

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C08L 23/04, 23/10, 23/16 C08L 23/20		A1	(11) International Publication Number: WO 91/08258 (43) International Publication Date: 13 June 1991 (13.06.91)
(21) International Application Number: PCT/US90/06984		(74) Agent: GRINNELL, John, P.; Christie, Parker & Hale, P.O. Box 7068, Pasadena, CA 91109-7068 (US).	
(22) International Filing Date: 30 November 1990 (30.11.90)			
(30) Priority data: 445,188 1 December 1989 (01.12.89) US		(81) Designated States: AT (European patent), AU, BE (European patent), BR, CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent).	
(71) Applicant: AVERY DENNISON CORPORATION [US/US]; 150 N. Orange Grove Boulevard, P.O. Box 7090, Pasadena, CA 91109 (US).		Published <i>With international search report.</i>	
(72) Inventors: PLAMTHOTTAM, Sebastian, S. ; 1496 Moonridge Court, Upland, CA 91786 (US). MANN, Roger, A. ; 436 Cabrillo Terrace, Corona del Mar, CA 92625 (US). LANDERS, John, O. ; 2610 Bernwood Street, Duarte, CA 91010 (US).			

(54) Title: OLEFIN POLYMER BASED PRESSURE-SENSITIVE ADHESIVES

(57) Abstract

There are provided pressure-sensitive adhesives which comprise free radical cured mixtures of at least one crosslinkable olefin polymer and at least one tackifying organic additive, preferably a hydrogenated additive, which is substantially nonresponsive to action of free radicals and present in an amount sufficient to tackify the cured mixture of polymer and additive.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CI	Côte d'Ivoire	LK	Sri Lanka	TD	Chad
CM	Cameroon	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		
ES	Spain				

1

5

-1-

10 **OLEFIN POLYMER BASED PRESSURE-SENSITIVE ADHESIVES**Background of the Invention

15 The present invention is directed to multicomponent pressure-sensitive adhesives based on crosslinkable olefin polymers, which enter into free radical initiated crosslinking reactions to enhance adhesive performance in admixture with compatible tackifying additives. The preferred polymers provide pendant groups having olefinic unsaturation.

20 Properties of unsaturated pressure sensitive adhesive compositions can be improved by use of actinic radiation, such as ultraviolet (UV) radiation; electron beam (EB) radiation; and chemical or thermal cure. Normally, the adhesive is applied to a facestock and/or 25 a release liner and subjected to a suitable curing action to improve adhesive properties.

30 One means of cure is electron beam (EB) radiation. While the facestock and/or release liner can sustain electron beam dosages up to a certain level, e.g., 80 to 100 kiloGray (kGy), going beyond that level can result in degradation of components of adhesive label and tape constructions such as the face stock and/or release liner and/or adverse reactions between the adhesive and the silicon release agent of the release 35 liner.

Increased radiation requirements, whether EB or actinic, will reduce the speed at which an adhesive

-2-

1 coated substrate can pass under the radiating surface
or increase the required number of radiating surfaces.
Both are costly.

5 Ethylene-propylene based pressure sensitive
adhesives have not found wide use in the adhesive
industry. European Patent Publication 178062 assigned
to Uniroyal Co. disclosed a pressure sensitive adhesive
based on ethylene propylene thermoplastic elastomer
comprising crystalline polypropylene sequences and
10 amorphous ethylene-propylene sequences along the chain.
Such polymers are claimed to have good balance of peel,
shear and tack properties.

15 European Patent Publication 254002 to Takao et al
disclosed a pressure sensitive adhesive with enhanced
tack comprising an elastomer, tackifier and low
molecular weight ethylene-propylene copolymer obtained
by oxidative degradation.

20 U.S. Patent 4,756,337 assigned to Royston Labs
Inc. disclosed a tackified ethylene propylene pressure
sensitive adhesive tape for sealing gas pipe lines.

25 The present invention is directed to
pressure-sensitive adhesives based on tackified olefin
polymers which utilize free radical cure to achieve a
positive modification in a pressure sensitive adhesive.
30 The pressure sensitive adhesives are formed of at least
two components, one a crosslinkable olefin polymer
component preferably providing pendant groups having
olefinic unsaturation and another mutually compatible
organic tackifying component, preferably one which
minimizes the energy requirements to achieve cure or
crosslinking of the olefin polymer.

Summary of the Invention

35 According to the present invention, there are
provided pressure-sensitive adhesive compositions which
comprise, in combination, at least one crosslinkable
olefin polymer, preferably an olefin polymer providing

-3-

1 at least one pendant olefinically unsaturated group,
which olefin polymer is capable of undergoing gel
forming reactions in the presence of free radicals
preferably generated by actinic radiation or electron
5 beam radiation, and at least one compatible tackifying
organic additive, preferably a substantially
hydrogenated tackifying organic additive. The
tackifying organic additive is at least dispersable and
preferably soluble in the olefin polymer. The
10 combination upon cure preferably has a glass transition
temperature of at least 10°C, preferably at least 20°C
below use temperature, and preferably has a glass
transition temperature of from about -20° to about -
100°C. The pressure-sensitive adhesive compositions of
15 this invention display superior adhesion to low-surface
energy substrates and excellent weatherability.

With cure, gel content increases with a positive
change in properties such as elevated temperature
shear. With the preferred substantially hydrogenated
20 tackifying organic additive, this occurs at
substantially lower levels of free radical generation
than would have been required were the tackifying
organic additive to consume a significant amount of
free radicals.

25 The preferred olefin polymers are ethylene-olefin
copolymers, chlorinated polyethylenes, atactic
polypropylene and the like.

It is preferred that the olefin polymer provide a
30 pendant olefinic group, preferably an acrylate or
methacrylate formed by reacting of a functional group
such as an amide, an amine, a carboxyl or an anhydride
group provided by a precursor olefin polymer. The
presently preferred ethylene olefin polymers are
35 acrylated or methacrylated random ethylene-propylene
copolymers and ethylene-propylene terpolymers where the

-4-

1 termonomer is a nonconjugated diene such as
5-ethylidene-2-norbornene 1,8 octadiene, 1,4 hexadiene,
dicyclopentadiene and the like.

5

10

15

20

25

30

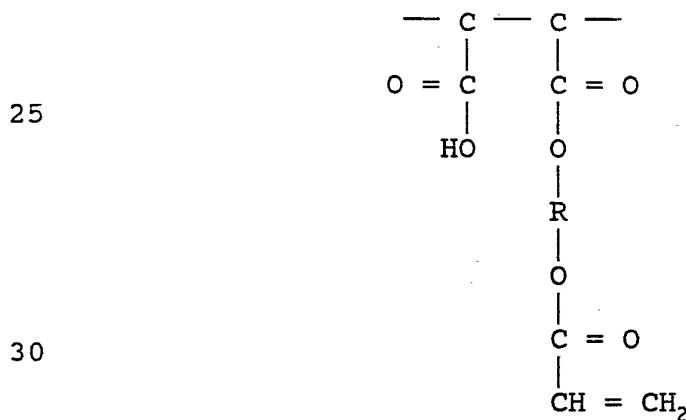
35

-5-

1 Detailed Description

5 The present invention is directed to novel, crosslinked, pressure-sensitive adhesive compositions formed from free-radical crosslinkable olefin polymers, preferably olefin polymers providing at least one pendant olefinically unsaturated group and a compatible tackifying organic additive. The mixture upon cure forms a pressure-sensitive adhesive which exhibits excellent adhesion to low-energy surfaces such as 10 automotive paints and excellent weatherability. Such compositions are ideally used for double-coated tapes for automotive applications.

15 By the term "free radical crosslinkable olefin polymers" as used herein, there is meant polymers based on one or more olefin monomers which contain from 2 to about 4 carbon atoms and which provide one or more functional moieties which enable a free radical crosslinking reaction to occur by radiation, thermal or chemical processes. The functional moiety may be part 20 of the polymer chain such as a halogen group, an unsaturated group or the like and/or a pendant group which functionally enables crosslinking reactions to occur. The preferred pendant group are olefinically unsaturated groups as formed by reaction of a group 25 provided by a olefin polymer precursor with an olefinically unsaturated reactant. Such groups include amine, amide, carboxyl, anhydride groups and the like.


30 Illustrative, but not limiting, of the crosslinkable olefin polymers there may be mentioned ethylene-olefin copolymers and terpolymers, chlorinated polyethylene, atactic polypropylene and the like.

35 The ethylene olefin polymers which may be, and are preferably, used in the instant invention are random copolymers such as ethylene-propylene copolymers and terpolymers of ethylene, propylene and nonconjugated dienes such as 5-ethylidene-2-norbornene, 1,8 octadiene, 1,4 hexadiene, dicyclopentadiene and the

-6-

1 like, and mixtures thereof. They may contain, depending on the feed stock, other polymerized olefins.

5 The presently preferred olefin polymers provide groups having olefinic unsaturation in consequence of reaction of an available anhydride group, whether pendant from or part of the backbone of the polymer and include maleated ethylene-propylene copolymers and maleated ethylene-propylene-conjugated diene terpolymers available from Exxon Chemical Co. under the 10 Exxelor trademark. By the term "maleated" there is meant a cyclic anhydride group provided by the polymer. Anhydride groups provided by such polymers are preferably reacted with an unsaturated reactant such as hydroxy alkyl acrylates and/or methacrylates wherein 15 the alkyl group contains from 2 to about 6 carbon atoms, preferably two carbon atoms. Reaction occurs in the presence of a catalyst such as dimethyl benzylamine at an elevated temperature, e.g., 100 - 150°C. Reaction provides a polymer having as part of the 20 backbone or pendant therefrom, an olefinically unsaturated group of the general formula:

where R is an alkyl group of the formula $-\text{[CH}_2\text{]}_n$, where n is from 2 to about 6.

35 Chemical reaction can be carried out with the hydroxy alkyl acrylate or methacrylate directly or after conversion to the acid with glycidyl acrylates

-7-

1 and the like. Chemical reaction involving
esterification of the anhydride is the preferred
approach and can be carried out in bulk or hot melt or
a solvent. Suitable reaction temperatures range from
5 about 100 to about 150°C, typically from about 120 to
about 130°C. As indicated, although the reaction can
be effectively carried out under hot melt conditions,
the solvent reaction is currently believed to be the
most efficient means of achieving the reaction.

10 Reaction can occur prior to or following addition
of the second component of the instant invention. The
second component is a tackifying organic additive which
is compatible with the olefin polymer by being
dispersable in and preferably soluble in the olefin
15 polymer.

20 Properties of the pressure-sensitive adhesive com-
position are, as indicated, enhanced by free radical
cure, with free radicals preferably generated by
electron beam (EB) radiation, or actinic radiation,
such as ultraviolet (UV) radiation, with or without
25 photoinitiators and/or photosensitizers.

25 Cure overcomes the major deficiency of pressure-
sensitive adhesives based on saturated polymers,
namely, to provide acceptable elevated temperature
cohesive strength.

30 There may also be employed as part of the system
external crosslinkers. Crosslinkers include
multifunctional monomers such as acrylates,
methacrylates, and polythiols. As they are thermally
reactive, care must be taken to avoid premature
35 crosslinking independent of the ultimate means of cure.

35 The olefin based copolymers are not inherently
pressure-sensitive adhesives and pressure-sensitive
adhesive properties are induced by the addition of a
compatible organic additive which serves as a
tackifier. Tackifiers are resins which serve to
increase glass transition temperature of the polymer.

-8-

1 Although any compatible tackifier may be used, the
preferred tackifying organic additives are
substantially hydrogenated. By the term "substantially
hydrogenated" there is meant that if the additive is
5 aromatic, it should effectively be at least 50%,
preferably at least 60%, saturated and if aliphatic, at
least 65%, preferably 80%, of unsaturated groups in the
organic additive as provided should be saturated or
otherwise rendered nonresponsive to the action of free
10 radicals. Complete or substantial hydrogenation is
preferred, or at least saturation by hydrogenation, to
a level where inclusion of the tackifier will involve
a negligible consumption of free radicals over that
required to achieve polymer cure.

15 As specific hydrogenated organic additive
tackifiers employed in the practice of the invention,
there may be mentioned hydrogenated styrene based
resins such as Regalrez™ resins designated as 1018,
1033, 1065, 1078, 1094 and 1126 manufactured and sold
20 by Hercules, Inc.; Regalrez™ 6108 a 60% hydrogenated
aromatic resin, also manufactured by Hercules;
hydrogenated C₅ and/or C₉ hydrocarbon feed stocks such
as Arkon™ P-70, P-90, P-100, P-125, P115, M-90, M-100,
M-110 and M-120 resins manufactured and sold by Arakawa
25 Chemical and Regalite™ R-100, MGB-63, MGB-67, MGB-70,
resins manufactured and sold by Hercules, Inc.;
hydrogenated polycyclo-pentadienes such as Escorez™
5320, 5300 and 5380 resins manufactured and sold by
Exxon Chemical, hydrogenated polyterpene and other
30 naturally occurring resins such as Clearon™ P-105, P-
115, P-125, M-105, and M-115 manufactured and sold by
Yasuhara Yushi Kogyo Co. Ltd. of Japan and Eastotack™
H-100, H-115 and H-130 resins manufactured and sold by
Eastman chemical and the like.

35 Organic additives which serve a tackifying
function are normally present in a concentration
ranging from about 40% to about 90% by weight,

-9-

1 preferably from about 45% to about 85% by weight of the
mixture of total olefin polymer and tackifying organic
additive. Compositions containing less than about 40%
5 by weight of an organic tackifier typically do not have
sufficient "quickstick" or initial grab and
compositions having too high a tackifying organic
additive have too low a cohesive strength even when
cross-linked.

10 As examples of other useful nontackifying organic
additives which are substantially nonresponsive to free
radicals there may be mentioned compatible hydrogenated
organic compounds, such as hydrogenated aromatic resins
including hydrogenated polystyrene, polyalpha-methyl -
styrene, polyvinyl toluene, copolymers of styrene with
15 other monomers and the like; hydrogenated aliphatic
resins derived from petroleum based products; highly
hydrogenated rosins and rosin esters; hydrogenated
white oil, mineral oil such as Kaydol oil made by Witco
and the like.

20 The compositions of the instant invention may be
and normally are made up of components (unsaturated
elastomeric polymer and organic additives) having
multiple glass transition temperatures. To be
functional as a pressure sensitive adhesive the compo-
25 sition must have at least one glass transition
temperature which is at least about 10° C below use
temperatures, preferably at least 20° C below use
temperatures.

30 The presently preferred cured composition at a
coat weight of about 125 g/m² provides in respect to a
stainless steel substrate a 180° peel in excess of
about 700 N/m and a SAFT of at least about 75°C.

35 There may also be incorporated in the compositions
of this invention other property modifiers such as
fillers, short fibers, pigments, plasticizers, oils,
and the like.

-10-

1 The pressure-sensitive adhesives of the instant
invention exhibit superior adhesive properties and
weatherability, and because of being based on
low-surface energy polymers, namely olefin polymers,
5 may exhibit unusual adhesion to low energy surfaces
such as automotive paints and the like. They are, as
such, ideally suited as skin adhesives for conforming
tapes, particularly where the adhesive is to come in
contact with a painted surface. Such adhesive tapes
10 consist of a core and different pressure sensitive
adhesive skin layers on each side of the core. The
material of the skin adhesive may be the same as the
core or different from the core. The core is capable
15 of conforming to irregularities of the substrate and is
normally filled with materials such as fumed silica,
carbon black, microspheres or microballoons whether
solid or hollow including but not limited to glass
microballoons, phenolic microballoons, and ceramic
microballoons. The core may be cured with or
20 separately from the skin.

These and other applications will become apparent
to the reader with reference to the following Examples.

Example 1 and Control 1

25 Two hundred forty grams of a maleated
ethylene-propylene polymer (EPR) known as Exxelor VA
1803 (manufactured by Exxon Chemical Co.) was blended
with 360 g of Regalrez 1078 and 100 g of Regalrez 1033
30 (each manufactured by Hercules, Inc.) in a Z-blade
mixer at a temperature of 165°C for 3 hours.
Temperature was then reduced to 125°C and 6g of 2-
hydroxy ethyl acrylate (2-HEA) and 0.6 grams of
dimethyl benzylamine (DMBA) catalyst and 0.1 g of
35 Santanox R antioxidant were added and reacted for one
hour. One hundred eighty grams of this mixture was
dispersed in 420 g. of heptane. The dispersion was
knife coated on Supertuf release liner and dried at

-11-

1 70°C for 15 minutes to give a coat weight of 129.4
g/sq.m. This film was then EB cured at 50 and 80 kGy
dose under nitrogen. Control 1 was the same
composition but without EB cure. Adhesive composition
5 was as follows:

Exxcelor VA 1803	34 wt %
Regalrez 1078	51 wt %
Regalrez 1033	14 wt %
2-HEA	0.90 wt %
DMBA	0.08 wt %
Santanox R	0.01 wt %

10

15 180° peel adhesion was measured by laminating the
tape to 2 mil Mylar and carrying out the adhesion test
similar to PSTC-1 on stainless steel, polyethylene and
polypropylene substrates. The loop tack was measured
using stainless steel as substrate. The shear holding
power was tested using PSTC-7 modified by using the
overlap area and loads shown in the Table 1.

20 Shear adhesion failure temperature was determined
by laminating the tape on 2 mil soft aluminum foil,
cutting a 5.08 cm x 2.54 cm segment from the tape and
laminating the adhesive side to the panel to give a
2.54 cm x 1.25 cm overlap with 2.54 cm length
overhanging from the panel. After positioning the tape
25 in the oven for 20 minutes at room temperature, a 1 Kg
load is attached at the free end of the tape and the
temperature is increased 0.5°C per minute up to 200°C
maximum. The temperature at which the tape fails is
recorded as the SAFT.

30 Since the polymer is substantially saturated it
should show excellent aging comparable to polyethylene
and polypropylene and hence could be useful for outdoor
applications and where adhesion to polyolefins is
important. The cured tape was also found to be
35 substantially insoluble in most organic solvents
including tetrahydrofuran (THF).

-12-

1

Table 1

PERFORMANCE OF TRANSFER TAPES BASED ON
 MODIFIED MALEATED ETHYLENE PROPYLENE RUBBERS
 (EXXCELOR VA 1803)

	<u>Adhesive</u> 2	<u>Con. 1</u>	<u>Ex. 1</u>	<u>Ex.</u>
	Coat weight (g/sq.m)	129	129	129
10	E.B. Dose (kGy)	0	50	80
	Face Material	Mylar	Mylar	Mylar
	180° Peel Adhesion (N/m) 20 minute dwell, Stainless Steel.	1854	1538	1477
15	180° Peel Adhesion (N/m) 20 minute dwell, Polyethylene.	1220	907	874
20	180° Peel Adhesion (N/m) 20 minute dwell, Polypropylene.	1122	753	1177
	Loop Tack (N/m)	1670	2840	1821
	SAFT (°C), Al	65	124	107
25	70°C Shear, 1 Kg (min.) 2.54 cm x 1.27 cm.	2	21	22
	RT Shear, 1 Kg (min.) 2.54 cm x 1.27 cm.	193	7000+	7000+
30				

-13-

1

Examples 3 to 6 and Controls 2 and 3

5

240 grams of an ethylene propylene polymer known as Exxelor VA 1803 was blended with 360 g of Regalrez 1078 in a Z-blade mixer at 165°C for 2.5 hours. Temperature was reduced to 125°C and 6 g of 2-HEA, 0.6 g of DMBA and 6 g of Irgacure 651 were added and mixture reacted for 20 minutes. A portion of this material was dispersed in 225 g of heptane. The dispersion was knife coated on Supertuf release liner and dried at 70°C for 15 minutes to give a coat weight of 31 g/sq.m and another 37 g/sq.m. The tapes with 31 g/sq.m coat weight adhesive film was EB cured and the tape with 37 g/sq.m coat was UV cured both under nitrogen. The dosage used and tape properties are shown in Table 2.

10

15

20

25

30

35

-14-

Table 2

<u>Adhesive</u>	<u>Con. 2</u> -- (EB)	<u>Ex. 3</u> -- (EB)	<u>Ex. 4</u> -- (EB)	<u>Con. 3</u> -- (UV)	<u>Ex. 5</u> -- (UV)	<u>Ex. 6</u> -- (UV)
Coat weight (g/sq.m)	31	31	31	37	37	37
(EB) / (UV Dose) (kGY) / (kJ/sq.m)	0	20	50	0	2.4	5.8
Face Material	A1	A1	A1	A1	A1	A1
180° Peel Adhesion (N/m)	1054	1054	967	1284	1077	1034
20 minute dwell, stainless steel						
SAFT (°C), A1 2.54 cm x 1.27 cm, 1Kg	68	93	105	78	105	98

-15-

1

Example 7

250 gms. of a composition of Example 1 was mixed with 5.36 gms. of Cab-O-Sil TS-720 from Cabot Corporation and 36.1 gms. of ceramic microballoons from PA Industries and mixed in a Z-blade mixer. The mixture was cast into a core having a thickness of 35 mils and unmodified composition of Example 1 were provided to the cure as opposed skin layers at an adhesive loading of 106 gms. per meter square each. Upon cure, an EB cure 180° peel dwell to stainless steel (20 min. dwell) was 4200 N/m and to a Inmont base coat - clear coat painted panel of 2,980 N/m.

15

20

25

30

35

-16-

1 IN THE CLAIMS:

1. A pressure-sensitive adhesive comprising a free radical cured mixture of at least one olefin polymer formed of at least one olefin monomer which contains from 2 to about 4 carbon atoms and at least one tackifier which is compatible with said polymer and increases the glass transition temperature of said polymer, said tackifying organic additive being present in an amount sufficient to tackify the cured mixture, said cured pressure-sensitive adhesive having a glass transition temperature at least 10°C below use temperature.
- 15 2. A pressure-sensitive adhesive as claimed in claim 1 in which the tackifier is provided in a concentration of from about 40 to about 90 per cent by weight based on the total weight of the olefin polymer and tackifying organic additive.
- 20 3. A pressure-sensitive adhesive as claimed in claim 1 in which the tackifier is present in a concentration of about 45 to 85 percent by weight based on the weight of the olefin polymer and tackifying organic additive.
- 25 4. A pressure-sensitive adhesive as claimed in claim 1 in which the tackifier is selected from the group consisting of saturated aliphatic resins, saturated aromatic resins and mixtures thereof.
- 30 5. A pressure-sensitive adhesive as claimed in claim 1 in which the tackifier is a substantially hydrogenated resin.

-17-

1 6. A pressure-sensitive adhesive comprising a
free radical cured mixture of at least one free radical
cured olefin polymer formed of an olefin monomer
containing from 2 to about 4 carbon atoms providing at
5 least one olefinically unsaturated pendant group and at
least one tackifier which increases the glass
transition temperature of the polymer and which is at
least dispersible in said polymer and present in an
amount sufficient to tackify the cured mixture, said
10 cured pressure adhesive having a glass transition
temperature at least 10°C below use temperature.

15 7. A pressure-sensitive adhesive as claimed in
claim 12 in which the tackifier is provided in a
concentration of from about 40 to 90 per cent by weight
based on the total weight of the olefin polymer and
tackifying organic additive.

20 8. A pressure-sensitive adhesive as claimed in
claim 12 in which the tackifier is present in a
concentration of about 45 to about 85 percent by weight
based on the weight of the olefin polymer and
tackifier.

25 9. A pressure-sensitive adhesive as claimed in
claim 12 in which the tackifier is selected from the
group consisting of saturated aliphatic resins,
saturated aromatic resins and mixtures thereof.

30 10. A pressure-sensitive adhesive as claimed in
claim 12 in which the tackifier is a substantially
hydrogenated resin.

35 11. A pressure-sensitive adhesive as claimed in
claim 18 in which the tackifier is selected from the
group consisting of saturated aliphatic resins,
saturated aromatic resins and mixtures thereof.

-18-

1 12. A pressure-sensitive adhesive as claimed in
claim 18 in which the tackifier is a substantially
hydrogenated resin.

5 13. A pressure-sensitive adhesive comprising a
free radical cured mixture of at least one free radical
crosslinkable ethylene olefin polymer selected from the
group consisting of ethylene-propylene copolymers and
ethylene-propylene-nonconjugated diene terpolymers and
mixtures thereof, the copolymer providing at least one
10 olefinically unsaturated pendant group and at least one
tackifier which increases the glass transition
temperature of the polymer and which is at least
compatible in said polymer and present in an amount
15 sufficient to tackify the cured mixture of tackifier
and polymer, said cured pressure adhesive having a
glass transition temperature at least 10°C below use
temperature.

20 14. A pressure-sensitive adhesive as claimed in
claim 23 in which the tackifier is present in a total
amount of from about 40 to about 90 per cent by weight
based on the total weight of polymer and additive.

25 15. A pressure-sensitive adhesive as claimed in
claim 23 in which the tackifier is present in a
concentration of about 45 to about 85 percent by weight
based on the weight of the polymer and tackifier.

30 16. A pressure-sensitive adhesive as claimed in
claim 23 in which the tackifier is a hydrogenated
tackifier is selected from the group consisting of
saturated aliphatic resins, saturated aromatic resins
and mixtures thereof.

-19-

1 17. A pressure-sensitive adhesive as claimed in
claim 29 in which the tackifier is a hydrogenated
tackifier selected from the group consisting of
saturated aliphatic resins, saturated aromatic resins
5 and mixtures thereof.

10 18. A pressure-sensitive adhesive as claimed in
claim 36 where the tackifier is a substantially
hydrogenated resin.

15 19. A pressure-sensitive adhesive as claimed in
claim 34 where the tackifier is a substantially
hydrogenated resin.

20 20. A pressure-sensitive adhesive comprising a
free radical cured mixture of at least one olefin
polymer formed of an olefin containing from 2 to about
4 carbon atoms and at least tackifier which increases
the glass transition of the polymer and which is at
25 least dispersible in said polymer and present in an
amount sufficient to tackify the cured mixture, said
cured pressure adhesive having a glass transition
temperature at least 10°C below use temperature and at
a coat weight of about 125 g/m² providing to stainless
steel a 180° peel adhesion of at least about 700 N/m
and an SAFT of at least about 75°C.

30 21. A pressure-sensitive adhesive comprising a
free radical cured mixture of at least one free radical
curable ethylene olefin polymer selected from the group
consisting of ethylene-propylene copolymers and
ethylene-propylene-nonconjugated diene terpolymers, and
mixtures thereof, said polymer providing at least one
olefinically unsaturated pendant group and at least one
35 tackifier which increases the glass transition
temperature of the polymer and which is at least
dispersible in the polymer and present in an amount

-20-

1 sufficient to tackify the cured mixture of tackifying
organic additive and polymer, said cured pressure
adhesive having a glass transition temperature at least
10°C below use temperature and at a coat weight of
5 about 125 g/m² providing to stainless steel a 180° peel
adhesion of at least about 700 N/m and an SAFT of at
least about 75°C.

10

15

20

25

30

35

INTERNATIONAL SEARCH REPORT

International Application

PCT/US90/06984

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC (5): C08L 23/04, 23/10, 23/16, 23/20

U.S. CL. 524/579, 583, 585

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols
U.S.	524/579, 583, 585

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT ⁹

Category ¹¹	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
A	US, A, 4,707,397 (MORIMURA ET AL) 17 NOVEMBER 1987: See the entire document.	1-6, 13, 20 & 21
X	US, A, 4,839,422 (McELRATH ET AL)	1-6, 13, 20
Y	13 JUNE 1989; See column 1, line 61 to column 5, line 62.	& 21 1-6, 13, 20 & 21
A	US, A, 4,855,335 (NEPERUD) 08 AUGUST 1989 See the entire document.	1-6, 13, 20 & 21

* Special categories of cited documents: ¹⁰

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

Date of Mailing of this International Search Report

28 JANUARY 1991

04 MAR 1991

International Searching Authority

Signature of Authorized Officer

ISA/US

Romulo H. Delmendo
Romulo H. Delmendo

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers _____, because they relate to subject matter^{1,2} not required to be searched by this Authority, namely:

2. Claim numbers 7-12, 14-19, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out^{1,3}, specifically:

Claims 7-12, 14-19 depend on a base claim which is non-existent.

3. Claim numbers _____, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional search fees.