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CACHING DATA IN A MEMORY SYSTEM HAVING
MEMORY NODES AT DIFFERENT HIERARCHICAL LEVELS

Background
[0001] Memory systems can be deployed in various different types of computing

systems. Characteristics of a memory system can affect the performance of a
computing system. A memory system can be implemented with memory devices
that have higher access speeds than disk-based storage devices that are often
included in a persistent storage system. In some examples, a memory system can
include one or multiple dynamic random access memory (DRAM) devices, static
random access memory (SRAM) devices, emerging non-volatile memory devices
(e.g. phase change memory (PCM), spin-transfer-torque memory (STT-RAM),
memristors, etc), traditional block storage devices such as hard drives and solid
state drives, and so forth.

[0002] Improved performance of a computing system can be achieved by
employing a memory system that has a larger storage capacity, has a lower data
access latency, and consumes lower power. In some cases, the foregoing goals
may be contradictory to each other. For example, a larger capacity memory system
may have higher latency. A lower latency memory system can be associated with

higher power consumption.

Brief Description Of The Drawings

[0003] Some embodiments are described with respect to the following figures:

Fig. 1 is a block diagram of an example arrangement including a memory

system according to some implementations;

Fig. 2 is a flow diagram of a caching process according to some

implementations;

Fig. 3 is a block diagram of a memory node according to some

implementations;
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Figs. 4 and 5 are flow diagrams of data caching processes according to

various implementations; and

Fig. 6 is a flow diagram of an eviction process according to some

implementations.

Detailed Description

[0004] Certain applications have relatively large demands for storage of data in a
memory system. One such application is an in-memory database application, where
a database is stored in the memory system, rather than in a slower disk-based
storage system. An application that is associated with storing relatively large
amounts of data in a memory system can be referred to as a big-data application.

[0005] An issue associated with storing relatively large amounts of data in a
memory system for access by demanding workloads is that there are competing
goals associated with such memory system. Examples of such competing goals
include large storage capacity, low data access latency, low power consumption, and
low cost. As noted above, some of the goals may be contradictory to other goals.

[0006] Techniques can be provided to provide caches in a main memory system
(outside the processor cache hierarchy) to cache a portion of the data, which can
result in reduced data access latency. However, main memory system caches may
be associated with relatively high overhead, and can reduce performance and lead
to increased power consumption if inefficiently designed. Also, increasingly more
complex memory system architectures, such as a memory system architecture that
has multiple levels of memory nodes, can make efficient cache designs more

challenging.

[0007] A hierarchical memory system includes a network of memory nodes
provided at different hierarchical levels of the memory system. A memory node can
include a memory storage array and a cache, where the cache can be used to buffer
selected data from the memory storage array of the same memory node or a
different memory node. In accordance with some implementations, techniques or

mechanisms are provided to determine where in the hierarchical memory system a
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particular unit of data (e.g. row of data in a memory array, a subset of a row of data
in @ memory array, or any other block of data) is to be cached.

[0008] Fig. 1 is a block diagram of an example arrangement that includes a
hierarchical memory system 100 that has memory nodes arranged at multiple
different hierarchical levels (levels 0, 1, 2, and 3 are depicted). In the Fig. 1
arrangement, the memory nodes are provided in a tree-type network, where a
higher-level memory node (a higher level refers to a level closer to 0) is connected to
multiple lower level memory nodes. For example, a memory node 102_0 at level O is
connected to two children memory nodes 102_1 at level 1. Similarly, each memory
node 102_1 at level 1 is connected to two children memory nodes 102_2 at level 2.
In addition, each memory node 102_2 at level 2 is connected to two children memory
nodes 102_3 at level 3. In the example of Fig. 1, it is assumed that the branching
factor is 2, where a branching factor specifies the number of children nodes that are
connected to a parent node. More generally, a branching factor can be N, where N =2
2. With a branching factor of N, a parent memory node is connected to N children

memory nodes at a lower level.

[0009] As shown in Fig. 1, the memory node 102_0 includes a memory module
103 and a cache module 106. The memory module 103 includes a memory array
104 having an arrangement of memory cells for storing data bits, and an associated
memory controller 105 for controlling access of the memory array 104. The memory
module 103 can include a memory bank (or multiple memory banks), in some
examples. The memory controller 104 in a memory node is referred to as a “node
memory controller.” The cache module 106 includes cache storage 107 (e.g. a
register, a static random access memory (SRAM), or other storage having a higher
access speed than the memory storage array 104. The cache module 106 can also
include a cache controller 109.

[0010] The other memory nodes 102_1, 102_2, 102_3, and so forth, can similarly
include memory modules 103 and cache modules 106.

[0011] Also, in Fig. 1, a processor 101 is coupled over a link 108 to the memory
node 102_0. The processor 101 can be a single-core processor or a multi-core
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processor. Alternatively, there can be more than one processor 101 connected to
the memory node 102_0 over the link 108. Other processors can also own their own
memory trees/networks, and multiple memory trees/networks can be connected
through one of more memory nodes in the trees. The processor 101 can include a
master memory controller 120 that cooperates with the node memory controller 105
for accessing data of each respective memory array 104. In other examples, the
master memory controller 120 can be separate from the processor 101.

[0012] In some examples, the memory node 102_0 can be provided on a
common integrated circuit (IC) substrate 122 as the processor 101. The IC substrate
122 can be a semiconductor die, or alternatively, can be a circuit board. In other
examples, the memory node 102_0 and the processor 101 are provided on separate

substrates.

[0013] The memory node 102_0 is considered a “near” memory node, since it is
the memory node that is in closest proximity to the processor 101. In
implementations where the processor 101 and the memory node 102_0 are provided
on a common |C substrate, the link 108 can be a relatively high-bandwidth, low-
latency link.

[0014] The memory nodes at the lower levels (level 1, level 2, level 3, etc.) in Fig.
1 are considered to be “far” memory nodes. The term “near” and “far” can provide a
measure of not only distance between the processor 101 and a respective memory
node, but also of the data access latency between the memory node and the
processor. A near memory node has a lower data access latency than a far memory
node; in other words, the processor 101 is able to access data in the near memory
node faster than data in the far memory node.

[0015] Fig. 1 further depicts links that interconnect memory nodes at different
hierarchical levels. In implementations where the memory node 102_0 and
processor 101 are provided on a common IC substrate, then the links that
interconnect the memory nodes at the different hierarchical levels are considered to
be off-substrate links, which can have a relatively lower bandwidth and higher
latency than the on-substrate link 108.
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[0016] In some examples, a link between memory nodes at different hierarchical
levels can be a point-to-point link, such as a Serializer/Deserializer (SerDes) link, or
other type of link, such as an optical link. The link 108 between the memory node

102_0 and the processor 101 can also be a SerDes link or other types of link.

[0017] As further depicted in Fig. 1, the memory node 102_0 includes a
multiplexer/demultiplexer 110 to allow communication between a selected one of the
memory module 103 and cache module 106, and the processor 101. In addition,
another multiplexer/demultiplexer 112 in the memory node 102_0 allows for
communication between the cache module 106 and a selected one of the children
memory nodes 102_1. The other memory nodes 102_1, 102_2, 102_3, and so forth

also include similar multiplexers/demultiplexers.

[0018] In some examples, each memory node 102 (102_0, 102_1, 102_2, 102_3,
etc.) can be implemented as a three-dimensional (3D) stacked memory node. A 3D
stacked memory node includes multiple IC layers stacked on top of another. The
stacked IC layers can include memory die layers each including a memory die, such
as a die having a dynamic random access memory (DRAM) or other type of memory.
The stacked IC layers can also include a logic layer, which can include the node
memory controller 105 and cache module 106.

[0019] In other examples, each memory node can include a dual inline memory
module (DIMM) or other type of memory node.

[0020] Fig. 2 is a flow diagram of a process performed in the memory system 100
depicted in Fig. 1, according to some implementations. The memory system 100
receives (at 202) a memory access request originated by the processor 101. The
memory access request can request data stored in the memory node 102_0 or data
stored in one of the lower level memory nodes at levels 1, 2, 3, and so forth.
Assuming that the data responsive to the data request is stored at a lower level
memory node (102_1, 102_2, 102_3, etc.), the memory node 102_0 can determine
(at 204), based on information provided by other memory nodes and further
information, whether the memory node 102_0 should cache the data retrieved in
response to the memory access request in the cache module 106 of the memory
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node 102_0. Examples of information that can be provided by another memory node
includes whether a particular unit of data is cached at the other memory node. An
example of further information can include an access pattern relating to a particular
unit of data. Additional details about information considered in deciding whether to
cache a unit of data are discussed further below.

[0021] It is noted that each of the other memory nodes can also perform the
determination made at 204, in response to the memory access request. In addition,
each memory node 102 can determine whether or not to cache, in its local cache
module 106, data retrieved from the corresponding local memory module 103.

[0022] Using techniques or mechanisms according to some implementations, the
memory nodes 102 can cooperate to decide where a unit of data can more
effectively be cached. As discussed further below, the decision of where to cache a
unit of data can be based on various predefined criteria.

[0023] By being able to cache data from farther memory nodes in nearer memory
nodes, data access latency reduction and bandwidth improvement can be achieved
in the memory system 100. In deciding whether to cache data from a local memory
storage array 104 or data from a lower level memory node, a given memory node is
provided with information regarding the memory node’s current location in the
memory system 100. Such information regarding the current location can allow each
memory node to be aware of the distance and latency between memory nodes and
between the memory node and the processor 101. In some examples, the
information can include a list of parent memory nodes and children memory nodes
(along with their associated levels) in the same branch of the tree-based network of
the memory system 100.

[0024] A branch of the tree-based network starts at a higher level memory node,
and includes the next lower level memory nodes connected to the higher level
memory node, as well as further lower level memory nodes connected to the next
lower level memory nodes. For example, a first branch 150 starts at the memory
node 102_0 at level 0. In the first branch 150, the memory node 102_0 is connected
to a first of the memory nodes 102_1 at level 1, which is connected to two memory
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nodes 102_2 at level 2, which are in turn connected to two memory nodes 102_3 at
level 3, and so forth. Within the first branch 150, the memory node 102_1 is able to
cache data of the memory node 102_1, as well as other lower level memory nodes in
the first branch 150. However, the memory node 102_1 in the branch 150 is not able
to cache data of its sibling memory node 102_1 that is outside the branch 150, or of
any of the data of lower level nodes connected to the sibling memory node 102_1.
Note that the memory node 102_1 in the branch 150 cannot cache data of its parent

memory node 102_0.

[0025] A second branch 160 depicted in Fig. 1 starts at the memory node 102_0
at level 0, and includes the second memory node 102_1 at level 1, which in turn is
connected to two memory nodes 102_2 at level 2, and so forth. The second memory
node 102_1 in the second branch 160 can cache data in the second memory node
102_1 as well as lower level memory nodes coupled to the second memory node
102_2 in the branch 160.

[0026] A lower level memory node (at level 1 or below) in a given branch is
unable to cache data of a lower level memory node of another branch. Also, as
noted above, a memory node does not cache data from its neighbor or sibling
memory node(s), in other words, those memory node(s) at the same level or that
share the same parent node.

[0027] In some implementations, there is only a single path for each memory
access request through a branch (such as branch 150 or 160). This single path can
be a physical path. Alternatively, the single path can be a virtual circuit in a network
having multiple physical paths between memory nodes. In examples where the
single path is implemented as a virtual circuit, tearing down of the virtual circuit
would result in flushing of data in caches back to respective home memory nodes,
before a new virtual circuit can be established. A memory node can only
communicate a memory access request to lower level memory nodes in the same

branch, and can cache the responsive data from its child memory nodes.

[0028] In addition, data for caching can move up from a child memory node to a
parent memory node. When evicted from a cache module, data can move to a child
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memory node from a parent memory node. This downward movement of evicted
data can continue until the evicted data reaches its home memory node (the memory
node where the data originated), at which point the evicted data may be written back

to the corresponding memory module or cached in the cache at the memory node.

[0029] The access latency for a given unit of data is an aggregate (e.g. sum) of
interconnect latency (also referred to as communication latency) and device latency.
For the memory node 102_0, the interconnect latency from the processor 101 to the
memory node 102_0 is the latency of the relatively high-speed link 108. For off-
substrate far memory nodes, the total interconnect latency includes the latency of
communication on the substrate 122 as well as latency of off-substrate link(s). The
total interconnect latency of the off-substrate link(s) is proportional to the distance of

the memory node 102 containing the given unit of data to the processor 101.

[0030] For example, if the off-chip interconnect latency between a parent node
and a child node is represented as one hop, then the latency from the processor 101
to a level n (n > 0) memory node is n hops plus the on-substrate communication

latency.

[0031] As for the device latency, if the requested data is already in the memory
node’s cache module 106, then the device latency is simply the cache access
latency; otherwise, the latency is the memory storage access latency, which is the
amount of time to access the unit of data in the corresponding memory module 103.
For example, if the memory module 103 includes a DRAM array, then the memory
storage access latency can include the time involved in activating a row of the DRAM

array and reading or writing the row.

[0032] A decision on whether or not to cache a given unit of data can be based
on a priority value (PV) parameter computed for each candidate unit of data retrieved
from a memory storage array 104 (local memory storage array or remote memory
storage array). The parameter PV can be computed based on various factors,
including the data access pattern of the unit of data, a non-caching penalty, and a
weight of the access of the given unit of data. In some examples, a unit of data can
refer to a row of data from the memory storage 104. In other examples, a unit of
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data can refer to some other segment of data retrieved from the memory storage
104.

[0033] For each candidate unit of data that is to be considered for caching, the

parameter PV can be computed as follows:

PV = Weight X Access_frequency X Not_caching_penalty, (Eq. 1)

where the Weight is determined by the master memory controller 120 at the
processor 101 to add priority to certain data, such as data considered to be more
critical to an application. In Eq. 1, Access_frequency represents a frequency of
accessing the candidate unit of data, and Not_caching_penalty represents a penalty

associated with not caching the candidate unit of data.

[0034] Each node memory controller 105 of a memory node 102 has a memory
access request queue to store the memory accesses issued/forwarded from the
memory node’s parent memory node. The access frequency (Access_frequency) is
the total number of future and historical memory accesses per unit of time (such as
second) to the same row in the memory access request queue of the memory node
102, which is a measure of the requested row’s access pattern. While historical
memory accesses are helpful to better predict memory access patterns, they are not
employed in other implementations. Thus, for queue structures mentioned later in
this description, future memory accesses are stored first. With constrained queue
capacity, historical memory accesses are kept in the queue structures and used in
the arbitration process of determining whether or not to cache data, only when there
are extra entries in the queue structures. The parameter Not_caching_penalty” can
be defined as the difference of access latency between not caching and caching the
candidate unit of data, which can be computed according to Eq. 2:

Not_caching_penalty = Latency_not_caching - Latency_caching. (Eq. 2)

[0035] The parameter Latency_not_caching represents the latency of accessing

the candidate unit of data when it is not cached in the memory node’s memory
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module 106. The parameter Latency_caching represents the latency of accessing

the candidate unit of data when it is cached.

[0036] For example, if a requested unit of data from a far memory node (at level
1 or below) is a candidate for caching in the cache module 106 of the near memory
node 102_0, then once cached, the latency to access the unit of data would be far
less than not caching the unit of data.

[0037] Note that the access latency of accessing a DRAM row may vary
depending on whether the row is an open row or a closed row. An open row is a row
that is activated, such as due to a previous access. A closed row is a row that is not
activated. A node memory controller 105 can send information regarding open and
closed rows to other memory nodes based on the node memory controller's
scheduling policy (e.g. open page policy or close page policy), so that other node
memory controllers 105 can make accurate estimates on remote DRAM access
latency. An open page scheduling policy refers to a policy where a DRAM row is
kept open after a given access of data from the row, which can improve access
latency if a subsequent access is to the same open row.

[0038] In accordance with some implementations, each memory node 102
includes an arbitration function to arbitrate between two or more candidate units of
data that are competing for cache storage resource in the cache module 106. The
arbitration function can select the candidate unit(s) of data having higher PV value(s)
to cache; in other words, if the cache module 106 is unable to cache all candidate
units of data, then the candidate unit(s) of data with lower PV value(s) would not be
cached. In some examples, the arbitration function can be implemented in the node
memory controller 105, in the cache controller 109, or in a combination of both.

[0039] Similarly, the arbitration function can also apply a replacement policy in
which PV values are considered when deciding which unit of data to evict from the
cache module 106, when storage space in the cache module 106 is to be freed up
for caching additional unit(s) of data. A unit of data having a lower PV value would
be evicted before a unit of data having a higher PV value.
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[0040] The caching policy according to some implementations can be
supplemental to other policies relating to accessing or scheduling data in the
memory nodes 102 that may be deployed.

[0041] As noted above, in some implementations, the master memory controller
120 (at the processor 101) and the node memory controllers 105 in the memory
nodes 102 can cooperate to perform access of data in the memory nodes 102. The
master memory controller 120 and the node memory controllers 105 can use an

abstracted protocol for communication.

[0042] The processor-side master memory controller 120 is responsible for
sending high-level memory access requests (such as in packets) such as read, write,
and block copy from the processor 101 toward a destination memory node. The
high-level requests sent by the master memory controller 120 do not include details
relating to row and column access timing/commands of memory storage arrays 104
that may be included in row and column-based memory commands. As a result, the
processor-side master memory controller 120 does not have to know the details of
the memory device architecture, or timings of memory control signals. The master
memory controller 120 can also be responsible for scheduling memory access
requests based on the information (e.g. memory access priority) or direction from the
processor 101.

[0043] In some examples, the node memory controllers 105 are responsible for
enforcing memory timing management and the actual implementation of the read,
write, and block copy commands that comply with timing specifications of control
signals and with the memory device architecture. In response to receiving a memory
access request (e.g. read request) from the master memory controller 120, a node
memory controller 105 at the destination memory node can fetch data from the
memory array 104. The fetched data can be sent back to the master memory
controller 120, such as in packets. The node memory controller 105 can also be
responsible for scheduling local memory access requests based on status of the
local memory array 104, such as whether the local memory array 104 is idle or busy,
whether refresh cycles have to be performed, and so forth.
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[0044] In some implementations, the cache modules 106 of the hierarchical
memory system 100 of Fig. 1 are implemented as non-exclusive/non-inclusive
(NE/NI) cache modules. NE/NI cache modules are neither exclusive nor inclusive.
With an exclusive cache arrangement, a lower level cache is guaranteed not to
include data present in a higher level cache (a cache nearer a processor). With an
inclusive cache arrangement, a lower level cache includes all data cached in higher
level cache(s) surrounded or dominated by the lower level cache.

[0045] With the inclusive cache arrangement, a lower level cache would have to
have a much higher storage capacity than upper level caches, which may not be
practical. Also, the cache protocol used with an inclusive cache arrangement may
be relatively complex. For example, whenever data is evicted from a lower level
cache, any corresponding cache data in upper level cache(s) would also have to be
evicted in order to maintain inclusiveness, which may involve a substantial amount of

work in a hierarchal memory system having multiple hierarchical levels.

[0046] In other implementations, however, the hierarchical memory system 100
can be implemented with an exclusive cache arrangement or inclusive cache

arrangement.

[0047] With the NE/NI cache arrangement, since the cache modules 106 of the
hierarchical memory system 100 are at the memory side rather than at the processor
side, cache coherency is simplified since a parent memory node is the single
serialization point of all its child memory nodes. As a result, cache modules 106 do
not have to maintain cache coherence information among data copies present in a

parent memory node and its child memory node.

[0048] When the processor 101 requests a non-cached unit of data from the
memory array 104 of a memory node 102, the associated cache module 106, which
operates according to the NE/NI cache protocol, can serve the memory access
request instantly to reduce data access latency in the critical path (the path from the
memory node containing the requested data and the processor 101). Since there is
just a single path in the network of the memory system 100 for each memory access
request, all memory nodes in the path may see the memory access request if higher
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level nodes do not intercept the requests, and none of the off-path memory nodes

would see any of the memory access requests.

[0049] A memory node can cache both its local data and remote data (data from
a lower level memory node in the same branch). Since the cache module 106 of the
parent memory node has a constrained storage capacity, a memory node may have
to select which data to cache from among the local and remote memory access
requests. To perform this selection (as part of the arbitration function discussed
above), a memory node stores information (e.g. memory address, access type, etc.)

for each memory access request.

[0050] The information relating to memory access requests can be stored in one
or multiple queues in the memory node 102. In Fig. 3, for example, the information
relating to local memory access requests is stored in a memory access request
queue 302 of the node memory controller 105. Also, information relating to remote
memory access requests is stored in a buffer 304 of routing logic 306.

[0051] Since the memory access request queue 302 can be used by the node
memory controller 105 for performing scheduling or rescheduling of local memory
access requests at the memory array 104, no extra hardware is added for the
purpose of storing information for making the decision of which data to cache.

[0052] The routing logic 306 is used to route packets through the network of the
memory system 100. A packet containing a memory access request is routed by the
routing logic 306 to the local node memory controller 105, or to a lower level memory
node. A packet containing data responsive to a memory access request is routed by
the routing logic 306 to a higher level memory node. The buffer 304 is used by the
routing logic 306 to store each packet that is to be routed by the routing logic 306.
The same buffer 304 can be used to provide information of remote memory access
requests for purposes of making decisions of which data to cache.

[0053] In some examples, the node memory controller 105 is separate from the
routing logic 306. In other examples, the node memory controller 105 and the

routing logic 306 can be integrated together.
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[0054] Upon receiving a memory access request, the routing logic 306
determines whether the received memory access request is a local memory access
request or a remote memory access request. A local memory access request is
stored in the memory access request queue 302 of the node memory controller 105
for scheduling. A remote memory access request remains in the buffer 304 of the
routing logic 306 to await routing to the next memory node along the path.

[0055] The information pertaining to memory access requests in the memory
access request queue 302 and the routing logic buffer 304 provides information on
the access pattern for both local and remote access requests, so as to enable the

computation of Access_frequency in Eq. 1 above.

[0056] In some implementations, a memory node 102 can make the decision of
whether or not to cache data associated with a local memory access request when
the local memory access request is issued to local memory array 104 by the node
memory controller 105. For remote memory access requests, the memory node 102
has two opportunities to decide whether to cache the data locally. In first
implementations, the memory node 102 can decide whether to cache data of the
remote memory access request at the time of forwarding the remote memory access
request to a lower level memory node. In second implementations, the memory
node 102 can decide whether to cache data of the remote memory access request at
the time of receiving the data responsive to the remote memory access request from

a lower level memory node.

[0057] Fig. 4 is a flow diagram of a processor according to the first
implementations noted above. The memory node 102 receives (at 402) a remote
memory access request from a higher level memory node or from the processor 101.
At the time of forwarding the remote memory access request to a lower level
memory node, the memory node 102 determines (at 404) whether to cache the data
of the remote memory access request, by computing the PV value for the data and
making the decision based on the PV value, as discussed above. |f the memory
node 102 decides not to cache the data, then the process of Fig. 4 returns (at 410).

However, if the memory node 102 decides to cache the data of the remote memory
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access request, then the memory node can set (at 406) a “do not cache remote”
indication and provide the node identifier of the memory node in a packet containing
the remote memory access request. The packet containing the “do not cache
remote” indication and node identifier is an indication to a destination child memory
node receiving the packet that the destination child memory node is not to cache the
data. Rather, the destination child memory node will just send back a packet
containing the data responsive to the remote memory access request, along with the
“do not cache remote” indication and the node identifier of the parent node which
issued the “do not cache remote” indication. Intermediate child memory nodes will
simply forward the memory access request and responsive data without performing

caching determinations.

[0058] Upon receiving the packet containing the responsive data, the memory
node 102 whose node identifier matches the node identifier in the received packet
caches (at 408) the data in the received packet. The received packet is also
forwarded to the next higher level memory node or the processor 101.

[0059] Fig. 5 is a flow diagram of a processor according to the second
implementations noted above. With the second implementations, a memory node
102 makes the data caching decision when a data packet is returned from a remote
child memory node in response to the remote memory access request. The memory
node 102 receives (at 502) the data packet. The memory node 102 then determines

(at 504) whether or not to cache the data of the received data packet.

[0060] To make the determination of whether or not to cache the data in the
received data packet, the memory node 102 accesses information about whether the
data is cached at a lower level child memory node, since this information affects the
value computed for the Not_caching_penalty parameter in Eq. 1 above. The
information on whether the data is cached remotely can be piggybacked in the
returned data packet from the remote memory node.

[0061] If the memory node 102 decides not to cache the data of the received
data packet, then the process of Fig. 5 returns (at 512). However, if the memory

node 102 decides to cache the data of the received data packet, the memory node



WO 2014/149038 PCT/US2013/033096

16

102 determines (or finds out) (at 506) whether the data is also cached at a remote
lower level memory node. If the data is already cached at the remote lower level
node, the memory node 102 can send (at 508) a control message to the remote
lower level memory node with the cached data address to notify the remote lower
level memory node that the data has been cached at a higher level memory node.
Once the remote lower level memory node receives the control message, the remote
lower level memory node can evict the cached data or do nothing if there are still
entries available in the cache module 106 of the remote lower level memory node

available for new memory access requests.

[0062] The memory node 102 then caches (at 510) the data of the data packet at

the cache module 106.

[0063] If the memory node 102 finds out (at 506) that the data to be cached at
the memory node 102 is not cached at a remote lower level memory node, then the
memory node 102 simply caches (at 510) the data of the data packet, without
sending any control message to a lower level memory node. At the same time, the
memory node 102 can route the data packet to a higher level memory node or the
processor 101. In this case, the memory node 102 does not have to send any
control message to a lower level memory node since the memory node 102 would
intercept all memory access requests destined to lower level memory nodes. A
remote lower level memory node will not be able to receive a memory access
request unless the parent memory node does not cache the responsive data or the

parent memory node has evicted the cached data.

[0064] Eviction of data in a cache module 106 of a memory node 102 is
accomplished by sending an eviction packet containing the evicted data to child
memory nodes along a particular path. When a remote piece of data (data of a
remote memory node) is cached at a parent memory node, the parent memory node
intercepts all the memory access requests to the remote piece of data and acts as
the data source to respond to the memory access requests using the cached remote
data. Thus, it is possible that there are multiple pending memory access requests
for the cached data in a queue of the parent memory node waiting to be processed.
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When a cached data is evicted, all associated pending memory access requests
would be forwarded from the parent memory node to the child memory nodes along
the path. A child memory node in the path treats the evicted data in the same way
as a memory access request, for purposes of deciding whether the evicted data
should be cached at the child memory node.

[0065] With the NE/NI caching arrangement in some implementations, it is
possible that a parent memory node and at least one lower level memory node
caches the same piece of data. The cached piece of data that is also kept at the
lower level memory node would be invisible to the processor 101, since the parent
memory node receives the memory access request first, and responds to the request
without passing the request to its children.

[0066] During eviction, the parent memory node can send out an eviction packet
with a flag to indicate whether the data is clean or dirty. Dirty data refers to data that
has been modified at the parent memory node, but has not yet been modified at
lower level memory nodes. For dirty data eviction, the parent memory node would
also include the dirty data in the eviction packet. If the data is clean, both the parent
memory node and its child memory nodes may each have their own valid data copy.

[0067] Fig. 6 shows an eviction process performed at a child memory node
according to some implementations. When a child memory node receives (at 602)
an eviction packet from a parent memory node, the child memory node determines
(at 604) whether or not the data associated with the eviction packet is dirty. This
determination can be made based on a state of the dirty flag in the eviction packet.
If the dirty flag is at a first state, then the evicted data is dirty. If the dirty flag is at a
second state, then the evicted data is clean.

[0068] If the evicted data is clean, then the child memory node determines (at
606) whether the evicted data has already been cached. If so, the child memory
node can simply discard (at 608) the eviction packet. If the data is not cached at the
child memory node, the child memory node can determine (at 610) whether or not to
cache the evicted data.
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[0069] If the evicted data is dirty, the child memory node determines (at 612)
whether or not the evicted data is cached. If so, the child memory node updates (at
614) its local cached copy with the evicted data from the parent memory node. If the
evicted dirty data is not cached at the child memory node, the child memory node
can determine (at 610) whether or not to cache the evicted data.

[0070] If no intermediate child memory nodes before the destination child
memory node wants to cache the evicted data, the destination memory node will
update its local copy (if the data is cached in the local cache module 106) or update
the local memory array 104 directly (if the data is not cached). The destination child
memory node may also decide to cache the data without directly updating its local
memory array 104.

[0071] Various tasks discussed above can be performed by hardware circuitry or
by machine-readable instructions. If performed by machine-readable instructions,
the machine-readable instructions can be loaded for execution on a processing
circuit. A processing circuit can include a microprocessor, microcontroller, processor
module or subsystem, programmable integrated circuit, programmable gate array, or

another control or computing device.

[0072] Data and instructions are stored in respective storage devices, which are
implemented as one or multiple computer-readable or machine-readable storage
media. The storage media include different forms of memory including
semiconductor memory devices such as dynamic or static random access memories
(DRAMs or SRAMSs), erasable and programmable read-only memories (EPROMSs),
electrically erasable and programmable read-only memories (EEPROMs) and flash
memories; magnetic disks such as fixed, floppy and removable disks; other magnetic
media including tape; optical media such as compact disks (CDs) or digital video
disks (DVDs); or other types of storage devices. Note that the instructions discussed
above can be provided on one computer-readable or machine-readable storage
medium, or alternatively, can be provided on multiple computer-readable or
machine-readable storage media distributed in a large system having possibly plural
nodes. Such computer-readable or machine-readable storage medium or media is
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(are) considered to be part of an article (or article of manufacture). An article or
article of manufacture can refer to any manufactured single component or multiple
components. The storage medium or media can be located either in the machine
running the machine-readable instructions, or located at a remote site from which

machine-readable instructions can be downloaded over a network for execution.

[0073] In the foregoing description, numerous details are set forth to provide an
understanding of the subject disclosed herein. However, implementations may be
practiced without some or all of these details. Other implementations may include
modifications and variations from the details discussed above. It is intended that the
appended claims cover such modifications and variations.
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What is claimed is:

1. A memory system comprising:

a plurality of memory nodes provided at different hierarchical levels of the
memory system, each of the memory nodes including a corresponding memory
storage and a cache,

wherein a memory node at a first of the different hierarchical levels is coupled
to a processor with lower communication latency than a memory node at a second of
the different hierarchical levels, and

wherein the memory nodes are to cooperate to decide which if any of the
memory nodes is to cache data of a given one of the memory nodes.

2. The memory system of claim 1, wherein the deciding is based on a data
access pattern of the data.

3. The memory system of claim 2, wherein the access pattern is based on
information relating to memory access requests stored in at least one queue of each

memory node.

4. The memory system of claim 2, wherein the deciding is further based on a
penalty associated with not caching the data.

5. The memory system of claim 4, wherein the penalty associated with not
caching the data is based on a difference between an access latency of retrieving
the data when the data is not cached and an access latency of retrieving the data
when the data is cached.

6. The memory system of claim 1, wherein each of the memory nodes includes a
memory controller for the corresponding memory storage, and wherein each of a
subset of the memory nodes in a path of a data access involving the data is to
perform the deciding.
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7. The memory system of claim 6, wherein the path is selected from among a
physical path or a virtual circuit in a network having multiple physical paths.

8. The memory system of claim 1, wherein a first one of the memory nodes is to:
in response to determining that the first memory node is to cache data of a

memory access request at the first memory node, send an indication to a memory

node at a lower hierarchical level that the memory node at the lower hierarchical

level is not to cache the data of the memory access request.

9. The memory system of claim 1, wherein a first one of the memory nodes is to:

in response to receiving, from a memory node at a lower hierarchical level,
data responsive to a memory access request, determine whether to cache the data
responsive to the memory access request;

in response to determining that the first memory node is to cache the data
responsive to the memory access request, determine whether the data responsive to
the memory access request is also cached at the memory node at the lower
hierarchical level; and

in response to determining that the data responsive to the memory access
request is also cached at the memory node at the lower hierarchical level, send a
control message to the memory node at the lower hierarchical level to indicate that
the data responsive to the memory access request is also cached at the first memory
node.

10.  The memory system of claim 1, wherein a first one of the memory nodes is to:

in response to deciding to evict cached data from the cache of the first
memory node, send an eviction packet to a memory node at a lower hierarchical
level, the eviction packet containing a flag to indicate whether or not the evicted
cached data is dirty.
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11.  The memory system of claim 9, wherein a second one of the memory nodes
is to:

in response to receiving the eviction packet, process the evicted data based
on a value of the flag.

12. A method comprising:

receiving, by a memory system from a processor, a memory access request,
wherein the memory system includes a plurality of memory nodes at different
hierarchical levels of the memory system, wherein a memory node at a first of the
different hierarchical levels is coupled to the processor with lower communication
latency than a memory node at a second of the different hierarchical levels; and

determining, by a given one of the plurality of memory nodes based on
information provided by at least another of the plurality of memory nodes, whether
the given memory node is to cache, at the given memory node, data received from

another memory node in response to the memory access request.

13.  The method of claim 12, wherein the information from the at least another
memory node includes information pertaining to whether the at least another
memory node has cached the data.

14.  The method of claim 12, wherein the determining comprises:
computing a priority value for the data based on an access pattern of the data;
comparing the priority value to other priority values for other candidate data
considered for caching by the given memory node,

wherein the determining is based on the comparing.
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15.  Afirst memory node for use in a memory system having a plurality of memory
nodes at different hierarchical levels, the first memory node comprising:
a memory storage;
a cache; and
a controller to:
receive a memory access request originated by a processor for
accessing data in a second of the memory nodes, wherein the first memory node is
at a first of the different hierarchical levels, and the second memory node is at a
second of the hierarchical levels, the first memory node having a lower
communication latency to the processor than the second memory node;
compute a priority value for a piece of data responsive to the memory
access request, the priority value based on information from another memory node;
compare the priority value to other priority values for other pieces of
data; and
determine whether to cache the piece of data of the memory access

request based on the comparing.



PCT/US2013/033096

WO 2014/149038

1/6

e~

2al | |
N “ 340N |
3LYYLSENS | 4_.v AJOWIN |
| N e
| 4_% AYOWIW N _
IWOLS WOV 4-L0T | [ oon 1= oL oo |
AJOWIW C AJOWIW |

_
60T ¥ITIOHINOD IHOWD clt | ) A._.v J00N _
T | 1-20T RIONIN |
TN M) |l | TT——————— ==
‘r “—ll 1 T T T T — - = [ ] - - 7
01— | f | 1-201 300N |
Ocl 1 D) 7] ruomaw |
\ 011 AVHHY AYOWIW vor | 300N < 300N _
‘ | > 22700 ™1 ywowam |
43TIOLINOD WITININGD  ~gop | AONIN alET il |
AYOWIW AYOWIN 30N _ e-201< ¢ v o |

> AJOWIN <
YALSYW /[n _ _ A._.v _
" TIncow mowIN [N | JAON |
Q01 €01 _ AHOW3W
40SS3004d JAON AYOWAW | _
01— 0-z01— 0 A —
06T
0 T3ATT RETEY
. 2 TINTT

T 9| . ¢ TINTT ,

Vv
(001) W3LSAS AYOWIW



WO 2014/149038

2/6

(_MEMORY SYSTEM PROCESS )

RECEIVE A MEMORY ACCESS
REQUEST ORIGINATED BY
A PROCESSOR

l

PCT/US2013/033096

202

DETERMINE, BASED ON
INFORMATION PROVIDED BY
OTHER MEMORY NODES
AND FURTHER INFORMATION,
WHETHER A GIVEN MEMORY
NODE IS TO CACHE DATA
RETRIEVED IN RESPONSE TO
THE MEMORY ACCESS REQUEST

~——204

FIG. 2



WO 2014/149038

3/6

PCT/US2013/033096

/102
MEMORY NODE f-103
MEMORY MODULE
NODE MEMORY MEMORY
CONTROLLER ARRAY
MEMORY
ACCESS |—~302
REQUEST
QUEUE
\
/
105 104
206 ROUTING LOGIC
] BUFFER |_-304
CACHE MODULE 106

FIG. 3



WO 2014/149038 PCT/US2013/033096

4/6

(' DATA CACHING PROCESS )

RECEIVE A REMOTE
MEMORY ACCESS REQUEST [N—-402

1

DETERMINE WHETHER TO

NO CACHE THE DATA OF THE

REMOTE MEMORY ACCESS
REQUEST?

lYES

SET "DO NOT CACHE REMOTE”
INDICATION AND NODE
INDENTIFIER IN A PACKET |k 406
CONTAINING THE REMOTE
MEMORY ACCESS REQUEST

l

CACHE DATA UPON
RECEIVING RESPONSIVE PACKET

RETURN 410

404

FIG. 4



WO 2014/149038 PCT/US2013/033096

5/6

(' DATA CACHING PROCESS )

RECEIVE A DATA PACKET N __ 502

l

NO DETERMINE WHETHER TO

TN

CACHE DATA OF THE 504
DATA PACKET?
lYES
506
DETERMINE WHETHER
YES THE DATA ALSO NO

CACHED AT A LOWER
LEVEL MEMORY NODE?

SEND CONTROL 508
MESSAGE ~—

b

510
CACHE DATA ——"

RETURN 512

FIG. 5




WO 2014/149038 PCT/US2013/033096

6/6

(_ EVICTION PROCESS )

RECEIVE EVICTION PACKET N__ 602

l 604

YES /' DETERMINE WHETHER \ NO
EVICTED DATA IS DIRTY? /

606

ALREADY
CACHED?

YES

612

ALREADY
CACHED?

YES

NO

DETERMINE WHETHER DISCARD
%E\EQTEED ngﬁ# TO CACHE EVICTED EVICTION
DATA PACKET

\614 — 610 )
08

FIG. 6



INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/033096

A. CLASSIFICATION OF SUBJECT MATTER
GOOF 13/14(2006.01)i, GO6F 13/38(2006.01)i, GO6F 12/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOGF 13/14; GO6F 12/06; GO6F 17/30; GO6F 12/00; HO1L 23/58; GO6F 13/38; GO6F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: memory node, hierarchy, multi level, different level, tree, cache, processor, coupled,
latency, decide, path, eviction, priority value

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2007-0255676 A1 (DAVID ALLEN BROWN et al.) 01 November 2007 1-15
See paragraphs [0001]-[0018], [0029], [0038]-[0043], [0047]1-[0049];
claims 1-2, 4; and figures 2-3.

A US 2004-0230750 A1 (MICHAEL A. BLAKE et al.) 18 November 2004 1-15
See paragraphs [0003]-[0013], [0019]-[0024], [0027]-10032], [0043]1-[0052],
[0061]-[0064]; and claim 1.

A US 2008-0077732 Al (GERHARD RISSE) 27 March 2008 1-15
See paragraphs [0002]-[0007], [0017]-[0024], [0030]-10036], [0047]1-10053],
[0057]-[0061], [0087]; claim 1; and figure 2.

A US 7350048 B1 (JURGEN M. SCHULZ) 25 March 2008 1-15
See column 1, lines 5-26; column 2, line 44 — column 3, line 15; column 4,
lines 3-25; column 4, line 56 — column 5, line 15; column 5, line 47 - column
6, line 35; column 7, lines 7-20; claims 1-3; and figure 2.

A US 2005-0167787 Al (PETER J. FRICKE et al.) 04 August 2005 1-15
See paragraphs [0003]-[0008], [0028]-[0033], [0042]-10044], [0048]-10054],
[0061]-[0062], [00641-[0066]; and claim 1.

g Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L"  document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P"  document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
26 December 2013 (26.12.2013) 27 December 2013 (27.12.2013)
Name and mailing address of the [ISA/KR Authorized officer
Korean Intellectual Property Office
N 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, BYUN, Sung Cheal
. * 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8262

Form PCT/ISA/210 (second sheet) (July 2009



INTERNATIONAL SEARCH REPORT International application No.

PCT/US2013/033096

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

JASON T. ZAWODNY et al., “Cache-In-Memory™, Proceedings of the Innovative
Architecture for Future Generation High-Performance Processors and Systems
(IWIA ~01), IEEE Computer Society, Washington, DC, USA, 18 January 2001,
Pages 1-11

See pages 3-6.

1-15

Form PCT/ISA/210 (continuation of second sheet) (July 2009)




INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2013/033096

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2007-0255676 Al 01/11/2007 None

US 2004-0230750 Al 18/11/2004 US 7085897 B2 01/08/2006

US 2008-0077732 Al 27/03/2008 DE 102006045113 B3 03/04/2008
US 7899984 B2 01/03/2011

US 7350048 B1 25/03/2008 None

US 2005-0167787 Al 04/08/2005 EP 1562232 A2 10/08/2005
EP 1562232 A3 29/04/2009
US 7816722 B2 19/10/2010

Form PCT/ISA/210 (patent family annex) (July 2009)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report
	Page 34 - wo-search-report

