WO 2004/053684 A2 ||| 080 A0 0 000 0 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

24 June 2004 (24.06.2004)

(10) International Publication Number

WO 2004/053684 A2

(51) International Patent Classification’: GOGF 9/00
(21) International Application Number:
PCT/GB2003/004313

(22) International Filing Date: 6 October 2003 (06.10.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

0229068.2 12 December 2002 (12.12.2002) GB
0302650.7 5 February 2003 (05.02.2003) GB
0302646.5 5 February 2003 (05.02.2003) GB
0307823.5 4 April 2003 (04.04.2003) GB

(71) Applicant (for all designated States except US): ARM
LIMITED [GB/GB]; 110 Fulbourn Road, Cherry Hinton,
Cambridge CB1 9NJ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PIRY, Frederic,
Claude, Marie [FR/FR]; 11, Chemin Des Plateaux
Fleuris, F-06800 Cagnes sur Mer (FR).

(74) Agents: ROBINSON, Nigel, Alexander, Julian et al.; D
Young & Co, 21 New Fetter Lane, London EC4A 1DA
(GB).

(81) Designated States (national): GB, JP, US.

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PROCESSING ACTIVITY MASKING IN A DATA PROCESSING SYSTEM

Memory /28

Java

bytecode [~}-134

130

§

program

jz_en

|ARM| lThumbl LJaze@

Processing logic

Jazelle

support

and VM
code

132

Random

jz_ran

signal
gating

CP15
jzp jzr

136

(57) Abstract: Apparatus for processing data under control of data processing instructions specifying data processing operations,

said apparatus comprising: a first execution mechanism operable

to execute a first set of data processing instructions; a second

execution mechanism operable to execute a second set of data processing instructions, said first set of data processing instructions
overlapping with said second set of data processing instructions such that one or more data processing instructions are executable by
either said first execution mechanism or said second execution mechanism; and an execution mechanism selector operable to pseudo
randomly selected either said first execution mechanism or said second execution mechanism to execute one or more data processing
instructions that are executable by either said first execution mechanism or said second execution mechanism.

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

PROCESSING ACTIVITY MASKING IN A
DATA PROCESSING SYSTEM

This invention relates to the field of data processing systems. More
particularly, this invention relates to the masking of processing activity within data
processing systems, for example, in order to increase security.

It is know to provide data processing systems which manipulate secure data
and for which it is desirable to ensure a high degree of security. As an example, it is
known to provide smart cards which include a data processing system which
manipulates secure data, such as secret cryptographic keys, and this data must be kept
secret in order to prevent fraud.

Known ways of attacking the security of such systems include timing analysis
and power analysis. By observing the timing behaviour and/or the power
consumption behaviour of such a system in response to inputs, information
concerning the processing being performed and the data being manipulated can be
determined in a way that can compromise security. It is strongly advantageous to
provide resistance against such security attacks.

Viewed from one aspect the present invention provides apparatus for
processing data under control of data processing instructions specifying data
processing operations, said apparatus comprising:

a first execution mechanism operable to execute a first set of data processing
mstructions;

a second execution mechanism operable to execute a second set of data
processing instructions, said first set of data processing instructions overlapping with
said second set of data processing instructions such that one or more data processing
instructions are executable by either said first execution mechanism or said second
execution mechanism; and

an execution mechanism selector operable to pseudo randomly selected either
said first execution mechanism or said second execution mechanism to execute one or
more data pfocessing instructions that are executable by either said .ﬁrst execution
mechanism or said second execution mechanism.

The invention recognises that within a system having at least some instructions
of an instruction set which may be executed by more than one execution mechanism,

the power signature and other characteristics associated with those instructions can be

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

masked by pseudo randomly selecting different execution mechanisms for the
instructions. As an example, if an instruction may be either executed natively by
dedicated hardware or emulated by other software running on the hardware, then this
technique pseudo randomly switches between these mechanisms. As well as
disguising the power signature associated with the execution of the instruction, the
timing of the execution is also markedly altered.

In preferred embodiments of the invention the processing behaviour is further
obscured in an advantageous manner when the processing behaviour that is associated
with an instruction is altered depending upon which execution mechanism was used
for the preceding instruction. An example of a reason this might occur, depending
upon the previous execution mechanism used a particular data or other value may or
may not be cached such that the characteristics associated with the execution of the
present instruction are varied depending upon whether the value is or not cached..

Whilst it is possible to use the present technique when only some of the
instructions to be executed are capable of execution by different execution
mechanisms, the implementation of the invention is advantageously simplified when
all of the instructions to be executed may be executed by either execution mechanism.
Thus, the switching between execution mechanism does not need to take account of
the particular instruction concerned.

Particular preferred embodiments which show strongly different
characteristics associated with the execution of instructions are ones in which in a first
execution mechanism the instruction is executed as a native instruction by hardware
and in a second mechanism is emulated by software. Native hardware execution will
typically be fast and consume little power, where as software emulation will be
relatively slow and consumes more power.

Whilst it is possible that the execution mechanisms may be completely
independent of one another, it is also possible they overlap to some degree. In
preferred embodiments of the invention one of the execution mechanisms is software
emulation and the other execution mechanism is native hardware based execution of
simple instructions with sdftware emulation of more complex instructions. The "
software emulation of the more complex instructions can be by shared software used
by both execution mechanisms.

Whilst the instructions that may be subject to the different mechanisms could

take a wide variety of different forms, the invention is particularly well suited to

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

instructions associated with a virtual machine environment, such as, for example, Java
bytecodes. In this context, the first execution mechanism may be native hardware
execution of at least some of the Java bytecodes with other Java bytecodes being
software emulated with a second execution mechanism that is software emulation of
all of the Java bytecodes.

Whilst the present technique is applicable to a variety of data processing
systems, such as microprocessor based systems, digital signal processing systems and
the like, it is particularly well suited to systems including a processor core executing
program instructions and to which a pseudo random signal is input to select between
different execution mechanisms, which includes more than one execution mechanism
for at least some instructions.

In order to mask the execution characteristics of instructions from external
observation a pseudo random selection can then be made as to the execution
mechanism used for such instructions. The instructions may be Java bytecodes and a
selection may be made between an execution mechanism that is mixed native
hardware execution and software emulation and an execution mechanism that is
entirely software emulation.

The pseudo random selection of the execution mechanism may be selectively
enabled and disabled by a system configuring parameter such that use of the most
efficient execution mechanism may be forced when efficience is more important than
security.

Embodiments of the invention will now be described, by way of example only,
with reference to the accompanying drawings in which:

Figure 1 schematically illustrates a data processing system operable in a fixed
timing mode and a variable timing mode;

Figure 2 schematically illustrates a conditional programming instruction;

Figure 3 is a flow diagram schematically illustrating part of the processing
operations performed by an instruction decoder operating in accordance with the
present techniques;

Figure 4 schematically illustrates thé execution of a conditional branch
instruction in a fixed timing mode;

Figure S is a diagram schematically illustrating a data processing system
including multiple circuit portions which may be selectively enabled to perform

required processing operations or dummy processing operations;

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

Figure 6 schematically illustrates a circuit portion and its associated dummy
activity enabling circuit which may be responsive to both required enable signals and
random dummy activity enable signals;

Figure 7 schematically illustrates a linear shift back feed register which may
be used as a pseudo-random signal generator:

Figure 8 is a flow diagram schematically illustrating control of a circuit
portion to perform required processing activity and dummy processing activity;

Figure 9 schematically illustrates a portion of a register bank including
multiple data processing registers, multiple dummy registers, multiple shared dummy
registers and a non-mapped trash register RT to which a dummy register write is made
when a conditional write operation fails its condition codes;

Figure 10 is a flow diagram schematically illustrating a register write
controlling circuit which seeks to balance the number of high to low and low to high
transitions occurring when a register write occurs;

Figure 11 is a table illustrating the relationships between bit transitions for a
particular bit within the data register and three further registers which are configured
to balance the high to low and low to high transitions occurring in association with a
register writet;

Figure 12 is a flow diagram schematically illustrating control of writing toa
trash register on a condition code fail of a write operation;

Figure 13 is a diagram schematically illustrating a system having multiple
execution mechanisms for an instruction and pseudo random selection of the
execution mechanism employed for at least some instructions; and

Figure 14 is a flow diagram schematically illustrating control of the system of
Figure 13.

Figure 1 illustrates a data processing system 2 including a processor core 4, a
coprocessor 6 and a memory 8.

In operation, the processor core 4 fetches instructions and data from the
memory 8. The instructions are fed to an instruction pipeline 10 where they occupy
suécessive pipeline stages such as, for example, fetch, décode, execute, memory and
write back on successive processing cycles. Pipelined processors are in themselves
well known as a way of effectively executing a number of program instructions in a

partially overlapping fashion in order to improve processor performance.

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

The data values read from the memory 8 by the processor core 4 are supplied
to a register bank 12 from where they may be manipulated under program instruction
control using one or more of a multiplier 14, a shifter 16 and an adder 18. Other data
manipulating circuits may be provided, such as circuits performing logical operations,
such as ANDs, Ors, count leading zeros etc. V

Figure 1 also illustrates an instruction decoder 20 within the processor core 4
which is responsive to a program instruction within the instruction pipeline 10 to
generate execution control signals that are applied to the various processing elements,
such as the register bank 12, the multiplier 14, the shifter 16 and the adder 18 in order
to control the data processing operations performed. As an example, the control
signals generated by the decoder 20 may cause the appropriate operands to be read
from the register bank 12 and supplied and acted upon by the appropriate ones of the
multiplier 14, the shifter 16 and the adder 18 so as to generate a result which is written
back into the register bank 12.

The coprocessor 6 is a system configuration coprocessor containing a number
of configuration registers 22 which may be written under program control to set up
configuration controlling parameters. These configuration controlling parameters can
specify many aspects of the configuration of the processing system 2, such as for
example the endianess and the like. Included within one of these configuration
controlling registers 22 is a bit which specifies whether or not the processor core
should operate in a fixed timing mode or a variable timing mode. This bit is
illustrated as being supplied as an input to the instruction decoder 20, but it will be
appreciated that this bit may also be supplied to various other points within the
processor core 4 as required to control their behaviour. In dependence upon this
fixed/variable bit, the processor core 4 operates in either a fixed timing mode or a
variable timing mode. When in the fixed timing mode at least one program
instruction which has a variable timing (i.e. takes a variable number of processing
cycles to complete) in the variable timing mode, is instead forced to have a fixed
timing (e.g. take the maximum possible number of processing cycles to complete
irrespective of Whether or not it could have been suppressed in ité entirety or
completed in less than the maximum number of processing cycles. As the instruction
decoder 20 is primarily responsible for decoding the program instructions and
instructing the activity of the other elements of the processor core 4, the instruction

decoder 20 can take the major role in controlling the processor core 4 to either operate

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

in the fixed timing mode or the variable timing mode. Not all variable timing
instruction need be provided with a fixed timing mode type of operation.

It will be appreciated that in the above description a single bit in the
configuration controlling register 22 is shown as switching between fixed and variable
timing modes. Alternatively, multiple bits within the configuration controlling register
22 may be provided to separately enable and disable the fixed or variable timing
behaviour of different types of instruction, such as conditional instruction behaviour,
uniform branch behaviour, disabling early terminate, etc.

Figure 2 schematically illustrates a conditional instruction 24. This
conditional instruction may be part of an instruction set which includes only some
conditional instructions or part of an instruction set, such as the ARM instruction set,
which is substantially fully conditional. The condition codes 26 encode a set of
processor state conditions in which the associated instruction either will or will not be
executed. As an example, the condition codes 26 can be arranged to specify that the
instruction 24 will not execute if the condition codes currently set in the system
indicate a zero result, a carry has occurred, an overflow has occurred or the like. This
type of instruction can be utilised to provide efficient program coding. The
fixed/variable bit at least partially suppresses the conditional behaviour in that the
instruction will execute irrespective of its condition codes, but may not write its result
in a way that has an effect upon the processor state.

Figure 3 is a flow diagram schematically illustrating part of the processing
operations performed by the instruction decoder 20. It will be appreciated that Figure
3 illustrates these processing operations as a logical sequence, whereas in practice
these processing operations may be performed at least partially in parallel or in a
different order.

At step 28, the instruction decoder 20 waits for a new instruction to execute.
When a new instruction is received processing proceeds to step 30 at which the
condition codes associated with the new instruction are read. At step 32 these
condition codes are compared with the currently existing condition codes in the
system. These condition codeé currently existing in the system are the result of
previous processing activity, either in the immediately preceding instruction or in the
last instruction which would have updated those condition codes.

At step 34, a check is made for a match between the condition codes 26 of the

current instruction being executed and the existing condition codes. If a match does

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

not occur, then processing proceeds to step 36 where execution of the current
instruction is started. It will be appreciated that Figure 3 illustrates a system in which
execution occurs when a match does not occur, but alternative embodiments could
equally well be ones in which execution occurs when a match occurs.

Following step 36, processing proceeds to step 38 where a check is made as to
whether or not early termination of the instruction is possible. This early termination
may, for example, be because one of the operands has a particular value, such as zero
or unity, or on subsequent processing cycles that a particular partial result has been
produced. If early termination is possible, then processing proceeds to step 40 where
a check is made as to whether or not the processor core 4 is currently operating in the
fixed or variable timing mode. If the processor is in the variable timing mode, then
processing proceeds to step 42 and the instruction concerned is early terminated with
the result being returned as appropriate and processing returns to step 28.

If the determination at step 40 is that the system is in the fixed timing mode,
then processing proceeds to step 44 irrespective of the fact that early termination is
possible. Step 44, which may also be reached by a determination at step 38 that early
termination is not possible, executes the instruction concerned for one processing
cycle. In the case of a multicycle processing instruction, such as a multiplication, a
divide, an add or a subtraction, these typically take several cycles to execute and so
after step 44 processing proceeds to step 46 at which a determination is made as to
whether or not the maximum number of cycles associated with that instruction has yet
been performed. If the maximum number of cycles has been performed, then the
result will have been generated. If early termination was possible and the system was
being forced to continue to execute for further processing cycles, then step 46 will still
indicate that this forced execution should cease when the maximum possible number
of processing cycles for that type of instruction has been reached. If the maximum
number of processing cycles has not yet been performed, then processing is returned
to step 38.

If the match tested for at step 34 was positive, then processing proceeds to step
48. In this example, the positive detection of a match at step 34 indicates that
execution of the particular instruction should be suppressed. Step 48 determines
whether or not the system is currently in the forced execution mode. If in the forced
execution mode, then processing proceeds to step 50 where a forced dummy

execution of the instruction will occur. When dummy execution is performed the

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

result is written to a trash register (see trash register 51 in Figure 1), rather than the
destination specified in the instruction itself so as to prevent the state of the system
being modified by a program instruction which should not have executed as it should
have been suppressed whilst also keeping a substantially unaltered power
consumption. If at step 48 the determination is that the system is not in the forced
execution mode but is in the variable timing mode, then processing bypasses step 50
and returns to step 28 with the program instruction being suppressed in the normal
way.

It will be appreciated that Figure 3 illustrates a generic system in which
dummy execution is applied to all condition code failed instructions and all early
termination of instructions is suppressed. In practice, it is also possible for these
techniques to be applied to a subset of conditional instructions and instructions
capable of early termination. The multiple configuration controlling bits mentioned
above could be used to selectively turn on features such as early terminate
suppression, but not others, such as dummy execution following a condition code fail.

Figure 4 schematically illustrates the execution of a conditional branch
instruction in the fixed timing mode. A sequence of instructions AB are executed
until a conditional branch instruction BEQ (branch upon equal) is reached. This
instruction encodes the behaviour that the specified branch will be performed if the
flag indicating an equal result from previous processing is set and will be suppressed
if this flag is not set. When the condition codes are passed, i.e. a condition code
match, then the branch is taken and processing proceeds to instructions X, Y, etc. If
the condition codes fail, then instead of being suppressed in its entirety, the BEQ
instruction performs a branch to the immediately following instruction C. This is the
same instruction which would have been reached if the BEQ instruction had been
suppressed and not executed at all. However, in the fixed timing mode, the BEQ will
have executed consuming the same number of processing cycles irrespective of
whether or not the condition codes were passed or failed. This helps obscure the
results of data processing operations previously performed from a person trying to
gain access to secure data. '

Figure 5 schematically illustrates a data processing system 52 in the form of a
programmable processor core which responds to program instructions I and
manipulates data D. The data processing system 52 includes a register bank 54, a

multiplier 56, a shifter 58, an adder 60, and arithmetic logic unit 62, a load store unit

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

64, a data pipeline 66, and instruction decoder 68 and a random clock gating circuit
70. A system configuration coprocessor CP15 72 is coupled to the processor core.
The system configuration coprocessor 72 includes a system configuration register 74
holding multiple flag values which respectively serve to enable or disable the pseudo
random dummy activity of different circuit portions of the data processing system 52.
It will be appreciated that the data processing system 52 will typically include many
more circuit elements, but these have been omitted for the sake of clarity from Figure
5.

Associated with the multiplier 56 is a dummy activity enable circuit 76 which
serves to enable dummy activity in the multiplier 56 as appropriate or alternatively
pass the required activity enable signals to activate the multiplier 56 when the
program instruction being executed so requires. Similar dummy activity enables
circuits 78, 80, 82, 84 are associated with the respective other circuit portions 58, 60,
62, 64 previously mentioned.

In operation, instructions to be executed are to be passed to the instruction -
pipeline 66 and on to the instruction decoder 68 to generate instruction driven enable
signals which are applied to respective circuit portions. These enable signal serve to
select the data path through the data processing system 52 and to activate the circuit
portions concerned to read their inputs, to perform the specified processing and to
generate their associated output signals. As an example, a multiplier-accumulate
operation might read data values from the register bank 54, apply these to the
multiplier 56 and adder 60 and then write back the result to the register bank 54. Thus,
the register bank 54, the multiplier 56 and the adder 60 would all be subject to
required activity enable signals which both enabled their operation and selected them
to form a complete data path. The different circuit portions have different power
consumption characteristics and timing characteristics such that external observation
could reveal which instruction were being executed by observing such parameters.
Accordingly, pseudo random dummy activity of the other circuit portions not required
for the instruction being executed is also enabled. Thus, even though the shifter 58
may not being used by the particﬁlar multiplier accumulate instruction being
executed, it may nevertheless be pseudo randomly enabled such that it will consume
power by shifting whatever value is applied to its input. Its output latches will not be
enabled to avoid this dummy activity altering the circuit state an undesired way which

may interfere with required operation e.g some circuit portions might assume

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

persistence of output values. The dummy activity is enabled for time periods matching
the normal operation timings for the circuit portions concerned.

The random clock gating circuit 70 serves to receive a plurality of pseudo
random enable signals for different respective circuit portions and gate these for
applying to respective circuit portions under the control of configuration parameters
read from the system configuration register 74 within the system configuration
coprocessor 72. These configuration flags may indicate that dummy activity should
be enabled for the shifter 58, ALU 62 and multiplier 56, but not for the adder 60 or
the load store unit 64. The different pseudo random enable signals allow different
pseudo random characteristics to be applied in a manner that can match these
respective circuit portion concerned. As an example, there may a different minimum
enable time associated with the normal timing of the different circuit portions.

At an overall level, it will be seen that the instruction decoder 68 will serve as
arequired activity enabling circuit which will enable the circuit portions required to
perform the data processing operation specified by the instruction currently being
executed. superimposed upon this required activity, various dummy activities within
the other circuit portions will be enabled/stimulated by the dummy activity control
circuitry provided in various places in the rest of the data processing system 52. The
dummy activity serves to mask the power consumption and timing characteristics
associated with the required activity.

Figure 6 schematically illustrates a circuit portion 86 which may be subject to
both a required enable signal en and a dummy enable signal md. This circuit portion
86 can be considered as a sequence of latches between which processing logic
manipulates data values. When genuine required activity is necessary, all of the
latches that provide a data path through the circuit portion 86 are enabled and the
required processing will be performed between the input latches and the output
latches. When dummy activity is instructed, then only the input latches and the
intermediate latches are enabled. Thus, a data path is not provided through the full
circuit portion and the output values generated by that circuit portion are not altered.

Figure 7 illustrates a linear feedback shift register of the type which may be
used to generate pseudo random clock signal. These clock signals can be provided to
the random clock dating circuit 72 of Figure 5. Separate pseudo random signal
generators may be provided for the different circuit portions. The fixed clock

frequency associated with the different pseudo random generators may be altered so

10

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

as to match the characteristics of the circuit portion concerned and further obscure the
masking operation as required.

Figure 8 schematically illustrates the control of an enable signal for a circuit
portion. At step 88 a determination is made as to whether or not an enable signal en
has been received from the instruction decoder 68. If such an enable signal has been
received, then processing passes to step 90. An enable signal from the instruction
decoder 68 indicates that required processing operation is necessary in accordance
with a genuine program instruction being decoded. Thus, step 90 enables the input,
output and clock signal to the circuit portion concerned. If at step 88 no enable signal
en is received from the instruction decoder, then processing passes to step 92 where a
determination is made as to whether or not dummy operation of that circuit portion is
permitted. If dummy operation is permitted, then processing proceeds to step 94 at
which the inputs and clock to the circuit portion are enabled, but the outputs from the
circuit portion are not enabled. The circuit portion then undertakes dummy activity.
If the determination at step 92 was that dummy operation was not permitted, as
indicated by the system configuration parameter(s), then processing terminates by
passing to step 94.

It will be appreciated that the process illustrated in Figure 8 is in the form of a
sequential flow diagram. In practice, this control may be performed in a different
sequence and use circuit elements spread throughout the data processing system 52.
The operations illustrated as being sequentially performed may in fact be performed
in parallel or the control functions modified. At an overall level an individual circuit
portion will be enabled to perform its normal required operation in response to an
appropriate program instruction and will be enabled to perform dummy activity when
permitted by the associated configuration parameter.

Figure 9 schematically illustrates a register bank 96. This register bank is
based upon the ARM processor programmer’s model for user mode operation in
accordance with processors designed by ARM Limited, Cambridge, England). In

practice, further registers may be provided for other processor modes, but these have

‘been omitted for the sake of clarity. The normal data registers RO to R15 are provided

for holding data values. The registers R13, R14 and R15 typically serve to store the
program counter value, the branch return address value and the stack pointer, which
tend to be none security related data values. Accordingly, transition balancing upon

data writes is not necessary for R13, R14 and R15. A trash register RT is provided

11

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

within the register bank 96 for use in association with conditional writes which fail
their condition codes thus, a conditional write instruction which fails its condition
code would not normally make any write. However, with this system such a failed
conditional write instruction nevertheless writes a data value to the trash data register
RT even though the condition codes have failed. This masks any difference in power
consumption or timing that might be associated with condition code failure or
condition code passing of a conditional write operation. The trash data register RT
does not appear in the programmer’s model in a way that enables it to be addressed
with a register specifying operand within an instruction.

As well as the trash data register RT, further registers 98, 100 are also
provided for the purpose of balancing the high to low and low to high transitions.
Dedicated dummy registers 98 are provided in respect of the data registers RO to R12
as well as the trash data register RT. Shared dummy registers 100 are provided for
storing an exclusive OR value as well as the inverse of the exclusive OR value in
response to each write to a data register subject to the transition balancing technique.
A register write control circuit 102 serves to generate the appropriate data values to be
written to the further registers 98, 100 in response to a data value write to a data
register. This symmetric write control is selectively enabled and disabled by an
appropriate system configuring controlling flag signal from the system configuring
coprocessor 72.

Figure 10 is a flow diagram schematically illustrating the operation of the
register write control circuit 102. At step 104 the circuit waits for a register write
operation to be instructed. Step 106 determines whether this register write is to one of
the data registers or the trash data registers RT for which the symmetric write control
system is applied. If the register write is not to such a register, then processing
proceeds to step 108 and a simple write of the required data value X is made to one of
the registers R13, R14 and R15.

If the register to which the write is being made is potentially subject to
symmetric register writing then step 110 serves to determine whether or not this
feature is currently enabled. If this feature is not currently enabled, then processing
proceeds to step 108. If this feature is enabled, then processing proceeds to step 112.

At step 112, the register controls circuit calculates for each bit position within
the data value a value being the inverse exclusive OR of the current bit being written

at that position and the previously stored bit at that position which is then exclusive

12

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

Ored with the previously stored dummy register value for that bit position (see Figure
11). The register control circuit 102 also calculates the inverse of the determination as
well the inverse of the bit being written as the data value to the data register. These
values are calculated for all of the bits being written (e.g. 3 dummy 32-bit values).

At step 114 the data value is written to the data register in a similar manner td
step 108. At step 116 the three further values determined for each bit position within
the registers concerned are written to the three further registers. Steps 114 and 116
take place simultaneously. As will be discussed in relation to Figure 11, this results in
a balance number of high to low and low to high transitions and thus power
consumed.

Figure 11 illustrates a table of possible bit values before and after a data write
operation. The data value is being written to a register Rn, which is a register to
which the symmetric write operation function is applied. The values at time t and
time t+1 are illustrated. The inverse of these values is simply determined. Each of
the data registers subject to this symmetric operation is provided with a dedicated
dummy register 98 which stores the inverse of the data value currently held in the data
register.

The shared dummy registers 100 are indicated in Figure 11 as registers Rd.
For each bit position on within the shared dummy register Rd the new value to be
written at that bit position when a data write occurs is determined by the function
shown at the bottom of Figure 11. This function ensures that when a change does not
occur in the data value and the inverse of the data value, then a change is guaranteed
to occur in the corresponding bit within the shared dummy register and accordingly its
inverse. The table shows the changes in the shared dummy register values which
occur when the data value does not change and the shared values in the dummy
register values not changing when the data value does change. Thus, there is a
guaranteed fixed number of transitions for every write, 1.e. a balanced equal number
of transitions high to low and low to high.

Figure 13 is a flow diagram illustrating the action of the dummy data register
RD to provide writes when a write operation fails its condition code(s). Atstep 118
the control logic waits for an instruction to be received. This control logic may be the
instruction decoder 68 or other logic. Step 120 determines whether or not the
instruction failed its condition codes. If the instruction does not fail its condition

code, then it is normally executed at step 122 and makes its write to the register

13

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

specified by the register operand within that instruction. If the instruction does fail its
condition codes, then processing proceeds to step 124 at which a determination is
made as to whether or not dummy data register writes are enabled. If these are not
enabled, then processing terrﬁinates. If dummy data register writes are enabled, then
processing proceeds to step 126 at which a write of the data value calculated by the
condition code failed instruction is written to the trash data register RT even though
the condition codes failed. This balances the power consumption and timing
irrespective of a condition code pass or a conditidn code fail. It will be appreciated
that the trash data register RT is also subject to the transition balancing mechanisms
previously discussed.

Figure 13 illustrates a data processing system 128 in which multiple
instruction execution mechanisms are provided for at least some instructions. The
data processing system 128 is one which supports the native execution of at least
some Java bytecode instructions. This type of data processing system and native
execution is described in published PCT Patent Application Number WO-A-
02/29555. The disclosure of this published application as a whole and in respect of
the native hardware execution and selective software emulation of more complex Java
bytecodes in particular is incorporated here in by reference.

The Java bytecode decoder 130 may be selectively enabled and disabled by an
input signal. When the Java bytecode decoder 130 is disabled a received Java
bytecode will trigger an exception which starts execution of software emulation code
for handling Java bytecodes using the native ARM Thumb instruction sets. This
support code is stored within memory in area 132 as illustrated. The Java bytecode
program 134 is also stored within memory. When it is desired to obscure the nature
of the Java program execution, the Java bytecode decoder 130 may be subject to a
pseudo random signal which selectively enables and disables this element so as to
effectively switch the instruction execution mechanism for the Java bytecodes
between a mixed hardware and emulation execution mechanism and a purely
emulation mechanism. Configuration controlling values within a system
configuration register 136 specify whether or not the Java decoder 130 is present and
whether or not random enabling and disabling of this Java decode 130 is permitted.
Figure 14 schematically illustrates the handling of a received Java bytecode. At step
138 a Java bytecode is received. Step 140 determines whether or not the Java decoder

130 is enabled. The pseudo random enabling and disabling of the Java decoder 130

14

WO 2004/053684 PCT/GB2003/004313

effectively causes a branch to either step 142 at which the bytecode is always
emulated or an attempt to execute the instruction in hardware at step 146. This
obscures/masks the power signature associated with Java bytecode execution. If the
determination at step 146 is that the particular Java bytecode concerned is ot
supported by the Java decoder 130, then this Java bytecode will also be emulated in
software at step 142. However, if the Java bytecode is supported in hardware, then it

is executed in hardware at step 146.

15

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

CLAIMS

1. Apparatus for processing data under control of data processing instructions
specifying data processing operations, said apparatus comprising:

a first execution mechanism operable to execute a first set of data processing
instructions;

a second execution mechanism operable to execute a second set of data
processing instructions, said first set of data processing instructions overlapping with
said second set of data processing instructions such that one or more data processing
instructions are executable by either said first execution mechanism or said second
execution mechanism; and

an execution mechanism selector operable to pseudo randomly selected either
said first execution mechanism or said second execution mechanism to execute one or
more data processing instructions that are executable by either said first execution

mechanism or said second execution mechanism.

2. Apparatus as claimed in claim 1, wherein said first execution mechanism and
said second execution mechanism have at least one different execution characteristic
for at least one of said data processing instructions that are executable by either said

first execution mechanism or said second execution mechanism.

3. Apparatus as claimed in claim 2, wherein said at least one different execution
characteristic includes one or more of:
time to execute said data processing instruction; and

power consumption when executing said data processing instruction.

4. Apparatus as claimed in any one of claims 2 and 3, wherein at least one
execution characteristic of at least one data processing instruction executed by one of
said first execution mechanism or said second execution mechanism varies in
dependence upon whether a preceding data processing instruction was executed with

either said first execution mechanism or said second execution mechanism.

16

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

5. Apparatus as claimed in any one of the preceding claims, wherein all of said
data processing instructions are executable by either said first execution mechanism or

said second execution mechanism.

6. Apparatus as claimed in any one of the preceding claims, wherein said first
execution mechanism is operable to execute some of said data processing instructions
as native instructions directly controlling data processing hardware and remaining

data processing instructions using emulation software.

7. Apparatus as claimed in any one of the preceding claims, wherein said second

execution mechanism is operable to execute all of said data processing instructions

using emulation software.

8. Apparatus as claimed in claims 6 and 7, wherein said first execution

mechanism and said second execution mechanism share at least some emulation

software.

9. Apparatus as claimed in any one of the preceding claims, wherein said data

processing instructions are Java bytecode instructions.

10. Apparatus as claimed in claim 9, wherein said first execution mechanism
includes native Java bytecode execution hardware and said second execution

mechanism uses Java bytecode emulation for all Java bytecodes.

11. Apparatus as claimed in any one of the preceding claims, wherein said

execution mechanism selector is controlled by a pseudo random execution mechanism

selecting signal.

12. Apparatus as claimed in claim 11, comprising a processor core, said pseudo

random execution mechanism selecting signal being an input to said processor core.

13. Apparatus as claimed in claim 12, wherein a pseudo random signal generator

is operable to generate said pseudo random execution mechanism selecting signal.

17

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

14. Apparatus as claimed in any one of the preceding claims, wherein a system
configuration parameter is operable to force said execution mechanism selector to

select said first execution mechanism for all data processing instructions.

15. Apparatus as claimed in claim 14, wherein said system configuration

parameter is stored in a system configuration register.

16. A method of processing data under control of data processing instructions
specifying data processing operations, said method comprising the steps of:

executing a first set of data processing instructions with a first execution
mechanism,;

executing a second set of data processing instructions with a second execution
mechanism, said first set of data processing instructions overlapping with said second
set of data processing instructions such that one or more data processing instructions
are executable by either said first execution mechanism or said second execution
mechanism; and

pseudo randomly selecting with an execution mechanism selector either said
first execution mechanism or said second execution mechanism to execute one or
more data processing instructions that are executable by either said first execution

mechanism or said second execution mechanism.

17. A method as claimed in claim 16, wherein said first execution mechanism and
said second execution mechanism have at least one different execution characteristic
for at least one of said data processing instructions that are executable by either said

first execution mechanism or said second execution mechanism.

18. A method as claimed in claim 17, wherein said at least one different execution
characteristic includes one or more of:
time to execute said data processing instruction; and

power consumption when executing said data processing instruction.

19. A method as claimed in any one of claims 17 and 18, wherein at least one
execution characteristic of at least one data processing instruction executed by one of

said first execution mechanism or said second execution mechanism varies in

18

10

15

20

25

30

WO 2004/053684 PCT/GB2003/004313

dependence upon whether a preceding data processing instruction was executed with

either said first execution mechanism or said second execution mechanism.

20. A method as claimed in any one of claims 16 to 19, wherein all of said data
processing instructions are executable by either said first execution mechanism or said

second execution mechanism.

21. A method as claimed in any one of claims 16 to 20, wherein said first
execution mechanism is operable to execute some of said data processing instructions
as native instructions directly controlling data processing hardware and remaining

data processing instructions using emulation software.

22. A method as claimed in any one of claims 16 to 21, wherein said second
execution mechanism is operable to execute all of said data processing instructions

using emulation software.

23. A method as claimed in claims 21 and 22, wherein said first execution

mechanism and said second execution mechanism share at least some emulation

software.

24. A method as claimed in any one of claims 16 to 23, wherein said data

processing instructions are Java bytecode instructions.

25. A method as claimed in claim 24, wherein said first execution mechanism
includes native Java bytecode execution hardware and said second execution

mechanism uses Java bytecode emulation for all Java bytecodes.

26. A method as claimed in any one of claims 16 to 25, wherein said execution

mechanism selector is controlled by a pseudo random execution mechanism selecting

signal.

27. . A method as claimed in claim 26, comprising a processor core, said pseudo

random execution mechanism selecting signal being an input to said processor core.

19

WO 2004/053684 PCT/GB2003/004313

28. A method as claimed in claim 27, wherein a pseudo random signal generator is

operable to generate said pseudo random execution mechanism selecting signal.
29. A method as claimed in any one of claims 16 to 28, wherein a system
configuration parameter is operable to force said execution mechanism selector to

select said first execution mechanism for all data processing instructions.

30. A method as claimed in claim 29, wherein said system configuration

parameter is stored in a system configuration register.

20

WO 2004/053684 PCT/GB2003/004313

1711
2
4
N ‘/ 8
12 S q
¢ | D
16
)
14
51
4 Memory
\\@ Trash 18
230 1 \11
Decoder |+ 10 l
1 4 Fixed/variable
CP15
[T 3y 122
[3 6
22 l_.—q_l
22 FIG. 1
24
26
3 7
Condition
codes Opcode | Operand 1 | Operand 2 | Operand 3
| e.g. Don't execute if:
Zero,
Carry,
i ‘ Overflow, etc

Compare with condition
codes from previous

execution F I G . 2

SUBSTITUTE SHEET (RULE 26)

PCT/GB2003/004313

WO 2004/053684

2/11

aisy|
D8yl
o3g

ssedpp 8¥Ul g 0p
v Isuj

9€~] uonnosaxs pels

wxv N A
z ¢epoul < yoley e
“J uonnoaxs paoio4 [A | ¢
R 1 45
Y Om N
) S8PO2 UOIIPUOD
Lonnooaxe Bunsixa ypm aredwo)
Awwnp 82104 1 ;
Y uonoNsuUl Mau Jo
0€ o5
> POO UONIPUOD pEdY
>>
¢£,91N09X3 0}
N uononysul MaN -8z
A Py

A 4

€ 9Old

+ 8¢t
§
¢9lqissod R
uoneuws) Aje " o
3 S
NY _.A. sapouwl
, =TleY %) Buiwny
B 10} 9)n0ox3] Al paxig
NY wv NY
¢pawopad ajeuiws)
N| sejpoho xew Aues
Y AY) Y
o 4) rAg

A

uels

A

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684

PCT/GB2003/004313
3/ 11
52
Ve
mul_en> H
mul_ran»>_ H
58
76
5
. AL
78
834 60 sft_en |

add_en-| j’_S_/‘]
add_ran- sft_ran

ALU H [alu_en ' 1
— «alu_ran
Instruction T - isu_ens H LSU D
driven circuit 652 82 isu_ran» M “
\enables)
80 v
688 , 636 64
| 4 I
Instruction ‘ [
decoder °
mul_ran
add_ran falu_ran
3 A
70 clock <—add_ran
iSu_ran —— gating <—§ﬂ_ran
F+—isu_ran
i alu_ran
A
CP15
/_/H
[RN |
72A 7}4 Random
Clock
Control

Flags
FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684 PCT/GB2003/004313

4 /11

+

> Input latches

Y

ran

D> Intermediate latches _—~86

A4

en —r

\

A 4

> Qutput latches

!

FIG. 6

Feedback
Pseudo r - |
random A\
< Shift register
Clock
Fixed
clock

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684 PCT/GB2003/004313

5/ 11
Start
Y Is enable received from N
instruction decoder?
Y v 92
Enable inputs, 88 N Is dummy operation
outputs and clock) permitted?
90 Y
I Enable inputs and
clock
« I
Y 94
End

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684

6/11

PCT/GB2003/004313

Data processing

registers
R15
R14 Dedicated dummy
R13 registers
R12 R12
R11 R11
R10 R10
R9 R9
R8 RS
R7 R7
R6 R6
R5 R5
R4 R4
R3 R3
R2 R2
R1 R1
RO RO ~08
RT RT
102 1 L)
| { Y (previous value)
> XOR _~100
X (new value) ——c Ri/grli?;er ! XOR
control Shared dummy
reg. No —» registers
4 Register bank 986

Symmetric

write control

from CP15

register F l G . 9

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684 PCT/GB2003/004313

7111
Start
\ 4 .
y 3
104—~| Register write required? N
Y'Y
N | Is register in range RO to
) R12 or RT? 106
¥ Y
N Is symmetric register
) writing enabled? -~110
YY
Calculate transition
balancing values 114
112
Write register Write register
108
1 - Write 3* further
v) registers
End S
116

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/GB2003/004313

WO 2004/053684

8/11

L1 Old

MilPy "OX T:Ecm HOX écmv = 1+}ilpy

v - = ! 0 0 ! 0 0 L L
R 0 ! L 0 0 0 | b
- - 4+ ¢4 0 0 L b L 0 0 |
- — { ¢ b) 0 0 | 0 0 L
- — + 4 0 0 L L 0 L A 0
- = 4+ L l 0 0 0 b b 0
v + - -) 0 0 L ! L 0 0
rd - = 0 l L 0) ! 0 0
Py PY uy uy || 1+ldpy ey Lallpy || ey || LAldud Aduy || LAlluy lluy
ll.mco_..__wﬂ_.._.

SUBSTITUTE SHEET (RULE 26)

WO 2004/053684 PCT/GB2003/004313

9/11
Start
Y
A
118~ Instruction received? N
YY
N Does instruction fail Y
h condition codes? " 124

))

Execute instruction 120 N Is trash register
~ writing result to) enabled?
register specified by
instruction 1Y
3 Execute instruction
122§ writing result to
trash register
Y
126
\ 4
End

FIG. 12

SUBSTITUTE SHEET (RULE 26)

PCT/GB2003/004313
10/ 11

WO 2004/053684

351 €l Old

G 1zl dzl
| [111
G1dO

buneb
[eubis

uer 2z wopuey

o160] Buissad0.1d

apoo
WA pue

Y
A

2290 by poddns

a||ozer

> >1 sllezer quiny WYV
us z[

oct

weiboud

SUBSTITUTE SHEET (RULE 26)

et 8poosiiq
eAer

mw\v A1ows |y

WO 2004/053684 PCT/GB2003/004313

11711

138~ Java bytecode received?

A 4

AZ

Is Jazelle enabled? _~140

Y

Does Jazelle hardware

) support this bytecode? by
Execute bytecode 144 Execute bytecode
in software in hardware
122 [) 126
End

FIG. 14

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

