

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2568352 C 2011/09/13

(11)(21) **2 568 352**

(12) **BREVET CANADIEN**
CANADIAN PATENT

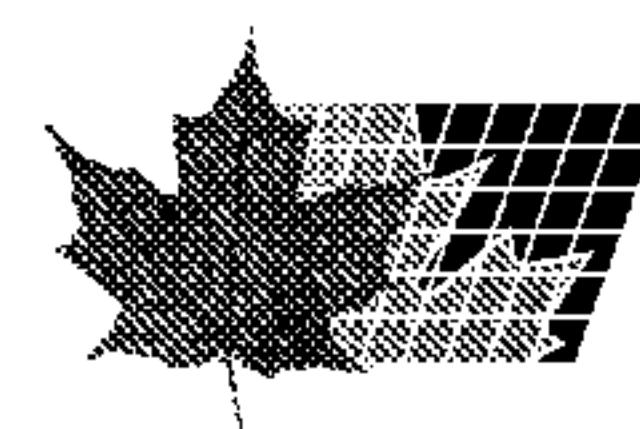
(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2005/06/03
(87) Date publication PCT/PCT Publication Date: 2005/12/15
(45) Date de délivrance/Issue Date: 2011/09/13
(85) Entrée phase nationale/National Entry: 2006/11/22
(86) N° demande PCT/PCT Application No.: US 2005/019674
(87) N° publication PCT/PCT Publication No.: 2005/117945
(30) Priorité/Priority: 2004/06/04 (US60/577,023)

(51) Cl.Int./Int.Cl. *A61K 38/17*(2006.01),
A61K 39/395(2006.01), *A61P 29/00*(2006.01)

(72) Inventeurs/Inventors:
MELLIS, SCOTT, US;
KAROW, MARGARET, US;
YANCOPOULOS, GEORGE D., US;
PAPADOPoulos, JOANNE, US

(73) Propriétaire/Owner:
REGENERON PHARMACEUTICALS, INC., US


(74) Agent: BLAKE, CASSELS & GRAYDON LLP

(54) Titre : PROCEDES D'UTILISATION D'ANTAGONISTES DE L'IL-1 DANS LE TRAITEMENT DE MALADIES AUTO-INFLAMMATOIRES

(54) Title: METHODS OF USING IL-1 ANTAGONISTS TO TREAT AUTOINFLAMMATORY DISEASE

(57) Abrégé/Abstract:

Methods of treating, inhibiting, or ameliorating an autoinflammatory disorder, disease, or condition in a subject in need thereof, comprising administering to a subject in need a therapeutic amount of an interleukin 1 (IL-1) antagonist, wherein the autoinflammatory disorder, disease, or condition is treated, inhibited, or ameliorated. The IL-1 antagonist is a molecule capable of binding and inhibiting IL-1. The therapeutic methods are useful for treating a human adult or child suffering from Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory Syndrome (FCAS), familial mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), or systemic onset juvenile idiopathic arthritis (Still's Disease).

Abstract of the Invention

Methods of treating, inhibiting, or ameliorating an autoinflammatory disorder, disease, or condition in a subject in need thereof, comprising administering to a subject in need a therapeutic amount of an interleukin 1 (IL-1) antagonist, wherein the autoinflammatory disorder, disease, or condition is treated, inhibited, or ameliorated. The IL-1 antagonist is a molecule capable of binding and inhibiting IL-1. The therapeutic methods are useful for treating a human adult or child suffering from Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory Syndrome (FCAS), familial mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), or systemic onset juvenile idiopathic arthritis (Still's Disease).

1 **METHODS OF USING IL-1 ANTAGONISTS TO**
2 **TREAT AUTOINFLAMMATORY DISEASE**
34 **BACKGROUND**
55 **Field of the Invention**

6 **[0001]** The invention relates to methods of using interleukin-1 (IL-1) antagonists to treat
7 autoinflammatory diseases, such as, for example, including familial mediterranean fever (FMF),
8 NOMID/CINCA, Muckle-Wells Syndrome, FCAS, and tumour necrosis factor receptor-
9 associated periodic fever syndrome (TRAPS).

10

11 **Description of Related Art**

12 **[0002]** One important group of autoinflammatory disorders encompasses autosomal dominant
13 conditions associated with mutations in CIAS-1, a gene that encodes a pyrin-related protein
14 called "cryopyrin" (Feldmann et al. (2002) Am. J. Hum. Genet. 71:198-203; Hoffman et al.
15 (2001) Nat. Genet. 29:301-305). These disorders include Neonatal Onset Multisystem
16 Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), and Familial Cold
17 Autoinflammatory Syndrome (FCAS). These disorders present a spectrum of clinical
18 manifestations ranging from FCAS being the mildest to the seriously disabling disease of
19 NOMID/CINCA. An urticaria-like skin rash is common to the entire spectrum of these diseases.
20 In patients with FCAS, this rash is inducible by cold exposure while most patients with MWS or
21 NOMID present with daily rashes that are consistently provoked by a number of different
22 stimuli. Conjunctivitis is present in all forms of disease expression, however, hearing loss,
23 aseptic meningitis and arthritis are mainly seen in patients with MWS and NOMID/ CINCA. The
24 disfiguring and disabling body overgrowth at the epiphyses and patellae is only seen in patients
25 with NOMID/CINCA.

26 **[0003]** FMF is a recessively inherited condition characterized by episodes of fever and serositis
27 or synovitis; some subjects also develop systemic amyloidosis (Balow et al. (1997) Genomics
28 44:280-291). The FMF gene encodes a novel protein called pyrin that is the prototype of a
29 family of molecules involved in the regulation of apoptosis (cell-death) and inflammation. The
30 precise biochemical mechanism by which these proteins function, and by which mutations
31 cause disease, is still unknown.

1 [0004] Still's Disease (systemic onset juvenile idiopathic arthritis), is manifest by spiking fevers,
2 evanescent salmon color rash, arthritis, arthralgia, and hepatosplenomegaly (Masson et al.
3 (1995) Rev. Rhum. Engl. Ed. 62:748-757; Spiegel et al. (2000) Arthritis Rheum. 43:2402-2409).
4 There are as yet no definitive genetic associations with Still's Disease and the pathogenesis is
5 poorly understood. Interestingly, many of the signs and symptoms of Still's disease are similar
6 to those with autoinflammatory disease. Still's Disease typically first occurs during childhood,
7 but can also have its onset in adulthood.

8 [0005] Similarly, Kawasaki disease is a disease affecting children that is accompanied by
9 fevers, swelling and arthritic joints, and rash, as well as vascular inflammation that can cause
10 permanent coronary damage in approximately 15-25% of affected children. Two other similar
11 diseases are Blau's syndrome and Early Onset Sarcoidosis (EOS), both of which are caused by
12 a gain of function mutations in NOD2, a protein similar to Pyrin, and cause rash,
13 granulomatosis, arthritis and uveitis. Other diseases that have also been considered
14 autoinflammatory include, Hidradenitis suppurativa, Behcet's, hyperimmunoglobulinemia D with
15 periodic fever syndrome (HIDS), tumour necrosis factor receptor-associated periodic fever
16 syndrome (TRAPS), and Pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA
17 syndrome).

18 [0006] The pathogenesis of autoinflammatory disease is not completely understood. There is a
19 growing body of evidence that interleukin-1 (IL-1) plays a role in a number of these conditions
20 and that targeting of this cytokine can provide important benefits (Hoffman et al. (2004)
21 Arthritis. Rheum. 50:345-349). There is clearly a need to develop improved therapeutic
22 treatment of these autoinflammatory diseases.

23

24 BRIEF SUMMARY OF THE INVENTION

25 [0007] In a first aspect, the invention features a method of treating, inhibiting, or ameliorating
26 an autoinflammatory disorder, comprising administering to a subject in need an interleukin 1
27 (IL-1) antagonist. An IL-1 antagonist is a compound capable of blocking or inhibiting the
28 biological action of IL-1, including IL-1-binding fusion proteins. In a preferred embodiment, the
29 IL-1 antagonist is an IL-1-specific fusion protein comprising two IL-1 receptor components and
30 a multimerizing component, for example, an IL-1 fusion protein trap antagonist (an "IL-1 trap")
31 described in U.S. patent publication No. 2003/0143697, published 31 July 2003. In a specific

1 embodiment, the IL-1 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12, 14,
2 16, 18, 20, 22, 24, 26. A preferred fusion protein is shown in SEQ ID NO:10. The invention
3 encompasses the use of an IL-1-binding fusion protein substantially identical to the protein of
4 SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, that is, a protein having at least 95%
5 identity, at least 97% identity, at least 98% identity to the protein of SEQ ID NO: 4, 6, 8, 10, 12,
6 14, 16, 18, 20, 22, 24, 26 and capable of binding and inhibiting IL-1. Further, in specific
7 embodiments, the IL-1 antagonist is a fusion protein comprising one or more immunoglobulin-
8 derived components in place of one or more receptor components. In specific embodiments,
9 the IL-1 antagonist comprises one or more immunoglobulin-derived components specific for IL-
10 1 and/or an IL-1 receptor.

11 [0008] The subject being treated is most preferably a human diagnosed as suffering from an
12 autoinflammatory disorder. More specifically, the subject is a human adult or child diagnosed
13 with an autoinflammatory disorder associated with mutations in CIAS-1, such as Neonatal
14 Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS),
15 Familial Cold Autoinflammatory Syndrome (FCAS); familial mediterranean fever (FMF);
16 systemic onset juvenile idiopathic arthritis (Still's Disease), tumour necrosis factor receptor-
17 associated periodic fever syndrome (TRAPS), or Kawasaki Disease.

18 [0009] The method of the invention includes administration of the IL-1 antagonist by any
19 means known to the art, for example, subcutaneous, intramuscular, intranasal, intravenous,
20 transdermal administration or oral routes of administration. Preferably, administration is
21 subcutaneous or intravenous.

22 [0010] In a second aspect, the invention features a method of treating, inhibiting, or
23 ameliorating a disease or condition selected from the group consisting of NOMID/CINCA,
24 MWS, FCAS, FMP, Still's Disease, TRAPS, and Kawasaki Disease, the method comprising
25 administering to a subject in need an interleukin 1 (IL-1) antagonist. In a preferred
26 embodiment, the IL-1 antagonist is a fusion protein capable of trapping IL-1. In a specific
27 embodiment, the IL-1 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12, 14,
28 16, 18, 20, 22, 24, 26, or a substantially identical protein capable of binding and inhibiting IL-1.
29 A preferred IL-1 antagonist is shown in SEQ ID NO:10. Preferably, the subject treated is a
30 child or adult human diagnosed with the disease or condition.

1 [0011] In a third aspect, the invention features a method of treating, inhibiting, or ameliorating
2 Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), comprising administering
3 to a subject in need an interleukin 1 (IL-1) antagonist. In a preferred embodiment, the IL-1
4 antagonist is a fusion protein capable of trapping IL-1. In a specific embodiment, the IL-1
5 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
6 or a substantially identical protein capable of binding and inhibiting IL-1. A preferred IL-1
7 antagonist is shown in SEQ ID NO:10.

8 [0012] In a fourth aspect, the invention features a method of treating, inhibiting, or ameliorating
9 Muckle-Wells Syndrome (MWS), the method comprising administering to a subject in need an
10 interleukin 1 (IL-1) antagonist. In a preferred embodiment, the IL-1 antagonist is a fusion
11 protein capable of trapping IL-1. In a specific embodiment, the IL-1 antagonist is the fusion
12 protein shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or a substantially
13 identical protein capable of binding and inhibiting IL-1. A preferred IL-1 antagonist is shown in
14 SEQ ID NO:10.

15 [0013] In a fifth aspect, the invention features a method of treating, inhibiting, or ameliorating
16 Familial Cold Autoinflammatory Syndrome (FCAS) the method comprising administering to a
17 subject in need an interleukin 1 (IL-1) antagonist. In a preferred embodiment, the IL-1
18 antagonist is a fusion protein capable of trapping IL-1. In a specific embodiment, the IL-1
19 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
20 or a substantially identical protein capable of binding and inhibiting IL-1. A preferred IL-1
21 antagonist is shown in SEQ ID NO:10.

22 [0014] In a sixth aspect, the invention features a method of treating, inhibiting, or ameliorating
23 familial mediterranean fever (FMF), the method comprising administering to a subject in need
24 an interleukin 1 (IL-1) antagonist. In a preferred embodiment, the IL-1 antagonist is a fusion
25 protein capable of trapping IL-1. In a specific embodiment, the IL-1 trap is the fusion protein
26 shown in SEQ ID NO:4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or a substantially identical
27 protein capable of binding and inhibiting IL-1. A preferred IL-1 trap is shown in SEQ ID NO:10.

28 [0015] In a seventh aspect, the invention features a method of treating, inhibiting, or
29 ameliorating systemic onset juvenile idiopathic arthritis (Still's Disease), the method comprising
30 administering to a subject in need an interleukin 1 (IL-1) antagonist. In a preferred
31 embodiment, the IL-1 antagonist is a fusion protein capable of trapping IL-1. In a specific

1 embodiment, the IL-1 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12,14,
2 16, 18, 20, 22, 24, 26, or a substantially identical protein capable of binding and inhibiting IL-1.
3 A preferred IL-1 trap is shown in SEQ ID NO:10.

4 [0016] In an eighth aspect, the invention features a method of treating, inhibiting, or
5 ameliorating tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS), the
6 method comprising administering to a subject in need an IL-1 antagonist. In a preferred
7 embodiment, the IL-1 antagonist is a fusion protein capable of trapping IL-1. In a specific
8 embodiment, the IL-1 antagonist is the fusion protein shown in SEQ ID NO: 4, 6, 8, 10, 12,14,
9 16, 18, 20, 22, 24, 26, or a substantially identical protein capable of binding and inhibiting IL-1.
10 A preferred IL-1 trap is shown in SEQ ID NO:10.

11 [0017] In specific embodiments of the therapeutic method of the invention, the subject is
12 treated with a combination of a first IL-1-binding fusion protein trap molecule and a second
13 therapeutic agent. The second therapeutic agent may be a second IL-1 antagonist, such as,
14 for example, a second IL-1-binding fusion protein trap, anakinra (Kineret®, Amgen), a
15 recombinant, nonglycosylated form of the human IL-1 receptor antagonist (IL1Ra), or an anti-
16 IL-18 drug such as IL-18BP or a derivative, an IL-18-binding fusion protein trap (an "IL-18
17 trap"), anti-IL-18, anti-IL-18R1, or anti-IL-18Racp antibodies or antibody fragments. Other co-
18 therapies include low dose colchicine for FMF, aspirin or other NSAIDs, steroids such as
19 prednisolone, methotrexate, low dose cyclosporine A, TNF inhibitors such as Enbrel®, or
20 Humira®, other inflammatory inhibitors such as inhibitors of caspase-1, p38, IKK1/2, CTLA-4Ig,
21 anti-IL-6 or anti-IL6Ra, etc.

22 [0018] In a ninth aspect, the invention features a therapeutic method of treating an
23 autoinflammatory disease or condition, comprising administering a pharmaceutical composition
24 comprising an IL-1-binding fusion protein trap and a pharmaceutically acceptable carrier. In
25 one embodiment, the IL-1-binding fusion protein trap is administered in a dose range of 1-20
26 mg/kg on a weekly basis for a treatment period of between 1 week to one year or more. In
27 another embodiment, a total IL-1-binding fusion protein is administered in the range of 50-2000
28 mg, which may be provided in a single dose or in sequential doses over a period of time such
29 as a period of weeks or months.

1 [0018a] In one aspect, the invention present invention provides a use of a dose of an
2 interleukin 1 (IL-1) fusion protein antagonist for treating, inhibiting, or ameliorating an
3 autoinflammatory disorder, disease, or condition in a subject, wherein:
4 - the dose of the IL-1 fusion protein antagonist is capable of being administered on a
5 weekly basis;
6 - the IL-1 fusion protein antagonist comprises two IL-1 receptor components and a
7 multimerizing component comprising the amino acid sequence of SEQ ID NO:10; and,
8 - the subject is a human adult or child diagnosed with Neonatal Onset Multisystem
9 Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), Familial Cold
10 Autoinflammatory Syndrome (FCAS), familial mediterranean fever (FMF), tumor necrosis factor
11 receptor-associated periodic fever syndrome (TRAPS), or systemic onset juvenile idiopathic
12 arthritis (Still's Disease).

13

14 [0018b] In another aspect, the invention provides a use of a dose of an interleukin 1 (IL-1)
15 antagonist for treating, inhibiting, or ameliorating an autoinflammatory disorder associated with
16 mutations in CIAS-1 in a subject, wherein:
17 - the dose of the IL-1 antagonist is capable of being administered on a weekly basis;
18 - the IL-1 antagonist comprises the amino acid sequence of SEQ ID NO:10;
19 - the autoinflammatory disorder associated with mutations in CIAS-1 is one of Neonatal
20 Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS),
21 and Familial Cold Autoinflammatory Syndrome (FCAS).

22

23 [0018c] In another aspect, the IL-1 fusion protein antagonist or IL-1 antagonist is administered
24 at a dose of 1-20 mg of the antagonist / kg.

25

26 [0019] Other objects and advantages will become apparent from a review of the ensuing
27 detailed description.

28

29 **DETAILED DESCRIPTION**

30 [0020] Before the present methods are described, it is to be understood that this invention is
31 not limited to particular methods, and experimental conditions described, as such methods and

1 conditions may vary. It is also to be understood that the terminology used herein is for the
2 purpose of describing particular embodiments only, and is not intended to be limiting, since the
3 scope of the present invention will be limited only to the appended claims.

4 **[0021]** As used in this specification and the appended claims, the singular forms "a", "an", and
5 "the" include plural references unless the context clearly dictates otherwise. Thus for example,
6 a reference to "a method" includes one or more methods, and/or steps of the type described
7 herein and/or which will become apparent to those persons skilled in the art upon reading this
8 disclosure and so forth.

9 **[0022]** Unless defined otherwise, all technical and scientific terms used herein have the same
10 meaning as commonly understood by one of ordinary skill in the art to which this invention
11 belongs. Although any methods and materials similar or equivalent to those described herein
12 can be used in the practice or testing of the present invention, the preferred methods and
13 materials are now described.

14

15 **General Description**

16 **[0023]** Mutations in the gene *CIAS1* are now recognized as being responsible for three rare
17 genetic syndromes: Neonatal Onset Multisystem Inflammatory Disorder (NOMID), Muckle-
18 Wells Syndrome (MWS), and Familial Cold Autoinflammatory Syndrome (FCAS). (Hoffman et
19 al. 2001 *Nature* 29:301-305; Feldmann et al. 2002 *Am J Hum Genet* 71:198-203; Aksentijevich
20 et al. 2002 *Arthritis Rheum* 46:3340-3348). In aggregate, these conditions are known as
21 "CAPS", an acronym for "*CIAS1* Associated Periodic Syndromes". CAPS disorders are
22 exceedingly rare; with approximately 200-300 adults and children in the U.S. with FCAS and
23 significantly fewer adults with NOMID or MWS known to have these conditions. The rarity of
24 these conditions, particularly NOMID and MWS, are probably due to effects of disease severity
25 on survival or reproductive fitness.

26 **[0024]** CAPS are inherited in an autosomal dominant manner, with a sporadic or familial
27 pattern. *CIAS1* encodes a protein called NALP3 that is a component of the "inflammasome", a
28 subcellular enzyme complex that regulates the activity of caspase 1. Caspase 1 is the enzyme
29 that cleaves the inactive pro-form of the proinflammatory cytokine, IL-1, into its biologically
30 active form (Agostini et al. 2004 *supra*). Mutations in *CIAS1* lead to increased production of IL-

1 and numerous pathological consequences (Aksentijevich et al. 2002 *supra*). IL-1 strongly
2 induces the production of acute phase reactants in the liver, such as C-reactive protein (CRP)
3 and serum amyloid A (SAA).

4 [0025] The genetics of CAPS are interesting in that there can be a number of different point
5 mutations in *CIAS1* associated with these syndromes (Sarrauste de Menthire et al. 2003
6 Nucleic Acids Res 31:282-285; Aksentijevich et al. 2002 *supra*). Some of these mutations are
7 associated with only one syndrome; others two. For example, some mutations may be
8 associated with FCAS as well as MWS; other mutations may be associated with MWS and
9 NOMID. Approximately 50% of patients with NOMID do not have a recognized mutation in the
10 coding region of *CIAS1*. In these patients, the disease may be due to an as-yet-unrecognized
11 mutation in a regulatory region or protein of *CIAS1*, or in another gene encoding a closely-
12 related protein in this pathway. FCAS is more genetically homogeneous than NOMID; almost
13 all patients with FCAS share a common mutation (Sarrauste de Menthire et al. 2003 *supra*;
14 Hoffman et al. 2001 *supra*).

15 [0026] CAPS disorders share common clinical features and present as a spectrum of clinical
16 severity. NOMID is the most seriously disabling, MWS somewhat less so and FCAS is the least
17 severe. CAPS disorders have overlapping features and there are individuals and kindred with
18 unique constellations of signs and symptoms. Features common to all these conditions include
19 fevers, urticaria-like rash, arthritis or arthralgia, myalgia, malaise, and conjunctivitis. However,
20 the spectrum of symptoms for any patient with a CAPS disorder may differ from that of another
21 patient with the same disorder. A universal feature of active CAPS disease is laboratory test
22 elevation of acute phase reactants, such as CRP, SAA, and/or erythrocyte sedimentation rate
23 (ESR).

24 [0027] In NOMID, chronic aseptic meningitis may lead to mental retardation and these patients
25 may also suffer disfiguring and disabling bony overgrowth at the epiphyses and patellae. These
26 patients may also suffer blindness due to optic nerve atrophy that results from increased
27 intracranial pressure. MWS and NOMID are commonly associated with severe inflammation
28 that may include the auditory system, meninges, and joints. These patients may suffer daily
29 high spiking fevers and a chronic rash that frequently changes in distribution and intensity.
30 Patients may suffer hearing loss or deafness. Conjunctivitis and papilledema are frequently
31 observed. Amyloidosis may develop and lead to renal failure due to chronic inflammation and

1 overproduction of acute phase reactants (particularly SAA). MWS is also known as
2 "amyloidosis-deafness syndrome".
3 [0028] The clinical signs and symptoms of FCAS are induced by exposure to modestly cold air
4 (e.g., seasonal temperature changes, air conditioning). Patients may have frequent
5 (sometimes daily) episodes of a painful or pruritic rash, fever, fatigue, malaise, headache,
6 nausea, and thirst during cold months or in locations where air conditioning is prevalent. In
7 many locales, this may include most work places. FCAS is a source of frequent pain to patients
8 and may restrict their employment, social, and recreational opportunities. Up to 2% of patients
9 with FCAS develop amyloidosis, a life-threatening condition. This frequency is substantially
10 higher than the rate of amyloidosis in the general community. The genetics and natural history
11 of FCAS are described in detail Hoffman et al. 2001 Nature 29:301-305 and Hoffman et al.
12 2001 J Allergy clin Immunol 108:615-620.

13

14 **Definitions**

15 [0029] By the term "blocker", "inhibitor", or "antagonist" is meant a substance that retards or
16 prevents a chemical or physiological reaction or response. Common blockers or inhibitors
17 include but are not limited to antisense molecules, antibodies, antagonists and their derivatives.
18 More specifically, an example of an IL-1 blocker or inhibitor is an IL-1 antagonist including, but
19 not limited to, an IL-1 fusion protein trap antagonist, which binds and inhibits IL-1.

20 [0030] By the term "therapeutically effective dose" is meant a dose that produces the desired
21 effect for which it is administered. The exact dose will depend on the purpose of the treatment,
22 and will be ascertainable by one skilled in the art using known techniques (see, for example,
23 Lloyd (1999) *The Art, Science and Technology of Pharmaceutical Compounding*).

24 [0031] By the term "substantially identical" is meant a protein sequence having at least 95%
25 identity to an amino acid sequence selected from the group consisting of the amino acid
26 sequences SEQ ID NOs: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26, and capable of binding
27 IL-1 and inhibiting the biological activity of IL-1.

28 [0032] The term "identity" or "homology" is construed to mean the percentage of amino acid
29 residues in the candidate sequence that are identical with the residue of a corresponding
30 sequence to which it is compared, after aligning the sequences and introducing gaps, if

1 necessary to achieve the maximum percent identity for the entire sequence, and not
2 considering any conservative substitutions as part of the sequence identity. Neither N- or C-
3 terminal extensions nor insertions will be construed as reducing identity or homology. Methods
4 and computer programs for the alignment are well known in the art. Sequence identity may be
5 measured using sequence analysis software (e.g., Sequence Analysis Software Package,
6 Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University
7 Ave., Madison, Wis. 53705). This software matches similar sequences by assigning degrees of
8 homology to various substitutions, deletions, and other modifications.

9

10 **IL-1-Binding Fusion Protein Trap Antagonists**

11 **[0033]** Interleukin-1 (IL-1) traps are multimers of fusion proteins containing IL-1 receptor
12 components and a multimerizing component capable of interacting with the multimerizing
13 component present in another fusion protein to form a higher order structure, such as a dimer.
14 The IL-1-binding fusion proteins useful in the methods of the invention include two distinct
15 receptor components that bind a single cytokine, resulting in the generation of antagonists with
16 dramatically increased affinity over that offered by single component reagents. The IL-1-binding
17 fusion protein traps are comprised of the extracellular domain of human IL-1R Type I (IL-1RI) or
18 Type II (IL-1RII) followed by the extracellular domain of human IL-1 Accessory protein (IL-
19 1AcP), followed by a multimerizing component. In a preferred embodiment, the multimerizing
20 component is an immunoglobulin-derived domain, such as, for example, the Fc region of
21 human IgG, including part of the hinge region, the CH2 and CH3 domains. An immunoglobulin-
22 derived domain may be selected from any of the major classes of immunoglobulins, including
23 IgA, IgD, IgE, IgG and IgM, and any subclass or isotype, e.g. IgG1, IgG2, IgG3 and IgG4; IgA-1
24 and IgA-2. Alternatively, the IL-1-binding fusion proteins useful in the method of the invention
25 are comprised of the extracellular domain of human IL-1AcP, followed by the extracellular
26 domain of human IL-1RI or IL-1RII, followed by a multimerizing component. For a more
27 detailed description of the IL-1-binding fusion protein traps, see WO 00/18932. Preferred IL-1
28 antagonists have the amino acid sequence shown in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18,
29 20, 22, 24, and 26, or a substantially identical protein at least 95% identity to a sequence of
30 SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, or 26, and capable of binding and inhibiting
31 IL1.

1

2 **Treatment Population**

3 [0034] The therapeutic methods of the invention are useful for treating individuals affected with
4 *CIAS-1* mutation disorders (NOMID, MWS, FCAS), FMF, TRAPS, or Still's Disease. Commonly
5 accepted diagnostic criteria for *CIAS-1* mutation associated disease (NOMID, MWS, FCAS),
6 Familial Mediterranean Fever, or Still's Disease (adult- or juvenile- onset) are known to those
7 skilled in the art. In the case of patients diagnosed with FMF, the therapeutic method of the
8 invention may be particularly useful for those with disease refractory to therapy with colchicine.

9

10 **Methods of Administration**

11 [0035] The invention provides methods of treatment comprising administering to a subject an
12 effective amount of an agent of the invention. In a preferred aspect, the agent is substantially
13 purified (e.g., substantially free from substances that limit its effect or produce undesired
14 side-effects).

15 [0036] Various delivery systems are known and can be used to administer an agent of the
16 invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells
17 capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu,
18 1987, *J. Biol. Chem.* 262:4429-4432), construction of a nucleic acid as part of a retroviral or
19 other vector, etc. Methods of introduction can be enteral or parenteral and include but are not
20 limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal,
21 epidural, and oral routes. The compounds may be administered by any convenient route, for
22 example by infusion or bolus injection, by absorption through epithelial or mucocutaneous
23 linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together
24 with other biologically active agents. Administration can be systemic or local. In addition, it
25 may be desirable to introduce the pharmaceutical compositions of the invention into the central
26 nervous system by any suitable route, including intraventricular and intrathecal injection;
27 intraventricular injection may be facilitated by an intraventricular catheter, for example, attached
28 to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed,
29 e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

1 [0037] In a specific embodiment, it may be desirable to administer the pharmaceutical
2 compositions of the invention locally to the area in need of treatment; this may be achieved, for
3 example, and not by way of limitation, by local infusion during surgery, topical application, e.g.,
4 by injection, by means of a catheter, or by means of an implant, said implant being of a porous,
5 non-porous, or gelatinous material, including membranes, such as sialastic membranes, fibers,
6 commercial skin substitutes or angioplasty balloons or stents.

7 [0038] In another embodiment, the active agent can be delivered in a vesicle, in particular a
8 liposome (see Langer (1990) *Science* 249:1527-1533). In yet another embodiment, the active
9 agent can be delivered in a controlled release system. In one embodiment, a pump may be
10 used (see Langer (1990) *supra*). In another embodiment, polymeric materials can be used (see
11 Howard et al. (1989) *J. Neurosurg.* 71:105.). In another embodiment where the active agent of
12 the invention is a nucleic acid encoding a protein, the nucleic acid can be administered *in vivo*
13 to promote expression of its encoded protein, by constructing it as part of an appropriate
14 nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use
15 of a retroviral vector (see, for example, U.S. Patent No. 4,980,286), or by direct injection, or by
16 use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or
17 cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-
18 like peptide which is known to enter the nucleus (see e.g., Joliot et al., 1991, *Proc. Natl. Acad.*
19 *Sci. USA* 88:1864-1868), etc. Alternatively, a nucleic acid can be introduced intracellularly and
20 incorporated within host cell DNA for expression, by homologous recombination.

21

22 Combination Therapies

23 [0039] In numerous embodiments, the IL-1 antagonists useful in the methods of the present
24 invention may be administered in combination with one or more additional compounds or
25 therapies. Combination therapy may be simultaneous or sequential. The IL-1-binding fusion
26 proteins of the invention may be combined with, for example, TNF-inhibiting agents such as
27 etanercept (Enbrel®, Amgen), infliximab (Remicade®, Centocor), Humira® (Abbott),
28 thalidomide, steroids, anakinra (Kinaret®, Amgen), or colchicine. Colchicine is a mainstay of
29 therapy for subjects with FMF; in this study, subjects will not be removed from treatment with
30 this medication. For Still's Disease (and classical autoinflammatory diseases), compounds
31 such as methotrexate, cyclosporine, chlorambucil, cyclophosphamide (DMARDs) have been

1 used as monotherapy or in combination with no consistent response. Some subjects respond to
2 high doses of steroids. DMARDs, and more recently anti-TNF agents have been used with
3 variable success. The IL-1-binding fusion proteins of the invention may also be combined with
4 anti-IL-18 drugs, such as for example, IL-18BP or a derivative, an IL-18-binding fusion protein,
5 anti-IL-18, anti-IL-18R1, or anti-IL-18Racp. Other co-therapies include low dose colchicine for
6 FMF, aspirin or other NSAIDs, steroids such as prednisolone, methotrexate, low dose
7 cyclosporine A, TNF inhibitors such as Enbrel®, or Humira®, other inflammatory inhibitors such
8 as inhibitors of caspase-1, p38, IKK1/2, CTLA-4Ig, anti-IL-6 or anti-IL6Ra, etc.

9

10 **Pharmaceutical Compositions**

11 [0040] The present invention also provides pharmaceutical compositions. Such compositions
12 comprise a therapeutically effective amount of an active agent, and a pharmaceutically
13 acceptable carrier. The term "pharmaceutically acceptable" means approved by a regulatory
14 agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other
15 generally recognized pharmacopeia for use in animals, and more particularly, in humans. The
16 term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is
17 administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils,
18 including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean
19 oil, mineral oil, sesame oil and the like. Suitable pharmaceutical excipients include starch,
20 glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol
21 monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol
22 and the like. The composition, if desired, can also contain minor amounts of wetting or
23 emulsifying agents, or pH buffering agents. These compositions can take the form of solutions,
24 suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and
25 the like. The composition can be formulated as a suppository, with traditional binders and
26 carriers such as triglycerides. Oral formulation can include standard carriers such as
27 pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine,
28 cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are
29 described in "Remington's Pharmaceutical Sciences" by E.W. Martin.

30 [0041] In a preferred embodiment, the composition is formulated in accordance with routine
31 procedures as a pharmaceutical composition adapted for intravenous administration to human

1 beings. Where necessary, the composition may also include a solubilizing agent and a local
2 anesthetic such as lidocaine to ease pain at the site of the injection. Where the composition is
3 to be administered by infusion, it can be dispensed with an infusion bottle containing sterile
4 pharmaceutical grade water or saline. Where the composition is administered by injection, an
5 ampoule of sterile water for injection or saline can be provided so that the ingredients may be
6 mixed prior to administration.

7 **[0042]** The active agents of the invention can be formulated as neutral or salt forms.
8 Pharmaceutically acceptable salts include those formed with free amino groups such as those
9 derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with
10 free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric
11 hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

12 **[0043]** The amount of the active agent of the invention which will be effective in the treatment
13 of delayed-type hypersensitivity can be determined by standard clinical techniques based on
14 the present description. In addition, *in vitro* assays may optionally be employed to help identify
15 optimal dosage ranges. The precise dose to be employed in the formulation will also depend
16 on the route of administration, and the seriousness of the condition, and should be decided
17 according to the judgment of the practitioner and each subject's circumstances. However,
18 suitable dosage ranges for intravenous administration are generally up to about 2 grams of
19 active compound. Effective doses may be extrapolated from dose-response curves derived
20 from *in vitro* or animal model test systems.

21 **[0044]** For systemic administration, a therapeutically effective dose can be estimated initially
22 from *in vitro* assays. For example, a dose can be formulated in animal models to achieve a
23 circulating concentration range that includes the IC₅₀ as determined in cell culture. Such
24 information can be used to more accurately determine useful doses in humans. Initial dosages
25 can also be estimated from *in vivo* data, e.g., animal models, using techniques that are well
26 known in the art. One having ordinary skill in the art could readily optimize administration to
27 humans based on animal data.

28 **[0045]** Dosage amount and interval may be adjusted individually to provide plasma levels of
29 the compounds that are sufficient to maintain therapeutic effect. In cases of local
30 administration or selective uptake, the effective local concentration of the compounds may not

1 be related to plasma concentration. One having skill in the art will be able to optimize
2 therapeutically effective local dosages without undue experimentation.
3 [0046] The amount of compound administered will, of course, be dependent on the subject
4 being treated, on the subject's weight, the severity of the affliction, the manner of
5 administration, the frequency of administration and the judgment of the prescribing physician.
6 The therapy may be repeated intermittently while symptoms are detectable or even when they
7 are not detectable. The therapy may be provided alone or in combination with other drugs.

8

9 **Kits**

10 [0047] The invention also provides an article of manufacturing comprising packaging material
11 and a pharmaceutical agent contained within the packaging material, wherein the
12 pharmaceutical agent comprises at least one IL-1-specific fusion protein of the invention and
13 wherein the packaging material comprises a label or package insert which indicates that the IL-
14 1-specific fusion protein can be used for treating an autoinflammatory disease or condition.

15

16 [0048] Other features of the invention will become apparent in the course of the following
17 descriptions of exemplary embodiments which are given for illustration of the invention and are
18 not intended to be limiting thereof.

19

20 **EXAMPLES**

21 [0049] The following example is put forth so as to provide those of ordinary skill in the art with
22 a complete disclosure and description of how to make and use the methods and compositions
23 of the invention, and are not intended to limit the scope of what the inventors regard as their
24 invention. Efforts have been made to ensure accuracy with respect to numbers used (e.g.,
25 amounts, temperature, etc.) but some experimental errors and deviations should be accounted
26 for. Unless indicated otherwise, parts are parts by weight, molecular weight is average
27 molecular weight, temperature is in degrees Centigrade, and pressure is at or near
28 atmospheric.

29

1 **Example 1. Effect of IL-1 Trap on Human Autoinflammatory Disease.**

2 **[0050]** An initial study is conducted with 15 adult subjects suffering from diseases known to
3 respond to IL-1 blockade (NOMID/MWS/FCAS) as well as subjects with Adult Still's disease
4 and colchicine-resistant FMF. Subjects are screened for eligibility, clinical symptoms
5 determined, active disease confirmed and baseline blood is drawn on approximately 3
6 occasions one week apart to determine baseline levels of inflammation. A careful, complete
7 standardized history and physical exam is performed, appropriate for the disease under study
8 to assure uniform data collection on every subject. Vital signs and weight is obtained at each
9 visit. The clinical data is based on a detailed questionnaire including all the reported clinical
10 manifestations. The following evaluation procedures pertain specifically to C1AS-1 mutation
11 associated disorders and are performed as clinically indicated: dermatological evaluation;
12 ophthalmologic evaluation; ear/nose/throat evaluation; neurology evaluation; lumbar puncture;
13 head MRI; radiographs, joint MRI; and pharmacokinetic profiling.

14 **[0051]** All study subjects receive IL-1-binding fusion protein (SEQ ID NO:10) with a dosing
15 regimen of 100 mg once a day for 3 consecutive days, a regimen expected to provide 2-4
16 weeks of significant IL-1 inhibitory activity. The primary outcomes are measured during this
17 period and include drug safety, clinical efficacy analysis, and the change in selected biomarkers
18 of inflammation (e.g., acute phase reactants such as CRP, serum amyloid A, and ESR) at Day
19 10 following initiation of treatment with IL-1 trap. If a favorable response is observed at Day 10,
20 subjects are monitored at predefined timepoints (with no further treatment) until return of signs
21 and symptoms (flare). Upon flare, subjects are eligible for entry into an extension phase that
22 entails re-treatment with the loading regimen (100 mg/day IL-1 trap for three consecutive days)
23 followed by once-weekly dosing with 100 mg IL-1 trap for up to one year.

24 **[0052]** Based on the Investigator's clinical judgment, an IL-1 trap dose escalation regimen
25 may be implemented if, after 4 weeks of dosing in the extension phase at 100 mg/week, a
26 subject's Month 1 acute phase reactant levels have not normalized (CRP > 0.5 mg/dL and/or
27 SAA> 10 mg/L) or escalation is warranted based on persistent signs and/or symptoms of
28 disease. The first dose escalation level may be 160 s.c. once weekly. Subjects will be observed
29 for 4 weeks; if criteria for dose escalation are still met, then the dose may be raised to 320 mg
30 s.c. once-weekly.

1 [0053] Preliminary Results. Four subjects with CAPS were initially enrolled. Results indicated
2 that all subjects experienced rapid and extensive improvement in inflammatory signs and
3 symptoms upon treatment with IL-1 trap (SEQ ID NO:10), including improvement in both
4 patient- and physician- reported disease manifestation. Major declines in inflammatory
5 biomarkers, such as CRP and SAA were also observed. Signs and symptoms returned within a
6 median of 21 days (range 9-26) of initial dosing and then responded promptly to re-treatment.
7 Table 1 provides a summary of the daily diary scores, acute phase reactants and clinical
8 assessments († Performed on 3 patients; * statistically significant difference from previous time
9 point at $p < 0.1$ level; ** statistically significant difference from previous time point at $p < 0.05$
10 level). The Physician and Patient global assessment VAS scores mirrored the changes in the
11 acute phase reactants (SAA, CRP and ESR) at baseline, at the time of flare, and at a time point
12 designated as reflecting maximal efficacy.

1

2

Table 1

	Baseline median (range)	Maximal Efficacy median (range)	Flare median (range)
Daily Diary Score	6.06 (2.2-7.56)	1.67 (0-3.3)*	4.5 (2-7.33)
Acute phase reactants			
SAA (mg/L)	96 (16.1-468)	8.25 (2-19)	84 (50-236)‡
CRP (mg/dL)	7.28 (2.32-8.65)	0.72 (0.07-1.15)**	2.93 (0.076-6.21)
ESR (mm/hr)	56.67 (22-92)	24 (7-45)**	34 (11-70)*
Blood Count			
WBC	15.28 (9.33-19.4)	7.58 (7.21-9.9)**	8.48 (6.34-11.47)
Hgb	12.95 (8.1-14.7)	13.3 (8.2-15.6)*	13.1 (7.9-14.57)
Plt	356.5 (291-445.5)	303.25 (240-377)**	291 (257-359.3)
Questionnaires‡			
Physician global VAS (cm)	6.85 (4.1-6.95)	0.2 (0.2-2.6)	3.3 (3.1-3.5)
Patient global VAS (cm)	5.2 (3.95-6.9)	1.1 (0.95-3.05)**	3.6 (3.1-6.45)**
Fatigue VAS (cm)	5.55 (3.25-8)	1.15 (0.5-3.9)	6.6 (3.15-6.9)
Pain VAS (cm)	7.55 (3.6-7.7)	0.95 (0.2-1.05)*	4.1 (0.5-6.55)
SF-36 Physical Health	44.38 (42.5-47.5)	50.63 (33.75-92.5)	41.56 (35-69.4)
SF-36 Mental Health	41.625 (28.5-57.8)	75.88 (55-96)	39.6 (37-57)

3

4

5

Claims:

1. A use of a dose of an interleukin 1 (IL-1) fusion protein antagonist for treating, inhibiting, or ameliorating an autoinflammatory disorder, disease, or condition in a subject, wherein:
 - the dose of the IL-1 fusion protein antagonist is capable of being administered on a weekly basis;
 - the IL-1 fusion protein antagonist comprises two IL-1 receptor components and a multimerizing component comprising the amino acid sequence of SEQ ID NO:10; and,
 - the subject is a human adult or child diagnosed with Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), Familial Cold Autoinflammatory Syndrome (FCAS), familial mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic fever syndrome (TRAPS), or systemic onset juvenile idiopathic arthritis (Still's Disease).
2. The use of claim 1, wherein the IL-1 fusion protein antagonist is formulated for subcutaneous, intramuscular, or intravenous administration.
3. The use of claim 1, wherein said dose is between 1-20 mg IL-1 fusion protein antagonist/kg.
4. A use of a dose of an interleukin 1 (IL-1) antagonist for treating, inhibiting, or ameliorating an autoinflammatory disorder associated with mutations in CIAS-1 in a subject, wherein:
 - the dose of the IL-1 antagonist is capable of being administered on a weekly basis;
 - the IL-1 antagonist comprises the amino acid sequence of SEQ ID NO:10;
 - the autoinflammatory disorder associated with mutations in CIAS-1 is one of Neonatal Onset Multisystem Inflammatory Disorder (NOMID/CINCA), Muckle-Wells Syndrome (MWS), and Familial Cold Autoinflammatory Syndrome (FCAS).
5. The use of claim 4, wherein the IL-1 fusion protein antagonist is formulated for subcutaneous, intramuscular, or intravenous administration.
6. The use of claim 4, wherein said dose is between 1-20 mg IL-1 antagonist/kg.