

US 20120163997A1

(19) United States

(12) Patent Application Publication (10) Pu Shepard et al. (43) Pu

(10) Pub. No.: US 2012/0163997 A1

(43) **Pub. Date:**

Jun. 28, 2012

(54) VANE COMPRESSOR WITH INTEGRATED MOTOR

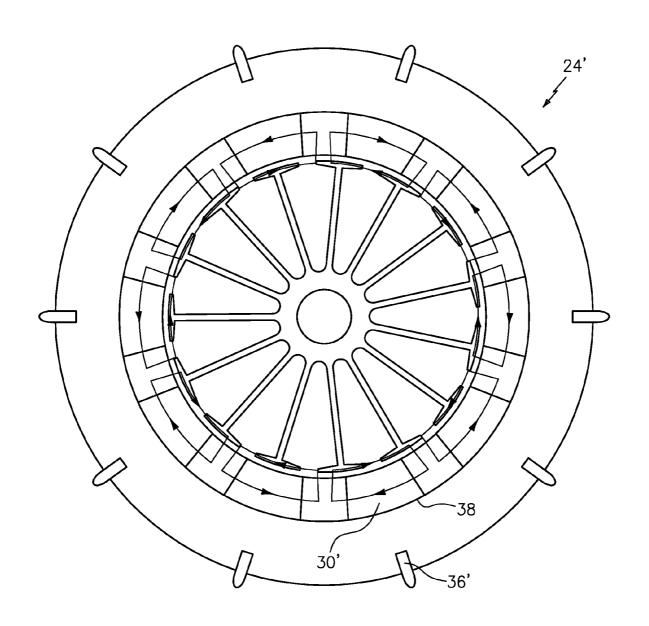
(76) Inventors: Charles Shepard, DeKalb, IL

(US); Shin Kasumata, Rockford, IL (US); Kris H. Campbell, Poplar Grove, IL (US); Jacek F. Gieras,

Glastonbury, CT (US)

(21) Appl. No.: 12/978,736

(22) Filed: Dec. 27, 2010


Publication Classification

(51) Int. Cl.

F04B 49/00 (2006.01) **F04B 17/03** (2006.01)

(57) ABSTRACT

A rotor disk of a vane compressor includes a multiple of slots along an outer diameter and a multiple of magnets along an inner diameter. Each of the multiple of slots is radially aligned with one of the multiple of magnets.

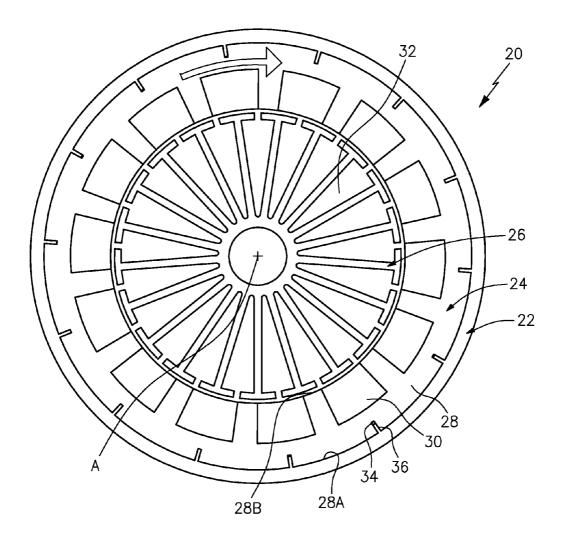
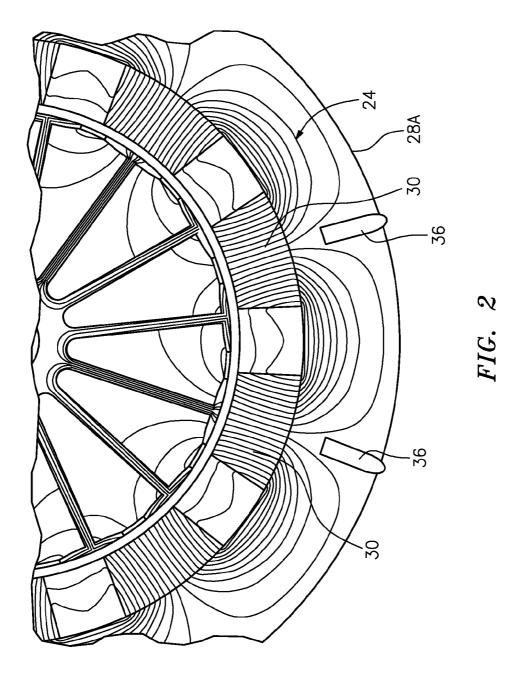



FIG. 1

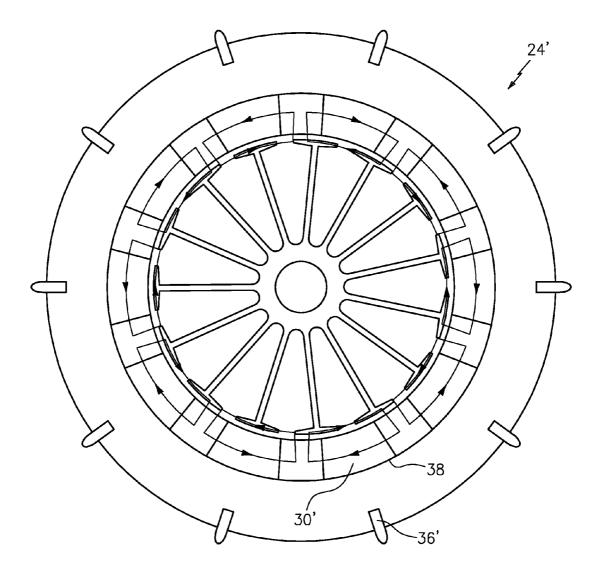


FIG. 3

VANE COMPRESSOR WITH INTEGRATED MOTOR

BACKGROUND

[0001] The present disclosure relates to a vane compressor and more particularly to a vane compressor with an integral motor.

[0002] Rotary vane compressors utilize vanes that work with a cam or sealing surface to form a series of decreasing volumes. With suitable port connections, the rotary vane compressor may operate as a pump.

SUMMARY

[0003] A rotor according to an exemplary aspect of the present disclosure includes a rotor disk with a multiple of slots along an outer diameter and a multiple of magnets along an inner diameter. Each of the multiple of slots is radially aligned with one of the multiple of magnets.

[0004] A rotary vane compressor according to an exemplary aspect of the present disclosure includes a rotor within a non-circular cam. A stator within the rotor forms a motor to rotate the rotor within the non-circular cam about the stator.

[0005] A method of minimizing a rotor diameter within a rotary vane compressor according to an exemplary aspect of the present disclosure includes locating each of a multiple of vanes within respect to a magnetic field to minimize disruption to the magnetic field.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:

[0007] FIG. 1 is a general schematic view of a rotary compressor system;

[0008] FIG. 2 is a schematic view of the magnetic field lines within the rotary compressor system and the location of the vanes thereto in one non-limiting embodiment; and

[0009] FIG. 3 is a schematic view of another non-limiting embodiment of the rotary compressor system with the magnets arranged 90 degrees from the non-limiting embodiment of the FIG. 2

DETAILED DESCRIPTION

[0010] FIG. 1 schematically illustrates a rotary compressor system 20. The rotary compressor system 20 generally includes a non-circular cam 22, a rotor 24 and a stator 26. The rotor 24 includes a rotor disk 28 with a multiple of magnets 30. The rotor disk 28 interacts with the stator 26 to form an integral motor 32 to drive the rotor 24 about an axis of rotation A within the non-circular cam 22. The integral motor 32 is essentially an inside-out motor at the center of the rotary compressor system 20 which reduces the overall size and weight of the system through combination of several components.

[0011] The rotor disk 28 defines a multiple of slots 34 spaced apart about an outer diameter 28A thereof within which a movable vane 36 is respectively located. Each vane 36 is extensible and retractable within one of the respective slots 34 to form a seal with the non-circular cam 22. The

magnets 30 are located along an inner diameter 28B of the rotor disk 28. The magnets 30 may be axially integrated within the rotor disk 28.

[0012] The number of phases of the motor 32 is matched to the number of vanes 36. That is, each vane 36 is associated and radially aligned with each magnet 30 to facilitate a reduction in the size of the rotor disk 28 as the vanes 36 may thereby be located closer to the inner diameter 28B without disruption to the magnetic field (FIG. 2). That is, each vane 36 is radially aligned with each magnet 30 such that each vane 36 is nestled between the magnetic field lines formed between associated magnets 30.

[0013] With reference to FIG. 3, the magnets 30' may be rotated 90 degrees as compared to the non-limiting embodiment described above. The rotation of the magnets 30' removes the need for a back iron from an electromagnetism standpoint permits location of the vanes 36' to be located adjacent to the magnets 30'. A relatively small ring 38 may be located about the magnets 30' for mechanical support to further reduce the outer radius of the rotor 24' and reduce the overall size of the compressor system.

[0014] Integration of the motor 32 minimizes the potential for rotor tipping and reduces the number of complex parts.

[0015] It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom.

[0016] Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present disclosure.

[0017] The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason the appended claims should be studied to determine true scope and content.

What is claimed is:

- 1. A rotor comprising:
- a rotor disk with a multiple of slots along an outer diameter of said rotor disk; and
- a multiple of magnets located along an inner diameter of said rotor disk, each of said multiple of slots radially aligned with one of said multiple of magnets.
- 2. The rotor as recited in claim 1, further comprising a vane mounted within each of said multiple of slots.
- 3. The rotor as recited in claim 1, wherein said multiple of magnets are located axially within the rotor disk.
- **4**. The rotor as recited in claim **1**, wherein said multiple of magnets are oriented to avoid need for a back iron.
- 5. The rotor as recited in claim 1, wherein said multiple of magnets are oriented to define a circumferential magnetic field.
 - **6**. A rotary vane compressor comprising:
 - a non-circular cam;
 - a rotor within said non-circular cam; and
 - a stator within said rotor to form a motor to rotate said rotor within said non-circular cam about said stator.

- 7. The vane compressor as recited in claim 6, wherein said rotor includes a rotor disk with a multiple of slots along an outer diameter and a multiple of magnets along an inner diameter, each of said multiple of slots radially aligned with one of said multiple of magnets.
- 8. The vane compressor as recited in claim 6, further comprising a vane mounted within each of said multiple of slots to form a seal with said non-circular cam.
- 9. The vane compressor as recited in claim 6, wherein said multiple of magnets are oriented to define a circumferential magnetic field.
- 10. A method of minimizing a rotor diameter within a rotary vane compressor comprising:
 - locating each of a multiple of vanes within respect to a magnetic field to minimize disruption to the magnetic field.
- 11. The method as recited in claim 10, further comprising locating each of the multiple of vanes radially outboard of a respective magnet.
- 12. The method as recited in claim 10, further comprising circumferentially orienting the magnetic field.

* * * * *