发明名称
一种聚羧酸减水剂的低温合成方法

摘要
本发明公开了一种聚羧酸减水剂的低温合成方法，包括①在设定温度和搅拌条件下，将不饱和聚氧乙烯醚和水组成的底料，投入反应釜中；②底料完全溶解后，投入引发剂，同时滴加事先配置好的A料和B料；③A料和B料的滴加时间控制在0.5~1.5h，滴加完成后继续反应0.5~1.5h，加水稀释并用酸和碱至pH为6~8，即可；其中，所述A料包括不饱和聚羧酸、不饱和季铵盐单体和水；所述B料包括还原剂、链转移剂和水。本发明提供了的聚羧酸减水剂的合成方法，可以在5~30℃范围内一步合成多支链聚羧酸减水剂，所述引发剂和还原剂为低温聚合引发体系，以水作溶剂，反应过程无需外加热能，制备工艺简单，反应时间短，既环保又经济。
1. 一种多支链聚羧酸减水剂的低温合成方法，其特征在于：包含如下步骤：
1) 在设定温度和搅拌条件下，将不饱和聚氧乙烯醚和水组成的底料，投入反应釜中；
2) 底料完全溶解后，投入引发剂，同时滴加事先配置好的 A 料和 B 料；
3) A 料和 B 料的滴加时间控制在 0.5-1.5h，滴加后继续反应 0.5-1.5h，加水稀释并用液碱中和至 pH 为 6-8，即得；
其中，
所述 A 料包括不饱和羧酸、不饱和季铵盐单体和水；
所述 B 料包括还原剂、链转移剂和水。
2. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：所述的
各原料关系为：
不饱和羧酸与不饱和聚氧乙烯醚摩尔比为 2-4:1；
不饱和季铵盐单体与不饱和聚氧乙烯醚摩尔比为 0.2-0.6:1；
引发剂占不饱和聚氧乙烯醚质量的 0.3-2.0%；
还原剂占不饱和聚氧乙烯醚质量的 0.2-1.0%；
链转移剂占不饱和聚氧乙烯醚质量的 0.2-1.0%；
底料中溶质质量的浓度为 40-60%。
3. 根据权利要求 2 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：所述 A
料占底料质量的 10-15%，B 料占底料质量的 10-15%。
4. 根据权利要求 2 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：总反应
物的浓度为 35-50%，优选 40%。
5. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：
所述的不饱和聚氧乙烯醚为异戊烯醇聚氧乙烯醚、异丁烯醇聚氧乙烯醚或甲基烯丙醇
聚氧乙烯醚中的一种或两种以上的组合，分子量为 1000-3000，优选 2400。
6. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：所述的
引发剂选自过硫酸铵、过硫酸钾、过硫酸钠或过氧化氢中的一种或两种以上的组合。
7. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：
所述不饱和羧酸选自丙烯酸、甲基丙烯酸、顺丁烯二酸或衣康酸中的一种或两种以上
的组合；
所述不饱和季铵盐单体选自丙烯酰氧乙基三甲基氯化铵、甲基丙烯酰氧乙基三甲基氯
化铵或二甲基丙基二甲基氯化铵中的一种或两种以上的组合。
8. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：
所述还原剂选自亚硫酸氢钠、焦亚硫酸氢钠、次磷酸钠或维生素 C 中的一种或两种；
所述链转移剂选自硫基乙酸或巯基丙酸中的一种或两种。
9. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：所述的
设定温度为 5-30℃，优选 8-15℃。
10. 根据权利要求 1 所述的多支链聚羧酸减水剂的低温合成方法，其特征在于：所述的
液碱为 32wt% 氢氧化钠溶液。
一种多支链聚羧酸减水剂的低温合成方法

技术领域
[0001] 本发明涉及一种混凝土用聚羧酸减水剂的合成方法。

背景技术
[0002] 聚羧酸减水剂是一类具有梳型结构的共聚物，主要是由不饱和聚氧乙烯醚和不饱和羧酸以及其他不饱和单体经自由基共聚反应而制备所得。目前，在聚羧酸减水剂的合成工艺中，需通过蒸汽加热，反应温度控制在60-70℃，反应时间4-5小时，生产周期6小时左右。如果能够改进聚合工艺，反应在低温及室温下（5-30℃），就能节省锅炉、冷却水循环系统的投入，同时简化工艺，缩短生产周期，降低生产成本，提高经济效益。
[0003] 聚羧酸减水剂应用到混凝土中，最为主要的功能体现在具有较高的减水率和优良的保坍性能两个方面。然而近年来，随着大规模基础设施的不断建设，有限的优质砂石资源匮乏，许多地区不得不使用含泥量高的劣质砂石。聚羧酸减水剂对混凝土中砂石的含泥量十分敏感，表现为新拌混凝土坍落度变小，坍落度损失很快，严重影响运输、泵送和施工。同时含泥量高对混凝土强度、耐久性也有不良性能。这些问题严重影响了聚羧酸减水剂的推广和应用。

发明内容
[0004] 本发明要解决的技术问题是克服现有的聚羧酸减水剂在合成和应用中存在的不足，提供了一种低温（5-30℃）下合成聚羧酸减水剂的方法。
[0005] 本发明的目的通过以下技术方案来具体实现：
一种多支链聚羧酸减水剂的低温合成方法，包括如下步骤：
1）在设定温度和搅拌条件下，将不饱和聚氧乙烯醚和水组成的底料，投入反应釜中；
2）底料完全溶解后，投入引发剂，同时滴加事先配置好的A料和B料；
3）A料和B料的滴加时间控制在0.5-1.5h，滴加完后继续反应0.5-1.5h，加水稀释并用液碱中和至pH为6-8，即得；
其中，
所述A料包括不饱和羧酸、不饱和季铵盐单体和水；
所述B料包括还原剂、链转移剂和水。
[0006] 优选的，所述的各原料关系为：
不饱和羧酸与不饱和聚氧乙烯醚摩尔比为2-4:1；
不饱和季铵盐单体与不饱和聚氧乙烯醚摩尔比为0.2-0.6:1；
引发剂占不饱和聚氧乙烯醚质量的0.3-2.0%；
还原剂占不饱和聚氧乙烯醚质量的0.2-1.0%；
链转移剂占不饱和聚氧乙烯醚质量的0.2-1.0%；
底料中溶质占底料的质量浓度为40-60%。
[0007] 进一步优选的，所述A料占底料质量的10-15%，B料占底料质量的10-15%。
进一步优选的，总反应物的浓度为 35-50%，优选 40%。

优选的，所述的不饱和聚氧乙烯醚为异戊烯醇聚氧乙烯醚、异丁烯醇聚氧乙烯醚或甲基烯丙醇聚氧乙烯醚中的一种或两种以上的组合，分子量为 1000-3000，优选 2400。

优选的，所述的引发剂选自过硫酸铵、过硫酸钾、过硫酸钠或过氧化氢中的一种或两种以上的组合。

优选的，所述不饱和羧酸选自丙烯酸、甲基丙烯酸、顺丁烯二酸或衣康酸中的一种或两种以上的组合。

优选的，所述季铵盐单体选自丙烯酰氧乙基三甲基氯化铵、甲基丙烯酸氧乙基三甲基氯化铵或二丙烯基二甲基氯化铵中的一种或两种以上的组合。

优选的，所述还原剂选自亚硫酸氢钠、焦亚硫酸氢钠、次磷酸钠或维生素 C 中的一种或两种。

优选的，所述链转移剂选自硫基乙酸或硫基丙酸中的一种或两种。

优选的，所述的设定温度为 5-30℃，优选 8-15℃。

优选的，所述的液碱为 32wt% 氢氧化钠溶液。

优选的，所述的水为自来水或去离子水，优选去离子水。

本发明的有益效果：

本发明提供了的聚羧酸减水剂的合成方法，可以在 5-30℃范围内一步合成多支链聚羧酸减水剂，选用的引发剂和还原剂为低温聚合引发体系，以水作溶剂，反应过程无需外加热能，制备工艺简单，反应时间短，既环保又经济。

该方法以不饱和聚氧乙烯醚、不饱和羧酸以及不饱和季铵盐单体为原料，合成出具有高减水、高保坍、适应性强的多支链聚羧酸减水剂。所制备的多支链聚羧酸减水剂，分子结构新颖，主链具有阴离子和阳离子，支链具有非离子的结构特点。主链具有羧酸阴离子基团，对水泥矿物 ζ 电位为正的 C3A 和 C3AF 的优先吸附和分散，当达到饱和吸附后，还可以借助季铵盐阳离子基团，进一步的被水泥矿物中 ζ 电位为负的 C3S 和 C2S 吸附，提高了饱和掺量，同时还可以屏蔽部分因包含高价金属离子而带有正电荷的粘泥表面和层间的吸附，有利于发挥聚羧酸聚羧酸减水剂对水泥的分散作用。

具体实施方式

以下对本发明的优选实施例进行说明，应当理解，此处所描述的优选实施例仅用于说明和解释本发明，并不用于限定本发明。

实施例 1：

在环境温度为 20℃和搅拌条件下，将 360kg 分子量为 2400 的异戊烯醇聚氧乙烯醚（上海台化化工有限公司，TJ-188）和 360kg 自来水组成的底料投入反应釜中。底料完全溶解后，投入 3kg 过硫酸铵，搅拌均匀后同时滴加事先配置好的 A 料和 B 料。A 料为由 25kg 丙烯酸、6kg 丙烯酰氧乙基三甲基氯化铵和 60kg 自来水组成的混合溶液，B 料为 0.75kg 维生素 C、2kg 硫基乙酸和 88kg 自来水组成的混合溶液。A 料 1 小时滴加完，B 料 1 小时滴加完。B 料滴加完后，继续反应 0.5 小时，然后加水稀释至固体含量为 40%，再用 32wt% 氢氧化钠溶液中和至 pH 为 7，即得产品。

实施例 2：
在环境温度为10℃和搅拌条件下，将350kg分子量为2400的异丁烯醇聚氧乙烯醚（南京扬子奥克化学有限公司，OXAC-608）和350kg去离子水组成的底料投入反应釜中。底料完全溶解后，投入3.5kg30wt%过氧化氢，搅拌均匀后同时滴加事先配置好的A料和B料。A料为由38.5kg 甲基丙烯酸、11.5kg 甲基丙烯酰氧乙基三甲基氯化铵和40kg去离子水组成的混合溶液，B料为1.05kg 维生素C、1.9kg 硫基乙酸和108kg去离子水组成的混合溶液。A料1小时滴加完，B料1.5小时滴加完。B料滴加完后，继续反应1.5小时，然后加水稀释至固体含量为40%，再用32wt%氢氧化钠溶液中和至pH为6，即得产品。

【0023】实施例3：

在环境温度为15℃和搅拌条件下，将350kg分子量为2400的异戊烯醇聚氧乙烯醚（乐天化学（嘉兴）有限公司）和400kg去离子水组成的底料投入反应釜中。底料完全溶解后，投入2.5kg过硫酸铵，搅拌均匀后同时滴加事先配置好的A料和B料。A料为由38.5kg丙烯酸、11.5kg丙烯酰氧乙基三甲基氯化铵和40kg去离子水组成的混合溶液，B料为0.9kg 亚硫酸氢钠，1.4kg 硫基丙酸和88kg去离子水组成的混合溶液。A料1小时滴加完，B料1小时滴加完。B料滴加完后，继续反应1小时，然后加水稀释至固体含量为40%，再用32wt%氢氧化钠溶液中和至pH为8，即得产品。

【0024】对比例1：

下面按传统的合成方法合成聚羧酸减水剂，以和本发明合成的多支链聚羧酸减水剂进行对比。

【0025】对比例1：

将362.5kg分子量为2400的异戊烯醇聚氧乙烯醚（上海台届化工有限公司，TJ-188）和200kg去离子水组成的底料投入反应釜中。搅拌并加热到40-50℃使其完全溶解后，升温到60℃，投入1.75kg过硫酸铵，搅拌均匀后同时滴加事先配置好的A料和B料。A料为由36kg丙烯酸、9kg去离子水组成的混合溶液，B料为0.75kg硫基乙酸和112kg去离子水组成的混合溶液。A料3小时滴加完，B料3.5小时滴加完。B料滴加完后，继续反应1小时，然后加水稀释至固体含量为40%，再用32wt%氢氧化钠溶液中和至pH为7，即得产品。

【0026】对比例2：

将360kg分子量为2400的异丁烯醇聚氧乙烯醚（南京扬子奥克化学有限公司，OXAC-608）和186kg去离子水组成的底料投入反应釜中。搅拌并加热到40-50℃使其完全溶解后，升温到60℃，投入1.46kg30wt%过氧化氢和20kg去离子水组成的溶液，搅拌均匀后同时滴加事先配置好的A料和B料。A料为由43.2kg丙烯酸、13.4kg去离子水组成的混合溶液，B料为0.48kg维生素C、1.46kg硫基乙酸和116kg去离子水组成的混合溶液。A料3小时滴加完，B料3.5小时滴加完。B料滴加完后，继续反应1小时，然后加水稀释至固体含量为40%，再用32wt%氢氧化钠溶液中和至pH为7，即得产品。

【0027】将通过以上实施例制得的多支链聚羧酸减水剂与对比例对比。本实验水泥为南方P.O42.5普通硅酸盐水泥，砂细度模数为2.8，含泥量3.5%，石子为5-31.5mm连续级配的碎石，配合比为水泥：砂：石：水=360：810：1030：175。对比测试结果如下：
<table>
<thead>
<tr>
<th>编号</th>
<th>结合量 (折固结合量)</th>
<th>混凝土扩展度</th>
<th>抗压强度 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对比例 1</td>
<td>0.18%</td>
<td>205/480</td>
<td>150/无</td>
</tr>
<tr>
<td>对比例 2</td>
<td>0.18%</td>
<td>200/490</td>
<td>130/无</td>
</tr>
<tr>
<td>实施例 1</td>
<td>0.18%</td>
<td>210/500</td>
<td>185/420</td>
</tr>
<tr>
<td>实施例 2</td>
<td>0.18%</td>
<td>205/490</td>
<td>180/380</td>
</tr>
<tr>
<td>实施例 3</td>
<td>0.18%</td>
<td>200/490</td>
<td>185/390</td>
</tr>
</tbody>
</table>

[0028] 实施例和比较例制备的聚羧酸减水剂在混凝土中的减水率相当，体现了本发明所合成的多支链聚羧酸减水剂具有工艺简单，生产工艺周期短的优点；混凝土1小时的保坍性更好，28天的抗压强度更高，体现了本发明所合成的多支链聚羧酸减水剂对普通含泥砂石料适应性更好。

[0029] 以上所述仅为本发明的优选实施例而已，并不用于限制本发明，尽管参照前述实施例对本发明进行了详细的说明，对于本领域的技术人员来说，其依然可以对前述实施例所记载的技术方案进行修改，或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。