A clothes hanger attachment for use with wire garment hangers is described. A unitary molded wire hanger attachment having end notches for preventing twisting on the wire and having molded wire attachment notches is described, the hanger attachment adapted to fit the sloped shoulder portion of the wire hanger or the cross-member of the hanger. A molded depression in the supporting surface provides shoulder strap restraint, and applies pressure to the wire hanger for mounting. A method for providing a scent in the hanger attachment during the molding process for subsequent release for deodorizing clothing, or providing a perfumed scent is also described.

8 Claims, 9 Drawing Figures
MIXING THERMOPLASTIC GRANULES WITH PREDETERMINED SCENTED POWDER

PLACING MIXTURE IN MOLD

INJECTION MOLDING OF PREDETERMINED SCENTED OBJECT

Fig. 7

Fig. 8a

Fig. 8b

INVENTOR
ROBERT M. ROOD

BY Charles.J. Johnson
ATTORNEY
CLOTHES HANGER ATTACHMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to accessories for wire garment hangers; and, more particularly, to attachments to wire garment hangers whereby the relatively narrow garment supporting surface of the conventional wire hanger is broadened by the hanger attachment, thereby materially reducing the creasing of the garment that normally occurs when the wire garment hanger is used along. Still more specifically, this invention relates to the field of clothes hanger attachments wherein the clothing supporting surface is broadened by the clothes hanger attachment, and the clothes hanger attachment can include clothing deodorizing material, or a fragrance emitting material, either attached and supported by the clothes hanger attachment, or molded into the clothes hanger attachment material for gradual release.

2. Description of The Prior Art

The prior art has recognized the problem of the creasing of the supported garments by the standard type of wire garment hanger. Various kinds of devices, apparatus, and configurations of materials have been devised for solving the problem of this creasing of the garments. One common type of approach has been to utilize cardboard or other pulp material, or very thin sheet metal, such as aluminum, for forming relatively broad curved garment supporting surfaces, with the arrangement being such that the attachment can be slipped over the conventional hook on the wire hanger. This arrangement results in the sloping curved garment supporting surfaces being made from one continuous sheet of material. Various methods of attachment to the wire garment hanger have been devised for these arrangements, and having included such arrangements as molded clips, stessed portions, and the like. While these types of garment hanger attachments serve the function of broadening the garment supporting surface for garments that are supported by the shoulder portion, they are relatively expensive to manufacture due to the nature of their basic construction, and are not made to include clothing, deodorizing material, or fragrance emitting material. Further, these specific arrangements normally are constructed to fit the specific configurations of selected style of wire garment hanger. Since there are a plurality of styles of conventional wire garment hangers in use, the prior art necessitates several different configurations of garment hanger attachments. Then, too, this unitary type of garment hanger attachment is useful only for the sloping portion of the wire garment hanger, and the cross-member must be adapted with a different attachment.

Other types of garment hanger attachments have been developed for the sloping portions of the wire garment hanger; and include cardboard attachments that fold flat when not in use; spirally formed attachments that are wound onto the wire portion; and preformed cardboard elements that require modification of the wire hanger itself for holding it in place. Each of these types of apparatus have the problem of attaching to the wire hanger, as well as the problem of tending to twist on the wire hanger when the garment is placed thereon. The problem of twisting has been attempted to be solved in various ways, and has included notching the ends of the attachment, and providing interference elements extending longitudinally along the attachment. The latter arrangement finds the clothes hanger attachment being stable only when an article of clothing is hanging on the hanger, in that the interference elements tend to bear against one or the other of the adjacent layers of cloth, thereby preventing rotation or twisting. The problem of the stability of mounting of the prior art clothes hanger attachments of this category is significant. Yet another problem of this type of prior art clothes hanger attachment is that of the difficulty of obtaining a relatively broad and stable garment supporting surface. Of course, many of this class of garment hanger attachments do not attend themselves to a configuration that is readily useable on the cross-member of the wire clothes hanger.

There is yet another class of clothes hanger attachments that includes various configurations of attachments for cooperating with the cross-member of the conventional wire clothes hanger. In this class of attachments, there is included such arrangements as a tube having a longitudinal slit of a width just slightly less than that of the width of the wire of the hanger, such that the tube can be forced over the hanger and will tend to remain on the hanger. This device has the drawback that there is a tendency, due to the weight of the attachment, for it to position itself with the wire of the hanger disposed along the longitudinal slit with the supporting surface extending downwardly, rather than upwardly as desired. Obviously, if too much pressure is exerted downwardly when the attachment is in this position, it is forced off the wire, and is useless for its intended purpose. Other attachments for the cross-member portion of the wire clothes hanger include the spirally formed attachment that is required to be wound longitudinally along the length of the wire member. This is a tedious and relatively hard process of mounting, and does not lend itself to being readily removed. Further, since the attachment necessarily has to be substantially deflected during insertion, there is a tendency to damage the attachment and cause it to fray. Another drawback is that this type of attachment often is free to rotate on the wire support member, and tends to allow the garment, such as a pair of trousers, to be rolled off the hanger and fall on the floor. Still another type of hanger attachment that is utilized in conjunction with the cross-member of a wire clothes hanger is one where in a spiral is formed by turns of the support member upon itself. This results in an assembly somewhat easier to mount on the wire hanger, but is subject to the same problem of spinning on the wire hanger and is relatively expensive to fabricate. Certain attachments utilize various fixtures for attachment to the wire hanger, but these fixtures render the attachment difficult to remove, and are expensive to manufacture. Certain attachments relay mainly on notches in the end thereof for holding placement, but such hanger attachments are normally less than satisfactory for holding them in place. This is especially true when the attachment is fabricated from cardboard, or other pulp material, since this then becomes a common point of failure of the attachment due to tearing of the structural material.
hanger. Further, no clothes hanger attachment has been discovered which can be utilized to accommodate and support material for deodorizing clothing or scented material for giving off a pre-determined fragrance.

Finally, no molded plastic attachment for clothes hangers is shown by the prior art to have pre-determined fragrances molded therein for emission over a relatively long period of time, while the hanger attachment is functioning as a clothing support device.

SUMMARY

In summary, then, this invention comprises an improved unitary molded wire hanger attachment for providing a substantial supporting surface, the hanger attachment being molded from plastic and having end-notches for engaging portions of the wire hanger for inhibiting twisting of the hanger attachment on the wire, and having detent and gripping members for gripping the wire and removable holding the hanger attachment on the wire of the hanger. The hanger attachment is adapted for use on each shoulder support portion of the hanger, or on either the cross-member of the hanger.

The invention also comprises an improved method of fabrication wherein the hanger attachment is molded from thermoplastic material. The invention also includes an improved scenting method wherein a pre-determined scent-bearing material is mixed with bulk thermoplastic material prior to the molding; and, after the article is molded, the finished product emits the pre-determined scent for an extended period of time.

A primary object of this invention is to provide an improved unitary molded hanger attachment for use with wire hangers. Another object of this invention is to provide a hanger attachment that will fit various configurations of wire hangers having a pair of downwardly sloping shoulder portions and a cross-member portion. Still another object of this invention is to provide a hanger attachment that can be removably affixed to the shoulder portion of a hanger for providing a substantial garment supporting surface to inhibit creasing of the fabric. Yet another object of this invention is to provide a hanger attachment that can be utilized in pairs on the cross-member of a wire hanger. A further object of this invention is to provide an improved hanger attachment that can be utilized either singly or in pairs on the shoulder portions, or on the cross-member portion of a wire hanger, respectively, for providing substantial garment supporting surfaces for preventing creasing of the fabrics. Still a further object of this invention is to provide an inexpensive hanger attachment that can be molded from plastic. Yet another object of this invention is to provide an inexpensive hanger attachment that is universal in its use on wire hangers having sloping shoulder supporting portions and cross-member portion, wherein a single plastic mold can be utilized.

Another primary object of this invention is to provide an improved method of manufacturing molded plastic products wherein the end product emits a pre-determined scent. Still another object of this invention is to provide an improved method of manufacturing scented plastic products wherein a pre-determined scented powder can be mixed with the bulk plastic granules prior to molding, and the molded plastic product made from the mixture will emit the pre-determined scent over an extended period of time. Still another object of this invention is to provide an improved method of manufacturing a unitary molded hanger attachment for providing a scent in the hanger attachment during the molding process for subsequent release for deodorizing clothing, or providing a perfumed scent.

Yet another object of this invention is to provide a method of manufacture of hanger attachments wherein a scented molded thermoplastic is utilized.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing objectives of the invention, together with other more detailed and specific objectives of the invention, will become apparent from a consideration of the following detailed description of the invention when viewed in light of the drawings, in which:

FIG. 1 is a perspective view of a plurality of hanger attachments, embodying the present invention, applied to a conventional wire garment hanger;

FIG. 2 is a bottom view of the hanger attachment;

FIG. 3 is a top view of the hanger attachment of this invention;

FIG. 4 is a cross-sectional view taken at line 4—4 of **FIG. 1**;

FIG. 5 is an end view of the hanger attachment of this invention;

FIG. 6 is a cross-sectional view taken at line 6—6 in **FIG. 3**;

FIG. 7 is a method flow diagram illustrating the various steps in the process of making a scented molded object;

FIG. 8 is a cross-sectional diagrammatic view of apparatus utilized in molding thermoplastic material into a scented object, with the mold in the opened position; and

FIG. 8b is a cross-sectional diagrammatic view of the apparatus utilized in molding a scented plastic object with the mold in a closed condition.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In **FIG. 1** there is shown a conventional garment hanger 10 formed from a single length of relatively small gauge wire, to which the garment hanger attachments of this invention can be mounted. The hanger comprises a hook portion 12, and is in a general triangular shape, having a pair of sloping shoulder supporting portions 14 and 16, and a cross-member 18. There are generally curved sections 20 and 22 intermediate the shoulder portions 14 and 16 and the hook portion 12, respectively. The junctures 24 and 26 intermediate the sloping portions 14 and 16, respectively, and the ends of the cross-member, are generally rounded. The structure is completed by having one end 28 twisted around the hook portion 12.

The hanger attachment 30 will be described as illustrative of the invention. The hanger attachment 30 comprises generally an elongated channel having a rounded upper surface 32, and downwardly extending sides. The upper surface 32 is the garment supporting surface, and has a depression 34 therein. The depression 34 is functional to operate as a part of the gripping mechanism for holding the hanger attachment 30 in place on the wire hanger 10, as will described in more detail below, and is also functional to inhibit sidslipping of the garment on the hanger. When the hanger attachment 30 is mounted on the shoulder portions 14 and 16 of the hanger 10, the depression 34 op-
erates to retain shoulder straps of garments such as ladies slips and nightgowns, thereby tending to prevent them from falling from the hanger. The ends 38 and 40 are generally rounded to prevent snagging of the hanger attachment 30 in any clothing.

FIG. 2 is a bottom view of the hanger attachment 30, and illustrates the open channel area 42 intermediate sides 34 and 46. End-notches 48 and 50 are utilized to grip and engage portions of the hanger 10 to prevent twisting of the hanger attachment 30. Referring again to FIG. 1, it can be seen that the end-notch engages the curved portion 24 of hanger 10. It can also be seen that the end-notches in the hanger attachments that are mounted on the shoulder portions 14 and 16 engage the curved portions 20 and 22, respectively, of hanger 10. End-notches 48 and 50 each have first detents 52 and 54, respectively, for cooperating with the curved portions 24 and 26 of hanger 10, and functions to hold the hanger attachment 30 from sliding longitudinally on the cross-member 18, and holds the curved portions of the hanger 10 within the associated notch to prevent the hanger attachment from twisting. Referring briefly to FIG. 5, it can be seen that detent member 54 is set in notch 50.

Returning to a consideration of FIG. 2, it can be seen that the end-notches 48 and 50 have second detent members 56 and 58, respectively, with detents 56 and 58 adapted to cooperate with the curved portions 20 and 22 of the hanger 10 to hold the hanger attachment end-notch in cooperation with these curved portions 20 and 22 for preventing sliding of the hanger attachment on the sloping shoulder portions, and for holding the hanger attachment from turning on the hanger. Again referring to FIG. 5, it can be seen that detent member 58 is located above detent member 54.

In FIG. 2 there is also shown pairs of opposed gripping members, with one pair of opposed gripping members identified as members 60 and 62, and the other pair of opposed gripping members identified as members 64 and 66. Gripping members 60 and 64 are integrally formed with the inside of downwardly extending side 46, and gripping members 62 and 66 are integrally formed with the inside of downwardly extending side 44. The pairs of gripping members are arranged in a proximity to the under surface 42 and are spaced from depression 34. The function of these gripping members will be discussed in more detail in conjunction with FIG. 4.

Turning briefly to FIG. 3, which is a top view of the hanger attachment 30, it can be seen that depression 34 is arranged near the center of upper surface 32. The upper surface 32 can be slightly roughened to inhibit the sliding of fabric across the surface for preventing garments from slipping from the hanger.

FIG. 4 is a cross-sectional view taken along line 4—4 in FIG. 1, and illustrates the downwardly extending sides 44 and 46, the rounded upper surface 32, and the depression 34. It can be seen that the cross-member 18 of the wire hanger is tightly gripped between the under surface of depression 34, and the support portion of gripping member 62. Gripping member 64 is shown, and will be in cooperation to retain wire 18 between its supporting surface and the under surface of depression 34. The gripping members 60, 62, 64, and 66 are generally triangular in shape and can have curved supporting surfaces.

FIG. 6 is a cross-sectional view taken along line 6—6 in FIG. 3, and illustrates the relationship gripping members 60 and 64 to depression 34. It can be seen that depression 34 bears on the upper surface of wire 18, shown in dashed line, and holds it tightly to the supporting surfaces of gripping members 60 and 64 by tending to deflect the wire. This arrangement functions to add stiffness to wire 18, and allows relatively light gauge wire to support substantially heavier garments than it would normally be capable of supporting in the absence of the hanger attachment. The relationship of detents 54 and 56 in their respective end-notches are also shown.

While the hanger attachment of this invention can be constructed from various materials, such as wood fiber or paper products, metals, or the like, the preferred embodiment utilizes a molded plastic. The term plastic, as utilized generally in the art, refers to a large and varied group of synthetic materials that are processed by molding or forming them to a final desired shape. Chemically, plastics are composed of chain-like molecules of high molecular weight, called polymers, that usually have been built up from simpler chemicals referred to as monomers. Different monomer combinations are used to formulate each different type, or family of plastics. There are many different families of plastics utilized commercially, each of the families having different physical characteristics. For example, a plastic may be soft, or very hard; clear, or opaque; head resistant, or softened by hot water; light in weight, or heavier than some metals. Within each family of plastics, there are also wide differences in characteristics. The characteristics of the plastic material can be changed by changing the molecular weight and chain geometry of the polymer, and various additions of materials and chemicals can also be added to further modify the property.

Plastic materials are divided generally into two classes, thermoplastics and thermostets, according to the way of the material behaves under repeated heating and cooling. Basically, a thermoplastic requires heat to make it formable, and after cooling can be reheated and reformed into new shapes a number of times without significant change in its physical property. In this regard, thermoplastic is like paraffin wax that each can be repeatedly melted by heat and solidified by cooling. A physical characteristic of thermoplastics is that they have linear molecular chains which will flow over each other when heated, and solidify into a new shape when cooled, without significant alternation of the chain structure. Based on this characteristic, thermoplastic scrap material can usually be reclaimed and reprocessed without difficulty.

The other basic type of plastic material is referred to as thermostet plastic, and the basic characteristic of this category of material is that it requires heat to make its shape permanent. Once a thermostet plastic is formed into a permanent shape by the use of heat and pressure, it cannot be later remelted or reformed. Once set, additional heating will only destroy a thermostet material. Thermostet material, when heated, form permanent cross-lengths between the linear chains of molecules, creating a rigid three-dimensional chain structure that cannot be made to flow again. Further heating or pressure once set, results in destruction of the properties of the thermostet.
The preferred embodiment of this invention utilizes thermoplastic material, which is provided in a granular bulk form in preparation for the molding process. It has been found advantageous that the embodiment of this invention be constructed from thermoplastic material that has the characteristics of durability, and relative rigidity while having a limited degree of flexibility so that sufficient deflections can be made to permit installation and removal of the hanger attachment on the wire hanger. Classes of thermoplastic material that satisfy these requirements are available commercially, and are referred to by their common class names, and include polyethylenes, vinyls, and ABS materials, and the like. The thermoplastic material is normally selected and prepared in a granular form for application to the molding process.

In order to provide a pre-determined scent or deodorizing capability to the finished molded product, it is necessary to select the appropriate scent or deodorizer and supply it in a solid powder form.

For providing a pre-determined scent, various base powders can be utilized, and it has been found advantageous to utilize a talcum powder to which a pre-determined scent has been added. It is then possible to mix the talcum powder with the granular thermoplastic material in a pre-determined ratio prior to the molding process. An example mixing ratio would be approximately 45 parts by weight of scented powder to one part by weight of thermoplastic granules. Various other types of powdered scent base can be utilized, it being important that the structure of the scented base be relatively fine and readily mixable with the thermoplastic material granules.

The deodorizing characteristic can be added to the thermoplastic material in a fashion similar to that mentioned above, and requires that the deodorizing material be carried on some form of powder base that allows the mixing with the plastic granules, as described above.

The process of manufacturing a molded thermoplastic product that has a pre-determined scent, is illustrated in FIG. 7, wherein the step of mixing the thermoplastic granules with the pre-determined scented powder is illustrated by block 84. After the appropriate mixture has been derived, the next step is to place the mixture in a mold hopper, as illustrated by block 82. The final step, then, is to cause the injection molding of the predetermined scented object, as defined by block 84. The same steps would be followed for the formation of the deodorizing plastic product, the only difference being in the selection of the deodorizing bearing powder material to be mixed with the thermoplastic granules.

The strength of the scent or the amount of deodorizing capability material can be selected to the levels desired, by the selection of the strength of the scent essence that is added to the powder base, and the selection of the strength of the deodorizing material to be added to the powder base, respectively.

FIG. 8a is a cross-sectional diagrammatic view of apparatus that can be utilized to mold thermoplastic products that have a pre-determined scent, and FIG. 8b illustrates the same equipment in a cross-sectional diagrammatic form with the mold closed. The elements in FIGS. 8a and 8b will be given the same reference numerals. It should be understood that FIGS. 8a and 8b are diagrammatic, and that the apparatus illustrated in cross-section only illustrates the actual molding structures, and that such equipment as is required to move the molds and to cool the molds are not shown.

In FIG. 8a, there is shown a housing 86 having a plunger 88 mounted in a bore 90. A heating element 92 surrounds a portion of the bore area 90, and is utilized to apply heat thereto. A nozzle 94 is in cooperation with the bore end, and has an opening 96 therethrough. At the outset, a supply of thermoplastic granules 98 is mixed in a pre-determined ratio of the scent powder 100 and is mixed in container 102, which in turn is arranged to feed the mixture into bore 90. The mold 104 includes a mold plunger 106 and a mold cavity 108. With the plunger 88 moved in the direction of arrow 110, the mixture 112 is allowed to feed into bore 90, where it is heated by heating element 92. The mold cavity 108 has an opening 114 arranged to cooperate with the opening 96 in nozzle 94. The shape of the mold plunger 106 and the mold cavity 108 determines the shape of the end molded product.

FIG. 8b illustrates the diagrammatic relationship of the elements during the actual molding operation. In this arrangement, the mold 104 has the mold plunger 106 forced against the mold cavity 108 under high pressure, with the entire mold 104 being forced into close proximity to nozzle 94. This causes the opening 114 in the mold cavity to be aligned with the opening 96 in nozzle 94. As the plunger 88 is forced in the direction of arrow 116, the supply of the mixture of thermoplastic granules and scent powder 112 in container 102 is cut off, and pressure is applied to the mixture that is in bore 90. The head from heating element 92 has caused the mixture to liquify, and the pressure of plunger 88 against the liquified mixture causes a portion of the mixture to be injected through opening 96 of the nozzle 94 into the opening 114 in the cavity 108, thereby forcing sufficient material into the mold to form the desired product. To remove the molded product, it is necessary only to open the mold and return the plunger in the direction of arrow 110 to permit additional material 112 to enter into bore 90 for a subsequent molding operation. The cooling and setting of the thermoplastic material in the mold 104 is accomplished by cooling apparatus that is not illustrated.

Once a hanger attachment has been molded as described herein, it can be installed on the wire of a wire hanger 10 by deflecting the sides 44 and 46 sufficiently to permit the wire to pass between the gripping members 60, 62 and 64, 66. The hanger attachment can then be adjusted on the sloping shoulder portions 14 and 16 by causing an end-notch to be forced on to the curved portions 20 and 22 and to be retained there by the detent, such as detent 56. The hanger attachment can be utilized in pairs on the cross-member 18, again, by deflecting the sides and forcing the hanger attachments downwardly over the wire. One hanger attachment can be forced to the left such that its end-notch is in engagement with the curved portion 24, and the hanger attachment on the right can be forced to the right so that its end-notch is in engagement with curved portion 26, these operations preventing the hanger attachments from twisting on the cross-member 18.

In addition to the holding action of depression 34, the upper surface 30 can be roughened during the molding process by providing a sandblasted interior of the mold cavity 108. This roughened surface will further assure
that there is no slipping either across or sideways to the hanger attachments.

In conclusion, then, it can be seen from the foregoing detailed description of the preferred embodiments of the improved hanger attachment and method of fabrication of this invention, that the various stated objectives and purposes of this invention have been achieved. An improved hanger attachment has been described that is substantially universally adaptable to wire garment hangers that are constructed of a pair of sloping shoulder support portions and a cross-member intermediate the ends of the shoulder portions. The hanger attachment of this invention can be readily affixed or removed to the shoulder portion of a hanger for providing a substantial garment supporting surface, and can be utilized in pairs on the cross-member of a wire hanger to provide such substantial garment supporting surface for this portion of the wire hanger. Since the hanger attachment is molded from plastic, it is inexpensive to manufacture, while being very durable and useful over a long period of time. The arrangement of the end-notches together with the gripping members and the detent members provides for a sturdy mount to the wire hanger, while substantially eliminating any twisting or slipping of the hanger attachment on the wire once mounted. Finally, the improved method of manufacturing of molded plastic products wherein the end product emits a pre-determined scent, or contains deodorizing material, results in a molded product not heretofore known.

It being recognized that various modifications of dimensions, physical arrangements, selection of materials, and location of elements, will become apparent to those skilled in the art, without departing from the spirit and scope of this invention, what is intended to be protected by Letters Patent is set forth in the appended claims.

1 claim:

1. A clothes hanger attachment adapted to be removable supported on either the sloping shoulder portion or cross-member of the wire members of a wire garment hanger, comprising: a unitary elongated channel member having a predetermined length, said length adapted to be approximately the length of the sloping shoulder portion, an upper curved garment supporting surface for inhibiting creasing of supported garments, a pair of downwardly extending side members at opposite sides of said supporting surface, and first and second opposed ends, each of said first and second ends including end-notches for engaging curved portions either adjacent hook of a wire hanger or the curved joiner of the sloping shoulder portions and the cross-member of the wire hanger for preventing twisting of the hanger attachment; wire gripping means integrally formed on inner surfaces of said downwardly extending side members for gripping the wire of the wire hanger; and at least one depression in said upper curved garment supporting surface, the vertical distance between said wire gripping means and the lowest extremity of said associated depression adapted to be less than the diameter of the wire member of the wire garment hanger for causing a pressure to be applied to said wire when inserted therebetween, said depression downwardly extending for applying pressure to said wire in cooperation with said gripping means, whereby said wire is removably engaged between said wire gripping means and said depression and said depression is operable to inhibit side-slopping of garments and to retain shoulder straps when mounted on said sloping shoulder portion.

2. A clothes hanger attachment as in claim 1 wherein said wire gripping means includes a plurality of gripping members, each of said gripping members integrally formed and inwardly extending from a respectively associated one of said downwardly extending side members, and each having upwardly and inwardly extending edge surfaces, and upper curved wire supporting surfaces, a first group of said gripping members arranged at first predetermined positions on one of said side members, and a second group of said gripping members arranged at second predetermined positions on the other of said side members, each of said gripping members in a spaced apart cooperative relation to associated ones of said depressions.

3. A clothes hanger attachment as in claim 2 wherein said gripping members are arranged in opposed pairs spaced apart along the length of said elongated channel member and said depression is intermediate predetermined ones of said pairs of gripping members.

4. A clothes hanger attachment as in claim 3 wherein each of said end-notches include detent means for engaging said wire for inhibiting side-slopping of the hanger attachment.

5. A clothes hanger attachment as in claim 4 wherein said detent means includes first detent members arranged in each of said end-notches for engaging first curved portions of the wire hanger for inhibiting side-slopping of the hanger attachment when the attachment is mounted on the shoulder portion of the wire hanger.

6. A clothes hanger attachment as in claim 5 wherein said detent means includes second detent members arranged in each of said end-notches for engaging second curved portions of the wire hanger for inhibiting side-slopping of the hanger attachment when the attachment is mounted on the cross-member of the wire hanger.

7. A clothes hanger attachment as in claim 1 wherein said curved garment supporting surface is roughened for inhibiting supported garments from slipping on said supporting surface.

8. A clothes hanger attachment as in claim 1 wherein said hanger attachment is molded from a predetermined thermoplastic material and includes a predetermined scent bearing material molded therein, whereby said predetermined scent is gradually emitted over an extended period of time from the hanger attachment.