(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 102792453 B
(45) 授权公告日 2015.06.24

(21) 申请号 201080047452.5
(22) 申请日 2010.10.27
(30) 优先权数据
   61/255,263 2009.10.27 US
   12/911,029 2010.10.25 US
(85) PCT国际申请进入国家阶段日
   2012.04.20
(86) PCT国际申请的申请数据
   PCT/US2010/054278 2010.10.27
(87) PCT国际申请的公布数据
   WO2011/056648 A EN 2011.05.12

(73) 专利权人 瓦里安半导体设备公司
   地址 美国麻萨诸塞州格洛斯特郡邓利路35号

(72) 发明人 迪帕克・瑞曼帕

(74) 专利代理机构 北京同立钧成知识产权代理有限公司 11205
   代理人 娄建明

(51) Int. Cl.
   H01L 31/0216(2014.01)
   H01L 31/18(2006.01)
   H01L 31/0224(2006.01)

(56) 对比文件
   US 2009/0056800 A1, 2009.03.05, 摘要, 说明书第1页第0001-0003段, 第0007段到说明书第2页第0021段, 说明书第3页第0026到说明书第4页第0035段以及说明书附图2A, 2B, 3A.
   US 4253881 A, 1981.03.03, 摘要, 说明书第2栏第64行到说明书第4栏第20行, 说明书第6栏第38行到说明书第7栏第15行以及说明书附图6.
   CN 101641797 A, 2010.02.03, 全文.
   Jan Benick, Oliver Schultz-Wittmann.
   Surface passivation schemes for high-efficiency n-type Si solar cells.
   《physica status solidi (RRL) - Rapid Research Letters》, 2008, 第 2 卷 ( 第 4 期 ) ,
   摘要, 145 页第1段到 146 页倒数第1段以及附图1, 4.

(54) 发明名称
   太阳电池中降低表面再结合与强化光捕捉

(57) 摘要
   本发明揭示用于提升太阳能电池的一或多于介电层 (302, 303) 的抗反射特性并降低所产生载子的表面再结合的方法。在某些实施例中，在介电层中引入掺杂剂，以提升其抗反射特性。在其他实施例中，在介电层 (302, 303) 中引入物质 (800) 以形成电场，由电场将少数载子以离开表面并朝触点的方式排斥。在另一实施例中，对抗反射涂层引入移动物质，籍此使载子被排斥离开太阳电池的表面。藉由在太阳电池的表面形成屏障，可降低表面处所不期望的再结合。
1. 一种提升太阳电池的效率的方法，包括：
将第一掺杂杂质引入太阳电池的顶面中，以形成射极，所述第一掺杂杂质具有第一导电类型；
对所述顶面施用表面钝化层；以及
使用离子植入以沉积中至少一者将第二掺杂杂质引入至位于所述射极上方的所述表面钝化层的一深度中，以由所述表面钝化层内形成用于将所述射极中的少数载子排斥成远离所述顶面的电场。

2. 根据权利要求1所述的提升太阳电池的效率的方法，其中所述射极为n型，且所述第二掺杂杂质是由下所构成的族群中选出：Si、C、He、Ar、Ne、Kr、Xe及H。

3. 根据权利要求1所述的提升太阳电池的效率的方法，其中所述射极为p型，且所述第二掺杂杂质是由下所构成的族群中选出：F、Cl、Br及I。

4. 根据权利要求1所述的提升太阳电池的效率的方法，其中所述第二掺杂杂质被植入所述表面钝化层中。

5. 根据权利要求1所述的提升太阳电池的效率的方法，其中所述第二掺杂杂质是在沉积制程期间被引入。

6. 根据权利要求1所述的提升太阳电池的效率的方法，其中所述第二掺杂杂质是由下所构成的族群中选出：Na、Li、Ca、K、其他第1A族元素及其他第2A族元素。

7. 一种提升太阳电池的效率的方法，包括：
将第一掺杂杂质引入太阳电池的顶面中，以形成射极，所述第一掺杂杂质具有第一导电类型；
对所述顶面施用表面钝化层，所述表面钝化层定义第一表面与第二表面，所述第二表面位于所述太阳电池的所述顶面上且与所述第一表面相对；
对所述表面钝化层的所述第一表面施用移动物质；以及
将所述移动物质扩散至位于所述太阳电池的所述顶面上方的所述表面钝化层的一深度中，藉此所述移动物质由所述表面钝化层内形成用于将所述射极中的少数载子排斥成远离所述顶面的电场。

8. 根据权利要求7所述的提升太阳电池的效率的方法，其中所述射极为n型，且所述移动物质是由下所构成的族群中选出：Na、Li、Ca、K、其他第1A族元素及其他第2A族元素。

9. 根据权利要求7所述的提升太阳电池的效率的方法，其中将所述移动物质喷涂于所述表面钝化层上。

10. 根据权利要求7所述的提升太阳电池的效率的方法，其中将所述太阳电池浸于包含所述移动物质的溶液中。

11. 根据权利要求7所述的提升太阳电池的效率的方法，其中将所述移动物质沉积于所述表面钝化层上。

12. 根据权利要求7所述的提升太阳电池的效率的方法，其中藉由在所述移动物质的存在下对所述太阳电池进行退火来引入所述移动物质。
太阳电池中降低表面再结合与强化光捕捉

技术领域
[0001] 本发明涉及太阳电池中的介电质 (dielectrics)，更具体而言，涉及用于强化太阳电池的介电层的光学特性的方法。

背景技术
[0002] 离子植入 (ion implantation) 是一种用于向基板内引入能改变导电类型的杂质的标准技术。所期望的杂质材料在离子源中被离子化，离子被加速而形成具有规定能量的离子束，然后离子束射向基板的表面上。离子束中的高能离子透入基板材料的主体内并嵌于基板材料的晶格 (crystalline lattice) 中而形成具有所期望导电类型的区域。
[0003] 太阳电池利用无成本的天然资源来提供无污染和可再生获取的能源。由于对环境问题的关切以及能源成本的攀升，可由硅基板制成的太阳电池在全球变得日趋重要。高效能太阳电池的制造或生产成本的任何降低或者高效率太阳电池的效率的任何提升皆会在全世界对太阳电池的制作产生积极影响。此将使此种干净能源技术具有更广的可利用性。
[0004] 太阳电池通常由 p-n 半导体接面 (semiconducting junction) 组成。图 1 是选择性射极太阳电池 (selective emitter solar cell) 的剖视图。对射极 200 进行掺杂并对触点 202 之下的区域 201 提供额外掺杂物 (dopant) 可提高太阳电池 210 的效率 (例如，当太阳电池连接至电路时所转换及收集功率的百分比)。对区域 201 进行较重的掺杂会提高导电性，而在触点 202 之间进行较轻的掺杂则会提高电荷收集性。触点 202 可相隔约 2 毫米至 3 毫米。区域 201 的厚度可仅为约 100 微米至 300 微米。图 2 是指叉背接触式 (interdigitated back contact, IBC) 太阳电池 220 的剖视图。在 IBC 太阳电池中，接面处于太阳电池 220 的背面上。在本具体实施例中，掺杂图案为交替的 p 型及 n 型掺杂区。可对 p+ 射极 203 与 n+ 背面场 204 进行掺杂。此种掺杂可使 IBC 太阳电池中的接面发挥功能或具有提高的效率。
[0005] 图 1 的选择性射极太阳电池与图 2 的 IBC 太阳电池二者皆具有抗反射涂层 (anti-reflective coating, ARC) 205。举例而言，此 ARC 205 可为 Si₃N₄。为改善 ARC205 的光捕捉，Si₃N₄ 层可在其下面具有氧化膜 206。氧化膜 206 可具有高于硅的折射率。Si₃N₄ ARC 205 可具有高于氧化膜 206 的折射率，并更将光折射回太阳电池的硅中。此种类型的折射会减少反射光的量并提高电池效率。
[0006] 将氧化层 206 与 ARC 205 一起使用会具有缺点。在表面介面处，例如在硅与介电层 (即 ARC 205 及氧化层 206) 之间的键 (dangling bond) 处，会发生载子再结合 (carrier recombination)。此外，光捕捉并非最佳，且介电层 (例如氧化层或氧化层) 会吸收紫外 (ultraviolet, UV) 光。此会降低太阳电池的 UV 收集效率。因此，在此项技术中需要提供能增强太阳电池的介电层的光学特性的改良方法。

发明内容
[0007] 本发明揭示用于提升太阳电池的一或多个介电层的抗反射特性并降低所产生载
子的表面再结合的方法。在某些实施例中，在介电层中引入掺杂物，以提升其抗反射特性。
在其他实施例中，在介电层中引入物质以形成电场，由电场将少数载子离开表面朝触点排斥。
在另一实施例中，对抗反射涂层引入移动物质，使此使载子被排斥离开太阳电池的表面。
藉由在太阳电池的表面形成屏障，可降低表面处所不期望的再结合。

附图说明
[0008] 为更佳地理解本发明，请参照以引用方式并入本文之附图，附图中：
[0009] 图1是选择性射极太阳电池的剖视图；
[0010] 图2是指叉背接触式太阳电池的剖视图；
[0011] 图3是实例外性太阳电池的一部分的剖视图；
[0012] 图4的A至图4的E是使用本文所揭示的第一种方法制造太阳电池的实施例；
[0013] 图5的A至图5的B是p型及n型掺杂物的植入后及氧化后分布；
[0014] 图6是实例外性太阳电池的一部分的剖视图，其显示载子的场漂移；
[0015] 图7是使用本文所揭示的第二种方法的具有场的实例外性太阳电池的一部分的剖视图；
[0016] 图8是使用本文所揭示的第三种方法的实例外性太阳电池的一部分的剖视图，此实例外性太阳电池在介电质的表面上具有移动电荷；
[0017] 图9是使用本文所揭示的第三种方法的实例外性太阳电池的一部分的剖视图，此实例外性太阳电池具有扩散至介电质内的移动电荷；
[0018] 图10是实例外性IBC太阳电池的一实施例的剖视图；
[0019] 图11的A至图11的E是使用本文所揭示的第二种方法制造太阳电池的实施例。

具体实施方式
[0020] 以下，将结合太阳电池来阐述此系统的实施例。然而，此方法的实施例亦可与例如半导体基板、影像感测器 (image sensor) 或平面面板 (flat panel) 一起使用。此方法的实施例亦可与例如束线 (beam-line) 型或等离子体掺杂 (plasma doping) 型离子植入机一起使用。因此，本发明并非仅限于以下所述的具体实施例。
[0021] 为改善氧化层 206 与 ARC 205 的一起使用，最佳化的表面场效应 (surface field effect) 可使少数载子离开表面而远离介电层并强化在触点处的收集。此可防止或降低表面介电层的载子再结合。将氧化层 206 与 ARC205 最佳化便强化光捕捉。藉由减小诸如氧化物或氮化物的介电层的厚度，将会减少此等层所吸收的 UV 光的量。本文所述方法的实施例会提升抗反射特性或光收集效率并降低所产生载子的表面再结合。此可提升太阳电池的总体效率。此可藉由提高表面层的折射率或藉由太阳电池的表面形成电场来达成。
[0022] 根据第一种方法，为改良太阳电池，可对表面钝化层进行掺杂。在某些实施例中，表面钝化层与抗反射涂层 205 可以相同。在其他实施例中，表面钝化层可为氧化层 206，在其顶上涂覆有抗反射涂层 205。
[0023] 此表面钝化层可为氧化物、氮化物、氮氧化物 (oxy-nitride) 或非晶硅 (α-Si)，其是在其形成过程中或形成之后被进行掺杂。此种掺杂会提高层的折射率并强化全内反射 (total internal reflection)。图3是实例。
性电池的一关闭部分的剖视图。尽管此处是揭示只在电池设计方法的实施例亦可用于其他电池设计，例如具有经 p 型掺杂的射极的电池设计。电极 300 中的 n 型射极 301 可设置于 p 型基板（图未示出）上，以形成接面。用作表面钝化层的氧化层 303 位于 n 型射极 301 与 ARC 302 之间。举例而言，ARC 302 可为 α-Si、Al₂O₃、氧化钛为 Al₂O₃ 的另一种材料、Sn 或氧化锡为 Si₃N₄ 的另一种材料、氧化铝锡（indium tin oxide）或氧化物为（InₓSnₓOₓ）的另一种材料、或 SnO₂ 或 TiO₂，或任何用作抗反射涂层的介质。在 n 型射极 301 与氧化层 303 之间以及在氧化层 303 与 ARC 302 之间的接面处会自生结合，导致电池或 ARC 302 上的触点 304 可为金属，其经由欧姆接触（ohmic contact）306 而接触 n++ 掺杂的区域 305。欧姆触点 306 可藉由烧结制程（firing process）形成。将粒子（paste）引至电池的表面并加热之，以使粒子扩散入电池内。在经烧结的触点中，粒子中的银形成硅化物（silicide），硅化物通常会形成欧姆触点 306。使用欧姆触点 306 会使电池的所有结合及高的效率。

在最佳方法中，氧化层 303 与掺杂剂 n 型射极 301 的硅中，此可使用超浅植入（ultrashallow implant）达成。越轻的物质对于此方法而言越有效，尽管亦可使用其他物质。由使用小于约 5 千电子伏（keV）的植入能量，植入深度可小于射极深度的约 10%。此为超浅植入的一实例，尽管亦可能为其他深度。在进行氧化以形成氧化层 303 期间，氧化物表面的伴随效果系数（segregation coefficient）的掺杂剂将自射极 301 偏析至氧化层 303 内。此等物质的剂量可根据氧化物中所需掺杂剂的量加以选择。大多数掺杂剂处于在氧化物生长过程中优先偏析至氧化物内。此浓度取决于此等掺杂剂在所生长氧化物中的溶解度。较佳地，在生长氧化物中需要最多达 0.1% 至 1% 的掺杂剂，端视所用的掺杂剂而定，此可需要 10¹⁴/立方公分至 5×10¹⁵/立方公分的初始植入剂量。

举例而言，在一个具体实施例中，在进行氧化以形成氧化层 303 过程中，先前植入于 n 型射极 301 中的硼掺杂剂至氧化层 303 中。发生偏析可能是因为硼在氧化物中的溶解度大于在硅中的溶解度，但亦可能存在其他机理。此植入是在任何其他掺杂制程之后执行，例如在任何射极或表面场所需的掺杂制程之后执行。掺杂剂自射极 301 向氧化层 303 的此种偏析将会增大氧化层 303 的折射率。

图 4 的 A 至图 4 的 E 是使用本文所揭示的第一种方法来制造电池的实施例。在图 4 的 A 中，使用植入 400 来进行 n 型掺杂。此将形成掺杂剂浓度约为 1E20/立方公分的 n 型射极 301。在图 4 的 B 中，使用植入 410 来进行 p 型掺杂。此可为使用例如 B+ 进行的超浅植入，由此形成掺杂剂浓度约为 1E18/立方公分的植入层 403。举例而言，植入层的厚度可为所生长氧化物的厚度的约 1/3。在图 4 的 C 中，使用植入 402 来形成 n++ 掺杂层 305。植入 402 可使用例如具有孔的膜罩（mask）来执行。此 n++ 掺杂层用于达成更佳的载子收集。在图 4 的 D 中，使用氧化及退火制程来形成氧化层 303。植入层 403 中的掺杂剂移动或偏析至氧化层 303 并将氧化层 303 掺杂至大于约 1E19/立方公分的浓度。在图 4 的 E 中，进行金属化（metallization），以形成触点 304 及欧姆触点 306。然后，在触点 304 周围沉积 ARC 302。

植入 410 可藉由等电离体授引式、等离子体浸渍式，或束线式离子植入机来执行。等离子体授引系统可得到良好的表面峰值分布（peakprofile）而不是非逆行性分布。
说明书

（non-retrograde profile），乃因其主要是由表面扩散驱动的。在一个实例中，植入 401 所用的掺杂剂浓度介于约 1E13/ 立方公分至 7E15/ 立方公分之间。此植入 401 亦可以于集中式组态（cluster configuration）执行，此集中式组态包括一系列的预处理或后处理。

图 5 的 A 至图 5 的 B 是 p 型掺杂剂及 n 型掺杂剂的植入后及氧化后分布。图 5 的 A 至图 5 的 B 显示具有 n 型射极的太阳电池。图 5 的 A 中的 n 型曲线对应于图 4 的 A 的植入 400, p 型曲线则对应于图 4 的 B 中的植入 401。图 5 的 B 所示的所得分布对应于射极在图 4 的 D 所示的氧化后的最终状态。

如上文所解释，除射极掺杂（图 4 的 A 的植入 400）外，亦执行 p 型植入（图 4 的 B 的植入 401）。如图 5 的 B 所示，尽管 p 型掺杂剂的分布取决于氧化层 303 的厚度，p 型掺杂剂（例如 B（硼））偏折至氧化层 303 内。图 5 的 B 所示的分布可以是厚度为约 50 埃至 300 埃的氧化物。此 p 型植入可为超浅植入，但 p 型植入的深度取决于将在氧化过程中生长的氧化层的厚度。举例而言，可进行 0.4 千电子伏的 B 植入，然后生长 50 埃的氧化物。在另一实施例中，可进行约 2 千电子伏的 BF2 植入，然后生长 50 埃的氧化物。

经掺杂的氧化层 303 具有高于未经掺杂氧化层的折射率。经掺杂氧化层 303 亦具有增强的折射特性并使少子载于 n 型射极 301 的表面转向。因太阳电池 300 的表面的大部分未被触点 304 覆盖，故经掺杂氧化层 303 有助于抑制少数载子在 n 型射极 301 与氧化层 303 之间介面处的再结合。

在一个具体实施例中，可将植入 400 或植入 402 与植入 401 相结合，以形成植入层 403。在一个实例中，此等相结合的植入可经由介电质（例如 ARC 302）执行。换言之，参见图 4，在某些实施例中，图 4 的 C 至图 4 的 E 所示的步骤中的某些或全部可在图 4 的 A 至图 4 的 B 所示的步骤之前执行。

在替代实施例中，太阳电池 300 的射极可为 p 型射极。因此，太阳电池 300 的接面可反转。对于 p 型射极，ARC 302 可为 Al2O3，例如 A10 或 Al2O3。类似于氮化物的情形，使用诸如 H、F、B、或 BF2 的物质在 Al2O3 中或经由 Al2O3 进行的植入仍可改良此介电质。

此第一种方法将会增大介电层的折射率，并可提供会在太阳电池 300 中形成表面积聚层的最佳化表面场效应。藉此，可使多数载子离开太阳电池 300 的表面并可强化在触点 304 处对少数载子的收集。此将提升太阳电池 300 的效率。因介电层在被掺杂时将会改变其折射率，故介电质的厚度及介电质所吸收的光量可减小。减小介电质的厚度会降低购置成本（cost of ownership）及制造成本。此外，藉由对掺杂剂梯度进行微调，可形成渐变（graded）的钝化层并可获得对所期望光波长的增强的节制（temperance）。可藉由微调或具有渐变的折射率来控制将频谱的哪一部分优先反射回射极中。

在第二种方法中，对介电层进行处理，以在表面钝化层和/或抗反射涂层中形成固定的电荷。此可藉由自沉积源进行热扩散或藉由离子植入来执行。光生（photogenerated）少数载子的表面再结合是太阳电池出现效率损失的一原因。在理想情况下，少数载子应在场中触点漂移而贡献于所生的电流。因触点仅覆盖太阳电池的表面的一部分，故光生载子到达表面并在非触点区域中再结合的可能性相当高。对于正面接触式太阳电池（例如图 1 的选择性射极太阳电池），触点区域被最小化，以提高所进入光的入射及吸收效率。太阳电池中的横向或侧向场可提高太阳电池的效率。可在表面钝化层或 ARC 中执行掺杂，以形成固定的电荷并因而形成电场。此所得的介电质电场将排斥朝太阳电
池的表面的无触点的区域中漂移的载子。此有助于将载子排斥离开表面并使载子沿横向朝触点扩散。

[0036] 图 6 是实例性太阳电池 300 的一部分的剖视图，其显示载子的场漂移。如虚线 603 所示，光生载子 600 朝触点 304 以及朝氧化层 303 与 n 型射极 301 之间的介面漂移。显著数量的载子 600 朝不存在触点 304 的太阳电池 300 的表面漂移。在某些实例中，触点 304 的总面积可小于太阳电池 300 的整个表面积的约 1%。因此，载子 600 到达触点 304 而产生电流的机率较低。

[0037] 图 7 是使用本文所揭示的第二种方法的具有场的实例性太阳电池 300 的一部分的剖视图。ARC 302 或表面钝化层中的场 601（由 ARC 302 中的线表示）可用于使在远离触点 304 的区域中扩散至太阳电池 300 的表面的载子 600 被侧向或横向朝触点 304 漂移。在某些实施例中，形成正电场 601 以排斥正的少数载子。在某些实施例中，可形成负电场 601，以排斥负电荷。此电场 601 可置于太阳电池 300 的表面中所有未设置触点 304 的区域中。载子 600 将被 ARC 302 中的场 601 排斥回至射极 301 中。在一个实例中，会因侧向掺杂梯度而发生朝触点 304 的侧向漂移。此乃因，举例而言，触点 304 之下的 n++ 掺杂层 305 可能较 n 型射极 301 得到更重的掺杂。

[0038] 场 601 可使用各种方法形成。举例而言，可藉由对 ARC 302 进行掺杂或植入来形成场 601。亦可藉由在 ARC 302 的沉积制程中建立残留固定电荷而形成场 601。

[0039] 正电场 601 可藉由对 ARC 302 或表面钝化层植入诸如 Si、C、He、Ar、Ne、Kr、Xe 或 H 的物质而形成。负电场 601 则可藉由对 ARC 302 或表面钝化层植入诸如 F、Cl、Br 或 N 的物质而形成。此植入可在束线式、等离子体浸渍式或等离子体掺杂式离子植入机中以单一晶圆式组态、批次式组态或集中式组态来执行。植入的能量取决于 ARC 302 或钝化层的厚度。当被植入时，掺杂剂可造成空位 (vacancy)，而空位会部分地造成场 601，因此植入能量应被选择成使掺杂剂保持于介电层中。掺杂剂可集中于介电质的最靠近 n 型射极 301 的一半中或介电质的最靠近 n 型射极 301 的底端中。移动 (trickle) 至太阳电池 300 的 p 型掺杂区或 n 型掺杂区中的任何掺杂剂皆可能会造成缺陷并增强表面再结合。

[0040] 图 11 的 A 至图 11 的 E 是使用本文所揭示的第二种方法制造太阳电池的实施例。在图 11 的 A 中，使用植入 950 进行 n 型掺杂。此将形成掺杂剂浓度约为 1E20/立方公分的 n 型射极 301。在图 11 的 B 中，则使用植入 951 来形成 n++ 掺杂层 305。植入 951 可使用例如具有孔的遮罩来执行。此 n++ 掺杂层用于达成更佳的载子收集。在图 11 的 C 中，使用氧化来形成氧化层 303。在图 11 的 D 中，进行金属化来形成触点 304 及欧姆触点 306。然后，在触点 304 周围沉积 ARC 302。在图 11 的 E 中，如上文所述，使用植入 952 来掺杂表面钝化层或 ARC 302。

[0041] 植入 952 可藉由等离子体掺杂式、等离子体浸渍式、或束线式离子植入机来执行。此植入 952 亦可以集中式组态执行，此集中式组态包括一系列的预处理或后处理。

[0042] 此外，可将对 ARC 302 或表面钝化层的植入 952 与用于形成射极或 n++ 掺杂层的植入 950、951 相结合。藉此，可在至少hesive地同时进行的制程中将对太阳电池 300 的接面的掺杂与改变介电质中的电场相结合。此会减少制程步骤的数量并降低制造成本。所用掺杂剂既可为 p 型，亦可为 n 型。

[0043] ARC 302 或钝化层中的固定电荷场亦可在此等层的沉积过程中形成。举例而言，
在 ARC 302 中沉积 Si₃N₄ 过程中，可降低流动氮的比率，以使固定的正电荷增多。在沉积过程中使用额外的原位掺杂剂（例如 B、C、Ge、O、Sn、S 或 Se）亦可增加介电质的固定电荷。

[0044] 此第二方法将排除载子 600，以提升触点 304 捕捉载子 600 的效率并进而增太阳电池 300 的效率。无需为达成此等效应而沉积额外的层（例如 Al₂O₃），因此，制造成本降低。籍由不包括此等不需要的额外层，可提升光收集效率。载子捕获效率有助于电流，因此太阳能电池 300 的效率及电流得到增。场 601 仅形成于介电质的无触点 304 的区域中，因而此会增强对在太阳电池 300 的表面进行再结合的屏障。此外，此种方式进行掺杂不会改变 ARC 302 的特性。

[0045] 为得到高效率的太阳电池，可能需要良好的钝化以达成表面再结合的降低并因而达成更高的太阳电池效率。p 型掺杂区与 n 型掺杂区的 ARC 及钝化方案各不相同。n 型表面的钝化介面需要带有正电荷，以吸引并维持电子的表面积聚层。类似地，p 型表面的钝化介面需要带有负电荷，以吸引并维持电洞的表面积聚层。因此，Si₃N₄ARC 是用于 n 型表面的最佳 ARC，乃因其在 ARC 中具有全部正电荷。具有负电荷的 Al₂O₃ 或 α-Si 则用于钝化 p 型表面。对于高效率的电池（例如图 2 的 IBC 太阳电池）而言，此会造成整合问题。在如此小的空间中钝化 n 型区与 p 型区二者将会导致处理的复杂度及整合的复杂度。

[0046] 图 10 是示例性 IBC 太阳电池的一实施例的剖视图。亦可具有除图 10 所示的以外的其他设计，且本例所揭示的实施例并非仅限于图 10 的设计。IBC 太阳电池 900 在 ARC 302 之下具有交替的 n 型区 901 与 p 型区 902。ARC302 不仅具有抗反射层的作用，且亦具有钝化层的作用。使用 SiN 层来钝化 n 型表面，并使用 Al₂O₃ 来钝化 p 型表面。因此，ARC 更适合被称为钝化层而非抗反射涂层，当在本 IBC 实施例中一样用于背面时尤其如此。在一个实例中，ARC 302 可为氮化物，此适合于 n 型区 901。在本具体实施例中，为形成至少 p 型区 902 所进行的植入可经由 ARC 302 进行。此可使用容许对所期望区域进行植入的具有孔的遮罩或使用其他图案化技术（例如微影）。经由 ARC 302 对 p 型区 902 进行植入将会在 ARC 302 中形成电荷区域 903。ARC 302 中的此等电荷区域 903 将会改变 ARC 302 中的电荷极性，以适合于 p 型区 902，乃因需要使用负电荷来钝化 p 型区 902。因此，至少对于 p 型区 902 而言，对 ARC 302 的植入与对 IBC 太阳电池 900 的植入可相同。此方法会降低购置处理成本并提高整合生产量。

[0047] 另一选择为可分别在不同的植入中完成对应的掺杂与为改变钝化特性和正电荷进行的植入。

[0048] 在第三种方法中，使用移动物质在介电层中形成电场。诸如 Na、Li、Ca、K，或其他第 1A 族元素、抑或其他第 2A 族元素的移动物质在介电层内保持离子化并在间隙中移动。此等物质亦可优先地偏析至 ARC302 与氧化层 303 间的介面或氧化层 303 与例如 n 型射极 301 的硅之间的介面。此等物质可用于形成场。

[0049] 图 8 是使用本例所揭示的第三种方法的实施例性太阳电池 300 的一部分的剖视图，此实施例性太阳电池 300 在介电层 302 的表面上具有移动电荷。物质 800（在本具体实施例中为 Na）位于 ARC 302 的表面上。可将太阳电池 300 浸于 NaCl 溶液中或以 NaCl 溶液喷涂。此将会在氮化物介电质（例如 ARC 302）的表面上涂覆 Na 原子或离子。在替代方法中，Na 亦可在沉积 ARC 302 或氧化层 303 过程中被介入。

[0050] 图 9 是使用本例所揭示的第三种方法的实施例性太阳电池的一部分的剖视图，此实
例性太阳能电池具有扩散入介质内的移动电荷。由热制程（thermal process），物质 800 在示例中扩散入 ARC 302 与氧化层 303 之间的界面。在一个实施例中，此热制程介于约 40°与 300°之间，但也可为其他温度范围。当位于此介面处时，物质 800 将载子 600 朝太阳能电池 300 的主体排斥。因此，物质 800 将使在远离触点 304 的区域中扩散至太阳能电池 300 的表面的载子 600 发生横向或横向漂移。物质 800 将载子 600 朝触点 304 排斥，如图 9 中的虚线所示。发生横向漂移可能是由于存在横向掺杂剂量梯度，此乃因触点 304 以下的区域（在本实施例中为 n++ 掺杂层 305）较太阳能电池 300 的其余部分受到更重的掺杂。

[0051] 用于物质 800 的 Na 或其他移动杂质可藉由溶质涂覆而被合并（incorporated），但亦可藉由介质形成过程、藉由沉积、藉由气相沉积（例如化学气相沉积或物理气相沉积）、藉由物质 800 的离子植入、或藉由在物质 800 的存在下对太阳能电池 300 进行退火而被合并。因第 1A 族及第 2A 族元素趋于被正离子化，因而此等元素仅排斥介面处的电洞。为排斥电洞，需要使用负电场。在本实施例中，可使用带负电荷的物质 800，例如 F、Cl、Br 或 I。此等带负电荷的物质可藉由溶质涂覆、藉由介质形成过程、藉由沉积、藉由气相沉积、藉由离子植入、或藉由在此等带负电荷物质的存在下对太阳能电池 300 进行退火而被合并。

[0052] 此第三方法将会排斥载子 600，以提升触点 304 捕捉载子的效率并进而增强太阳能电池 300 的效率。可免除沉积额外的层的需求，因此会降低制造成本。喷涂或浸浴（bath）是相对廉价的处理步骤。场仅形成于介质质的无触点 304 的区域中，故此会增强对在太阳能电池 300 的表面上进行再结合的屏障。此外，以此种方式进行掺杂不会改变 ARC 302 的特性。

[0053] 本发明的范围不受本文所描述的特定实施例限制。实际上，本领域技术人员根据本文描述以及附图将明白除本发明的实施例之外的本发明的其他各种实施例及修改。因此，希望此些其他实施例及修改属于本发明的范围内。另外，尽管本文已出于特定目的在特定环境中的特定实施方案的上下文中描述了本发明，但本领域技术人员将认识到，本发明的有用性不限于此，且可出于任何数目的目的在任何数目的环境下有利地实施本发明。因此，应鉴予本文所述的本发明的全部广度及精神而解释下文所陈述的申请专利范围。
图 1

图 2

图 3
图11