发明名称
一种含环氧虫啉和吡虫啉的杀虫组合物

摘要
本发明公开了一种含环氧虫啉和吡虫啉的杀虫组合物及其应用，有效活性成分由第一活性成分环氧虫啉与第二活性成分吡虫啉组成，第一活性成分与第二活性成分的重量比是1:20～20:1，优选为1:10～10:1。本组合物可配制成农业上允许的悬浮剂、可湿性粉剂、水分散粒剂或悬浮乳剂型。本发明组分合理，杀虫效果好，且其活性和杀虫效果不是各组分活性的简单叠加，与现有的单一制剂相比，除具有显著的杀虫效果外，而且有显著的增效作用，对作物安全性好，符合农药制剂的安全性要求，本发明对水稻褐飞虱、棉花蚜虫有显著的防治效果。
1. 一种含环氧虫啉和吡蚜酮的杀虫组合物，其特征在于：由第一活性成分环氧虫啉与第二活性成分吡蚜酮组成，第一活性成分与第二活性成分的重量比是 1:20 ～ 20:1。

2. 根据权利要求 1 所述含环氧虫啉和吡蚜酮的杀虫组合物，其特征在于：第一活性成分与第二活性成分的重量比是 1:10 ～ 10:1。

3. 根据权利要求 1 所述含环氧虫啉和吡蚜酮的杀虫组合物，其特征在于，第一活性成分与第二活性成分的含量之和为所述组合物总重量的 5% ～ 80%。

4. 根据权利要求 3 所述含环氧虫啉和吡蚜酮的杀虫组合物，其特征在于，第一活性成分和第二活性成分的含量之和为所述组合物总重量的 8% ～ 70%。

5. 根据权利要求 1 所述含环氧虫啉和吡蚜酮的杀虫组合物，其特征在于所述组合物剂型为悬浮剂、可湿性粉剂、水分散粒剂或悬浮乳剂。

6. 根据权利要求 1 所述含环氧虫啉和吡蚜酮的杀虫组合物在防治农作物同翅目害虫上的用途。

7. 根据权利要求 6 所述用途，同翅目害虫为水稻褐飞虱和棉花蚜虫。
一种含环氧虫啉和吡蚜酮的杀虫组合物

技术领域
[0001] 本发明涉及一种杀虫组合物，由第一活性成分环氧虫啉和第二活性成分吡蚜酮组成，属于复配农药技术领域。

背景技术
[0002] 环氧虫啉为新烟碱类杀虫剂，由武汉工程大学创制，化学名称：1-(2,3-环氧丙基)-N-硝基亚咪唑烷-2-基胺，化学分子式 C_{6}H_{6}N_{2}O_{3}。对害虫有内吸、胃毒和触杀作用，具有和目前全球市场上销量最大的杀虫剂品种吡虫啉一样的杀虫谱及杀虫效果，其持效性还高于吡虫啉，毒性更低。环氧虫啉可用于防治农作物上的同翅目害虫。作为一种新烟碱类杀虫剂，环氧虫啉在使用过程中存在抗性风险，而与不同类型的杀虫剂合理混用，对于充分有效推环保虫啉，延长其使用寿命具有重要作用。
[0003] 吡蚜酮，英文通用名：Pymetrozine，化学名称：4,5-二氧-6-甲基-4-(3-吡啶亚甲基氨基)-1,2,4-3(2H)-酮。吡蚜酮是二嗪酮类杀虫剂，是全新的非杀生性杀虫剂，对害虫具有触杀作用，同时还有内吸活性，刺吸性害虫一接触到吡蚜酮几乎立即产生口针阻塞效应，立刻停止取食，并最终饥饿致死。吡蚜酮对多种作物的刺吸式口器害虫表现出优异的防治效果。
[0004] 作为一种新烟碱类杀虫剂，环氧虫啉存在着抗性风险逐渐增大的风险；吡蚜酮杀虫效果好，但速效性差，逐年使用，抗性发展很快，发明人意外发现将环氧虫啉与吡蚜酮混配使用，具有显著的增效效果，可降低使用成本，减缓害虫抗性的产生作用。

发明内容
[0005] 本发明的目的在于提供一种组分合理，显著增效，杀虫效果好，用药成本低的环氧虫啉和吡蚜酮的杀虫组合物。
[0006] 本发明的另一目的在于提供含有环氧虫啉和吡蚜酮的杀虫组合物制剂剂型。
[0007] 本发明的再一目的在于提供环氧虫啉与吡蚜酮的杀虫组合物的应用。
[0008] 为了克服现有单一制剂的缺陷，本发明的技术方案是这样解决的：
含环氧虫啉和吡蚜酮的杀虫组合物，包括：
A) 第一活性成分环氧虫啉；
B) 第二活性成分吡蚜酮；
第一活性成分与第二活性成分的重量比为 1:20 ～ 20:1，优选为 1:10 ～ 10:1。
[0009] 第一活性成分与第二活性成分的含量之和为所述组合物总重量的 5% ～ 80%，优选为 8% ～ 70%。
[0010] 本发明环氧虫啉与吡蚜酮的杀虫组合物，按照本技术领域人员所公知的方法可以配制的制剂剂型是悬浮剂、乳湿性粉剂、水分散粒剂或悬浮乳剂。
[0011] 对悬浮剂，可使用的助剂有：分散剂如聚羧酸盐、木质素磺酸盐、烷基聚磺酸盐、TERS PERSE 2020 (美国亨斯迈公司 HUNTSMAN 出品，烷基聚磺酸盐类)中一种或多种；乳化剂
如农乳700#（通用名：烷基酚甲酯树脂聚氧乙烯醚），农乳-60#（通用名：山梨醇酯单硬脂酸酯）、吐温-60#（通用名：失水山梨醇单硬脂酸酯聚氧乙烯醚）、农乳1601#（通用名：苯乙烯苯酚聚氧乙烯醚聚氧丙烯醚），TERSPERSE4894（美国亨斯迈公司出品）中的一种或多种；润滑剂如烷基酚聚氧乙烯醚醇缩合物硫酸盐、烷基酚聚氧乙烯醚磷酸酯、苯乙烯苯酚聚氧乙烯醚磷酸酯、烷基硫酸盐、烷基磺酸盐、苯磺酸类，TERSPERSE2500（美国亨斯迈公司出品）中一种或多种；增稠剂如黄原胶、聚乙烯醇、膨润土、硅酸镁铝中一种或多种；防腐剂如甲醛、苯甲酸、苯甲酸钠中一种或多种；消泡剂如有机硅类消泡剂；防冻剂如乙二醇、丙二醇、甘油、尿素、无机盐类如氯化钠中一种或多种。

【0012】对可湿性粉剂，可使用的助剂有：分散剂如聚羧酸盐、木质素磺酸盐、烷基苯磺酸盐中一种或多种；润湿剂如烷基硫酸盐、烷基磺酸盐、苯磺酸盐中一种或多种；填料如硫酸铵、尿素、蔗糖、葡萄糖、硅藻土、高岭土、白炭黑、轻质碳酸钙、蒙脱土、滑石粉、凹凸棒土、陶土中一种或多种。

【0013】对于分散乳剂来说，本领域技术人员熟悉使用相应的助剂完成本发明。分散剂如聚羧酸盐、木质素磺酸盐、烷基苯磺酸盐中一种或多种；润湿剂如烷基硫酸盐、烷基磺酸盐、苯磺酸盐中一种或多种；崩解剂如硫酸铵、尿素、蔗糖、葡萄糖中一种或多种；粘结剂如硅藻土、玉米淀粉、PVA、羧甲基（乙基）纤维素类中的一种或多种；填料如硅藻土、高岭土、白炭黑、轻质碳酸钙、蒙脱土、滑石粉、凹凸棒土、陶土中一种或多种。

【0014】对于悬浮乳剂，可使用的助剂有：分散剂如聚羧酸盐、木质素磺酸盐、烷基苯磺酸盐（扩展剂，防湿剂，TESPERSE2425（美国亨斯迈公司出品），烷基苯磺酸盐）中一种或多种；乳化剂如农乳700#（通用名：烷基酚甲酯树脂聚氧乙烯醚）、农乳2201、农乳-60#（通用名：山梨醇酯单硬脂酸酯）、吐温-60#（通用名：失水山梨醇单硬脂酸酯聚氧乙烯醚）、农乳1601#（通用名：苯乙烯苯酚聚氧乙烯醚聚氧丙烯醚）、三苯乙烯苯酚聚氧乙烯醚磷酸酯，TERSPERSE4894（美国亨斯迈公司出品）中的一种或多种；润湿剂如烷基酚聚氧乙烯醚醇缩合物硫酸盐、烷基酚聚氧乙烯醚磷酸酯、苯乙烯苯酚聚氧乙烯醚磷酸酯、烷基硫酸盐、烷基磺酸盐、TERSPERSE2500（美国亨斯迈公司出品）中一种或多种；溶剂：二甲苯、甲苯、环己醇、丙酮、乙酸乙酯、溶剂油（S-150、S-180、S-200）、油酸甲酯、大豆油、蓖麻油、菜籽油、矿物油中的一种或多种；增稠剂如黄原胶、聚乙烯醇、膨润土、硅酸镁铝中一种或多种；防腐剂如甲醛、苯甲酸、苯甲酸钠中一种或多种；消泡剂如有机硅类消泡剂；防冻剂如乙二醇、丙二醇、甘油、尿素、无机盐类如氯化钠中一种或多种；稳定剂如亚磷酸三苯酯、环氧氯丙烷、醋酸中一种或多种；水为去离子水。

【0015】本发明组分合理，杀虫效果好，用药成本低，且其活性和杀虫效果不是各组分活性的简单叠加，而是有显著的增效作用，对作物安全性好，符合农药制剂的安全性要求。本发明对棉花棉蚜、水稻稻飞虱等有较高的杀虫活性。

【0016】为了防治农业生产的同翅目害虫，我们以环氧化合物与吡蚜酮进行了相互复配的增效研究。试验采用棉蚜为测试对象，具体方法为：

棉蚜（Aphis gossypii），属同翅目，蚜科。将原药配制成需要的试验药剂，试验方法参考《中华人民共和国农业行业标准NY/T1154.6-2006》。首先将单剂及各混配药剂设置5个不同浓度梯度（蚜虫死亡率在5%～90%的范围内按等比级数设定）。试验用采自田间的蚜虫，在实验室挑选均匀一致的蚜虫，放入带有叶片的培养皿内，每日40头虫子，每处理4个
培养皿,重复3次,用Potter喷雾塔在50PSI压力下喷雾,每次喷三个皿,每皿喷药液3ml,然后将处理过的培养皿放入12H/12H光照培养箱内培养,72小时检查死虫数,计算死亡率。空白对照喷等量清水。通过死亡率的机率值和系列浓度的对数值之间的线性回归分析,求出各药剂的LC₅₀值,用孙云沛法计算混剂的共毒系数(CTC),以此来评价供试药剂对试虫的活性。

[0017] 复配制剂的共毒系数(CTC) ≥ 120 表现为增效作用; CTC ≤ 80 表现为拮抗作用; 80 < CTC < 120 表现为相加作用。

[0018] 表1环氧虫啉与吡蚜酮组合对棉蚜的室内毒力测定

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>毒力回归方程</th>
<th>相关系数 (r)</th>
<th>LC₅₀ (mg/L)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧虫啉 (A)</td>
<td>Y=-0.1783+7.7302X</td>
<td>0.9949</td>
<td>4.68</td>
<td>-</td>
</tr>
<tr>
<td>吡蚜酮 (B)</td>
<td>Y=2.0696+4.1550X</td>
<td>0.9917</td>
<td>5.07</td>
<td>-</td>
</tr>
<tr>
<td>A: B=1: 20</td>
<td>Y=3.0108+3.2783X</td>
<td>0.9953</td>
<td>4.04</td>
<td>125.0</td>
</tr>
<tr>
<td>A: B=1: 10</td>
<td>Y=3.3825+2.9957X</td>
<td>0.9925</td>
<td>3.47</td>
<td>145.2</td>
</tr>
<tr>
<td>A: B=1: 5</td>
<td>Y=3.4454+3.0858X</td>
<td>0.9980</td>
<td>3.19</td>
<td>156.8</td>
</tr>
<tr>
<td>A: B=1: 2</td>
<td>Y=3.4614+3.3347X</td>
<td>0.9871</td>
<td>2.89</td>
<td>170.5</td>
</tr>
<tr>
<td>A: B=1: 1</td>
<td>Y=3.6690+3.3292X</td>
<td>0.9939</td>
<td>2.51</td>
<td>193.8</td>
</tr>
<tr>
<td>A: B=2: 1</td>
<td>Y=3.3555+4.0886X</td>
<td>0.9903</td>
<td>2.52</td>
<td>190.2</td>
</tr>
<tr>
<td>A: B=5: 1</td>
<td>Y=3.6713+2.6386X</td>
<td>0.9948</td>
<td>2.83</td>
<td>167.3</td>
</tr>
<tr>
<td>A: B=10: 1</td>
<td>Y=3.4633+3.0053X</td>
<td>0.9942</td>
<td>3.25</td>
<td>145.1</td>
</tr>
<tr>
<td>A: B=20: 1</td>
<td>Y=3.2253+3.1412X</td>
<td>0.9944</td>
<td>3.67</td>
<td>127.8</td>
</tr>
</tbody>
</table>

室内毒力测定结果表明:环氧虫啉和吡蚜酮以重量比为1:20~20:1混用对棉花棉蚜有较好的毒力,均有显著的增效作用,尤以重量比为1:10~10:1增效最为显著。

[0019] 为了防治农业生产上的同翅目害虫,我们以环氧虫啉和吡蚜酮进行了相互复配的增效研究。试验采用水稻褐飞虱为测试对象,具体方法为:

稻褐飞虱学名Nilaparvata lugens,同翅目,飞虱科。将药剂配制成需要的试验药剂,试验方法参考《中华人民共和国农业行业标准NY/T1154.7—2006》。首先将单剂及各混配药剂设置5个不同浓度梯度(在预试验结果的基础上,稻褐飞虱死亡率在5%~90%的范围内按等比级数设定)。试验为采自田间的褐飞虱卵,温室用水稻苗饲养3代,挑选均匀一致的3龄若虫,接入放置水稻幼苗直径12cm的培养皿,每皿接已麻醉若虫30头,每处理接4个培养皿,用Potter喷雾塔在50PSI压力下喷雾,每次喷一个皿,每皿喷药液3ml,待虫子苏醒后,将处理过的培养皿放入12H/12H光照培养箱内培养,72小时检查死虫数,计算死亡率。空白对照喷等量清水。通过死亡率的机率值和系列浓度的对数值之间的线性回归分析,求出各药剂的LC₅₀值,用孙云沛法计算混剂的共毒系数(CTC),以此来评价供试药剂对
试虫的活性。

[0020] 复配制剂的共毒系数 (CTC) ≥ 120 表现为增效作用； CTC ≤ 80 表现为拮抗作用；
80 < CTC < 120 表现为相加作用。

[0021] 表 2 环氧虫啉与吡蚜酮组合对褐飞虱的室内毒力测定

<table>
<thead>
<tr>
<th>药剂处理</th>
<th>毒力回归方程</th>
<th>相关系数（r）</th>
<th>LC50 (mg/L)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>环氧虫啉 (A)</td>
<td>Y = -0.3316 + 7.4850X</td>
<td>0.9940</td>
<td>5.16</td>
<td>-</td>
</tr>
<tr>
<td>吡蚜酮 (B)</td>
<td>Y = 2.8069 + 4.1136X</td>
<td>0.9943</td>
<td>3.41</td>
<td>-</td>
</tr>
<tr>
<td>A: B = 1: 20</td>
<td>Y = 3.6034 + 3.2322X</td>
<td>0.9943</td>
<td>2.70</td>
<td>128.3</td>
</tr>
<tr>
<td>A: B = 1: 10</td>
<td>Y = 3.7898 + 3.0743X</td>
<td>0.9974</td>
<td>2.48</td>
<td>142.2</td>
</tr>
<tr>
<td>A: B = 1: 5</td>
<td>Y = 3.8458 + 3.0881X</td>
<td>0.9981</td>
<td>2.36</td>
<td>153.0</td>
</tr>
<tr>
<td>A: B = 1: 2</td>
<td>Y = 3.8780 + 3.3347X</td>
<td>0.9871</td>
<td>2.17</td>
<td>177.3</td>
</tr>
<tr>
<td>A: B = 1: 1</td>
<td>Y = 3.9210 + 3.2661X</td>
<td>0.9959</td>
<td>2.14</td>
<td>191.9</td>
</tr>
<tr>
<td>A: B = 2: 1</td>
<td>Y = 3.4369 + 4.0740X</td>
<td>0.9894</td>
<td>2.42</td>
<td>182.1</td>
</tr>
<tr>
<td>A: B = 5: 1</td>
<td>Y = 3.6557 + 2.9529X</td>
<td>0.9867</td>
<td>2.85</td>
<td>166.6</td>
</tr>
<tr>
<td>A: B = 10: 1</td>
<td>Y = 3.4822 + 2.9865X</td>
<td>0.9912</td>
<td>3.22</td>
<td>152.9</td>
</tr>
<tr>
<td>A: B = 20: 1</td>
<td>Y = 3.3148 + 2.9524X</td>
<td>0.9903</td>
<td>3.72</td>
<td>135.2</td>
</tr>
</tbody>
</table>

室内毒力测定结果表明：环氧虫啉和吡蚜酮以重量比为 1:20 ~ 20:1 混用对褐飞虱有较好的毒力，均有显著的增效作用，尤以重量比为 1:10 ~ 10:1 增效最为显著。

具体实施方式

[0022] 下面结合实施例对本发明作进一步说明。

[0023] 制剂实施例 1

称取 10% 环氧虫啉、10% 吡蚜酮、3% TERSPERSE 4894（美国亨斯迈公司出品）、
1% TERSPERSE 2500（美国亨斯迈公司出品）、0.3% 黄原胶、5% 丙二醇、0.5% 苯甲酸、0.5% 有机
硅消泡剂（商品名：s-29 南京四新应用化学品公司出品）、去离子水加至 100% 重量份。上述
原料经混合，高速剪切分散 30min，用砂磨机砂磨后制得 20% 的环氧虫啉·吡蚜酮悬浮剂。

[0024] 制剂实施例 2

称取 10% 环氧虫啉、20% 吡蚜酮、4% TERSPERSE 4894（美国亨斯迈公司出品）、
1.5% TERSPERSE 2500（美国亨斯迈公司出品）、1% TERSPERSE 2020（美国亨斯迈公司出品）、
0.2% 硅酸镁铝、5% 乙二醇、0.5% 甲醛、0.5% 有机硅消泡剂（商品名：s-29 南京四新应用化学
品公司出品）、去离子水加至 100% 重量份。上述原料经混合，高速剪切分散 30min，用砂磨机
砂磨后制得 30% 环氧虫啉·吡蚜酮悬浮剂。

[0025] 制剂实施例 3
说明书

称取 3%环氧虫啉、60%吡蚜酮、6%木质素磺酸钙、3%烷基萘磺酸盐甲醛缩合物（分散剂NO1）、12%十二烷基硫酸钠、3%白炭黑、高岭土加至100%的重量份。上述原料经混合、超微气流粉碎，混合工艺步骤制备得39%环氧虫啉•吡蚜酮可湿性粉剂。

【0026】 制剂实施例4

称取6%环氧虫啉、30%吡蚜酮、4%木质素磺酸钙、3%烷基萘磺酸盐甲醛缩合物（分散剂NO1）、12%十二烷基硫酸钠、2%白炭黑、轻钙加至100%的重量份。上述原料经混合、超微气流粉碎，混合工艺步骤制备得39%环氧虫啉•吡蚜酮可湿性粉剂。

【0027】 制剂实施例5

称取20%环氧虫啉、60%吡蚜酮、2%TERSPERE 2700(聚羧酸盐，美国亨斯迈公司出品)、2%木质素磺酸钙、1%拉开粉BX(十二烷基硫酸钠)、1%PVA(分子量2000)、2%硫酸铵、高岭土加至100%重量份。上述原料经常规制取水分散粉剂的方法即混合、超微气流粉碎、混合、造粒步骤制取80%环氧虫啉•吡蚜酮水分散粉剂。

【0028】 制剂实施例6

称取50%环氧虫啉、2.5%吡蚜酮、4%TERSPERE 2700(聚羧酸盐，美国亨斯迈公司出品)、3%扩散剂NO1(烷基萘磺酸盐甲醛缩合物)、2%拉开粉BX(十二烷基硫酸钠)、2%K-12(十二烷基硫酸钠)、10%硅藻土、8%尿素、高岭土加至100%重量份。上述原料经常规制取水分散粉剂的方法即混合、超微气流粉碎、混合、造粒步骤制取52.5%环氧虫啉•吡蚜酮水分散粉剂。

【0029】 制剂实施例7

称取2%环氧虫啉、3%吡蚜酮、2.5%三苯乙基酚聚氧乙烯醚磷酸酯、1.5%扩散剂NO1、4%TERSPERE4894(美国亨斯迈公司出品)、5%环己酮、5%苯甲酸、2.5%斯盘-60#、3.5%吐温-60#、1%TERSPERE 2500(美国亨斯迈公司出品)、2%硅酸镁铝、0.2%黄原胶、5%乙二醇、1%环氧氯丙烷、0.3%苯甲酸、0.5%有机硅消泡剂（商品名：S-29，南京四新应用化学产品公司出品），去离子水加至100%重量份。操作步骤：1.上述原料在环氧虫啉和溶剂溶解完全后加入乳化剂混合均匀。2.其他物料经混合均匀。3.将1中混合均匀物料投入2物料中，高速剪切分散30min，用砂磨机砂磨后制得5%环氧虫啉•吡蚜酮悬浮乳剂。

【0030】 制剂实施例8

称取18%环氧虫啉、9%吡蚜酮、1%扩散剂NO1、1%TERSPERE2425（美国亨斯迈公司出品）、10%油酸甲酯、5%溶剂油S-180、2.5%农乳1601#、3.5%吐温-60#、1%烷基酚聚氧乙烯醚磷酸酯、2%聚乙二醇、0.2%黄原胶、5%乙二醇、3%亚磷酸三苯酯、0.3%苯甲酸钠、0.5%有机硅消泡剂（商品名：S-29，南京四新应用化学产品公司出品），去离子水加至100%重量份。操作步骤：1.上述原料中溶剂和乳化剂混合均匀，2.其他物料经混合均匀。3.将1中混合均匀物料投入2物料中，高速剪切分散30min，用砂磨机砂磨后制得27%环氧虫啉•吡蚜酮悬浮乳剂。

【0031】 生物实施例1：防治水稻稻飞虱田间试验

发明人于2012年5月15日在广东省雷州市进行了制剂实施例2（30%环氧虫啉•吡蚜酮悬浮剂）防治稻飞虱田间药效试验，验证了该药剂对稻飞虱的防治效果，有效剂量及对水稻的安全性。试验作物为水稻，防治对象为褐飞虱（Nilaparvata lugens）。试验药剂及剂量详见表3。各小区的栽培条件、水肥管理均匀一致。用药量为45kg/667m²，采用手动喷
雾器均匀喷施，要求各小区水稻叶片正反面均匀着药。另设空白对照，每处理 4 次重复，每小区面积 50 m²，共 24 个小区，随机区组排列。药前调查基数，药后 1、7、14 天调查防效，同时观察水稻生长情况，自测试验药剂对水稻有无药害产生。

[0032] 调查统计方法

采取平衡跳跃式随机取样，每小区 10 点，每点 2 丛（共 20 丛），用盆栽法记录稻飞虱（褐飞虱）虫数，按每丛药前、药后的虫数计算校正防效。

[0033] 防治效果（%）=[1 −（对照区药前虫数 × 处理区药后虫数） /（对照区药后虫数 × 处理区药前虫数）] ×100

表 3 防治水稻稻飞虱田间试验结果

<table>
<thead>
<tr>
<th>处理</th>
<th>用量 (g/6 67 m²)</th>
<th>虫口基数</th>
<th>药后 1 天</th>
<th>药后 7 天</th>
<th>药后 14 天</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%环氧虫啉·吡蚜酮悬浮剂</td>
<td>8</td>
<td>241</td>
<td>42</td>
<td>84.5</td>
<td>35</td>
</tr>
<tr>
<td>50%环氧虫啉·吡蚜酮悬浮剂 (10+20)</td>
<td>10</td>
<td>312</td>
<td>35</td>
<td>90.0</td>
<td>25</td>
</tr>
<tr>
<td>10%环氧虫啉·可湿性粉剂</td>
<td>12</td>
<td>253</td>
<td>18</td>
<td>93.7</td>
<td>10</td>
</tr>
<tr>
<td>50%环氧虫啉·吡蚜酮悬浮剂</td>
<td>20</td>
<td>284</td>
<td>111</td>
<td>65.2</td>
<td>75</td>
</tr>
<tr>
<td>对照（CK）</td>
<td>清水</td>
<td>278</td>
<td>312</td>
<td>-</td>
<td>331</td>
</tr>
</tbody>
</table>

试验结果表明，30%环氧虫啉·吡蚜酮悬浮剂按 8g/667 m²、10g/667 m²、12g/667 m²用量，对水稻褐飞虱有较显著的防治效果，药后 1、7、14 天的防效均在 84.5% 以上，表现出优异的速效性和持效性，明显优于 10%环氧虫啉可湿性粉剂 50g/667 m²、25% 吡蚜酮悬浮剂 20g/667 m²的防治效果（表 3）。建议 30%环氧虫啉·吡蚜酮悬浮剂防治水稻褐飞虱用量为 10—12g/667 m²。

[0034] 安全性调查，试验期间观察，所有供试药剂对水稻生长安全，无药害现象发生。

[0035] 试验结果表明，环氧虫啉与吡蚜酮混配后，明显提高了对稻飞虱的防治效果，表现出优异的速效性和持效性，降低了用药量，节约了用药成本，对水稻生长安全。

[0036] 生物实施例 2：防治棉花蚜虫田间试验

发明人于 2012 年 7 月在陕西省渭南市临渭区做了制剂实施例 8（27%环氧虫啉·吡蚜酮悬浮乳剂）防治棉花蚜虫田间药效试验，试验参照《农药田间药效试验细则（二）GB/T 17980.75-2004 杀虫剂防治棉花蚜虫》。试验作物为棉花，防治对象为棉花蚜虫。试验棉花田土壤为粘土，肥力中等，各小区的栽培条件、水肥管理均匀一致。7月 23 日施药，用药液量为 60kg/667 m²，采用手动喷雾器均匀喷施，要求各小区棉花叶片正反面、边尖、花蕾均
匀着药。试验药剂及剂量详见表 4。另设空白对照，每处理 4 次重复，每小区面积 50 m²，共 24 个小区，随机区组排列。

[0037] 调查方法：
对角线五点取样，每点固定 4 株，每株固定上、中、下 3 片叶，共固定调查 20 株 60 片叶，调查记录活蚜虫数。药前调查虫口基数，药后 1、3、7 天各调查 1 次小区的残存蚜虫数，依据药前虫口基数和药后各天的残存虫量计算校正防效。

[0038] 每次调查药效时同时观察各处理区对棉花叶片、花蕾及其它害虫的影响。

[0039] 试验结果表明，27%环氯虫啉·吡蚜酮悬浮乳剂 3000 倍、3500 倍、4000 倍对棉花蚜虫有优异的防治效果，明显优于 10%环氯虫啉可湿性粉剂 1000 倍、25% 吡蚜酮悬浮剂 2000 倍的防治效果（表 4）。

[0040] 表 4 防治棉花蚜虫田间试验结果

<table>
<thead>
<tr>
<th>处理</th>
<th>浓度</th>
<th>虫口基数</th>
<th>药后 1 天</th>
<th>药后 3 天</th>
<th>药后 7 天</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>倍数</td>
<td>活虫</td>
<td>防效</td>
<td>活虫</td>
<td>防效</td>
</tr>
<tr>
<td>27%环氯虫啉-吡蚜酮悬浮乳剂</td>
<td>3000</td>
<td>387</td>
<td>26</td>
<td>93.7</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3500</td>
<td>462</td>
<td>51</td>
<td>89.7</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>441</td>
<td>62</td>
<td>86.9</td>
<td>38</td>
</tr>
<tr>
<td>10%环氯虫啉可湿性粉剂</td>
<td>1000</td>
<td>524</td>
<td>129</td>
<td>77.0</td>
<td>120</td>
</tr>
<tr>
<td>25%吡蚜酮悬浮剂</td>
<td>2000</td>
<td>397</td>
<td>151</td>
<td>64.5</td>
<td>82</td>
</tr>
<tr>
<td>对照（CK）</td>
<td>清水</td>
<td>454</td>
<td>486</td>
<td>-</td>
<td>431</td>
</tr>
</tbody>
</table>

安全性调查，试验期间观察，所有供试药剂对棉花生长安全，无药害现象发生。

[0041] 试验结果表明，环氯虫啉与吡蚜酮混配后，明显提高了对棉花蚜虫的防治效果，降低了用药量，对棉花生长安全，是防治棉花蚜虫的理想药剂。

[0042] 从以上实施例中可见，第一活性成分环氯虫啉与第二活性成分吡蚜酮组合复配，可制成悬浮剂、可湿性粉剂、水分散粒剂或悬浮乳剂型，对农业生产上的同翅目害虫水稻稻飞虱、棉花蚜虫有显著的防治效果，用药量少，防治效果高等优点，节约了用药成本和用药量，且对作物安全性良好，因此生产上有广泛的应用前景。

[0043] 综上所述，本发明的组合物是采用两种活性成分复配方案，其活性和杀虫效果不是各组分活性的简单叠加，与现有的单一制剂相比，除具有显著的杀虫效果外，而且有显著的增效作用，对作物安全性好，符合农药制剂的安全性要求。