一种保持药物微针矩阵及其制造方法

本发明提供一种保持药物微针矩阵，其中仅在微针的尖端部涂敷药物，能够定量保持药物且以刺入时不会剥落的状态保持药物。一种保持药物微针矩阵，其包括：微针矩阵和药物，其中，所述微针矩阵具有：微针基板（4），和微针，所述微针在上述微针基板（4）上配置多个且尖端部（1）介由台阶部（2）突出，所述药物保持于上述微针的尖端部（1）及台阶部（2）。
1. 一种保持药物微针矩阵，其包括：

微针矩阵，其具有，微针基板和微针，其中所述微针在所述基板上配置多个，且尖端部位
由台阶部突出，药物保持在所述微针的尖端部及台阶部。

2. 如权利要求1所述的保持药物微针矩阵，其中，所述台阶部缘部尺寸大于10μm且小
于100μm。

3. 如权利要求1或2所述的保持药物微针矩阵，其中，所述台阶部缘部尺寸大于14μm
且小于50μm。

4. 如权利要求1至3中的一项所述的保持药物微针矩阵，其中，所述微针的材料是能够
注塑成形或压制成形的高分子。

5. 如权利要求1至4中的一项所述的保持药物微针矩阵，其中，所述微针的材料是选自
自由尼龙、聚碳酸酯、聚乳酸、乳酸与乙醇酸的共聚物、聚乙醇酸、聚对苯二甲酸乙二酯、以
及环烯烃聚合物所组成的组中的至少其中一种材料。

6. 如权利要求1至3中的一项所述的保持药物微针矩阵，其中，所述微针的材料是水溶
性高分子。

7. 如权利要求6所述的保持药物微针矩阵，其中，所述微针的材料是选自由玻尿酸、硫
酸软骨素钠、羧甲基纤维素钠盐、羟丙基纤维素以及右旋糖酐所组成的组中的至少其中一种
材料。

8. 如权利要求1到7中的一项所述的保持药物微针矩阵，其中，所述药物中添加水溶性
高分子、或水溶性高分子与低分子糖类的混合物。

9. 如权利要求8所述的保持药物微针矩阵，其中，所述水溶性高分子是选自由玻尿酸、
胶原蛋白、糖精、右旋糖酐、硫酸软骨素钠、羧甲基纤维素钠盐、羟丙基纤维素以及乙基纤维
素所组成的组中的至少其中一种。

10. 如权利要求8或9所述的保持药物微针矩阵，其中，所述低分子糖类是选自由葡萄
糖、蔗糖、麦芽糖以及海藻糖所组成的组中的至少其中一种。

11. 一种保持药物微针矩阵的制造方法，其包括：

制备微针矩阵的步骤，所述微针矩阵具有，微针基板和微针，其中所述微针在所述基
板上配置多个，且尖端部位由台阶部突出，

将所述微针的尖端部浸入药物水溶液的步骤；

所述微针的尖端部从所述药物水溶液提升并干燥，从而在所述微针的尖端部以药物给
药量定量的恒定的方式保持药物的步骤。

12. 如权利要求11所述的保持药物微针矩阵的制造方法，其中，所述台阶部缘部尺寸
大于10μm且小于100μm。

13. 如权利要求11或12所述的保持药物微针矩阵的制造方法，其中，在所述药物水溶
液中添加水溶性高分子，或者水溶性高分子与低分子糖类的混合物。
一种保持药物微针矩阵及其制造方法

技术领域

本发明与定量给药技术相关，其通过在微针上设置用来保持药物的台阶部来实现。

背景技术

通常向人体内给药的方法有口服给药和皮下给药。注射是典型的皮下给药法。然注射需历经医师及护士等专业人士之手并伴随痛苦，更可能感染艾滋病及乙型肝炎等，对于多数人而言不能算是理想的方法。鉴于这一现实，最近利用微针矩阵的无痛皮下给药法引起关注（非专利文献 1）。

当实施皮下给药时皮肤组织层阻碍药物透过，因此简单地将药物涂敷于皮肤表面则药物的透过性不佳。而用微小的针头，亦即微针在角质层穿孔的方法，相比于涂敷法能显著提高药物的透过效率。微针矩阵是在基板上集成众多此类微针而成的。此外还有一种便于使用的微针贴，其是在微针矩阵上设置粘接膜和脱模片等制成，其中前者用来使微针矩阵粘附于皮肤，后者则用来保护粘接面。

在初期，金属或硅被用做微针材料，后来各种高分子材料因其易加工性特点引起了注意。尤其如果用糖质等因代谢作用易消失于体内的物质材料制备微针，即便针被折断残留于皮肤内也不会导致事故。

当糖质被用做微针材料时，如在糖质中含药物后制备微针，那么微针被刺入后在体内溶解时的往往最易向皮内及皮下给药。特别是用玻尿酸或胶原蛋白等生物可溶性高分子物质制备的微针，将其施加于皮肤后皮肤内水份扩散至针部，插入皮肤的针部被溶胀后溶解。针部溶解使得玻尿酸或胶原蛋白向皮肤内扩散产生抗皱作用，如事先在针部溶解药物或有价物质则这些物质可扩散至皮肤内（专利文献 2, 3）。

然而包含于微针矩阵的药物中既有非常昂贵的物质也有只能微量取得的物质。如将昂贵的贵重药物包含于材料内制备成微针矩阵，则药物不仅包含于微针部分也会包含于基板部分。如果将此微针矩阵刺入皮肤，那么包含于微针部分的药物会导入体内而扩散，但存在于基板部分的药物却得不到利用而被废弃，从而降低昂贵药物的使用效率。

目前已有若干种利用微针的药物的尝试。目前公开的报告有：利用药物溶液使药物溶于微针表面的方法（专利文献 4 - 7），将药物制成颗粒并制作微针软硬时进行离心分离而使药物聚集于微针尖端的方法（专利文献 8）。其中将药物溶于微针表面的方法及将药物溶液粘附于微针尖端的方法需要对药物进行加热，要求当刺入微针时难见粘附的药物被剥落，这些课题都需要加以解决。鉴于此，有人提出将药物溶解于微针材料的溶剂中，使粘附的药物和微针主体浑然一体从而防止药物被剥落的方法（专利文献 9）。

其中将微针尖端浸渍于药物溶液而使药物粘附于微针尖端的方法简单方便，易于实用化（专利文献 4 - 7, 9）。然而将药物定量且均匀地涂敷于微针尖端却异常困难。

对于用疏水性材料制备的微针，涂敷水溶液状药物本身困难，而定量装填药物更不可实现。而对于用亲水性材料制备的微针，如果只是简单地将其浸渍于药物水溶液中，
发明内容

在微针上保持药物的方法中，将微针的尖端浸渍于药物溶液中从而使药物涂敷于微针尖端的方法其原理甚是简单。但该方法因毛管现象的作用，药物溶液（以水溶液为例）沿微针周围上升，故定量装填药物极为困难。并且还存在刺入微针时药物被剥落的缺点。是故业界呼唤能够克服这些缺点的新方法。
本发明的保持药物微针矩阵是为解决上述课题的实施的，其特征在于，包括：微针矩阵，和药物，其中，所述微针矩阵具有微针基板，微针，其中，所述微针在所述微针基板上配置多个，且其尖端部介由台阶部呈突出状，所述药物被保持于所述微针的尖端部及台阶部。于本说明书中，尖端部是指从上述台阶部朝向尖端突出部分的整体。

在微针上设置台阶部后，当药物水溶液受毛管现象的作用上升时被台阶部所阻止而不会进一步上升。故能定量保持药物。

如果微针不设置台阶部，则药物水溶液受毛管现象的作用沿微针上升至基板部且弄湿基板，所以无法限于在微针尖端部分定量保持药物。

另，保持于微针的尖端部及台阶部的药物受台阶部支撑，故当微针刺入皮肤时药物不会剥落，于是刺入微针时药物被定量送达皮肤内。

该台阶部是指，自微针的某点朝尖端方向，微针的截面积非连续地缩小、截面呈如图1所示的台阶状部分。

也可以不设置台阶部，取而代之在微针设凹陷或槽，用以保持药物。不过，制作此类用于微针的模具并大量成形微针却异常困难。

这里所指的药物包含作用于皮肤或者透过皮肤发生某种有益作用的所有化合物。适合本发明的目的的药物实例可举生理活性肽类及其衍生物、核酸、寡核苷酸、各种抗原蛋白、细菌、病毒片断等。

上述生理活性肽类及其衍生物可举：降钙素、促肾上腺皮质激素、副甲状腺素（PTH）、hPTH(1→34)、胰岛素、艾塞那肽、促胰素、催产素、血管收缩素、β－内啡肽、胰高血糖素、血管升压素、生长抑素、胃泌素、促黄体激素释放激素、脑啡肽、神经降压肽、心房利钠肽、生长激素、生长激素释放素、缓激肽、P物质、强啡肽、促甲状腺激素、催乳素、干扰素、白细胞介素、G－CSF、谷胱甘肽过氧化物酶、超氧化物歧化酶、去氢加压素、生长调节素、内皮素、以及上述物质的盐等。抗原蛋白可举：流感抗原、HBs表面抗原、HBe抗原等。药物亦可以是化妆品。

微针材料除了水溶性高分子或者生物分解性高分子外，还可以采用金属、塑料、硅等。从实用性能比，以采用能够在模具中流注而大模生产的水溶性高分子，或者能够注塑成形或压制成形的高分子材料为佳。水溶性高分子的实例有：玻尿酸、硫酸软骨素钠、羧甲基纤维素钠、羟丙基纤维素、右旋糖酐、以及上述物质的混合物。注塑成形或者容易压制成形的高分子实例有：尼龙、聚碳酸酯、聚乳酸、乳酸－乙醇酸共聚物、聚乙醇酸、聚对苯二甲酸乙二酯、COP（环氧烃聚合物）、以及上述物质的混合物。

本发明的保持药物微针矩阵的制造方法包括：制备包括微针基板和微针的微针矩阵的步骤；将上述微针的尖端部浸入药物水溶液的步骤，通过从上述药物水溶液提升上述微针的尖端部后干燥，从而在上述微针的尖端部以给药量定量恒定的方式保持药物的步骤；其中，所述微针在上述微针基板上配置多个，且尖端部介由台阶部突出。

在将微针的尖端浸渍于药物水溶液中以使药物保持于微针尖端时，较佳地在药物水溶液中添加并溶解共存物质，并且在涂敷后干燥时药物与共存物质一道保持于微针。亦即，本发明的微针矩阵以在上述药物中添加共存物质，亦即水溶性高分子、或者水溶性高分子与低分子糖类的混合物为佳。

共存物质以不损害药物质性的物质为佳，例如玻尿酸、胶原蛋白、碳酸钙、氧化锌、纳米硅等。这些共存物质的作用是将药物与水溶液的粘度降低，而使药物不致于从尖端部脱出。
说明 书

酚、硫酸软骨素钠、羟丙基纤维素、乙基纤维素、羧甲基纤维素钠盐、海藻酸等水溶性高分子物质、葡萄糖、蔗糖、麦芽糖、海藻糖等低分子糖类，或者上述物质的混合物为佳。

如果共存物质仅用水溶性高分子物质，在用微针经皮给药时可能延长涂敷覆膜在皮肤内的溶解时间。而仅由低分子糖类组成的皮膜机械强度可能不够。因此，添加到浸渍微针的药物水溶液中的共存物质以水溶性高分子与低分子糖类的混合物为佳。此时，低分子糖类的比率占共存物质总重量的 80 重量％以下为佳。

共存物质的药物水溶液中的浓度以 2％至 50％为佳。浓度低于 2％，则药物水溶液的粘度低，可能导致浸渍时涂敷粘附量不足。而如果 50％以上则药物水溶液的浓度过大，又会使药物涂敷不稳定。

根据需要，药物水溶液中也可以添加抗氧化剂及表面活性剂等。

使用铸模（模具）可大量生产微针矩阵。以水溶性高分子为材料的微针，将材料水溶液注入模具，干燥后取出即可（专利文献 2 [0031] — [0033]）。

以可注塑成形的高分子为材料的微针，可以用模具将材料注塑成形制造（专利文献 1 [0017]，[0018]）。用于注塑成形的模具可使用不锈钢、耐热钢、超合金等。为制成微针形状，典型的模具在每平方厘米具有 100 个～ 900 个与微针相对应的缺口部。可使用研磨机等微细加工手段制作缺口部。

本发明中对微针的形状没有特别限定，例如可使用圆锥形。微针全长（图 1 的尖端部 1 + 根部 3）以 70 ～ 1000 μm 左右为佳。150 ～ 800 μm 尤其佳。图 1 中为截面图示意图，数字与图 1 的箭头对应。图 1 表示在上述微针基板 4 上配置的多个微针中拔出 1 根的情形。本发明的微针矩阵具有微针基板 4 和微针，其中微针在上述微针基板 4 上配置多个，且尖端部 1 介由台阶部 2 呈突出状。微针具有尖端部 1、根部 3 以及台阶部 2。

在台阶部的微针中，尖端部 1 的长度为 50 ～ 500 μm，其余为根部 3 者为佳。全长 150 ～ 800 μm 中尖端部为 50 ～ 300 μm，其余为根部 3 者则更佳。尖端部 1 与根部 3 之间的台阶部 2 的缘部尺寸以大于 10 μm 且小于 100 μm 为佳。大于 14 μm 且小于 50 μm 更佳。如果台阶部 2 的缘部小于 10 μm，则可能不适合达到本发明的防止药物溶液受毛管现象作用上升且增大涂敷强度的目的。另，如为 100 μm 以上，则在将微针施加于皮肤时对皮肤的冲击增大。

台阶部 2 的缘部是在工作精度范围内与微针轴垂直相交的面（平行于基板 4 的面）。台阶部 2 缘部尺寸是指，台阶部中尖端部 1 与根部 3 的半径之差。根部 3 并不限于圆锥形，也可以是圆柱形。

发明效果

相比没有台阶部的微针，带台阶部的微针具有以下两个显著效果。

（1）可以定量保持药物。在将尖端部浸渍于药物溶液中以粘附药物时，因设置台阶部故能够克服毛管现象的作用，使保持于尖端部的药物量恒定。

（2）当微针刺入皮肤时药物不会被剥落，提高药物的使用效率并使给药量恒定。

亦即，通过在微针设置台阶部，借由浸渍于药物溶液中并使药物粘附于微针的简单制造步骤，可以制备能够定量供给所需药物量的微针。

附图说明
具体实施方式

下面说明本发明的实施例，但本发明并非受这些实施例的限定。

本发明的实施例中均使用圆锥形微针，但同样适用于四角锥及三角锥等非圆锥形微针，显然台阶部是有效的。

本实施例的采用可注塑成形材料的带台阶部以及无台阶部的微针，用合金工具钢制作成形微针工件的有腔模具，并将模具安装在由法那克公司制造的注塑成形机上，

在 250℃注塑温度下注塑成形。

（实施例 1）

以尼龙 12 为材料，用注塑成形法制造了具有带台阶部微针的微针矩阵，和具有无台阶部微针的微针矩阵。图 1 表示配置于微针矩阵中的多个微针中其中一根带台阶部微针的结构。图中 1 为尖端部，2 为台阶部，3 为根部，4 为基板。尖端部长 200 μm，根部长 430 μm，台阶部尺寸为 30 μm，针隙 400 μm。

将两个微针矩阵（直径 1cm）的微针尖端部上从尖端到 100 μm 为止部分浸于玻尿酸（FCH－80LEkikkoman－biochemifa 株式会社）和蓝色色素（蓝色 1 号，NacalaiTesque 株式会社）的水溶液中。蓝色色素用于替代药物，是为了在显微镜观察时容易观察药物的粘附状态。

对于带台阶部微针，尖端部浸入 100 μm 后，受毛管现象的作用，药剂粘附至台阶部位置（200 μm）为止。无台阶部微针则药剂到达基板。这是由于尼龙表面亲水，水溶液受毛管现象的作用上升所致。将其分别提升后干燥，制备了具有微针的微针矩阵，其中，所述

微针在尖端部涂敷有玻尿酸和蓝色色素混合物。图 2 表示在带台阶部微针上粘附有蓝色色素的玻尿酸时的照片。图为黑白照片，图中黑色部分实为蓝色，明显可以看到药物被保持于台阶部。

将两个微针矩阵的微针尖端部刺入层板的 Parafilm（厚 1mm），刺入后立即拔出。层板 Parafilm 被用作皮肤模型。然后将 Parafilm 浸入 1.0ml 的水中萃取蓝色色素并测量了在 628mm 波长下溶液的吸光度。带台阶部微针的萃取液和无台阶部微针的萃取液的吸光度值分别为 0.002 和 0.016。这表明无台阶部微针在被刺入 Parafilm 时涂敷于微针尖端部的药物容易剥落。而带台阶部微针，蓝色色素几乎没有粘附于 Parafilm 上，刺入 Parafilm 后仍然留在微针上。

该结果表明在微针上设置台阶部后，刺入微针时药物极少被剥落。原因应该是台阶部起到保护药物的作用的缘故。

（实施例 2）
以尼龙12(L1640Daicel-Degussa 株式会社)为原料,注塑成形制备了带台阶部微针矩阵。微针尺寸如下:尖端部长270 μm,尖端部上部直径20 μm,尖端部下部直径60 μm,根部长160 μm,根部下部直径140 μm,根部上部直径130 μm,缘部尺寸35 μm,缝隙为400 μm。其中上部和下部是以尖端部放在上面,根部放在下面的状态为基准。微针矩阵的直径为1 cm。图3表示成形后微针的显微镜照片。此外还制作了尖端部尺寸及缝隙相同,通过更变根部尺寸使得缘部尺寸分别为50和100 μm的带台阶部微针。

通过变更台阶部缘部尺寸以评价台阶部的有效性。

当台阶部缘部尺寸小于35 μm时,用以下方法增大微针尖端部的直径。将台阶部缘部尺寸为35 μm的带台阶部微针矩阵的尖端部浸渍于氨基丙烯酸酯胶粘剂(CEMEDI NE株式会社)的1%丙酮溶液中,待干燥后测量尺寸;再反复浸渍制作出5种不同缘部尺寸的带台阶部微针。此时台阶部缘部的平面性得以维持。用实体显微镜(LeicaM205C,LeicaMicro株式会社)测量5种台阶部中的缘部尺寸,分别为21,14,10,5,0 μm。

将从微针的尖端部从尖端至90 μm为止的部分浸于含有羟丙基纤维素(HPC-L日本曹达株式会社)2%、蓝色色素(蓝色1号,NaCalaiTesque株式会社)0.2%的水溶液中。提升并干燥及再次浸渍干燥后,用实体显微镜观察蓝色色素在针尖端部的粘附状态。结果如表1。

表1

<table>
<thead>
<tr>
<th>微针编号</th>
<th>缘部尺寸(μm)</th>
<th>蓝色色素的粘附状态</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>蓝色色素到达台阶部,仅保持于尖端部</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>同上</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>同上</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>同上</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>同上</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>部分蓝色色素越过台阶部少许溢出到上方</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>蓝色色素越过台阶部到达基板</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>同上</td>
</tr>
</tbody>
</table>

即使仅将尖端部尖端浸渍于蓝色色素水溶液中,受毛管现象的作用,水溶液沿微针侧面上升到达台阶部缘部。如果台阶部缘部尺寸为14 μm以上则止于该处。结果表明,当台阶部缘部尺寸为10 μm时部分越过台阶部,当台阶部缘部为尺寸5 μm时越过台阶部进一步上升。从该表结果可知,台阶部缘部尺寸以大于10 μm为佳。大于14 μm更佳。

(实施例3)

以聚乙醇酸(Kuredux,株式会社吴羽)为原料,并且以除了注塑温度为260℃外其他与实施例2相同的条件注塑成形,得到台阶部缘部尺寸为35 μm的带台阶部微针。利用该微针将微针的尖端部90 μm浸入含有羟丙基纤维素(HPC-L,曹达株式会社)10%,红色色素(红色102号,NaCalaiTesque株式会社)0.1%的水溶液中。提高并干燥以及再次浸
说明书

渍干燥后，用实体显微镜观察红色色素在尖尖端部的涂敷状态，发现红色色素止于台阶部。

[0080] 该结果表明，实施例 2 的结果并非蓝色色素所特有。

[0081] 实施例 4

[0082] 利用以与实施例 2 相同条件制备的带台阶部微针，将尖端部浸入含胰岛素水溶液中。含胰岛素水溶液是将牛胰岛素（NacalaiTesque 株式会社）溶解于 pH2.5 的盐酸水溶液中，并将其添加到羟丙基纤维素（HPC — L, NIPPON SODA 株式会社）的 10% 水溶液而得，胰岛素浓度为 1.0 单位 /ml。将从微针尖的端部尖端到 90 μm 为止的部分浸渍于胰岛素水溶液中，提升并干燥再浸渍，共浸渍 4 次。用显微镜观察得到的微针矩阵，发现羟丙基纤维素被台阶部阻止。该结果也表明，实施例 2 的结果并非蓝色色素所特有。

[0083] 实施该实验 5 次，测量粘附于微针矩阵中 5 个尖端部的胰岛素量。测量胰岛素量时使用了 Gurazaimuinsulin—EIA 测试组件（和光纯药工业株式会社）。一枚微针矩阵的平均胰岛素量为 0.18 单元，其偏差以 CV（标准差率）计在 15% 以内。

[0084] 实施例 5

[0085] 使用 COP 聚合物（1020R，日本 ZEON 株式会社），以与实施例 2 相同的条件成形微针矩阵。带台阶部微针的台阶部长宽尺寸为 35 μm，表 2 中以微针 9 表示。此外还成形了长 300 μm、尖端部直径 20 μm、下部直径 70 μm、针间隔 400 μm 的圆锥形微针矩阵。表 2 中以微针 10 表示。微针矩阵的直径均为 1cm。

[0086] 使用该台阶部长宽尺寸为 35 μm 的微针矩阵，在含羟丙基纤维素（HPC — L，日本曹达株式会社）20%，红色色素（红色 102 号，NacalaiTesque 株式会社）0.1% 的水溶液中浸入尖端部至 90 μm 为止的部分。提升并干燥以及再次浸渍，共浸渍干燥 3 次。对于无台阶部，因微针矩阵在同条件下浸渍一次，液体就到达基板部，所以浸渍一次后便进行干燥。

[0087] 将取得的微针矩阵浸入于 1ml 精制水中，溶解红色素后测量 507 μm 的吸光度。试验针对每个微针矩阵实施三次，其结果如下表所示。

[0088] [表 2]

<table>
<thead>
<tr>
<th>微针 9</th>
<th>微针 10(无台阶部)</th>
</tr>
</thead>
<tbody>
<tr>
<td>微针 9</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>微针 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0090] 如图 4 所示，带台阶部微针中红色色素仅粘附于针尖端部，微针间的粘附量的偏差也小。亦即，由于设置台阶部可实现定量粘附。而在无台阶部微针中，如图 5 所示，红色色素溶液浸到微针的基板部，不仅红色色素的粘附量多而且粘附量的偏差也大。亦即不设置台阶部则无法实现定量粘附。由于是黑白图，在图 4 及图 5 中红色部分不太明显，其中颜色略浓的部分为被染红的部分。用彩色照片观察可见图 4 的尖端部及图 5 的微针矩阵整体被染红。图 5 中基板也被染红。

[0091] 实施例 6
以聚乙醇酸 (Kuredux, 株式会社吴羽) 为原料，注塑温度 260°C，其他与实施例 2 相同的条件注塑成形，得到缘部尺寸为 35 μm 的带台阶部微针。

利用该微针改变浸渍微针水溶液的成份以调查共存物质的效果。表 3 表示所用水溶性高分子及共存物质的成份。本水溶液中不含药物或模型药物，显然，本试验结果同样适用含药物水溶液。

以与实施例 4 相同的条件，将微针的尖端浸渍于含共存物质的水溶液中。将干燥后固化形成含附于微针的微针矩，贴在 4 名志愿者的手臂 5 分钟后取下，用显微镜观察以评价粘附物是否在皮肤内溶解。

通过观察判断“完全溶解”或“不完全溶解”，将 4 人中完全溶解所占的比率作为评价结果列于表 3。表 3 中，例如 3/4 表示 4 人中有 3 人完全溶解。其中，“完全溶解”指适用于皮肤后针上粘附物完全消失，“不完全溶解”表示针上残留部分粘附物。

表 3

<table>
<thead>
<tr>
<th>共存物</th>
<th>水溶性高分子</th>
<th>共存物质</th>
<th>评价结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>共存物 1</td>
<td>玻尿酸 10%</td>
<td>无</td>
<td>1/4</td>
</tr>
<tr>
<td>共存物 2</td>
<td>玻尿酸 8%</td>
<td>葡萄糖 2%</td>
<td>4/4</td>
</tr>
<tr>
<td>共存物 3</td>
<td>矽丙基纤维素 20%</td>
<td>无</td>
<td>2/4</td>
</tr>
<tr>
<td>共存物 4</td>
<td>矽丙基纤维素 10%</td>
<td>海藻糖 30%</td>
<td>4/4</td>
</tr>
</tbody>
</table>

表 3 的结果表明，用来浸渍微针的药物水溶液的共存物质以水溶性高分子与低分子糖类的混合物为佳。如果没有低分子糖类共存，5 分钟时间粘附物不能完全溶解。

（实施例 7）

制做了以水溶性高分子为材料的微针。首先用光刻法制备来形成微针的模具。在感光性树脂上照射光以形成指定形状的微针图案后，利用电转加工形成转印指定形状的微针图案，用以形成微针的凹部，将其用做模具。在室温下将玻尿酸（分子量为 80 万，商品名：FCH－80LE，kikkoman－biochemifa 株式会社）的 5%水溶液填充到所述模具中，蒸发水份并干燥后剥离，制备了微针矩阵。制作 3 种不同针尺寸的微针，将微针矩阵切割成直径 1cm 的圆形。针隙为 400 μm。表 4 表示微针 11、12、13 的尺寸。其中上部和下部是以尖端部放在上面，根部放在下面的状态为基准。

[表 4]
<table>
<thead>
<tr>
<th>微针编号</th>
<th>尖端部(μm)</th>
<th>根部(μm)</th>
<th>缘部尺寸</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>上部直径</td>
<td>下部直径</td>
<td>长</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>60</td>
<td>280</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>60</td>
<td>280</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>60</td>
<td>280</td>
</tr>
</tbody>
</table>

使用如上制备的台阶部缘部尺寸为 35, 50, 100 μm 的微针矩阵，在含羟丙基纤维素 (HPC 1, 日本曹达株式会社) 20% 及含模型药物卵清蛋白 (NacalaiTesque 株式会社) 0.1% 的水溶液中浸入尖端部至 90 μm 为止的部分，立即提升并干燥以备试验。

使用尖端装填有 3 种模型药物的微针矩阵，向摘取猪皮（从日本 CharlesRiver 株式会社购入）给与模型药物。用弹簧式敷料器将 3 种微针矩阵进行轻皮给与，过 1 小时后取下。用实体显微镜观察猪皮中给与微针矩阵的部分，3 种均在皮肤的给与部可见点状插针痕迹，针尖端部确实被刺入皮肤。

用实体显微镜观察取下的微针矩阵，3 种尖端部均被完全溶解。微针 13 被完全溶解至根部。微针 12 的根部也几乎全被溶解。而微针 11 的根部不完全溶解。可能是因为缘部尺寸增大导致台阶部缘部刺入皮肤受阻所致。台阶部缘部大的微针 11, 可能因其刺入皮肤时微针根部未能进入，故微针根部未能溶解。由此可得出结论，台阶部缘部尺寸以 100 μm 以下为佳，以 50 μm 以下更佳。另，当台阶部缘部大时根部少许被溶解，可能是因为从皮肤得到水份供应的缘故。

【符号说明】
1…尖端部
2…台阶部
3…根部
4…基板
图 5