
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0167425 A1

LURE et al.

US 20110167425A1

(43) Pub. Date: Jul. 7, 2011

(54) INSTRUMENT-BASED DISTRIBUTED
COMPUTING SYSTEMS

(75) Inventors:

(73) Assignee:

(21) Appl. No.:

(22) Filed:

Roy LURIE, Wayland, MA (US);
Thomas Gaudette, Jamaica Plain,
MA (US)

The MathWorks, Inc., Natick, MA
(US)

13/045,243

Mar. 10, 2011

Related U.S. Application Data

(63)
Dec. 12, 2005, now Pat. No. 7,908,313.

Task1

Continuation of application No. 1 1/301.061, filed on

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.8/102
(57) ABSTRACT

An instrument-based distributed computing system is dis
closed that accelerates the measurement, analysis, Verifica
tion and validation of data in a distributed computing envi
ronment. A large computing work can be performed in a
distributed fashion using the instrument-based distributed
system. The instrument-based distributed system may
include a client that creates a job. The job may include one or
more tasks. The client may distribute a portion of the job to
one or more remote workers on a network. The client may
reside in an instrument. One or more workers may also reside
in instruments. The workers execute the received portion of
the job and may return execution results to the client. As such,
the present invention allows the use of instrument-based dis
tributed system on a network to conduct the job and facilitate
decreasing the time for executing the job.

Technical
Computing

Client, 250A
Client, 150A

Technical
Computing

Client, 250B
Client, 150E

Task1 Results

400

Result Technical
w Task Computing

Job
Job1 Results H

Job2
Job2 Results

Job
Manager Distribution
265A Mechanism

Server, 160A

Automatic Worker, 270A
Workstation, 170A

Task

260A
Technical
Computing

Worker, 270B
Workstation, 170B

Result
Task

Technical
Computing

Worker, 270N

Technical
Computing

Job3
Job3 Results

AutomaticTask
Distribution

Mechanism, 260N

Server, 160N
Task2

Task2 Results Workstation, 170N

Client, 250N
Client, 150N

Task3 Results

US 2011/O167425 A1 Jul. 7, 2011 Sheet 1 of 27 Patent Application Publication

70? ‘JOSS0001)

?

US 2011/O167425 A1 2011 Sheet 2 Of 27 9 Jul. 7 Patent Application Publication

US 2011/O167425 A1 Jul. 7, 2011 Sheet 3 of 27 Patent Application Publication

VZ (31.1

US 2011/O167425 A1 2011 Sheet 4 of 27 9 Jul. 7 Patent Application Publication

59] 'IBAJOS ?97 ‘106eue N qof

07],

US 2011/O167425 A1 Jul. 7, 2011 Sheet 5 of 27 Patent Application Publication

OZ '$1H

US 2011/O167425 A1 Jul. 7, 2011 Sheet 6 of 27 Patent Application Publication

US 2011/0167425 A1 Jul. 7, 2011 Sheet 7 of 27 Patent Application Publication

ºg '81-I

US 2011/O167425 A1 2011 Sheet 8 Of 27 9 Jul. 7 Patent Application Publication

WYS?).

Og '$1H
@ @ @ GOED Gae) Gae.

992 J06eue.W qOT

/9Z "êmênO qof

US 2011/O167425 A1 2011 Sheet 9 Of 27 Jul. 7, Patent Application Publication

810/Z 6u?nduJOO

GIg '$1H ?97 ‘106eue.W qof
**Siffraes)

Waesen
+GOED

W-NAse|| 597 |×Sel 6u?nduJOO | Voor |20?u?001

US 2011/O167425 A1 Jul. 7, 2011 Sheet 10 of 27 Patent Application Publication

Patent Application Publication Jul. 7, 2011 Sheet 11 of 27 US 2011/0167425 A1

Technical Technical
Computing Computing
Client, 250 Worker, 270

Method,500

Step 502

Submit Task
to ObtainTask

Technical from Technical
Computing Computing Client Step 506
Worker

Perform Technical
Computing on

Operation Defined
by Task Step 508

Generate Result
from

Computing Task Step 510

Obtain Result
from Technical
Computing
Worker

Provide Result
to Technical

Computing Client Step 512

Fig. 5A

Patent Application Publication Jul. 7, 2011 Sheet 12 of 27 US 2011/0167425 A1

Technical Automatic Task Technical
Computing Distribution Computing
Client, 250 Mechanism, 260 Worker, 270

Define a Register Register for Task
Task Step 502 Worker When Available

Step 527
Submit Task Make Task
to Automatic
Distribution Available for
Mechanism Distribution Step 532

Register for Register Client
Notification for
of Result Step 534 Notification

Provide Task
Notification

Step 536

Receive Task
Notification Step Step 538 540

Provide TaskTask obtainTaskTask Step
Step 542 544

Perform Technical
Computing on Operation

Defined by Task
Step 508

rom Computing Step
Task 510

Provide
Result Step 550 Result Step 518

Receive Notify
Client Step 552

gian if Step 558 esult eSU ep

Step 556 N-Method 525

Fig. 5B

Patent Application Publication Jul. 7, 2011 Sheet 13 of 27 US 2011/0167425 A1

Technical Job Automatic Task Technical
Computing Manager Distribution Computing
Client, 250 265 Mechanism, 260 Worker, 270

Define One Register

tasks listed 562 Re frk More Tasks Ste OKer e p Step 529 AESS 521

Group Tasks
into Job Step 564

Obtain
Job Job Step 568

Submit Make
One Or Tasks

More TaSKS Available Step 572

Register
Job Mgr.

for
Notification Step 578

Provide Receive

Notification Step Notification 5
- 538

ReCister
Callback
of Client Step

574 576

Register
Callback St 6 p E.

Provide Obtain Step
Task Step 542 Task 544

Perform Technical
Computing on Operation Step

Defined by Task 508

Generate Result
from Computing Step

Task 510
Method, 560

) Provide Step

Fl 5 C Result Step 550 Result 518 3.
Go to Method 585 of Fig. 5D

Patent Application Publication Jul. 7, 2011 Sheet 14 of 27

Technical Job Automatic Task
Computing Manager Distribution
Client, 250 265 Mechanism, 260

Continued from Continued from
Step 576 Step 550
Fig. 5C Fig. 5C

Notify Job
Manader E. Receive

Notification Step 589

Receive
Callback
Function

Notify Client
Through
Callback Step 595

Step Step 599
598 N

Method, 585

Fig. 5D

Step 593

US 2011/O167425 A1

Technical
Computing
Worker, 270

of Result Step 587

US 2011/O167425 A1 Jul. 7, 2011 Sheet 15 of 27 Patent Application Publication

V9 (81+

US 2011/O167425 A1 Jul. 7, 2011 Sheet 16 of 27 Patent Application Publication

992 '106eue.W qOp

US 2011/O167425 A1 2011 Sheet 17 Of 27 9 Jul. 7 Patent Application Publication

399 ||00, 13)||OM

| 493 ?nent) qop

Patent Application Publication

Automatic TaSK
Distribution (ATDM)
Mechanism, 260A

ATDMAdmin, 760A

Job Manager, 265A

Job Manager
Admin,730A

COce Base
Server, 710A
Server, 160

130

Technical
Computing
Client, 250

Client, 150

700

Fig.

Jul. 7, 2011 Sheet 18 of 27

130

130

Automatic Task
Distribution
Mechanism,

260N

Job Manager, 265N
Job Manager
Admin,730N

COdeBase
Server, 710B
Server, 160

130

130
NetWOrk
140

130
130

Norm,712
Network Server, 760

US 2011/O167425 A1

Technical
Computing

Worker, 270A

Worker, 750A
Activation

Daemon, 740A

COce Base
Server, 710C

Workstation, 170A

Technical
Computing

Worker, 270B

Worker, 750B
Activation

Daemon, 740B

COdeBase
Server, 710D

WorkStation, 170B

Technical
Computing

Worker, 270N

Worker, 750N
Activation

Daemon, 740N

Worker,750N

COce Base
Server, 710N

WorkStation, 170N

US 2011/O167425 A1 Jul. 7, 2011 Sheet 19 of 27 Patent Application Publication

VS, '$1H ZZ8
(2)S 028@

8

505

US 2011/O167425 A1 Jul. 7, 2011 Sheet 20 of 27 Patent Application Publication

878 ‘81-I ??Ž 106eueW qof

100[qO Z?sel

98

N0/8
998

100[qOz)|Se|
g019 | | 048

0

US 2011/O167425 A1 Jul. 7, 2011 Sheet 21 of 27 Patent Application Publication

V6 '$1H

Patent Application Publication Jul. 7, 2011 Sheet 22 of 27 US 2011/0167425 A1

Technical
Computing

Client
250

Client, 150

Job Manager,
265

Server, 160

Technical
Computing
Worker
270N

WorkStation,
170N

Technical
Computing

Technical
Computing
Worker
270A

WorkStation,
170A

Worker
270B

WorkStation,
170B

Parallel (Distributed+Streaming)

Fig. 9B

Patent Application Publication Jul. 7, 2011 Sheet 23 of 27 US 2011/0167425 A1

1000

WorkStation

Patent Application Publication Jul. 7, 2011 Sheet 24 of 27 US 2011/0167425 A1

1100
Instrument

Instrumentation 1110
Functionality

Technical 250
Computing Client

270
Technical

Computing Worker
1120

Operating System
118.

NetWOrk IF

Fig. II

120
1220 1210

Control Data

1240

Test Manager ReSOUrces

Unit Under Test

1230

Fig. 13

Patent Application Publication Jul. 7, 2011 Sheet 25 of 27 US 2011/0167425 A1

Technical
Computing
Worker, 270

Instrument, 180
Technical
Computing NetWOrk
Client, 250 140
Client, 150

Technical
Computing
Worker, 270

Workstation, 170

Fig. 12A

Technical
Computing
Worker, 270

Instrument, 180
Technical
Computing
Client, 250

Instrument, 180
Technical
Computing
Worker, 270

Workstation, 170

Fig. 12B

Patent Application Publication Jul. 7, 2011 Sheet 26 of 27 US 2011/0167425 A1

Instrument
180

Sub-Custer
WorkStation 190

m

Fig. 12C
Instrument Or Client Instrument Or WorkStation

1302
Creating a test

Submitting at least
a portion of the test

1304

1314
Dr D O D. O. D. D D

Fig. 14

Patent Application Publication Jul. 7, 2011 Sheet 27 of 27 US 2011/0167425 A1

1500

rogram FloW Step 1502

Evaluate expression

For execution environment
determine portion of array to

process in execution environment

Step 1504

Step 1506

Perform operation on
portion of array stored

in execution environment

Step 1508

Continue program flow Step 1510

Fig. 15

US 2011/0167425 A1

INSTRUMENT-BASED DISTRIBUTED
COMPUTING SYSTEMS

RELATED APPLICATION

0001. This application is a continuation of a pending
United States patent application entitled “INSTRUMENT
BASED DISTRIBUTED COMPUTING SYSTEMS, U.S.
patent application Ser. No. 1 1/301061, filed on Dec. 12, 2005.

TECHNICAL FIELD

0002 The present invention generally relates to a distrib
uted computing environment and more particularly to meth
ods, Systems and mediums for providing an instrument-based
distributed computing system that accelerates the measure
ment, analysis, Verification and validation of data in the dis
tributed computing environment.

BACKGROUND INFORMATION

0003 MATLAB(R) is a product of The MathWorks, Inc. of
Natick, Mass., which provides engineers, scientists, math
ematicians, and educators across a diverse range of industries
with an environment for technical computing applications.
MATLAB(R) is an intuitive high performance language and
technical computing environment that provides mathematical
and graphical tools for mathematical computation, data
analysis, visualization and algorithm development. MAT
LABR) integrates numerical analysis, matrix computation,
signal processing, and graphics in an easy-to-use environ
ment where problems and solutions are expressed in familiar
mathematical notation, without traditional programming.
MATLABR) is used to solve complex engineering and scien
tific problems by developing mathematical models that simu
late the problem. A model is prototyped, tested and analyzed
by running the model under multiple boundary conditions,
data parameters, or just a number of initial guesses. In MAT
LABR), one can easily modify the model, plot a new variable
or reformulate the problem in a rapid interactive fashion that
is typically not feasible in a non-interpreted programming
Such as Fortran or C.
0004 As a desktop application, MATLAB(R) allows scien

tists and engineers to interactively perform complex analysis
and modeling in their familiar workstation environment. With
many engineering and scientific problems requiring larger
and more complex modeling, computations accordingly
become more resource intensive and time-consuming. How
ever, a single workstation can be limiting to the size of the
problem that can be solved, because of the relationship of the
computing power of the workstation to the computing power
necessary to execute computing intensive iterative processing
of complex problems in a reasonable time. For example, a
simulation of a large complex aircraft model may take a
reasonable time to run with a single computation with a
specified set of parameters. However, the analysis of the
problem may also require the model be computed multiple
times with a different set of parameters, e.g., at one-hundred
different altitude levels and fifty different aircraft weights, to
understand the behavior of the model under varied condi
tions. This would require five-thousand computations to ana
lyze the problem as desired and the single computer would
take an unreasonable or undesirable amount of time to per
form these simulations. Therefore, it is desirable to perform a
computation in a distributed manner when the computation
becomes so large and complex that it cannot be completed in

Jul. 7, 2011

a reasonable amount of time on a single computer. In particu
lar, since some instruments are provided on a PC-based plat
form and have capacities to run additional software, it is also
desirable to use the instruments for performing a large com
putation in a distributed manner.

SUMMARY OF THE INVENTION

0005. The present invention provides an instrument-based
distributed computing system that accelerates the measure
ment, analysis, Verification and validation of data in a distrib
uted computing environment. In the present invention, a large
computational job can be performed in a distributed fashion
using the instrument-based distributed system. The instru
ment-based distributed system may include a client that cre
ates a job. The job may include one or more tasks. The client
may distribute a portion of the job to one or more remote
workers for the distributed execution of the job. The client
may reside in an instrument. The workers may also reside in
instruments. The workers execute the received portion of the
job and may return execution results to the client. As such, the
present invention allows the use of instrument-based distrib
uted system on a network to conduct the job and facilitate
decreasing the time for executing the job.
0006. In one aspect of the present invention, a method is
provided for executing a job in a distributed fashion. The
method includes the step of installing a computing client for
providing a computing environment in an instrument. The
method also includes the step of enabling the client to gener
ate a job in the computing environment, wherein the job
includes one or more tasks. The method further includes the
step of distributing the job to remote computing workers for
the distributed execution of the job.
0007. In another aspect of the present invention, a method

is provided for executing a job in a distributed fashion. The
method includes the step of installing a computing worker for
providing a computing environment in the instrument. The
method also includes the step of receiving a portion of a job
generated by a remote client, wherein the job includes one or
more tasks. The method further includes the steps of enabling
the computing worker to execute the received portion of the
job, and returning execution result to the remote client.
I0008. In another aspect of the present invention, a system
is provided for executing a job in a distributed fashion in a
computing environment. The system includes a first instru
ment for generating a job, wherein the job includes one or
more tasks. The system also includes a second instrument for
receiving a portion of the job and executing the received
portion of the job to obtain execution results, wherein the
second instrument returns the execution results to the first
instrument.
0009. In another aspect of the present invention, a medium
holding instructions executable in an instrument is provided
for a method of executing a job in a distributed fashion. The
method includes the step of installing a computing client for
providing a computing environment in the instrument. The
method also includes the step of enabling the client to gener
ate a job in the computing environment, wherein the job
includes one or more tasks. The method further includes the
step of distributing the job to remote computing workers for
the distributed execution of the job.
10010. In another aspect of the present invention, a medium
holding instructions executable in an instrument is provided
for a method of executing a job in a distributed fashion. The
method includes the step of installing a computing worker for

US 2011/0167425 A1

providing a computing environment in the instrument. The
method also includes the step of receiving a portion of a job
generated by a remote client, wherein the job includes one or
more tasks. The method further includes the steps of enabling
the computing worker to execute the received portion of the
job, and returning execution result to the remote client.
0011. The details of various embodiments of the invention
are set forth in the accompanying drawings and the descrip
tion below. Other features and advantages of the invention
will become apparent from the description, the drawings and
the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The foregoing and other objects, aspects, features,
and advantages of the invention will become more apparent
and may be better understood by referring to the following
description taken in conjunction with the accompanying
drawings, in which:
0013 FIG. 1A is a block diagram of a computing device
for practicing an embodiment of the present invention;
0014 FIG. 1B is a block diagram of a distributed comput
ing system for practicing an illustrative embodiment of the
present invention;
0015 FIG. 2A is a block diagram of the components of an
embodiment of the present invention in a two-node net
worked computer system;
0016 FIG. 2B is a block diagram of the components of an
alternative embodiment of the present invention in a multi
tier networked computer system;
0017 FIG. 2C is a block diagram of the components of an
exemplary embodiment of the present invention in a distrib
uted network computer system.
0018 FIG. 3A is a block diagram of the direct distribution
mode of operation of the present invention;
0019 FIG. 3B is a block diagram of the automatic distri
bution mode of operation of the present invention;
0020 FIG. 3C is a block diagram of the batch automatic
distribution mode of operation of the present invention;
0021 FIG. 3D is a block diagram of an exemplary
embodiment of the batch automatic distribution mode of
operation of the present invention;
0022 FIG. 4 is a block diagram illustrating a multiple
mode of operation embodiment of the present invention;
0023 FIG. 5A is a flow diagram of steps performed in an
embodiment of FIG. 3A;
0024 FIG. 5B is a flow diagram of steps performed in an
embodiment of FIG. 3B;
0025 FIG. 5C and FIG. 5D are flow diagrams of steps
performed in a batch mode of operations of the present inven
tion;
0026 FIG. 6A is a block diagram depicting the details of
the automatic task distribution mechanism;
0027 FIG. 6B is a block diagram depicting the details of
the automatic task distribution mechanism with a job man
ager,
0028 FIG. 6C is a block diagram depicting the details of a
job manager comprising the automatic task distribution
mechanism;
0029 FIG. 7 is a block diagram depicting an exemplary
embodiment of the invention using service processes;
0030 FIG. 8A is a block diagram illustrating the use of
objects for user interaction with the distributed system;

Jul. 7, 2011

0031 FIG. 8B is a block diagram illustrating the use of
objects for user interaction with an exemplary embodiment of
the distributed system;
0032 FIG.9A is a block diagram illustrating an operation
of the present invention for distributed and streaming techni
cal computing:
0033 FIG.9B is a block diagram illustrating an operation
of the present invention for parallel technical computing;
0034 FIG. 10 is a block diagram showing an exemplary
distributed system in the illustrative embodiment of the
present invention;
0035 FIG. 11 is a block diagram showing an exemplary
instrument depicted in FIG. 10;
0036 FIGS. 12A-12C are block diagrams showing other
exemplary distributed systems in the illustrative embodiment
of the present invention;
0037 FIG. 13 is a block diagram showing an exemplary
test environment in the illustrative embodiment of the present
invention;
0038 FIG. 14 a flow chart of steps performed in the dis
tributed test system in FIG. 13; and
0039 FIG. 15 is a flow chart showing an exemplary opera
tion for providing a distributed array in the illustrative
embodiment of the present invention.

DETAILED DESCRIPTION

0040 Certain embodiments of the present invention are
described below. It is, however, expressly noted that the
present invention is not limited to these embodiments, but
rather the intention is that additions and modifications to what
is expressly described herein also are included within the
scope of the invention. Moreover, it is to be understood that
the features of the various embodiments described herein are
not mutually exclusive and can exist in various combinations
and permutations, even if such combinations or permutations
are not made express herein, without departing from the spirit
and scope of the invention.
0041. The illustrative embodiment of the present inven
tion provides a distributed computing environment that
enables a user to execute a job in a distributed fashion. In
particular, the illustrative embodiment of the present inven
tion provides an instrument-based distributed computing sys
tem that uses the one or more instruments for the distributed
execution of the job. The instrument-based distributed com
puting system may include a client for creating the job. The
client may distribute a portion of the job to one or more
remote workers for the distributed execution of the job. The
client may reside in an instrument. The workers may also
reside in instruments. The remote workers execute a portion
of the job and return the execution results to the client. The
instruments running the workers may have the capability to
accelerate the execution of the job. For example, the instru
ment may include hardware components, such as FPGA,
ASIC, DSP and CPU, to perform fast calculations, such as
FFT calculations. As such, the illustrative embodiment of the
present invention executes the job in a distributed fashion
using the instrument-based distributed computing system.
The illustrative embodiment of the present invention utilizes
a technical computing client and a technical computing
worker for the distributed execution of the job, which will be
described below in more detail.

US 2011/0167425 A1

0042 A.Technical Computing Client and Technical Com
puting Worker
0043. The illustrative embodiment of the present inven
tion provides for the dynamic distribution of technical com
puting tasks from a technical computing client to remote
technical computing workers for execution of the tasks on
multiple computers systems. Tasks can be declared on a tech
nical computing client and additionally organized into jobs. A
job is a logical unit of activities, or tasks that are processed
and/or managed collectively. A task defines a technical com
puting command. Such as a MATLABOR command, to be
executed, and the number of arguments and any input data to
the arguments. A job is a group of one or more tasks. The task
can be directly distributed by the technical computing client
to one or more technical computing workers. A technical
computing worker performs technical computing on a task
and may return a result to the technical computing client.
0044 Additionally, a task or a group of tasks, in a job, can
be submitted to an automatic task distribution mechanism to
distribute the one or more tasks automatically to one or more
technical computing workers providing technical computing
services. The technical computing client does not need to
specify or have knowledge of the technical computing work
ers in order for the task to be distributed to and computed by
a technical computing worker. The automatic task distribu
tion mechanism can distribute tasks to technical computing
workers that are anonymous to any technical computing cli
ents. The technical computing workers perform the task and
may return as a result the output data generated from the
execution of the task. The result may be returned to the
automatic task distribution mechanism, which, in turn, may
provide the result to the technical computing client.
0045. Furthermore, the illustrative embodiment provides
for an object-oriented interface in a technical computing envi
ronment to dynamically distribute tasks or jobs directly or
indirectly, via the automatic task distribution mechanism, to
one or more technical computing workers. The object-ori
ented interface provides a programming interface for a tech
nical computing client to distribute tasks for processing by
technical computer workers.
0046. The illustrative embodiment will be described
solely for illustrative purposes relative to a MATLAB(R)-
based distributed technical computing environment.
Although the illustrative embodiment will be described rela
tive to a MATLAB(R)-based application, one of ordinary skill
in the art will appreciate that the present invention may be
applied to distributing the processing of technical computing
tasks with other technical computing environments, such as
technical computing environments using Software products
of LabVIEWR) or MATRIXx from National Instruments,
Inc., or MathematicaR) from Wolfram Research, Inc., or
Mathcad of Mathsoft Engineering & Education Inc., or
MapleTM from Maplesoft, a division of Waterloo Maple Inc.
0047. The illustrative embodiment of the present inven
tion provides for conducting a test in a distributed fashion
tasks from a technical computing client to remote technical
computing workers for execution of the tasks on multiple
computers systems. Tasks can be declared on a technical
computing client and additionally organized into jobs. A job
is a logical unit of activities, or tasks that are processed and/or
managed collectively. A task defines a technical computing
command, such as a MATLAB(R) command, to be executed,
and the number of arguments and any input data to the argu
ments. A job is a group of one or more tasks. The task can be

Jul. 7, 2011

directly distributed by the technical computing client to one
or more technical computing workers. A technical computing
worker performs technical computing on a task and may
return a result to the technical computing client.
0048. Additionally, a task or a group of tasks, in a job, can
be submitted to an automatic task distribution mechanism to
distribute the one or more tasks automatically to one or more
technical computing workers providing technical computing
services. The technical computing client does not need to
specify or have knowledge of the technical computing work
ers in order for the task to be distributed to and computed by
a technical computing worker. The automatic task distribu
tion mechanism can distribute tasks to technical computing
workers that are anonymous to any technical computing cli
ents. The technical computing workers perform the task and
may return as a result the output data generated from the
execution of the task. The result may be returned to the
automatic task distribution mechanism, which, in turn, may
provide the result to the technical computing client.
0049 Furthermore, the illustrative embodiment provides
for an object-oriented interface in a technical computing envi
ronment to dynamically distribute tasks or jobs directly or
indirectly, via the automatic task distribution mechanism, to
one or more technical computing workers. The object-ori
ented interface provides a programming interface for a tech
nical computing client to distribute tasks for processing by
technical computer workers.
0050 FIG. 1A depicts an environment suitable for prac
ticing an illustrative embodiment of the present invention.
The environment includes a computing device 102 having
memory 106, on which software according to one embodi
ment of the present invention may be stored, a processor
(CPU) 104 for executing software stored in the memory 106,
and other programs for controlling system hardware. The
memory 106 may comprise a computer system memory or
random access memory such as DRAM, SRAM, EDO RAM,
etc. The memory 106 may comprise other types of memory as
well, or combinations thereof. A human user may interact
with the computing device 102 through a visual display
device 114 Such as a computer monitor, which may include a
graphical user interface (GUI). The computing device 102
may include other I/O devices such a keyboard 110 and a
pointing device 112, for example a mouse, for receiving input
from a user. Optionally, the keyboard 110 and the pointing
device 112 may be connected to the visual display device 114.
The computing device 102 may include other suitable con
ventional I/O peripherals. The computing device 102 may
support any suitable installation medium 116, a CD-ROM,
floppy disks, tape device, USB device, hard-drive or any other
device Suitable for installing Software programs, such as the
MATLAB(R)-based distributed computing application 120.
The computing device 102 may further comprise a storage
device 108, such as a hard-drive or CD-ROM, for storing an
operating system and other related Software, and for storing
application software programs, such as the MATLAB(R)-
based distributed computing application 120 of an embodi
ment of the present invention. Additionally, the operating
system and the MATLAB(R)-based distributed computing
application 120 of the present invention can be run from a
bootable CD, such as, for example, KNOPPIX(R), a bootable
CD for GNU/Linux.
0051. Additionally, the computing device 102 may
include a network interface 118 to interface to a Local Area
Network (LAN), Wide Area Network (WAN) or the Internet

US 2011/0167425 A1

through a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter, wire
less network adapter, USB network adapter, modem or any
other device Suitable for interfacing the computing device
118 to any type of network capable of communication and
performing the operations described herein. Moreover, the
computing device 102 may be any computer system such as a
workstation, desktop computer, server, laptop, handheld
computer or other form of computing or telecommunications
device that is capable of communication and that has suffi
cient processor power and memory capacity to perform the
operations described herein.
0052 FIG. 1A depicts the MATLAB(R)-based distributed
computing application 120 of an embodiment of the present
invention running in a stand-alone system configuration of a
single computing device 102. FIG. 1B depicts another envi
ronment Suitable for practicing an illustrative embodiment of
the present invention, where functionality of the MATLAB(R)-
based distributed computing application 120 is distributed
across multiple computing devices (102', 102" and 102"). In
a broad overview, the system 100 depicts a multiple-tier or
n-tier networked computer system for performing distributed
Software applications such as the distributed technical com
puting environment of the present invention. The system 100
includes a client 150 (e.g., a first computing device 102') in
communications through a network communication channel
130 with a server computer 160, also known as a server, (e.g.,
a second computing device 102") over a network 140 and the
server in communications through a network communica
tions channel 130 with a workstation (e.g., a third computing
device 102") over the network 140'. The client 150, the server
160, and the workstation 170 can be connected 130 to the
networks 140 and/or 140' through a variety of connections
including, but not limited to, standard telephone lines, LAN
or WAN links (e.g., 802.11, T1, T3, 56 kb, X.25), broadband
connections (e.g., ISDN. Frame Relay, ATM), wireless con
nections, or some combination of any orall of the above. Each
of the client 150, server 160 and workstation 170 can be any
type of computing device (102', 102" and 102") as described
above and respectively configured to be capable of computing
and communicating the operations described herein.
0053. In one embodiment, each of the client 150, server
160 and workstation 170 are configured to and capable of
running at least a portion of the present invention of the
MATLAB(R)-based distributed computing application 120.
As a distributed software application, the MATLAB(R)-based
distributed computing application has one or more software
components that run on each of the client 150, server 160 and
workstation 170, respectively, and work in communication
and in collaboration with each other to meet the functionality
of the overall application. For example, the client 150 may
hold a graphical modeling environment that is capable of
specifying block diagram models and technical computing
tasks to analyze the model. The client 150 may have software
components configured to and capable of submitting the tasks
to the server 160. The server 160 may have software compo
nents configured to and capable of receiving the tasks Sub
mitted by the client 150 and for determining a workstation
170 to assign the task for technical computing. The worksta

Jul. 7, 2011

tion 170 may hold software components capable of providing
a technical computing environment to perform technical
computing of the tasks assigned from the server 160 and
submitted by the client 150. In summary, the technical com
puting environment and Software components of the MAT
LAB(R)-based distributed computing application 120 may be
deployed across one or more different computing devices in
various network topologies and configurations.
0054 FIG. 2A depicts an illustrative embodiment of the
components of the MATLAB(R)-based distributed computing
application 120. In brief overview, the system 200 of the
MATLAB(R)-based distributed computing application 120 is a
two-node distributed System comprising a technical comput
ing client application 250, or technical computing client,
running on a client 150 computer and a technical computing
worker application 270, or technical computing worker, run
ning on a workstation 170. The technical computing client
250 is in communications with the technical computing
worker 270 through a network communications channel 130
over a network 140.

0055. The technical computing client 250 can be a tech
nical computing Software application that provides a techni
cal computing and graphical modeling environment for gen
erating block diagram models and to define mathematical
algorithms for simulating models. The technical computing
client 250 can be a MATLAB(R)-based client, which may
include all or a portion of the functionality provided by the
standalone desktop application of MATLAB(R). Additionally,
the technical computing client 250 can be any of the software
programs available in the MATLAB(R) product family. Fur
thermore, the technical computing client 250 can be a custom
software program or other software that accesses MATLAB(R)
functionality viaan interface. Such as an application program
ming interface, or by other means. One ordinarily skilled in
the art will appreciate the various combinations of client types
that may access the functionality of the system.
0056. With an application programming interface and/or
programming language of the technical computing client
250, functions can be defined representing a technical com
puting task to be executed by either a technical computing
environment local to the client computer 150, or remote on
the workstation 270. The local technical computing environ
ment may be part of the technical computing client 250, or a
technical computing worker running on the client computer
150. The programming language includes mechanisms,
described below in more detail, to define a task to be distrib
uted to a technical computing environment and to communi
cate the task to the technical computing worker 270 on the
workstation 170, or alternatively, on the client 150. For
example, the technical computing client 250 may declare a
function to generate a random set often numbers and further
delegate that the technical computing worker 270 running on
the workstation 170 execute the function. Also, the applica
tion programming interface and programming language of
the MATLAB(R)-based client 250 includes mechanisms,
described in more detail below, to receive a result from the
execution of technical computing of the task from another
technical computing environment. For example, the technical
computing client 250 may declare a variable to hold a result
returned from the technical computing worker 270 perform
ing technical computing of the random generation function.
0057 The distributed functionality features of the pro
gramming languages of the MATLAB(R)-based client 250
allows the technical computing client 250 to use the comput

US 2011/0167425 A1

ing resources that may be available from a technical comput
ing worker 270 on the workstation 170 to perform technical
computing of the task. This frees up the technical computing
client 250 to perform other tasks, or the client computer 150
to execute other software applications.
0058. The technical computing worker 270 of the system
200 can be a technical computing software application that
provides a technical computing environment for performing
technical computing of tasks, such as those tasks defined or
created by the technical computing client 250. The technical
computing worker 270 can be a MATLAB(R)-based worker
application, module, service, software component, or a ses
Sion, which includes Support for technical computing of func
tions defined in the programming language of MATLABR). A
session is an instance of a running technical computing
worker 270 by which a technical computing client can con
nect and access its functionality. The technical computing
worker 270 can include all the functionality and software
components of the technical computing client 250, or it can
just include those software components it may need to per
form technical computing of tasks it receives for execution.
The technical computing worker 270 may be configured to
and capable of running any of the modules, libraries or soft
ware components of the MATLAB(R) product family. As such,
the technical computing worker 270 may have all or a portion
of the software components of MATLAB(R) installed on the
workstation 170, or alternatively, accessible on another sys
tem in the network 140. The technical computing worker 270
has mechanisms, described in detail later, to receive a task
distributed from the technical computing client 250. The
technical computing worker 270 is capable of performing
technical computing of the task as if the technical computing
client 250 was performing the technical computing in its own
technical computing environment. The technical computing
worker 270 also has mechanisms, to return a result generated
by the technical computing of the task to the technical com
puting client 250.
0059. The technical computing worker 270 can be avail
able on an as needed basis to the technical computing client
250. When not performing technical computing of tasks from
the technical computing client 250, the workstation 170 of the
technical computing worker 270 can be executing other soft
ware programs, or the technical computing worker 270 can
perform technical computing of tasks from other technical
computing clients.
0060 FIG. 2B shows another illustrative embodiment of
the MATLAB(R)-based distributed computing system of an
embodiment of the present invention in a multi-tier distrib
uted computer system as depicted in FIG. 2B. The multi-tier
distributed system 205 includes a technical computing client
250 running on a client computer 150 in communications
over a network communication channel 130 to a server 160 on
a network 140. The server 160 comprises an automatic task
distribution mechanism 260 and a job manager 265. The job
manager 265 interfaces with the automatic task distribution
mechanism 260 on the server 160. The automatic task distri
bution mechanism 260 communicates over a network com
munication channel 130 on the network 140 to the technical
computing worker 270 on the workstation 170.
0061. The automatic task distribution mechanism 260
comprises one or more application Software components to
provide for the automatic distribution of tasks from the tech
nical computing client 250 to the technical computing worker
270. The automatic task distribution mechanism 260 allows

Jul. 7, 2011

the technical computing client 250 to delegate the manage
ment of task distribution to the automatic task distribution
mechanism 260. For example, with the programming lan
guage of MATLABR), a task can be defined and submitted to
the automatic task distribution mechanism 260 without speci
fying which technical computing worker 270 is to perform the
technical computing of the task. The technical computing
client 250 does not need to know the specifics of the technical
computing worker 270. The technical computing client can
define a function to Submit the task to the automatic task
distribution mechanism 260, and get a result of the task from
the automatic task distribution mechanism 260. As such, the
automatic task distribution mechanism provides a level of
indirection between the technical computing client 250 and
the technical computing worker 270.
0062. This eases the distributed programming and integra
tion burden on the technical computing client 250. The tech
nical computing client 250 does not need to have prior knowl
edge of the availability of the technical computing worker
270. For multiple task submissions from the technical com
puting client 250, the automatic task distribution mechanism
260 can manage and handle the delegations of the tasks to the
same technical computing worker 270, or to other technical
computing workers and hold the results of the tasks on behalf
of the technical computing client 250 for retrieval after the
completion oftechnical computing of all the distributed tasks.
0063 As part of the software components of the MAT
LAB(R)-based distributed computing environment, a job man
ager module 265, or job manager, is included as an inter
face to the task and result management functionality of the
automatic task distribution mechanism 260. The job manager
265 can comprise an object-oriented interface to provide
control of delegating tasks and obtaining results in the multi
tiered distributed system 205. The job manager 265 provides
a level of programming and integration abstraction above the
details of inter-process communications and workflow
between the automatic task distribution mechanism 260 and
the technical computing worker 270. The job manager 265
also provides an interface for managing a group of tasks
collectively as a single unit called a job, and on behalf of a
technical computing client 250, Submitting those tasks mak
ing up the job, and obtaining the results of each of the tasks
until the job is completed. Alternatively, the automatic task
distribution mechanism 260 can include the functionality and
object-oriented interface of the job manager 265, or the auto
matic task distribution mechanism 260 and the job manager
265 can be combined into a single application, or Software
component. In an exemplary embodiment, the job manager
265 comprises both the functionality of the job manager 265
and the automatic task distribution mechanism 260. One ordi
narily skilled in the art will recognize the functions and opera
tions of the job manager 265 and the automatic task distribu
tion mechanism 260 can be combined in various software
components, applications and interfaces.
0064 Referring now to FIG. 2C, an exemplary embodi
ment of the present invention is shown with multiple technical
computing workers 270A-270N hosted on a plurality of
workstations 170A-170N. The technical computing client
250 may be in communication through the network commu
nication channel 130 on the network 140 with one, some orall
of the technical computing workers 270A-270N. In a similar
manner, the automatic task distribution mechanism 260 may
be in communication through the network communication
channel 130 on the network 140 with one, some or all of the

US 2011/0167425 A1

technical computing workers 270A-270N. As such, the tech
nical computing client 250 and/or the automatic task distri
bution mechanism 260 can distribute tasks to multiple tech
nical computing workers 270A-270N to scale the distributed
system and increase computation time of tasks. As also shown
in FIG. 2C, the technical computing workers 270A-270B can
be hosted on the same workstation 170A, or a single technical
computing worker 270C can have a dedicated workstation
170B. Alternatively, one or more of the technical computing
workers 270A-270N can be hosted on either the client 150 or
the server 160.

0065. The computing devices (102, 102', 102", 102")
depicted in FIGS. 1A and 1B can be running any operating
system such as any of the versions of the Microsoft(R) Win
dows operating systems, the different releases of the Unix and
Linux operating systems, any version of the MacOS(R) for
Macintosh computers, any embedded operating system, any
real-time operating system, any open source operating sys
tem, any proprietary operating system, any operating systems
for mobile computing devices, or any other operating system
capable of running on the computing device and performing
the operations described herein. Furthermore, the software
components of MATLAB(R)-based distributed computing
environment can be capable of and configured to operate on
the operating system that may be running on any of the
computing device (e.g., 102, 102', 102", 102"). Additionally,
each of the client 150, the server 160 and the workstation 170
can be running the same or different operating systems. For
example, the client 150 can running Microsoft(R) Windows,
the server 160 can be running a version of Unix, and the
workstation a version of Linux. Or each of the client 150, the
server 160 and the workstation 170 can be running
Microsoft(R) Windows. Additionally, the software compo
nents of the MATLAB(R)-based distributed computing envi
ronment can be capable of and configured to operate on and
take advantage of different processors of any of the comput
ing device (e.g., 102, 102', 102", 102"). For example, the
software components of the MATLAB(R)-based distributed
computing environment can run on a 32 bit processor of one
computing device 102 and a 64 bit processor of another
computing device 102'. In a distributed system, such as the
system depicted in FIG. 1B, MATLAB(R)-based distributed
computing application can operate on computing devices
(102, 102', 102", 102") that can be running on different
processor architectures in addition to different operating sys
tems. One ordinarily skilled in the art will recognize the
various combinations of operating systems and processors
that can be running on any of the computing devices (102.
102', 102", and 102").
0066 Although the present invention is discussed above in
terms of distributing software components of the MAT
LAB(R)-based distributed computing application across the
computing devices of a client 150, server 160 and workstation
170, any other system and/or deployment architecture that
combines and/or distributes one or more of the technical
computing client 250, job manager 265, automatic task dis
tribution mechanism 260 and technical computing worker
270 across any other computing devices and operating sys
tems available in the network 140 may be used. Alternatively,
all the software components of the MATLAB(R)-based distrib
uted computing application can run on a single computing
device 102, such as the client 150, server 160 or the worksta
tion 170.

Jul. 7, 2011

0067. The MATLAB(R)-based distributed computing
application of an embodiment of the present invention pro
vides flexibility in methods of task distribution with multiple
modes of operation. In FIGS. 3A, 3B and 3C, three modes of
task distribution of the MATLAB(R)-based distributed com
puting environment are shown. FIG. 3A depicts a direct dis
tribution mode, FIG.3B, an automated distribution mode and
FIG. 3C, a batch mode of automated distribution. Addition
ally, FIG. 3D depicts an exemplary embodiment of the batch
mode of automated distribution.

0068. The direct distribution system 305 of FIG. 3A is
intended for those users who desire a high level of control
over which technical computing worker 270A-270N executes
a particular task. In brief overview of the direct distribution
system 305, the technical computing client 250 is in commu
nications with a plurality of technical computing workers,
270A-270N, each running on their own workstation 170A
170N. In an alternative embodiment, one or more of these
technical computing workers 270A-270N can be running on
the same computing device, e.g., workstation 270A, or on the
client 150 or the server 160. This direct distribution system
305 allows a task to be sent to a particular technical comput
ing worker, e.g., technical computing worker 270A of a plu
rality of technical computing workers 270A-270N. Then, the
technical computing client 250 can continue with other work
while the specified technical computing worker, e.g., techni
cal computing worker 270A, is performing technical comput
ing of the submitted task. Some time after submitting the task
to the technical computing worker 270A, the technical com
puting client 250 can then obtain the result of the task from the
technical computing worker 270A. Furthermore, each tech
nical computing worker 270N can process multiple tasks,
e.g., TaskN-M, and for each task produce a result, e.g.,
ResultN-M. Alternatively, the technical computing worker
270A may perform technical computing of a task without
returning a result, or may return information acknowledging
completion of the task. This mode of task distribution is
useful for a computer network with a relatively small number
of known workstations 170A-170N and technical computing
workers 270A-270N. A task can be delegated to a specified
technical computing worker running 270A on a workstation
170A that has a higher speed configuration than the other
workstations 170 B-170N. For example, a longer task could
be executed on such a workstation 170A in order to speed the
overall computation time.
0069. As further depicted in FIG. 3A, the technical com
puting client 250 of the direct distribution system 305 can
submit multiple tasks (e.g., TaskN-M) to each of the multiple
technical computing workers 270A-270N. For example, the
technical computing client 250 submits task 1 to technical
computing worker 270A, Submits task 2 to technical comput
ing worker 270B, and submits task N to technical computing
worker 270N. The technical computing client 250 can submit
task1, task2 and taskN-M one immediately after another or
within a certain time between each other. As such, the tech
nical computing workers 270A-270N can be performing
technical computing of their respective tasks independently
and in parallel to each other. Alternatively, the technical com
puting workers 270A-270N may perform technical comput
ing of their respective task while the other technical comput
ing workers are idle.
0070. In another embodiment, the technical computing
workers 270A-270N may include interfaces and communi
cation channels to interact with each other as depicted by the

US 2011/0167425 A1

phantom arrowed lines between the technical computing
workers 270A-270N in FIG. 3A. In such an embodiment,
technical computing worker 270A may perform a portion of
technical computing on task1, and then Submit task1, and
optionally, any generated result or other data, for further
technical computing by technical computing worker 270B.
Also, the technical computing worker 270A may also submit
the result of its technical computing of task1 to the technical
computing client 250, before or after, submitting the task to
technical computing worker 270B for further processing.
Technical computing worker 270B may in turn perform tech
nical computing of task1, and Subsequently Submit task1 for
further processing by technical computing worker 270N. For
additional configurability, the technical computing workers
270A-270N can obtain information with the task about the
identification of other technical computing workers 270A
270N in the system. This information would be used to com
municate and interact with another technical computing
worker. Alternatively, a technical computing worker 270A
may find another technical computing worker 270B-270N by
making a function or system call, or a method call to a service
provider on the network 140. In Such a configuration, techni
cal computing workers 270A-270N can either execute tasks
independently and in parallel to each other, or also execute
tasks serially and Subsequent to each other.
0071 Referring now to FIG. 3B, the automated task dis
tribution mode embodied in system 310 is intended to provide
a configuration where the user does not want to control which
technical computing worker 270A-270N executes a particu
lar task. In brief overview of the automated distribution mode
of system 310, a technical computing client 250 is in com
munication with the automatic task distribution mechanism
260 running on the server 160. The automatic task distribu
tion mechanism 260 is in communications with a plurality of
technical computing workers 270A-270N. Under this mode
of operation, the technical computing client 250 is not
required to have any specific knowledge of the technical
computing workers 270A-270N, e.g., the name of the work
station running a technical computing worker 270A-270N, or
the availability of the technical computing worker 270A
270N to perform technical computing of a task. In alternative
embodiments, it may have prior knowledge of all or a portion
of the technical computing workers 270A-270Navailable on
the network. Even with knowledge of the name or availability
of technical computing workers 270A-270N on the network
140, the technical computing client 250 can choose not to
specify the name of a particular technical computing worker
to perform the task, and let the automated distribution mecha
nism distribute the task to any available technical computing
worker 270A-27ON.

0072. In FIG.3B, the technical computing client 250 sub
mits one or more tasks (Task1-TaskN-M) to the automatic
task distribution mechanism 260. These tasks can be submit
ted sequentially or in an order and frequency as specified by
the technical computing client 250. The automatic task dis
tribution mechanism 260 obtains the tasks (Task1-TaskN-M)
to make then available for distribution to any of the technical
computing workers 270A-270N. A technical computing
worker 270A-270N takes a task from the automatic task
distribution mechanism 260 for technical computing of the
task, computes a result for the task and provides the result to
the automatic task distribution mechanism 260. For example,
technical computing worker 270A takes task 1 from the auto
matic task distribution mechanism 260, computes a result,

Jul. 7, 2011

Result 1, for task 1, and submits Result 1 to the automatic task
distribution mechanism 260. The automatic task distribution
mechanism 260 makes the results (Result1-ResultN-M)
available to the technical computing client 250 as they get
submitted from the technical computing worker 270A-270N
generating and Submitting the respective result. At a time or
method determined by the technical computing client 250, the
technical computing client 250 obtains the results of the com
puted tasks from the automatic task distribution mechanism
260. For example, the technical computing client 250 may
obtain all the results (Result1-ResultN-M) at the same time
after all the results have been computed, or each result may be
obtained after it becomes available in the automatic task
distribution mechanism 260. Accordingly, the technical com
puting client 250 can determine the order and frequency of
obtaining one or more of the results. As with the direct dis
tribution mode, the technical computing workers 270A-270N
can also communicate and interact with each other, as
depicted by the phantom arrowed lines between the technical
computing workers 270A-270N in FIG. 3B, to execute tasks
both serially and in parallel by Submitting a task to another
technical computing worker 270A-270N.
0073. The batch mode of automated task distribution
embodied in system 315 of FIG. 3C is intended to provide a
configuration where the user can specify a group of related
tasks as a job and provide the batch of tasks, or the job, to the
automatic task distribution mechanism 260. In brief overview
of the batch mode of the automatic distribution system 315, a
technical computing client 250 is in communication with the
job manager 265 on the server 160. The job manager 265
interfaces and communicates with the automatic task distri
bution mechanism 260 running on the same server 160. Each
of the technical computing workers 270A-270N is in com
munication with the automatic task distribution mechanism
260. Ajob manager 265 interfaces with and is associated with
one automatic task distribution mechanism 260. Alterna
tively, the job manager 265 and the automatic task distribu
tion mechanism could be on different servers 160. Addition
ally, a plurality of job managers and automatic task
distribution mechanisms could be running on a single server
160 or each on their own servers. Each of the plurality of job
managers interface with and are associated with one of the
plurality of automatic distribution mechanisms. This allows
the distributed system to scale the number of instances of the
job manager 265 and the automatic distribution mechanism
260 to handle additional multiple technical computing clients
250 distributing tasks.
0074. In batch mode as depicted in FIG. 3C, the technical
computing client 250 defines the job. The technical comput
ing client 250 has a programming language environment by
which it can declare tasks, declare a job and associate the
tasks with the job. Instead of Submitting each task separately
as depicted in FIG. 3B, the technical computing client 250
Submits the job containing all the associated tasks to the job
manager 265. The job manager 265 is a software component
that provides an object-oriented interface to the automatic
task distribution mechanism 260. The job manager 265
obtains the tasks from the job and provides the tasks to the
automatic task distribution mechanism 260 for technical
computing workers 270A-270N to take and compute results.
For example, technical computing client 250 defines a job,
Job1, with a set of three tasks: Task1, Task2 and TaskN-M.
The technical computing client 250 then submits Job1 to the
job manager 265. The job manager 265 obtains Job1 and

US 2011/0167425 A1

obtains each of the tasks, Task1-TaskN-M from Job 1. Then,
according to the configured logic of the job manager 265.
described in more detail below, the job manager 265 submits
each of the tasks to the automatic task distribution mechanism
260 for technical computing by a technical computing worker
270A-270N. Technical computing worker 270A may take
Task1 from the automatic task distribution mechanism 260,
compute a Result1 for Task1 and provide the Result1 to the
automatic task distribution mechanism 260. Technical com
puting worker 270B and technical computing worker 270N,
in a similar fashion, compute and provide results for Task2
and TaskN-M respectively. The job manager 265 then obtains
the set of results for the completed job of Job1 and provides
the results of each of the tasks to the technical computing
client 250.

0075. The job manager 265 further comprises a queue 267
for arranging and handling Submitted jobs. For example, the
job manager 265 may handle jobs in a first-in first-out (FIFO)
manner. In this case, the job manager 265 does not process the
next job until all the tasks from the current job have been
processed by the automatic task distribution mechanism 260.
Additionally, the job manager 265 using the queue 267 Sup
ports handling multiple job Submissions and task distribution
from multiple technical computing clients 250. If a first tech
nical computing client 250 submits a job, Job1, the job man
ager 265 places that job first in the queue 267. If a second
technical computing client Submits a second Job, for
example, Job 2, the job manager places the job in the queue
behind the Job1 from the first client. In this manner, all
technical computing clients 250 accessing the services of the
job manager 265 get serviced for task distribution. One ordi
narily skilled in the art will recognize that the job manager
265 could implement a variety of algorithms for processing
jobs in a job queue 267 and for handling multiple technical
computing clients 250. For example, a user may be able to
specify a priority level for a specified job, or the logic of the
job manager 265 may make task distributing and processing
decisions based on the configuration and availability of tech
nical computing workers 270A-270B to determine a pre
ferred or optimal selection of technical computing of jobs and
tasks.

0076. As with the other distribution modes of FIG. 3A and
FIG. 3B, the technical computing workers 270A-270N in
batch mode can also communicate and interact with each
other as shown by the phantom arrowed lines between tech
nical computing workers 270A-270N in FIG.3C. This allows
the technical computing workers 270A-270N to execute tasks
both serially and in parallel by Submitting a task to another
technical computing worker. As part of the information asso
ciated with the task obtained by a technical computing worker
or by other means, such as a system or function call, or a
method call to a service, a technical computing worker 270A
can obtain information about the other technical computing
workers 270 B-270N assigned to or working on tasks associ
ated with a specific job, or available on the network 140.
0077. The exemplary embodiment of the batch mode of
automated task distribution system 320 of FIG. 3D depicts a
configuration where the job manager 265 contains the auto
matic task distribution mechanism 260. In brief overview of
system 320, a technical computing client 250 is in commu
nication with the job manager 265 on the server 160. The job
manager 265 comprises a task distribution mechanism 260
running as part of the job manager 265 on the same server
160. The job manager 265 further comprises a queue 267 for

Jul. 7, 2011

arranging and handling Submitted jobs. The technical com
puting workers 270A-270N are in communication with the
job manager 265 to receive tasks from the automatic task
distribution mechanism 260 of the job manager 265.
0078. In batch mode operation as depicted in FIG. 3D, the
technical computing client 250 defines the job comprised of
related tasks. Instead of Submitting each task separately as
depicted in FIG.3B, the technical computing client 250 sub
mits the job containing all the related tasks to the job manager
265. The job manager 265 obtains the tasks from the job and
Submits the tasks, via an automatic task distribution mecha
nism 260, to the technical computing workers 270A-270N to
perform technical computing. For example, technical com
puting client 250 defines a job, Job1, with a set of three tasks:
Task1, Task2 and TaskN-M. The technical computing client
250 then submits Job1 to the job manager 265. The job
manager 265 obtains Job1 and obtains each of the tasks,
Task1-TaskN-M, from Job 1. Then, the automatic task distri
bution mechanism 260 of the job manager 265 submits each
of the tasks to a technical computing worker 270A-270N for
technical computing. For example, the job manager 265 may
submit Task 1 to technical computing worker 270A to com
pute and produce a Result1 for Task1. Technical computing
worker 270A provides the Result1 to the job manager 265. In
a similar fashion, the job manager 265 may submit Task2 and
TaskN-M to technical computing worker 270B and technical
computing worker 270N with each technical computing
worker 270A and 270B providing the results for Task2 and
TaskN-M respectively to the job manager 265. When all the
results from each of the tasks of Job1 are received, the job
manager 265 then provides the results of each of the tasks of
Job 1 to the technical computing client 250.
(0079. In the batch mode of operation of depicted in FIGS.
3C and 3D, the job manager 265 or automatic task distribution
mechanism 260 can be configured to define the minimum and
maximum numbers of technical computing workers 270A
270N to perform the tasks associated with a job. This feature
can be configured on a job by job basis. Alternatively, it may
be configured for a portion or all of the jobs. The configura
tion of these settings can be facilitated through parameters
associated with a Submitted job. Such as in one or more
properties of a job object, or in one or more fields of a data
structure representing a job. Alternatively, these settings may
be facilitated through any interface of the job manager 265 or
automatic task distribution mechanism 260. Such as in a con
figuration file, graphical user interface, command or message
or any other means by which values for these settings may be
Set.

0080. The system (e.g. 315 or 320) can compare the num
ber of technical computing workers 270A-270N registered,
or otherwise available, with the job manager 265 or automatic
task distribution mechanism 260 against the configured set
ting of the minimum number of technical computing workers
parameter. The system may not start a job unless there is a
minimum number of technical computing workers 270A
270N registered or available to work on the job. In a similar
manner, the system can check the number of available or
registered technical computing workers 270A-270N against
the setting of the maximum number of technical computing
workers parameter. As the system distributes tasks of a job, it
can make Sure not to distribute tasks to more than the defined
number oftechnical computing workers 270A-270N. In some
embodiments, the minimum number of technical computing
workers will be set to a value equal to the setting of the

US 2011/0167425 A1

maximum number of technical computing workers. In Such a
case, the system may only start the job if the minimum num
ber of technical computing workers 270A-270A are available
or registered to start the job, and may not use any more
technical computing workers 270A-270N than the minimum
setting. This is useful for cases where the user wants to con
figure a job to have each task be assigned to and run on
separate technical computing workers 270A-270N. For
example, a job may have 5 tasks and the minimum and maxi
mum technical computing worker settings may be set to 5.
0081. Additionally, in any of the embodiments depicted in
FIGS. 3A-3D, the system can determine or select the techni
cal computer worker 270A-270N to work on a task by opera
tional and/or performance characteristics of the technical
computing worker 270A-270N and/or workstation 170A
170N. For example, a technical computing worker 270A may
work on a task based on the version of the MATLAB(R)-based
distributed computing application that is installed on the
workstation 170A or that the technical computing worker
270A is capable of running.
0082. Additionally, the technical computing worker
270A-270N and workstation 170A-170N may have a speci
fication or profile, such as a benchmark comparison results
file, which provides a description of any operational and
performance characteristics of the version of the MAT
LAB(R)-based distributed computing application running on
that specific computing device 102 of the workstation 170A.
This profile can be in comparison to known benchmarks of
operational and performance characteristics of the MAT
LAB(R)-based distributed computing application running on
certain computing devices (102, 102', 102", 102"), with
specified versions of the MATLAB(R)-based distributed com
puting application, operating systems and other related Soft
ware, or any other system component or attribute that may
impact the operation or performance of the MATLAB(R)-
based distributed computing application. This profile may be
described in a file accessible over the network or retrievable
through an interface mechanism of the technical computing
worker 270A-270N. Furthermore, the system may determine
the technical computing worker 270A-270N to work on a task
by any configuration or properties set on the technical com
puting worker 270A-270N or workstation 170A-170N. For
determining a technical computing worker 270A-270N to
work on a task, the system may discover any configuration,
properties, and operational and performance characteristics
of the MATLAB(R)-based distributed computing application
of a technical computing worker 270A-270N running on a
workstation 170A-170N through any interface of the techni
cal computing worker 270A-N or workstation 170A-170N,
Such as, for example, in a file, graphical user interface, com
mand or message.
I0083. The MATLAB(R)-based distributed computing
application of an embodiment of the present invention also
provides additional flexibility in that the multiple modes of
task distribution can be performed concurrently in the distrib
uted system. FIG. 4 is an illustrative embodiment of the
present invention showing the distributed application per
forming, concurrently, the combination of the modes of
operation depicted in FIGS. 3A-3C. Additionally, the distrib
uted system 400 is depicted supporting multiple clients
250A-250N communicating with multiple job managers
265A-265N and multiple automatic task distribution mecha
nisms 260A-260N. With these multiple modes of operation,
any technical computing client 250A-250N can distribute

Jul. 7, 2011

tasks directly to a technical computing worker 270A-270N,
Submit tasks to the automatic task distribution mechanism
260, or submit a job to the job manager 265. In the depicted
multi-client distributed system 400, a plurality of technical
computing clients 250A-250N are in communication with
one or more job managers 265A-265N. The job manager
265A can be a separate component interfacing to the auto
matic task distribution mechanism 260A, or the job manager
265N can be a single application comprising the functionality
of the automatic task distribution mechanism 260N. The one
or more technical computing workers 270A-270B are incom
munication with the one or more job managers 265N or the
one or more automatic task distribution mechanisms 260A.
The distributed architecture of the present invention allows
for a scalable and flexible distributed technical computing
environment Supporting a variety of deployments and net
work topologies.
I0084. For example, as shown in FIG. 4, a technical com
puting client 250A can operate in both the direct distribution
mode and the batch automated distribution mode. As such,
technical computing client 250A can Submit a task to and
receive a result from the automatic task distribution mecha
nism 260A without using the job manager 265A. In another
instance, technical computing client 250A can Submit a job,
Job1, to the job manager 265A for task distribution by the
automatic task distribution mechanism 260A to receive
results from the job, such as Job1 Results. In another example
of FIG. 4, technical computing client 250B can operate in
batch automated distribution modebut submit jobs separately
to a first job manager 265A running on a first server 160A and
a secondjob manager 265N running on a second server 160N.
In yet another example, technical computing client 250N
operates in both the automated distribution and direct distri
bution modes. Technical computing client 250N submits a
task, Task2, to automatic task distribution mechanism 260N
and receives a result, Task2Result, from computing by a
technical computing worker 270A-270N assigned by the sys
tem 400. Technical computing client 250N also directly sub
mits a task to technical computing worker 270N and receives
a computed result directly from the technical computing
worker 270N. One ordinarily skilled in the art will appreciate
the various combinations of deployments that can occur with
such a distributed system 400 with multiple modes of opera
tion. As such, the present invention offers Scalability and
flexibility for distributed processing of complex technical
computing requirements.
I0085. In another aspect, the present invention relates to
methods for distributing tasks to technical computing work
ers 270A-270N for processing, either directly, or indirectly
and automatically, as described above in reference to the
embodiments depicted in FIGS.3A-3C. FIGS.5A,5B and5C
each show a flow diagram of the methods of the three modes
of task distribution of the MATLAB(R)-based distributed com
puting application. FIG. 5A depicts the method of direct
distribution, FIG. 5B, the method of an automated distribu
tion, and FIG. 5C, a batch mode method of automated distri
bution.

I0086) Referring now to FIG. 5A, one embodiment of the
method 500 to distribute a task from a technical computing
client 250 to a technical computing worker 270 is illustrated.
Method 500 is practiced with the direct distribution embodi
ment of the invention depicted in FIG. 3A. The technical
computing client 250 defines a task comprising an operation
for technical computing (step 502). The task defines a func

US 2011/0167425 A1

tion, command or operation, such as may be available in the
programming language of MATLABR), and the number of
arguments and input data of the arguments. The technical
computing client 250 then submits the task (step 504) to the
technical computing worker 270. The technical computing
worker 270 receives the task (step 506) and performs the
requested technical computing as defined by the task (step
508). In performing the technical computing on the task, an
associated result may be generated (step 510). In alternative
embodiments, either no result is generated, or no result is
required to be returned to the technical computing client 250.
After generating the result from computing the task, the tech
nical computing worker 270 provides the result (step 512) to
the technical computing client 250, and the technical com
puting client 250 obtains the result from the technical com
puting worker 270 (step 514).
I0087. Referring now to FIGS. 5B, an embodiment of the
method 525 to distribute a task from a technical computing
client 250 to a technical computing worker 270 in automated
task distribution mode is illustrated. Method 525 is practiced
with the automatic task distribution embodiment of the inven
tion depicted in FIG. 3B. A technical computing worker 270
registers to receive notification of one or more tasks (step 527)
becoming available, or appearing, in the automatic task dis
tribution mechanism 260. The technical computing client 250
defines a task comprising an operation for technical comput
ing (step 502). The technical computing client 250 then sub
mits the task (step 530) to the automatic task distribution
mechanism 260. The automatic task distribution mechanism
260 receives the task and makes the task available for distri
bution (step 532) to a technical computing worker 270. The
technical computing client registers (step 534) with the auto
matic task distribution mechanism 260 to receive notification
when a result associated with the task submitted in step 530 is
available, or appears, in the automatic task distribution
mechanism 260. The automatic task distribution mechanism
260 registers the technical computing client 250 for notifica
tion when the result appears (step 536). The automatic task
distribution mechanism 260 provides notification (step 538)
to the technical computing worker 260 of the availability of
the task. In response to receiving the notification (step 540),
the technical computing worker obtains (step 544) the task
provided (step 540) from the automatic task distribution
mechanism 260. The technical computing worker 270 per
forms the requested technical computing on the function or
command as defined by the task (step 508). In performing the
technical computing on the task, an associated result may be
generated (step 510). In alternative embodiments, either no
result is generated or the result is not required to be returned
to the technical computing client 250. After generating the
result from computing the task (step 510), the technical com
puting worker 270 provides the result (step 512) to the auto
matic task distribution mechanism 260. After obtaining the
result from the technical computing worker 250 (step 550),
the automatic task distribution mechanism 260 notifies (step
552) the technical computing client 250 that the result is
available. The technical computing client 250 obtains (step
556) the result provided (step 558) by the automatic task
distribution mechanism 260.

I0088 Referring now to FIGS. 5C and 5D, one embodi
ment of the method 560 to distribute a task from a technical
computing client 250 to a technical computing worker 270 in
a batch mode of operation is illustrated. Method 560 is prac
ticed with the batch mode of the automatic task distribution

Jul. 7, 2011

system (e.g. 315 or 320). A technical computing worker 270
registers to receive notification of one or more tasks (step 527)
becoming available, or appearing, in the automatic task dis
tribution mechanism 260. In an exemplary embodiment, the
technical computing worker registers to receive a task from
the job manager 265 or automatic task distribution mecha
nism 260 as notification to perform computing on the task.
The technical computing client 250 defines one or mores
tasks (step 562), with one or more of the tasks comprising an
operation or function for technical computing. The technical
computing client 250 groups one or more tasks of the tasks
into a job (step 564). The technical computing client 250 then
submits the job (step 566) to the job manager 265. The job
manager 265 obtains the job (step 568) from the technical
computing client 250 and provides the one or more tasks of
the job (step 570) to the automatic task distribution mecha
nism 260, which makes the one or more tasks available for
distribution (step 572) to one or more technical computing
workers 270A-270N. In an exemplary embodiment, the job
manager 265 or the automatic task distribution mechanism
260 may submit the one or more tasks to the one or more
technical computing workers 270A-270N. In another
embodiment, the technical computing worker 270 may take
the task from the job manager 265 or the automatic task
distribution mechanism 260.

I0089. The technical computing client 250 registers (step
574) a callback function with the job manager 265. The tech
nical computing client 250 may setup and/or register other
callback functions based on changes in the state of processing
of a task or job, or changes in the state of the job manager, or
other events available to trigger the calling of a function. The
job manager 265 calls this function when the job is com
pleted, i.e., when each of the one or more tasks of the job have
been completed. In turn, the job manager 265 may register
(step 576) with the automatic task distribution mechanism
260 to receive notification of the results of the submitted tasks
appearing in the automatic task distribution mechanism 260,
or being received from the technical computing worker
270A-270N. In one embodiment, the automatic task distribu
tion mechanism 260 registers the notification request of the
job manager (step 578). Then, the automatic task distribution
mechanism 260 provides notification to the technical com
puting worker 270 of the availability of the task (step 538). In
an exemplary embodiment, the task is sent, by the job man
ager 265 to the technical computing worker 270 as notifica
tion to perform the task. In response to receiving the notifi
cation or the task (step 540), the technical computing worker
270 obtains (step 542) the task provided (step 540) from the
automatic task distribution mechanism 260 or the job man
ager 265. The technical computing worker 270 performs the
requested technical computing on the operation as defined by
the task (step 508). In performing the technical computing on
the task, an associated result may be generated (step 510). In
alternative embodiments, either no result is generated or the
result is not required to be returned to the technical computing
client 250. After generating the result from computing the
task (step 510), the technical computing worker 270 provides
the result (step 510) to the automatic task distribution mecha
nism 260 or the job manager 265. After obtaining the result
from the technical computing worker 250 (step 550), the
automatic task distribution mechanism 260 notifies (step 587)
the job manager 265 that the result is available. In an exem
plary embodiment, the job manager 265 receives the results
from the technical computing worker 270. In response to

US 2011/0167425 A1

receiving the notification or the result (step 589), the job
manager 265 obtains the result (step 591) provided by (step
593) the automatic task distribution mechanism 260. If the
job manager 265 received the last result of the job, the job
manager 265 will notify the technical computing client 250
that the job is completed via the registered callback function
(step 595). After triggering the completed job callback func
tion (step 597), the technical computing client 250 obtains
(step 598) the result provided (step 599) by the job manager
265.

0090. With the methods of task distribution described
above (methods 500, 525, and 560) in view of the embodi
ment of the concurrent multiple distribution modes of opera
tion depicted in system 400 of FIG.4, one ordinarily skilled in
the art will recognize the application of the above methods to
the multiple modes of operation for each technical computing
client 250A-250N in FIG. 4.

0091 FIG. 6A shows the details of one embodiment of the
automation features of a technical computing client 250 and
technical computing worker 270 distributing tasks and results
with the automatic task distribution mechanism 260. The
automatic task distribution mechanism 260 may be object
oriented and comprise an object exchange repository 662,
Such as JavaSpace, a Sun MicroSystems, Inc. technology for
distributed application development built using Jini network
technology also from Sun MicroSystems, Inc.
0092. The JavaSpace technology views an application as a
collection of processes cooperating via a flow of objects into
and out of an object exchange repository 662, known as a
space. It does not rely on passing messages directly between
processes or invoking methods directly on remote objects. A
key feature is that spaces are shared. Many remote processes,
Such as technical computing workers and job managers of the
present invention, can interact with the network accessible
object storage of a space. Spaces are also persistent and
therefore, provide reliable storage. Spaces are also associa
tive in that objects in the space can be located by associative
lookup rather than by memory location or identifier, e.g., in a
shared memory Solution. Additionally, a space has a few key
operations to perform on the object repository to handle the
exchanging of objects. A write operation writes an object,
Such as a task object, to the space. A take operation takes an
object, such as result object, from the space. A take is the
equivalent of a read and removes the object from the space. A
read operation obtains a copy of the object from the space and
leaves the object intact in the space. Other operations allow
remote processes, such as technical computing workers, tech
nical computing clients and job managers to register for event
notification when a certain object appears in the space. An
object appears in the space when a process writes the object to
the space. The remote process listens for the appearance of
objects in the space and the space notifies the registered
remote process when the object appears.
0093. In an alternative embodiment of the present inven

tion, an object exchange repository Such as one implemented
with JavaSpace technology is used to provide a level of indi
rection between the technical computing client 250 and the
technical computing worker 270 with regards to task and
result objects. By the automatic communication features
described above, the technical computing client 250 does not
need to specify a named technical computing worker 270 to
perform technical computing. The automatic task distribution
mechanism 260 comprising the object exchange repository
662 handles task distribution to technical computing workers

11
Jul. 7, 2011

270A-270N registered with the automatic task distribution
mechanism 260. To distribute tasks and results, the technical
computing client 250 and technical computing worker 270
read and write task and result objects to the object exchange
repository 662.
0094) Referring now to FIG. 6A, a technical computing
client 250 executes a write transaction to write a task object to
the object exchange repository 662 of the automatic task
distribution mechanism 260. The task object defines a task for
technical computing by a technical computing worker 270
who obtains the task object from the object exchange reposi
tory 662. The technical computing client 250 registers with
the object exchange repository 662 to be notified when a
result object associated with the submitted task object is
available in the object exchange repository 662. In this way,
the technical computing client 250 can listen for the appear
ance of results for tasks Submitted for technical computing
processing. A technical computing worker 270 registers with
the object exchange repository 662 to be notified when a task
object appears in the object exchange repository 662. After
the technical computing client 250 writes the task object, the
object exchange repository 662 sends a notification to the
technical computing worker 270 informing of the task object
being available in the object exchange repository 662. The
technical computing worker 270, in response to the notifica
tion, performs a take operation on the object exchange reposi
tory 662 to retrieve the submitted task object. The take opera
tion removes the task from the object exchange repository
662. In the alternative, a read operation can be performed to
get a copy of the task object without removing it from the
object exchange repository 662.
0.095 The technical computing work 270 obtains the name
and arguments of the function to compute from the data
structure of the task object. Then the technical computing
worker 270 provides the result from the computation by per
forming a write operation to write a result object to the object
exchange repository 662. The result object defines within its
data structure a result of the computation of the function
defined in the task object and performed by the technical
computing worker 270. The write of the result object to the
object exchange repository 662 triggers the notification event
registered by the technical computing client 250. The techni
cal computing client 250 listening for the result to appear in
the object exchange repository 662, in response to the notifi
cation, performs a take operation, or alternatively a read
operation, to obtain the result object associated with the sub
mitted task. The technical computing client 250 then obtains
the result information defined within the data structure of the
retrieved result object.
0096 FIG. 6B depicts the operations of the automatic task
distribution mechanism 260 interfacing with a job manager
265. In this embodiment, the job manager 265 is a software
component providing a front-end interface to the automatic
task distribution mechanism 260, and in this exemplary
embodiment, the JavaSpace object exchange repository 662.
The job manager 265 supports the batch mode of automatic
task distribution operation of the invention. Under batch pro
cessing, tasks are grouped into a job in the technical comput
ing client 250 and then the job is submitted to the job manager
265 for task distribution and task processing by a technical
computing worker 270. When the job manager 265 receives a
job from one or more technical computing clients 250A
250N, the job manager 265 places the job into a position in a
job queue 267. The job queue 267 is a data structure for

US 2011/0167425 A1

holding and arranging jobs, and maintaining the state and
other attributes about the job while the job is being processed.
The job manager 265 handles jobs in a first-in first-out (FIFO)
manner and manages the job queue 267 to first take out the job
that was first received by the job manager 265 and placed into
the job queue 267. For example, the job queue 267 depicted in
FIG. 6B is holding the jobs of job1, job2 through jobn. Job 1
is the first submitted job to the job manager 265 and is posi
tioned at the top of the job queue 267. Job2 through JobN are
the next subsequent jobs in the job queue 267 in order of a
FIFO queuing system. While Job1 is being processed, the job
manager 265 does not start to process the next job, Job2, until
there are no tasks from the Job1 remaining to be processed in
the object exchange repository 662. One ordinarily skilled in
the art will appreciate the variations of job management
implementations that may be accomplished using a job queue
with different queuing and priority mechanisms.
0097. Still referring to FIG. 6B, the technical computing
client 250 submits a job to the job manager 265 and specifies
a callback function with the job manager 265. The job man
ager 265 is to call the callback function when the job is
completed. The job manager receives the job, e.g., job1, and
places the job into a job queue 267. The job manager 265 then
obtains the one or more tasks from the first job submitted to
the job queue. In the embodiment of a JavaSpace implemen
tation of the object exchange repository 662, the job manager
265 writes the task object to the object exchange repository
662. The job manager 265 registers with the object exchange
repository 662 to receive a notification when a result object
associated with the task appears in the object exchange
repository 662, also known as a space. The job manager 265
listens and waits for the result to appear in the object
exchange repository 662.
0098. A technical computing worker 270 registers with
the object exchange repository 662 to receive a notification
when a task object appears in the object exchange repository
662. Then the technical computing worker 270 listens for the
appearance of task objects. When the task is submitted to the
object exchange repository 662 by the job manager 265, the
technical computing worker 270 receives a notification and
takes the task from the object exchange repository 662 by
performing a take operation. The technical computing worker
270 obtains the function to be executed from the definition of
the function in data structure of the task object, performs the
function and generates a result of the function for the task.
Then the technical computing worker 270 submits a result
object representing a result of the task to the object exchange
repository by performing a write operation. The job manager
265 waiting for the result to appear in the object exchange
repository 662 receives a notification from the object
exchange repository 662 that the result is available. The job
manager 265 checks to see if this is the last result to be
obtained from the object exchange repository 662 for the job
currently being processed. If the result is the last result, the
job manager 265 then notifies the technical computing client
250 that the job is completed by calling the registered call
back function. In response to executing the callback function,
the technical computing client 250 then interfaces with the
job manager 265 to retrieve the results from the job manager
265, which the job manager 265 retrieves from the object
exchange repository 662 by performing a take operation.
0099 FIG. 6C depicts an exemplary embodiment of
details of the batch mode of operation of the present invention
using a database rather than an object exchange repository. In

Jul. 7, 2011

this embodiment, the job manager 265 includes the function
ality of the automatic task distribution mechanism 260. In
brief overview, the technical computing client 250 is in com
munication with the job manager 265, which is in communi
cation with the technical computing worker 270. The job
manager comprises a job queue 267, an automatic task dis
tribution mechanism 260, a job runner 667, a workerpool 668
and a database 669. Any of these components of the job
manager 265 can be a separate library, interface, Software
component or application. In an exemplary embodiment,
these components can be running in their own processing
thread to provide multi-tasking capabilities.
0100. The worker pool 668 contains a list of technical
computing workers 270A-270N that are available to work on
a task. These technical computing workers 270A-270N may
on startup register with a job manager 265. The name of the
job manager 265 the technical computing worker 270A-270N
is associated with may be configurable by an interface of the
technical computing worker 270A-270N, or by a command
line startup parameter, or an external configuration or regis
tration file. The worker pool 668 may keep a list of “good
technical computing workers 270A-270N, or those workers
to which the job manager 265 can communicate with and can
determine has such a status to be available for processing
tasks. The job manager 265 can update the worker pool 667
by going through the list of technical computing workers
270A-270N registered in the worker pool 667 and sending
communications to each of the technical computing workers
270A-270N to determine their status and if they are available.
Accordingly, the worker pool 667 can be updated to deter
mine the current set of technical computing workers 667
available, or otherwise able to receive tasks from the job
manager 265.
0101 The job runner 667 is responsible for determining
the next task to work on and for Submitting the task to a
technical computing worker 270A-270N. The job runner 667
works with the job queue 267 and takes the next task for
processing from a job in the job queue 267. The job runner
667 obtains from the worker pool 668 a name of or reference
to a technical computing worker 270A-270N and submits the
task for processing to the obtained technical computing
worker 270A-270N. The job runner 667 may be configured to
have business rule logic to determine the next task to take
from the job queue either in a FIFO manner supported by the
job queue 267 or any other manner based on priority, avail
ability, task and job option settings, user configuration, etc.
The job runner 667 in conjunction with the worker pool 668
and the job queue 267 can form a portion of or all of the
functionality of the automatic task distribution mechanism
260. The job runner 667 can have such logic to determine
from the worker pool 668 which technical computing worker
270A-270N should be assigned and sent a task from the job
queue 267. Alternatively, a separate automatic task distribu
tion mechanism 260 can be responsible for determining the
technical computing worker 270A-270N to be assigned a task
and to send the task to the assigned technical computing
worker 270A-270N. In any of these embodiments, the tech
nical computing worker 250 does not need to know the iden
tity, Such as via a hostname oran internet protocol address, of
the technical computing worker 270A-270N assigned to per
form technical computing on a task.
0102 The job manager 265 also has a database 669 for
storing and retrieving job manager, job and task objects and
data, or other objects and data to support the operations

US 2011/0167425 A1

described herein. For example, jobs in the job queue 267, the
list of workers of the worker pool 668, the tasks of any jobs in
the job queue 267, the properties of any of the task, job or job
manager objects may be stored in the database 669. The
database 669 can be a relational database, or an object-ori
ented database. Such as database software or applications
from Oracle(R) or SQL Server from Microsoft(R), or any other
database capable of storing the type of data and objects Sup
porting the operations described herein. The database 669 can
be an in process database 669 of the job manager 265 or it can
be a remote database 669 available on another computing
device 102 or another server 260". Furthermore, each
instance of the job manager 265A-265N could use a different
database and operating system than other instances of the job
manager 265A-265N, or be using a local database while
another job manager 265A-265N uses a remote database on
another server 160'. One ordinarily skilled in the art will
appreciate the various deployments of local or remote data
base access for each of the one or more job managers 265A
26SN.

0103) The job manager 265 can be configured to execute
certain functions based on changes of the state of a job in the
queue 267. For example, the technical computing client 250
can setup functions to be called when a job is created in a job
queue 267, when the job is queued, when a job is running or
when a job is finished. The job manager 265 is to call these
functions when the appropriate change in the state of job
occurs. In a similar manner, the taskandjob can be configured
to call specified functions based on changes in state of the task
or job. For example, a job may be configured to call a function
when a job is added to the queue, when a task is created, when
a task is completed, or when a task starts running. A task may
be configured to call a function when the task is started, or
running.
0104 Referring still to FIG. 6C, the technical computing
client 250 submits a job, Job1, comprised of one or more
tasks, such as Task 1 and Task2, to the job manager 265. The
job manager receives the job, e.g., job1, and places the job
into a job queue 267. The job runner 667 then obtains the one
or more tasks from the first job submitted to the job queue
267. A technical computing worker 270 registers with the job
manager 265 and is listed in the worker pool 668 of the job
manager 265. From the worker pool 668, the job runner 667
determines a technical computing worker 270A-270N to sub
mit the task for processing. The technical computing worker
270A-270N obtains the function to be executed from the
definition of the function in data structure of the task object,
performs the function and generates a result of the function
for the task. Then the technical computing worker 270
updates the task object to provide a result of the task. For
example, the task object may have a field representing the
output arguments from the execution of the function defined
by the task. The output arguments may contain one or more
arrays of data as allowed by the programming language of
MATLABR). Additionally, the task object may contain an
error field to which the technical computing worker 270A
270N updated to indicate any error conditions in performing
the task or executing the function of the task. The job manager
265 checks to see if this is the last result to be obtained from
a technical computing worker 270A-270N for the job cur
rently being processed. If the result is the last result, the job
manager 265 can provide the set of task results for the com
pleted job to the technical computing client 250.

Jul. 7, 2011

0105. Although the invention is generally discussed in
terms of a job manager 265, automatic task distribution
mechanism 260 and technical computing worker 250 as dis
tributed Software components available on various comput
ing devices in the network, these Software components can be
operated as services in a service oriented distributed archi
tecture. One embodiment of a service oriented technology
approach is the use of Jini network technology from Sun
MicroSystems, Inc. Jini network technology, which includes
JavaSpaces Technology and Jini extensible remote invoca
tion, is an open architecture that enables the creation of net
work-centric services. Jini technology provides a method of
distributed computing by having services advertise the avail
ability of their provided service over a network for others to
discover. Clients and other Software components can discover
the advertised services and then make remote method calls to
the discovered services to access the functionality provided
by the service. As such, the software components of the
MATLAB(R)-based distributed computing application can be
implemented as services which can be discovered and
looked-up via advertising.
0106 Referring now to FIG. 7, an exemplary embodiment
of the invention is shown implementing a service oriented
approach with Jini network technology. In broad overview of
the system 700, the technical computing client 250, technical
computing workers 270A-270N, job managers 265A-265.N.
automatic task distribution mechanisms 260A-260N are in
communication over the network 140 via network communi
cation channels 130. Additionally there is a network server
760 in communication with the network 140 through the
network communication channel 130. The network server
760 hosts a code base server 710. In an exemplary embodi
ment, the code base server 710 is an ftp server. In other
embodiments, the code base server 710 is a web server, such
as Java web server, oran http server. The code base server 710
is capable of and configured to upload files, including class or
interface files. In an exemplary embodiment, the code base
server 710 may upload JAR files. The code base server 710
may be available on the network 140 to Jini based services to
obtain class files as a service on the network 140 may need, or
it may be available to a technical computing client 250 to
determine the interface to a service on the network 140.

0107. In support of implementing software components of
the present invention as Jini services, one or more of the
following Jini services are available on the network server
760 on the network 14.0: Reggie 718, Mahalo 716, Fiddler
714 and Norm 712. These services are part of the Sun Tech
nology Jini network technology implementation. Reggie 718
is a Jini service that provides service registration and discov
ery. This allows clients of a service to find the service on the
network 140 without knowing the name of the computing
device the service is running on. Mahalo 716 is a transaction
manager service that provides fault tolerant transactions
between services and clients of the service accessing the
service. Fiddler 714 is a lookup discovery service. A Jini
based service needs to register itself with an instance of
Reggie in order to be discoverable on the network 140. The
lookup discovery service of Fiddler 714 allows the service to
find new Reggie services and register with them while inac
tive. Norm 712 is a lease renewal service. Services registered
with Reggie are leased. When the lease on a registration
expires, the service becomes unavailable from the instance of
Reggie. Normallows a Jini service to keep leases from expir
ing while the service is inactive. The services of Reggie,

US 2011/0167425 A1

Mahalo, Fiddler and Norm can be run on any computing
device 102 on the network 140 capable of running these
services and can be run on a single java virtual machine
(JVM).
0108 Referring again to FIG. 7, the technical computing
workers 270A-270N, which provide MATLAB(R) sessions,
are made available as Jini Services to support the direct task
distribution mode of operation of the invention. The technical
computing workers 270A-270N register with a lookup ser
vice such as Reggie 718. This allows the technical computing
workers 270A-270N to be discoverable on the network 140
by a technical computing client 250 without the technical
computing client 250 knowing information like the host name
of the workstations 170A-170N the technical computing
workers 270A-270N are running on, or the port number to
which a specific technical computing worker 270A-270N
service is listening on, or a worker name associated with a
technical computing worker 270A-270N.
0109. The technical computing workers 270A-270N also
support service activation with an activation daemon 740A
740N software component. Activation allows a technical
computing worker service 270A-270N to register with an
activation daemon 740A-740B to exit and become inactive,
but still be available to a technical computing client 250. In all
three distribution modes of operation as embodied in FIGS.
3A-3C, the MATLAB(R)-based technical computing workers
270A-270N can be activated by an activation daemon 740A
740N. This means that an activation daemon 740A-740N
starts and stops the technical computing worker 270A-270N.
For example, the technical computing worker 270A service
registers with the activation daemon 740A on workstation
170A. The technical computing worker 270A includes the
activation states of active, inactive and destroyed. In the active
state, the technical computing worker 270A is started and is
available for remote method calls from a technical computing
client 250. The starting of the service and its availability for
remote method calls, or an instance of a running of the ser
vice, may be referred to a session. In the inactive state, the
technical computing client 250 is not started, but is still avail
able for remote method calls from a technical computing
client 250. If a remote method call to the technical computing
worker service 270A is made by the technical computing
client 250, the technical computing worker service 270A will
be started by the activation daemon 740A, and the method call
will be executed by the technical computing worker service
270A. In the destroyed state, the technical computing worker
service 270A is not running and is not registered with the
activation daemon 740A. In this state, the technical comput
ing worker service 270A is not available for remote calls from
a technical computing client 270. As such, the activation
daemons 740A-740N provide persistence and maintain the
state of the technical computing worker services 270A-270N.
0110. The activation feature of technical computing
worker services 270A-270N saves computing resources on
workstations hosting the technical computing worker, and
also increases service reliability. For example, if the technical
computing worker service 270A terminates abruptly, the acti
vation daemon 740A will automatically restart the next time
a call is made to it. The activation daemon 740A-740N also
provides for the graceful termination of the technical com
puting worker service 270A-270N. If an inactivate command
is sent to a technical computing worker service 270A-270N,
the technical computing worker service 270A-270N can
complete the processing of outstanding method calls before

Jul. 7, 2011

terminating. Alternatively, a command can be sent to the
technical computing worker 270A-270N to force immediate
termination in the middle of processing a task. Additionally,
in one embodiment, a technical computing worker 270A can
be configured and controlled to shutdown after the comple
tion of processing of a task. If the technical computing worker
270A is not shutdown, it can be further configured to keep the
state of the technical computing environment, including any
calculation or other workspace information, intact for the
next task that may be processed.
0111. In another embodiment of the technical computer
worker service, the technical computing worker services
270A-270N can default to a non-debug mode when the tech
nical computing worker service 270A-270N is started, either
by the activation daemon 740A-740N or by other conven
tional means. Alternatively, the activation daemon 740A
740N and/or the technical computing worker service 270A
270N can be configured to start in debug mode, giving access
to command line interface of the technical computing worker
270A-27ON.

0112. In a manner similar to technical computing worker
services 270A-270N, the job managers 265A-265N and auto
matic task distribution mechanisms 260A-260N as depicted
in FIG. 7 can also be implemented as services. As such, the
job managers 265A-265N and automatic task distribution
mechanisms 260A-260N can support lookup registration and
discovery so that a technical computing client 250A can find
the service without knowing the associated name of the Ser
vice, the host name of the server 160 running the service, or
the port name the service is listening on. Additionally, the job
manager 265A-265N and automatic task distribution mecha
nism services 260A-260N can be supported by activation
daemons as with the technical computing worker services
270A-270N.

0113. In another aspect of the invention, the services of the
technical computing worker 270A-270N, job manager 265A
265N and the automatic task distribution mechanism 260A
260N, can also have administration functions in addition to
the operational functions discussed above. Administration
functions may include such functionality as determining the
current status of the service, or calling debug functions on the
service, or manually calling specific methods available from
the service. As depicted in FIG. 7, the technical computing
workers 270A-270N may each include a technical computing
worker administration software component 740A-740B, the
job managers 265A-265N may each include a job manager
administration software component 730A-730B, and the
automatic task distribution mechanisms 260A-260N may
also each include an administration software component
760A-760N. Any and each of these administration software
components may be part of the respective service, or a sepa
rate software component, or another service in itself. Addi
tionally, these administration software components may
include a graphical user interface for easier administration of
the service. From the graphical user interface, a user may be
able to exercise a portion or all of the functionality provided
by the administration component and/or the methods pro
vided by the service. Any of these administration functions
may be not be available to users of the technical computing
client 250, and may be configured to only be available to
system administrators or to those users with certain access
rights to such functionality.
0114. For example, the administration component 760A
of the automatic task distribution mechanism 260A may pro

US 2011/0167425 A1

vide a graphical view showing the tasks and results currently
in the automatic task distribution mechanism. It may further
show the movement of tasks and results in and out of the
automatic task distribution mechanism along with the Source
and destinations of Such tasks and results. Additionally, the
graphical user interface may allow the user to set any of the
properties and execute any of the methods described in the
object-oriented interface to the object exchange repository
664, or space, as described in the user defined data classes
below.

0115. In another example, the job manager administration
component 730A may provide a graphical view of all the jobs
in the job queue 267 of the job manager 265. It may further
show the status of the job and the state of execution of each of
the tasks comprising the job. The graphical user interface may
allow the user to control the jobs by adding, modifying or
deleting jobs, or arranging the order of the job in the queue
267. Additionally, the graphical user interface may allow the
user to set any of the properties and execute any of the meth
ods described in the object-oriented interface to the job man
ager 266 as described in the user defined data classes below.
0116. A graphical user interface to the technical comput
ing worker administration component 750A-750N may pro
vide a user the ability to change the activation state, stop and
start, or debug the technical computing worker service 270A
270N. Additionally, the graphical user interface may allow
the user to set any of the properties and execute any of the
methods described in the object-oriented interface to the tech
nical computer worker 270A-270N as described in the user
defined data classes below.

0117. Another aspect of this invention is the use of objects
to perform object-oriented user interaction with the task and
job management functionality of the distributed system. FIG.
8A depicts one embodiment of using user defined data classes
as part of the MATLABR) programming language. In the
object-oriented distributed system 800 embodiment of the
present invention, the system 800 makes use of task objects
810, result objects 812, job objects 814 and jobresults objects
816 These objects present a lower level user interaction
mechanism to interact with the task distribution functionality
of the system 800.
0118. In the object-oriented distributed system 800 of
FIG. 8A, the technical computing client 250 creates or
declares a task object 810. The task object 810 is a user
defined data class containing a MATLABOR command, input
data and number of arguments. The technical computing cli
ent 250 submits the task object, in the automated mode of
operation, to the automatic task distribution mechanism 260,
which stores the task object 810 in the object exchange
repository 662. A technical computing worker 270 listening
and waiting for a task object 810 to appear in the object
exchange repository 662, takes the task object 810 to perform
technical computing of the task. The technical computing
worker 270 obtains the MATLAB(R) command and arguments
from the properties of the task object 810 and performs tech
nical computing on the taskin accordance with the command.
The technical computing worker 270 then creates or specifies
a result object 812, which is a user defined data object con
taining the output data resulting from the execution of a task
represented by a task object 810. The technical computing
worker 270 then writes the result object 812 to the object
exchange repository 662. The technical computing client 250
listens and waits for the appearance of the result object 812 in
the object exchange repository 662. After the result object

Jul. 7, 2011

812 appears in the object exchange repository, the technical
computing client 250 takes the result object 812 from the
object exchange repository and retrieves result information
from the properties of the result object 812.
0119 Referring still to FIG. 8A, in batch mode, the tech
nical computing client 250 creates or declares a job object
814, which is a user defined data object containing an array of
task objects 810. The technical computing client 250 then
submits the job object 814 to the job manager 265 for pro
cessing. The job manager 265 then Submits the one or more
task objects 820 defined in the job object 814 to the object
exchange repository 662 for processing by a technical com
puting worker 270. The technical computing worker 270 lis
tening for the appearance of the task objects 820, takes the
task objects 820 and performs technical computing on the
function as defined by each task object. The technical com
puting worker 270 then generates results and creates or speci
fies the result objects 822 representing the output generated
for each function of each of the task objects 820 of the job
object 814. The technical computing worker 270 then writes
the result objects 822 to the object exchange repository 662.
The job manager 662 listening for the appearance of the result
objects 822 takes the result objects from the object exchange
repository 662. The job manager 265 then creates or specifies
the jobresults object 816, which in an object that provides an
array of result objects 844 for each task object defined in a job
object 814. The job manager then provides the jobresults
object 816 to the technical computing client 250. One ordi
narily skilled in the art will recognize the various combina
tions of uses of each of these objects in performing the opera
tion of the multiple modes of distribution as depicted in FIG.
4

I0120 In an embodiment of the invention as depicted in
FIG. 8A and by way of example, the following functions and
properties are available in the programming language of
MATLAB(R) via toolbox functionality of MATLAB(R) for task
distribution management functionality:

Task

Properties

0121

Property Name Property Description

TaskID unique task identifier
JobD non-null if this task is part of a job
FunctionNameAndEarameters name of function and parameters of

function
NumberOfCutputArguments number of output arguments of function
StartTime startTime

Methods

0122)

Method Name Method Description

evaluate evaluates function and returns Result

US 2011/0167425 A1 Jul. 7, 2011

Result

Properties -continued

(0123 Method Name Method Description

activate starts the MATLAB process

Property Name Property Description isActive returns true if the MATLAB process is running
isBusy returns true if MATLAB is processing task or

TaskID unique identifier given to corresponding task object otherwise busy
JobD non-null if this result is part of a job
Output Arguments output arguments isProcessingTask returns true if MATLAB is processing task
StartTime start time currentTask returns the task being processed if idle, returns
EndTime end time null
WorkerName name of work performing function
ErrorMessage error message, if any dbstop basic debugging commands

dbstep basic debugging commands
dbcont basic debugging commands

Worker break sends Ctrl-C
isLoggin returns true if logging is turned on Properties ggling 99. 9.
log L = 0 turns off logging L = 1 turns on logging

0124 getStats output arg format (return argument contents not
yet determined)

clearResults makes uncollected results available for garbage
Property Name Property Description collection

listen listen to the space for the appearance of task
Name assigned name of worker Service
MachineName name of computer worker service is running on objects
TaskCompleted Fen called whenever the worker finishes a directly getMachineProperties return a structure of machine specific information

evaluated task (system load, processor speed, amount of
Admin instance of Worker Admin class

memory, number of processors, etc)

Methods

0125 Space

Properties

Method Name Method Description 0128

evaluateTask evaluate the function defined by instance of Task class
getResult get instance of Result class generated by evaluatetask

Property Name Property Description

Name name of space
Worker Admin MachineNme host name of computer running the space

RSultavailableFcn name of function to call
Properties Space Admin returns an instance of the Space Admin class

0126

Methods

Property Name Property Description 0129

Worker instance of Worker class

Method Name Method Description
Methods

putTask the task will be written to the space
O127 getTask a task will be taken from the space. This will block

until a task is found. If passed a null, a task with any
TaskID will be returned.

getTaskIfAvailable will return null if no task is immediately available
putResult will place a result into the JavaSpace

Method Name Method Description getResult works the same as gettask, except a result will be
taken rather than a task.

destroy removes all traces of the MATLAB service getResultIfAvailable will return null if no result with the corresponding
stop unregisters the service but maintains files on disk TaskID is available
deactivate stops the MATLAB process, but does not

unregister service

US 2011/0167425 A1

SpaceAdmin
Properties

0130

Property Name Property Description

Space name of space

Methods

0131)

Method Name Method Description

destroy destroy the space
clearSpace removes all entries in this space
cancelTask removes the task or result matching TaskID from the

Space
numTasks returns the number of tasks currently in the space
numTesults returns the number of results currently in the space
workers list MATLAB workers listening to space
clearWorkers unregister all listening workers
addWorker add a MATLAB worker as a listener
removeWorker remove the given MATLAB worker
setEvalAttempts set the number of times a task will be attempted
isLogging returns true if logging is turned on
log L = 0 turns off logging L = 1 turns on logging
getStats output arg format (return argument contents not yet

determined
getTasks removes and returns all tasks in the space in a cell

array
getResults removes and returns all results in the space in a cell

array
readTasks non-destructively returns all tasks in the space in a cell

array
readResults non-destructively returns all results in a cell array

Job

Properties

(0132

Property Name Property Description

JobD unique identifier for this job
Name name of job
Tasks cell array of task objects
UserName name of user who creates job (user login name)
JobCompleted Fen callback to execute when this job is finished
StartTime start time of job

Methods

0133)

Method Name Method Description

addTask can add either a single task or a cell array of tasks
removeTask can remove either a single task or a cell array of tasks

Jul. 7, 2011

JobResults

Properties

0134)

Property Name Property Description

JobD unique identifier for job
Name name of job
Username name of user who created job
Results cell array of result objects
StartTime start time of job
EndTime end time of job

JobManager
Methods

0135)

Method Name Method Description

submitob Submits a Job object to the job manager
getResults returns a JobResults object. Will block until job is

finished
getResultsIfAvailable returns a JobResults object or null. Will return

immediately
getResult gets a result of instance of a task
getResultIfAvailable get a result of instance of a task if result is

available

JobManager Admin
Properties

0.136

Property Name Property Description

Job Manager instance of JobManager class
Space the space associated with this job manager

Methods

0.137

Method Name Method Description

clearJobs clears the job queue
promote promotes the specified job
demote demotes the specified job
promoteFirst promote the job to the top of the queue
demoteLast demote the job to the bottom of the queue
cancel.Job removes the job from the queue
getStatus returns executing, completed.
getInfo gets information for all waiting jobs except for the

task objects
read obs non-destructively returns all jobs in the queue

0.138. The following methods are generally available
methods in a package of the MATLAB programming envi

US 2011/0167425 A1

ronment, which in this exemplary embodiment have not been
implemented as user defined data classes:

Package Scope Methods (Not Part of Any Class)

0139

findWorkers finds MATLAB workers available on the network.
Returns a cell array of worker objects.

findSpaces finds spaces available on the network. Returns a cell
array of space objects.

findJobManagers finds jobmanagers available on the network. Returns
a cell array of JobManager objects.

The above package scope methods are used to find the Ser
vices oftechnical computing workers 270A-270N, automatic
task distribution mechanisms 260A-260N, or spaces, and job
managers 265A-265N as depicted in FIG.7. With these meth
ods, a technical computing client 250 does not need to have
previous knowledge of any technical computing worker
270A-270N, any of the automatic task distribution mecha
nisms 260A-260N or any job managers 265A-265.N. The
technical computing client 250 can use these methods to
discover the name and number of such services available on
the network 140.

0140. In an embodiment of the present invention, the pro
gramming language of MATLABR) may support the three
modes of operation as described with FIGS. 3A-3C. By way
of example, the following program instructions show a pro
gramming usage of the above described user defined data
classes for each of these modes of operation:

Direct Distribution Usage Example

0141

% Find worker
w = distcomp.Worker(MachineName)
% Create task
t = distcomp.Task({rand,10,1);
% (Optional) register completed callback for worker
w. TaskCompleted Fen = 'completedFen:
% (Optional) set task timeout value
t.Timeout = 10;
% Send task to worker
w.evaluateTask(t):
% Getresult (could take place inside completed callback function)
r = w.getResult(t);

Automated Distribution Usage Example

0142

% Find space
S = distcomp. Space(spacename)
% Create task
t = distcomp.Task({rand,10,1)
% (Optional) Register completed callback for space
S.TaskCompleted Fen = 'completed Fen:
% (Optional) set task timeout value
t.timeout = 10;

Jul. 7, 2011

-continued

% Puttask in space
S.putTask(t);
% Getresult from space (could be inside result listener)
r = s.getResult(t):

Batch Processing Usage Example

0143

% Find Job Manager
jm = distcomp. Job Manager(managername)
% Create job
= distcomp. Job (username.jobname)
% (optional) register callback for job completion
j. JobCompleted Fen = 'callbackFcn;
% Add tasks to job
for(i=1:10)

t = distcomp.Task({rand,10,1);
% (optional) register completed callback for task
t.Completed Fen = 'callbackFcn:
% (optional) set task timeout value
t.Timeout = 10;
j.addTask(t):

end
jm. Submit()
% Getresults from job manager
for(i=1:10)

r = jm.getResult(i.Tasks {i});
% insert code to process result here

end

0144. In addition to the object-oriented interface to task
and job management functionality of the distributed system,
the programming language of MATLAB(R) may also Support
task distribution via high-level functional procedure calls.
The MATLABR) programming language includes procedural
function calls Such as eval() and feval() that provide a quick
and powerful procedure to execute functions. Also, the MAT
LABR) programming enables you to write a series of MAT
LAB(R) statements into a file, referred to as an M-File, and
then execute the statements in the file with a single command.
M-files can be scripts that simply execute a series of MAT
LABR) statements, or they can be functions that also accept
input arguments and produce output. Additionally, the MAT
LABR) programming language Supports anonymous func
tions and function handles. Function handles are useful when
you want to pass your function in a call to some other function
when that function call will execute in a different workspace
context than when it was created. Anonymous functions give
you a quick means of creating simple functions without hav
ing to create M-files each time and can be viewed as a special
Subset of function handles. An anonymous function can be
created either at the MATLAB(R) command line or in any
M-file function or script. Anonymous functions also provide
access to any MATLABR) function. The (a) sign is the MAT
LAB(R) operator that constructs a function handle oran anony
mous function, which gives you a means of invoking the
function. Furthermore, the MATLABR) programming lan
guage enables the association of a callback function with a
specific event by setting the value of the appropriate callback
property. A variable name, function handle, cell array or
string can be specified as the value of the callback property.
The callback properties for objects associated with the MAT

US 2011/0167425 A1

LAB(R)-based distributed computing application are designed
to accept any of the above described configurations as the
value of the callback property, and may accept any other
command, function or input parameter value that are or may
become available in the MATLABR) programming language.
This allows users of the MATLABR) programming language
to use the function calls they are familiar with, without learn
ing the object-oriented mechanism, and take advantage of the
distributed processing of tasks offered by the MATLAB(R)-
based distributed computing application of the present inven
tion.
0145. In the exemplary object-oriented distributed system
805 of FIG.8B, the technical computing client 250 creates or
declares a job object 860 residing in the job manager 265. The
job object comprises one or more task objects 870A-870N.
The job object 860 further defines properties associated with
the job, such as those job properties described in further detail
below. For example, a timeout property to specify the time
limit for completion of a job. Additionally, the minimum and
maximum number of technical computing workers to per
form the tasks of the job can be set. The task object 870A
870N is an object that defines a function to be executed by a
technical computing worker 270. The function contains a
MATLAB(R) command, input data and number of arguments.
The task object 870A-870N defines additional task proper
ties, such as those defined below. For example, the task object
870A-870N may have a state property to indicate the current
state of the task. Additionally, the technical computing client
250 may interface with the job manager 265 through a job
manager object 865 residing on the job manager 265. In a
similar manner to the job object 860 and task objects 870A
870N, the job manager object 865 may have properties to
define configuration and other details about the job manager
265 as described below. For example, the job manager object
865 may have a hostname property to indicate the name of the
computer where a job queue exists, or a hostaddress property
to indicate the internet protocol address of the computer. For
any of the job manager object 865, job object 860 or task
objects 870A-870N, the technical computing client may not
instantiate a local object but may just have a proxy or facade
object to reference the object existing in the job manager 265.
0146 Still referring to FIG. 8B, the technical computing
client 250 submits the job to the job manager 265 via the job

Purpose
Syntax

Jul. 7, 2011

object 865. The job manager 265 obtains each of the task
objects 870A-870N from the job object 865. The job manager
puts the job of the job object 860 into the job queue 267. The
job runner 667 obtains the one or more task objects 870A
870N from the job object 860. The job runner 667 with the
worker pool 668 determines a technical computing worker
270 to process a task. The job runner 667 then submits a task,
via a task object 870A-870N to an assigned technical com
puting worker 270. The technical computing worker 270
obtains the function to execute from the properties of the task
object 870A-870N and performs technical computing of the
task in accordance with the function. The technical comput
ing worker 270 then obtains the results of the function and
updates one or more properties of the task object 870A-870N
with information about the results. In the case of any errors,
the technical computing worker 270 may update any error
properties of the task object 870A-870N. In a similar manner
as the technical computing client 250, the technical comput
ing worker 270 may use proxy or facade objects to interface
with the job 860, job manager 865 or task870A-870N objects
residing in the job manager 265. The job manager 265 then
updates the job object 860 with updated task objects 870A
870N containing the results of each task. The job manager
265 may also update other properties of the job object 860,
such as start and finish times of the job, to reflect other
information or status of the job. The job manager 265 then
provides the updated job object 860 to the technical comput
ing client 250. The technical computing client 250 then can
retrieve the results of each task from the updated job object
860. One ordinarily skilled in the art will recognize the vari
ous combinations of uses of the properties and functions of
these objects in performing the operations described herein
and in Support of any of the multiple modes of distribution as
depicted in FIG. 4.
0.147. In an exemplary embodiment of the invention as
depicted in FIG. 8B and by way of example, the following
functions and properties may be available in the program
ming language of MATLABR) for creating and handling
objects related to the task distribution and management func
tionality of the present invention:

Function Reference

0148 createJob

Create a job object
ob = createJob (obmanager)
ob = createJob (..., p1, V1, p.2, v2,...)

Arguments ob.
jobmanager

p1, p2
v1, v2
ob = createJob (obmanager) creates a job object at the specified remote location. Description

The job object.
The job manager object representing the job manager service that
will execute the job.
Object properties configured at object creation.
Initial values for corresponding object properties.

In this case, future modifications to the job object result in a remote call to the job
manager.
ob = createJob (..., p1, V1, p.2, v2,...) creates a job object with the specified
property values. If an invalid property name or property value is specified, the
object will not be created.
Note that the property value pairs can be in any format supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs.
% construct a job object. Example
jm = find Resource(jobmanager);
ob = createJob(jm, Name, testjob);
% add tasks to the job.

US 2011/0167425 A1

createTask

Purpose
Syntax

Arguments

Description

Example

destroy

Purpose
Syntax
Arguments
Description

20

-continued

for i=1:10
createTask(obj, rand, {10});
end
% run the job.
Submit(obi);
% retrieve job results.
out = getAllOutputArguments(obi);
% display the random matrix.
disp(out{1}{1});
% destroy the job.
destroy (obi);

Create a new task in a job
ob = createTask(, function handle, numoutputargs, inputargs)
ob = createTask(..., p1, V1, p2, V2,...)

The job that the task object is created in.
function handle A handle to the function that is called when the task is

evaluated.
numoutputargs The number of output arguments to be returned from

execution of the task function.
inputargs A row cell array specifying the input arguments to be

passed to the function function handle. Each element in the
cell array will be passed as a separate input argument.

p1, p2 Task object properties configured at object creation.
v1, v2 Initial values for corresponding task object properties.
obj= createTask(, function handle, numoutputargs, inputargs)
creates a new task object in job, and returns a reference, obj, to the added
task object.
ob = createTask(..., p1, V1, p2, V2,...) adds a task object with the
specified property values. If an invalid property name or property value is
specified, the object will not be created.
Note that the property value pairs can be in any format Supported by the set
function, i.e., param-value string pairs, structures, and param-value cell array
pairs.
% create a job object.
jm = findResource(jobmanager);
= createJob(m);
% add a task object to be evaluated that generates a 10 x 10 random matrix.
obj= createTaskG (Grand, 10.10):
% run the job.
Submit();
% get the output from the task evaluation.
taskoutput = get(obj, OutputArguments);
% show the 10 x 10 random matrix.
disp(taskOutput{1});

Remove a job or task object from its parent and from memory
Destroy (obi)
ob Job or task object deleted from memory.
destroy (obi) removes the job object reference or task object reference obj from the
local session, and removes the object from the job manager memory. When ob is
destroyed, it becomes an invalid object. An invalid object should be removed
from the workspace with the clear command. If multiple references to an object
exist in the workspace, destroying one reference to that object invalidates the
remaining references to it. These remaining references should be cleared from the
workspace with the clear command. The task objects contained in a job will also
be destroyed when a job object is destroyed. This means that any references to
those task objects will also be invalid. If obj is an array of job objects and one of
the objects cannot be destroyed, the remaining objects in the array will be
destroyed and a warning will be returned.

Jul. 7, 2011

US 2011/0167425 A1
21

-continued

Remarks Because its data is lost when you destroy an object, destroy should be used after
output data has been retrieved from a job object.

Example % destroy a job and its tasks.
jm = findResource(jobmanager);
j = createJob(jm, Name, my job);
t = createTaskG (Grand, {10});
destroy();
clear
Note that task t is also destroyed as part of jobj.

destroy AllTasks

Purpose Remove all of a job's tasks from the job object and from memory
Syntax destroyAllTasks(obi)
Arguments ob Job object whose tasks are deleted.
Description destroyAllTasks(obi) removes all tasks from the job object obj. The job itself

remains, and you can add more tasks to it. (By comparison, using destroy on the
job removes the job object entirely.)

findJob
Purpose Findjob objects stored in a job manager
Syntax findJob(m)

out = findJob(m)
pending queued running finished = findJob (m)
out = findJob(m, p1, V1, p2, V2,...)

Arguments im Job manager object in which to find the job.
pending Array of jobs in job managerm whose State is pending.
queued Array of jobs in job managerm whose State is queud.
running Array of jobs in job manager jm whose State is running.
finished Array of jobs in job managerm whose State is finished.
Out Array of jobs found in job manager jm.
p1, p2 ob object properties to match.
V1,V2 Values for corresponding object properties.

Description findJob(m) prints a list of all of the job objects stored in the job manager jm. Job
objects will be categorized by their State property and job objects in the queued
state will be displayed in the order in which they are queued, with the next job to
execute at the top (first). Out = findJob(m) returns an array, out, of all job objects
stored in the job managerjm. Jobs in the array will be ordered by State in the
following order: pending, queued, running, finished; within the queued state,
jobs are listed in the order in which they are queued. pending queued running
finished = findJob (q) returns arrays of all job objects stored in the job manager
jm, by state. Jobs in the array queued will be in the order in which they are
queued, with the job at queued(1) being the next to execute. Out = findJob (jm,
p1, V1, p2, V2,...) returns an array, out, of job objects whose property names and
property values match those passed as parameter-value pairs, p1, V1, p.2, v2.
Note that the property value pairs can be in any format Supported by the get
function, i.e., param-value string pairs, structures, and param-value cell
arraypairs. If a structure is used, the structure field names are job object property
names and the field values are the requested property values. Jobs in the queued
state are returned in the same order as they appear in the job queue service. When
a property value is specified, it must use the same format that the get function
returns. For example, if get returns the Name property value as My Job, then
findJob will not find that object while searching for a Name property value of
myob.

findResource

Purpose Find available MATLAB (R)-based application resources
Syntax find Resource(type)

out = findResource(type)
out = findResource(type, p1, v1, p.2, v2,...)

Arguments out Object or array of objects returned.
p1, p2 Object properties to match.
V1,V2 Values for corresponding object properties.

Description find Resource(type) displays a list of all the available MATLAB (R)-based
distributed computing application resources of type given by the string type, that

Jul. 7, 2011

US 2011/0167425 A1

Remarks

Example

findTask

Purpose
Syntax

Arguments

Description

Remarks

Example

-continued

22

have the ability to run a job. Possible types include jobmanager, localsession,
milworker. Out = findResource(type) returns an array, out, containing objects
representing all available MATLAB (R)-based distributed computing application
resources of the given type. Out = findResource(type, p1, V1, p2, V2,...) returns
an array, out, of resources of the given type whose property names and property
values match those passed as parameter-value pairs, p1, V1, p.2, v2. Note that the

Get the task objects belonging to a job object
tasks = find Task(obi)
tasks = find Task(ob, ran
tasks = find Task(obj, p1
ob Job object.

ge)
, v1, p2, V2,...)

property value pairs can be in any format Supported by the get function, i.e.,
param-value string pairs, structures, and param-value cell array pairs. If a
structure is used, the structure field names are object property names and the field
values are the requested property values. When a property value is specified, it
must use the same format that the get function returns. For example, if get returns
he Name property value as My JobManager, then findResource will not find that

object while searching for a Name property value of myobmanager.
The only supported types of resources is jobmanager. Note that some parameter
value pairs are queried on the local machine, while others require a call directly to
he job manager to query. The parameter-value
job manager will take longer to query than those
type Type of resource to find that can be queried locally. The properties that are
known locally are: Type, Name, HostName, and Address. Note that it is
permissible to use parameter-value String pairs, structures, and parameter-value
cell array pairs in the same call to findResource.
m1 = findResource(obmanager, Name, jobmanagerlname);
im2 = findResource(obmanager, Name, jobmanager2name);

pairs that require a call to the

range A scalar or vector list of indexes specifying which tasks to return.
tasks returned

asks = findTask(obi) an

objects belonging to a jo

structures, and param-va
field names are object pr
property values. When a

as MyTask, then findTas

service. This could resul

property value of mytask.

ask objects.
p1, p2 Task object properties to match.

job object obj, where range is a scalar or vector lis
asks to return. tasks = findTask(ob, p1, V1, p.2,

b object obj. The returned
having the specified property-value pairs. Note tha
be in any format Supported by the get function, i.e.

operty names and the fiel
property value is specifie

hat the get function returns. For example, if get re

fob is contained in a remote service, findTask wi
in findTask taking a long

V1,V2 Values for corresponding object properties.
tasks = findTask(ob, range) get tasks belonging to a

of indexes specifying which
V2,...) gets a 1 x Narray of task
task objects will be only those
the property value pairs can
param-value string pairs,

ue cell array pairs. If a structure is used, the structure
values are the requested
, it must use the same format
urns the Name property value

k will not find that object while searching for a Name

result in a call to the remote

time to complete, depending
on the number of tasks retrieved and the network speed. Also, if the remote
Service is no longer avai able, an error will be thrown.
If ob is contained in a remote service, you can issue a C (Control-C) while
find Task is blocking. This returns control to MATLAB. In this case, another
remote call will be necessary to get the data.
% create a job object.
jm = findResource(jobmanager);
ob = createJob(m);
% add a task to the job o bject.
createTask(obj, (Grand, {10})
% assign to t the task we just added to ob.
t = find Task(obj, 1)

Jul. 7, 2011

US 2011/0167425 A1 Jul. 7, 2011
23

getAllOutputArguments

Purpose Retrieve output arguments from evaluation of all tasks in a job object
Syntax data = getAllOutputArguments(ob)
Arguments obj Job object whose tasks generate output arguments.

data Cell array of job results.
Description data = getAllOutput Arguments(obi) returns data, the output data contained in the

tasks of a finished job. Each element of the 1 x N cell array data contains the output
arguments for the corresponding task in the job, that is, each element is a cell
array. If no output data is returned for a task, then that
element will contain an empty cell array as a placeholder. The order of the
elements in data will be the same as the order of the tasks contained in the job.

Remarks Because getAllOutputArguments results in a call to a remote service, it could take
a long time to complete, depending on the amount of data being retrieved and the
network speed. Also, if the remote service is no longer available, an error will be
thrown. You can issue a C (control-C) while getAllOutputArguments is
blocking. This does not stop the data retrieval, but returns control to MATLAB. In
this case, another remote call is necessary to get the data. Note that issuing a call
to getAllOutputArguments will not remove the output data from the location
where it is stored. To remove the output data, use the destroy function to remove
either the task or its parent job object, or use destroy AllTasks.

Example jm = findResource(jobmanager);
j = createJob(jm, Name, my job);
t = createTaskG (Grand, {10});
Submit();
data = getAllOutputArguments(t):
% display a 10 x 10 random matrix

destroy();

submit

Purpose Queue a job in a job queue Service
Syntax Submit(obi)
Arguments obj Job object to be queued.
Description Submit(obi) queues the job object, obj, in the resource where it currently resides.

The resource where a job queue resides is determined by how the job was created.
Ajob may reside in the local MATLAB session, in a remote job manager service,
or in a remote MATLAB worker service. If submit is called with no output
arguments, then it is called asynchronously, that is, the call to
Submit returns before the job is finished. An exception to this rule is if the job
resides in the local MATLAB session, in which case the submit always executes
synchronously.

Remarks When a job contained in a job manager is submitted, the job's State property is set
to queued, and the job is added to the list of jobs waiting to be executed by the job
queue service. The jobs in the waiting list will be executed in a first in, first out
manner, that is, the order in which they were submitted.

Example % find a job manager service named jobmanager1.
m1 = findResource(obmanager, Name, jobmanager1);
% create a job object.
1 = createJob (ml);
% add a task object to be evaluated for the job.
t1 = createTask(1, (GDmyfunction, {10, 10});
% queue the job object in the job manager.
Submit(1):

Property Reference
-continued

Job Manager Object Properties
Property Name Property Description

0149
ID Indicate a job manager object's identifier
JobCreated Fen Specify the M file function to execute when a job is

Property Name Property Description created in a job queue
JobFinished Fen Specify the M file function to execute when jobs finish in

HostName Indicate name of the machine where a job queue exists a job queue
HostAddress Indicate the IP address of the host machine where a JobQueuedFen Specify the M file function to execute when jobs are

job queue exists queued

US 2011/0167425 A1 Jul. 7, 2011
24

-continued

Property Name Property Description

JobRunningFen Specify the M file function to execute when job are run
in a job queue

Jobs Indicate the jobs contained in a job manager
Name Indicate the name of the job manager
State Indicate the current state of the job manager

Job Object Properties

0150

Property Name Property Description

FinishedFcn Specify the callback to execute when a job finishes running
FinishTime Indicate when a job finished
ID Indicate a job object's identifier
MaximumNumberOfWorkers Specify maximum number of workers to perform the tasks

of a job
MinimumNumberOfWorkers Specify minimum number of workers to perform the tasks

of a job
Name Specify a name for a job object
QueuedFen Specify M file function to execute when job added to queue
RestartWorker Specify whether to restart MATLAB on a worker before it

evaluates a task
RunningFcn Specify the M file function to execute when a job or task

starts running
StartTime Indicate when a job started running
State Indicate the current state of a job object
TaskCreatedFon Specify the M file function to execute when a task is created
TaskFinishedFen Specify the M file function to execute when tasks finish in

job queue
TaskRunningFon Specify M file function to execute when a task is run
Tasks Indicate the tasks contained in a job object
Timeout Specify time limit for completion of a job

Task Object Properties
0151

Property Name Property Description

CaptureCommand WindowOutput Specify whether to return command window output
CommandWindowOutput indicate text produced by execution of task object's function
ErrorID indicate task error identifier
ErrorMessage indicate output message from task error
FinishedFcn Specify the callback to execute when a task finishes running
FinishTime indicate when a task finished
Function indicate the function called when evaluating a task
ID (ndicate a task object's identifier
InputArguments indicate the input arguments to the task object
NumberOfCutputArguments indicate the number of arguments returned by the task

function
Output Arguments The data returned from the execution of the task
RunningFcn Specify the M file function to execute when a job or task

starts running
State indicate the current state of a task object
StartTime indicate when a task started running
Timeout Specify time limit for completion of a task

US 2011/0167425 A1

0152. In alternative embodiments, the object-oriented
interfaces and/or functional procedures available in the MAT
LABR) programming language, may be available in one or
more application programming interfaces, and may be avail
able in one or more libraries, Software components, scripting
languages or other forms of software allowing for the opera
tion of Such object-oriented interfaces and functional proce
dures. One ordinarily skilled in the art will appreciate the
various alternative embodiments of the above class defini
tions, class method and properties, package scope methods,
functional procedures and programming instructions that
may be applied to manage the distribution of tasks and jobs
for distributed technical computing processing of the present
invention.
0153. From an overall perspective and in view of the struc

ture, functions and operation of MATLAB(R) as described
herein, the current invention presents many advantages for
distributed, streaming and parallel technical computing pro
cessing systems as depicted in FIGS. 9A and 9B. The MAT
LAB(R)-based distributed computing system can handle a
wide variety of user configurations from a standalone system
to a network of two machines to a network of hundreds of
machines, and from a small task granularity to an extremely
large task granularity of parallel, and parallel and serial tech
nical computing.
0154) Referring to FIG. 9A, the distributed system 910
Supports the delegation of tasks from a technical computing
client 250 to remote technical computing workers 270A
270N leveraging the processing capability of each of the
workstations 170A-170N hosting each of the technical com
puting workers 270A-270N. The tasks are executed indepen
dently of each other and do not require the technical comput
ing workers 270A-270B to communicate with each other.
(O155 Still referring to FIG.9A, the streaming, or serial,
processing system 910 allows serial processing to occur via
multiple technical computing workers 270A-270N on mul
tiple workstations 170A-170N. A technical computing client
250A submits a job requiring a task to be processed serially
from technical computing worker 270A to technical comput
ing worker 270B then to technical computing worker 270N.
When technical computing worker 270A completes its tech
nical computing of the task, technical computing worker
270A submits the task to technical computing worker 270B
for further processing. In a similar fashion, the task can be
submitted to additional technical computing workers 270N
for further processing until the task is complete in accordance
with its task definition. The last technical computing worker
270N to perform technical computing on the task submits the
result to the technical computing client 250.
0156 The streaming processing system 920 can take
advantage of specific workstations 170A-170N that may have
faster processors for performing processor intensive portions
of technical computing of the task or take advantage of tech
nical computing workers 270A-270N with access to specific
data sets or external control instrumentation as required for
computation of the task.
(O157. In FIG.9B, a parallel system 930 is depicted which
combines the distributed and streaming configuration of the
systems (900 and 910) in FIG.9A. In brief overview, techni
cal computing workers 270A and 270B and 270N can be
executing a set of tasks independently of each other. Addi
tionally, these technical computing workers can then Submit
tasks to other technical computing workers to perform tech
nical computing of a taskin a streaming fashion. For example,

Jul. 7, 2011

technical computing worker 270A can submit a task for fur
ther processing to technical computing worker 270B, and in
turn, technical computing worker 270B can submit the task
for further processing by technical computing worker 270N.
The technical computing worker 270N when it completes
processing may return a result back to the automatic task
distribution mechanism 260 or the technical computing client
250. This configuration provides for great flexibility in deter
mining how to best distribute technical computing tasks for
processing based on many factors such as the types and avail
ability of computing devices, network topology, and the
nature and complexity of the technical computing problem
being solved.
0158 B. Instrument-Based Distributed Computing Sys
tem

0159. The illustrative embodiment of the present inven
tion provides an instrument-based distributed computing sys
tem using the technical computing client and the technical
computing worker. The instrument-based distributed com
puting system includes one or more instruments connected
through a network. The instruments may be provided on a
PC-based platform or other platform and have capacities to
run additional Software product, such as the technical com
puting client and the technical computing worker. The instru
ment-based distributed computing system may operate in a
test environment for testing a unit under test. One of ordinary
skill in the art will appreciate that the instrument is illustrative
test equipment and the present invention may apply to other
test equipment or components, Such as a virtual instrument
that includes an industry-standard computer or workstation
equipped with application Software, hardware Such as plug-in
boards, and driver software, which together perform the func
tions of traditional instruments.

0160. In the instrument-based distributed computing sys
tem, the technical computing client may reside in an instru
ment or a client device to create a job. The technical comput
ing client then distributes the job to one or more remote
technical compute workers for the distributed execution of
the job. The technical computing workers may reside in other
instruments or workstations on a network. The workers run
ning on the instruments and/or workstations are available to
the technical computing client so that the technical comput
ing client can distribute the job to the workstations and the
instruments. The technical computing workers execute the
received portion of the job and return the execution results to
the technical computing client. As such, the illustrative of the
present invention executes a job or a test in a distributed
fashion using the instruments and/or workstations on the
network.
0.161 FIG. 10 is a block diagram showing an exemplary
instrument-based distributed system 1000 in the distributed
computing environment. The instrument-based distributed
computing system 1000 may include one or more clients 150,
servers 160, workstations 170 and instruments 180 coupled to
a network 140. The client 150, server 160 and workstation
may run the technical computing client 250, the automatic
distribution mechanism 260 and the technical computing
worker, respectively, as described above with reference to
FIGS. 1A-9B. The instrument 180 may run the technical
computing client 250 and/or the technical computing worker
depending on the configuration of the instrument based dis
tributed computing system, which will be described below in
more detail with reference to FIGS. 12A-12C. Those skilled
in the art will appreciate that the instrument-based distributed

US 2011/0167425 A1

system 1000 is illustrative and may not include all of the client
150, server 160, workstation 170 and instrument 180. The
instrument-based distributed system 1000 can be imple
mented with a various combinations of the client 150, server
160, workstation 170 and instrument 180 in other embodi
mentS.

(0162. In the illustrative embodiment of FIG. 10, the client
150, server 160, workstation 170 and instrument 180 are
coupled to the network 140. The client 150 or instrument 180
may communicate directly with the workstation 170 or other
instruments 180 as described above with reference to FIG.
3A. The client 150 or instrument 180 may communicate with
the workstation 170 or other instruments 180 via the server
160, which runs the automatic task distribution mechanism
260, as described above with reference to FIGS. 3B-4. The
workstations 170 or instruments 180 may or may not com
municate with each other depending on the communication
topology of the distributed computing system 1000, as
described above with reference to FIGS. 9A and 9B.
0163 FIG. 11 is a block diagram showing an exemplary
instrument utilized in the illustrative embodiment of the
present invention. The instrument 180 may include instru
mentation functionalities 1110, a technical computing client
250, a technical computing worker 270, an operating system
1120 and a network interface 118. The instrumentation func
tionalities 1110 provide the instrument's own functionalities
for test, measurement and automation, Such as the function
alities for oscilloscopes and spectrum analyzers, that deter
mine the present value of a quantity under observation. In the
illustrative embodiment, the instrument 180 refers to any tool
that includes one or more instrumentation functionalities.
0164. The technical computing client 250 and the techni
cal computing worker 270 installed on the instrument 180
may include the MATLAB(R)-based distributed computing
application 120 as described above with reference to FIGS.
2A-2C. The technical computing client 250 creates a job
including one or more tasks. The technical computing client
250 distributes the job to the technical computing workers for
the distributed execution of the job. The technical computing
worker 270 performs technical computing tasks defined by
the client 250. The instrument 180 may include the technical
computing client 250 and/or the technical computing worker
270. If the instrument 180 is installed with the technical
computing client 250, the instrument 110 may operate to
generate a job and distribute the job to workstations 170
and/or other instruments 180, as the client 150 does. If the
instrument 180 is installed with the technical computing
worker 270, the instrument 110 may operate to receive and
execute the tasks, as the workstations 170 do.
0.165. The instrument 180 may include an operating sys
tem 1130 that enables users to install their own applications,
such as the technical computing client 250 and the technical
computing worker 270. The operating system 1130 enables
the applications to run on the instrument 180. The instrument
180 may have, for example, a standard Windows(R) operating
system so that the users can install their own applications on
the instrument 180. The Windows operating system is an
exemplary operating system that can be included in the instru
ment 180 and the operating system 1130 may include any
other operating systems described above with reference to
FIG 1A

0166 The instrument 180 may communicate with the cli
ent 150, server 160, workstation 170 or other instruments 180
via the network interface 118. The network interface 1130

26
Jul. 7, 2011

may include any network interfaces described above with
reference to FIG. 1A. The network interface 118 may include
a bus interface, such as a general purpose interface bus
(GPIB) interface. The network interface 1140 may also
include any other bus interfaces, such as Universal Serial Bus
(USB), Myrinet, Peripheral Component Interconnect (PCI),
PCI extended (PCI-X), etc. In particular, the network inter
face 1140 may include an LXI (LAN extension for instru
mentation) interface, which is based on industry standard
Ethernet technology.
0167. The instrument 180 running the workers may have
the capability of accelerating the execution of tasks. For
example, the instrument may include hardware components,
such as FPGA (Field Programmable Gate Array), ASIC (Ap
plication Specific Integrated Circuit), DSP (Digital Signal
Processor) and CPU (Central Processing Unit), to perform
fast calculations of the tasks, such as FFT calculations. In
particular, the instrument 180 may have multiple processors
or CPUs to run the workers.

(0168 The instrument 180 may support a GPGPU (Gen
eral-purpose Computing on Graphics Processing Units) pro
cess that uses the GPU (Graphics Processing Units) to per
form the computations rather than the CPU. GPU is the
mocroprocessor of a graphics card or graphics accelerator)
for a computer or game console. GPU is efficient at manipu
lating and displayingcomputer graphics, and its parallel
structure makes the GPU more effective than typical CPU for
a range of complex algorithms. The GPU can also be used for
general purposes in non-graphics areas, such as cryptogra
phy, databased operations, FFT, neural networks. One of skill
in the art will appreciate that the workstations running the
workers may support the GPGPU process.
0169 FIG. 12A is a block diagram showing another exem
plary instrument-based distributed computing system. The
instrument-based distributed computing system may include
the client 150, workstations 170 and instruments 180 coupled
to the network 140. The technical computing client 250 runs
on the client 150. The technical computing the technical
computing workers 270 may run on the workstations 170 and
instruments 180. The technical computing client 250 creates
a job and distributes the job to the technical computing work
ers 270 on the workstations 170 and instruments 180. The
technical computing workers 270 on the workstations 170
and instruments 180 execute the job and return the execution
results to the technical computing client 250 on the client 150.
One of ordinary skill in the art will appreciate that the system
may include a server for the automatic distribution of the
tasks, as described above with reference to FIG. 10.
0170 FIG.12B is a block diagram showing another exem
plary instrument-based distributed computing system. The
instrument-based distributed computing system may include
workstations 170 and instruments 180 coupled to the network
140. The technical computing client 250 runs on the instru
ment 180. The technical computing workers 270 run on the
workstations 170 and other instruments 180. The technical
computing client 250 creates a job and distributes the job to
the technical computing workers 270 on the workstations 150
and instruments 180. The technical computing workers 270
on the workstations 170 and instruments 180 execute the job
and return the execution results to the technical computing
client on the client 150. One of ordinary skill in the art will
appreciate that the system may include a server for the auto
matic distribution of the tasks, as described above with refer
ence to FIG. 10.

US 2011/0167425 A1

0171 FIG. 12C is a block diagram showing an exemplary
hierarchical structure of the instrument-based distributed
computing system. The instrument-based distributed com
puting system may include the client 150, workstation 170
and instrument 180 coupled to the network 140. The system
may also include a sub-cluster 190 coupled to the network
140. The sub-cluster 190 may include clients, servers, work
stations and instruments. The sub-cluster 190 may run addi
tional technical computing clients and technical computing
workers to distribute and execute the job defined by the tech
nical computing client 250 on the client 150 or instrument
180. The technical computing client 250 may create a job and
distribute the job to the sub-cluster 190. The technical com
puting workers in the sub-cluster 190 execute the job and
return the execution results to the technical computing client
250 on the client 150 or instrument 180. The Sub-cluster 190
may include a distribution mechanism for distributing the job
to the workstations and instruments in the sub-cluster 190.

0172. The instrument-based distributed computing sys
tem can be used in a test environment in the illustrative
embodiment. The instrument that contains a computing capa
bility, such as the technical computing client 250 and the
technical computing worker 270, can perform a test. The
computing capability of the instrument is used for processing
data to perform a portion of the test defined by a client. The
test environment utilizes the computing power of the instru
ment on a network to conduct a distributed execution of the
test. In the description of the illustrative embodiment, a “test”
refers to an action or group of actions that are performed on
one or more units under test to Verify their parameters and
characteristics. The unit under test refers to an entity that can
be tested which may range from a single component to a
complete system. The unit under test may include Software
product and/or hardware devices.
(0173 FIG. 13 is an example of a test environment 1200
provided in the illustrative embodiment of the present inven
tion. In the test environment 1200, various types of resources
1210 may be used for providing units under test 1230. One of
skill in the art will appreciate that the resources 1210 may
include software tools and hardware tools. The test environ
ment 1200 may include a test manager 1220. Using the test
manager 1220, users may input control data 1240 for setting
conditions for testing the units under test 1230 in the test
environment 1200. The control data 1240 may include a
sequence of test steps that specifies the ordering of the
resources to be used by the test manager 1220. The users may
also input the variables and parameters of the test that can be
used as arguments to call the functions provided by the
resources 1210. Using different variables and parameters in
the test, the functions of the units under test 1230 may return
different values. The units under test 1230 may include one or
more pieces of hardware, Software and/or programs, such as
models and/or code. One of skill in the art will appreciate that
the units under test 1230 may include software tools and
hardware tools. The test manager 1220 conducts the test in
different conditions using the sequence of the test steps and
the variables and parameters of the test.
0.174. The illustrative embodiment of the present inven
tion may provide a test environment in which the users (or
developers) of software tools are able to conduct a test for
testing various types of units under test 1230. The test may
include one or more test steps, such as a test step for testing a
textual program, a test step for testing a graphical program, a
test step for testing a function provided in a Software tool, a

27
Jul. 7, 2011

test step for testing a hardware device, etc. As an example, the
test includes a MATLABR) step in which MATLAB(R) expres
sions can be executed. The MATLABR) step communicates
with MATLAB(R) installed locally or in a remote computa
tional device to run the expression and returns the result to the
test manager 120. The test steps may also include a Sim
ulink R. Step to interact with models, and an Instrument Con
trol (one of MATLAB(R) Toolboxes) step to interact with
external hardware. Furthermore, a Statistics Toolbox (one of
MATLAB.R. Toolboxes) step may provide statistical analysis
for data procured by other steps. The test steps in the test
include discrete actions that are executed during the execu
tion of the test. The test step and test step properties may be
deemed a Java function call that generates M-code, and the
function call arguments, respectively.
0.175 FIG. 14 is a flow chart showing an exemplary opera
tion for distributing a test in the illustrative embodiment of the
present invention. The client 150 defines a test for testing
units under test (step 1302). The test may be defined to
include one or more test steps. Each test step may test differ
ent units under test. The client 150 then submits at least a
portion of the test (step 1304) to an instrument 180 or work
station 170 that contains the technical computing worker 270.
For example, the client 150 then submits each test step to
different workstations 170 and/or instruments 180. The tech
nical computing worker 270 receives at least a portion of the
test (step 1306) and performs the requested technical com
puting as defined by the test (step 1308). In performing the
technical computing on the test, an associated result may be
generated (step 1310). In alternative embodiments, either no
result is generated, or no result is required to be returned to the
client 150. After generating the result from computing the
test, the workstations 170 and/or instruments 180 provide the
result (step 1312) to the client 150, and the client 150 obtains
the result from the workstations 170 and/or instruments 180
(step 1314). One of ordinary skill in the art will appreciate that
the distributing operation is illustrative and the test may be
distributed by the operations described above with reference
to FIGS. 5B-5D. One of ordinary skill in the art will also
appreciate that the distribution of the test may be performed in
the same way as described above with reference to FIGS.
6A-9B.

0176 One of ordinary skill in the art will appreciate that
the instrument 180 may be used as a technical computing
client and/or worker and as an instrumentation tool. In one
illustrative embodiment, the instrument 180 may be used as
an instrumentation tool performing part of the test that acts on
the information collected by the instrument 180. In another
embodiment, the instrument 180 may be used as a pure tech
nical computing client or worker utilizing the technical com
puting functionality of the instrument 180. In still another
embodiment, the instrument 180 may be used as both a tech
nical computing client/worker and an instrumentation tool. In
this embodiment, the instrument 180 is used as a traditional
instrumentation tool when it is needed to make a measure
ment, and also used as a technical computing client/worker
when it is needed to compute at least a portion of the test.
0177. In some embodiments, if the instrument 180 is used
as both a technical computing client/worker and an instru
mentation tool, the technical computing functionality and the
instrumentation functionality of the instrument 180 may need
to be compromised depending on the capability of the instru
ment 180 to support for both of the functionalities concur
rently. One exemplary way to compromise these functional

US 2011/0167425 A1

ities is to pause/stop the technical computing functionality
when the instrument 180 is needed to make a measurement.
When the measurement is completed, the instrument 180 can
continue to perform the technical computing functionality.
One of ordinary skill in the art will appreciate that this is an
exemplary way to compromise the functionalities and the
functionalities can be compromised in other ways in different
embodiments. The technical computing capability of the
instrument 180 can allow users to utilize the additional com
putational power in the instrument 180 to perform a fast result
calculation of a test in the test environment.
0178. Furthermore, the illustrative embodiment provides
for technical programming language constructs to develop
program instructions of the jobs and tests to be executed in
parallel in multiple technical computing workers. These tech
nical programming language constructs have built-in key
words of the programming language reserved for their func
tionality. One of these constructs is a distributed array
element for technical computing operations executing across
multiple technical computing workers. The technical pro
gramming language of the parallel technical computing
worker of MATLABR) provides reserved key words and built
in language statements to Support distributed arrays to check
the current process id of the worker.
0179. In order to provide distributed arrays in a technical
computing programming language, an iterator is decomposed
into separate iterators for each node or worker that will be
processing the distributed array. Each worker is identified by
a process idorpid between 1 and the total number of pids, or
nproc. For each pid of a worker out of a total numbers of pids,
a portion of the distributed array may be processed separately
and independently. For example, take the following iterators:

0180 var=start:fin
0181 or
0182 var-start:delta:fin ; where start is the first itera
tion, fin is the last iteration and delta is the step incre
ments between the first iteration and the last iteration.

In order to process a portion of the distributed array, an
iterator Such as the following needs to be decomposed from
the standard iterators described above:

0183 var-start(pid):delta:fin(pid); where start is the
first iteration for the pid, fin is the last iteration for the
pid, and delta is the step increments between the first
iteration and last iteration for the pid.

In an exemplary embodiment, an iterator is decomposed into
nproc continuous sections of equal or nearly equal iteration
lengths. The following is an example algorithm described in
the programming language of MATLABR) for determining
equal or nearly equaliteration lengths across multiple work
CS

0.184 function startp.finp=days(start,delta, finpid,
nprocs)

0185 ratio-floor((fin-start)/delta--1)/nprocs:
0186 startp=start+ceil((pid-1)*ratio) delta;
0187 finp=start+(ceil(pid*ratio)-1)*delta;

For example, with nproc=4 workers, the iterator j=1:10 is
decomposed to the following:

0188 j=1:3 on pid=1
(0189 j=4:5 on pid=2
(0190 j=6:8 on pid=3
(0191 j=9:10 on pid=4

0.192 In alterative embodiments, other algorithms can be
used to determine the decomposition of iterators and the
length of iterators to be applied perpid for processing distrib

28
Jul. 7, 2011

uted arrays across multiple workers. For example, the decom
position of the iterator may be determined by estimated pro
cessing times for each of the pids for its respective portion of
the iterator. Or it may be determined by which workers 270
are not currently executing a program or which workers 270
are idle or have not previously executed a program. In another
example, only two pids may be used for the iteration although
several pids may be available. In yet another example, each
iterator may be assigned to a specific worker. In other cases,
the decomposition of the iterator can be based on one or more
operational characteristics of the worker, or of the computing
device 102 running the worker. One ordinarily skilled in the
art will appreciate the various permutations and combinations
that can occur in decomposing an iterator to process portions
of a distributed array in multiple workers.
0193 In the parallel technical computing environment of
MATLABR), distributed arrays are denoted with the new key
word darray and in case of distributed random arrays, the new
keyword drand. Various alternative names for these key
words, or reserved words could be applied. As keywords or
reserved words of the programming language of the parallel
technical computing environment, they have special meaning
as determined by the worker and therefore are built into the
language. As such, these keywords are not available as vari
able or function names.
0194 Distributed arrays are distributed by applying the
decomposition algorithm to the last dimension of the array.
For example, a 1000-by-1000 array is distributed across 10
processors, or workers, by storing the first 100 columns on the
first worker, the second 100 columns on the second worker
and so forth. The content of a distributed array on a particular
worker is the local portion of the array. For example, if A is a
distributed array, then A.loc refers to the portion of A on each
worker. For example, with nproc=16, the statement
(0195 Adrand(1024,1024)% create a distributed random
array becomes
(0196. A darray(1024,1024)
(0.197 A.loc-rand(1000,64)
Different random Submatrices, or arrays, are generated on
each one of the sixteen (16) workers. In another embodiment
and for the case of a distributed array representing RGB color
coding for images with dimensions of m-by-n-by-3, the
decomposition and the distribution of the array occurs along
the second dimension so that each worker has a full color strip
form the overall image to work on in its local portion.
Although the distribution of the distributed array is discussed
in terms of column based distribution, various alternative
methods can be used to distribute portions of the distributed
array among multiple workers. For example, the distributed
array can be distributed by rows or a portion of rows and
columns. In another example, a portion could be distributed
based on a Subset of the data having all dimensions of the
array. Any type of arbitrary mapping can be applied to map a
portion of the distributed array to each of the workers. As
such, one ordinarily skilled in the art will recognize the vari
ous permutation of distributing portions of a distributed array
to each worker.
0198 Inanother aspect, a distributed array may be cached.
That is, an worker may store its portion of the distributed
array, e.g., A.loc., but prior to performing operations on the
local portion, the worker may still have read access to the
other portions of the distributed array. For example, a first
worker may be assigned column 1 of a three column distrib
uted array with other two workers assigned columns 2 and 3.

US 2011/0167425 A1

The first Worker may have read access to columns 2 and 3
prior to performing operations on column 1 of the array, i.e.,
read and write access. However, once the first worker per
forms an operation on its local portion of the distributed array,
it may no longer have any access to the other portions of the
distributed array. For example, once the first worker performs
an operation on column 1, it no longer will have read access
to columns 2 and 3 of the distributed array.
0199 For basic element-wise operations like array addi

tion, each worker may perform the operation on its local
portion, e.g., A.loc. No communication between the workers
is necessary for the processing of the local portion of the
distributed array. More complicated operations, such as
matrix transpose, matrix multiplication, and various matrix
decompositions, may require communications between the
workers. These communications can follow a paradigm that
iterates over the workers:

for p = 1:nprocs
if p == pid

processor p is in charge of this step
send data to other processors

do local computation
maybe receive data from other processors

else
receive data from p
do local computation
maybe send data back to p

end
end

In the above example, the number of communication mes
sages between workers is proportional to the number of work
ers, and not the size of the distributed array. As such, as arrays
get larger the overhead for sending messages to coordinate
the array computation becomes proportionately smaller to the
array data and the resulting computation time on each worker.
0200. In one aspect, the present invention relates to meth
ods for programmatically providing for distributed array pro
cessing as depicted in FIG. 15. In the flow diagram of FIG. 15,
method 1500 depicts the processing of a distributed array in
execution in multiple workers. At step 1502, a worker is
executing a program flow of a program (job or test) invoked
for execution. At some point during the program flow, the
worker 270 at step 1504 interprets a distributed array con
struct in a program statement, Such as a program statement
comprising the keyword darray. At step 506, the worker 270
evaluates the distributed array construct to determine the
portion of the distributed array to store locally. As discussed
above, the distributed array may be decomposed in a variety
of ways. For example, the worker 270 may store a specific
column of the array to perform local processing. After deter
mining and storing the portion of the distributed array, the
worker 270 may perform an operation on this portion of the
array. For example, it may perform basic array operations
such as addition. After handling the distributed array state
ment, the program flow continues to other program state
ments of the program. In another embodiment, prior to per
forming an operation on the local portion of the array, the
worker 270 may access or obtain data values of other portions
of the array that have been cached. Although method 1500 is
discussed with regards to one worker, the same flow diagram
will apply to multiple workers 270 running the same program

29
Jul. 7, 2011

so that at steps 1504, 1506 and 1508 the worker interpreting
the distributed array determines what portion of the array to
store and process locally.
0201 Many alterations and modifications may be made by
those having ordinary skill in the art without departing from
the spirit and scope of the invention. Therefore, it must be
expressly understood that the illustrated embodiments have
been shown only for the purposes of example and should not
be taken as limiting the invention, which is defined by the
following claims. These claims are to be read as including
what they set forth literally and also those equivalent elements
which are insubstantially different, even though not identical
in other respects to what is shown and described in the above
illustrations.
What is claimed is:
1. A method for executing a technical computing job in a

distributed fashion in an instrument-based distributed com
puting system, the method comprising:

providing, using a technical computing client, a technical
computing job, the technical computing client being a
first instrument;

distributing the technical computing job to a plurality of
technical computing workers, the plurality of technical
computing workers including a first technical comput
ing worker and a second technical computing worker,
the distributing comprising:
sending a first portion of the technical computing job to

the first technical computing worker for execution,
and

sending a second portion of the technical computing job
to the second technical computing worker for execu
tion; and

receiving a first execution result from the first technical
computing worker and a second execution result from
the second technical computing worker.

2. The method of claim 1, wherein at least one of the
plurality of technical computing workers is a second instru
ment.

3. The method of claim 2, wherein the second instrument
has a technical computing functionality and an instrumenta
tion functionality for making a measurement.

4. The method of claim 2, wherein the second instrument
comprises test equipment and the technical computing job
comprises a test for testing a unit under test.

5. The method of claim 4, wherein the test equipment
accelerates execution of a measurement, analysis, Verifica
tion or validation of the test.

6. The method of claim 4, wherein the test includes one or
more test steps for testing a textual program, a graphical
program a function provided in a Software tool, or a hardware
device.

7. The method of claim 1, wherein the first instrument
includes technical computing functionality and an instrumen
tation functionality for making a measurement.

8. The method of claim 1, further comprising:
providing a local area network interface for the first instru

ment, the local area network interface allowing the first
instrument to communicate with the plurality of techni
cal computing workers over the local area network.

9. The method of claim 1, wherein the distributing com
prises:

sending the first portion of the technical computing job to
the first technical computing worker using a distributed
array, and

US 2011/0167425 A1

sending the second portion of the technical computing job
to the second technical computing using the distributed
array.

10. The method of claim 9, wherein the first technical
computing worker or the second technical computing worker
performs an operation on the portion of the distributed array.

11. The method of claim 1, wherein the second instrument
performs technical computations using a graphics processing
unit (GPU).

12. A method for executing a technical computing job in a
distributed fashion in an instrument-based distributed com
puting system, the method comprising:

receiving, using a technical computing worker, a portion of
a technical computing job, the technical computing
worker being a first instrument;

executing the received portion of the technical computing
job, the executing generating an execution result; and

sending the execution result to a technical computing cli
ent.

13. The method of claim 12, wherein the first instrument
has a technical computing functionality and an instrumenta
tion functionality for making a measurement.

14. The method of claim 12, further comprising:
providing a local area network interface for the first instru

ment, the local area network interface allowing the first
instrument to communicate with the technical comput
ing client over the local area network.

15. The method of claim 12, wherein the first instrument
performs technical computations for executing the received
portion of the technical computing job using a graphics pro
cessing unit (GPU).

16. The method of claim 12, wherein the technical com
puting client is a second instrument.

17. The method of claim 16, wherein the second instrument
has a technical computing functionality and an instrumenta
tion functionality for making a measurement.

18. The method of claim 12, wherein the first instrument
comprises test equipment and the technical computing job
comprises a test for testing a unit under test.

19. The method of claim 18, wherein the test equipment
accelerates execution of a measurement, analysis, Verifica
tion or validation of the test.

20. The method of claim 18, wherein the test includes one
or more test steps for testing a textual program, a graphical
program a function provided in a Software tool or a hardware
device.

21. A non-transitory storage medium storing instructions
executable in an electronic instrument for executing a tech
nical computing job in a distributed fashion in an instrument
based distributed computing system, the medium storing one
or more instructions for:

providing, using a technical computing client, a technical
computing job, the technical computing client being a
first instrument;

distributing the technical computing job to a plurality of
technical computing workers, the plurality of technical
computing workers including a first technical comput
ing worker and a second technical computing worker,
the distributing comprising:
sending a first portion of the technical computing job to

the first technical computing worker for execution,
and

30
Jul. 7, 2011

sending a second portion of the technical computing job
to the second technical computing worker for execu
tion; and

receiving a first execution result from the first technical
computing worker and a second execution result from
the second technical computing worker.

22. The non-transitory medium of claim 21, wherein at
least one of the plurality of technical computing workers is a
second instrument.

23. The non-transitory medium of claim 22, wherein the
second instrument has a technical computing functionality
and an instrumentation functionality for making a measure
ment.

24. The non-transitory medium of claim 22, wherein the
second instrument comprises test equipment and the techni
cal computing job comprises a test for testing a unit under
teSt.

25. The non-transitory medium of claim 24, wherein the
test equipment accelerates a measurement, analysis, Verifica
tion or validation of the test.

26. The non-transitory medium of claim 24, wherein the
test includes one or more test steps for testing a textual pro
gram, a graphical program a function provided in a Software
tool or a hardware device.

27. The non-transitory medium of claim 21, wherein the
first instrument has a technical computing functionality and
an instrumentation functionality for making a measurement.

28. The non-transitory medium of claim 21, further storing
one or more instructions for:

providing a local area network interface for the first instru
ment, the local area network interface allowing the first
instrument to communicate with the plurality of techni
cal computing workers over the local area network.

29. The non-transitory medium of claim 21, wherein the
one or more instructions of distributing comprises one or
more instructions for:

sending the first portion of the technical computing job to
the first technical computing worker using a distributed
array, and

sending the second portion of the technical computing job
to the second technical computing worker using the
distributed array.

30. The non-transitory medium of claim 29, wherein the
first technical computing worker or the second technical com
puting worker performs an operation on the portion of the
distributed array.

31. The non-transitory medium of claim 21, wherein the
second instrument performs technical computations using a
graphics processing unit (GPU).

32. A non-transitory storage medium storing instructions
executable in an electronic instrument for executing a tech
nical computing job in a distributed fashion in an instrument
based distributed computing system, the medium storing one
or more instructions for:

receiving, using a technical computing worker, a portion of
a technical computing job, the technical computing
worker being a first instrument;

executing the received portion of the technical computing
job, the executing generating an execution result; and

sending the execution result to a technical computing cli
ent.

33. The non-transitory medium of claim 32, wherein the
first instrument has a technical computing functionality and
an instrumentation functionality for making a measurement.

US 2011/0167425 A1

34. The non-transitory medium of claim 32, further storing
one or more instructions for:

providing a local area network interface for the first instru
ment, the local area network interface allowing the first
instrument to communicate with the technical comput
ing client over the local area network.

35. The non-transitory medium of claim 32 wherein the
first instrument performs technical computations for execut
ing the received portion of the technical computing job using
a graphics processing unit (GPU).

36. The non-transitory medium of claim 32, wherein the
technical computing client is a second instrument.

37. The non-transitory medium of claim 36, wherein the
second instrument has a technical computing functionality
and an instrumentation functionality for making a measure
ment.

38. The non-transitory medium of claim 32, wherein the
first instrument comprises test equipment and the technical
computing job comprises a test for testing a unit under test.

39. The non-transitory medium of claim 38, wherein the
test equipment accelerates a measurement, analysis, Verifica
tion or validation of the test.

40. The non-transitory medium of claim 38, wherein the
test includes one or more test steps for testing a textual pro
gram, a graphical program a function provided in a Software
tool or a hardware device.

Jul. 7, 2011

41. An instrument for executing at least a portion of a
technical computing job in a distributed fashion, the instru
ment comprising:

a processor for:
receiving at least a portion of the technical computing

job from a technical computing client,
executing the received portion of the technical comput

ing job, the executing generating an execution result,
and

sending the execution result to the technical computing
client over a network.

42. An instrument for processing a technical computing job
in a distributed fashion, the instrument comprising:

a processor for:
providing the technical computing job,
sending a first portion of the technical computing job to

a first technical computing worker for execution,
sending a second portion of the technical computing job

to a second technical computing worker for execu
tion; and

receiving a first execution result from the first technical
computing worker and a second execution result from
the second technical computing worker.

c c c c c

