(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 September 2005 (22.09.2005)

PCT

(10) International Publication Number WO 2005/087138 A1

(51) International Patent Classification⁷:

A61F 2/06

(21) International Application Number:

PCT/US2005/007077

(22) International Filing Date: 3 March 2005 (03.03.2005)

(25) Filing Language: English

(26) Publication Language: English

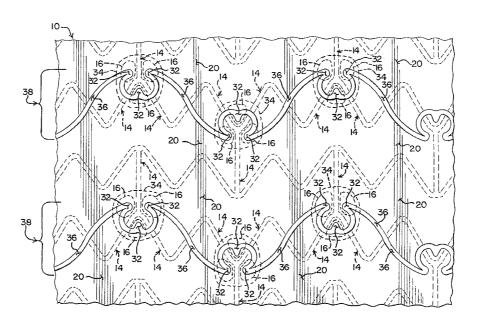
(30) Priority Data:

10/795,641 8 March 2004 (08.03.2004) US

(71) Applicant (for all designated States except US): COOK INCORPORATED [US/US]; 750 Daniels Way, Bloomington, IN 47404 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): MELSHEIMER, Jeffry, S. [US/US]; 5108 Saddle Drive, Lafayette, IN 47905 (US).
- (74) Agent: STANLEY, Richard, E.; Brinks Hofer Gilson & Lione, P.O. Box 10087, Chicago, IL 60610 (US).


- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: GREAT RETAINER FOR A STENT-GRAFT

(57) Abstract: A stent assembly includes a stent (12), a graft material (20) and a retainer (30). The graft material is secured between the stent and the retainer by retaining members (34) on the retainer and complimentary receiver regions (16) on the stent. In order to secure the graft material, the retainer is oriented relative to the stent so that the retaining members align with the receiver regions. The orientation of the retainer relative to the stent allows the retaining members to cooperate with the receiver regions. As a result, the graft material is secured against the stent without perforating the graft material.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

GRAFT RETAINER FOR A STENT-GRAFT

BACKGROUND

[0001] The present invention relates generally to medical devices and particularly to a stent with a graft retained against the stent.

[0002] Although stent graft assemblies may be used to treat a number of medical conditions, one common use of stent graft assemblies relates to the treatment of aneurysms. As those in the art well know, an aneurysm is an abnormal widening or ballooning of a portion of an artery. Generally, this condition is caused by a weakness in the blood vessel wall. High blood pressure and atherosclerotic disease may also contribute to the formation of aneurysms. Aneurysms may form in blood vessels throughout the vasculature. However, common types of aneurysms include aortic aneurysms, cerebral aneurysms, popliteal artery aneurysms, mesenteric artery aneurysms, and splenic artery aneurysms. If not treated, an aneurysm may eventually rupture, resulting in internal hemorrhaging. In many cases, the internal bleeding is so massive that a patient can die within minutes of an aneurysm rupture. For example, in the case of aortic aneurysms, the survival rate after a rupture can be as low as 20%.

[0003] Traditionally, aneurysms have been treated with surgery. For example, in the case of an abdominal aortic aneurysm, the abdomen is opened surgically and the widened section of the aorta is removed. The remaining ends of the aorta are then surgically reconnected. In certain situations the surgeon may choose to replace the excised section of the aorta with a graft material such as Dacron, instead of directly reconnecting the two ends of the blood vessel together. In still other situations, the surgeon may put a clip on the blood vessel at the neck of the aneurysm between the aneurysm and the primary passageway of the vessel. The clip then prevents blood flow from the vessel from entering the aneurysm.

[0004] An alternative to traditional surgery is endovascular treatment of the blood vessel with a stent-graft. This alternative involves implanting a stent-graft in the blood vessel across the aneurysm using conventional catheter-

based placement techniques. The stent-graft treats the aneurysm by sealing the wall of the blood vessel with an impermeable graft material. Thus, the aneurysm is sealed off and the blood flow is kept within the primary passageway of the blood vessel. Increasingly, treatments using stent-grafts are becoming preferred since the procedure results in less trauma and a faster recuperation.

[0005] Although stent-grafts are mostly used for treating aneurysms, other medical treatments using stent-grafts are also being explored, and additional applications may be developed in the future. For example, stent-grafts may be used to treat stenosed arteries or other vascular conditions. Stent-grafts may also be used to treat other non-vascular organs, such as the biliary tract. In yet another example, other types of graft materials may be used besides the conventional graft materials that are usually used for aneurysm treatments. While the graft materials that are used for aneurysm treatments are designed to block fluid passage through the graft material, other types of graft materials may be used in stent-grafts, such as small intestine submucosa ("SIS"). As those in the art know, SIS has growth factors that encourage cell migration within the graft material, which eventually results in the migrated cells replacing the graft material with organized tissue.

[0006] One current problem with stent-grafts is the way in which the graft material is attached to the stent. The most common way of attaching graft material to a stent is to sew, or suture, the graft material to the stent with thread. However, this process must be done manually by specialists who use special needles to sew thread through the graft material and around the struts of the stent and forceps to knot the thread. As a result, stent-grafts made by this process are expensive and time consuming to make.

[0007] In addition, stent-grafts that are made by suturing may suffer from endoleaks once the stent-graft is implanted across an aneurysm. As those in the art know, an endoleak is a blood flow leakage from the lumen of the blood vessel back into the aneurysm. A large amount of leakage after implantation of the stent-graft reduces the effectiveness of the treatment and may leave the patient with a continued risk of rupture despite the treatment. One

common source of endoleaks is the perforations through the graft material which are generated by the suturing used to attach the graft material to the stent. In an attempt to overcome the problem of endoleaks, manufacturers of stent-grafts have turned to using especially small diameter needles and thread for the suturing process in order to minimize the size of the perforations. However, this does not completely eliminate the perforations through the graft material and endoleaks through the graft material are still possible. Moreover, this solution increases the cost of stent-grafts even further, since small diameter needles and threads are difficult to work with manually and even require the use of magnifying glasses in some situations.

100081 Another way of attaching graft material to a stent is to sandwich the

[0008] Another way of attaching graft material to a stent is to sandwich the graft material between an inner stent and an outer stent. In this type of arrangement, opposing pressure from the inner and outer stents squeezes the graft material therebetween. If enough pressure is applied to the graft material by the two stents, the graft material will become immobilized between the stents. However, the known stent-grafts which attempt to sandwich graft material between two stents do not have complimentary features on both stents which cooperate to secure the graft material. Moreover, the known stent-grafts do not orient the two stents together so that cooperative features can secure the stent graft.

[0009] Accordingly, it is apparent to the inventor that a stent-graft is desired with cooperative features that secure a graft material to a stent without perforating the graft material. Therefore, a solution is described more fully below that solves these and other problems.

SUMMARY

[0010] A stent assembly is provided with a retainer that is installed onto or within a stent. A graft material is disposed between the retainer and the stent. The retainer is oriented relative to the stent so that retaining members on the retainer can cooperate with receiver regions on the stent. As a result, the retainer secures the graft material to the stent without perforating the graft material. Additional details and advantages are described below.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

- **[0011]** The invention may be more fully understood by reading the following description in conjunction with the drawings, in which:
- Figure 1 is a top plan view of a stent assembly, showing a stent and two retainers;
- Figure 2 is a top plan view of the stent shown in Figure 1;
- Figure 3 is a top plan view of the retainer shown in Figure 1, as it may be laser cut from a metal cannula;
- Figure 4 is a top plan view of the stent assembly shown in Figure 1, including a graft material, showing the stent assembly expanded;
- Figure 5 is a cross sectional view of the stent assembly shown in Figure 1;
- Figure 6 is a top plan view of a retainer with two retention bands connected with interconnecting struts; and
- Figure 7 is a top plan view of a stent assembly, including a stent, a graft material and a retainer, showing the stent assembly expanded, where the retainer includes retention bands connected with interconnecting struts.

DETAILED DESCRIPTION

- [0012] Referring now to the drawings, and particularly to Figures 1-5, a stent assembly 10 is shown with a stent 12, a graft material 20, and a retainer 30. As shown, the retainer 30 is disposed on the outside of the stent 12 with the graft material 20 disposed between the stent 12 and the retainer 30. However, other arrangements are also possible, such as disposing the retainer 30 inside of the stent 12 with the graft material 20 disposed therebetween. Generally, the graft material 20 is made of an impermeable material for aneurysm treatments, such as polytetrafluoroethylene ("PTFE") or polyester. However, other materials may also be used depending on the desired treatments, such as small intestine submucosa ("SIS").
- [0013] As shown in Figs. 1, 3 and 4, one embodiment of the retainer 30 consists of single retention bands 38, or bands of retainers, each extending along less than half the axial length of the stent 12. Preferably, each retainer

30 includes a series of retention sites 34 interconnected by connecting struts 36 that extend around the entire outer diameter of the stent 12. However, it is possible that the connecting struts 36 may extend around only a portion of the stent 12 instead of the full diameter. Each of the retention sites 34 includes one or more retaining members 32 that project inward towards the stent 12 (shown in Figure 5). As shown in the figures, three retaining members 32 are preferably provided at each of the retention sites 34.

[0014] The stent 12 is also provided with receiver regions 16 that are complimentary with the retaining members 32. As shown in Figures 1, 2 and 4, the receiver regions 16 are preferably open regions, or spaces, formed by the stent struts 14. For example, as shown, three receiver regions 16 are formed between the stent struts 14 where the stent struts 14 are joined together in a "Y" connection.

One difference between the stent assembly 10 and prior art stent-[0015] grafts is that the retaining members 32 on the retainers 30 and the receiver regions 16 on the stent 12 are formed to be complimentary with each other. Thus, when the retainer 30 and the stent 12 are oriented relative to each other so that the retaining members 32 and the receiver regions 16 align, the retaining members 32 and receiver regions 16 interlock or cooperate with each other. This aspect may be seen in Figures 1 and 4, where the retainers 30 are shown on top of an underlying stent 12. In Figure 1, the retainers 30 and the stent 12 are shown compressed prior to implantation (the graft material 20 is not shown in this figure for clarity). As can be seen, the retainers 30 are radially oriented relative to the stent 12 such that each of the retaining members 32 line up with a complimentary receiver region 16. In Figure 4, the retainers 30 and stent 12 are shown expanded as the stent assembly 10 would generally look when it is implanted. Like Figure 1, the retaining members 32 of the retainers 30 line up with the receiver regions 16 of the stent 12. It is also possible that the stent assembly may be arranged with the receiver regions on the retainer and the retaining members on the stent. In this case the retaining members of the stent project towards the retainer and cooperate with the receiver regions on the retainer.

-6-

Figures 2 and 3 show the stent 12 and one of the retainers 30, [0016] respectively, as they may be cut from a cannula. Preferably, the stent 12 and the retainer 30 are laser cut out of metal cannulas using conventional laser cutting technology. The retainer 30 may be made from metals that are currently used to make stents and any other suitable metallic material, such as stainless steel, shape memory metals like nitinol, cobalt-chrome alloys, and amorphous metal alloys. It is also possible that the retainers may be made from non-metallic materials, such as polymers and the like. As shown in Figure 3, the retainer 30 preferably is made with the retaining members 32 at each retention site 34 closely positioned together. The retaining members 32 are then spread apart as the retainer 30 is installed onto the stent 12, thereby interlocking the retaining members 32 and the receiver regions 16. In the case of balloon expandable stent-graft applications, it is preferable to use a metal with ductile characteristics, such as stainless steel. On the other hand, in the case of self-expandable stent-graft applications, shape memory metals, such as nitinol, are preferable.

[0017] Referring now to Figures 6 and 7, another embodiment of the retainer 30 is shown. Since most of the details described above apply to this embodiment as well, those details are not repeated. In contrast to the embodiment shown in Figures 1, 3 and 4, this embodiment forms one retainer 30 out of several adjacent retention bands 38 that are connected with interconnecting struts 40. Thus, as shown, the interconnecting struts 40 are connected at one end to a retention site 34 of one retention band 38 and are connected at the other end to another retention site 34 on a different retention band 38. The interconnecting struts 40 may be connected to adjacent retention bands 38 at circumferentially offset positions as shown or may also be connected at circumferentially aligned positions. This interconnection may be used to connect only two retention bands 38 as shown or may be repeated to connect numerous retention bands 38.

[0018] The advantages of the stent assembly 10 are now apparent. When the retainer 30 is installed onto or within the stent 12, the retaining members 32 on the retainer 30 cooperate with the receiver regions 16 of the

stent 12 in order to secure the graft material 20 between the stent 12 and the retainer 30. This is possible because the retaining members 32 are complimentary with the receiver regions 16 and must be oriented to permit the retaining members 32 to cooperate with the receiver regions 16. Thus, unlike traditional sandwiched stent-grafts where a graft material is sandwiched between two stents, the graft material 20 is secured at specific retention sites 34. Therefore, the opposing pressure that may be applied by the retainer 30 and the stent 12 may be reduced compared to traditional sandwiched stent-grafts.

[0019] The invention also allows the graft material 20 to be secured to the stent 12 without perforating the graft material 20. In the case of aneurysm treatments, this preserves the impermeable characteristics of the graft material 20. Therefore, endoleaks (which typically reduce the effectiveness of aneurysm treatments) may be eliminated or significantly reduced. This aspect of the invention is possible because the retaining members 32 of the retainer 30 project toward the stent 12, thereby clamping and securing the graft material 20 without actually perforating the graft material 20. In addition, since the graft material 20 is not sutured to the stent 12 like traditional stent-grafts, less labor is needed to manufacture the stent assembly 10. Moreover, because the invention represents a further advancement in the art of minimally invasive endovascular medical treatments, it is possible that fewer patients will need to undergo the risks and long recuperation times of traditional surgeries.

[0020] Accordingly, it is now apparent that there are many advantages of the invention provided herein. In addition to the advantages that have been described, it is also possible that there are still other advantages that are not currently recognized but which may become apparent at a later time.

[0021] While preferred embodiments of the invention have been described, it should be understood that the invention is not so limited, and modifications may be made without departing from the invention. The scope of the invention is defined by the appended claims, and all devices that come within

-8-

the meaning of the claims, either literally or by equivalence, are intended to be embraced therein.

PCT/US2005/007077

I CLAIM:

1. A stent assembly, comprising:

an expandable stent adapted for medical implantation, wherein said stent is compressed prior to implantation and is expanded at a site of implantation, said stent comprising one or more receiver regions;

a graft material comprising a first surface and a second surface, said first surface and said second surface forming opposite sides of said graft material, wherein said first surface is disposed against at least a portion of said stent;

a retainer disposed against said second surface of said graft material, said graft material thereby being disposed between said stent and said retainer, said retainer comprising at least one retaining member projecting towards said stent; and

wherein said graft material is secured between said receiver region of said stent and said retaining member of said retainer, said retainer being oriented relative to said stent to facilitate cooperation between said retaining member and said receiver region without perforating said graft material.

- 2. The stent assembly according to claim 1, wherein said retainer further comprises a plurality of retention sites, each retention site comprising at least one of said retaining members, said retention sites being interconnected by connecting struts extending between adjacent retention sites.
- 3. The stent assembly according to claim 2, wherein each of said retention sites comprises more than one retaining member.
- 4. The stent assembly according to claim 3, wherein said receiver regions of said stent are formed by open regions on both sides of a stent strut.

- 5. The stent assembly according to claim 2, wherein each of said retention sites comprises at least three retaining members.
- 6. The stent assembly according to claim 5, wherein said receiver regions of said stent are formed by three open regions between three joined stent struts.
- 7. The stent assembly according to claim 2, wherein said retention sites span a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent.
- 8. The stent assembly according to claim 7, wherein said retainer further comprises at least two bands of retainers, said bands being connected by interconnecting struts extending between adjacent bands.
- 9. The stent assembly according to claim 7, wherein said retainer consists of one band of retainers, said band extending along an axial length of said stent less than half of an entire length of said stent.
- 10. The stent assembly according to claim 1, wherein said retainer is disposed inside of said stent and said graft material, said graft material being secured between an outer surface of said retainer and an inner surface of said stent.
- 11. The stent assembly according to claim 1, wherein said retainer is disposed outside of said stent and said graft material, said graft material being secured between an outer surface of said stent and an inner surface of said retainer.
- 12. The stent assembly according to claim 1, wherein said retainer is metallic.

WO 2005/087138

-11-

PCT/US2005/007077

- 13. The stent assembly according to claim 12, wherein said retainer is laser cut from a metal cannula.
- 14. The stent assembly according to claim 13, wherein said retainer is made from a shape memory metallic alloy.
- 15. The stent assembly according to claim 13, wherein said stent is a balloon expandable stent.
- 16. The stent assembly according to claim 1, wherein said stent is a self-expanding stent.
- 17. The stent assembly according to claim 1, wherein said retainer further comprises a plurality of retention sites, each retention site comprising at least one of said retaining members, said retention sites being interconnected by connecting struts extending between adjacent retention sites; said retention sites span a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent; said retainer is disposed outside of said stent and said graft material; and said retainer is metallic.
- 18. The stent assembly according to claim 17, wherein said retainer is made from a shape memory metallic alloy; and said stent is a self-expanding stent.
- 19. The stent assembly according to claim 17, wherein said retainer is laser cut from a metal cannula; and said stent is a balloon expandable stent.
- 20. The stent assembly according to claim 1, wherein said retainer further comprises a plurality of retention sites, each retention site comprising at least one of said retaining members, said retention sites being

interconnected by connecting struts extending between adjacent retention sites; each of said retention sites comprises more than one retaining member; said receiver regions of said stent are formed by open regions on both sides of a stent strut; said retention sites span a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent; and said retainer is disposed outside of said stent and said graft material.

- 21. The stent assembly according to claim 20, wherein each of said retention sites comprises at least three retaining members; and said receiver regions of said stent are formed by three open regions between three joined stent struts.
- 22. The stent assembly according to claim 21, wherein said retainer consists of one band of retainers, said band extending along an axial length of said stent less than half of an entire length of said stent.
- 23. The stent assembly according to claim 22, wherein said retainer is metallic; and said retainer is laser cut from a metal cannula.
- 24. The stent assembly according to claim 1, wherein said retainer further comprises a plurality of retention sites, each retention site comprising at least one of said retaining members, said retention sites being interconnected by connecting struts extending between adjacent retention sites; said retention sites span a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent; and said retainer is disposed inside of said stent and said graft material.
- 25. The stent assembly according to claim 24, wherein each of said retention sites comprises more than one retaining member; said receiver regions of said stent are formed by open regions on both sides of a stent strut; said retainer further comprises at least two bands of retainers, said bands

being connected by interconnecting struts extending between adjacent bands; and said retainer is metallic.

26. The stent assembly according to claim 24, wherein each of said retention sites comprises more than one retaining member; said receiver regions of said stent are formed by open regions on both sides of a stent strut; said retainer consists of one band of retainers, said band extending along an axial length of said stent less than half an entire length of said stent; and said retainer is metallic.

27. A stent assembly, comprising:

an expandable stent adapted for medical implantation, wherein said stent is compressed prior to implantation and is expanded at a site of implantation, said stent comprising one or more receiver regions;

a graft material comprising a first surface and a second surface, said first surface and said second surface forming opposite sides of said graft material, wherein said first surface is disposed against at least a portion of said stent;

a retainer disposed against said second surface of said graft material, said graft material thereby being disposed between said stent and said retainer, said retainer a plurality of retention sites, each retention site comprising at least one retaining member projecting towards said stent, said retention sites being interconnected by connecting struts extending between adjacent retention sites, said retention sites spanning a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent, wherein said retainer consists of one band of retainers, said band extending along an axial length of said stent less than half of an entire length of said stent; and

wherein said graft material is secured between said receiver region of said stent and said retaining member of said retainer, said retainer being oriented relative to said stent to facilitate cooperation between said retaining member and said receiver region without perforating said graft material, said retainer being disposed outside of said stent and said graft material.

- 28. The stent assembly according to claim 27, wherein said retainer is metallic; and said stent is a balloon expandable stent.
- 29. The stent assembly according to claim 27, wherein said retainer is laser cut from a metal cannula; and said stent is a self-expanding stent.

30. A stent assembly, comprising:

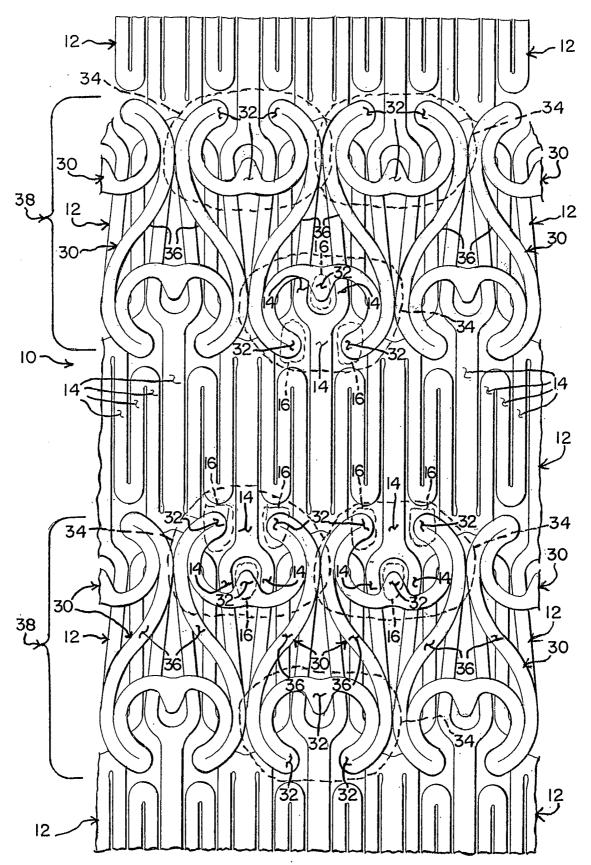
an expandable stent adapted for medical implantation, wherein said stent is compressed prior to implantation and is expanded at a site of implantation, said stent comprising one or more receiver regions;

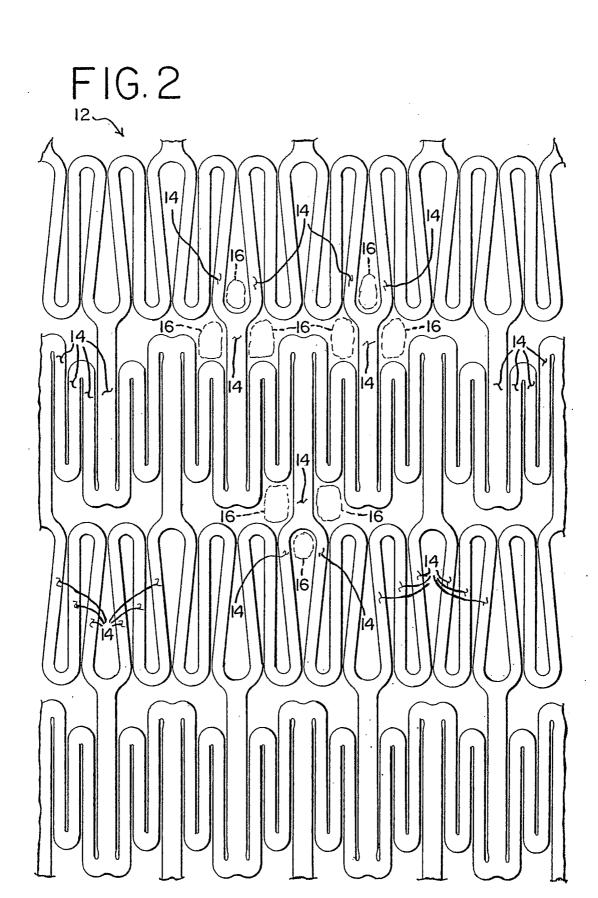
a graft material comprising a first surface and a second surface, said first surface and said second surface forming opposite sides of said graft material, wherein said first surface is disposed against at least a portion of said stent;

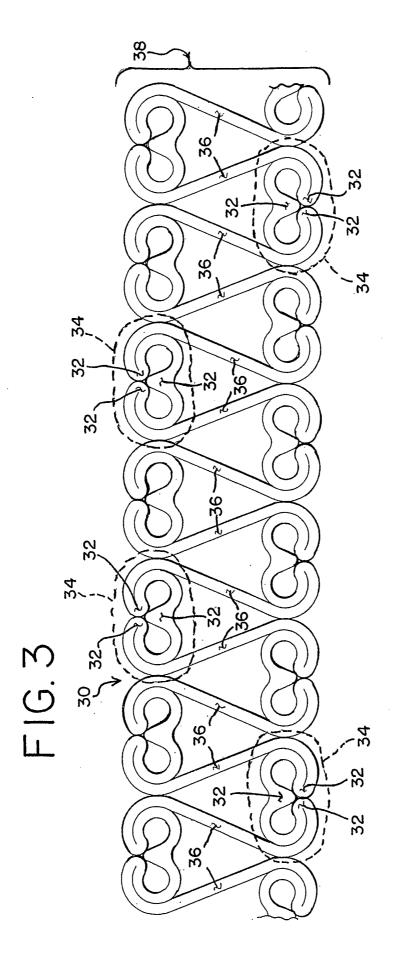
a retainer disposed against said second surface of said graft material, said graft material thereby being disposed between said stent and said retainer, said retainer comprising a plurality of retention sites, each retention site comprising at least one retaining member projecting towards said stent, said retention sites being interconnected by connecting struts extending between adjacent retention sites, said retention sites spanning a full diameter of said stent, said retention sites and said connecting struts thereby forming a band of retainers around said stent, wherein said retainer further comprises at least two bands of retainers, said bands being connected by interconnecting struts extending between adjacent bands; and

wherein said graft material is secured between said receiver region of said stent and said retaining member of said retainer, said retainer being oriented relative to said stent to facilitate cooperation between said retaining member and said receiver region without perforating said graft

material, said retainer being disposed outside of said stent and said graft material.


31. A stent assembly, comprising:


a graft material comprising a first surface and a second surface, said first surface and said second surface forming opposite sides of said graft material;


a retainer disposed against said first surface of said graft material, said retainer comprising at least one receiver region; and an expandable stent adapted for medical implantation, wherein said stent is compressed prior to implantation and is expanded at a site of implantation, said stent being disposed against said second surface of said graft material wherein said graft material is thereby disposed between said stent and said retainer, said stent comprising at least one retaining member projecting towards said retainer;

wherein said graft material is secured between said receiver region of said retainer and said retaining member of said stent, said retainer being oriented relative to said stent to facilitate cooperation between said retaining member and said receiver region without perforating said graft material.

FIG.1

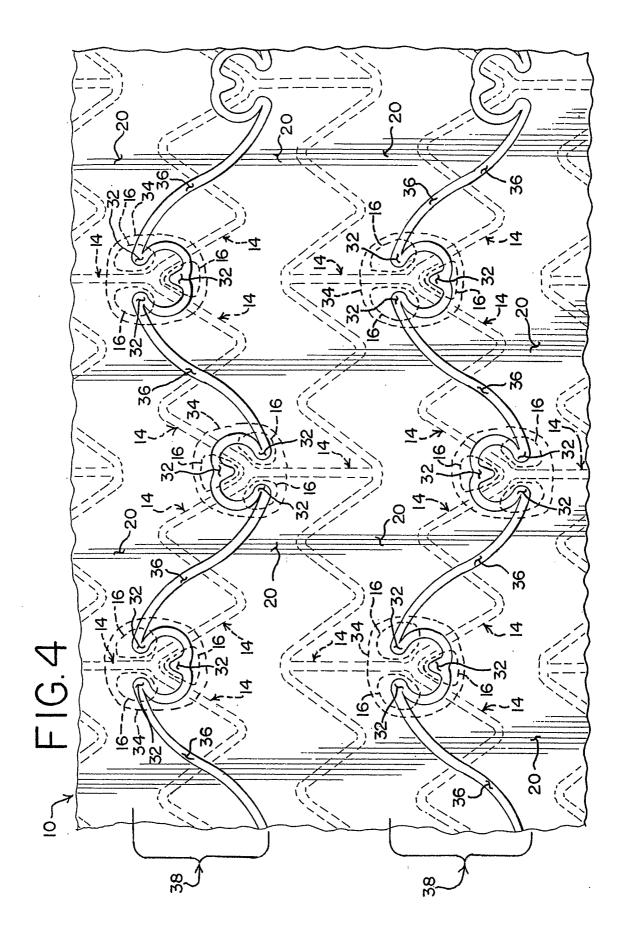
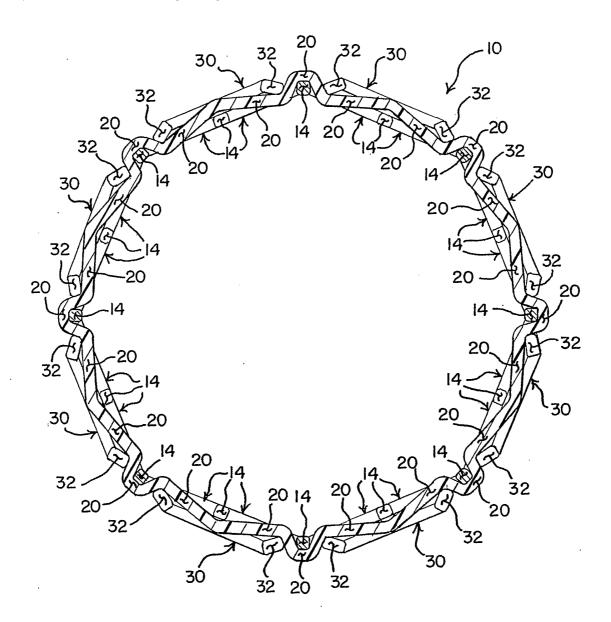
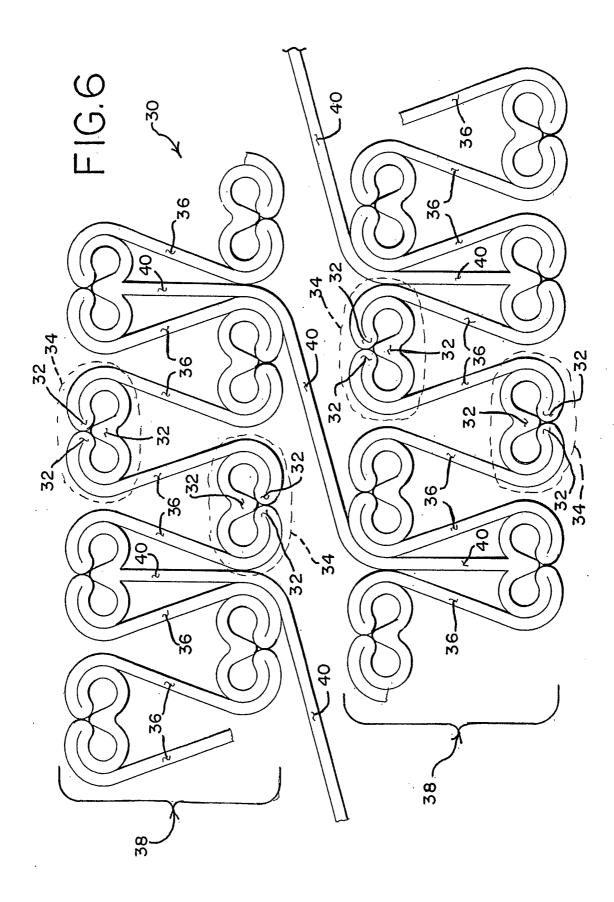
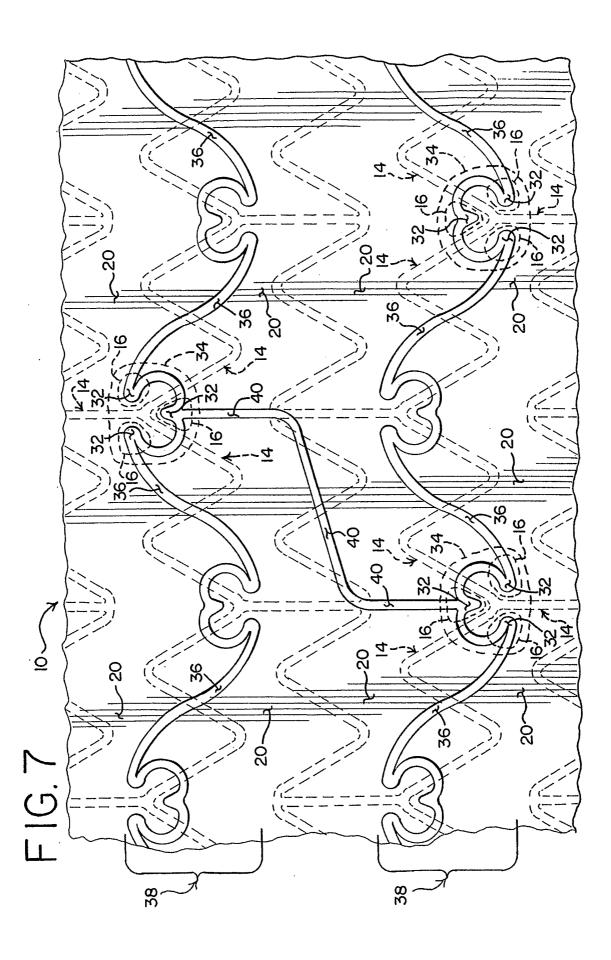





FIG.5

INTERNATIONAL SEARCH REPORT

International Application No PCT/US2005/007077

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61F2/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	US 6 520 984 B1 (GARRISON MICHI E ET AL) 18 February 2003 (2003-02-18)	1-5,7, 11-20, 23,25, 26,28, 29,31 10,24 6,8,9, 21,22, 27,30
	column 1, line 57 - line 62 column 2, line 22 - line 43 column 3, line 50 - line 62 figures 2-4	21,30
Y	EP 1 330 993 A (CORDIS CORPORATION) 30 July 2003 (2003-07-30) figure 1	10,24

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
29 June 2005	12/07/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Franz, V

INTERNATIONAL SEARCH REPORT

Int Lational Application No
PCT/US2005/007077

		PC1/US2005/00/0//					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT							
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
X	EP 0 960 607 A (MEDTRONIC AVE, INC) 1 December 1999 (1999-12-01) figure 2a	1					
A	WO 01/66035 A (DISENO Y DESARROLLO MEDICO, S.A. DE C.V) 13 September 2001 (2001-09-13) figure 18	1-31					
A	US 5 211 658 A (CLOUSE ET AL) 18 May 1993 (1993-05-18) figures 2,7	1-31					
A	US 5 865 723 A (LOVE ET AL) 2 February 1999 (1999-02-02) figures 1,3	1-31					
P,A	WO 2004/047687 A (COOK INCORPORATED; COOK BIOTECH, INC; OREGON HEALTH AND SCIENCE UNIVER) 10 June 2004 (2004-06-10) figure 1	1-31					

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interactional Application No PCT/US2005/007077

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6520984	B1	18-02-2003	AU	5919801		12-11-2001
			WO	0182833	A2	08-11-2001
			US	2003114918	A1	19-06-2003
EP 1330993		30-07-2003	US	2003139797		24-07-2003
			ΑU	2003200089		14-08-2003
			CA	2417048		24-07-2003
			ΕP	1330993		30-07-2003
			JP	2003245359	A	02-09-2003
EP 0960607	A	01-12-1999	US	6099559	Α	08-08-2000
			ΑU	3126099		09-12-1999
			CA	2272970		28-11-1999
			EP	0960607		01-12-1999
			JP	11347133	A 	21-12-1999
WO 0166035	Α	13-09-2001	US	6699277		02-03-2004
			ΑU	4095601		17-09-2001
			CN	1427698		02-07-2003
			EP	1267748		02-01-2003
			WO	0166035		13-09-2001
			JP	2003525691		02-09-2003
			US US	2004215329 2004215324		28-10-2004 28-10-2004
				2004215324		20-10-2004
US 5211658	Α	18-05-1993	ΑU	2904592		07-06-1993
,			WO	9308767	A1	13-05-1993
US 5865723	Α	02-02-1999	ΑU	720362	B2	01-06-2000
			ΑU	1569297		28-07-1997
			CA	2240989		10-07-1997
			EP	0874603		04-11-1998
			JP	2000502586		07-03-2000
			WO	9724081	Al 	10-07-1997
WD 2004047687	Α	10-06-2004	ΑU	2003295797		18-06-2004
			MO	2004047687		10-06-2004
			US	2004176833	A 7	09-09-2004