Title: METHOD AND DEVICE FOR DESIGNING OR OPTIMIZING A TECHNICAL SYSTEM

Bezeichnung: VERFAHREN UND EINRICHTUNG ZUM ENTWURF ODER OPTIMIEREN EINES TECHNISCHEN SYSTEMS

Abstract: The invention relates to a method for designing or optimizing a technical system, according to which the technical system presents at least two defined target functions. Each target function is influenced by a defined number of continuous parameters whose values are taken from a defined continuous range of values, and a defined number of discrete parameters whose values are taken from a discrete range of values. The values assigned to the continuous and discrete parameters are combined in a discrete-continuous parameter vector \((x_C, x_0)\), where \(x_C\) designates the values of the continuous parameters and \(x_0\) the values of the discrete parameters.

Zusammenfassung: Die Erfindung betrifft ein Verfahren zum Entwurf oder Optimieren eines technischen Systems, bei dem das technische System wenigstens 2 vorgegebene Zielfunktionen aufweist, wobei jede Zielfunktion beeinflusst wird von einer vorgegebenen Anzahl von kontinuierlichen Parametern, deren...
Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Parameterwerte einem vorgegebenen kontinuierlichen Wertebereich entnommen sind, und einer vorgegebenen Anzahl von diskreten Parametern, deren Parameterwerte einem diskreten Wertebereich entnommen sind. Eine Wertebelägen der kontinuierlichen und der diskreten Parameter wird in einem diskret-koordinierten Parametervektor \((x_c, x_0)\) zusammengefasst, wobei mit \(x_c\) die Wertebelägen der kontinuierlichen Parameter und mit \(x_0\) die Wertebelägen der diskreten Parameter bezeichnet ist.
Beschreibung

Verfahren und Einrichtung zum Entwurf oder Optimieren eines technischen Systems

In der Praxis stellt sich somit das Problem, Wertebelegungen für die Parameter aufzufinden, bei denen die Zielfunktionswerte einen möglichst optimalen Kompromiss der unterschiedlichen gewünschten Eigenschaften und Anforderungen darstellen. Die Zielfunktionen werden hierzu üblicherweise so formuliert, dass die gewünschten Eigenschaften um so positiver werden, je kleiner der skalare Wert der Zielfunktion wird.

Da die Zielfunktionen praktisch nie die Eigenschaft haben werden, dass sie alle für die selbe Parameterbelegung minimale Werte annehmen, ist es erforderlich eine oder mehrere Parameterbelegungen aufzufinden, die im Hinblick auf sämtliche Zielfunktionen so gut wie möglich sind. Diese Parameterbelegungen oder Punkte werden als effizient oder pareto-optimal im Hinblick auf die Zielfunktionen bezeichnet.

Ein betrachteter Punkt wird als pareto-optimal definiert, wenn es keinen weiteren Punkt mit der Eigenschaft gibt, dass der weitere Punkt in allen Zielen gleich gut (die Zielfunkti-
on weist einen Wert kleiner oder gleich auf) und in mindestens einem Ziel besser ist (die Zielfunktion weist einen geringeren Wert auf) als der betrachtete Punkt.

Bekannte Verfahren zur Lösung solcher Mehrzielprobleme (Mehrziel-Minimierungsprobleme) befassen sich entweder mit der Lösung kontinuierlicher oder diskreter Mehrzielprobleme.

Beispielsweise kann es sich bei dem technischen System um die Vorwärmstrecke für das Speisewasser eines Dampfkraftwerkes handeln. Der Vorwärmstrecke wird heißer Dampf zugeführt, der der oder den Turbinen in Bereichen geringen, mittleren oder hohen Drucks entnommen wird. Die Vorwärmstrecke umfasst mehrere Wärmetauscher unterschiedlicher Art, die dazu dienen, die im ihr zugeführten Dampf enthaltene Wärmeenergie dem kalten Speisewasser zuzuführen und dieses vorzuwärmen.

Als diskrete Entwurfs- oder Optimierungsparameter sind beispielsweise zu berücksichtigen die Existenz eines Wärmetauschers an einer bestimmten Stelle, die Art des Wärmetauschers (Enthitzer, Kondensationsvorwärmer, Kondensatkuhler bzw. die Kombination des Wärmetauschers aus Enthitzer, Kondensationsvorwärmer, Kondensatkuhler), die Position des Wärmetauschers (relativ zu mehreren möglichen Dampfentnahmepositionen an den Turbinen) etc.

Als kontinuierlich Entwurfs- oder Optimierungsparameter können beispielsweise der Druck und die Temperatur des einem be-
stimmten Wärmetauscher zugeführten Dampfs und die Temperatur und der Druck des den Wärmetauscher verlassenden Dampfs oder die Temperatur des den Wärmetauscher verlassenden Kondenswassers berücksichtigt werden.

Die Problematik besteht nunmehr darin, dass die vorstehend erläuterte Mehrziel-Minimierung sowohl kontinuierliche als auch diskrete Parameter berücksichtigen muss.

Ein Teil bisher bekannter Entwurfsverfahren für technische Systeme verwendet nur Lösungsverfahren zur kontinuierlichen Mehrzieloptimierung. D.h., diskrete Parameter müssen von vornherein mit einer bestimmten Wertebelegung versehen werden. Auf diese Weise muss der mit dem Problem betraute Fachmann von vornherein eine bestimmte Auswahl für die diskreten Parameter treffen und bringt so bestimmte Präferenzen in die Lösung ein. Dies birgt die Gefahr, dass vorteilhafte Lösungen, die eine auf den ersten Blick nicht vorteilhaft erscheinende Wertebelegung für die diskreten Parameter erfordern, nicht aufgefunden werden.

Des Weiteren versuchen bekannte Entwurfsverfahren, ob diskret oder kontinuierlich, in den Suchvorgang nach geeigneten Parameterbelegungen Präferenzen des Entscheidungsträgers mit einfließen zu lassen. Dies kann ein Verfahren irreführen und den Entscheidungsträger der Kenntnis interessanter Parameterbele-
gungen berauben. Bekannte Entwurfsverfahren, die auf die Angabe von Präferenzen verzichten, sind meist nur unter sehr einschränkenden Bedingungen an die Problemstellung fähig, alle Pareto-Optima zu finden.

Der Erfindung liegt ausgehend von diesem Stand der Technik die Aufgabe zu Grunde, ein Verfahren und eine Einrichtung zum Entwurf oder Optimierung eines technischen Systems zu schaffen, wobei möglichst alle bezüglich der Zielfunktionen pareto-optimalen Parameterbelegungen aufgefunden werden.

Die Erfindung löst diese Aufgabe mit den Merkmalskombinationen der Ansprüche 1 bzw. 14.

Erfindungsgemäß wird das diskret-kontinuierliche Mehrziel-Optimierungsproblem zerlegt in eine Mehrzahl von kontinuierlichen Mehrziel-Optimierungsproblemen bei jeweils fester Parameterbelegung für die diskreten Parameter. Die Anzahl der kontinuierlichen Optimierungsprobleme ist bestimmt durch die Anzahl der möglichen unterschiedlichen Parameterbelegungen für die diskreten Parameter. Die auf diese Weise aufgefundenen kontinuierlich-pareto-optimalen Wertebeflegungen für die kontinuierlichen Parameter (bei jeweils einer bestimmten Wertebeflegung für die diskreten Parameter) werden dann mit einer diskreten Suchstrategie nach bezüglich der Zielfunktionen pareto-optimalen Punkten (Wertebeflegungen für sämtliche Parameter) durchsucht.

Die Aufspaltung des diskret-kontinuierlichen Optimierungsproblems gewährleistet, dass keine im kontinuierlichen Teil des Problems enthaltene Informationen verlorengehen, wie das bei einer Diskretisierung dieses Teils der Fall wäre.

Nach der bevorzugten Ausbildung der Erfindung umfasst die diskrete Suchstrategie eine Hintereinanderschaltung mehrerer diskreter Sub-Suchen mit jeweils einer erforderlichen Anzahl von Schritten, wobei in jedem Schritt des Sub-Suchverfahrens
ein paarweiser Vergleich eines aus den ermittelten kontinuierlich-pareto-optimalen Punkten entnommenen Referenzpunktes (jeweils ein aktueller Referenzpunkt je Sub-Suche) mit einem weiteren kontinuierlich-pareto-optimalen Punkt durchgeführt wird. Das Sub-Suchverfahren operiert stochastisch auf Punktepaaren, bestehend aus dem Referenzpunkt der Sub-Suche (erster Partner) und dem momentan betrachteten Vergleichspunkt (zweiter Partner), einem stochastisch gewählten kontinuierlich-pareto-optimalen Punkt.

Der als Startpunkt für die Suchstrategie dienende Referenzpunkt kann zufällig ausgewählt werden, wobei den kontinuierlich-pareto-optimalen Punkten eine Wahrscheinlichkeits-Gleichverteilung zugeordnet wird. Da die Suchstrategie darauf ausgerichtet ist, je Start-Referenzpunkt ein Pareto-Optimum zu finden, das diesen dominiert, kann gewährleistet werden,
dass alle Pareto-Optima möglichst gleich gute Chancen haben, gefunden zu werden.

Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist das stochastische Verfahren, das ein Sub-Suchproblem bearbeitet, so beschaffen, dass, ausgehend vom Stand-Punktepaar, ein stochastisch erzeugtes Nachbar-Punktepaar dann sicher angesprungen wird, wenn das Vergleichsverhältnis des Nachbar-Punktepaares mindestens so „gut“ ausfällt wie das des Stand-Punktepaares, mit anderen Worten:

- Dominiert im Stand-Punktepaar der Referenzpunkt der Sub-Suche den Vergleichspunkt, ist egal, wie im Nachbar-Punktepaar Referenzpunkt und Vergleichspunkt zueinander stehen;

- Gibt es im Stand-Punktepaar zwischen Referenzpunkt und Vergleichspunkt keine Dominanzen, muss dies auch für das Nachbar-Punktepaar gelten oder der Vergleichspunkt den Referenzpunkt dominieren;

- Dominiert im Stand-Punktepaar der Vergleichspunkt den Referenzpunkt, muss dies auch im Nachbar-Punktepaar der Fall sein.

Ist das Vergleichsverhältnis im Nachbar-Punktepaar „schlechter“ als im Stand-Punktepaar, wird das Nachbar-Punktepaar mit einer vorbestimmten Wahrscheinlichkeit kleiner 1 und größer 0 als neues Stand-Punktepaar akzeptiert. Als Konsequenz daraus wird ein vorgeschlagenes Nachbar-Punktepaar sicher immer dann angelaufen, wenn der Vergleichspunkt den Referenzpunkt dominiert.

Nach der bevorzugten Ausführungsform der Erfindung wird der aktuelle Referenzpunkt einer Sub-Suche als Pareto-Optimum erkannt, wenn das stochastische Verfahren nach einer vorbe-
stimmten Anzahl von untersuchten Punktepaaren, die durch ein vorgegebenes Abbruchkriterium festlegbar ist, kein Punktepaar liefert, bei dem der Vergleichspunkt den aktuellen Referenzpunkt dominiert. Ist dies nicht der Fall, so wird der Vergleichspunkt des Ergebnis-Punktepaares aktueller Referenzpunkt einer weiteren Sub-Suche. In analoger Weise werden solange Sub-Suchen aneinander gehängt, bis eine Sub-Suche mit der Information endet, ihr Referenzpunkt sei pareto-optimal.

Für das Auffinden mehrerer oder möglichst aller Pareto-Optima können mehrere Folgen von Sub-Suchen gleichzeitig oder nacheinander von unterschiedlichen, einander wechselseitig nicht dominierenden Referenzpunkten gestartet werden.

Nach der bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird als stochastisches Verfahren für die Sub-Suchen der Metropolis-Algorithmus verwendet.

Nach einer Ausführungsform der Erfindung kann bei der Lösung des momentanen diskreten Sub-Problems die Information, dass sich kontinuierlich-pareto-optimale Punkte zu jeweils einer festen Werteberechnung der diskreten Parameter gegenseitig
nicht dominieren, zur Reduzierung des Suchraums für die diskrete Sub-Suche verwendet werden.

Beispielsweise können in einer Sub-Suche sämtliche zur Lösungsmenge des kontinuierlichen Mehrziel-Optimierungsproblems für eine erste Parameterbelegung für die diskreten Parameter gehörenden kontinuierlich-pareto-optimalen Punkte aus dem Suchraum ausgeschlossen werden, wenn festgestellt wurde, dass ein zur Lösungsmenge des kontinuierlichen Mehrziel-Optimierungsproblems für eine zweite Parameterbelegung für die diskreten Parameter gehörender kontinuierlich-pareto-optimaler Punkt zumindest einen der zu der genannten Lösungsmenge gehörenden Punkte dominiert und Referenzpunkt der Sub-Suche ist.

Weitere Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.

Die einzige Figur zeigt ein Blockschema einer Einrichtung zur Durchführung des Verfahrens nach der Erfindung.

Die Einrichtung 3 umfasst des Weiteren eine Prozessoreinheit 7 und mehrere dieser zugeordnete Speicher bzw. Speicherbereiche, nämlich den Programmspeicher oder -speicherbereich 9, den Speicher oder Speicherbereich 11 für die Zielfunktionen und den Speicher oder Speicherbereich 13 für die Wertebereiche der einzelnen kontinuierlichen bzw. diskreten Parameter.

Dem Speicherbereich 11 für die Zielfunktionen können über eine Eingabeeinheit 15 neben der Struktur der Zielfunktionen auch Daten über veränderliche Konstanten der Zielfunktionen eingegeben werden. Hierbei kann es sich um solche Parameter handeln, die nach dem Verfahren für den Entwurf bzw. die Optimierung des technischen Systems nicht innerhalb von bestimmten Wertebereichen frei wählbare sind; Insbesondere können auf diese Weise nicht von der Einrichtung 3 unmittelbar beeinflussbare Parameter y_S des Systems 1 oder Umwelteinflüsse auf das technische System beschreibende Größen y_U berücksichtigt werden.

Auf diese Weise kann ein in Betrieb befindliches System 1 an veränderte Umgebungsbedingungen bzw. veränderte systemimmanente Bedingungen angepasst und entsprechend optimiert bzw. nachgeführt werden. Die nicht frei wählbaren oder für den Entwurf bzw. die Optimierung nicht zur Verfügung stehenden Systemparameter y_S können beispielsweise mittels nicht näher dargestellter Messeinrichtungen (beispielsweise in das technische System integriert) erfasst und der Eingabeeinheit 15 der Einrichtung 3 zugeführt werden. In gleicher Weise können auch die Umweltgrößen y_U oder Größen anderer (beispielsweise vor- oder nachgeschalteter oder übergeordneter technischer oder sonstiger Systeme) über die Eingabeeinheit 15 eingegeben werden.

Die Eingabeeinheit 15 dient zudem gleichzeitig für die manuelle Eingabe der zur Systembeschreibung erforderlichen Wertebereiche für die Zielfunktionen in den Speicher 13. Selbst-
verständlich kann die Eingabe auch durch eine Datenübertragung von einem weiteren Rechner oder dergleichen erfolgen.

Im Programmspeicher 9 ist ein Programm enthalten, das zur Ermittlung der einen oder mehreren pareto-optimalen Parameterbelegungen für die m_c kontinuierlichen Parameter und m_d diskreten Parameter dient. Die Parameter werden für die Lösung des kontinuierlich diskreten Optimierungsproblems zu einem kontinuierlich-diskreten Parametervektor (x_c, x_d) zusammengefasst. Mit den n Zielfunktionen $f_1(x_c, x_d)$ bis $f_n(x_c, x_d)$ lässt sich das Mehrziel-Optimierungsproblem schreiben als:

$$
\text{"min"}_{(x_c, x_d)} \begin{pmatrix} f_1(x_c, x_d) \\ f_2(x_c, x_d) \\ \vdots \\ f_n(x_c, x_d) \\ f_{n+1}(x_c, x_d) \\ f_n(x_c, x_d) \end{pmatrix} \quad \text{(I)}
$$

Es werden also Parameterbelegungen für den Parametervektor (x_c, x_d) gesucht, welche bezüglich der Zielfunktionen möglichst gut sind, d.h. bei denen die Zielfunktionen gleichzeitig einen möglichst geringen Wert annehmen.

Dieses diskret-kontinuierliche Mehrziel-Optimierungsproblem I wird zerlegt in eine Mehrzahl von rein kontinuierlichen Optimierungsproblemen

$$
\text{"min"}_{(x_c, \bar{x}_d)} \begin{pmatrix} f_1(x_c, \bar{x}_d) \\ f_2(x_c, \bar{x}_d) \\ \vdots \\ f_{n+1}(x_c, \bar{x}_d) \\ f_n(x_c, \bar{x}_d) \end{pmatrix}, \quad \text{(II)}
$$

für jeweils eine zulässige Wertebeladung \bar{x}_d für die Anzahl m_d der diskreten Parameter. Die Anzahl der rein kontinuierlichen Optimierungsprobleme II ergibt sich aus der Anzahl der zuläs-
sigen unterschiedlichen Werteverteilungen für die diskreten Parameter.

Diese rein kontinuierlichen Optimierungsprobleme können mit an sich bekannten kontinuierlichen Mehrziel-Optimierungsverfahren gelöst werden, die an dieser Stelle daher keiner näheren Erläuterung bedürfen.

Die auf die Mehrzahl der Probleme II angewandten kontinuierlichen Verfahren liefern für jedes Problem II ein oder mehrere für das jeweilige Problem pareto-optimale Punkte, die im Folgenden auch als kontinuierlich-pareto-optimale Punkte bezeichnet werden. Diese bilden einen Suchraum, auf den eine diskrete Suchstrategie angewandt wird, die auf einem paarweisen Vergleich der kontinuierlich-pareto-optimalen Punkte beruht und sich in mehrere diskrete Sub-Suchen untergliedert.

Dabei wird für die erste Sub-Suche zunächst zufällig ein Punkt aus dem Suchraum als Referenzpunkt ausgewählt. Für nachfolgende Sub-Suchen ergeben sich die Referenzpunkte jeweils aus dem Vergleichspunkt des Ergebnis-Punktes der vorhergehenden Sub-Suche. Der Referenzpunkt wird dann nach einem stochastischen Verfahren mit weiteren Punkten verglichen.

Der Vergleich beruht dabei auf einer „besser“, „schlechter“ oder „gleich gut“ Aussage nach folgendem Muster:

Ein Punkt wird als „besser“ bewertet, wenn er einen anderen Punkt dominiert, wobei ein Punkt als dominant angesehen wird, wenn er in allen Zielfunktionen mindestens gleich gut ist (d.h. einen mindestens gleich niedrigen Wert aufweist) und in wenigstens einer Zielfunktion besser als der Vergleichspunkt.

Ein Punkt wird als „schlechter“ bewertet, wenn er vom Vergleichspunkt dominiert wird und als „gleich gut“, wenn weder ein Punkt den anderen dominiert, noch umgekehrt. Es wird also
eine skalare Zielfunktion festgelegt, welche das Paar der zu
vergleichenden Punkte bewertet. Beispielsweise kann die Aus-
sage „Partner 2 besser als Partner 1“ (=Punktepaar „besser“)
mit „0“, die Aussage „Partner 1 besser als Partner 2“
 (=Punktepaar „schlechter“) mit „1“ und die Aussage „Partner
gleich gut“ (=Punktepaar „gleich gut“) mit „0,5“ bewertet
werden.

Zur Lösung der einzelnen diskreten Sub-Probleme eignet sich
beispielsweise der Metropolis-Algorithmus. Dabei wird eine
Nachbarschaftsstruktur festgelegt, die durch die Wahrschein-
lichkeiten bestimmt wird, mit der jedes Punktepaar von jedem
Stand-Punktepaar aus generiert wird.

Das in jedem Schritt auf das einzelne diskrete Sub-Optimie-
rungsproblem angewandte stochastische Verfahren liefert ent-
weder nach einer bestimmten Anzahl von Vergleichen ausgehend
vom Startpunkt bzw. aktuellen Referenzpunkt einen neuen Refe-
renzpunkt oder es wird nach Erreichen eines festgelegten Ab-
bruchkriteriums abgebrochen mit der Aussage „es gibt keinen
besseren Punkt als den aktuellen Referenzpunkt“. In diesem
Fall wird der aktuelle Referenzpunkt als pareto-optimal ange-
sehen.

Das vorzugsweise anzuwendende stochastische Verfahren sollte
auch so ausgebildet sein, dass nicht nur bessere oder gleich
gute Punktepaare in jedem Fall (d.h. mit der Wahrscheinlich-
keit „1“), sondern auch schlechtere Punktepaare mit einer
gewissen Wahrscheinlichkeit angesprungen werden. Letzteres ist
erforderlich, um das Verfahren nicht in „lokalen Minima“ hän-
genbleiben zu lassen.

Dominiert der Vergleichspunkt des Ergebnis-Punktepaares der
vorhergehenden Sub-Suche deren Referenzpunkt, so wird dieser
Vergleichspunkt als Referenzpunkt der neuen Sub-Suche defi-
niiert und das stochastische diskrete Suchverfahren erneut ge-
startet.

Die Start-Referenzpunkte sollten dabei sinnvollerweise so gewählt werden, dass sie einander nicht dominieren. Dies kann mittels geeigneter stochastischer Auswahl erfolgen.

Eine andere Möglichkeit besteht darin, die vorbeschriebene Suchstrategie nicht nach dem Erkennen eines Pareto-Optimums abzubrechen, sondern mit einem „gleich guten“ Punkt fortzusetzen.
Patentansprüche

1. Verfahren zum Entwurf oder Optimieren eines technischen Systems,

a) bei dem das technische System wenigstens zwei vorgegebene Zielfunktionen aufweist;

b) bei dem jede Zielfunktion beeinflusst wird von einer vorgegebenen Anzahl von kontinuierlichen Parametern, deren Parameterwerte einem vorgegebenen kontinuierlichen Wertebereich entnommen sind, und einer vorgegebenen Anzahl von diskreten Parametern, deren Parameterwerte einem diskreten Wertebereich entnommen sind;

c) bei dem eine Wertebelieferung der kontinuierlichen und der diskreten Parameter in einem diskret-kontinuierlichen Parametervektor \((x_C, x_D)\) zusammengefasst wird, wobei mit \(x_C\) die Wertebelieferung der kontinuierlichen Parameter und mit \(x_D\) die Wertebelieferung der diskreten Parameter bezeichnet ist;

d) bei dem zur Ermittlung von bezüglich der Zielfunktionen pareto-optimalen Punkten und jeweils zu den Punktgehörigen Wertebelieferungen des Parametervektors \((x_C, x_D)\)

i) zunächst unter Verwendung eines Verfahrens zur Lösung kontinuierlicher Mehrzielprobleme jeweils für alle zulässigen oder sinnvollen Wertebelieferungen \(x_D\) der diskreten Parameter die bezüglich der Zielfunktionen bei jeweils fester diskreter Wertebelieferung der diskreten Parameter kontinuierlich-pareto-optimalen Punkte und hierzu gehörigen Wertebelieferungen für die kontinuierlichen Parameter bestimmt werden; und
15

ii) anschließend aus der Mehrzahl der kontinuierlich-
pareto-optimalen Punkte unter Verwendung einer
diskreten Suchstrategie die bezüglich der konti-
uierlich-diskreten Zielfunktionen pareto-
optimalen Punkte und hierzu gehörigen Werteebe-
gungen des diskret-kontinuierlichen Parametervek-
tors \((x_c, x_d)\) ermittelt werden.

2. Verfahren nach Anspruch 1, bei dem die diskrete Suchstra-
tegie mehrere diskrete Sub-Suchen mit jeweils einer er-
forderliche Anzahl von Schritten umfasst, wobei in jeder
Sub-Suche mittels eines stochastischen Verfahrens paar-
weise Vergleiche eines aus den ermittelten kontinuier-
lich-pareto-optimalen Punkten entnommenen Referenzpunkts
mit weiteren kontinuierlich-pareto-optimalen Punkten
durchgeführt werden.

3. Verfahren nach Anspruch 2, bei dem in jeder Sub-Suche
ausgehend von einem Stand-Punktepaar, welches aus aktuel-
len Referenzpunkt der Sub-Suche und einem kontinuierlich-
pareto-optimalen Punkt besteht, mit einer vorgegebenen
Wahrscheinlichkeit aus den zur Verfügung stehenden, dem
Stand-Punktepaar benachbarten Punktepaaren, Nachbar-
Punktepaare ausgewählt werden, welche jeweils aus dem ak-
tuellen Referenzpunkt und einem weiteren kontinuierlich-
pareto-optimalen Punkt bestehen.

4. Verfahren nach Anspruch 2 oder 3, bei dem der als Start-
punkt für die Suchstrategie dienende Referenzpunkt zufäl-
lig ausgewählt wird, wobei den kontinuierlich-pareto-
optimalen Punkten eine Wahrscheinlichkeits-Gleichver-
teilung zugeordnet wird.

5. Verfahren nach einem der Ansprüche 3 oder 4, bei dem das
stochastische Verfahren für die Sub-Suchen so beschaffen
ist, dass je Sub-Suche ein vom Stand-Punktepaar aus zu-
fällig erzeugtes Nachbar-Punktepaar sicher als neues
Stand-Punktepaar akzeptiert wird, wenn das Vergleichsverhältnis des Nachbar-Punktepaares mindestens so „gut“ ausfällt wie das des Stand-Punktepaares, wobei das Vergleichsverhältnis als mindestens so „gut“ definiert wird, wenn

a) im Stand-Punktepaar der Referenzpunkt der Sub-Suche den Vergleichspunkt dominiert und das Vergleichsverhältnis des Nachbar-Punktepaares beliebig ausfällt;

b) im Stand-Punktepaar weder der Referenzpunkt den Vergleichspunkt dominiert noch umgekehrt und im Nachbar-Punktepaar weder der Referenzpunkt den Vergleichspunkt dominiert noch umgekehrt oder der Vergleichspunkt den Referenzpunkt dominiert;

c) im Stand-Punktepaar der Vergleichspunkt den Referenzpunkt dominiert und im Nachbar-Punktepaar der Vergleichspunkt den Referenzpunkt dominiert; und

bei dem das Nachbar-Punktepaar mit einer vorbestimmten Wahrscheinlichkeit kleiner 1 und größer 0 als neues Stand-Punktepaar akzeptiert wird, falls das Vergleichsverhältnis im Nachbar-Punktepaar „schlechter“ ist, als im Stand-Punktepaar.

7. Verfahren nach einem der Ansprüche 2 bis 6, bei dem für das Auffinden mehrerer Pareto-Optima die paarweisen Vergleiche gleichzeitig oder nacheinander von unterschiedli-
chren, einander wechselseitig nicht dominierenden Referenzpunkten gestartet wird.

8. Verfahren nach einem der Ansprüche 2 bis 7, bei dem für das Auffinden mehrerer Pareto-Optima die paarweisen Ver-

gleiche nach dem Erkennen eines Referenzpunkts als Pare-
to-Optimum mit einem Referenzpunkt fortgesetzt werden,
welcher von dem Pareto-Optimum mit größerer Wahrschein-
lichkeit nicht dominiert als dominiert wird.

9. Verfahren nach einem der Ansprüche 2 bis 5, bei dem als
stochastisches Verfahren für die Sub-Suchen der Metropo-
lis-Algorithmus verwendet wird.

10. Verfahren nach einem der Ansprüche 2 bis 9, bei dem zur
Anwendung des stochastischen Verfahrens eine diskrete
skalare Zielfunktion definiert wird, welche das Verhält-
nis zweier Punkte eines paarweisen Vergleichs bewertet.

11. Verfahren nach Anspruch 10, bei dem die diskrete skalare
Zielfunktion den Vergleich der beiden zu vergleichenden
Punkte mit einem diskreten Wert MIN, vorzugsweise MIN=0,
bewertet, wenn der Vergleichspunkt den aktuellen Refer-
enzpunkt dominiert, mit einem diskreten Wert MAX, vor-
zugsweise MAX=1, wenn der aktuelle Referenzpunkt den Ver-
gleichspunkt dominiert, und mit einem diskreten Wert MID, vor-
zugsweise MID=0,5, wenn keiner der beiden Punkten den
jeweils anderen dominiert.

12. Verfahren nach einem der vorhergehenden Ansprüche, bei
dem bei der Lösung des momentanen diskreten Sub-Problems
die Information, dass sich kontinuierlich-pareto-optimale
Punkte zu jeweils einer festen Wertebeflegungen der dis-
kreten Parameter gegenseitig nicht dominieren, zur einer
Reduzierung des Suchraums für die diskrete Sub-Suche ver-
wendet wird.
13. Verfahren nach Anspruch 12, bei dem sämtliche zur Lösungsmenge des kontinuierlichen Mehrziel-Optimierungsproblems für eine erste Parameterbelegung für die diskreten Parameter gehörenden kontinuierlich-pareto-optimalen Punkte aus dem Suchraum einer Sub-Suche ausgeschlossen werden, wenn festgestellt wurde, dass ein zur Lösungsmenge des kontinuierlichen Mehrziel-Optimierungsproblems für eine zweite Parameterbelegung für die diskreten Parameter gehörender kontinuierlich-pareto-optimaler Punkt zumindest einen der zu der genannten Lösungsmenge gehörenden Punkte dominiert und Referenzzpunkt der Sub-Suche ist.

14. Einrichtung zum Entwurf oder Optimieren eines technischen Systems,

a) mit einer Prozessoreinheit und einem in einem Arbeitsspeicher gespeicherten Programm, welches die Verfahrensschritte gemäß einem der vorhergehenden Ansprüche durchführt,

b) mit einer Eingabeeinheit, mittels welcher die Wertebereiche für die diskreten und die kontinuierlichen Parameter eingebbar sind und in einem Speicherbereich ablegbar sind, und

c) mit einer Ausgabeleinheit, über welche die pareto-optimalen Punkte als Daten für den Entwurf des technischen Systems und/oder als Signale zur optimierten Ansteuerung des technischen Systems ausgebbar sind.

15. Computerprogramm-Produkt, wobei das Programm in den Arbeitsspeicher (9, 11, 13) einer Datenverarbeitungseinrichtung oder einer Prozessoreinheit (7) einer Einrichtung nach Anspruch 14 ladbar ist und welches einen Code zur Durchführung der Verfahrensschritte nach einem der Ansprüche 1 bis 13 umfasst.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G05B13/02

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. SALAPA K ET AL: "CONTROLLER DESIGN TO OPTIMIZE A COMPOSITE PERFORMANCE MEASURE" PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, vol. 1, 13 December 1995 (1995-12-13), pages 817-822, XP000937465 USA page 817, left-hand column, line 1 - page 820, left-hand column, line 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| D. JAQUES ET AL: "A MATLAB TOOLBOX FOR FIXED-ORDER, MIXED-NORM CONTROL SYNTHESIS" IEEE CONTROL SYSTEMS MAGAZINE, vol. 16, no. 5, October 1996 (1996-10), pages 36-44, XP000937481 USA page 36, left-hand column, line 1 - page 40, left-hand column, line 16 |

Date of the actual completion of the international search: 5 September 2000

Date of mailing of the international search report: 13/09/2000

Name and mailing address of the ISA
European Patent Office, P. B. 5818 Patentilaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epc nl, Fax: (+31-70) 340-3016

Authorized officer
Kelperis, K
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C.COELLO ET AL: "AN APPROACH TO MULTIOBJECTIVE OPTIMIZATION USING GENETIC ALGORITHMS" INTELLIGENT ENGINEERING SYSTEMS THROUGH ARTIFICIAL NEURAL NETWORKS, 12 November 1995 (1995-11-12), pages 411-416, XP000900855 USA page 411, line 1 -page 414, line 7</td>
<td>1</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICH

PCT/DE 00/01565

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G05B13/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERT GEWEBTE

Rechercherter Mindestrprüfstoff (Klassifikationssystem und Klassifikationsmittel)
IPK 7 G05B

Recherchierte aber nicht zum Mindestrprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D. JACQUES ET AL: "A MATLAB TOOLBOX FOR FIXED-ORDER, MIXED-NORM CONTROL SYNTHESIS" IEEE CONTROL SYSTEMS MAGAZINE, Bd. 16, Nr. 5, Oktober 1996 (1996-10), Seiten 36-44, XP000937481 USA Seite 36, linke Spalte, Zeile 1 - Seite 40, linke Spalte, Zeile 16</td>
<td></td>
</tr>
</tbody>
</table>

X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche: 5. September 2000

Absendetermin des internationalen Recherchenberichts: 13/09/2000

Kasperis, K

Formblatt PCT/SA/210 (Blatt 2) (Juli 1992)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>