-dimensional vector format or two-di
mensional block format. Quantization generally refers to a
process in which coefficients are quantized to possibly reduce
the amount of data used to represent the coefficients. The
quantization process may reduce the bit depth associated with
some or all of the coefficients. As used herein, the term
“coefficients' may represent transform coefficients, quan
tized coefficients or other type of coefficients. The techniques
of this disclosure may, in Some instances, be applied to
residual pixel values as well as transform coefficients and
quantized transform coefficients.
0022. When separable transforms are used and the coeffi
cient blocks are represented in a two-dimensional block for
mat, video encoder 20 scans the coefficients from the two
dimensional format to a one-dimensional format. In other
words, video encoder 20 may scan the coefficients from the
two-dimensional block to serialize the coefficients into a one
dimensional vector of coefficients. In accordance with one of
the aspects of this disclosure, video encoder 20 may adjust the
scan order used to convert the coefficient block to one dimen
sion based on collected Statistics. The statistics may comprise
an indication of the likelihood that a given coefficient value in
each position of the two-dimensional block is Zero or non
Zero and may, for example, comprise a count, a probability or
other statistical metric associated with each of the coefficient
positions of the two-dimensional block. In some instances,
statistics may only be collected for a subset of the coefficient
positions of the block. When the scan order is evaluated, e.g.,
after a particular number of blocks, the scan order may be
changed such that coefficient positions within the block deter
mined to have a higher probability of having non-Zero coef
ficients are scanned prior to coefficient positions within the
block determined to have a lower probability of having non
Zero coefficients. In this way, an initial scanning order may be
adapted to more efficiently group non-zero coefficients at the
beginning of the one-dimensional coefficient vector and Zero
valued coefficients at the end of the one-dimensional coeffi
cient vector. This may in turn reduce the number of bits spent
on entropy coding since there are shorter runs of Zeros
between non-Zeros coefficients at the beginning of the one
dimensional coefficient vector and one longer run of Zeros at
the end of the one-dimensional coefficient vector.

0023. Following the scanning of the coefficients, video
encoder 20 encodes each of the video blocks of the coding
unit using any of a variety of entropy coding methodologies,
Such as context adaptive variable length coding (CAVLC),
context adaptive binary arithmetic coding (CABAC), run
length coding or the like. Source device 12 transmits the
encoded video data to destination device 14 via transmitter 22

US 2010/0328425 A1

and channel 16. Communication channel 16 may comprise
any wireless or wired communication medium, Such as a
radio frequency (RF) spectrum or one or more physical trans
mission lines, or any combination of wireless and wired
media. Communication channel 16 may form part of a
packet-based network, such as a local area network, a wide
area network, or a global network Such as the Internet. Com
munication channel 16 generally represents any Suitable
communication medium, or collection of different commu
nication media, for transmitting encoded video data from
source device 12 to destination device 14.

0024 Destination device 14 may include a receiver 24,
video decoder 26, display processor 27, and display device
28. Receiver 24, which is one means of receiving a video
signal, receives the encoded video bitstream from Source
device 12 via channel 16. Video decoder 26 applies entropy
decoding to decode the encoded video bitstream to obtain
header information, motion vectors, and quantized residual
coefficients of the coded video blocks of the coded unit. As
described above, the quantized residual coefficients encoded
by source device 12 are encoded as a one-dimensional vector.
Video decoder 26 therefore scans the quantized residual coef
ficients of the coded video blocks to convert the one-dimen
sional vector of coefficients into a two-dimensional block of
quantized residual coefficients. Like video encoder 20, video
decoder 26 may collect statistics that indicate the likelihood
that a given coefficient position in the video block is Zero or
non-zero and thereby adjust the scan order in the same man
ner that was used in the encoding process. Accordingly, recip
rocal adaptive scan orders can be applied by video decoder 26
in order to change the one-dimensional vector representation
of the serialized quantized transform coefficients back to
two-dimensional blocks of quantized transform coefficients.
0.025 Video decoder 26 reconstructs each of the blocks of
the coding unit using the decoded header information and the
decoded residual information. In particular, video decoder 26
may generate a prediction video block for the current video
block and combine the prediction block with a corresponding
residual video block to reconstruct each of the video blocks.
It should be noted that in some embodiments the prediction
block generated by the video decoder 26 and video encoder
20 are identical. Hence by combining the residual transmitted
in the encoded video bitstream with the prediction block,
video decoder 26 generates a reconstructed block identical to
that generated at video encoder 20. Video decoder 26 may
then store the combined video blocks that make up a frame of
video. Video decoder 26 may output the decoded video in a
YUV format and/or in otherformats described in the embodi
ments below. The decoded video is then sent to display pro
cessor 27, which overlays textures and renders the textures
and video for display on display device 28. In some embodi
ments, display processor 27 may have limited 2D graphics
functionality (e.g., the ability to perform simple 2D overlay
and blending). In other embodiment, display processor 27
may comprise a 2D and 3D graphics processor, and may
perform more complicated geometric transformations. Des
tination device 14 may display the reconstructed video blocks
as part of a rendered scene to a user via display device 28.
Display device 28 may comprise any of a variety of display
devices such as a cathode ray tube (CRT), a liquid crystal
display (LCD), a plasma display, a light emitting diode (LED)
display, an organic LED display, or another type of display
unit.

Dec. 30, 2010

0026. In some cases, source device 12 and destination
device 14 may operate in a Substantially symmetrical manner.
For example, Source device 12 and destination device 14 may
each include Video encoding and decoding components.
Hence, system 10 may support one-way or two-way video
transmission between devices 12, 14, e.g., for video stream
ing, video broadcasting, or video telephony. A device that
includes video encoding and decoding components may also
form part of a common encoding, archival and playback
device such as a digital video recorder (DVR).
0027 Video encoder 20 and video decoder 26 may operate
according to any of a variety of video compression standards,
such as such as those defined by the Moving Picture Experts
Group (MPEG) in MPEG-1, MPEG-2 and MPEG-4, the
ITU-T H.263 standard, the Society of Motion Picture and
Television Engineers (SMPTE) 421M video CODEC stan
dard (commonly referred to as “VC-1), the standard defined
by the Audio Video Coding Standard Workgroup of China
(commonly referred to as “AVS), as well as any other video
coding standard defined by a standards body or developed by
an organization as a proprietary standard. Although not
shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 26 may each be integrated with an audio encoder and
decoder, respectively, and may include appropriate MUX
DEMUX units, or other hardware and software, to handle
encoding of both audio and video in a common data stream or
separate data streams. In this manner, Source device 12 and
destination device 14 may operate on multimedia data. If
applicable, the MUX-DEMUXunits may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).
0028. In some aspects, for video broadcasting, the tech
niques described in this disclosure may be applied to
enhanced H.264 video coding for delivering real-time video
services in terrestrial mobile multimedia multicast (TM3)
systems using the Forward Link Only (FLO) Air Interface
Specification, “Forward Link Only Air Interface Specifica
tion for Terrestrial Mobile Multimedia Multicast, published
in July 2007 as Technical Standard TIA-1099 (the “FLO
Specification”). That is to say, communication channel 16
may comprise a wireless information channel used to broad
cast wireless video information according to the FLO Speci
fication, or the like. The FLO Specification includes examples
defining bitstream syntax and semantics and decoding pro
cesses suitable for the FLO Air Interface.
0029. Alternatively, video may be broadcasted according
to other standards such as DVB-H (digital video broadcast
handheld), ISDB-T (integrated services digital broadcast—
terrestrial), or DMB (digital media broadcast). Hence, source
device 12 may be a mobile wireless terminal, a video stream
ing server, or a video broadcast server. However, techniques
described in this disclosure are not limited to any particular
type of broadcast, multicast, or point-to-point system. In the
case of broadcast, Source device 12 may broadcast several
channels of video data to multiple destination devices, each of
which may be similar to destination device 14 of FIG.1. Thus,
although a single destination device 14 is shown in FIG. 1, for
Video broadcasting applications, Source device 12 would
typically broadcast the video content simultaneously to many
destination devices.

0030. In other examples, transmitter 22, communication
channel 16, and receiver 24 may be configured for commu
nication according to any wired or wireless communication
system, including one or more of a Ethernet, telephone (e.g.,

US 2010/0328425 A1

POTS), cable, power-line, and fiber optic systems, and/or a
wireless system comprising one or more of a code division
multiple access (CDMA or CDMA2000) communication
system, a frequency division multiple access (FDMA) sys
tem, an orthogonal frequency division multiple (OFDM)
access system, a time division multiple access (TDMA) sys
tem such as GSM (Global System for Mobile Communica
tion), GPRS (General packet Radio Service), or EDGE (en
hanced data GSM environment), a TETRA (Terrestrial
Trunked Radio) mobile telephone system, a wideband code
division multiple access (WCDMA) system, a high data rate
1xEV-DO (First generation Evolution Data Only) or 1xEV
DO Gold Multicast system, an IEEE 802.18 system, a Media
FLOTM system, a DMB system, a DVB-H system, or another
scheme for data communication between two or more
devices.

0031 Video encoder 20 and video decoder 26 each may be
implemented as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), discrete
logic, Software, hardware, firmware or any combinations
thereof. Each of video encoder 20 and video decoder 26 may
be included in one or more encoders or decoders, either of
which may be integrated as part of a combined encoder/
decoder (CODEC) in a respective mobile device, subscriber
device, broadcast device, server, or the like. In addition,
Source device 12 and destination device 14 each may include
appropriate modulation, demodulation, frequency conver
Sion, filtering, and amplifier components for transmission and
reception of encoded video, as applicable, including radio
frequency (RF) wireless components and antennas Sufficient
to Support wireless communication. For ease of illustration,
however, Such components are Summarized as being trans
mitter 22 of source device 12 and receiver 24 of destination
device 14 in FIG. 1.

0032 FIG. 5 is one embodiment of a video decoder 26
configured to output video data in both a compressed and an
uncompressed format. The encoded bitstream is fed into the
system 500. Portions of the bitstream may correspond to
different macroblocks. Further, several of those macroblocks
may make up a single video frame. A portion of the bitstream
corresponding to a given macroblock is entropy decoded at
entropy decoding unit 502 to form the residual block. The
residual block is then inverse-scanned at inverse-scanning
unit 504, inverse-quantized at inverse-quantizing unit 506,
and inverse-transformed at inverse-transforming unit 508. A
predictor macroblock is generated and added at adding unit
51O.

0033. The predictor macroblock described above can be of
two types—Intra and Inter. Spatial compensation unit 516
uses the neighboring macroblocks to generate the intra pre
dictor macroblock. Motion compensation unit 518 uses the
previous/future frames stored at reference frame store 520,
which may comprise a memory, to generate the interpredictor
macroblock. Switch 522 can be switched to send either the
intra or inter predictor macroblock to adding unit 510 to
generate the output signal.
0034. The resulting reconstructed macroblock is then sent

to deblock filtering unit 512 where it is filtered. For example,
macroblock edges may be filtered to prevent blocking arti
facts that may be visually unappealing. The output generated
is a set of raw pixels, which is the uncompressed format
output (e.g., macroblocks in YUV 4:2:0 format or YUV 4:2:2
format). In one embodiment, the uncompressed output may

Dec. 30, 2010

be a block of size 16x16. The uncompressed output may be
stored for reconstruction of other video frames. Modification
of the uncompressed output may result in visual artifacts in
later reconstructed frames. The raw pixel output is sent to
compressing unit 514 where the raw pixel output is converted
to a compressed format output Suitable for use in a graphics
pipeline. In one embodiment, the compressed output may be
in block units of size 4x4. The raw pixel output is also sent to
and stored in reference frame store 520, which may be used to
generate the predictor macroblock. In one embodiment, com
pressing unit 514 performs the steps of process 300, described
below, to generate the compressed format output. The output
from compressing unit 514, which corresponds to a decoded
compressed macroblock, is stored in a memory 524. As the
bitstream is decoded, multiple decoded compressed macrob
locks are stored in memory 524. When all of the macroblocks
corresponding to a given video frame have been stored in
memory 524, memory 524 contains a compressed video
frame. In some embodiments, the compressed video frame is
then read into a 3D graphics pipeline of display processor 27
for rendering as part of a 3D GUI or scene, which is described
below.

0035 FIG. 2 is one embodiment of a snapshot of a ren
dered 3D GUI 200 of the disclosure. In this embodiment, each
of the videos 202-216 or any subset of the videos 202-216
may be playing within the GUI. Further, each video may be
moved with respect to a 2D or 3D plane within the GUI, such
that the video changes perspective and location within the
scene, while the video continues to play.
0036. In one embodiment, display processor 27 supports
processing of a 3D graphics pipeline capable of generating a
3D GUI or scene. A 3D graphics pipeline may comprise
software or firmware for converting 3D scenes into 2D raster
images. A 3D graphics pipeline comprises a series of stages,
wherein data (e.g. Scene description data Such as geometry,
lighting, etc.) and images used to generate a 3D image (e.g.,
textures in the 3D context) are input at the beginning of the
pipeline and a 2D raster image is output at the end of the
pipeline. The input is processed at each stage of the graphics
pipeline. Once processing at a given stage is complete, the
input moves to the next stage, until it reaches the end of the
graphics pipeline. In one embodiment, the 3D graphics pipe
line comprises a modeling transformation stage, a per-vertex
lighting stage, a viewing transformation stage, a projection
transformation stage, a clipping stage, a rasterization stage, a
texturing stage, and a display stage. The display processor 27
may be thought of as the physical incarnation of the 3D
graphics pipeline. In this embodiment, display processor 27
processes the input at each stage.
0037. As discussed with regards to FIG. 5, video decoder
26 takes in a bitstream corresponding to a video frame. Video
decoder 26 then decodes the bitstream into a compressed
format (e.g., RGB 8:8:8) and stores compressed video frames
to be used in the 3D graphics pipeline. The video frame moves
from storage to the 3D graphics pipeline. In other embodi
ments, the compressed format of data is sent directly to the 3D
graphics pipeline. Textures are overlayed and a 3D scene is
rendered without requiring extra stages in the pipeline to
convert the video to a format that is capable of being rendered
in a 3D scene. As discussed above the display processor 27 is
a physical incarnation of the 3D graphics pipeline and over
lays the textures and generates the 3D scene. The display
processor 27 then rasterizes the 3D scene (i.e., converts it into
a 2D set of pixels) for display on display device 28. In some

US 2010/0328425 A1

embodiments, display processor 27 may receive video frames
in a compressed format and/oran uncompressed format from
video decoder 26. Display processor 27 may then render
either the compressed format or uncompressed format for
display on display device 28.
0038. In one embodiment video decoder 26 is configured
to output data in a format that corresponds to the format used
by display processor 27 to compress textures and render a 3D
scene using those textures. Different embodiments of display
processor 27 may utilize one or more different texture com
pression schemes. Texture compression schemes reduce the
bandwidth associated with loading textures in the graphics
pipeline to make a scene. One example is the compression
from a 24-bit graphic in RGB 8:8:8 format to a 4-bit graphic.
Some examples of texture compression formats are DXT,
ATI, and ETC1. These compression techniques utilize Block
Truncation Coding (BTC). In BTC, a frame of video is
divided into non-overlapping blocks. Each of these blocks are
then compressed at a fixed compression ratio. One aspect that
varies between the various compression formats is the
amount of distortion they introduce for different block char
acteristics.

0039 FIG. 3 is one embodiment of a process 300 for
texture compression. At step 302, blocks from the video
frame are read from memory in an uncompressed format. At
a next 304, the blocks are upsampled. Further, at a step 306,
the color space of the blocks are converted from YCbCr to
RGB. At a next step 308, the blocks are compressed to one of
the texture compression formats. The steps of process 300 are
performed by the video decoder 26, and the resulting com
pressed video frame is sent to the 3D graphics pipeline.
0040 FIG. 4 is one embodiment of a process 400 of receiv
ing encoded video frames and generating a 3D scene embed
ded with the video for display on display device 28. At step
402, video decoder 26 receives an encoded frame of video.
Next, at a step 404, the video decoderdecodes the video frame
into an uncompressed and a compressed format. In one alter
native embodiment of step 404, the video decoderalso down
samples the video frame as described later in the specification
at paragraph O042. In some embodiments, video decoder 26
stores both the decoded compressed and decoded uncom
pressed formats of the video concurrently (i.e., simulta
neously or at about the same time). In one embodiment, the
compressed format of the video frame is generated according
to process 300. Continuing, at a step 406, the compressed
Video frame is sent to the graphics pipeline. At a next step 408,
the display processor 27 overlays textures and generates a 3D
scene incorporating the compressed video frame as a texture
within the 3D scene. At a further step 410, display processor
27 generates an output Suitable for display on a 2D display
device 28 based on the 3D scene created at step 408. At a next
step 412, the output generated at Step 410 is displayed on
display device 28.
0041. In some embodiments, video rendered through dis
play processor 27 may undergo non-linear geometric trans
formations. In such embodiments, different portions of the
video frame may be sub-sampled to different degrees. Such
Sub-Sampling may lead to undesirable visual artifacts such as
jagged edges. In some embodiments, display processor 27
may include anti-aliasing filtering mechanisms to mitigate
the aliasing artifacts. In other embodiments, video decoder 26
may include an anti-aliasing filter and/or may be configured

Dec. 30, 2010

to perform various anti-aliasing techniques. These embodi
ments may be configured to operate on non-uniformly Sub
sampled frames of video.
0042. It should be noted that during the video rendering
process, the video may be rendered at a different resolution
than at which it was decoded, a process called downsampling.
A downsampler may interact with the video decoder to cre
ated secondary outputs from the video decoder (e.g. down
sampled and compressed video, down-sampled and uncom
pressed video, and non-downsampled and compressed
Video). Accordingly, the memory space required to store each
frame of video may be further reduced by downsampling the
video frame.

0043. Further, it should be noted that though the disclosure
discusses inserting a single video within a 3D scene, one of
ordinary skill in the art will recognize that the system can also
be configured to render a 3D scene incorporating multiple
videos.

0044) The techniques described in this disclosure may be
implemented in hardware, software, firmware, or any combi
nation thereof. Any features described as units or components
may be implemented together in an integrated logic device or
separately as discrete but interoperable logic devices. If
implemented in Software, the techniques may be realized at
least in part by a computer-readable medium comprising
instructions that, when executed, performs one or more of the
methods described above. The computer-readable medium
may form part of a computer program product, which may
include packaging materials. The computer-readable
medium may comprise random access memory (RAM) Such
as synchronous dynamic random access memory (SDRAM),
read-only memory (ROM), non-volatile random access
memory (NVRAM), electrically erasable programmable
read-only memory (EEPROM), FLASH memory, magnetic
or optical data storage media, and the like. The techniques
additionally, or alternatively, may be realized at least in part
by a computer-readable communication medium that carries
or communicates code in the form of instructions or data
structures and that can be accessed, read, and/or executed by
a computer.
0045. The code may be executed by one or more proces
sors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte
grated circuits (ASICs), field programmable logic arrays (FP
GAS), or other equivalent integrated or discrete logic cir
cuitry. Accordingly, the term “processor, as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, the functionality
described herein may be provided within dedicated software
units or hardware units configured for encoding and decod
ing, or incorporated in a combined video encoder-decoder
(CODEC). Depiction of different features as units is intended
to highlight different functional aspects of the devices illus
trated and does not necessarily imply that Such units must be
realized by separate hardware or Software components.
Rather, functionality associated with one or more units may
be integrated within common or separate hardware or soft
ware components.
0046 Various embodiments of this disclosure have been
described. These and other embodiments are within the scope
of the following claims.

US 2010/0328425 A1

What is claimed is:
1. A video decoding system comprising:
a decoder configured to receive encoded video data and

decode the encoded video data into an uncompressed
format and a compressed texture format;

a memory configured to store the uncompressed format of
data; and

a display processor configured to receive the compressed
texture format of data, and configured to construct a 3D
Scene utilizing the compressed texture format of data
and output data representative of the 3D scene.

2. The video decoding system of claim 1, wherein the
uncompressed format is a YUV 4:2:0 format.

3. The video decoding system of claim 1, wherein the
uncompressed format is a YUV 4:2:2 format.

4. The video decoding system of claim 1, wherein the
compressed format is a RGB format.

5. The video decoding system of claim 1, wherein the
compressed format is one of a DXT, ATI, or ETC1 format.

6. The video decoding system of claim 1, further compris
ing a display configured to display the 3D scene.

7. The video decoding system of claim 1, wherein the
display processor is further configured to render the uncom
pressed format of data for display.

8. The video decoding system of claim 7, wherein the
display processor is further configured to receive the uncom
pressed format of data and selectively output an image to a
display device based on either the uncompressed format of
data or the data representative of the 3D scene.

9. The video decoding system of claim 1, further compris
ing a memory for storing said compressed format of data.

10. A method of decoding video, comprising:
receiving encoded video data;
decoding the encoded video data into an uncompressed

format and a compressed format;
storing the uncompressed format of data;
reading the compressed format of data for rendering as part

of a 3D scene; and
outputting data representative of the 3D scene.

Dec. 30, 2010

11. The method of claim 10, wherein the encoded video
data is representative of a 2D video scene.

12. The method of claim 10, wherein the uncompressed
format is a YUV 4:2:0 format.

13. The method of claim 10, wherein the uncompressed
format is a YUV 4:2:2 format.

14. The method of claim 10, wherein the compressed for
mat is a RGB format.

15. The method of claim 10, wherein the compressed for
mat is one of a DXT, ATI, or ETC1 format.

16. The method of claim 10, further comprising rendering
the uncompressed format of data for display.

17. The method of claim 17, further comprising selectively
outputting an image to a display device based on either the
uncompressed format of data or the data representative of the
3D scene.

18. The method of claim 10, further comprising storing the
compressed format of data.

19. A video decoder, comprising:
means for receiving encoded video data;
means for decoding said encoded video data into an

uncompressed format and a compressed format;
means for storing the uncompressed format of data; and
means for reading the compressed format of data for ren

dering.
20. The video decoder of claim 19, wherein the means for

receiving comprises a decoder, wherein the means for decod
ing comprises the decoder, wherein the means for storing
comprises a memory, and wherein the means for reading
comprises a display processor.

21. A computer-readable medium, comprising instructions
that when executed perform a method comprising:

receiving encoded video data;
decoding the encoded video data into an uncompressed

format and a compressed format;
storing the uncompressed format of data;
reading the compressed format of data for rendering as part

of a 3D scene; and
outputting data representative of the 3D scene.

c c c c c

