Title: EXCAVATING METHOD AND APPARATUS

Abstract: An excavation apparatus includes a support structure mountable to a truck bed, the support structure defining a longitudinal direction extending front-to-back of the truck bed, and a lateral direction extending side-to-side of the truck bed. The apparatus further includes a rotary spindle pivotably supported by the support structure at a first pivot joint defining a generally horizontal first pivot axis, the spindle extending lengthwise along a spindle axis and rotatable thereabout for driving a cutting head; the spindle pivotable about the horizontal first pivot axis between a stowed position wherein the spindle axis is generally horizontal, and a deployed position wherein the spindle axis is generally vertical. The support structure includes a first adjustment device for adjusting the position of the spindle in the longitudinal direction when deployed, and a second adjustment device for adjusting the position of the spindle in the lateral direction when deployed.
FIELD

[0001] The teaching disclosed herein relates to one or methods and/or apparatuses for excavating, particularly localized excavating in which holes are provided in the ground and/or finished surfaces on the ground.

BACKGROUND

[0002] U.S. Pat. No. 5,451,128 (Hattersley) discloses a cutter blade having a cutting face. Formed in the cutting face are a plurality of spaced apart slots, each slot having forward and rearward sidewalls. A tooth is removably received in each of the slots, each tooth having a top surface extending above the cutting face and having forward and rearward sidewalls. The top surface of each tooth has a forward cutting edge and a rearward reduced height step section. A retention bar is provided for each tooth, each retention bar having a forward end that is received in the step section. A pin extending through an opening in each retention bar is threadably connected to the cutting face. By tightening the threaded pin the retention bar retains each tooth during cutting operation so that the tooth sidewalls frictionally engage the slot sidewalls and by unthreading the pin the retention bar may be rotated to permit removal and replacement of each of the teeth.

[0003] U.S. Pat. No. 7,128,165 (McGivery) discloses a system and method of cutting a core out of a finished surface for keyhole excavation, using a truck with a turret to which a support arm supporting the cutter assembly is mounted, and a stabilizing member remote from the turret, which allows the turret to be rotated about its complete arc of motion while stabilizing the support arm at any desired position about the truck. In a first embodiment the invention comprises an upstanding support rim affixed to or integrated into the bed of the truck. In a further embodiment the invention comprises a support member affixed to the horizontal arm and supported by the truck bed. This is disclosed as making the keyhole excavation procedure safer and more precise, and allowing a larger-depth cutting head to be used in
order to penetrate thicker finished surfaces. In the preferred embodiment the cutter head is provided with a pilot which creates a pilot hole in the core that may facilitate removal, manipulation and replacement of the core, and may improve the integrity of the reinstated core.

5 SUMMARY

[0004] The following summary is intended to introduce the reader to this specification but not to define any invention. In general, this specification discusses one or more methods or apparatuses related to an excavation apparatus. In one example, the excavation apparatus comprises a support structure mountable to a truck bed extending along a longitudinal direction extending front-to-back of the truck bed, and a lateral direction extending side-to-side of the truck bed; and further comprising a rotary spindle pivotably supported by the support structure at a first pivot joint defining a generally horizontal first pivot axis. The spindle extends lengthwise along a spindle axis and is rotatable thereabout for driving a cutting head, and pivotable about the horizontal first pivot axis between a stowed position wherein the spindle axis is generally horizontal, and a deployed position wherein the spindle axis is generally vertical. The support structure comprises a first adjustment device coupling the spindle to the support structure for adjusting the position of the spindle in the longitudinal direction when deployed, and a second adjustment device coupling the spindle to the support structure for adjusting the position of the spindle in the lateral direction when deployed.

[0005] In some examples, the first adjustment device can comprise a horizontal slide mountable to the truck bed and the second adjustment device can comprise a second pivot joint defining a second pivot axis generally parallel to the spindle axis, the spindle pivotable relative to the truck bed about the second pivot axis. The support structure can further include a carriage coupled to the slide and a pivot arm pivotably connected to the carriage at the first pivot joint, the spindle supported by the pivot arm. A
deployment actuator can be coupled to the pivot arm for pivoting the spindle
between the deployed and stowed positions.

[0006] In some examples, the support structure can include a
subframe, the spindle coupled to the subframe, and the subframe pivotably
connected to the pivot arm at the second pivot joint. The subframe can
5 comprise a track extending parallel to the spindle axis. A spindle carrier can
be slidably coupled to the track, the spindle rotatably supported by the spindle
carrier. A spindle motor can be fixed to the spindle carrier for driving the
spindle and a press actuator can be coupled to the spindle carrier and the
subframe for moving the spindle carrier along the track.

[0007] In some examples, the subframe can comprise a swivel
positioning device for pivoting the subframe about the second pivot joint to a
desired angular position relative to the pivot arm.

[0008] In some examples, the excavation apparatus can include a
15 plurality of stabilizers configured to bear against the ground adjacent the
cutting head during penetration of the ground thereby. The plurality of
stabilizers can comprise a plurality of ground-engaging feet extending from a
lower end of the subframe, and three ground-engaging feet arranged in a
triangular configuration about the perimeter of the cutting head. Each one of
the stabilizers can further include an extendible member extending between
the subframe and a respective one of the ground-engaging feet. The
extendible member can include a hydraulic cylinder. The lower end of the
subframe can comprise a stabilizer mounting member to which the ground
engaging feet are attached.

[0009] In some examples, the excavation apparatus can include a
25 horizontal slide mountable to a truck bed; a carriage coupled to the slide and
movable between a retracted position when stowed and a variety of advanced
positions for adjusting the front-to-back position of the spindle when deployed;
and a rotary spindle coupled to the carriage, the spindle extending lengthwise
along a spindle axis and rotatable thereabout for driving a cutting head. The
spindle can be pivotable about a first generally horizontal pivot axis for
pivoting the spindle between a generally horizontal position when stowed and a generally vertical position when deployed. The spindle can also be pivotable about a second pivot axis parallel to the spindle for adjusting the lateral position of the spindle when deployed.

In some examples, an excavation apparatus is provided with a rotary spindle for supporting a cutting head, the spindle extending lengthwise along a spindle axis; a subframe including a press actuator movable for advancing and retracting the spindle parallel to the spindle axis; and a pivot arm having a first pivot joint and a second pivot joint spaced apart from the first pivot joint, the first pivot joint defining a horizontal pivot axis, the second pivot joint defining a second pivot axis parallel to the spindle axis. The subframe can be pivotably connected to the pivot arm at the second pivot joint. The apparatus can further include a horizontal slide mountable to a truck bed, the slide including a carriage movable along the slide, and the pivot arm pivotably connected to the carriage at the first pivot joint.

Other aspects and features of the present specification will become apparent, to those ordinarily skilled in the art, upon review of the following description of the specific examples of the specification.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the present specification and are not intended to limit the scope of what is taught in any way. In the drawings:

Figure 1 is a front view of an example of an excavation apparatus, shown in a deployed position;

Figure 2 is a perspective view of the apparatus of Figure 1, shown in a stowed position;

Figure 3 is a perspective view of the apparatus of Figure 1, shown in a partially stowed position;
Figure 4 is an enlarged view of a portion of the apparatus of Figure 3; Figure 4A is a section view of the apparatus of Figure 4 taken along the line 4A - 4A;

Figures 5, 6, and 7 are side, end, and top views, respectively, of a carriage member of the apparatus of Figure 1; Figures 8 and 9 are elevation and plan views, respectively, of a portion of a support structure of the apparatus of Figure 1; and Figures 10 and 11 are front views of the excavation apparatus of Figure 1, showing the spindle moved to the left and right positions, respectively.

DETAILED DESCRIPTION

Various apparatuses or processes will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover processes or apparatuses that are not described below. The claimed inventions are not limited to apparatuses or processes having all of the features of any one apparatus or process described below or to features common to multiple or all of the apparatuses described below. It is possible that an apparatus or process described below is not an embodiment of any claimed invention. The applicants, inventors or owners reserve all rights that they may have in any invention disclosed in an apparatus or process described below that is not claimed in this document, for example the right to claim such an invention in a continuing application and do not intend to abandon, disclaim or dedicate to the public any such invention by its disclosure in this document.

Referring to Figures 1, 2 and 3, an excavation apparatus 110 is shown mounted to the bed 112 of a truck 111. The excavation apparatus 110 comprises a support structure 114 mounted to the truck bed 112. The support
The excavation apparatus 110 further comprises a rotary spindle 120 pivotably connected to the support structure 114 at a first pivot joint 122. The spindle 120 extends lengthwise along a spindle axis 124 and is rotatable about the spindle axis 124 for driving a cutting head 126. The first pivot joint 122 defines a generally horizontal pivot axis 128 about which the spindle 120 can be pivoted between a stowed position (Figure 2), wherein the spindle axis 124 is generally horizontal, and a deployed position wherein the spindle axis 124 is generally vertical (Figure 1).

Referring now also to Figure 4, the support structure 114 comprises a first adjustment device 130 for adjusting the position of the spindle 120 in the longitudinal direction 116 when deployed, and a second adjustment device 132 for adjusting the position of the spindle 120 in the lateral direction 118 when deployed.

In the example illustrated, the first adjustment device 130 comprises a horizontal slide 134 mounted to the truck bed 112. The slide 134 comprises, in the example illustrated, a structural rail 136 extending parallel to the longitudinal direction 116. The support structure 114 comprises a carriage 138 that, in the example illustrated, is coupled to the rail 136. The rail 136 can be generally rectangular in cross section (Figure 4A), having opposed vertical side surfaces 140 and generally horizontal top and bottom surfaces 142, 144 extending between the side surfaces. The bottom surface 144 is, in the example illustrated, mounted above the truck bed 112 so that a gap 146 is provided between the bottom surface 144 of the rail 136 and an upper surface 148 of the truck bed 112. As seen in Figures 5, 6, and 7, the carriage 138 can be provided with side rollers 150, upper rollers 152, and lower rollers 154 that bear against the side 140, top 142, and bottom 144 surfaces of the rail 136.

The lower rollers 154 are accommodated by the gap 146, in the example illustrated. The rollers 150, 152, 154 can facilitate displacement of the
carriage 138 along the rail 136 and retention of the carriage 138 in coupled engagement with the rail 136.

[0026] The slide 134 can comprise a propulsion mechanism 158 for propelling the carriage 138 to a desired position along the rail 136. In the example illustrated, the rail 136 comprises a rack 160 (Figure 4A), and the carriage 138 comprises a pinion (not shown) engaged with the rack 160 and driven by a hydraulic motor. Rotation of the pinion in opposite directions causes a corresponding displacement of the carriage 138 in opposite directions along the rail 136.

[0027] Referring to Figures 4, 8, and 9, in the example illustrated, the second adjustment device 132 comprises a second pivot 168 joint defining a second pivot axis 170 about which the spindle 120 can be pivoted. The second pivot axis 170 is generally parallel to the spindle axis 124, and accordingly, is oriented generally vertically when the spindle 120 is in the deployed position. The spindle 120 is radially offset from the second pivot axis 170 (horizontally offset from the second pivot axis 170 when in the deployed position).

[0028] In the example illustrated, the second pivot joint 168 has a home position 168a in which, when the spindle 120 is in the deployed (vertical) position, the spindle axis 124 and the second pivot axis 170 are aligned in the longitudinal direction 116, with the spindle axis 124 positioned longitudinally rearward of the second pivot axis 170. Pivoting the spindle 120 about the second pivot axis 170 can thus adjust the position of the spindle 120 in the lateral direction 118 (i.e. along an arc extending longitudinally forward and laterally outward). In the example illustrated, the spindle 120 is pivotable about the second pivot axis 170 between a left position 168b (about 90 degrees clockwise from the home position when viewed from above) as seen in Figure 10, and a right position 168c (about 90 degrees counterclockwise from the home position 168a when viewed from above), as seen in Figure 11.

[0029] Further details of the excavation apparatus 110 and the first and second pivot joints 122, 168 are described with reference also to Figures 8
and 9. The support structure 114 of the illustrated example of the apparatus 110 further comprises a pivot arm 172 pivotably connected to the carriage 138 at the first pivot joint 122. The pivot arm 172 has a proximal end 174 and a distal end 176 spaced away from the proximal end 174. The first pivot joint 122 is proximate the proximal end 174 of the pivot arm 172. In the example illustrated, the first pivot joint 122 comprises a horizontal, laterally directed bore 178 provided in a boss 180 adjacent a leading (longitudinally rearward) end 182 of the carriage 138 (Figure 5). The pivot arm 172 comprises a pair of spaced apart flanges 184 that straddle the boss 180, each flange 184 having an aperture 186 in registration with the bore 178 (Figure 9). A pivot pin 188 extends through the bore 178 and the apertures 186, and can be held in position by snap rings or the like.

[0030] The support structure 114 can further include a pivot actuator 190 (Figure 5) for moving the pivot arm 172 about the first (horizontal) pivot axis 128 to a desired angular position relative to the carriage 138. In the example illustrated, the pivot actuator 190 comprises a hydraulic cylinder having one end fixed to the carriage 138 at a first clevis 192a, and the other end fixed to the pivot arm 172 at a second clevis 192b, positioned radially offset from the horizontal pivot axis 128. Extending and retracting the pivot actuator 190 can move the spindle 120 between the deployed and stowed positions.

[0031] The support structure 114 can further comprise a subframe 194 (Figures 8 and 11) mounted between the pivot arm 172 and the spindle 120. In the example illustrated, the subframe 194 is pivotably connected to the pivot arm 172 at the second pivot joint 168, and the spindle 120 is coupled to the subframe 194. The subframe 194 can comprise a track 196 extending parallel to the spindle axis 124. In use, a cutter head 126 mounted to the spindle 120 can be raised and lowered relative to the ground by displacement of the spindle 120 relative to the track 196. For example, a spindle carrier 198 (Figure 4) can be slidably coupled to the track 196, and the spindle 120 can be rotatably supported by the spindle carrier 198. In the example illustrated,
the rotation of the spindle 120 is driven by a spindle motor 200 (Figure 11) having a housing from which the spindle 120 can extend. The spindle motor 200 can be fixed to the spindle carrier 198.

[0032] The excavation apparatus 110 can further comprise a press actuator 202 coupled to the spindle carrier 198 and the subframe 194 for moving the spindle carrier 198 along the track 196. In the example illustrated, the press actuator 202 comprises a hydraulic cylinder having one end fixed to the subframe 194, and the other end fixed to the spindle carrier 198. Extending the press actuator 202 of the illustrated example urges the spindle 120 (and cutter head 126 attached thereto) towards (and into) the ground when the spindle 120 is in the deployed position.

[0033] The subframe 194 can comprise a swivel positioning device 206 for pivoting the subframe 194 about the second pivot joint 168 to a desired angular position relative to the pivot arm 172.

[0034] In the example illustrated, the swivel positioning device 206 comprises a swivel link assembly 212 (Figure 9) for coupling the swivel actuator 208 to the pivot arm 172. The swivel link assembly 212 includes a first swivel link 214 pivotably coupled to the pivot arm at a first link pivot 216, and a second swivel link 218 pivotably coupled to the subframe 194 at a second link pivot 220. The first and second swivel links 214, 218 are pivotably coupled together at a third link pivot 222, spaced apart from the first and second link pivots 216, 218. Each of the link pivots are pivotable about respective axes parallel to the second pivot axis 170. Retracting the swivel actuator 208 can pivot the subframe 194 clockwise about the second pivot axis 170, to the left position 168b. Extending the swivel actuator 208 can move the subframe 194 (and second pivot joint) to the right position 168c. Each swivel link has a home position 214a, 218a, left position 214b, 218b, and a right position 214c, 218c generally corresponding to the home, left, and right positions 168a, 168b, 168c, respectively, of the second pivot joint 168.

[0035] In the example illustrated, the swivel positioning device 206 comprises a swivel actuator 208 in the form of an extendible hydraulic cylinder
having one end fixed to the subframe 194 at a first swivel clevis 210a, and a second, opposite end coupled to the pivot arm 172 at a second swivel clevis 210b.

[0036] The excavation apparatus 110 can further comprise a plurality of stabilizers 226 (Figures 10 and 11) configured to bear against the ground adjacent the cutting head 126 during penetration of the ground thereby. The plurality of stabilizers 226 can comprise a plurality of ground-engaging feet 228 extending from a lower end of the subframe 194. In the example illustrated, three ground-engaging feet 228a, 228b, 228c are arranged in a triangular configuration about the perimeter of the cutting head 126. Each one of the stabilizers 226 in the example illustrated comprises an extendible member 230 extending between the subframe 194 and a respective one of the ground-engaging feet 228. The extendible member 230 can be a hydraulic cylinder with a cylinder portion 232 secured to the subframe 194, and a piston rod 234 attached to a respective one of the feet 228.

[0037] In use, the truck 111 can be moved into an approximate position near a buried plant (such as a valve or joint) to which access is required. The apparatus 110 is moved to a deployed position by moving the carriage 198 rearwards, and pivoting the subframe 194 (and attached spindle 120) about the horizontal pivot axis 128 to the upright (vertical) position. The spindle 120 can be lowered toward the ground by using the press actuator 202.

[0038] Once near the ground, the position of the cutting head can be compared to the target position, in registration with the buried plant. The position of the cutting head 126 can be adjusted in the longitudinal and lateral directions 116, 118 (without repositioning the truck 111) by extending or retracting the slide 134, and by pivoting the subframe 194 about the second pivot axis 170 to the left or right. Once the cutter head 126 is accurately located above the target, the stabilizers can be lowered to securely support the subframe 194 in position over the target. The spindle motor 200 can then be engaged, and the rotating cutter head 126 can be pressed into the ground. The cutter head 126 can cut a cylindrical hole, for example 18 inches in
diameter, down to the buried plant. The cutter head 126 can penetrate a finished layer, for example asphalt or concrete, covering the ground, which can be removed as a disc or coupon and reinstated when filling the hole back in.

[0039] While the above description provides examples of one or more processes or apparatuses, it will be appreciated that other processes or apparatuses may be within the scope of the accompanying claims.
CLAIMS:

1. An excavation apparatus, comprising:
 a) a support structure mountable to a truck bed, the support structure defining a longitudinal direction extending front-to-back of the truck bed, and a lateral direction extending side-to-side of the truck bed; and
 b) a rotary spindle pivotably supported by the support structure at a first pivot joint defining a generally horizontal first pivot axis, the spindle extending lengthwise along a spindle axis and rotatable thereabout for driving a cutting head; the spindle pivotable about the horizontal first pivot axis between a stowed position wherein the spindle axis is generally horizontal, and a deployed position wherein the spindle axis is generally vertical;
 and wherein the support structure comprises a first adjustment device coupling the spindle to the support structure for adjusting the position of the spindle in the longitudinal direction when deployed, and a second adjustment device coupling the spindle to the support structure for adjusting the position of the spindle in the lateral direction when deployed.

2. The apparatus of claim 1, wherein the first adjustment device comprises a horizontal slide mountable to the truck bed.

3. The apparatus of claim 2, wherein the second adjustment device comprises a second pivot joint defining a second pivot axis generally parallel to the spindle axis, the spindle pivotable relative to the truck bed about the second pivot axis.

4. The apparatus of claim 3, wherein the support structure comprises a carriage coupled to the slide.

5. The apparatus of claim 4, wherein the support structure comprises a pivot arm pivotably connected to the carriage at the first pivot joint, the spindle supported by the pivot arm.
6. The apparatus of claim 5, comprising a deployment actuator coupled to the pivot arm for pivoting the spindle between the deployed and stowed positions.

7. The apparatus of claim 5, wherein the support structure comprises a subframe, the spindle coupled to the subframe and the subframe pivotably connected to the pivot arm at the second pivot joint.

8. The apparatus of claim 7, wherein the subframe comprises a track extending parallel to the spindle axis.

9. The apparatus of claim 8, wherein the subframe comprises a spindle carrier slidably coupled to the track, the spindle rotatably supported by the spindle carrier.

10. The apparatus of claim 9, further comprising a spindle motor for driving the spindle, the spindle motor fixed to the spindle carrier.

11. The apparatus of claim 10, further comprising a press actuator coupled to the spindle carrier and the subframe for moving the spindle carrier along the track.

12. The apparatus of claim 7, wherein the subframe further comprises a swivel positioning device for pivoting the subframe about the second pivot joint to a desired angular position relative to the pivot arm.

13. The apparatus of claim 12, wherein the swivel positioning device comprises a swivel actuator coupled to the subframe and the pivot arm.

14. The apparatus of claim 13, wherein the swivel positioning device comprises a first link pivotably connected to the pivot arm, a second link pivotably connected to the subframe, the first and second links pivotally connected together.
15. The apparatus of claim 14, wherein the swivel actuator comprises an extendible cylinder having one end pivotably coupled to at least one of the first and second links.

16. The apparatus of claim 7, further comprising a plurality of stabilizers configured to bear against the ground adjacent the cutting head during penetration of the ground thereby.

17. The apparatus of claim 16, wherein the plurality of stabilizers comprises a plurality of ground-engaging feet extending from a lower end of the subframe.

18. The apparatus of claim 17, wherein the plurality of stabilizers comprises three ground-engaging feet arranged in a triangular configuration about the perimeter of the cutting head.

19. An excavation apparatus, comprising:
 a) a horizontal slide mountable to a truck bed;
 b) a carriage coupled to the slide and movable between a retracted position when stowed and a variety of advanced positions for adjusting the front-to-back position of the spindle when deployed;
 c) a rotary spindle coupled to the carriage, the spindle extending lengthwise along a spindle axis and rotatable thereabout for driving a cutting head; the spindle pivotable about a first generally horizontal pivot axis for pivoting the spindle between a generally horizontal position when stowed and a generally vertical position when deployed; and
 d) the spindle pivotable about a second pivot axis parallel to the spindle for adjusting the lateral position of the spindle when deployed.
20. An excavation apparatus, comprising:
 a) a rotary spindle for supporting a cutting head; the spindle extending lengthwise along a spindle axis;
 b) a subframe including a press actuator movable for advancing and retracting the spindle parallel to the spindle axis;
 c) a pivot arm having a first horizontal pivot joint and a second pivot joint spaced apart from the first pivot joint, the second pivot joint pivotable about a second pivot axis oriented parallel to the spindle axis, the subframe pivotably connected to the pivot arm at the second pivot joint; and
 d) a horizontal slide mountable to a truck bed, the slide including a carriage movable along the slide, the pivot arm pivotably connected to the carriage of the first pivot joint.
INTERNATIONAL SEARCH REPORT

International application No
PCT/CA2008/000894

A CLASSIFICATION OF SUBJECT MATTER

IPC E02F5/20 (2006 01), EOIC 23/09 (2006 01)

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC E02F-5/20, EOIC-23/09, E21C-11/02, E21B-7/02

USCL 172/25, 172/28, 172/46

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases EPODOC, PAJ

Key Words Truck, Vehicle, Bed, Hole, Drill, Auger, Bore

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3754604 A (INABA, K et al) 28 August 1973 (28-08-1973) Figures 1-4, Col 1, Lines 53-63, Col 2, Lines 6-30</td>
<td>1-6 and 19</td>
</tr>
<tr>
<td>X</td>
<td>US 3525404 A (NEWMAN, E F et al) 25 August 1970 (25-08-1970) Figure 1, Col 4, Line 69 to Col 5, Line 21</td>
<td>1-4 and 19</td>
</tr>
<tr>
<td>A</td>
<td>US 2856155 A (PUTT, J W) 14 October 1958 (14-10-1958) Figures 1-3</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 3527309 A (RASSIEUR, C L) 8 September 1970 (08-09-1970) Figures 1-4</td>
<td>1-20</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C

[X] See patent family annex

* Special categories of cited documents
A document defining the general state of the art which is not considered to be of particular relevance
E earlier application or patent but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure use exhibition or other means
P document published prior to the international filing date but later than the priority date claimed
T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
& document member of the same patent family

Date of the actual completion of the international search

16 July 2008 (16-07-2008)

Date of mailing of the international search report

5 August 2008 (05-08-2008)

Name and mailing address of the ISA/CA

Canadian Intellectual Property Office

Place du Portage 1, C 14 - 1st Floor, Box PCT

50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No 001-819-953-2476

Authorized officer

Zachary Rokosh 819-956-0848

Form PCT/ISA/210 (second sheet) (July 2008)
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FR 1598524A</td>
<td>06-07-1970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1246290A</td>
<td>15-09-1971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 527332A</td>
<td>31-08-1972</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 941180B</td>
<td>01-03-1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 12897A</td>
<td>04-10-1979</td>
</tr>
<tr>
<td>US 2856155A</td>
<td>14-10-1958</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>WO 8504918A1</td>
<td>07-1 1-1985</td>
<td>AU 4236185A</td>
<td>15-1 1-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 123684D0</td>
<td>29-02-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 172984B1</td>
<td>25-10-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 581585A</td>
<td>16-12-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 581585D0</td>
<td>16-12-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0179106A1</td>
<td>30-04-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 850023A</td>
<td>13-12-1985</td>
</tr>
<tr>
<td>US 3527309A</td>
<td>08-09-1970</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>US 4809788A</td>
<td>07-03-1989</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>