

(12) **UK Patent**

(19) **GB**

(11) **2508586**

(13) **B**

(45) Date of B Publication

02.09.2020

(54) Title of the Invention: **A protein**

(51) INT CL: **C12N 9/90** (2006.01) **C12P 19/02** (2006.01)

(21) Application No: **1220554.8**

(22) Date of Filing: **15.11.2012**

(30) Priority Data:
(31) **61706338** (32) **27.09.2012** (33) **US**

(60) Parent of Application No(s)
2007535.4 under section 15(9) of the Patents Act 1977

(43) Date of A Publication **11.06.2014**

(72) Inventor(s):

Ryan David Woodyer
Richard W Armentrout

(73) Proprietor(s):

Tate & Lyle Ingredients Americas LLC
5450 Prairie Stone Parkway, Hoffman Estates,
Illinois 60192, United States of America

Tate & Lyle Technology Limited
(Incorporated in the United Kingdom)
1 Kingsway, LONDON, WC2B 6AT, United Kingdom

(74) Agent and/or Address for Service:

Marks & Clerk LLP
15 Fetter Lane, London, EC4A 1BW, United Kingdom

(56) Documents Cited:

EP 0592202 A WO 2006/129954 A
CN 102373230 A US 20110275138 A
NCBI Accession No ZP_08466075.1 (2011); "D-
tagatose 3-epimerase [Desmospora sp. 8437]"
Applied Microbiology & Biotechnology (Jun 2012);
Vol 94, pp 1461-1467, "Recent advances on
applications and biotechnological production of d-
psicose", Mu et al
UniProt, 2011, F5SL39, UniProt.org, [online], Available
from: <https://www.uniprot.org/uniprot/F5SL39>,
[Accessed 13/06/19].
IUBMB, 2014, EC 5.1.3.31, QMUL.ac.uk, [online],
Available from: <https://www.qmul.ac.uk/sbcs/iubmb/enzyme/EC5/1/31.html>, [Accessed 15/10/19].
Journal of Biotechnology, Mu et. al. 2010, Vol. 150,
Suppl. 1, "Characterisation of a novel D-tagatose 3-
epimerase from Clostridium scindens ATCC 35704",
pp. S536-S537.
Journal of Agricultural and Food Chemistry, Mu et.
al., 2011, Vol. 59, "Cloning, expression, and
characterization of a d-psicose 3-epimerase from
Clostridium cellulolyticum H10", pp. 7785-7792.
Available from: <https://doi.org/10.1021/jf201356q>
Biotechnology Letters, Zhu et. al., 2012, Vol. 34,
"Overexpression of D-psicose 3-epimerase from
Ruminococcus sp. in Escherichia coli and its
potential application in D-psicose production", pp.
1901-1906. Available from: <https://doi.org/10.1007/s10529-012-0986-4>

(58) Field of Search:

As for published application 2508586 A viz:
INT CL C12N, C12P
Other: WPI, EPODOC, BIOSIS, MEDLINE, NCBI
BLASTp
updated as appropriate

Additional Fields
Other: INTERNET

GB

2508586

B

Clostridium scindens Psicose-3-Epimerase (SEQ ID NO: 2)
 MNRIGIFMNFWVKNWDADHVKYIKKVSGLGFDILEFQAQALLEMDSRMDEVRQAQKDNGIELTYSLGLN
 PKYDVASPAKVRREGGIEYLKRIVÉRIGYMEGKLLSGVNYAGWGSPDYIVDDKSEIVEHSIESVRQVIKT
 AEDYDVTCVÉVVNRFEGIVMNTAKEAIÉYVKQIDSDKIGILLDTYHMNIEEGSIGDAIRSVGGYLKNFH
 TGENNRVVPKGKHLWDÉTFGALHDIDYQGRIVSEPFVQMGGEVARDIKVWRDLVEDPSEEVLDEARFL
 LNFEDKDMIRKHYGIA

Figure 1

Clostridium hylemoniae Psicose-3-Epimerase (SEQ ID NO: 4)
 MKHGIYYAYWEQEWAADYKRYVEKVAKLGFIDILEICAGPLPEYAEQDVKELKKCAQDNGITLTAGYGPTF
 NHNIGSSDAGVREEALEWYKRLFEVLAELDTIHLIGGALYSYWPVDFANADKTEDWKWSVEGMQRLAPAAA
 KYDINLGMEVLNRFESHILNTAEEGVKFVEEVGMDNVKVMLDTFHMNIEEQSIGGAIIRRAGKLLGHFHTG
 ECNRMVPKGKGRIPWREIGDALRDIGYDGTAVMEPFVRMGCQVGADIKVWRDISRGADEAQLDDARRALE
 FQRYMLEWK

Figure 2

Desmospora sp. Psicose-3-Epimerase (SEQ ID NO: 6)
 MKYGVYFAYWEDSWDVFDFEKYVRKVKKLGFDILEVAALGLVNLPEEKLERLKQLAEQHDIILTAGIGLPK
 EYDVSSTDKKVRRNGISFMKKVMDAMHQAGIHRIGGTVSYWPDYSCSFDPKPAVRKHSIESVRELAEYA
 RQYNITLLIETLNRFEQFLLNDAEEAVAYVKEVDEPNVKVMLDTFHMNIEEDHIADAIRYTGDHLGQLHI
 GEANRKVPGKGSMPWTEIGQALKDIRYDGYVVMEPFIKTGGQVGRDIKLWRDLSGNATEEQLDRELAESL
 EFVKAAGFE

Figure 3

Clostridium cellulolyticum Psicose-3-Epimerase (SEQ ID NO: 8)
 MKHGIYYAYWEQEWEADYKYYIEKVAKLGFIDILEIAASPLPFYSDIQINELKAQAHNGITLTGHPGSA
 EQNLSSPDPTDIRKNAKAFYTDLKRLYKLDVHLIGGALYSYWPIDYTKTIDKKGDWERSVESVREAKVA
 EACGVDFCLEVLNRFENYLINTAQEGVDFVKQVDHNNVKVMLDTFHMNIEEDSIGGAIARTAGSYLGHLHT
 GECNRKVPGRGRIPWVEIGEALADIGYNGCSVMEPFVRMGGTVGSNIKVWRDISNGADEKMLDREAQAA
 DFSRYVLECHKHS

Figure 4

Figure 5

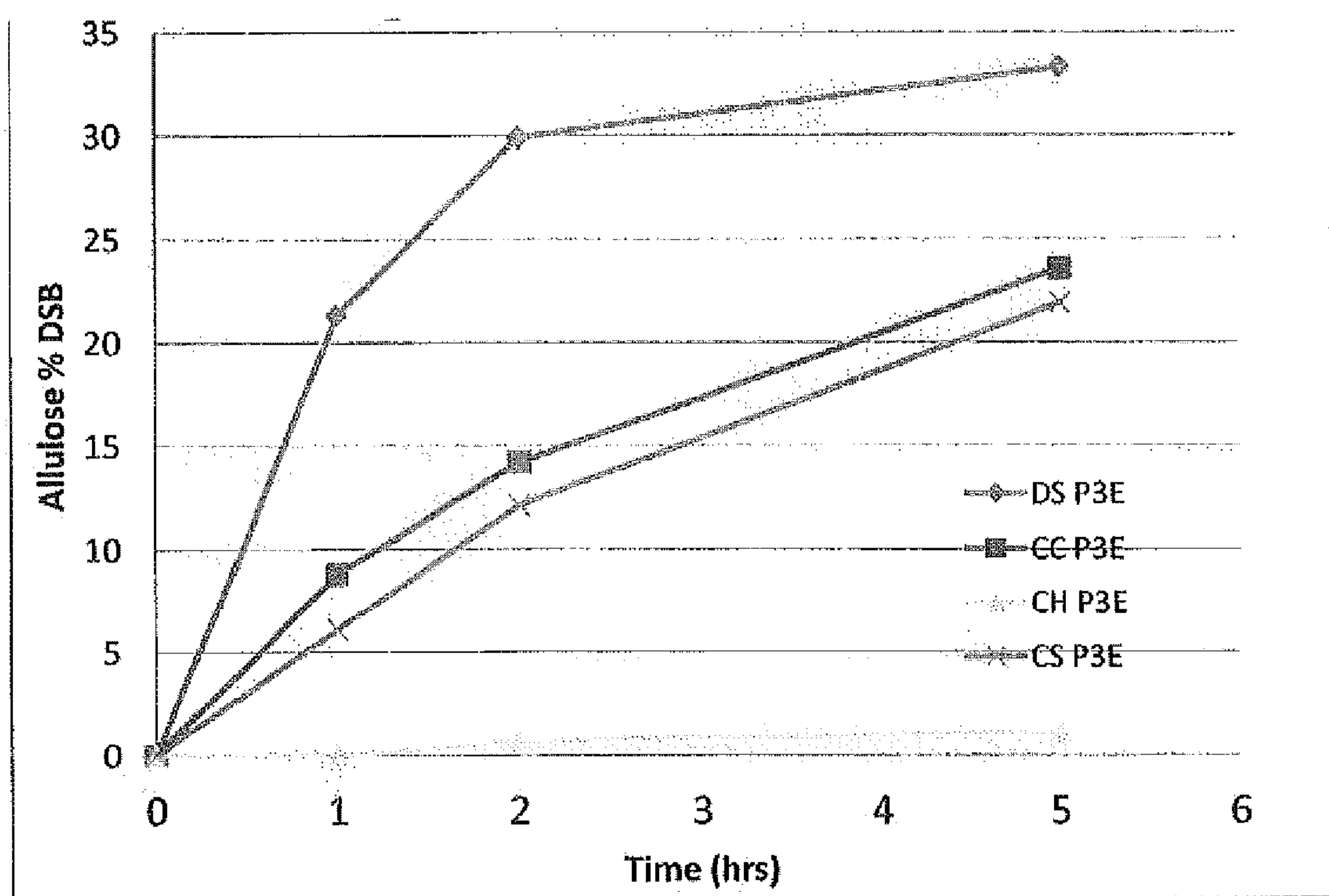


Figure 6

Clostridium cellulolyticum

(Optimized Sequence Length:897, GC%:51.61) (SEQ ID NO: 7)

CATATG

```

AAGCACGGCATCTATTACGCCTATTGGGAACAAGAACAGACTACAAGTATTACATCGAAAAGGTTGCG
AAGCTGGGTTTGATATTCTGGAAATCGCGGCCTCACCGCTGCCGTTTATTCCGACATTCAATGAACCTG
AAAGCGTGCACGGTATTACCGTGCACGGTGGGCCACGGTCCGAGCGCGGAACAAAATCTGAGCAGC
CCGGACCCGGACATCCGTAACAGCAAAGGCTTCTATACCGATCTGCTGAAACGCCTGTACAAGCTGGACGTT
CATCTGATTGGCGGTGCCCTGTATTCTTACTGGCCGATCGATTACACCAAGACGATCGATAAGAAGGGCGACTGG
GAACGTAGTGTGAATCCGTCCCGAAGTGGCAAGGTTGCCAAGCCTGCCGTTGCGATTTGTCTGGAAGTG
CTGAACCGTTGAAACATTACCTGATTAACACCGCACAGGAAGGCGTCGATTGTGAAACAAAGTTGACCATAAC
AATGTCAGGTGATGCTGGATACGTTCCACATGAATATCGAAGAACAGTATTGGCGGTGCGATCCGTACCGCC
GGCTCCTATCTGGGTCATCTGCACACGGCGAATGCAATCGAAAGTTCCGGCCGTGGTCGATTCCGTGGGTG
GAAATCGGTGAAGCAGTGGCTGATATTGGCTACAACGGTCAGTGGTTATGGAACCGTTGTTGCTATGGCGGC
ACCGTCGGCAGCAATATTAAAGTGTGGCGCAGATCTAACGGTCAGATGAAAGATGCTGGACCGTGAAGCT
CAGGCAGCTCTGGACTTCTCACGCTACGTGCTGGAATGTATAAACACTCGTAA
AGATCTGGATCC

```

DNA Alignment (Optimized Region) (Upper: SEQ ID NO: 7; Lower: SEQ ID NO: 12)

Optimized 7	AAGCACGGCATCTATTACGCCTATTGGGAACAAGAACAGACTACAAGTATTAC
Original 7	AAACATGGTATATACTACGCATATTGGGAACAAGAACAGACTACAAGTATTACAAATACTAT
Optimized 67	ATCGAAAAGGTTGCGAAGCTGGGTTTGATATTCTGAAATCGCGGCCTCACCGCTGCCG
Original 67	ATTGAGAAGGTTGCAAAGCTTGGGTTTGATATTCTAGAGATTGCAAGCTCACCCTACCT
Optimized 127	TTTATTCCGACATTCACTGAAACTGAAAGCGTGCACGGTACGGCATGTGCCATGGCAATGGAATTACA
Original 127	TTTACAGTGACATTCACTGAAACTGAGCTCAAGGCATGTGCCATGGCAATGGAATTACA
Optimized 187	CTGACGGTGGGCCACGGTCCGAGCGCGAACAAAATCTGAGCAGCCGGACCCGGACATC
Original 187	CTTACGGTAGGCCATGGGCTAGTGCAGAACAAAACCTGTCTCTCCGACCCGATATT
Optimized 247	CGTAAAACGCAAAGGCTTCTATACCGATCTGCTGAAACGCCTGTACAAGCTGGACGTT
Original 247	CGCAAAATGCTAAAGCTTTTATACCGATTTACTCAAACGACTTACAAGCTGGATGTA
Optimized 307	CATCTGATTGGCGGTGCCCTGTATTCTTACTGCCGATCGATTACACCAAGACGATCGAT
Original 307	CATTGATAGGTGGGGCTTATATTCTTATTGCCGATAGATTACACAAAGACAATTGAT
Optimized 367	AAGAAGGGCGACTGGGAACGTAGTGTGAATCCGTCCCGAAGTGGCCAAGGTTGCCGAA
Original 367	AAAAAAGGCATTGGGAACGCAGCGTTGAAAGTGTGAGAACAGTTGCTAAGGTGGCCGAA
Optimized 427	GCCTGCGGTGTCGATTGGCTGGAAAGTGTGCTGAACCGTTGAAATACCTGATTAAC
Original 427	GCCTGTGGAGTGGATTCTGCCTAGAGGTTCTTAATAGATTGAGAATTATTAATTAAC
Optimized 487	ACCGCACAGGAAGGCGTCGATTGTGAAACAAAGTTGACCATAACAATGTCAAGGTGATG
Original 487	ACAGCACAAAGAGGGTAGATTGTAAAACAGGTTGACCATAACAATGTAAAGGTAATG
Optimized 547	CTGGATACGTTCCACATGAATATCGAAGAACAGACTATTGGCGGTGCGATCCGTACCGCC
Original 547	CTTGATACCTCCATATGAATATTGAGGAAGATAGTATCGGAGGTGCAATCAGGACTGCG
Optimized 607	GGCTCCTATCTGGTCATCTGCACACGGCGAACATCGAAAGTTCCGGCCGTGGT
Original 607	GGCTCTACTTGGGACATTACACACTGGCGAACATGTAATCGTAAAGTTCCGGCAGAGGA
Optimized 667	CGCATTCCGTGGGTGAAATCGGTGAAGCACTGGCTGATATTGGCTACAACGGTCAGTG
Original 667	AGAATTCCATGGGTAGAAATTGGTAGGGCTCTGCTGACATAGGTATAACGGTAGTGT
Optimized 727	GTTATGGAACCGTTGTCGATTGGCGGCCACCGTCGGCAGCAATATTAAAGTGTGGCGC
Original 727	GTTATGGAACCTTTGTTAGAATGGGCGGAACGTGCGGATCTAATATTAAAGGTTGGCGT
Optimized 787	GATATCTCTAACGGTGCAGATGAAAAGATGCTGGACCGTGAAGCTCAGGCAGCTCTGGAC
Original 787	GACATTAGTAACGGTGCAGATGAGAAAATGCTGGATAGAGAACAGGCCGACTTGAT
Optimized 847	TTCTCACGCTACGTGCTGGAATGTATAAACACTCGTAA
Original 847	TTCTCCAGATATGTATTAGAATGTATAAACACTCCTGA

Figure 7

Desmospora sp. (SEQ ID NO: 5)

CATATG

AAATACGGTGTCTACTTGCTTACTGGGAAGATTCTGGGGATGTTGACTTGAAAAATACGTTGCAAGGTGAAA
 AAACTGGGCTTGTATATTCTGGAAAGTTGCAGCACTGGGTCTGGTCAACCTGCCGGAAAGAAAAACTGGAACGTCTG
 AAGCAGCTGGCGGAACAAACATGACATTATCCTGACCGCCGGCATTGGTCTGCCAAAGAATATGATGTCAGCTCT
 ACGGACAAAAAAGTGCCTCGCAATGGCATCTCCTTATGAAAAAGGTTATGGATGCAATGCATCAGGCTGGTATT
 CACCGTATTGGCGGCACCGTGTATAGCTACTGGCCGGTTGATTACAGTTGCTCCTCGACAAACCGGGCGGTTCGC
 AAGCACTCAATTGAATCGGTCCGTGAACCTGGCGGAATATGCCGCCAGTACAACATTACCCCTGCTGATCGAAACG
 CTGAACCGCTTGAACAATTCTGCTGAATGATGCCGAAGAACGGTTGCCTATGTCAAAGAAGTGGATGAACCG
 AACGTCAAGGGTGATGCTGGACACCTTCCACATGAACATCGAAGAAGATCACATCGCAGACGCTATCCGTTACACG
 GGCGATCATCTGGGTCAAGCTGCACATCGCGAACCGCAAAGTGCCGGCAAGGGTAGTATGCCGTGGACC
 GAAATTGGCCAAGCAACTGAAAGATATCCGTTATGACGGTTACGTGGTTATGGAACCGTTATTAAAACCGGGCGGT
 CAGGTTGGCCGTGATATCAAACCTGTGGCGCAGCTGAGCGGTAATGCAACGGAAGAACAAACTGGATCGCGAACTG
 GCTGAATCTCTGGAATTGTGAAAGCAGCTTCGGTGAATAA
 AGATCTGGATCC

DNA Alignment (Optimized Region) (Upper: SEQ ID NO: 5; Lower: SEQ ID NO: 11)

Optimized 7	AAATACGGTGTCTACTTGCTTACTGGGAAGATTCTGGGGATGTTGACTTGAAAAATAC
Original 7	AAATACGGTGTCTATTGCTTACTGGGAAGACTCTGGGGATGTTGACTTGAAAAATAC
Optimized 67	GTTCGCAAGGTGAAAAAAACTGGGCTTGTATATTCTGGAAAGTTGCAGCACTGGGTCTGGTC
Original 67	GTGCGGAAAGTGAAAAAAGTTGGGCTTGCACATCCTCGAAGTGGCGGCATTGGGTCTCGTC
Optimized 127	AACCTGCCGGAAGAAAAACTGGAACGTCTGAAGCAGCTGGCGGAACAAACATGACATTATC
Original 127	AACCTCCGGAGGAGAAACTGGAGCGGCTGAAACAAACTCGCCGAACAGCACGATATCATC
Optimized 187	CTGACCGCCGGCATTGGTCTGCCGAAAGAATATGATGTCAGCTCTACGGACAAAAAGGTG
Original 187	CTGACGGCCGGGATCGGCCTGCCAAAGGAATACGATGTCGTCGTAACGTGACAAAAAGGTG
Optimized 247	CGTCGCAATGGCATCTCCTTATGAAAAAGGTTATGGATGCAATGCATCAGGCTGGTATT
Original 247	CGCCGGAACGGCATCTCCTCATGAAGAAAGTGTGACGCGATGCATCAGGCCGGCATC
Optimized 307	CACCGTATTGGCGGCACCGTGTATAGCTACTGGCCGGTTGATTACAGTTGCTCCTTCGAC
Original 307	CACCGGATCGCGGCACGGTCTACTCGTATTGGCCGGTTGACTACAGTTGCTCCTTCGAC
Optimized 367	AAACCGGCGGTTCGCAAGCACTCAATTGAATCGGTCCGTGAACCTGGCGGAATATGCCCGC
Original 367	AAGCCGCCGTAAGGAAGCACAGCATGAAAGCGTCAGAGAGCTGGCGAGTACGCACGG
Optimized 427	CAGTACAACATTACCGTGTGATCGAAACGCTGAACCCTTGAACAATTCCCTGCTGAAT
Original 427	CAGTACAACATCACACTCCTCATCGAAACGCTCAACCGTTTGAGCAGTTCTCCTGAAC
Optimized 487	GATGCCGAAGAACGGTTGCCTATGTCAAAGAAGTGGATGAAACGAACGTCAAGGTGATG
Original 487	GACGCCGAGGAAGCAGTCGCCTATGTGAAGGAAGTGGACGCCGAATGTGAAAGTCATG
Optimized 547	CTGGACACCTTCCACATGAACATCGAAGAAGATCACATCGCAGACGCTATCCGTTACACG
Original 547	CTCGACACATTCCACATGAACATCGAGGAAGACCACATTGCCGATGCCATCCGCTACACC
Optimized 607	GGCGATCATCTGGTCAGCTGCACATCGCGAACCGCAAACCGCAAAGTGCCGGCAAGGGT
Original 607	GGTGACCACCTCGGCCACTGCACATCGCGAACCGGAATCGGAAAGTCCCGGGCAAGGGT
Optimized 667	AGTATGCCGTGGACCGAAATTGCCAAGCACTGAAAGATATCCGTTATGACGGTTACGTG
Original 667	TCGATGCCCTGGACAGAAATCGGACAGGCCGCTGAAAGACATTGCTACGATGGCTACGTT
Optimized 727	GTTATGGAACCGTTCATTAACCGGGCGGTCAAGGTTGCCGATGATCAAACGTGGCGC
Original 727	GTCATGGAACCCATTCAAAACCGGCCGACAGGTGCGCAGGACATCAAGCTCTGGCGC
Optimized 787	GACCTGAGCGGTAAATGCAACGGAAGAACAAACTGGATCGCAACTGGCTGAATCTCTGGAA
Original 787	GATCTGTCGGAAATGCGACGGAGGAACAGTTGGACCGGGAGCTGGCAGAGTCGCTGGAA
Optimized 847	TTTGTGAAAGCAGCTTCGGTGAATAA
Original 847	TTTGTGAAAGCGCGTTCGGGGAGTAA

Figure 8

Clostridium scindens

(Optimized Sequence Length: 903, GC%: 49.13) (SEQ ID NO: 1)

CATATG
 AATCGTATTGGCATTATGAATTGGTGAAGAACTGGGACGCTGACCACGTTAAGTACATCAAGAAGGTG
 TCGGGCTGGCTTGTATTCAGGCACAAGCTCTGCTGGAAATGGATAAAATCTCGTATGGACGAA
 GTGCCAGGCCAAGGATAACGGCATTGAACCTGACCTATTCTCTGGTCTGAATCCGAAATACGATGTGGCA
 AGTCCGGACGCTAAGGTCGTGAAGGCAGGTATCGAATATCTGAAACGTATTGTGGAACGCATCGGCTACATGGAA
 GGCAAGCTGCTGTCAGGCAGTTAACTATGCGGGCTGGGTCGCCGGATTACATTGTCGATGACAAAAGCGAAATT
 GTGGAACATAGCATCGAAAGCGTGCCTCAGGTATCAGGAAACCGCCGAAAGATTATGACGTGACGTACTGCGTTGAA
 GTGGTTAACCGCTTGAAGGCATTGTTATGAATACCGCGAAAGAAGCCATTGAATATGTCAGGAAACAAATCGATAGC
 GACAAGATTGGTATCCTGCTGGATACGTACCATGAAACATCGAAGAAGGCAGTATTGGTATGCGATCCGTTCC
 GTTGGCGGTTATCTGAAAAATTCCACACGGCGAAAACAATCGCGTGCCTGGCAAGGGTCATCTGGATTGG
 GACGAAATTGGCAGTGCACGATATTGACTACCAGGGTCGCATCGTCTCCGAACCGTTGCAAATGGC
 GGTGAAGTGGCTCGTGAATCAAAGTTGGCGCAGTCTGGTCAAAGACCCGAGCGAAGAAGTTCTGGATGAAGAA
 GCGCGTTTCTGCTGAATTGAAAAAGACATGATTGCAAGCACTATGGTATCGCTAA
 AGATCTGGATCC

DNA Alignment (Optimized Region) (Upper: SEQ ID NO: 1; Lower: SEQ ID NO: 9)

Optimized 7	AATCGTATTGGCATTATGAATTGGTGAAGAACTGGGACGCTGACCACGTTAAG
Original 7	AACAGAATAGGAATATTAATGAAATTCTGGGTTAAGAACTGGGATGCAGATCATGTCAAG
Optimized 67	TACATCAAGAAGGTGTCGGGCTGGGCTTGGATATTCTGGAATTTCAGGCACAAGCTCTG
Original 67	TATATTAAAAAGGTATCCGGCCTTGGATTTGATATTCTGGAATTCCAGGCCAGGCCTT
Optimized 127	CTGGAAATGGATAAAATCTCGTATGGACGAAGTGCAGGCCAGGCAGGAAAGGATAACGGCATT
Original 127	CTGGAGATGGATAAGAGCAGGATGGATGAGGTCAAGGCAGGCCAAAGGACAATGGAATC
Optimized 187	GAACTGACCTATTCTCTGGGCTGAAATCCGAAATACGATGTGGCAAGTCCGGACGCTAAG
Original 187	GAACTGACCTACAGCCTGGGCTGAAATCCTAAGTACGATGTGCAAGCCGGATGCAAAA
Optimized 247	GTCGTGAAGGGGTATCGAATATCTGAAACGTATTGTGGAACGCATCGGCTACATGGAA
Original 247	GTCAGGGAAGGGGAATCGAATATCTGAAGCGGATCGTGGAGCGGATTGGATACATGGAA
Optimized 307	GGCAAGCTGTCAGGCAGTTAACTATGCGGGCTGGGTTGCCGGATTACATTGCGAT
Original 307	GGAAAAACTGTTCCGGAGTCAACTATGCCGGTGGGAAGCCGGACTATATCGTGGAT
Optimized 367	GACAAAAGCGAAATTGGAACATAGCATCGAAAGCGTGCCTCAGGTATCAAACCGCC
Original 367	GACAAAAGCGAGATCGTGGAGCACAGCATCGAAAGCGTCCGCCAGGTATTAAGACGGCA
Optimized 427	GAAGATTATGACGTGACGTACTGCGTTGAAGTGGTAAACCGCTTGAAGGCATTGTTATG
Original 427	GAAGATTATGACGTGACTTACTGCGTGGAGGTCTGAACCGGTTGAGGCCATCGTATG
Optimized 487	AATACCGCGAAAGAAGCCATTGAAATATGTCAGGAAACATCGATAGCGACAAGATTGGTATC
Original 487	AATACGGCAAAGGAAGCCATCGAGTACGTGAAGCAGATTGACAGTGATAAGATCGGAATC
Optimized 547	CTGCTGGATACGTACCATGAAACATCGAAGAAGGCAGTATTGGTATGCGATCCGTTCC
Original 547	CTGCTGGATACCTATCATGAAACATCGAGGAAGGCTCTAGGGAGACGCCATCCGATCT
Optimized 607	GTTGGCGGTTATCTGAAAAATTCCACACGGCGAAAACAATCGCGTGTGCCGGCAAG
Original 607	GTAGGCGGATATCTGAAAGAACCTCCACACTGGAGAGAACAACCGGGTGTCCGGGAAG
Optimized 667	GGTCATCTGGATTGGGACGAAATTGGCGCACTGCACGATATTGACTACCGGGTCGC
Original 667	GGGCACCTCGACTGGGATGAAATATTGGAGCGCTCCATGATATCGATTATCAGGGAAGG
Optimized 727	ATCGTCTCCGAACCGTTCGTGCAAATGGCGGTGAAGTGGCTCGTATCAAAGTTGG
Original 727	ATCGTGTGAGAGCCGTTCGTCAGATGGCGGGGAAGTCGCAAGAGACATCAAGGTATGG
Optimized 787	CGCGATCTGGTCGAAGACCCGAGCGAAGAAGTTCTGGATGAGAAGCGCGTTCTGCTG
Original 787	AGAGATCTGGTGAAGACATGATTGCAAGCACTATGGTATCGCTAA
Optimized 847	AATTGAAAAAGACATGATTGCAAGCACTATGGTATCGCTAA
Original 847	AATTGAAAAGGATATGATCCGGAAGCACTATGGCATAGCGTAA

Figure 9

Clostridium hylemonae

(Optimized Sequence Length:885, GC%:52.20) (SEQ ID NO: 3)

CATATG

AAACACGGTATCTATTACGCCTATTGGGAACAAGAATGGGCAGCAGACTACAAACGCTATGTGGAAAAAGTGGCA
 AAACTGGGCTTCGATATTCTGGAAATCGGCCGGTCCGCTGCCGGAAATATGCAGAACAGGACGTTAAGAACCTG
 AAAAAGTGCCTCAAGATAACGGCATTACCCCTGACGGCAGGGCTACGGTCCGACCTTAACCATAATATCGGCAGC
 TCTGATGCTGGTGTGCGTGAAGAAGCGCTGGAATGGTATAAACGCCTGTTGAAGTTCTGGCCGAACTGGACATT
 CACCTGATCGGCGGTGCACTGTATAGTTACTGGCCGGTCGATTGCTAACCGGGACAAAACGGAAGATTGGAAG
 TGGTCCGTGGAGGGTATGCAAGCGTCTGGCCCCGGCGGGCAAATACGATATTAACTGGTATGGAAGTTCTG
 AATCGCTTGAATCACATATCCTGAATACCGCCGAAGAACGGCGTCAAATTGGAAGAACAGTGGTATGGACAAAC
 GTGAAGGTTATGCTGGATACGTTCCACATGAATATTGAAGAACAAATCGATTGGCGGTGCCATCCGTCGGCAGGC
 AAACGTGGTCATTTCACACCGCGAATGTAATCGTATGGGCCGGCAAGGGTGTATTCCGTGGCGCGAA
 ATCGGTGACGCTCTGCGTGAATCGGCTACGACGGTACGGCAGTCATGGAACCGTTCGTGCATGGGTGGTCAG
 GTTGGTGCAGATATTAAAGTCTGGCGTGACATCTCTCGCGGTGCCATGAAGCACAGCTGGATGACGATGCTCGT
 CGCGCGCTGGAATTCAACGCTATATGCTGGAATGGAAGTAA
 AGATCTGGATCC

DNA Alignment (Optimized Region) (Upper: SEQ ID NO: 3; Lower: SEQ ID NO: 10)

Optimized 7	AAACACGGTATCTATTACGCCTATTGGGAACAAGAATGGGCAGCAGACTACAAACGCTAT
Original 7	AAACATGGTATCTATTATGCATACTGGGAACAAGAACATGGCGGCCGACTACAAGCGCTAT
Optimized 67	GTGGAAAAAGTGGCAAAACTGGCCTCGATATTCTGGAAATCGGCCGGTCCGCTGCCG
Original 67	GTTGAAAAGGTGGCAAAGCTTGGTTGACATTCTGGAGATCGCGCTGGCCGCTGCCG
Optimized 127	GAATATGCAGAACAGGACGTTAAGAACACTGAAAAAGTGCCTCAAGATAACGGCATTACC
Original 127	GAATACGCAGAGCAGGATGTGAAGGAACGTGAAGAAATGTGCGCAGGACAATGGGATCACG
Optimized 187	CTGACGGCGGGTACGGTCCGACCTTAACCATAATATCGGCAGCTCTGATGCTGGTGTG
Original 187	CTGACGGCCGGATATGGTCCGACGTTCAACCACAATATCGTTCTCAGACGCCGGGTA
Optimized 247	CGTGAAGAACCGCTGGAATGGTATAAACGCCTGTTGAAGTTCTGGCCGAACTGGACATT
Original 247	AGGGAAAGAGGCCTGGAATGGTATAAGAGGTTATTGAAAGTGTGGCAGAGCTTGATATC
Optimized 307	CACCTGATCGGCGGTGCACTGTATAGTTACTGCCGGTCGATTGCTAACCGGGACAAA
Original 307	CACCTGATCGGAGGGCGCTCTATTCTACTGCCCTGTCGATTGCAAACGCCGATAAA
Optimized 367	ACGGAAGATTGGAAGTGGTCCGTGGAGGGTATGCAGCGTCTGGCCCCGGCGGGCAAAA
Original 367	ACGGAAGACTGGAAGTGGAGTGTAGAGGGCATGCAGAGGCTGGGCCGCCGGCAAA
Optimized 427	TACGATATTAAACCTGGGTATGGAAGTTCTGAATCGCTTGAATCACATATCCTGAATACC
Original 427	TATGACATCAACCTGGCATGGAAGTTCTGAACCGGTTGAGAGCCATATCCTGAATACA
Optimized 487	GCCGAAGAACCGTCAAATTGGAAGAACAGTTGGTATGGACAACGTGAAGGTTATGCTG
Original 487	GCCGAGGAAGGTGTGAAGTTGTAGAGGAAGTCGGCATGGACAACGTAAAGGTATGCTG
Optimized 547	GATACGTTCCACATGAATATTGAAGAACAAATCGATTGGCGGTGCCATCCGTCGCGCAGGC
Original 547	GATACATTCCATATGAATATAGAACGAAAGCATAGGCCGGCGATCCGCCGGCAGGA
Optimized 607	AAACTGCTGGGTATTTCACACCGCGAATGTAATCGTATGGTCCGGCAAGGGTCGT
Original 607	AAACTGCTCGGGCATTCCACACCGGAGAACGCAACCGCATGGTCCCCGGAAAGGGACGT
Optimized 667	ATTCCGTGGCGCGAAATCGGTGACGCTCTGCGTGAATCGGCTACGACGGTACGGCAGTC
Original 667	ATTCCATGGCGTGAGATAGGGATGCTCTCCGTGAATCGGATATGACGGAACGTGCTGTA
Optimized 727	ATGGAACCCTCGTGCATGGGTGGTCAGGTTGGTGCAGATATTAAAGTCTGGCGTGAC
Original 727	ATGGAGCCGTTCGTCGATGGGAGGACAGGTGGCGCTGATATCAAGGTGTGGAGAGAC
Optimized 787	ATCTCTCGCGGTGCCGATGAAGCACAGCTGGATGACGATGCTCGTCGCCGCTGGAATT
Original 787	ATAAGCCGTGGAGCAGACGAGGCACAGCTTGACGATGACGCGCCGTCGCTGGAGTT
Optimized 847	CAACGCTATATGCTGGAATGGAAGTAA
Original 847	CAGAGATATATGCTGGAGTGGAGTAA

Figure 10



Figure 11

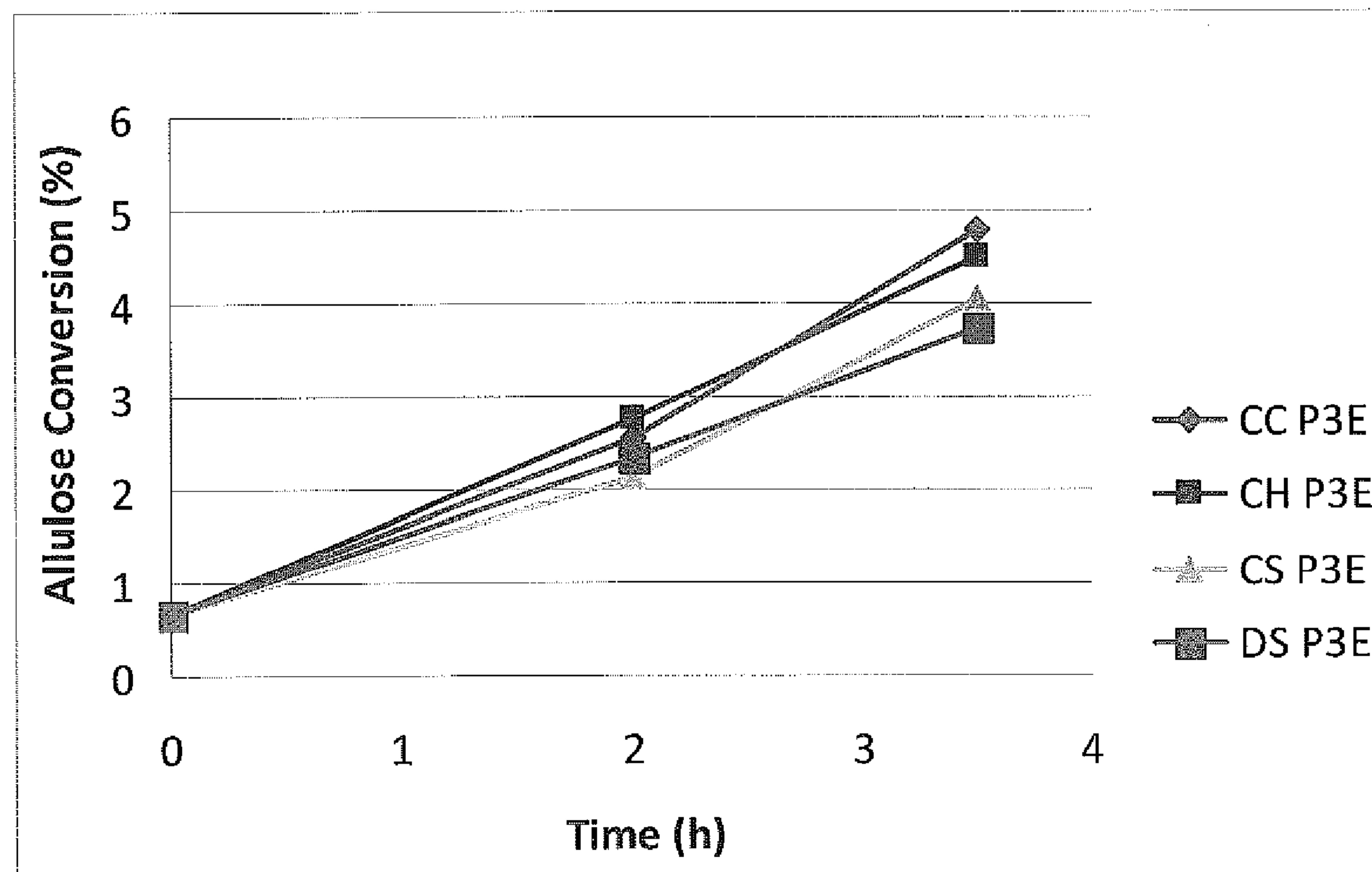


Figure 12

22 05 20

A Protein

Field of the Invention

The invention relates to a method of synthesising allulose using a protein having psicose 3-epimerase activity.

Background of the Invention

Allulose is a “zero-calorie” sweetener and has sweetness suggested to be similar to dextrose. It also has bulking and browning properties similar to those of other sugars. The primary target market for allulose is food and beverage manufacturers that currently use dextrose, fructose or HFCS in their products and that are looking to significantly reduce calories without significantly altering other properties imparted by the sugar component, for example, bulking, browning, texture and sweetness.

Allulose is not Generally Regarded As Safe (GRAS) in the United States but there is currently a GRAS notice pending (GRN400). Allulose is present in processed cane and beet molasses, steam treated coffee, wheat plant products and high fructose corn syrup. The typical total daily intake of allulose has been estimated to be greater than 0.2 grams per day. D-allulose is the C-3 epimer of D-fructose, and the structural difference between allulose and fructose results in allulose not being metabolized by the human body and thus having zero calories. Therefore, allulose is thought to be a promising candidate as a sweet bulking agent as it has no calories and is reported to be sweet while maintaining similar properties to typical monosaccharides.

Ketose-3-epimerases can interconvert fructose and allulose. US patent no. 8,030,035 and PCT publication no. WO2011/040708 disclose that D-psicose (an alternative name for allulose) can be produced by reacting a protein derived from *Agrobacterium tumefaciens*, and having psicose 3-epimerase activity, with D-fructose.

US patent publication no. 2011/0275138 discloses a ketose 3-epimerase derived from a microorganism of the *Rhizobium* genus. This protein shows a high specificity to D- or L-ketopentose and D- or L-ketohexose, and especially to D-fructose and D-psicose. This document also discloses a process for producing ketoses by using the protein.

Korean patent no. 100832339 discloses a *Sinorhizobium* YB-58 strain which is capable of converting fructose into psicose (i.e. allulose), and a method of producing psicose using a fungus body of the *Sinorhizobium* YB-58 strain.

Korean patent application no. 1020090098938 discloses a method of producing psicose using *E. coli* wherein the *E. coli* expresses a polynucleotide encoding a psicose 3-epimerase.

The present invention seeks to provide an improvement in the production of allulose over existing technology. The present invention seeks to provide a ketose-3-epimerase with higher rates of conversion and volumetric productivity in a whole cell system than previously reported.

Summary of the Invention

The present invention arises from the identification and characterisation of three ketose-3-epimerase enzymes, exemplary amino acid sequences of which are shown in SEQ. ID NOS. 2, 4 and 6. The ketose-3-epimerases may be used to convert fructose to allulose. These proteins had previously been identified as hypothetical proteins or as having tagatose epimerase activity. However, the present inventors have now surprisingly found that these enzymes have psicose-3-epimerase activity.

According to a first aspect of the present invention there is provided the use of a protein comprising a polypeptide sequence having at least 90% sequence identity to SEQ ID NO: 6, where the protein has psicose 3-epimerase activity, for synthesizing allulose.

Preferably, the polypeptide sequence has at least 95% or 99% sequence identity to SEQ ID NO: 6.

Preferably still, the protein is immobilized on a solid substrate.

According to a second aspect of the present invention there is provided a method of producing allulose comprising contacting a protein with a fructose substrate under conditions such that the fructose substrate is converted into allulose, wherein the protein comprises a polypeptide sequence having at least 90% sequence identity to SEQ ID NO: 6, wherein the protein has psicose 3-epimerase activity, and wherein the conditions comprise maintaining the protein and the fructose substrate at a temperature between 25°C and 75°C, maintaining the protein and the fructose substrate between pH 4 and pH10 and maintaining the fructose substrate concentration between 75% and 95% (W/V).

Preferably, the polypeptide sequence has at least 95% or 99% sequence identity to SEQ ID NO: 6.

Preferably still, the protein is immobilized on a solid substrate.

Advantageously, the protein is present in a host cell.

Alternatively, the protein is in isolated form.

Conveniently, the conditions preferably comprise maintaining the protein and the fructose substrate at a temperature between 50°C and 60°C, more preferably between 52°C and 55°C, more preferably 55°C.

According to a third aspect of the present invention there is provided a method of producing allulose comprising the steps of:

- i) providing a vector comprising a nucleic acid molecule having a polynucleotide sequence encoding a protein having psicose 3-epimerase activity wherein the polynucleotide sequence: a) has at least 90% sequence identity to SEQ ID NO: 5; or b) hybridizes under highly stringent conditions to a polynucleotide having a sequence complementary to the sequence set forth in SEQ ID NO: 5;
- ii) synthesising the protein having psicose 3-epimerase activity encoded by the polynucleotide sequence;
- iii) contacting fructose with the protein having psicose 3-epimerase activity and maintaining the fructose and protein under conditions to permit the conversion of fructose to allulose; and
- iv) at least partially purifying the allulose produced in step iii).

220520

Preferably, the polypeptide sequence has at least 95% or 99% sequence identity to SEQ ID NO: 5.

Preferably still, the protein is immobilized on a solid substrate.

The terms “polypeptide”, “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms also apply to amino acid polymers in which one or more amino acid residues is a modified residue, or a non-naturally occurring residue, such as an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The polypeptide may or may not be “isolated”, that is to say removed from the components which exist around it when naturally occurring.

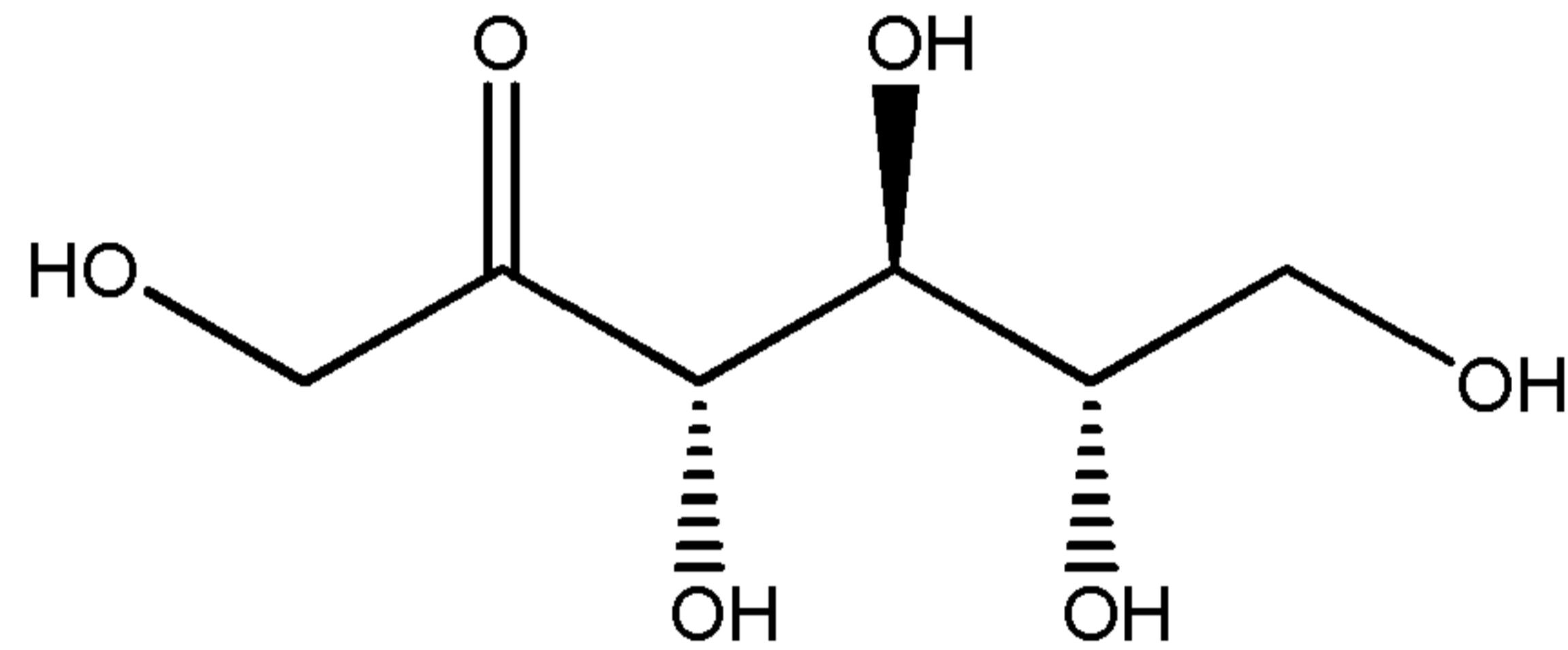
The term “amino acid” as used herein refers to naturally occurring and synthetic amino acids, as well as amino acid analogues and amino acid mimetics that have a function that is similar to naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those modified after translation in cells (e.g. hydroxyproline, gamma-carboxyglutamate, and O-phosphoserine). The phrase “amino acid analogue” refers to compounds that have the same basic chemical structure (an alpha carbon bound to a hydrogen, a carboxy group, an amino group, and an R group) as a naturally occurring amino acid but have a modified R group or modified backbones (e.g. homoserine, norleucine, methionine sulfoxide, methionine methyl sulphonium). The phrase “amino acid mimetic” refers to chemical compounds that have different structures from, but similar functions to, naturally occurring amino acids. It is to be appreciated that, owing to the degeneracy of the genetic code, nucleic acid molecules encoding a particular polypeptide may have a range of polynucleotide sequences. For example, the codons GCA, GCC, GCG and GCT all encode the amino acid alanine.

The percentage “identity” between two sequences may be determined using the BLASTP algorithm version 2.2.2 (Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402) using default parameters. In particular, the BLAST algorithm can be accessed on the internet using the URL <http://www.ncbi.nlm.nih.gov/blast/>.

The term “ketose-3-epimerase activity” as used herein means that an enzyme is capable of catalyzing the inversion of stereochemistry of ketoses, in particular the conversion of fructose to allulose. For example, in one embodiment, “ketose-3-epimerase activity” is defined as being the capacity of an enzyme to increase the rate of interconversion of fructose to allulose by at least 10 micromol/min per mg of added enzyme (0.1 U/mg) over a reaction mixture under the same conditions in the absence of the enzyme. In alternative embodiments an increase in rate of interconversion of fructose to allulose of at least 0.05 U/mg or 0.2 U/mg is considered to be “ketose-3-epimerase activity”. A suitable assay for determining the activity of an enzyme in converting D-fructose into allulose is as follows. A reaction mixture comprising 1ml D-fructose (50g/L), Tris-HCL buffer (50mM, pH 8.0), and 0.5 μ M enzyme is incubated at 55°C for 2 minutes. The reaction is stopped after 10 minutes by boiling. The amount of D-allulose produced is determined by the HPLC method. One unit of enzyme activity is defined as the amount of enzyme catalysing the formation of 1 μ mol of D-allulose/min at pH 8.0 and 55°C (J. Agric. Food Chem. 2011, 59, 7785-7792).

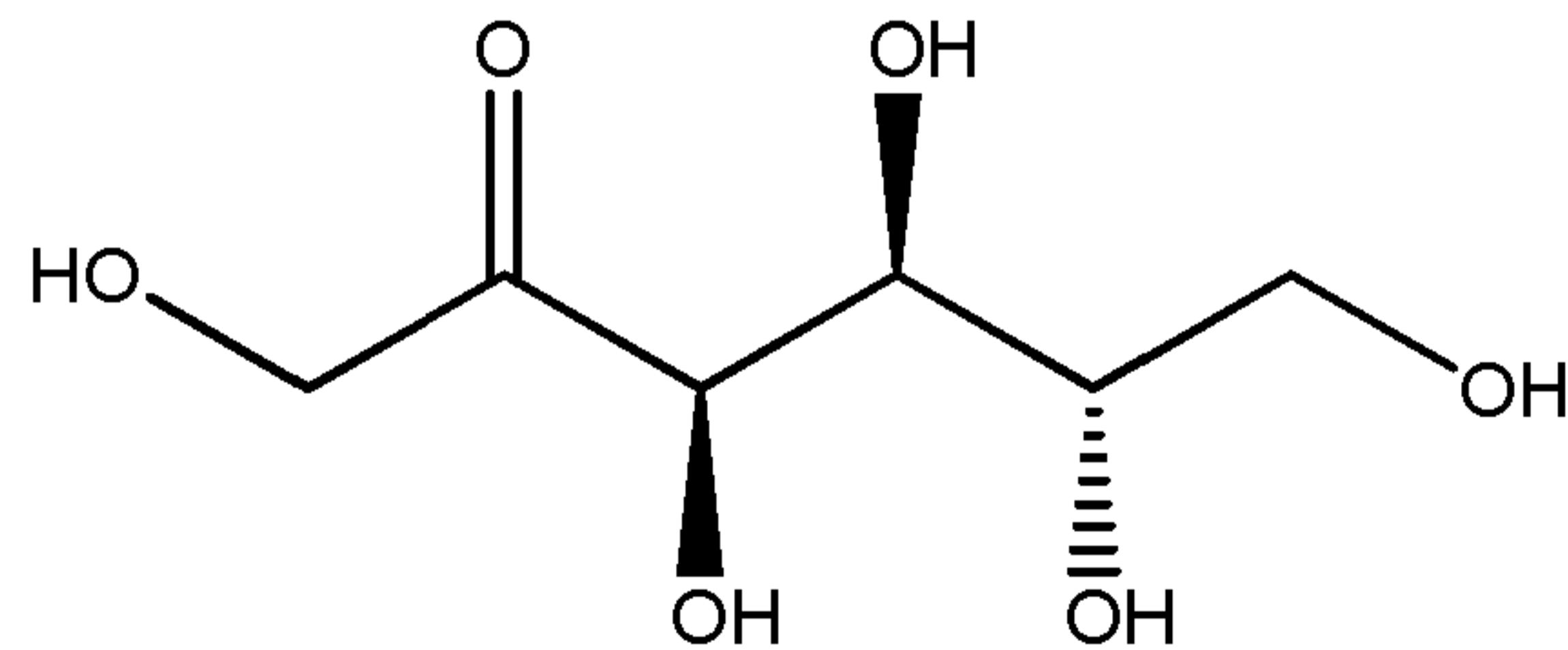
The terms “gene”, “polynucleotides”, and “nucleic acid molecules” are used interchangeably herein to refer to a polymer of multiple nucleotides. The nucleic acid molecules may comprise naturally occurring nucleic acids (i.e. DNA or RNA) or may comprise artificial nucleic acids such as peptide nucleic acids, morpholin and locked nucleic acids as well as glycol nucleic acids and threose nucleic acids.

The term “nucleotide” as used herein refers to naturally occurring nucleotides and synthetic nucleotide analogues that are recognised by cellular enzymes.


The term “vector” as used herein refers to any natural or artificial construct containing a nucleic acid molecule in which the nucleic acid molecule can be subject to cellular transcription and/or translation enzymes. Exemplary vectors include: a plasmid, a virus (including bacteriophage), a cosmid, an artificial chromosome or a transposable element.

The term “host cell” as used herein refers to any biological cell which can be cultured in medium and used for the expression of a recombinant gene. Such host cells may be eukaryotic or prokaryotic and may be a microorganism such as a bacterial cell, or may be a cell from a cell line (such as an immortal mammalian cell line).

The term “highly stringent conditions” as used herein when referring to hybridization conditions means: at least about 6X SSC and 1% SDS at 65°C, with a first wash for 10 minutes at about 42°C with about 20% (v/v) formamide in 0.1X SSC, and with a subsequent wash with 0.2 X SSC and 0.1% SDS at 65°C. It is known in the art that hybridization techniques using a known nucleic acid as a probe under highly stringent conditions, such as those set forth in the specification, will identify structurally similar nucleic acids.


The term “allulose” as used herein refers to a monosaccharide sugar of the structure shown in Formula I. It is also known as “D-Psicose”.

Formula (I)

The term “fructose” as used herein refers to a monosaccharide sugar having the structure shown in Formula II. Examples of fructose substrate include but are not limited to crystalline fructose and crystalline fructose greens. As used herein, “crystalline fructose greens” refers to a process stream created during fructose crystallization from the non-crystallizing portion of the crystallization mother liquor.

Formula (II)

The term “recombinant” as used herein refers to a nucleic acid molecule or a polypeptide which is located in a non-naturally occurring context and which has been produced by artificial intervention. For example, a first polypeptide isolated from other polypeptides or linked by a peptide bond to a second polypeptide sequence having a different amino acid sequence from any polypeptide with which the first polypeptide is associated in nature is a recombinant polypeptide.

Brief Description of the Figures

Figure 1 shows the amino acid sequence of the ketose-3-epimerase from *Clostridium scindens* in accordance with one part of the present disclosure (SEQ ID NO: 2).

Figure 2 shows the amino acid sequence of the ketose-3-epimerase from *Clostridium hylemonae* in accordance with another part of the present disclosure (SEQ ID NO: 4).

Figure 3 shows the amino acid sequence of the ketose-3-epimerase from *Desmospora* sp. in accordance with a further part of the present disclosure (SEQ ID NO: 6).

Figure 4 shows the amino acid sequence of a previously known xylose isomerase from *Clostridium cellulolyticum* (SEQ ID NO: 8).

Figure 5 shows a sequence comparison between the three ketose-3-epimerases shown in Figures 1 to 3 and three previously known ketose-3-epimerases. Completely conserved residues are highlighted.

Figure 6 is a graph showing the rate of conversion of fructose to allulose by *E. coli* transformed to express an enzyme in accordance with a part of the present disclosure and a control.

Figure 7 shows the optimised gene sequence (SEQ ID NO: 7) encoding the amino acid sequence shown in Figure 4 and a comparison of the optimised sequence with the original sequence.

Figure 8 shows the optimised gene sequence (SEQ ID NO: 5) encoding the amino acid sequence shown in Figure 3, and a comparison of the optimised sequence with the original sequence.

Figure 9 shows the optimised gene sequence (SEQ ID NO: 1) encoding the amino acid sequence shown in Figure 1, and a comparison of the optimised sequence with the original sequence.

Figure 10 shows the optimised gene sequence (SEQ ID NO: 3) encoding the amino acid sequence shown in Figure 2, and a comparison of the optimised sequence with the original sequence.

Figure 11 is a graph showing the preparation of conversion of fructose substrate to allulose by *E. coli* transformed to express an enzyme in accordance with one part of the present disclosure (the ketose-3-epimerase from *Desmospora sp*) at 18L scale.

Figure 12 is a graph showing the rate of allulose conversion by enzymes according to parts of the disclosure (CH P3E, CS P3E and DS P3E) and a known ketose-3-epimerase (CC P3E).

Brief Description of the Sequence Listing

SEQ ID NO: 1 shows a gene sequence (optimised for expression in *E. coli*) encoding a ketose-3-epimerase from *Clostridium scindens*.

SEQ ID NO: 2 shows the amino acid sequence of the ketose-3-epimerase encoded by the gene sequence of SEQ ID NO. 1.

SEQ ID NO: 3 shows a gene sequence (optimised for expression in *E. coli*) encoding a ketose-3-epimerase from *Clostridium hylemonae*.

SEQ ID NO: 4 shows the amino acid sequence of the ketose-3-epimerase encoded by the gene sequence of SEQ ID NO. 3.

220520

SEQ ID NO: 5 shows a gene sequence (optimised for expression in *E. coli*) encoding a ketose-3-epimerase from *Desmospora* sp. 8437.

SEQ ID NO: 6 shows the amino acid sequence of the ketose-3-epimerase encoded by the gene sequence of SEQ ID NO. 5.

SEQ ID NO: 7 shows a gene sequence (optimised for expression in *E. coli*) encoding a ketose-3-epimerase from *Clostridium cellulolyticum*.

SEQ ID NO: 8 shows the amino acid sequence of the ketose-3-epimerase encoded by the gene sequence of SEQ ID NO. 7.

SEQ ID NO: 9 shows the naturally occurring gene sequence encoding the ketose-3-epimerase from *Clostridium scindens*.

SEQ ID NO: 10 shows the naturally occurring gene sequence encoding the ketose-3-epimerase from *Clostridium hylemonae*.

SEQ ID NO: 11 shows the naturally occurring gene sequence encoding the ketose-3-epimerase from *Desmospora* sp. 8437.

SEQ ID NO: 12 shows the naturally occurring gene sequence encoding the ketose-3-epimerase from *Clostridium cellulolyticum*.

Detailed Description

The present disclosure relates, in general terms, to a protein comprising a polypeptide having an amino acid sequence shown in one of SEQ. ID NO. 2, 4 or 6. The source organisms of the polypeptides of SEQ. ID NOS. 2, 4 and 6 are shown in Table 1.

Table 1

<u>Source Organism</u>	<u>SEQ. ID NO.</u>
<i>Clostridium scindens</i> ATCC 35704	2

22 05 20

<i>Clostridium hylemonae</i> DSM 15053	4
<i>Desmospora</i> sp.8437	6

However, in alternative parts of the disclosure, the polypeptide sequence is not identical to that shown in SEQ. ID NOs. 2, 4 or 6 but has at least 70% sequence identity thereto. It is preferred that the polypeptide sequence has at least 80%, 90%, 95% or 99% sequence identity, or 100% sequence identity, to SEQ. ID NO. 2, 4 or 6.

Thus in some parts of the disclosure, one or more amino acids of the peptides are omitted or are substituted for a different amino acid, preferably a similar amino acid. A similar amino acid is one which has a side chain moiety with related properties and the naturally occurring amino acids may be categorized into the following groups. The group having basic side chains: lysine, arginine, histidine. The group having acidic side chains: aspartic acid and glutamic acid. The group having uncharged polar side chains: asparagine, glutamine, serine, threonine and tyrosine. The group having non-polar side chains: glycine, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan and cysteine. Therefore it is preferred to substitute amino acids within these groups.

It is generally preferred that the polypeptide conforms with the chemistry of naturally occurring polypeptides (although it may be synthesized *in vitro*) but in some alternative parts of the disclosure the polypeptide is a peptidomimetic, that is to say a modification of a polypeptide in a manner that will not naturally occur. Such peptidomimetics include the replacement of naturally occurring amino acids with synthetic amino acids and/or a modification of the polypeptide backbone. For example in some parts of the disclosure, the peptide bonds are replaced with a reverse peptide bond to generate a retro-inverso peptidomimetic (see Méziére *et al* J Immunol. 1997 Oct 1;159(7):3230-7, which is incorporated herein by reference.) Alternatively, the amino acids are linked by a covalent bond other than a peptide bond but which maintains the spacing and orientation of the amino acid residues forming the polymer chain.

All such modified and unmodified polypeptides of the disclosure have ketose-3-epimerase polymerase activity. That is to say, the protein, when purified or expressed in a host cell, has the capacity to catalyze the conversion of fructose to allulose. Suitable conditions for testing the presence of ketose-3-epimerase activity are shown in Example 1.

22 05 20

The polypeptide of the disclosure may be contained within a whole cell or may be an isolated protein, a partially purified protein or an immobilized protein. Purification of the protein may be by standard methods such as cell disruption and filtration. Other standard methods are known to those skilled in the art.

In some parts of the present disclosure, there is provided a nucleic acid molecule which comprises a polynucleotide sequence encoding a protein having an amino acid sequence with at least 70% sequence identity to SEQ. ID NO. 2, 4 or 6, where the protein has ketose-3-epimerase activity.

In addition to the sequence specifically encoding the protein of the disclosure, the nucleic acid molecule may contain other sequences such as primer sites, transcription factor binding sites, vector insertion sites and sequences which resist nucleolytic degradation (e.g. polyadenosine tails). The nucleic acid molecule may be DNA or RNA and may include synthetic nucleotides, provided that the polynucleotide is still capable of being translated in order to synthesize a protein of the disclosure.

As described above, the amino acid sequence of the protein of the present disclosure may differ from the specific sequences disclosed herein. In preferred parts of the disclosure, the nucleic acid molecule comprises a polynucleotide having the sequence of SEQ. ID NO. 1, 3 or 5, which has been optimised by expression in *E. coli* host cells. In alternative parts of the disclosure, the polynucleotide sequence has at least 70% sequence identity to any one of SEQ. ID NO. 1, 3 or 5 and encodes a protein which has ketose-3-epimerase activity. It is preferred that the polynucleotide sequence has at least 80%, 90%, 95% or 99% sequence identity, or 100% sequence identity, to one of SEQ. ID NO. 1, 3 or 5. In alternative parts of the disclosure the nucleic acid molecule comprises a polynucleotide sequence which hybridizes under highly stringent conditions to a polynucleotide having a sequence complementary to the sequence set forth in SEQ ID NO: 1, 3 or 5 and which encodes a protein which has ketose-3-epimerase activity. In some parts of the disclosure, there is provided a nucleic acid molecule comprising a polynucleotide having the sequence of SEQ. ID NO. 9, 10 or 11, which are the naturally occurring sequences of the enzymes.

In some parts of the disclosure, the nucleic acid molecule forms part of a vector such as a plasmid. In addition to the nucleic acid sequence described above, the plasmid

comprises other elements such as a prokaryotic origin of replication (for example, the *E. coli* OR1 origin of replication) an autonomous replication sequence, a centromere sequence; a promoter sequence, upstream of the nucleic acid sequence, a terminator sequence located downstream of the nucleic acid sequence, an antibiotic resistance gene and/or a secretion signal sequence. A vector comprising an autonomous replication sequence is also a yeast artificial chromosome.

In some alternative parts of the disclosure, the vector is a virus, such as a bacteriophage and comprises, in addition to the nucleic acid sequence of the disclosure, nucleic acid sequences for replication of the bacteriophage, such as structural proteins, promoters, transcription activators and the like.

The nucleic acid molecule of the disclosure may be used to transfect or transform host cells in order to synthesize the protein of the disclosure. Suitable host cells include prokaryotic cells such as *E. coli* and eukaryotic cells such as yeast cells, or mammalian or plant cell lines. Host cells are transfected or transformed using techniques known in the art such as electroporation; calcium phosphate base methods; a biolistic technique or by use of a viral vector.

After transfection, the nucleic acid molecule of the disclosure is transcribed as necessary and translated. In some parts of the disclosure, the synthesized protein is allowed to remain in the host cell and cultures of the recombinant host cell are subsequently used. In other parts of the disclosure, the synthesized protein is extracted from the host cell, either by virtue of its being secreted from the cell due to, for example, the presence of secretion signal in the vector, or by lysis of the host cell and purification of the protein therefrom.

The protein of the present disclosure is used to catalyze the conversion of fructose to allulose. In some parts, the protein is present in host cells and is mixed, to form a conversion mixture, with a fructose substrate, such as borate buffered fructose substrate, at a concentration from 1 to 1000g/L under suitable conditions, such as incubation at a temperature from 25°C to 75°C, pH from 4 to 10. The conversion mixture may also comprise a solvent and optionally additional co-solvents (in addition to water) for example ethanol, toluene and methanol. The fructose substrate may also contain other sugars such as glucose or sucrose. The protein catalyzes a conversion of the fructose

substrate to allulose. In practice, not all fructose in the conversion mixture is converted to allulose so there is typically a subsequent step of extracting and purifying the allulose through evaporation and crystallisation. Residual fructose in the mixture may be removed by yeast fermentation.

In alternative parts of the disclosure, the protein of the present disclosure is provided in purified form and mixed with a fructose substrate together with suitable solvent for an entirely *in vitro* conversion. In one part of the disclosure the conditions are pH 4-10, a temperature between 30°C and 70°C and a fructose concentration of 10-95% w/v, with water as the solvent. Alternative concentration ranges for fructose include but are not limited to 20-95%, 30-95%, 40-95%, 50-95%, 60-95%, 70-95%, 75-95%.

In some parts of the disclosure, the protein of the present disclosure is immobilised on a solid substrate. This provides the advantage that the enzyme has a longer usage life, can be packed in a smaller fixed bed reactor, and has greater tolerance to contaminants and to fluctuations in the conditions of the process. Exemplary solid substrates include ion exchange resins and polymer encapsulations.

Also disclosed herein is a method of producing allulose. The method comprises the following steps.

- 1) Providing a vector comprising a nucleic acid molecule having at least 70% sequence identity to SEQ ID NO:1, SEQ ID NO:3 or SEQ ID NO: 5.
- 2) Transforming competent host cells with said vector.
- 3) Optionally, culturing the transformed host cells.
- 4) Mixing the transformed cells with a fructose substrate and maintaining under conditions to permit conversion of fructose to allulose.
- 5) Purifying the allulose produced using standard methods in the art, such as evaporation and crystallization.

In alternative methods, step 4) is omitted. Instead, the protein encoded by said nucleic acid molecule is isolated from the transformed host cell and optionally immobilized on a substrate. The protein is then mixed with the fructose substrate and maintained under conditions to permit conversion of fructose to allulose. Step 5) is then performed. In other methods, step 2) is omitted and the protein is instead synthesised by *in vitro* translation. Subsequently, the protein is isolated and mixed with the fructose substrate.

Examples

Example 1

In this example, host cells were transformed to express one of three putative ketose-3-epimerase enzymes. Transformed host cells were tested for ketose-3-epimerase activity by incubating them with a fructose substrate.

Materials

Borate Buffer 1M pH8:

- i) 62g boric acid dissolved in 1L DI water
- ii) adjust to pH8 with 10M NaOH
- iii) store in 1L bottle in 4 °C refrigerator

Borate Buffered Fructose Substrate:

- i) 970g liquid fructose (77% DS) in 50ml Borate buffer pH8
- ii) water up to 1L final volume
- iii) adjust pH to 8 with 5M NaOH

Expression Medium LB – 4 x 2.8L baffled shake flasks:

- i) 10g tryptone, 7g NaCl and 10g yeast in 1L DI water
- ii) autoclave

Methods

Three putative ketose-3-epimerase gene sequences and one control sequence were selected to be synthetically constructed by Genscript USA, Inc. The putative ketose-3-epimerase sequences encoded:

- i) hypothetical protein CLOSCI_02526 from *Clostridium scindens* ATCC 35704 (accession ZP_02432281) (SEQ. ID NO. 2)
- ii) hypothetical protein CLOHYLEM_05645 from *Clostridium hylemonae* DSM 15053 (accession ZP_03778576.1) (SEQ. ID NO. 4)
- iii) D-tagatose 3-epimerase from *Desmospora* sp. 8437 (accession ZP_08466075) (SEQ. ID NO. 6).

220520

The control sequence encoded a xylose isomerase protein from *Clostridium cellulolyticum* H10 (accession YP_002505284) (SEQ. ID NO. 8).

The genes were synthetically constructed with sequences optimized for expression in *E. coli* (see Figures 7 to 10) and each of the resulting four genes was cloned into an expression vector, pET15b. Other combinations of microorganisms and expression vectors known to one skilled in the art are expected to perform equally well.

Competent cells used for the transformation were prepared by inoculating 3ml Lysogeny Broth (LB) with *E. coli* BL21 (DE3) and allowing the bacteria to propagate overnight at 37°C. 300ml LB was inoculated with this 3ml culture and the cells were grown at 37°C with shaking to 0.7-1.0 OD (600). Optical densities (OD) were measured in a 1 cm cell at 600nm wavelength on a typical spectrophotometer. The cells were chilled on ice for 10 mins and then spun down at 7500xg at 4 °C for 15 minutes. The media was poured off and the cells resuspended in 300 ml cold water. The spin was repeated and the cell resuspended in 150 ml cold water. The spin was repeated again and the cells were suspended in about 2ml cold sterile 10% glycerol. The cells were spun down as previously and were suspended in about 2ml cold sterile 10% glycerol. The suspension was divided into 100µl aliquots in sterile eppendorf tubes and stored at -80 °C.

The expression vectors provided by Genscript were subsequently used to transform competent *E. coli* BL21 (DE3) by electroporation and positive transformants were selected on ampicillin containing LB agar. 1L LB was poured into each of four 2.8L baffled flasks and was autoclaved. Once cool, 1ml of 100mg/l ampicillin was added to each flask aseptically and each flask was inoculated with 2-3ml of the overnight culture of competent cells prepared above (1 flask per expression strain). The cells were allowed to grow for about 3 hours at 37 °C with 200rpm shaking in order to achieve an OD of 0.8-1.5. 1ml of a freshly prepared 1M isopropyl β -D-1-thiogalactopyranoside solution was added to each flask, the temperature was reduced to room temperature (i.e. 25-30 °C) and induction was allowed to proceed for about 5 hours. The cells were spun down at about 5000xg for 30 minutes at 4 °C and the supernatant decanted. The cell pellet was transferred to a weighed 50ml centrifuge tube and the cell mass was recorded. The cells were resuspended in a few ml of sterile glycerol (10%w/w) and were frozen at -80°C.

The conversion activity of the cells was checked by mixing the whole cells into a borate buffered fructose substrate and analysing by HPLC using DP 1-4 method with a Ca^{2+} column. Four flasks containing 250ml of borate buffered fructose substrate were warmed to 55 °C and the frozen cells were thawed at room temperature. The cells were pelleted at 6500xg and resuspended in DI water. 2g (wet weight) of cells were mixed in borate buffered fructose substrate and were incubated at 55 °C with 90rpm mixing in a 1L baffled flask. Samples were taken at 0, 1, 2 and 5 hours, and were submitted for HPLC analysis.

HPLC analysis consisted of injection of 20 μL of a sample to be analysed at 0.1% (W/V) into a chromatographic system consisting of a water mobile phase with a flow rate between 0.1 and 1.5 mL/min and a stationary phase consisting of a resin of particle size between 1 and 10 μm in the Ca^{2+} form maintained at 80°C. Peaks were detected and quantitated by a refractive index detector and qualitatively assigned based on retention time of known standards.

Results and Discussion

Three protein sequences were identified to be tested as ketose-3-epimerase proteins. The sequences of these proteins are given in Figures 1 to 3 (SEQ. ID NOS 2, 4 and 6). The xylose isomerase from *Clostridium cellulolyticum* H10, used as a control, has previously been suggested to produce allulose from fructose. Its amino acid sequence is shown in Figure 4 (SEQ. ID NO. 8).

The amino acid sequences of these proteins were aligned with those of other known ketose-3-epimerases and the aligned sequences are shown in Figure 5. Completely conserved residues are highlighted. There are very few conserved residues between these sequences, with fewer than 65% of the residues being conserved from one sequence to the next.

The degree of sequence identity between each of the sequences of SEQ. ID NOS. 2, 4, and 6 with each of Accession Nos NP_535228 and BAA24429 and SEQ. ID NO 8 was determined. The results are shown in Table 2. Between 40 and 63% sequence identity for the known ketose-3-epimerases was observed for each of the selected protein sequences. There was no overall strong homology based on the sequence alignment of all of the sequences. The selected proteins had genes optimized for expression by *E.*

22 05 20

coli synthetically constructed and cloned into commercial expression vector pET15b by Genscript. Transformation of *E. coli* BL21 (DE3) was successful for each construct and frozen stocks of each strain were saved along with the expression vectors. Protein expression was carried out on the 1L scale and whole cells were harvested as the crude catalyst. Conversion activity was checked and Figure 6 shows the % DSB allulose produced during the experiment by the four different strains tested.

Table 2

Organism	SEQ ID NO.	% Identical Protein Sequence		
		<i>A. tumefaciens</i> (accession NP_535228)	<i>P. cichorii</i> (accession BAA24429)	<i>C. cellulolyticum</i> (accession NC_011898)
<i>C. scindens</i>	2	59	43	43
<i>C. hylemonae</i>	4	60	41	63
<i>Desmospora</i> sp.	6	50	43	51

Expression of the three putative ketose-3-epimerases was successfully carried out and all three could successfully convert fructose into allulose, confirming that each protein is, indeed, a ketose-3-epimerase.

The most active protein was DS P3E (D-tagatose 3-epimerase from *Desmospora* sp. 8437, SEQ. ID NO. 6) which was capable of converting 30% of a 750g/L fructose solution in just 2 hours utilizing 8g of wet cell weight per litre for a volumetric productivity of 112g/L/hour.

Example 2

In this example, the current best conditions for cell growth and conversion were carried out on an 18L scale to determine scaleability and to produce allulose for further sensory and clinical investigation. Following the conversion, an initial clean-up step to remove fructose was carried out. This example was for the purpose of identifying the scaleability of this process, any unforeseen problems with scale-up and the amount of allulose that could reasonably be produced in a laboratory.

220520

Materials

Isopropylthiogalactopyranoside (IPTG)

Filter sterilized aqueous ampicillin solution 100mg/ml

Crystalline fructose greens

Liquid fructose (77% DS)

Growth media:

- i) 25g NaCl, 25g Staleydex® 333, 6g glycerol, 50g tryptone (Difco), 60g yeast extract (Difco), 8g potassium phosphate dibasic and 8g potassium phosphate monobasic in 6l DI water
- ii) adjust pH to ~7.8 with Tris base (solid)
- iii) autoclave 1L per flask in 6x2.8L baffled flasks with foil on top

Tris buffer 1M pH8:

- iv) 121g in 1L DI water
- iv) adjust pH to 8 with HCl
- iv) store in 1L bottle in 4 °C refrigerator

Method

To propagate the cells, six overnight cultures of 5ml LB medium supplemented with 100µg/ml ampicillin were started. The cultures were inoculated with the *E. coli* production strain (BL21-DE3 pET15b-DS-P3E expressing the protein of SEQ. ID NO. 6) and allowed to grow overnight (~16 hours) at 37°C. 6L of growth media was prepared and autoclaved as described above, 5ml of the overnight culture was added to each flask and this was shaken at 190 rpm at 37°C for 4 hours. 1mM IPTG was added to each flask by preparing a fresh 1M solution and adding 1ml per litre to the flasks. The temperature was reduced to 25 °C with continued shaking for 14-16 hours.

In order to harvest the cells, the cultures were centrifuged at 6000 rpm for 20 minutes using floor centrifuge in Mod 322 and 1L bottles (filled with not more than 800ml of media). The media was decanted into a kill bucket, to which 1% by volume bleach was added, and was allowed to sit for 30 minutes. The centrifuge tubes were weighed and 3ml DI water per gram of cells was added to the tubes. The cells were re-suspended using a spatula and vortex genie until a uniform cell slurry was obtained. The suspension was transferred to 40ml centrifuge tubes and re-pelleted at 6500xg. The wash was decanted into the kill bucket and the cells were re-suspended in the same volume of water.

220520

The propagation and harvesting of cells was repeated with a second batch of cells.

The crystalline fructose greens conversion substrate was prepared by warming a 5 gallon (18.9L) bucket of crystalline fructose greens to room temperature and adding 16,506g crystalline fructose greens to a sanitised 5 gallon (18.9L) plastic bucket with an 18L calibration mark. 900ml of 1M Tris pH 8.0 prepared as above was added to the bucket, followed by water up to the 18L calibration mark, and was mixed using an overhead mixer until homogeneous. The mixture and the unused crystalline fructose greens were returned to a cold room for storage.

The liquid fructose conversion substrate was prepared by combining 17,460g liquid fructose (77% DS) and 500ml of 1M Tris pH 8.0 (prepared as above) in a sanitised 5 gallon (18.9L) plastic bucket with an 18L calibration mark. Water was added up to 18L calibration mark and an overhead mixer was used to mix until homogeneous.

For the whole cell conversion, 18L of prepared crystalline fructose greens conversion substrate was heated to 55°C in a water bath and was gently mixed with an overhead mixer at about 150 rpm. The re-suspended cell paste obtained from the cell harvesting was added to a total of 100g wet weight of cells. After 5 hours a sample was removed and was submitted HPLC analysis. The reaction was stopped by refrigerating the entire bucket at 4 °C. A sample was submitted for microbial analysis for *E. coli*, coliforms and TPC.

The whole cell conversion process was repeated with 18L of prepared liquid fructose conversion substrate. 120g of cells wet weight was used and samples were taken at 2 and 4 hours for HPLC Analysis.

Yeast fermentation was used to remove fructose from the crystalline fructose greens conversion substrate. The crystalline fructose greens conversion product was diluted with 2 volumes of water for a final concentration of ~250g/L of combined allulose and fructose in a total volume of 54L. The 54L of diluted mixture was split between four sanitised 5 gallon (18.9L) buckets, with approximately 13L per bucket. Two of the buckets were stored in a refrigerator. The remaining two buckets were set up with vigorous agitation from overhead mixers and aeration from 9L/min air pumps with

220520

20

diffusers for approximately 0.3VVM air flow. 120g dry active baker's yeast (Fleishman's brand) was added to each bucket, and these were mixed and aerated for 2 days (~36 hours) with occasional sampling for DP1-4 allulose analysis. The buckets were transferred to the cold room overnight to allow the yeast to settle. The supernatant was then transferred to two new clean sanitised buckets and the remaining yeast fraction was transferred to the two refrigerated crystalline fructose greens-containing buckets prepared above. The agitation and mixing process was repeated, followed by the removal of yeast. Following the yeast fermentation step, about 45L of supernatant was obtained and sterile filtered into 3 clean sanitised buckets, which were stored at 4 °C for further processing.

Results and Discussion

Approximately 220g of BL21 (DE3) pET-15b-DS P3E cells were obtained from 12L of culture and split into two 18L bioconversions as described above. Thus, the total whole cell biocatalyst concentration was 5.6g/L for the crystalline fructose greens conversion and 6.7g/L for the liquid fructose conversion.

Figure 11 shows that both conversions rapidly reached ~25%, calculated as allulose as a percentage of allulose+fructose. This is slightly lower but very near the conversion level previously achieved using this cell type and similar conversion media on the small scale. Conversion had already reached 22% after just 2 hours with the liquid fructose substrate.

In each 18L conversion, approximately 3.3kg of allulose was produced. There did not appear to be a significant difference between the two substrates.

The scale up from 250ml did not produce any unforeseen issues and proceeded as expected.

The microbial testing resulted in no live *E. coli* with a negative result and <3 coliforms per gram, and a total plate count of two. Therefore, a temperature of 55 °C combined with a high percentage of DS syrup was sufficient to kill the whole cell biocatalyst.

The bioconversion of fructose to allulose using the newly identified enzyme DS P3E was successfully scaled up to 18L.

Example 3

An *E. coli* strain containing the newly identified DS P3E protein (SEQ ID NO: 6) was produced by two 10 L fermentations in a fermentation lab using a pH control feed batch culture method with glucose yeast extract media. The fermentations proceeded as expected.

During the fermentation batch growth and fed batch phases the cells grew exponentially with a doubling time of approximately 1 hr. Glucose concentration dropped from about 9 g/L to <1 g/L in about 5.5 hours (OD ~ 28). During the Induction phase for enzyme production, the OD continued to rise to about 130 and then was not observed to change significantly. Harvesting of the fermentation by centrifugation resulted in 4.5 kg (10 lbs) of wet cell paste or approximately 1.1 kg (2.5 lbs) dry cell weight.

Fructose substrate (836 kg DS (dry solids) basis) was diluted to 69 %DS (920 grams/L) with RO water and heated to 52°C and pH adjusted to 7.8. Low agitation (~50 rpms) was utilized to promote mixing throughout the reaction and the entire batch of 4.5 kg (wet paste) of expressed whole cells from above was added to the reaction and a time 0 sample was taken. This provided a 0.48 g/L biocatalyst load which is similar to the previously tested lab scale conversions, however, the substrate concentration was higher at 920 g/L. Samples were taken at 4 and 16 hrs and analyzed by HPLC.

No loss of DS was observed and no bioproducts were produced during the reaction. The reaction proceeded nearly to the equilibrium value of ~30% allulose at the end of the 16 hr reaction. At 4 hrs the reaction had already proceeded to 18% conversion. The volumetric conversion rate previously obtained using 0.5 g/L biocatalyst with 750 g/L substrate (Examples 1 and 2) was 46 g/L*hr or per unit biocatalyst 92 g/L*hr/gram biocatalyst. Here, using a higher substrate concentration and slightly lower temperature (52°C vs 55°C), the volumetric conversion rate was 41 g/L*hr or 85 g/L*hr/gram biocatalyst (calculated using 4 hr data point). This demonstrates the remarkable flexibility of the epimerase reaction. When the reaction was completed at 16 hrs, 230 kg of allulose were present in the 28:72 mixture of allulose:fructose.

Example 4

Conversion of fructose by the four different enzymes (SEQ ID No 2, 4, 6 and 8) was compared on Tris buffered fructose substrate at 750 g/L. Cells were induced at 16°C instead of 25-30°C and the rate of conversion was slower than in previous experiments. To 200 mL of the substrate, 2 g wet weight of resuspended cells was added in 500 mL baffled flasks and incubated at 55°C with 90 rpm shaking. Samples were taken at 2 hrs and 3.5 hrs for HPLC analysis. The results are shown in Figure 12 in which CC P3E corresponds to SEQ ID NO. 8 and CH P3E, CS P3E and DS P3E correspond to SEQ ID NOs. 4, 2 and 6, respectively. In this experiment, all 4 strains expressing one of the proteins set forth in SEQ ID 2, 4, 6 or 8 appear to have approximately the same level of activity converting approximately 5% of the substrate to allulose in 3.5 hrs.

220520

CLAIMS:

1. Use of a protein comprising a polypeptide sequence having at least 90% sequence identity to SEQ ID NO: 6, wherein the protein has psicose 3-epimerase activity, for synthesizing allulose.
2. A method of producing allulose comprising contacting a protein with a fructose substrate under conditions such that the fructose substrate is converted into allulose, wherein the protein comprises a polypeptide sequence having at least 90% sequence identity to SEQ ID NO: 6, wherein the protein has psicose 3-epimerase activity, and wherein the conditions comprise maintaining the protein and the fructose substrate at a temperature between 25°C and 75°C, maintaining the protein and the fructose substrate between pH 4 and pH10 and maintaining the fructose substrate concentration between 75% and 95% (W/V).
3. A method according to claim 2, wherein the protein is present in a host cell.
4. A method according to claim 2, wherein the protein is in isolated form.
5. A method of producing allulose comprising the steps of:
 - i) providing a vector comprising a nucleic acid molecule having a polynucleotide sequence encoding a protein having psicose 3-epimerase activity wherein the polynucleotide sequence: a) has at least 90% sequence identity to SEQ ID NO: 5; or b) hybridizes under highly stringent conditions to a polynucleotide having a sequence complementary to the sequence set forth in SEQ ID NO: 5;
 - ii) synthesising the protein having psicose 3-epimerase activity encoded by the polynucleotide sequence;
 - iii) contacting fructose with the protein having psicose 3-epimerase activity and maintaining the fructose and protein under conditions to permit the conversion of fructose to allulose; and
 - iv) at least partially purifying the allulose produced in step iii).