Title of the Invention: Method for compensation for amolned IR drop

Abstract Title: Method for compensation for amolned IR drop

A method for compensation for AMOLED IR drop comprises: step 1, starting from a COF end of an AMOLED, a luminance value L of each column of light emitting units of a panel is measured; step 2, a curve of luminance change of the columns of light emitting units caused by IR Drop is drawn; step 3, a voltage value, which needs be compensated between every two adjacent columns of light emitting units, is calculated from a difference value of luminance between every two adjacent columns of light emitting units on the basis of a scaling conversion relation between luminance difference ΔL and voltage difference ΔV, i.e., ΔV=α·ΔL; and step 4, when a time schedule controller sends a data voltage signal and a picture is displayed, the data voltages of the first column of light emitting units are not compensated, a first compensation value ΔV1 is added to the data voltages of the second column of light emitting units, the sum (ΔV1+ΔV2) of the first compensation value and a second compensation value is added to the data voltages of the third column of light emitting units, and by analogy, compensation for the data voltages of the last column of light emitting units is realized. The method can solve the problem that luminance mura occurs due to IR Drop in large-size AMOLED display devices.
(72) Inventor(s):
Taijiun Hwang
Jihshiang Lee

(74) Agent and/or Address for Service:
Alfred Lei
Suite 152, 23 King Street, CAMBRIDGE, CB1 1AH,
United Kingdom
step 1, measuring a brightness value L of each light-emitting element line of a panel by starting from a COF end of the AMOLED;

step 2, drawing a brightness variation curve of the each light-emitting element line caused by IR Drop according to the brightness value L of the each light-emitting element line measured in the step 1;

step 3, calculating a voltage value for compensation of every two adjacent light-emitting elements from difference values between the brightnesses of every two adjacent light-emitting elements according to a ratio conversion between a brightness difference ΔL and a voltage difference ΔV, i.e. $\Delta V = \alpha \cdot \Delta L$, wherein α is a scaling factor;

a voltage value for compensation required for a second light-emitting element line relative to a first light-emitting element line is a first compensation value ΔV_1, and a voltage value for compensation required for a third light-emitting element line relative to the second light-emitting element line is a second compensation value ΔV_2, and so on to a last light-emitting element line.

step 4, making no compensation to a data voltage of the first light-emitting element line, and adding the first compensation value ΔV_1 to a data voltage of the second light-emitting element line, and adding a sum ($\Delta V_1 + \Delta V_2$) of the first and the second compensation value to a data voltage of a third light-emitting element line and so on to the last light-emitting element line when a sequence controller transmits data voltage signals for showing images.
METHOD OF COMPENSATING AMOLED POWER SUPPLY VOLTAGE DROP

FIELD OF THE INVENTION

[0001] The present invention relates to a display technology field, and more particularly to a method of compensating AMOLED power supply voltage drop.

BACKGROUND OF THE INVENTION

[0002] The Organic Light-Emitting Display (OLED) utilizes the phenomenon that the illumination due to the carrier injection and recombination under the electric field driving of organic semiconductor illuminating material. The illuminating principle is that the Indium Tin Oxide (ITO) transparent electrode and the metal electrode are respectively employed as the anode and the cathode of the Display. Under certain voltage driving, the Electron and the Hole are respectively rejected into the Electron and Hole Transporting Layers from the cathode and the anode. The Electron and the Hole respectively migrate from the Electron and Hole Transporting Layers to the Emitting layer and bump into each other in the Emitting layer to form an exciton to excite the emitting molecule. The latter can illuminate after the radiative relaxation.

[0003] The OLED possesses advantages of being thinner, lighter, active lighting (without a backlight source), no view angle concern, high resolution, high brightness, fast response, low power consumption, wide usage temperature range, strong anti-shock ability, low manufacture cost and possible flexible display.

[0004] The OLED can be categorized into two major types, which are the passive driving and the active driving, i.e. the direct addressing and the Thin Film Transistor (TFT) matrix addressing. The active driving is also called Active Matrix (AM) type. Each light-emitting element in the AMOLED is independently
controlled by TFT addressing. The light-emitting element and the pixel structure comprising the TFT addressing circuit require the power supply signal line to load the direct current output voltage (OVDD) for driving.

[0005] However, in a large scale AMOLED display device, a certain resistance unavoidably exists for a backplate power supply signal line. The driving current for all the pixels are provided by the OVDD. The power supply voltage in the area close to the OVDD power supplying position is higher than the power supply voltage in the area away from the power supplying position. The phenomenon is named power supply voltage drop (IR Drop). Because the voltage and the current of the OVDD are related. The IR Drop can cause the current difference among different areas which the uneven brightness (mura) phenomenon can happen thereby as displaying.

[0006] For now, the compensation method of AMOLED has internal compensation and external compensation. The internal compensation of the AMOLED is to compensate the threshold voltage (Vth) of the TFT or the channel mobility (\(\mu\)) but not the IR drop; the external compensation can be optical compensation and electrical compensation. The electrical compensation can merely compensate the threshold voltages of the driving TFT and the OLED but not the IR Drop. The optical compensation can compensate the IR Drop but the compensation in time cannot be achievable.

SUMMARY OF THE INVENTION

[0007] An objective of the present invention is to provide a method of compensating AMOLED power supply voltage drop to solve the issue of uneven brightness caused by IR Drop in a large scale AMOLED display device.

[0008] For realizing the aforesaid objective, the present invention provides a method of compensating AMOLED power supply voltage drop, comprising steps of:

[0009] step 1, measuring a brightness value \(L\) of each light-emitting element
line of a panel by starting from a COF end of the AMOLED;

[0010] Step 2, drawing a brightness variation curve of the each light-emitting element line caused by IR Drop according to the brightness value L of the each light-emitting element line measured in the step 1;

[0011] Step 3, calculating a voltage value for compensation of every two adjacent light-emitting elements from difference values between the brightnesses of every two adjacent light-emitting elements according to a ratio conversion between a brightness difference ΔL and a voltage difference ΔV, i.e. ΔV = α· ΔL, wherein α is a scaling factor;

[0012] A voltage value for compensation required for a second light-emitting element line relative to a first light-emitting element line is a first compensation value ΔV₁, and a voltage value for compensation required for a third light-emitting element line relative to the second light-emitting element line is a second compensation value ΔV₂, and so on to a last light-emitting element line;

[0013] Step 4, making no compensation to a data voltage of the first light-emitting element line, and adding the first compensation value ΔV₁ to a data voltage of the second light-emitting element line, and adding a sum (ΔV₁+ΔV₂) of the first and the second compensation value to a data voltage of a third light-emitting element line and so on to the last light-emitting element line when a sequence controller transmits data voltage signals for showing images.

[0014] In the brightness variation curve of the step 2, the measured brightness value of the each light-emitting element line gets lower and lower when the line number of the light-emitting element increases.

[0015] A calculation employed in the step 3 is:

\[ΔV_{n-1} = α \cdot ΔL_{n-1} = α \cdot (L_n - L_{n-1}) \]

[0016] \(ΔV_{n-1} \) is an \(n \)-th voltage value for compensating an \(n \)th and an \(n-1 \)th light-emitting element lines, and \(ΔL_{n-1} \) is a brightness difference value of a brightness \(L_n \) of the \(n \)th light-emitting element line and a brightness \(L_{n-1} \) of the
n-1th light-emitting element line, and n is a positive integer larger than 1.

[0017] A calculation employed in the step 4 is:

\[
\begin{align*}
V_1 &= V_{\text{data}} \\
V_n &= V_{\text{data}} + \sum_{i=2}^{n} \Delta V_{i-1}
\end{align*}
\]

[0018] \(V_n\) represents an ultimately required voltage for the nth light-emitting element line, and \(V_{\text{data}}\) represents the data voltage, and n is a positive integer larger than 1.

[0019] The voltage value for compensation is directly added on the data voltage without an additional compensation circuit.

[0020] The voltage value for compensation of every two adjacent light-emitting elements obtained in the step 3 is stored in a memory unit.

[0021] The method of compensating AMOLED power supply voltage drop is applied to an OVD single drive AMOLED display device or an OVD double drive AMOLED display device. The benefits of the present invention are: the present invention provides a method of compensating AMOLED power supply voltage drop to convert the brightness difference value caused by IR Drop into the voltage difference value, and to perform corresponding voltage compensation to the each light-emitting element line to solve the issue of uneven brightness caused by IR Drop in a large scale AMOLED display device. The calculation is not complex and additional circuit is not demanded which can diminish the circuit area and increase the aperture ratio.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] In order to better understand the characteristics and technical aspect of the invention, please refer to the following detailed description of the present invention is concerned with the diagrams, however, provide reference to the accompanying drawings and description only and is not intended to limit the invention.
[0023] In drawings,
[0024] FIG. 1 is a flowchart of a method of compensating AMOLED power supply voltage drop according to the present invention;
[0025] FIG. 2 is a diagram of an OVDD single drive AMOLED display device applied with the method of compensating AMOLED power supply voltage drop according to the present invention;
[0026] FIG. 3 is a brightness variation curve of the OVDD single drive AMOLED display device shown in FIG. 2;
[0027] FIG. 4 is a diagram of an OVDD double drive AMOLED display device applied with the method of compensating AMOLED power supply voltage drop according to the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0028] For better explaining the technical solution and the effect of the present invention, the present invention will be further described in detail with the accompanying drawings and the specific embodiments.

[0029] Please refer to FIG. 1. The present invention provides a method of compensating AMOLED power supply voltage drop, comprising steps of:

[0030] step 1, measuring a brightness value L of each light-emitting element line of a panel by starting from a Chip On Film (COF) end of the AMOLED.

[0031] FIG. 2 is a diagram of an OVDD single drive AMOLED display device applied with the method of compensating AMOLED power supply voltage drop according to the present invention. The OVDD single drive AMOLED display device comprises a display panel 1, an OVDD power supply line 2, an X board 3 and a COF end 4. In combination with FIG. 2, as performing the step 1 of measuring a brightness value L of each light-emitting element line of a panel, the measurement starts from the COF end 4 along the wiring direction of the OVDD power supply line 2 from left to right, the brightness value of each light-emitting element line is measured sequentially.
step 2, drawing a brightness variation curve of the each light-emitting element line caused by IR Drop according to the brightness value \(L \) of the each light-emitting element line measured in the step 1.

FIG. 3 is a brightness variation curve of the OVDD single drive AMOLED display device shown in FIG. 2. The X axis is the line number of the measured light-emitting element. The Y axis is the brightness value \(L \). As shown in FIG. 3, along with the increasing line number of the light-emitting element, the OVDD power supply line 2 gets longer. With the influence of IR Drop, the measured brightness value of the each light-emitting element line gets lower and lower.

step 3, calculating a voltage value for compensation of every two adjacent light-emitting elements from difference values between the brightnesses of every two adjacent light-emitting elements according to a ratio conversion between a brightness difference \(\Delta L \) and a voltage difference \(\Delta V \), i.e. \(\Delta V = \alpha \cdot \Delta L \), wherein \(\alpha \) is a scaling factor.

Specifically, a voltage value for compensation required for a second light-emitting element line relative to a first light-emitting element line is a first compensation value \(\Delta V_1 \), and a voltage value for compensation required for a third light-emitting element line relative to the second light-emitting element line is a second compensation value \(\Delta V_2 \), and so on to a last light-emitting element line.

which is: \(\Delta V_{n-1} = \alpha \cdot \Delta L_{n-1} = \alpha \cdot (L_n - L_{n-1}) \)

\(\Delta V_{n-1} \) is an \(n-1 \)th voltage value for compensating an \(n \)th and an \(n-1 \)th light-emitting element lines, and \(\Delta L_{n-1} \) is a brightness difference value of a brightness \(L_n \) of the \(n \)th light-emitting element line and a brightness \(L_{n-1} \) of the \(n-1 \)th light-emitting element line, and \(n \) is a positive integer larger than 1.

The voltage value for compensation of every two adjacent light-emitting elements obtained in the step 3 is stored in a memory unit.

step 4, making no compensation to a data voltage of the first light-emitting element line, and adding the first compensation value \(\Delta V_1 \) to a
data voltage of the second light-emitting element line, and adding a sum
($\Delta V_1 + \Delta V_2$) of the first and the second compensation value to a data voltage of
a third light-emitting element line and so on to the last light-emitting element
line when a sequence controller transmits data voltage signals for showing
images.

$$
\begin{align*}
V_1 &= V_{\text{data}} \\
V_n &= V_{\text{data}} + \sum_{i=2}^{n} \Delta V_{i-1}
\end{align*}
$$

[0040] which is:

[0041] V_n represents an ultimately required voltage for the nth light-emitting
element line, and V_{data} represents the data voltage, and n is a positive integer
larger than 1.

[0042] In the step 4, the voltage compensation to each light-emitting element is
directly added on the data voltage without an additional compensation circuit.
Accordingly, the circuit area can be diminished and the aperture ratio can be
increased.

[0043] With the four steps to perform voltage compensation to each
light-emitting element, the AMOLED power supply voltage drop can be
effectively compensated to solve the issue of uneven brightness caused by IR
Drop in a large scale AMOLED display device.

[0044] FIG. 4 is a diagram of an OVDD double drive AMOLED display device
applied with the method of compensating AMOLED power supply voltage drop
according to the present invention. Compared with the OVDD single drive
AMOLED display device shown in FIG. 2, the OVDD double drive AMOLED
display device further comprises a second X board 3’ and a second COF end
4’ to implement the double scan drive. The X board 3 and the COF end 4 are
served in a forward driving. The aforesaid step 1 is performed from left to right
to measure the brightness value of the each light-emitting element line. The
line number of the measured light-emitting element increases from left to right;
the X board 3’ and the COF end 4’ are served in a backward driving. The
aforesaid step 1 is performed from right to left to measure the brightness value of the each light-emitting element line. The line number of the measured light-emitting element increases from right to left. The rest steps remain the same. The repeated description is omitted here.

[0045] In conclusion, the present invention provides a method of compensating AMOLED power supply voltage drop to convert the brightness difference value caused by IR Drop into the voltage difference value, and to perform corresponding voltage compensation to the each light-emitting element line to solve the issue of uneven brightness caused by IR Drop in a large scale AMOLED display device. The calculation is not complex and additional circuit is not demanded which can diminish the circuit area and increase the aperture ratio.

[0046] Above are only specific embodiments of the present invention, the scope of the present invention is not limited to this, and to any persons who are skilled in the art, change or replacement which is easily derived should be covered by the protected scope of the invention. Thus, the protected scope of the invention should go by the subject claims.
WHAT IS CLAIMED IS:

1. A method of compensating AMOLED power supply voltage drop, comprising steps of:

 step 1, measuring a brightness value L of each light-emitting element line of a panel by starting from a COF end of the AMOLED;

 step 2, drawing a brightness variation curve of the each light-emitting element line caused by IR Drop according to the brightness value L of the each light-emitting element line measured in the step 1;

 step 3, calculating a voltage value for compensation of every two adjacent light-emitting elements from difference values between the brightnesses of every two adjacent light-emitting elements according to a ratio conversion between a brightness difference ΔL and a voltage difference ΔV, i.e. ΔV = α · ΔL, wherein α is a scaling factor;

 a voltage value for compensation required for a second light-emitting element line relative to a first light-emitting element line is a first compensation value ΔV₁, and a voltage value for compensation required for a third light-emitting element line relative to the second light-emitting element line is a second compensation value ΔV₂, and so on to a last light-emitting element line;

 step 4, making no compensation to a data voltage of the first light-emitting element line, and adding the first compensation value ΔV₁ to a data voltage of the second light-emitting element line, and adding a sum (ΔV₁+ΔV₂) of the first and the second compensation value to a data voltage of a third light-emitting element line and so on to the last light-emitting element line when a sequence controller transmits data voltage signals for showing images.

2. The method of compensating AMOLED power supply voltage drop according to claim 1, wherein in the brightness variation curve of the step 2, the measured brightness value of the each light-emitting element line gets lower and lower when the line number of the light-emitting element increases.

3. The method of compensating AMOLED power supply voltage drop according
to claim 1, wherein a calculation employed in the step 3 is:

\[\Delta V_{n-1} = \alpha \cdot \Delta L_{n-1} = \alpha \cdot (L_n - L_{n-1}) \]

\(\Delta V_{n-1} \) is an \(n \)-th voltage value for compensating an \(n \)-th and an \(n-1 \)-th light-emitting element lines, and \(\Delta L_{n-1} \) is a brightness difference value of a brightness \(L_n \) of the \(n \)-th light-emitting element line and a brightness \(L_{n-1} \) of the \(n-1 \)-th light-emitting element line, and \(n \) is a positive integer larger than 1.

4. The method of compensating AMOLED power supply voltage drop according to claim 2, wherein a calculation employed in the step 4 is:

\[
\begin{align*}
V_1 &= V_{data} \\
V_n &= V_{data} + \sum_{i=2}^{n} \Delta V_{i-1}
\end{align*}
\]

\(V_n \) represents an ultimately required voltage for the \(n \)-th light-emitting element line, and \(V_{data} \) represents the data voltage, and \(n \) is a positive integer larger than 1.

5. The method of compensating AMOLED power supply voltage drop according to claim 1, wherein the voltage value for compensation is directly added on the data voltage without an additional compensation circuit.

6. The method of compensating AMOLED power supply voltage drop according to claim 1, wherein the voltage value for compensation of every two adjacent light-emitting elements obtained in the step 3 is stored in a memory unit.

7. The method of compensating AMOLED power supply voltage drop according to claim 1, wherein the method is applied to an OVDD single drive AMOLED display device or an OVDD double drive AMOLED display device.

8. A method of compensating AMOLED power supply voltage drop, comprising steps of:

 step 1, measuring a brightness value \(L \) of each light-emitting element line of a panel by starting from a COF end of the AMOLED;

 step 2, drawing a brightness variation curve of the each light-emitting element line caused by IR Drop according to the brightness value \(L \) of the each
light-emitting element line measured in the step 1;

step 3, calculating a voltage value for compensation of every two adjacent light-emitting elements from difference values between the brightnesses of every two adjacent light-emitting elements according to a ratio conversion between a brightness difference ΔL and a voltage difference ΔV, i.e. $\Delta V = \alpha \cdot \Delta L$, wherein α is a scaling factor;

a voltage value for compensation required for a second light-emitting element line relative to a first light-emitting element line is a first compensation value ΔV_1, and a voltage value for compensation required for a third light-emitting element line relative to the second light-emitting element line is a second compensation value ΔV_2, and so on to a last light-emitting element line;

step 4, making no compensation to a data voltage of the first light-emitting element line, and adding the first compensation value ΔV_1 to a data voltage of the second light-emitting element line, and adding a sum ($\Delta V_1 + \Delta V_2$) of the first and the second compensation value to a data voltage of a third light-emitting element line and so on to the last light-emitting element line when a sequence controller transmits data voltage signals for showing images;

wherein in the brightness variation curve of the step 2, the measured brightness value of the each light-emitting element line gets lower and lower when the line number of the light-emitting element increases;

wherein a calculation employed in the step 3 is:

$$\Delta V_{n-1} = \alpha \cdot \Delta L_{n-1} = \alpha \cdot (L_n - L_{n-1})$$

ΔV_{n-1} is an n-1th voltage value for compensating an nth and an n-1th light-emitting element lines, and ΔL_{n-1} is a brightness difference value of a brightness L_n of the nth light-emitting element line and a brightness L_{n-1} of the n-1th light-emitting element line, and n is a positive integer larger than 1;

wherein a calculation employed in the step 4 is:
\[
\begin{align*}
V_1 &= V_{data} \\
V_n &= V_{data} + \sum_{i=2}^{n} \Delta V_{i-1}
\end{align*}
\]

\(V_n\) represents a ultimately required voltage for the \(n\)th light-emitting element line, and \(V_{data}\) represents the data voltage, and \(n\) is a positive integer larger than 1.

9. The method of compensating AMOLED power supply voltage drop according to claim 8, wherein the voltage value for compensation is directly added on the data voltage without an additional compensation circuit.

10. The method of compensating AMOLED power supply voltage drop according to claim 8, wherein the voltage value for compensation of every two adjacent light-emitting elements obtained in the step 3 is stored in a memory unit.

11. The method of compensating AMOLED power supply voltage drop according to claim 8, wherein the method is applied to an OVDD single drive AMOLED display device or an OVDD double drive AMOLED display device.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G09G 3/32 (2006.01) i
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G09G 3/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNTXT, CNABS, TWABS, TWTXT, CNKI, GOOGLE, WPI, EPDOC: IR W DROP+ OLED, light W emit+ W diode?, organic W electroluminescence+, Vdata, voltage, column, luminance, bright+, uniform+, compensat+, china star optoelectronics, voltage drop, even

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 101536071 A (EASTMAN KODAK CO.) 16 September 2009 (16.09.2009) description, page 5, the third paragraph, page 8, the last paragraph to page 9, the first paragraph, page 11, the last paragraph to page 12, the first paragraph, page 16, the last paragraph to page 21, the first paragraph, and figures 2, 5, 11, and 12</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 1424707 A (CANON KK) 19 June 2003 (19.06.2003) the whole document</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 1842855 A (KONINKL PHILIPS ELECTRONICS NV) 04 October 2006 (04.10.2006) the whole document</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>CN 87106310 A (N. V. PHILIP S GLOELAMPENFABRIKEN) 30 March 1988 (30.03.1988) the whole document</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>US 2007146252 A1 (EASTMAN KODAK COMPANY) 28 June 2007 (28.06.2007) the whole document</td>
<td>1-11</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search

17 July 2015

Date of mailing of the international search report

29 July 2015

Name and mailing address of the ISA

State Intellectual Property Office of the P. R. China
No. 6, Xitucheng Road, Haidian
Haidian District, Beijing 100088, China
Facsimile No. (86-10) 62019451

Authorized officer

WANG, Shaowei

Telephone No. (86-10) 82245658

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2012280970 A1 (PANASONIC CORPRATION) 08 November 2012 (08.11.2012) the whole document</td>
<td>1-11</td>
</tr>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CN 101536071 A</td>
<td>16 September 2009</td>
<td>JP 2014063175 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20090077061 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101536071 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008100542 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102231260 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102231260 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7872619 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2078300 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010508559 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 101280460 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006038836 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7414622 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1265338 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008204483 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003122759 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003255884 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3927900 B</td>
</tr>
<tr>
<td>CN 1842835 A</td>
<td>04 October 2006</td>
<td>JP 2007504487 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005022500 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20060132794 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006261841 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200515828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7868856 B2</td>
</tr>
<tr>
<td>CN 87106310 A</td>
<td>30 March 1988</td>
<td>JP 56377030 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8602327 A</td>
</tr>
<tr>
<td>Patent Documents referred in the Report</td>
<td>Publication Date</td>
<td>Patent Family</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004247284 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200415541 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 584820 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009521719 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1964096 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7764252 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5443002 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9019323 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8933923 B2</td>
</tr>
</tbody>
</table>