Title: NOVEL PLEXINS AND USES THEREOF

Abstract: The invention provides methods and compositions related to novel plexins. The polypeptides may be produced re-combinantly from transformed host cells and from the disclosed plexin encoding nucleic acids or purified from human cells. The invention provides isolated plexin hybridization probes and primers capable of specifically hybridizing with the disclosed plexin genes, plexin-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis, therapy and in biopharmaceutical industry. The invention also provides novel plexin neuropilin multimeric receptor complexes for semaphorins and methods of use thereof, including but not limited to, the treatment and diagnosis of neurological disease and neuroregeneration, immune modulation, and viral and oncological diseases.

Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
NOVEL PLEXINS AND USES THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to the identification and characterization of four novel proteins that are members of the plexin family.

Summary of the Related Art

Plexin family members encode large transmembrane proteins, whose cysteine-rich extracellular domains share regions of homology with the Scatter Factor receptors (encoded by the Met gene family). The extracellular domains of plexins also contain ~500 amino acid Semaphorin domains (see below). The highly conserved cytoplasmic moieties of plexins (approx. 600 amino acids), however, have no homology with the Met tyrosine kinase domain, nor with any other known protein. Met-like receptors and their ligands, the Scatter Factors, mediate a complex biological program including dissociation of cell-cell contacts, motility and invasion (for a review see Tamagnone, L. and Comoglio, P.M. (1997) "Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors." Cytokine Growth Factor Rev 8, 129-142). During embryogenesis Scatter Factor-1 and Met promote the dissociation of cell layers in the somites and drive the migration of myogenic cells to their appropriate location (Blad, F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) "Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud." Nature 376, 768-771; Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P.M., Klein, R.a., and Ponzetto, C. (1996) "Uncoupling of grb2 from the met receptor in vivo reveals complex roles in muscle development." Cell 87, 531-542).

The first clue regarding a possible function for plexins came from the finding that a novel plexin, Vespr, interacts with the viral semaphorin A39R (Comeau, M.R., Johnson, R., DuBose, R.F., Petersen, M., Gearing, P., VandenBos, T., Park, L., Farrah, T., Buller, R.M., Cohen, J.I., Strockbine, L.D., Rauch, C., and Spriggs, M.K. (1998) "A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR." Immunity. 8, 473-482). Semaphorins are a large family of secreted and membrane-bound molecules that are characterized by an extracellular domain containing a ~500 amino acid Semaphorin domain (Kolodkin et al. (1993) "The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules." Cell 75, 1389-1399). As noted above, plexins contain a more divergent but nevertheless conserved Semaphorin domain.

gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines."
Cancer Res. 58, 1238-1244).

Previously identified plexins have been shown to be expressed in the developing
nervous system, (i.e. Plexin-A is a receptor for class 1 semaphorins (Sema-1a and
Sema-1b). Moreover, Plexin-A has been shown via genetic analysis to control motor
and CNS axon guidance induced by semaphorins (Winberg, M.L., Noordermeer, J.N.,
Tamagnone, L., Comoglio, P.M., Spriggs, M.K., Tessier-Lavigne, M., and Goodman,
Cell 95, 903-916).

Thus a need exists for discovery of other members of the plexin family of
proteins.

SUMMARY OF THE INVENTION

The present invention provides four novel plexin family members.

In one aspect, the invention provides an isolated nucleic acid having at least
80% nucleic acid sequence identity to a nucleotide sequence that encodes an amino acid
sequence selected from the group consisting of the amino acid sequence shown in (SEQ
ID NO: 2), (SEQ ID NO: 4), (SEQ ID NO: 6) and (SEQ ID NO: 8).

In other aspects, the invention provides isolated nucleic acid having at least
80% nucleic acid sequence identity to a nucleotide sequence selected from the group
consisting of the nucleotide sequence shown in (SEQ ID NO: 1), (SEQ ID NO: 3),
(SEQ ID NO: 5) and (SEQ ID NO: 7).

In another aspect, the invention provides a vector comprising the nucleic
acid of the above-aspects.

The invention also provides an isolated polypeptide the amino acid
sequence of which comprises residues 1-18, 19-518, 451-530, 601-680, 751-830,
800-1010, or 1196-1215 of SEQ ID NO: 2; 1-23, 24-507 or 1100-1119 of SEQ ID
NO: 4; or 1-42, 43-600, 541-620, 691-770, 831-910, 900-1110 or 1270-1293 of SEQ
ID NO: 6; or 8-49, 154-199 or 1-199 of SEQ ID NO: 8.

In another aspect, the invention provides an isolated polypeptide having at
least 80% amino acid sequence identity to an amino acid sequence selected from the
group consisting of the amino acid sequence shown in (SEQ ID NO: 2), (SEQ ID NO:
4), (SEQ ID NO: 6) and (SEQ ID NO: 8)
The invention also provides a chimeric molecule comprising a polypeptide of
the above aspects fused to a heterologous amino acid sequence. In one embodiment
the heterologous amino acid sequence is a Fc region of an immunoglobulin.

In other aspects, the invention provides an antibody that specifically
binds to the polypeptides of the above aspects.

The invention also provides a method of treating, suppressing or altering a
disorder involving aberrant immune regulation involving a signaling pathway between a
plexin and a neuropilin in a mammal comprising the step of administering an effective
amount of an agent to said mammal capable of interfering with the association between
the plexin and neuropilin. Contemplated agents include a chimeric molecule or an
antibody of the above aspects.

DESCRIPTION OF THE DRAWINGS

Figure 1.

(A) Phylogenetic tree of human plexins. Known family members cluster in two
major groups: plexin A and plexin-B subfamilies. (B) Structural features of plexins,
Met-like receptors and semaphorins. In the extracellular moieties, yellow boxes indicate
the “sema” domains and blue boxes mark the cysteine-rich MRS motifs, some of which
are stippled to indicate their atypical sequence; atypical MRS are also found in the sema
domain of semaphorins. Sequence identity among sema domains ranges from 15-50%,
as previously described (see Winberg et al., 1998 *supra*). Potential furin-like
proteolytic sites are marked by red ribbons. plexin-B1 “truncated” is the product of a
splicing variant (see text). plexin-D1 and plexin-C1 (VESPR) are more distant family
members, since they include atypical features in their extracellular domains. The
intracellular domain of plexins (SP domain) is highly conserved through all family
members, and it includes two separate regions of high homology (Maestrini, E.,
Tamagnone, T., Longati, P., Cremona, O., Gulisano, M., Bione, S., Tamanini, F., Neel,
USA 93, 674-678) (green oval and box). Met-like receptors are disulfide-bound
heterodimers and include a cytoplasmic tyrosine kinase domain (red box). Mammalian
semaphorins can be either secreted or cell surface proteins. Molecular weights of
representative proteins are Plexin-A1 220 kDa, Plexin-B1 250 kDa, Plexin-C1 200
kDa, HGF-R/Met 145+45 kDa (heterodimer), Sema 4D 150 kDa (transmembrane),
Sema7A approx. 100 kDa (membrane GPI-linked).

Figure 2.

(a) Cell surface semaphorins specifically bind human plexins. Micrographs of
the binding assays done testing i) the extracellular domain of semaphorin CD100 fused
to alkaline phosphatase (CD100-AP) on COS cells transfected with *plexin-B1 cDNA*;
ii) control AP on plexin-B1; iii) CD100-AP on plexin-B2; iv) CD100-AP on the entire
extracellular domain of plexin-B1; v) CD100-AP on isolated “plexin-B1 truncated”
(including *sema* domain, 1° and 2° MRS); vi) CD100-AP on a “plexin-B1-Δsema”
(including 2° and 3° MRS; vii) extracellular domain of semaphorin A39R fused to AP,
on plexin-C1 (Vespr); viii) SemaK1-AP on plexin-C1. The final detection of the
binding was done either using alkaline phosphatase substrates (i-vi) or by
immunofluorescence (vii and viii). (B) Scatchard analysis and binding curve of
CD100-AP to plexin-B1 (K_D = 0.9 nM ± 0.15).

Figure 3.

Plexins associate with neuropilins *via* specific extracellular domains. Western
blots of immunoprecipitated samples from cells co-expressing neuropilins and plexins.
Specific MoAbs were used, directed against the VSV-tag included in plexins or the
myc-tag included in neuropilin-2 (Np2, 130 kDa). Np2 co-immunoprecipitates with
plexins, such as plexin-A3 (220 kDa), the extracellular domain of plexinA1
(approx.160 kDa), and plexin-B1 (250 kDa) but not with the unrelated cell surface
receptor DCC (170 kDa). Np2 can also associate a truncated form of the extracellular
moiety of plexin-B1 (“plex-B1 trunc.”, approx. 110 kDa), containing the *sema* domain.

Figure 4.

Expression of mRNAs for plexins A1 (panel A, B), -A2 (panel C, D) and A3
(panel E, F) in the spinal cord (sc), dorsal root ganglia (d) and sympathetic ganglia (sg)
of E13.5 mouse embryos. Expression of the mRNAs was detected by RNA in situ
hybridization. Scale bar: 1 μm.

Figure 5.

Effect of a truncated plexin-A1 construct (lacking the cytoplasmic domain) on
repulsive and attractive responses of Xenopus spinal neurons to Sema3A and netrin-1.
(A-F) A control spinal neuron exposed to a gradient of Sema3A emanating from a
pipette (A) is repelled away over a period of 1 hr (B). In contrast, a GFP-expressing
spinal neuron from an embryo injected with mRNA for the truncated plexin-A1 construct (C) is not affected by Sema3A (D). A similar neuron (E) shows a normal attractive response to netrin-1 (F).

(G) Cumulative distribution plot of turning angles for all the neurons studied. Curves show the percent of neurons with turning angles less than the angle indicated on the abscissa, under different conditions (open circles, control neurons; black and blue circles, control neurons responding to Sema3A or netrin-1, respectively; red and green circles, responses of neurons expressing the truncated plexin-A1 construct to Sema3A and netrin-1, respectively. (H) Mean turning angle under all the conditions just mentioned.

Figure 6.
Tyrosine phosphorylation of plexin-A3 and plexin-B1. (a) Anti-phosphotyrosine western blotting of immunoprecipitated p220plex-A3 and p250plex-B1 proteins. plexin-B1 is larger since it contains an extra sequence between the second and the third MRS motif, in the extracellular domain (see Fig. 1). (b) The same immunoprecipitated samples underwent in vitro kinase assay in the presence of [γ32P]ATP, Mg++, and Mn++ ions. The SDS-PAGE was treated with alkali in conditions known to eliminate the phosphate labeling of Ser/Thr residues and specifically preserving phosphotyrosines.

Figure 7
Plexin-A3 overexpression mediates cell repelling cues. (a) Epithelial kidney MDCK cells transfected to overexpress plexin-A3 (or mock transfected) were cocultured with mesenchymal KJ-29 or NIH-3T3 cells. After 16-30 hours, mixed cultures of control cells (upper panels) reached confluence and stopped growing: typically the epithelial cells formed islets (circled) surrounded by a fibroblasts lawn. In contrast, MDCKs overexpressing plexin-A3 (lower panels) overwhelmed the adjacent mesenchymal cells. The latter withdrew and selectively detached from the culture dish (dying cell clusters are indicated by arrowheads), and eventually epithelial cells only survived. To allow an easier detection of the mesenchymal cells, these were labeled with Dil before being plated in mixed cultures. (b) Plexin-A3 expressing cells do not induce apoptotic signal on repelled fibroblasts. Mixed cultures of NIH 3T3 and control or plexin-A3 overexpressing MDCKs were tested for the presence of TUNEL-AP positive cells. Apoptotic cells were not present in clusters of repelled cells (indicated by
arrows). The right panel shows a positive control where apoptosis was induced on the same cells by UV treatment. (c) Plexin-A3 over-expressing cells form very transient contacts with fibroblasts. Time-lapse video-microscopy of control and plexin-A3 overexpressing MDCK cells grown in presence of fibroblasts. On top, snap-shot images from the movie, taken every 50 minutes (real time). In the upper row is shown the persistent contact of a fibroblast (marked by an arrow) with an islet of control MDCK cells (marked by a star). In the lower row another fibroblast, instead, forms a transient contact with an islet of plexin-A3 transfected cells, which also, in turn, reshapes. At the bottom, the diagrams show the relative frequency of persistent, transient or very transient contacts between fibroblasts and MDCK cells.

DETAILED DESCRIPTION OF THE INVENTION

The reference works, patents, patent applications, and scientific literature, including accession numbers to GenBank database sequences, that are referred to herein establish the knowledge of those with skill in the art and are hereby incorporated by reference in their entirety to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specification shall be resolved in favor of the later. Likewise, any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be resolved in favor of the latter.

Four novel human plexins have been identified: plexin-B2, plexin-B3, plexin-D1 and Plexin A-4. Plexin-A4 is located on human chromosome 7 and is a family member of the plexin-A subfamily which also includes plexin-A1 (alternatively named plexin-1/NOV), plexin-A2 (alternatively named plexin-2/OCT) and plexin-A3 (alternatively named plexin-2/SEX). Plexin-B2 and plexin-B3 are located on human chromosome 22 and chromosome X, respectively, and are family members of the plexin-B subfamily which also includes plexin-B1 (alternatively named SEP). Plexin-B3 maps very close to the plexin-A3 genomic locus on Xq28. Plexin-D1 is the first identified member of the plexin-D subfamily and is atypical of any of the other subfamilies. A fourth subfamily of plexins, the plexin-C subfamily, is defined by VESPR (now plexin-C1).

The four novel plexins as described herein have in their extracellular domains regions of homology with two other protein families: (a) Scatter Factors Receptors, encoded by the MET oncogene family (Tamagnone and Comoglio, 1997 *supra*), and (b)
Semaphorins (Kolodkin et al. (1993) supra (Figure 1b). In particular, plexins and Met-like receptors contain short cysteine-rich motifs, termed "Met Related Sequences" (MRS), whose minimal consensus is: C-X(5-6)-C-X(2)-C-X(6-8)-C-X(2)-C-X(3-5)-C (Maestrini et al., 1996 supra); Tamagnone and Comoglio, 1997 supra); blue boxes in Fig. 1B). The proteins of the Met family contain a single MRS (in their receptor β chains), whereas in plexin family members there are two/three repeated MRS motifs. Furthermore, all plexin family members contain in their extracellular moiety a 500 amino acid region similar to the sema domain of semaphorins (Kolodkin et al. (1993) supra; Winberg et al., 1998 supra); yellow boxes in Fig. 1B. The MRS motif is proposed to function as protein-protein interaction domain.

The cytoplasmic domain of plexins contains a ~600 amino acid domain which we term the SP domain ("Sex and Plexins", marked in green in Fig. 1B) that is highly conserved within the family (57-97% similarity) and in evolution (over 50% similarity between invertebrates and humans). The SP domain does not share homology with any known protein. It includes a number of potential tyrosine phosphorylation sites, but lacks the typical motifs of catalytic tyrosine kinases. Interestingly, the predicted secondary structure of the SP domain includes long conserved alpha helices, typically found in protein-protein interaction modules. Furthermore, there are several dihydrophobic amino acid motifs (such as LL or LI), known to mediate the internalization and downregulation of transmembrane receptors (Sandoval, I.V. and Bakke O. (1994). Targeting of membrane proteins to endosomes and lysosomes. Trends in Cell Biology 4, 292-297).

The present invention also demonstrates that plexins can form complexes with neuropilins, which in turn demonstrates that a receptor for semaphorins can be hetero-oligomers of plexins and neuropilins. As demonstrated by in situ mRNA expression analysis, plexins and neuropilins are in fact simultaneously expressed in several neuronal populations during embryonic development. The plexin-neuropilin complex predates ligand binding, since the association is not influenced by the presence of class 3 semaphorins. That the observed plexin-neuropilin complexes are formed in cis is furthermore supported by the experimental conditions used (cotransfection of isolated cells with the two constructs). An interaction in trans might also be envisioned (considering that plexins and semaphorins share similar sema domains), however by
analyzing mixed cultures of cells separately transfected with plexins and neuropilins we did not isolate associated complexes (data not shown).

We observed that the main semaphorin binding domain of neuropilins (CUB domain (Giger, R.J., Urquhart, E.R., Gillespie, S.K., Levesgood, D.V., Ginty, D.D., and Kolodkin, A.L. (1998) "Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity." Neuron 21, 1079-1092; Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R.G., and Strittmatter, S.M. (1998) "Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse" [In Process Citation]. Neuron 21, 1093-1100; Chen et al. 1998 supra) is not required for the interaction with plexins, as indicated by the association of the relevant Neuropilin-2 deletion construct with plexin-B1 (not shown). A ternary complex, where neuropilins use two distinct protein modules to form a bridge between the sema domain of semaphorins and the sema domain of plexins is thus contemplated. It is further contemplated that plexins are the functional partners of neuropilins, required for transducing signals mediated by semaphorins, preferably class 3 semaphorins. For example, in flies, which lack both neuropilins and class 3 semaphorins, D Plex A appears sufficient as a functional receptor for Sema 1a, a transmembrane class 1 semaphorin (Winberg et al., 1998 supra). Further support that plexins are functional co-receptors for secreted semaphorins is demonstrated in an experiment that shows that a truncated plexin-A1 construct expressed in Xenopus spinal neurons abolishes repulsive responses to Sema3A without markedly affecting attractive responses to netrin-1. These results are consistent with the involvement of plexins.

The intracellular signals transduced by plexins are still largely obscure. The cytoplasmic domain of plexins is large and highly conserved within and across species and contains stretches of alpha helices, which are putative protein-protein interaction domains, and could thus mediate the association with cytosolic partners. We demonstrate herein that the cytoplasmic domain of plexins can be tyrosine phosphorylated, suggesting that, like other receptors devoid of intrinsic catalytic activity, plexins may signal by associating a tyrosine kinase (Stahl, N. and Yancopoulos, G.D. (1993). The alphas, betas, and kinases of cytokine receptor complexes. Cell 74, 587-590; Glass, D.J., Bowen, D.C., Stitt, T.N., Radziejewski, C., Bruno, J., Ryan, T.E., Gies, D.R., Shah, S., Mattsson, K., Burden, S.J., DiStefano, P.S.,

In addition, we show herein that expression of plexins, particularly plexin-A3, mediates cell-repelling cues. By time-lapse video-microscopy we observed a true repelling effect on fibroblasts. Intriguingly, we observed that - upon interaction with fibroblasts- also the islets of plexin-A3 MDCKs at times reshaped. This may be explained by the existence of intra-epithelial repelling cues, balanced by the attractive forces exerted by epithelial cell junctions.

Moreover we have demonstrated that in the nervous system (i.e. Drosophila), that defasciculating motor axons co-express both Plexin A and one of its interacting partners, the transmembrane semaphorin Sema-1a (Winberg et al., 1998 supra). This demonstrates that plexins act in vivo either as receptors or ligands for cell surface semaphorins, which in turn can transduce intracellular signals, as reported for ephrins (Holland et al., 1996 supra). Semaphorins, therefore, besides being pivotal in axon guidance, have a general role in morphogenesis and tissue remodeling by mediating cell-repelling cues via their interactions with plexins.

Accordingly, in a first aspect, the invention provides an isolated nucleic acid molecule encoding a novel human plexin polypeptide. By “plexin polypeptide” is meant a member of the plexin family comprising an amino acid sequence that shares at least 60% amino acid sequence homology with SEQ ID NOS: 2 (plexin B-2), 4 (plexin B-3), 6 (plexin D-1) or 8 (plexin A-4), preferably, at least 65% sequence homology, more preferably, at least 70% sequence homology, more preferably, at least 75% sequence homology, more preferably, at least 80% sequence homology, still more preferably at least 85% sequence homology, even more preferably, at least 90% sequence homology, and most preferably at least 95% sequence homology with SEQ ID NOS: 2, 4, 6 or 8. Plexin polypeptides of the invention are useful for modulating cell growth (i.e. nerve) and immune regulation.

As used herein, by “modulating” is meant increasing or decreasing cell growth. By “cell growth” is meant any change in cell number or size, including, without limitation, increase or decrease in cell number, increase or decrease in rate of cell division, increase or decrease in rate of cell death, and/or increase or decrease in cell size. Standard methods for measuring cell growth include standard apoptosis assays (e.g., TUNEL assays, DNA fragmentation, trypan blue exclusion) and cell proliferation assays.
(e.g., \(^3\)H-thymidine incorporation). It will be appreciated that the degree of modulation of cell growth provided by a plexin polypeptide in a given assay will vary, but one of skill in the art can readily determine the statistically significant change in cell growth of a cell exposed to a plexin polypeptide.

By “immune regulation” is meant increasing or decreasing the biological functions of immune cells (i.e., cells involved in an immune response). Immune cells include, without limitation, lymphocytes (T and B), NK cells, dendritic cells, myeloid cells (e.g., macrophages and neutrophils), and other hematopoietic cells involved in an immune response.

By “nucleic acid molecule” or “nucleic acid” as used herein, is meant any deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including, without limitation, complementary DNA (cDNA), genomic DNA, RNA, heteronuclear RNA (hnRNA), messenger RNA (mRNA), DNA/RNA hybrids, or synthetic nucleic acids (e.g., an oligonucleotide) comprising ribonucleic and/or deoxyribonucleic acids or synthetic variants thereof. The nucleic acid of the invention includes, without limitation, an oligonucleotide or a polynucleotide. The nucleic acid can be single stranded, or partially or completely double stranded (duplex). Duplex nucleic acids can be homoduplex or heteroduplex.

By “polypeptide” is meant any molecule comprising two or more amino acids joined together with a peptide bone, regardless of length or post-translational modifications (e.g., without limitation, glycosylation, lipidation, acetylation, or phosphorylation). Useful plexin polypeptides of the invention include, without limitation, the full length plexin polypeptides having the amino acid sequence of SEQ ID NOS: 2, 4, 6, 8 or 10.; an extracellular domain of the polypeptide having the amino acid sequence 1 to 1199 of SEQ ID NO: 2; 1 to 1099 of SEQ ID NO: 4; 1 to 1270 of SEQ ID NO: 6 or 1 to 199 of SEQ ID NO: 8, with its associated signal peptide; or an extracellular domain of the polypeptide having the amino acid sequence 19 to 1199 of SEQ ID NO: 2; 24 to 1099 of SEQ ID NO: 4; or 43 to 1270 of SEQ ID NO: 6, lacking its associated signal peptide; an intracellular domain of the polypeptide having the amino acid sequence of SEQ ID NOS: 2, 4, 6 or 8; and polypeptides, the amino acid sequence of which comprises about residues 1-18 (putative signal sequence), 19-518 (sema domain), 451-530 (1\(\text{st}\) MRS), 601-680 (2\(\text{nd}\) MRS), 751-830 (3\(\text{rd}\) MRS), 800-1010 (G-P repeats) or 1196-1215 (putative transmembrane domain) of SEQ ID
NO: 2; about residues 1-23 (putative signal sequence), 24-507 518 (sema
domain) or 1100-1119 (putative transmembrane domain) of SEQ ID NO: 4; or
about residues 1-42 (putative signal sequence), 43-600 (sema domain), 541-620
(1° MRS), 691-770 (2° MRS), 831-910 (3° MRS), 900-1110 (G-P repeats) or 1270-
1293 (putative transmembrane domain) of SEQ ID NO: 6; or about residue 8-49
(1° MRS) or 154-199 (2° MRS) of SEQ ID NO: 8.

By “isolated” is meant a compound (e.g., a nucleic acid molecule or a protein)
that has been separated from components (e.g., nucleic acid molecules, proteins, lipids,
and/or carbohydrates) which naturally accompany it. Water, buffers, and other small
molecules (e.g., molecules having a molecular weight of less than about 1000 daltons)
may accompany an isolated compound of the invention. Preferably, an isolated
compound is at least 70%, by weight, free from components which naturally
accompany it. More preferably, an isolated is at least 75%, by weight, free from
components which naturally accompany it; still more preferably, at least 80%, by
weight, free; even more preferably, at least 85%, by weight, free; and even more
preferably, at least 90%, by weight, free from components which naturally accompany
it. Most preferably, a substantially purified compound is at least 95%, by weight, free
from components which naturally accompany it.

Where the isolated compound is a nucleic acid molecule, the isolated nucleic acid
molecule is separated from other nucleic acids (e.g., genes or transcripts) or proteins
which, in the naturally-occurring genome of the organism from which the nucleic acid
molecule was derived, flanked the nucleic acid molecule. Isolated nucleic acid
molecules therefore include, without limitation, a recombinant nucleic acid molecule
incorporated into a plasmid or other vector (e.g., a replication-defective virus); a
recombinant nucleic acid molecule incorporated into the genome of a prokaryotic or
eukaryotic organism; or a nucleic acid molecule which exists as a separate molecule
independent of other nucleic acids (e.g., a PCR product, a chemically synthesized nucleic
acid molecule, or a nucleic acid molecule produced by restriction endonuclease
digestion). Purification of a nucleic acid molecule can be accomplished and measured by
any standard method including, without limitation, sequence analysis, chemical
synthesis, PCR, CsCl gradient, phenol:chloroform extraction, ethanol precipitation,
Southern or Northern blotting analysis followed by band extraction and purification, and

Thus, in one non-limiting example, to obtain an isolated nucleic acid molecule encoding a plexin polypeptide, a nucleic acid molecule is chemically synthesized on a standard oligonucleotide synthesis machine. The resulting single stranded molecule is then subjected to second strand synthesis to form a duplex DNA molecule, which is then ligated into a plasmid capable of replication in a prokaryotic or eukaryotic cell. The nucleic acid molecule is then replicated in the cell, purified (e.g., by CsCl gradient), and subjected to sequence analysis.

In certain embodiments of the first aspect of the invention, the nucleic acid molecule has a nucleic acid sequence comprising SEQ ID NOS: 1, 3, 5, 7 or 9. Preferably, the nucleic acid molecule of the invention has not more than 500 nucleotides flanking each of the 5' and 3' ends of SEQ ID NOS: 1, 3, 5, 7 or 7. In certain embodiments, the plexin polypeptide has an amino acid sequence that comprises SEQ ID NOS: 2, 4, 6, 8 or 10. Preferably, the plexin polypeptide of the invention has not more than 50 amino acid residues flanking each of the N-terminal and C-terminal ends of SEQ ID NOS: 2, 4, 6, 8 or 10.

In certain embodiments of the first aspect of the invention, the nucleic acid molecule hybridizes under stringent conditions (as defined herein) to SEQ ID NOS: 1, 3, 5, 7 or 9.

The invention also includes nucleic acid molecules that hybridize under stringent hybridization conditions (as defined herein) to all or a portion of the nucleotide sequence represented by SEQ ID NOS: 1, 3, 5, 7 or 9 or its complement. The hybridizing portion of the hybridizing nucleic is at least 80%, e.g., at least 95%, or at least 98%, homologous to the sequence of a portion or all of a nucleic acid encoding a polypeptide having the amino acid sequence of SEQ ID NOS: 2, 4, 6, 8 or 10, or its complement. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (e.g., a PCR primer) or a diagnostic probe.

Hybridization of the oligonucleotide probe to a nucleic acid sample typically is performed under stringent conditions. Nucleic acid duplex or hybrid stability is expressed as the melting temperature or Tm, which is the temperature at which a probe dissociates from a target DNA. This melting temperature is used to define the required stringency conditions. If sequences are to be identified that are related and substantially
identical, rather than identical, then it is useful to first establish the lowest temperature
at which only homologous hybridization occurs with a particular concentration of salt
(e.g., SSC or SSPE). Then, assuming that 1% mismatch results in a 1°C decrease in the
Tm, the temperature of the final wash in the hybridization reaction is reduced
accordingly (for example, if the sequences have >95% identity with the probe are
sought, the final wash temperature is decreased 5°C). In practice, the change in the Tm
can be between 0.5°C and 1.5°C per 1% mismatch. "Stringent conditions" involve
hybridization at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS, and washing in
0.2xSSC/0.1% SDS at room temperature. "Moderately stringent conditions" include
washing in 3xSSC at 42°C. The parameters of salt concentration and temperature can
be varied to achieve the optimal level of identity between the probe and the target
nucleic acid. Additional guidance regarding such conditions is readily available in the
art, for example, by Sambrook et al., supra; and Ausubel et al., supra.

Nucleic acid sequence homology (as well as amino acid sequence homology) can
be measured according to standard methods. Unless otherwise specified, as used herein
used herein, "percent homology" of two amino acid sequences or of two nucleic acids is
determined using the algorithm of Karlin and Altschul (Proc. Natl. Acad. Sci. USA 87:
2264-2268, 1990), modified as in Karlin and Altschul (Proc. Natl. Acad. Sci. USA 90:
5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST
searches are performed with the NBLAST program, e (score) = 100, word length = 12, to
obtain nucleotide sequences homologous to a nucleic acid molecule of the invention.
BLAST protein searches are performed with the XBLAST program, e (score) = 50, word
length = 3, to obtain amino acid sequences homologous to a reference polypeptide (e.g.,
SEQ ID NO: 2). To obtain gapped alignments for comparison purposes, Gapped BLAST
is utilized as described in Altschul et al. (Nucleic Acids Res. 25: 3389-3402, 1997).
When utilizing BLAST and Gapped BLAST programs, the default parameters of the
respective programs (e.g., XBLAST and NBLAST) are used, namely e=10; w=11 for
nucleic acid; w=3 for amino acid (the Blosum 62 scoring matrix); low complexity
sequence filtering. The default settings of BLAST emphasize regions of local alignment
to detect relationships among sequences which share only isolated regions of similarity
Thus, in a non-limiting example to obtain an isolated nucleic acid molecule encoding a plexin polypeptide, a nucleic acid molecule having the sequence of SEQ ID NOS: 1, 3, 5 or 7 is used to probe a cDNA library under stringent conditions according to standard techniques (see., e.g., Ausubel et al., supra). Upon identification of a positive clone (i.e., a clone that hybridizes to SEQ ID NOS: 1, 3, 5 or 7 under stringent conditions), that clone is expanded and subjected to sequence analysis. A nucleic acid molecule having a nucleic acid sequence that is at least 70% identical, preferably at least 75% identical, more preferably, at least 80% identical, still more preferably at least 85% identical, even more preferably, at least 90% identical, and most preferably at least 95% identical (as measured by the basic BLAST program of NCBI on default settings) to SEQ ID NOS: 1, 3, 5 or 7 is a nucleic acid molecule of the invention.

In a second aspect, the invention provides four novel isolated plexin polypeptides. “Isolated” is as defined for the first aspect of the invention. Where the isolated compound is a polypeptide, the isolated polypeptide is separated from organic molecules, such as nucleic acid molecules, polypeptides, and/or carbohydrates, which, in the naturally-occurring organism from which the polypeptide was derived, accompany the polypeptide. Isolated polypeptides therefore also include a recombinant polypeptide (e.g., a human polypeptide expressed in an insect cell), or a chemically synthesized polypeptide. Purification of a polypeptide can be accomplished and measured by any standard method including, without limitation, chemical synthesis, recombinant polypeptide expression in prokaryotic or eukaryotic cells, affinity chromatography, Western blotting analysis, SDS-PAGE analysis, and/or HPLC.

In accordance with this aspect, the invention provides all derivatives, mutants, truncations, and/or splice variants of the four novel plexin polypeptides, so long as these derivatives, mutants, truncations, and/or splice variants share at least 60% amino acid sequence homology with SEQ ID NOS: 2, 4, 6 or 8, preferably, at least 65% sequence homology, more preferably, at least 70% sequence homology, more preferably, at least 75% sequence homology, more preferably, at least 80% sequence homology, still more preferably at least 85% sequence homology, even more preferably, at least 90% sequence homology, and most preferably at least 95% sequence homology with SEQ ID NOS: 2, 4, 6 or 8 as determined using the basic BLAST program of the National Center for Biotechnology (NCBI; National Library of Medicine, Bethesda, MD), using the
default settings defined therein using the sequence of the four novel plexin derivative, mutant, truncation and/or splice variance as the probe.

Preferred plexin polypeptide derivatives include polypeptides whose sequences differ from the sequence given in SEQ ID NOS: 2, 4, 6 or 8, by one or more conservative amino acid substitutions, or by one or more non-conservative amino acid substitutions, deletions or insertions which do not abolish the biological activity of the plexins. Conservative amino acid substitutions typically include the substitution of one amino acid for another with similar biochemical characteristics, such as polarity, size, and/or charge. Non-limiting examples of conservative substitutions are substitutions within the following groups: valine, glycine, glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine, phenylalanine, and tyrosine.

Useful methods for mutagenesis to generate plexin mutants are known in the art (see, e.g., Sambrook et al., supra; Ausubel et al., supra). Preferred methods for mutagenesis are described in PCT Publication WO99/12965 and include PCR mutagenesis and saturation mutagenesis. A library of random amino acid sequence variants can also be generated by the synthesis of a set of degenerate oligonucleotide sequences.

In certain embodiments of the second aspect of the invention, the plexin polypeptide has a sequence comprising the sequence of SEQ ID NOS: 2, 4, 6 or 8. In one non-limiting example, in accordance with the invention, an isolated plexin polypeptide comprising the sequence of SEQ ID NOS: 2, 4, 6 or 8 can chemically synthesized according to standard techniques (e.g., at a commercial peptide generating facility).

For example, a putative plexin polypeptide is purified and subjected to N-terminal sequencing to determine its amino acid sequence. The amino acid sequence of the polypeptide is then compared to SEQ ID NOS: 2, 4, 6, 8 or 10 (as measured by the basic BLAST program of NCBI on default settings). A polypeptide that shares at least 60% homology with SEQ ID NOS: 2, 4, 6, 8 or 10 is a plexin polypeptide of the invention.

In another example, purification of a plexin polypeptide is facilitated by the addition of a tag to the polypeptide that enables purification of the tagged polypeptide. Non-limiting examples of a tag include a hemagglutinin (HA) tag, a his tag, a GST tag, a
FLAG-tag, and a myc tag. Thus, a nucleic acid molecule of the first aspect is engineered using standard molecular biology techniques to incorporate the nucleic acid sequence encoding the tag. The engineered nucleic acid molecule is then introduced and positioned for expression in an appropriate cell to produce the recombinant tagged polypeptide, which can then be readily purified by binding of the tag to its substrate. For example, the his tag binds to Ni-NTA agarose. Likewise, a GST (glutathione S-transferase) tag binds to glutathione agarose beads. Both his tag and GST tag expression and purification kits are commercially available from PharMingen (San Diego, CA). Likewise, myc-tagged plexin polypeptide are produced by cells introduced with a nucleic acid molecule encoding the tagged protein and positioned for expression in the cell.

It will be appreciated that particularly useful polypeptides of this aspect of the invention are secreted by the cell in which they are produced, thus facilitating purification of the polypeptide from the culture media in which the cells have been maintained, without requiring lysis of the cell.

In a third aspect, the invention provides a cell engineered to comprise a nucleic acid molecule encoding one of the four plexin polypeptides. By “engineered” is meant that the cell of the invention has been modified by standard molecular biology techniques. Where the cell is “engineered to comprise a nucleic acid molecule,” standard molecular biology techniques have been employed to introduce the indicated nucleic acid molecule into the cell, either by transformation or transfection of the cell with a plasmid, or by infection or transduction of the cell with a recombinant virus.

The nucleic acid molecule of the first aspect of the invention is preferably subcloned into a plasmid or vector (for example, but not limited to, a vector used to generate a recombinant virus), wherein the nucleic acid molecule is positioned for expression in the plasmid or vector. The plasmid or vector is then introduced into a cell by standard techniques to produce an engineered cell in accordance with the third aspect of the invention.

In certain embodiments of the third aspect, the cell is a prokaryotic cell (e.g., a bacterium). For example, *E. coli* cells (e.g., DH5α) are transformed (using, e.g., electroporation) with a bacterial plasmid (i.e., a plasmid containing an *E. coli* origin of replication) containing a nucleic acid molecule of the first aspect of the invention. The transformed bacteria are selected using, for example, an antibiotic-resistance encoding nucleic acid molecule (e.g., ampicillin resistance) on the plasmid such that the antibiotic
resistance protein is expressed by the transformed bacteria. The transformed bacteria are then propagated, and can be cryopreserved and stored frozen in glycerol.

Those of skill in the art will appreciate that in accordance with the third aspect of the invention, a nucleic acid molecule encoding one of the four plexin polypeptides may be introduced into a large variety of cells. For example, a nucleic acid molecule encoding one of the four plexin polypeptides can be introduced into prokaryotic cells (*e.g.*, bacteria), and any eukaryotic cell into which an exogenous nucleic acid molecule may be introduced. Thus, in certain embodiments of the third aspect of the invention, the cell is a eukaryotic cell. Eukaryotic cells according to this aspect of the invention that comprise a nucleic acid molecule encoding one of the four plexin polypeptides include, without limitation, yeast cells, plant cells, insect cells, and mammalian cells. Within the category of mammalian cells are cells from any mammalian species (including, without limitation, mouse, hamster, monkey, human), of any lineage (including, without limitation, lymphocyte, fibroblast, stem cell), and may be an immortalized cell, or a non-immortalized cell. Cells, as well as plasmids and/or vectors (*e.g.*, vectors that can be packaged to form infectious virus particles), are commercially available, for example, from the American Type Culture Collection ("ATCC"; Manassas, VA).

In certain embodiments of the third aspect of the invention, the nucleic acid molecule is positioned for expression in the cell. By “positioned for expression” is meant that the nucleic acid molecule is operably linked to at least one regulatory sequence which directs the transcription and translation of the nucleic acid molecule in a cell, such that the cell engineered to comprise the nucleic acid molecule produces (*i.e.*, expresses) the protein encoded by the nucleic acid molecule. By “operably linked” is meant that the nucleic acid molecule and the regulatory sequence are connected in a such a way as to permit expression of the nucleic acid molecule when the nucleic acid molecule is present in a cell. Regulatory sequences include, without limitation, promoters, enhancers, IRES sequences, and polyadenylation signals. Since plexin polypeptides are involved in immune regulation and the modulation of cell growth, it may be desirable to operably link a nucleic acid molecule encoding one of the four plexin polypeptides to an inducible promoter.

The four plexin polypeptides that are encoded by the nucleic acid molecules do not necessarily include the transmembrane domain of the four plexin polypeptides, and so may be produced by the cell as an intracellular polypeptide or a soluble secreted
polypeptide. For example, if the polypeptide fragment is secreted by the cell, it can be purified from the conditioned growth media of the transfected cells, without having to lyse the cells. Likewise, although a soluble intracellular polypeptide fragment is purified from only lysed cells, the fragment, being soluble, does not have to be extracted from the cell membrane; thus, different lysis conditions may be used to obtain purified soluble intracellular polypeptide fragment as compared to the lysis conditions required to obtain purified full length plexin polypeptides (which has a transmembrane domain).

Protein expression systems have been established for a variety of cells and are known to those of skill in the art. Cells are also commercially available from the ATCC, and a variety of protein expression system kits are commercially available from, for example, Invitrogen Corp. (Carlsbad, CA), Clontech Laboratories (Palo Alto, CA), PharMingen (San Diego, CA), Promega Corp. (Madison, WI), and Stratagene (La Jolla, CA).

For example, a nucleic acid molecule encoding one of the four plexin polypeptides is operably linked to bacterial regulatory sequences (e.g., T7 late promoter or bacteriophage regulatory sequences), and the resulting nucleic acid molecule is used to transform bacterial cells, where the transformed bacterial cells produce one of the four plexin polypeptides. In another example, a nucleic acid molecule encoding one of the four plexin polypeptides is operably linked to baculovirus regulatory sequences in a baculovirus vector. Recombinant baculovirus are then generated and used to transduce insect cells (using, for example, the expression kit commercially available from Clontech Laboratories. The transduced insect cells comprise a nucleic acid molecule encoding one of the four plexin polypeptides positioned for expression in the insect cell, and thus produce one of the four plexin polypeptides.

Mammalian cells are widely used as protein expression systems. For example, a mammalian cell may be transduced with a recombinant retrovirus or adenovirus comprising a nucleic acid molecule encoding one of the four plexin polypeptides operably linked to regulatory sequences that are either endogenous to the particular virus or exogenous to the virus (e.g., a CMV promoter in a retroviral vector). The transduced mammalian cell is then propagated in vitro in tissue culture, in vivo (e.g., in an immunocompromised animal), and/or cryopreserved and stored frozen in DMSO.

In another example, mammalian cells are transfected with an expression plasmid comprising a nucleic acid molecule encoding one of the four plexin polypeptides
operably linked to one or more regulatory sequences on the plasmid. By “expression plasmid” is meant a plasmid in which an inserted nucleic acid molecule of interest (e.g., encoding one of the four plexin polypeptides, a plexin chimeric molecule, or tagged plexin polypeptide) is operably linked to at least one regulatory sequence such that when the expression plasmid containing the inserted nucleic acid molecule of interest is introduced (e.g., by transfection) into a cell, the inserted nucleic acid molecule is positioned for expression in that cell. The nucleic acid molecule in the expression plasmid, upon being introduced into the cell, is thus positioned for expression in that cell, and enables the cell to produce one of the four plexin polypeptides encoded by the nucleic acid molecule.

In one non-limiting example, a nucleic acid molecule according to the first aspect of the invention is inserted into a standard mammalian expression plasmid (e.g., pcDNA3.1 commercially available from Invitrogen Corp., Carlsbad, California), such that the inserted nucleic acid molecule encoding one of the four plexin polypeptides is operably linked to the regulatory sequences in the mammalian expression plasmid. Mammalian cells are then transfected with this expression plasmid (using, e.g., CaPO₄ or DEAE-dextran). Where the expression plasmid contains an antibiotic-resistance encoding nucleic acid molecule (e.g., neomycin resistance on the pCDNA3.1 plasmid) such that the antibiotic resistance protein is expressed by the transfected cells, transfected cells may be selected for the ability to grow in the presence of the antibiotic. The transfected cells may then be propagated and cryopreserved and stored in frozen in DMSO.

In a fourth aspect, the invention provides an isolated nucleic acid molecule encoding a chimeric molecule comprising at least two segments, wherein one of the segments comprises one of the four plexin polypeptides. By “chimeric molecule” is meant a protein that comprises at least two segments of polypeptide joined together by any means, including, without limitation, a covalent bond (e.g., peptide bond), a non-covalent bond (e.g., ionic bond or hydrogen bond) or by a chemical crosslinker. It should be noted that one of the four plexin polypeptides that has been tagged is within the definition of a chimeric molecule.

In certain embodiments of the fourth aspect of the invention, the nucleic acid molecule encoding the segment of a chimeric molecule comprising one of the four plexin
polypeptides hybridizes under stringent conditions to SEQ ID NO: 1, 3, 5 or 7. “Stringent conditions” are as described above for the first aspect of the invention.

Standard molecular biology techniques may be employed to generate nucleic acid molecules encoding chimeric molecules according to the fourth aspect of the invention.

For example, a nucleic acid molecule encoding the extracellular domain of one of the four plexin polypeptides may be joined, in frame, to a nucleic acid molecule encoding the constant region of an immunoglobulin molecule (see, e.g., Chamow S.M., Antibody Fusion Proteins, John Wiley & Sons, New York, 1999). By “in frame” is meant that a first nucleic acid molecule is ligated to a second nucleic acid molecule such that the each of the amino acid sequences of the polypeptides encoded by each of the first and the second nucleic acid molecules is not frame-shifted.

In one non-limiting example, a chimeric molecule comprising the extracellular domain of one of the four plexin polypeptides including the amino acid sequence of SEQ ID NOS: 2, 4, 6 or 8 is generated. In this example, a nucleic acid molecule encodes amino acid residue number 1(19) through about amino acid residue number 1199 of SEQ ID NO: 2; amino acid residue number 1(24) through about amino acid residue number 1099 of SEQ ID NO: 4; amino acid residue number 1(43) through about amino acid residue number 1270 of SEQ ID NO: 6 and amino acid residue number 1 through about amino acid residue number 199 of SEQ ID NO: 8 with its associated signal peptide (parenthesis depicts about the beginning of the amino acid sequence of the extracellular domain lacking its signal peptide). This nucleic acid molecule is fused in frame with a nucleic acid molecule encoding the constant region of an immunoglobulin, such that the chimeric molecule encoded by the resulting nucleic acid molecule generally has the following structure:

<table>
<thead>
<tr>
<th>N-terminus extracellular domain of SEQ ID NO: 2 with or lacking its signal peptide</th>
<th>amino acids from the constant region of an Ig molecule</th>
<th>C-terminus</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-terminus extracellular domain of SEQ ID NO: 4 with or lacking its signal peptide</td>
<td>amino acids from the constant region of an Ig molecule</td>
<td>C-terminus</td>
</tr>
<tr>
<td>N-terminus extracellular domain of SEQ ID NO: 6 with or lacking its signal peptide</td>
<td>amino acids from the constant region of an Ig molecule</td>
<td>C-terminus</td>
</tr>
<tr>
<td>N-terminus extracellular domain of SEQ ID NO: 8 with or lacking its signal</td>
<td>amino acids from the constant region of an Ig molecule</td>
<td>C-terminus</td>
</tr>
</tbody>
</table>
The heavy chain class (e.g., IgG, IgA, IgM, IgD, or IgE) can be varied in this chimeric molecule depending upon which constant region is used. Nucleic acid molecules encoding the constant region of various immunoglobulin (Ig) heavy chains are known (see, e.g., Zettelmeissl et al., DNA Cell Biol. 9(5):347-53, 1990) Indeed, expression plasmids are available, into which the nucleic acid molecule of interest (i.e., a nucleic acid molecule encoding an extracellular domain of the polypeptide of SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; or SEQ ID NO: 8) can be inserted, and the resulting plasmid introduced into a cell to produce one of the four extracellular plexin-Ig chimeric molecules (see, e.g., Zettelmeissl et al., supra; Miller et al., J. Exp. Med. 178 (1): 211-222, 1993).

Any variety of chimeric molecule carrying the extracellular domains of one of the four plexin polypeptide may be generated. For example, the extracellular domain of one of the four plexin polypeptides can be myc-tagged, his-tagged, or FLAG tagged according to standard molecular biology techniques.

Such extracellular proteins are particularly useful for identifying ligands to which the extracellular domain of one of the four plexin polypeptides bind. For example, extracellular plexin-D1-Ig chimera can be immobilized on a protein A-sepharose column. Molecules suspected of binding the extracellular domain of plexin-D1 are added to the column, to which the molecule that binds to the extracellular domain of plexin-D1 adhere, and the non-binding molecules flow through the column. The extracellular plexin-D1-binding molecules are readily eluted, for example, by changing the pH or ion concentration of the elution buffer.

Extracellular plexin proteins are also used to identify cells expressing the ligand of plexin extracellular domain on their cell surface (and thereby also identify the ligand itself). For example, cells are incubated with a FLAG-tagged plexin extracellular domain chimeric molecule. A FLAG-tagged plexin extracellular domain chimeric molecule is generated. An anti-FLAG antibody that is detectably labeled is then added to the cells. By “detectably labeled” is meant any means for marking and identifying the presence of a molecule. Detectable labels include, without limitation, radioactive labels (e.g., 32P or 35S) and fluorophore labels (e.g., FITC, phycoerythrin, or rhodamine). For example, FITC-labeled anti-FLAG antibodies are commercially available from Babco, Richmond,
CA. The “stained” cells (i.e., cells incubated first with the FLAG-tagged plexin extracellular domain chimeric molecule and then with the FITC-labeled anti-FLAG antibody), are then subjected to flow cytometry analysis to select those cells that are labeled with FITC, and so express a molecule that binds to the extracellular domain of one of the four plexin polypeptides. The FITC labeled cells are then further manipulated (e.g., characterized to determine which cells express the plexin polypeptide ligand).

The ligand of the plexin extracellular domain is itself identified, for example, by lysing the cells, adding the lysate to one of the four plexin extracellular domain-Ig chimeric molecule columns described above, and purifying the ligand. The ligand is then sequenced by N-terminal sequencing.

In another non-limiting example, the intracellular domain of one of the four plexin polypeptides is used as “bait” in a yeast two-hybrid system to identify ligands that interact with the intracellular domain of one of the four plexins described herein. For general description of the two-hybrid system, see U.S. Patent Nos. 5,283,173; 5,468,614; and 5,695,941. In this example, a nucleic acid molecule encoding from about amino acid residue number 143 through at least amino acid residue number 214 of SEQ ID NO: 2 is inserted into a standard DNA binding domain expression plasmid (e.g., the GAL4 DNA binding domain plasmid in the Interactor kit commercially available from PharMingen (San Diego, CA). (It will be understood that the nucleic molecule may encode amino acid residue number 138-148 through at least amino acid residue number 214 of SEQ ID NO: 2.) A variety of cDNA libraries in transcriptional activation domain vectors are available (e.g., from Clontech, Palo Alto CA). The cDNA libraries are screened employing standard methods (see, e.g., the methods employed in U.S. Patent No. 5,780,262) to identify cDNA clones encoding a ligand that binds to the intracellular domain of one of the four plexin polypeptides. One preferable cDNA library screened in this example is a cDNA library generated from an immune cell (e.g., a lymphocyte or NK cell).

In a fifth aspect, the invention provides a purified chimeric molecule comprising one of the four plexin polypeptides. Methods for purifying proteins are as described for the second aspect of the invention.

In a sixth aspect, the invention provides a cell engineered to comprise a nucleic acid molecule encoding a chimeric molecule comprising at least two segments, wherein one of the segments comprises one of the four plexin polypeptides. As described for the
third aspect of the invention, a nucleic acid encoding a chimeric molecule comprising one of the four plexin polypeptides may be introduced into any variety of cells. In certain embodiments, the cell is a prokaryotic cell or a eukaryotic cell. In certain embodiments, the eukaryotic cell is a yeast cell or a mammalian cell (e.g., a human cell).

In a seventh aspect, the invention provides an isolated binding agent that specifically binds one of the four plexin polypeptides, or specifically binds a chimeric molecule comprising a segment comprising one of the four plexin polypeptides. In certain embodiments, the plexin protein has an amino acid sequence comprising SEQ ID NOS:2, 4, 6 or 8.

By “specifically binds” is meant a binding agent (e.g., an antibody) that binds to its specific target (e.g., one of the four plexin polypeptides) with greater affinity than it binds to other molecules. Preferably, where the binding agent is an antibody, the antibody preferably specifically binds to its specific target with a dissociation constant (K_D) of at least 10^{-5} M, more preferably, 10^{-6} M, even more preferably 10^{-7} M, and most preferably, the binding agent specifically binds to its specific target with a K_D of at least 10^{-8} M.

Preferably, the binding agent of this aspect of the invention is an antibody, such as a monoclonal antibody or a polyclonal antibody, or a fragment of an antibody that specifically binds one of the four plexin polypeptides. Standard methods may be employed to generated both monoclonal and polyclonal antibodies that specifically bind to one of the four plexin polypeptides of the invention. See, e.g., Ausubel et al., supra; Coligan, J.E. et al., Current Protocols in Immunology, John Wiley & Sons, New York (1991); and Delves, P.J., Antibody Production: Essential Techniques, John Wiley & Sons, New York (1997). Briefly, the plexin polypeptides of the present invention, purified according to the methods described for the second aspect of the invention, are used to immunize rabbits (e.g., for polyclonal antibodies) or mice (e.g., for monoclonal antibodies) to generate antibody-mediated immunity to the four plexin polypeptides used to immunize the animal. For monoclonal antibodies, antibodies can be screened by, e.g., ELISA, to identify those antibodies that show the highest affinity for the immunizing plexin protein of polypeptide fragment. The cloned cell producing the high affinity monoclonal antibody can then propagated in vitro (where the antibody is purified from the culture supernatant) or in vivo (where the antibody is purified from ascites fluid), and
can also be cryopreserved and stored frozen, e.g., -70°C in DMSO, to provide a potentially limitless supply of monoclonal antibody.

In addition to intact monoclonal and polyclonal antibodies, the invention also provides various antibody fragments, such as Fab, F(\(\text{ab}'\))\(_2\), Fv, and sFv fragments. Recombinant, chimeric, and humanized antibodies are also provided.

Recombinant “humanized antibodies” which specifically bind to one of the four plexin polypeptides can be synthesized according to methods known in the art (see, e.g., Green L.L. et al., *Nature Genetics* 7: 13-21, 1994 for fully humanized antibodies expressed in transgenic animals; see also U.S. Patent Nos: 5,693,761; 5,777,085; and 5,585,089). Humanized antibodies are chimeras comprising mostly human IgG sequences into which at least portions of the regions responsible for specific antigen-binding (e.g., CDR’s) have been inserted. Animals are immunized with the desired antigen, the corresponding antibodies are isolated, and the portion of the variable region sequences responsible for specific antigen binding are removed. The animal-derived antigen binding regions are then cloned into the appropriate position of human antibody genes in which the antigen binding regions have been deleted. Humanized antibodies minimize the use of heterologous (i.e., inter-species) sequences in human antibodies, and thus are less likely to elicit immune responses in the treated subject (see also, e.g., U.S. Patent No. 5,807,715).

Construction of different classes of recombinant antibodies can also be accomplished by making chimeric or humanized antibodies comprising nonhuman variable domains and human constant domains (CH1, CH2, CH3) isolated from different classes of immunoglobulins. For example, antibodies with increased antigen binding site valencies can be recombinantly produced by cloning the antigen binding site into vectors carrying the human chain constant regions (see, e.g., Arulanandam et al., *J. Exp. Med.* 177: 1439-1450, 1993).

In addition, standard recombinant DNA techniques can be used to alter the binding affinities of recombinant antibodies with their antigens by altering amino acid residues in the vicinity of the antigen binding sites. The antigen binding affinity of a humanized antibody can be increased by mutagenesis based on molecular modeling (see, e.g., Queen et al., *Proc. Natl. Acad. Sci.* 86: 10029-10033, 1989).

Also provided in the invention are plexin polypeptide-specific single polypeptide chain antibodies (see general methods in U.S. Patent Nos. 4,946,788 and
4,704,692); single domain antibodies (Ward, E.S. et al., Nature 341: 544-546, 1989); and chimeric antibodies (U.S. Patent No. 4,816,567).

Binding agents that specifically bind the plexin polypeptides of the present invention are useful, for example, in determining expression levels of the plexin polypeptides in various tissues of the body, Western blotting analysis, and immunochromatography. Particularly, binding agents that specifically bind the plexin polypeptides are useful for binding the plexin polypeptide on a cell expressing the plexin polypeptide, thereby activating the cell.

A binding agent that specifically binds one of the four plexin polypeptides, for example, is effective as an immune modulator. Additional applications include, without limitation, an injectable formulation comprising a binding agent that specifically binds one of the four plexin polypeptides that is useful to antagonize activity in a disease involving aberrant immune regulation or a disease involving aberrant cell growth.

In an eighth aspect, the invention provides an isolated antisense oligonucleotide complementary to a portion of a nucleic acid molecule encoding one of the four plexin polypeptides. In certain embodiments, hybridization of the antisense oligonucleotide to the nucleic acid molecule inhibits transcription or translation of the nucleic acid molecule.

By two nucleic acid molecules being “complementary” to one another is meant that the first nucleic acid molecule (e.g., an oligonucleotide) is able to form Watson-Crick base pair hydrogen bonds (i.e., hybridize) with the second nucleic acid molecule to form a duplex. The first nucleic acid molecule is thus a “complement” of the second nucleic acid molecule.

The antisense oligonucleotides according to the invention are complementary to a region of a nucleic acid molecule (or a region at the intron/exon boundary of DNA or RNA) that encodes one of the four plexin polypeptides. Preparation of antisense oligonucleotides is well known (see, e.g., Agrawal et al., Trends Biotechnol. 10:152-158, 1992; U.S. Patent No. 5,149,798; Agrawal et al., Proc. Natl. Acad. Sci. USA 85:7079-7083, 1988; Froehler, Tetrahedron Lett. 27:5575-5578, 1986; and Bergot et al., J. Chromatog. 559:35-42, 1992.

In a ninth aspect, the invention provides a method for identifying a nucleic acid molecule encoding one of the four plexin polypeptides, comprising contacting a pool of candidate nucleic acid molecules with a nucleic acid molecule encoding one of the four
plexin polypeptides, wherein hybridization of the nucleic acid molecule encoding one of the four plexin polypeptides under stringent conditions to a candidate nucleic acid molecule identifies the candidate nucleic acid molecule as a nucleic acid molecule that encodes one of the four plexin polypeptides. According to this aspect of the invention, "hybridization" and "stringent conditions" are as defined above for the first aspect of the invention. In certain embodiments, the nucleic acid molecule encoding one of the four plexin polypeptides has a nucleic acid sequence comprising SEQ ID NOS: 1, 3, 5 or 7.

It will be understood that the isolated plexin polypeptides according to the second aspect of the invention, the plexin chimeric molecules according to the fifth aspect of the invention, and binding agents that specifically bind the plexin polypeptides according to the seventh aspect of the invention, are useful as therapeutics to treat an individual suffering from, or suspected of having, a disease or disorder involving aberrant immune regulation or an individual suffering from, or suspected of having, a disease or disorder involving aberrant cell growth, particularly nerve cell growth.

By "disease or disorder involving aberrant immune regulation" is meant any disease or disorder in which an abnormal immune response is generated in response to either self or foreign antigens. Thus, this definition includes, without limitation, autoimmune diseases (e.g., lupus, inflammatory bowel disease, or Diabetes Type 1) and immunosuppressive diseases (e.g., multiple sclerosis or rheumatoid arthritis).

By "disease or disorder involving aberrant cell growth" is meant any disease or disorder in which an abnormal amount of cell growth is observed. "Cell growth" is defined above. Thus, diseases and disorders involving aberrant cell growth include hyperplasia, neoplasia, and cancer, as well as degenerative diseases, such as neurodegenerative diseases.

Preferable therapeutically useful plexin polypeptides are soluble polypeptides (e.g., lacking the hydrophobic transmembrane domain of the plexin polypeptides), particularly soluble polypeptide fragments that are secreted by the cell in which the fragment was produced. In a preferred embodiment the soluble plexin polypeptides are selected from the group consisting of plexin-A-1 (Maestrini et al. 1996 supra), plexin-A-2 (Maestrini et al. 1996 supra), plexin-A-3 (Maestrini et al. 1996 supra), plexin-A-4, plexin-B-1 (Maestrini et al. 1996, supra), plexin-B-2, plexin-B-3, plexin-C1 (Comeau et al. 1998 supra), plexin-D-1.
In a tenth aspect, the invention provides a method for diagnosing a disease involving aberrant immune regulation or a disease involving aberrant cell growth, comprising comparing the amino acid sequence of one of the four plexin polypeptides from an individual suspected of having the disease with the amino acid sequence of one of the four plexin polypeptides from an unaffected individual, wherein the presence of a difference between the two amino acid sequences identifies the individual suspected of having the disease as having the disease. "Disease or disorder involving aberrant immune regulation" and "disease or disorder involving aberrant cell growth" are as defined above.

By "difference" in the amino acid sequence of one of the four plexin polypeptides from an individual suspected of having the disease or disorder as compared with the amino acid sequence of one of the four plexin polypeptides from an unaffected individual, is meant any mutation that changes the amino acid sequence including substitution, deletion, or addition of one or more amino acid residues.

Thus, in one nonlimiting example, one of the four plexin polypeptides is extracted from cells of an individual suspected of having a disease involving aberrant immune regulation (e.g., using an antibody according to the seventh aspect of the invention). The amino acid sequence of the plexin polypeptide is determined by N-terminal sequencing and compared to the amino acid sequence of one of the four plexin polypeptides from an unaffected individual (i.e., a normal individual of the same species that does not have a disease involving aberrant immune regulation or a disease involving aberrant cell growth). If there is a difference in the two amino acid sequences, the individual suspected of having a disease involving aberrant immune regulation is identified as having a disease involving aberrant immune regulation, and may be treated accordingly.

In certain embodiments of the tenth aspect, the amino acid sequence of the plexin polypeptide from the unaffected individual comprises the sequence of SEQ ID NO: 2, 4, 6, 8 or 10.

The following examples are intended to further illustrate certain preferred embodiments of the invention and are not limiting in nature. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such
equivalents are considered to be within the scope of this invention, and are covered by the following claims.

The following Examples are provided to illustrate the present invention, and should not be construed as limiting thereof.
EXAMPLES

Example 1

Identification and cDNA cloning of plexins and sequence analysis

Since the coding sequences of human *plexin-B1*(SEP), *plexin-A2*(OCT) and *plexin-A1*(NOV) were incomplete, we obtained the missing cDNA by RT-PCR; primers were designed by homology to orthologous murine sequences and corresponding ESTs. Updated database entries are X87904, X87831 and X87832, respectively. Partial cDNA of *plexin-A4* was obtained by assembling five overlapping human ESTs (HGI THC Report: THC203425), deriving from chromosome 7 specific cDNA pools. Another EST from chr. 7 (clone 7B19F10) encodes the cytoplasmic domain of a plexin and presumably derives from the same gene as *plexin-A4*. *Plexin-B2* cDNA was amplified by RT-PCR starting from the partial cDNA sequences of clones *MM1* (Shinoura, N., Shamraj, O.I., Hugenholtz, H., Zhu, J.G., McBlack, P., Warnick, R., Tew, J.J., Wani, M.A., and Menon, A.G. (1995). Identification and partial sequence of a cDNA that is differentially expressed in human brain tumors. Cancer Lett 89, 215-221) and KIAA0315 (Genbank database); the genomic locus of *SEP-B* was identified due to its 100% sequence identity with clone C22_311 from human chromosome 22. *Plexin-B3* coding sequence was identified in the genomic sequence of ALD locus on human chromosome Xq28, using the algorithms HEXON and GENIE. *Plexin-D1* was similarly found in the genomic sequence of chromosome 3 (pac pDJ70i11). The genomic sequence of *plexin-B1*(SEP), in the region of the alternative splicing of the extracellular domain, was obtained using the following primers: sense 5’GCAGCACCTGTGCACCCACAAGGC3’ and antisense: 5’TGCAGGCTGGACGGGAGGGATGAGG3’. The common donor site is CCATCAG/gtacctgt (position 2028 from ATG); the alternative splice acceptor sites are:

(i) cccctctcag/AGCC, leading to the canonical plexin-B1 sequence, and (ii) ctctctctcag/GTGAT, leading to “plexin-B1 truncated” variant. All these new sequences were analyzed using the algorithms BLAST2, NETPHOS (phosphorylation prediction sites, by Nicolaj Blom), PH-PREDICT and Consensus Protein Secondary Structure prediction at IBCP. The phylogenetic tree was generated using AllAll algorithm of the Darwin sequence analysis system (at CBG).

Example 2
Plexin cDNA expression constructs and protein analysis

Cell transfections were carried out by Calcium phosphate and DEAE-dextran methods, using 5-10 μg of each cDNA (1-2 μg each in case of cotransfections). For transient transfections in COS and BOSC-23 cells the cDNA was cloned in pCDNA3 or derived expression plasmids (Invitrogen). MDCK stable transfectants for *plexin-A3* were obtained using pCEP4 expression plasmid (Invitrogen); the selection was done in the presence of Hygromycin-B (100-200 μg/ml). Plexin-A3 positive clones of MDCK cells were isolated from two independent transfections, and showed identical biological properties. Plexin and neuropilin expression constructs included a VSV- and myc-tag at the N’ and C’ protein termini, respectively, detected by monoclonal antibodies anti-VSV-G (cat. V-5507, Sigma) and anti-cMyc-tag (cat. OP10-100UG, Calbiochem). "Plexin-B1 truncated" splice variant was expressed from a cDNA fragment isolated by RT-PCR and VSV-tagged at the N’ terminus: the encoded amino acid sequence spans up to aa 676 (including the *sema* domain and two MRS motifs). "Plexin-B1-semal" derives from a further deletion of the plexin-B1 extracellular domain, and exclusively includes the *sema* domain. "Plexin-B1-Δsema" protein mutant includes only the C’ terminal half of plexin-B1 extracellular domain, starting from amino acid 606, i.e. excluding sema domain and first MRS but including second and third MRS, transmembrane and intracellular domains.

For immunoprecipitations, cells were lysed with EB buffer (20 mM Tris-HCl pH 7.4, 5 mM EDTA, 150 mM NaCl, 10% glycerol, 1% Triton X-100), in the presence of a cocktail of protease inhibitors and 1mM Na-ortovanadate. Immunoprecipitations were performed at 4°C for 4h with the appropriate antibodies; high stringency washes were performed, in the presence of 1 M LiCl.

For *in vitro* kinase assays, immunopurified proteins were incubated with kinase buffer (50 mM Heps, 100 μM DTT, 5 mM MnCl2, 5 mM MgCl2) in the presence of redive 5 μCi [γ-32P] ATP (Amersham) for 10 minutes at 4°C in agitation. Samples were then submitted to SDS-PAGE and autoradiography, or analysed using a PhosphorImager system (Molecular Dynamics). Alkali treatment of the polyacrilamide gels was performed with 1M KOH for two hours at 55°C.

Western blots were performed according to standard methods. Specific detection of phospho-tyrosines was done with PY20 MoAb (Trasduction laboratories). Final detection was done with ECL system (Amersham).
Example 3

Semaphorin-SEAP binding assays

Soluble forms of Semaphorin extracellular domains were expressed as chimeric molecules with placental Secreted Alkaline Phosphatase (SEAP) and harvested from the conditioned media of transiently transfected COS or BOSC-23 cells. Serum-free media were concentrated over 100 times using Centricon Plus-20 filters (Millipore) with a molecular weight cutoff of 100 kDa. The AP activity of these media was assessed as described (Flanagan, J.G. and Leder, P. (1990). The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185-194); the specific activity of chimeric molecules was approx. 1000 U/mg. Concentrated Semaphorin-SEAP were diluted as appropriate in a Hepes buffered saline, additioned with 0.2% BSA, 0.1% NaN₃, 5 mM CaCl₂ and 1 mM MgCl₂ (HBSBA). For binding assays, COS cells transiently transfected with plexins were seeded on 48 well plates to reach confluence, and then incubated with Semaphorin-SEAP preparations (approx 1-5 nM) for 90 minutes at room temperature. The binding was detected as described (Flanagan and Leder, 1990). Binding experiments with plexin-C1/VESPR were as described (Comeau, M.R., Johnson, R., DuBose, R.F., Petersen, M., Gearing, P., VandenBos, T., Park, L., Farrah, T., Buller, R.M., Cohen, J.I., Strockbine, L.D., Rauch, C., and Spriggs, M.K. (1998). A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity. 8, 473-482; He, Z. and Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739-751).

For in vitro binding assays, plexin-B1 was purified from cell extracts by immunoprecipitation with anti-VSV antibody. Extracts of mock-transfected cells were used as control samples. After washing, the immunocomplexes were incubated with serial dilutions of CD100-SEAP (prepared as above) for 2 hours at 4°C, in continuous agitation. Samples were then washed 3 times with HBSBA and the bound alkaline phosphatase activity was measured by colorimetric assay using p-nitro-phenyl-phosphate, as described (Flanagan and Leder, 1990). Scatchard analysis was done using Equilibrate (by GertJan C. Veenstra).

Example 4

In situ hybridization analysis
RNA in situ hybridization was performed essentially as described (He, Z. and Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739-751). Briefly cDNA fragments of plexin-A1, -A2, and -A3 were used to generate 35S-labeled antisense and sense RNA probes, which were used for in situ hybridization histochemistry of cryostat sections of rat embryos.

Example 5

Xenopus turning assay

Example 6

Mixed-culture assays and time-lapse videomicroscopy

Mock-transfected and plexin-A3 overexpressing MDCK cells were seeded with mesenchymal cells (NIH 3T3, KJ29, D17, among others), in multiwell culture plates by 1:4 or 1:1 ratio. NIH and KJ-29 cells were sometimes labeled by addition of DiI (1,1'-dioctadecyl-3,3',3'-tetramethylindocarbocyanine perchlorate, Fluka) in the culture medium, 4 hours before harvesting for the assay; clusters of cells marked with this dye are marked in blue (in light microscopy) and emit red epifluorescence (TRITC filter). The repelling effect was observed 16-30 hours after confluency, by contrast phase microscopy using Leica DM IL. The progress of the assays was also monitored by time-lapse video-microscopy (320 minutes recording were converted into 1 minute play). To determine the time-length of cell contacts, for each assay, randomly chosen fibroblasts were followed during several hours and the duration of each contact between their lamellipodia and MDCK cells was measured. The doubling time of cells and their viability during the assay could also be analyzed, and no differences were observed in presence of control or plexin-A3 expressing cells. Substrate adhesion of plexin-A3 overexpressing MDCKs was analyzed by counting attached cells after 30 minutes from
seeding on micro-wells coated with fibronectin, collagen or polylysine, in the absence of
calf serum: no differences versus control cells were observed.

Example 7

Apoptosis detection

TUNEL reaction (Boehringer detection kit) was performed on mixed cultures of
MDCK and NIH3T3 cells, 24 hours after seeding in a 24-well culture plate. The
labeling was converted into a colorimetric signal for analysis by light microscopy using
the TUNEL-AP detection kit (Boehringer). As a positive control for the induction of
apoptosis, the same cells were treated with UV-C (50 μJ/cm²) or 1μM staurosporin.

Although the foregoing invention has been described in some detail by way of
illustration and example for purposes of clarity of understanding, it will be apparent to
those skilled in the art that certain changes and modifications will be practiced.
Therefore, the description and examples should not be construed as limiting the scope
of the invention, which is delineated by the appended claims.

Example 8

Plexins are specific receptors for cell surface semaphorins in vertebrates

Plexin-C1 (VESPR) has been shown to bind the soluble viral semaphorins Sema
VA and VB (Comeau et al., 1998 supra), and we recently found that Drosophila Plexin
A (D Plex A) interacts with transmembrane Sema 1a (Winberg et al., 1998 supra). We
therefore examined in vertebrates whether the extracellular domain of several different
cellular semaphorins -fused to alkaline phosphatase- could bind members of the human
plexin-A, -B and -C subfamilies. Multiple secreted semaphorins of class 3 (Sema3A,
Sema 3C or Sema3F; see below) did not interact with plexins-A1, -A2, -A3, -B1, B2, or
-C1 (data not shown). In contrast, plexin-C1(Vespr) specifically bound Sema7A(Sema-
K1) (Fig. 2a), a GPI-membrane linked semaphorin (class 7). This result is not entirely
unexpected, since Sema7A may represent the cellular counterpart of viral semaphorin
SemaVB, previously shown to interact with this plexin (Comeau et al., 1998 supra).
More interestingly, the class 4 transmembrane semaphorin Sema4D (CD100) did
interact strongly and specifically with plexin-B1 (Fig. 2a). Thus the prototypes of two
distinct plexin families are the receptors for members of two distinct semaphorin sub-
classes. We also found that Sema7A and Sema4D do not bind to neuropilin-1 or -2
alone, nor did co-transfection of either neuropilin with plexin-B1 significantly modify
its binding efficiency (not shown). Neuropilins thus seem so far to function as receptors only for vertebrate semaphorins of class 3.

The affinity constant of Sema4D for plexin-B1 was estimated by Scatchard plot to be in the subnanomolar range ($K_D = 0.9$ nM, Fig. 2b; the estimated K_D of Sema7A for plexin-C1 is 2.1 nM, not shown). These values are consistent with those observed for semaphorins-neuropilins, and fly semaphorin1-Plexin A interactions (He and Tessier-Lavigne, 1997 supra; Winberg et al., 1998).

We used two deletion constructs of plexin-B1 to explore the semaphorin binding sites of plexins. Neither the N-terminal half of plexin-B1 extracellular domain ("plexin-B1 truncated", see previous paragraph), nor its C-terminal half ("plexin-B1-Δsema", see Experimental Procedures) was sufficient alone to bind CD100 (see Fig. 2a), suggesting that the binding of Sema4D depends on multiple structural determinants of the extracellular domain of plexin-B1.

Example 9

Plexins associate with class 3 Semaphorin receptors. Neuropilins

As outlined above, secreted semaphorins of subclass 3 are known to bind neuropilins (He and Tessier-Lavigne, 1997 supra; Kolodkin et al., 1997 supra; Chen, H., Chedotal, A., He, Z., Goodman, C.S., and Tessier-Lavigne, M. (1997) "Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III." Neuron 19, 547-559). However, the short cytoplasmic tail of neuropilins seems to be dispensable for their biological activity (Nakamura, et al (1998) supra), indicating the requirement of an associated coreceptor for signal transduction. Interestingly, in Drosophila (where neuropilins have not been identified to date) Plexin A is sufficient to mediate the biological response to semaphorin-1 in axon guidance (Winberg et al., 1998 supra).

In an initial set of experiments, we could not observe binding of the class 3 semaphorins Sema3A(Sema III), Sema3C(Sema E) or Sema3F(Sema IV) to plexins-A1, A2, A3, B1, B2 or C1 (not shown). To test whether plexins might be coreceptors with neuropilins for class 3 semaphorins, we set up co-precipitation experiments in COS cells to test whether neuropilins may interact with plexins. Three tested plexins (plexin-A1, -A3 and -B1) associated both with neuropilin-2 (Np2, shown in Fig. 3) and neuropilin-1 (not shown). The binding was specific, inasmuch as neither neuropilin nor any plexins coimmunoprecipitated with the netrin receptor DCC, under conditions...
where DCC coimmunoprecipitated with the other netrin receptor UNC5H2 (Fig. 3 and data not shown). We observed finally that the plexin-neuropilin association is mediated by the **sema domain** of plexins, as demonstrated using either the “plexin-B1 truncated” splice variant (Figure 3) or an even shorter form of the extracellular domain (“plexin-B1-sema”, see Experimental procedures, not shown).

To further support the idea of a plexin-neuropilin multimeric receptor complex for semaphorins, we show here that plexin-A3 (e.g.) is expressed in a large number of neuronal classes, including sensory, sympathetic, motor, and olfactory bulb neurons (Figure 4 and data not shown), which are known to respond to class 3 semaphorins, and which express either neuropilin-1 or neuropilin-2 or both (Chen et al., 1997 **supra**; Feiner, L., Koppel, A.M., Kobayashi, H., and Raper, J.A. (1997). Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron **19**, 539-545; He and Tessier-Lavigne, 1997 **supra**; Kolodkin et al., 1997 **supra**). Thus, plexin-A3 is a candidate for a physiological coreceptor involved in mediating class 3 semaphorin effects on these axons. Other plexins may also have a role as neuropilin coreceptors in specific cell populations, such as plexin-A2, which is expressed in a subset of sensory neurons and in dorsal horn cells, and plexin-A1, which is expressed at low levels and broadly in the spinal cord (Figure 4).

To directly test the possible involvement of plexins in class 3 semaphorin signal transduction, we studied the repulsive responses of Xenopus spinal neurons to Sema3A, which is mediated by a receptor mechanism involving neuropilin-1 (Song et al., 1998 **supra**). We asked whether these responses could be altered by expression of a presumed dominant-negative plexin-A1 construct lacking the cytoplasmic domain of the protein. Transmembrane proteins can be reliably expressed in these neurons by injecting the encoding mRNA at the developmental two cell stage, allowing the embryos to grow to tadpole stage, and then removing the spinal cord and culturing the neurons (Hong et al., 1999 **supra**). We therefore injected the mRNA encoding the truncated plexin-A1 construct, together with mRNA encoding GFP (as a reporter) and then studied the responses of spinal neurons expressing GFP that were derived from these embryos. Whereas control spinal neurons are repelled by Sema3A (Figure 5A, B and Song et al. 1998 **supra**), neurons from embryos injected with mRNA for truncated plexin-A1 did not respond with either repulsion or attraction to Sema3A (Figure 5C,
D). This blocking effect appeared to be specific, since expression of a different heterologous receptor, UNCSH2, did not impair repulsion by Sema3A (Hong et al., 1997 supra), and since expression of the truncated plexin construct did not block attractive responses to netrin-1 (Figure 5E, F). Figure 5G, H quantifies these effects.

As can be seen, the effect of Sema3A is completely abolished by the truncated plexin; although there is a slight apparent decrease in the attractive effect of netrin-1 the effect is not statistically significant.

Although we have used a truncated plexin-A1 construct, this construct may be expected to interfere with the function of various plexins, since all the plexins tested (A1, A3 and B1) associated with neuropilin-1. These results support a role for one or more plexins in mediating the repulsive Sema3A signal in the Xenopus spinal neurons.

Example 10

Plexins signal via a novel type of tyrosine phosphorylated cytoplasmic domain

The sequences of plexin cytoplasmic domains are highly conserved among plexins but do not match any known sequences. We found that the plexin-A3 and plexin-B1 proteins are phosphorylated on tyrosine residues when overexpressed in human kidney cells (BOSC-23), as demonstrated using anti-phosphotyrosine antibodies (Fig. 6a). Furthermore, after immunoprecipitation and in vitro kinase assays, plexin-A3 and plexin-B1 became phosphorylated (Fig. 6b). Resistance to an alkali treatment (see Experimental procedures) confirmed the specific phosphorylation of tyrosine residues.

The cytoplasmic domains of several receptors, including Met proteins, become tyrosine phosphorylated owing to an intrinsic kinase activity (Ullrich, A. and Schlessinger, J. (1990) "Signal transduction by receptors with tyrosine kinase activity." Cell 61, 203-212). Since the cytoplasmic domain of plexins is not similar to any bona fide or atypical tyrosine kinase, this suggests that a distinct tyrosine kinase co-immunoprecipitates in association with plexins, and is responsible for their tyrosine phosphorylation. Although some additional phosphorylated proteins can be found specifically with plexin-A3 and -B1, we have not as yet identified this associated kinase. A number of endogenously expressed tyrosine kinases, namely Met, Ron, Abl and Src, were not found associated with plexin-A3 by immunoprecipitation and Western blotting (not shown). Since tyrosine phosphorylated residues often function as docking sites for intracellular signal transducers (Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S. (1991) "Oncogenes and
signal transduction." Cell 64, 281-302), the fact that the cytoplasmic domains of plexins are tyrosine phosphorylated further suggests that they are part of signaling complexes.

Example 11

Plexin-A3 expressing cells induce repulsion of co-cultured cells

Stable transfectants expressing recombinant human plexin-A3 were successfully obtained in four different cell lines: IMR32 and AF8 (human neuroblasts), and BOSC-23 and MDCK (human and canine kidney cells, respectively). We observed modest phenotypic changes in the transfected cells, which generally become flatter and larger in size. The growth rate of plexin-A3 overexpressing cells was comparable to parental lines and we did not observe differences in the ability to adhere on different substrates (data not shown).

In keeping with previous report on the related Plexin of *Xenopus laevis* (Ohta, K., Mizutani, A., Kawakami, A., Murakami, Y., Kasuya, Y., Takagi, S., Tanaka, H., and Fujisawa, H. (1995). "Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions." Neuron 14, 1189-1199), we observed a modest increase in calcium-dependent homotypic cell aggregation of plexin-A3 transfectants (not shown). Surprisingly, we found that epithelial MDCK cells overexpressing plexin-A3 mediate strong repelling cues for adjacent cells. This was observed by co-culturing mock-transfected and plexin-A3 overexpressing MDCK cells together with several non-epithelial cell lines (such as NIH3T3, Kj29, and D17; Fig. 7A). Mock MDCKs grew alongside mesenchymal cells until confluency, when both cell types stopped proliferating. In contrast, when plexin-A3-overexpressing epithelial cells were grown in the same conditions, the adjacent mesenchymal cells withdrew from them, and ultimately detached from the plate.

To analyze the dynamics of this repulsion process, we monitored for 36 hours, by time-lapse video-microscopy, mixed cultures of transfected MDCK cells and fibroblasts, in a number of independent experiments. At low cell density, fibroblasts showed intrinsic motility, exploring the surface of the plate with long lamellipodia and filopodia, and thus coming in contacts with a high number of stationary MDCK islets. The time-length of the contacts between fibroblasts and control MDCK cells varied from 30 minutes to several hours, lasting mostly over 100 minutes. However, when fibroblasts were cultured with MDCK cells overexpressing plexin-A3, transient
contacts were observed, often lasting less than 30 minutes (see Fig. 7C). At higher cell density, fibroblasts stopped and clustered alongside the islands of control MDCKs, whereas they kept moving in a hectic fashion between the islands of plexin-A3 transfected cells (data not shown).

This cell-repelling effect is not due to the release of soluble factors, since exchanging conditioned media between mixed cultures was without effect (not shown). Moreover, the two different cell populations grew normally until they came into contact, indicating that the repelling effect requires cell-cell interaction. To rule out the possibility that plexin-A3 expressing cells generate an apoptotic signal for fibroblasts, we monitored cell viability and apoptosis by TUNEL staining. As shown in Figure 7B, the clusters of repelled fibroblasts did not include apoptotic cells; furthermore, the detaching cells still excluded Trypan blue stain and were able to spread again on a new culture plate (not shown).

Taken together, these results demonstrate that in our experimental system, plexin-A3 mediates cell repelling cues, presumably by interacting with surface bound ligands on opposing cells. We could not identify—so far—the specific ligand for plexin-A3, however we propose that this may be a transmembrane semaphorin. It should be noted that the intracellular domains of transmembrane semaphorins, such as Sema4D, also include tyrosine residues, which may themselves become phosphorylated and associate with cytoplasmic signal transducer molecules, a property shown for ligands of the ephrin family (Holland, S.J., Gale, N.W., Mbamalu, G., Yancopoulos, G.D., Henkemeyer, M., and Pawson, T. (1996) "Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands." Nature 383, 722-725).
What is claimed is:

1. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence that encodes an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)).

2. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequence shown (SEQ ID NO: 1 (plexin B-2)), (SEQ ID NO: 3 (plexin B-3)), (SEQ ID NO: 5 (plexin D-1)) and (SEQ ID NO: 7 (plexin A-4)).

3. A vector comprising the nucleic acid of any one of claims 1 or 2.

4. An isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)).

5. An isolated polypeptide having at least 80% amino acid sequence identity to:

 (a) the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), lacking its associated signal peptide;

 (b) an extracellular domain of the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), with its associated signal peptide; or

 (c) an extracellular domain of the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), lacking its associated signal peptide.
6. A chimeric molecule comprising a polypeptide according to claim 4 or 5 fused to a heterologous amino acid sequence.
7. The chimeric molecule of claim 6, wherein the heterologous amino acid sequence is a Fc region of an immunoglobulin.
8. An antibody that specifically binds to a polypeptide according to claim 4 or 5.
9. The antibody according to claim 8, wherein the antibody is a monoclonal, a humanized antibody or a single-chain antibody.
10. A method of suppressing or altering aberrant cell growth involving a signaling pathway between a plexin and a neuropilin in a mammal comprising the step of administering an effective amount of an agent to said mammal capable of interfering with the association between the plexin and neuropilin.
11. A method of treating, suppressing or altering a disorder involving aberrant immune regulation involving a signaling pathway between a plexin and a neuropilin in a mammal comprising the step of administering an effective amount of an agent to said mammal capable of interfering with the association between the plexin and neuropilin.
12. The method according to claim 10 or 11 wherein said agent is a chimeric molecule according to claim 6 or 7.
13. The method according to claim 10 or 11, wherein said agent is an antibody according to claim 8 or 9.
14. A method of diagnosing or screening for tumors in a subject characterized by the expression profiles of the polypeptides according to claim 4 or 5 wherein the expression profile of the polypeptides is different in a non-tumor sample as compared to the expression profile of the polypeptides in a tumor sample.
Figure 1 (Tamagnone et al.)
FIG. 3
SEQUENCE LISTING

<110> University of Torino

<120> Novel Flexins and Uses Thereof

<130> A077PCT

<140> Not assigned yet

<141> 2000-08-25

<150> 60/158576

<151> 1999-08-25

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> DNA

<212> HOMO SAPIEN

<400> 1

gcggggggcc aagggcagct gcgggcttgggc cctagcccgag ctggcccgtgc tgggcgcagg g60
tggccagct gcgggcccga aagctggact tctccccgacg gagaaagacg tgaacccatg 120
ggcctgttgat gcggcctccg gctgtggctgtac cctggggcggc gctggaatgc tccagtctca 180
ggtacgggag ctggagccag gagcagcagct cccgagcgtg ccctgcagag aacaagaagcg 240
gtgcacccgg cccatcgagg cccagccagt ccagctgactg gagatgactg acaatgctaa 300
ccagcgggct ccctgctgcc ggcacagcaa cggcctgtgc gaggctggt gcaagcagct 360
cccggagggc aatgtgcttc gcgggacgaa tcagctgcag gcgtgccttc ctttcctctca 420
caggccggcag tgcctgtcttc gcgtccggtgt gatgcaggtt ggcctccagcag ctggggcgtg 480
ggcctcgac ccggcgcggc gcccgtggtg gtagctgttc gacacagcag ctggcgccggc 540
cgcaacagcg atcaagctgtga gcactgcgcgc gactgagagcc gaggagctcc 600
tgaaacctac aagccaggccg ccacatccacg ggcggcttac ccctgcacacag aacacgagca 660
gttcctgccgc aagcccgccat ccctctcccg cttccatcagcg agccggacag 720
gcacgagggg gagaaccgcag cggactctgg aagcaactgc acaactctcag 780
tcctacgtgc gggggtggcc ggcctgctgg ccgggaggtc caccctgtga gtaagcttct 840
cggcccgtcc ggggctgctgc ctcgctgctg gatggcactg acctgtgcttc ctgggggtcg 900
cacgagcgtc aagccggagc gtggggggcc tcctgcaggt tccggctgca 960
cacgctgacg cgggcagcgg ccctgcagcag ccgtgctgctc gctacagcag 1020
cgggcgact gcacgagcgtg tctgggccg gggggggcg ccctgcacacg 1080
tctgacagcag ctggcctgtc gccgctgccg ccggggggcg gacgccgggg 1140
cgggctgctgc ggagccaggg ctggggctgc tggagccagc ggatgccttgc 1200
gctgtgcttc ctgggggtcc gcggccgctc gctctggcgc gcgtgatcag 1260
gcctgacgcg cacgagctgc tgttgccttc gcttgcaggg gcggttctcag 1320
cagacgagtc cgggcgacct gcgtgtgctt ggtgcctgcgc cgggatcttcg 1380
cacaggaggag tggggggggc cggggtgtgc gcgggctgtgc agcgtgctgtc 1440
gtttgctgcgc tccgggacgc cttgcgcttg tgttgctgtg ctcggctggc 1500
gacggggcgg ccgggggggc ccggggggcg gcgggctgtgc gcgggatctgg 1560
gcggggggtc gttggggtgg ccggggggcg ggggggtgtgc gcgggatctgg 1620
gcgggggggt gcggggggggt ggagggaggag ggcggggtgg gcgtctctct gcacccctcc 1740
aagcacgacct ccggtcacac ccggcagggca ggcaccacggt gcgcctgacaa tccagctcct 1800
ctttaagaqga ggcaactatt ccggtacagt tcttacactg acttcagttt actgcccggca 1860
ccggtacggt cctgggctacc cagttgctcg gggagttctg gcacaactcgg aggcaccgat 1980
ttcctccttgt cagccgtcgc cacggatact gcccctctact gctgagacgc tggagccagt 2100
acccgtgtgct aatcagctgc gacagcggcttg gctggttcatc ctgagttttgg 2160
atcgcgggcc cttgatcgacct gcacgagcgg cgctggagct gcggggtctgc 2220
cctgcctccc tacgctcagt tctagaaggaa agcagaggcc agaacttcgac cttgagctaat 2280
ctcaacagtgc gagggccgcac acggccacct gcaccgcgac cctactggga cctcctcagct 2340
caggttggcg cggctcgatt ggcagggctc cgcactcggc ccttagggtg ccggccgatc 2400
ccctcgcagc cgggctcgag gtagcaggtc aggaggtctc ttggtgtctg 2460
ggccaaggcc ataccatgct tcgggtcctag ccgctctctcg gccctctgcgct cctcgctgtc 2520
gttgtcgggc gccggggggt gccggggctc tcgctctctc ccaggggctg ctcgttctgg 2580
gatgtggcgag tgcggcagagt ccctcgcact gcggggtctgc aggtgggctagt 2640
tccggggag ccgctggccgc agtctctccg acatcctgcc gcgcggctcc gcctggcgctt 2700
tctccacgtgc cagggccgctc aggccagcag cggccgaaag cctccacgcc cctccacgcc 2760
tcccagctcc gtcgcggcgttc ccagggagtt cttcagcgag cctcctcgtt gtcctcagct 2820
taatagctgc aggctctggag gctagcgttca cggctcgcag gcaggttggtg cggcagctgg 2880
ccaggtctct cttggaggtct ccgctggcgc gctgctgctcg cccgctgggt gccggtgcgt 2940
cacctgccag gacacgccag ccgtcggcctg gcgtgctgctg cccgctggctg cccgctggctg 3000
tgcggccgc tccgctcgag gggcgtcgtg ctgctcagag ctgcgttcgtt cctcctcgtc 3060
ggcctctcag gcggctccgc gctgctcgag gggcgtcgtg ctgctcagag ctgcgttcgtt 3120
cacccagctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg cccgctggctg 3180
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3240
gcgcctgctg ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3300
tggctgccgc tccgctcgag gggcgtcgtg ctgctcagag ctgcgttcgtt cctcctcgtc 3360
caccaagcgc gacgtcggag ccagccgagc gtcggtgctgc cccgctggctg cccgctggctg 3420
caccaagcgc gacgtcggag ccagccgagc gtcggtgctgc cccgctggctg cccgctggctg 3480
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3540
caccaagcgc gacgtcggag ccagccgagc gtcggtgctgc cccgctggctg cccgctggctg 3600
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3660
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3720
caccaagcgc gacgtcggag ccagccgagc gtcggtgctgc cccgctggctg cccgctggctg 3780
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3840
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3900
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 3960
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4020
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4080
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4140
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4200
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4260
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4320
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4380
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4440
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4500
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4560
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4620
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4680
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4740
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4800
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4860
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4920
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 4980
cccctcgtgc ctcggtgctgc gtcggtgctgc cccgctggctg cccgctggctg cccgctggctg 5040
catctggaag acgaacgct taccgctcgg gtcttggtgg aacatctctca agaacccccga 5100
cctcaccttt gacgctgatg tccacagggg ggtgagacgcc tcggctgcagag ccacagcagca 5160
gaccctcttg gatgacctga ccgcccacgg gcataagctg aggccgctatt cttcccgacaa 5220
caacctgcctg tacgccaagg agatctccac ctacaaagaag atgtggaggg attactacaa 5280
gggggagccc cagatgctgc aggtcagagc ccaggacagct aacacacacc tggcagagat 5340
ctccgggccc cacacgagct ccgtaacacc ctcgctggcca cttccacagcg tctaaccaata 5400
cacggagaaag tactatgacy agatactcaa tgccctgagag gaggatctcg ccggcccaga 5460
gctgcaagctg gctctggccc ccagaagagat tgccctgaca ctggagaaaca aggtctcgag 5520
cctctgcacc actatacctca gttctgctctc gggctatagg taccctgagct acctcagagc 5580
cttcaggggg aggggagcgt gtgtctgttg cggagagcggc caccctcctcc tggagacgagc 5640
cccaacgccc agtggttgacg ggggagacgg gcgggaaccc cccagcagctc tagactgtgagct 5700
tgaagacctac ccgagggcagc gcagccacga caagcccaag ccccagctcc ctcgggcccc 5760
gagcccaagc tcgggttggcc actgtcggagt ccctgatccg tggaaaatgt gctttacgct 5820
gccacagctgg gggagctggc ccctgcctcc cggccagcagc cccagcgcggc cttccagctcc 5880
cagttggggg atctgagggcg cttcgtggccc cagggcaattg tccacagctcc 5940
tatcgtcgtc tgccacccac cagagtgaggag gaggagaaaca agcggtacgca tgtcctctgt 6000
acctcagggc ccctcctccag gtgtcaggggcc cttcggttggc acctacagctc gctgggcccc 6060
agctcaaggg tcaaagtgaga ctgtagtccaag gtctctagctc ggcccagaga cacctctgggcc 6120
tctctggtctg tcaacagggc tgcctcttagag cccaccccaag tccgggagga cttggagccag 6180
tcccaagacc accccacccc ttttgtaaa tcttgatcct tgtaaatcacc atacagcggtc 6240
ttttctacgc cgg 6252
Gly Tyr Leu Ser Thr Asn Thr Gln Gln Phe Val Ala Ala Phe Glu Asp
210 215 220
Gly Pro Tyr Val Phe Phe Val Phe Gln Gln Asp Lys His Pro Ala
225 230 235 240 240
Arg Asn Arg Thr Leu Leu Ala Arg Met Cys Arg Glu Asp Pro Asp Tyr
245 250 255
Tyr Ser Tyr Leu Glu Met Asp Leu Gln Cys Arg Asp Pro Asp Ile His
260 265 270
Ala Ala Ala Phe Gly Thr Cys Leu Ala Ala Ser Val Ala Ala Ala Pro Gly
275 280 285
Ser Gly Arg Val Leu Tyr Ala Val Phe Ser Arg Ser Arg Ser Ser
290 295 300
Gly Gly Pro Gly Ala Gly Leu Cys Leu Phe Pro Leu Asp Lys Val His
305 310 315 320
Ala Lys Met Glu Ala Asn Arg Asn Ala Cys Tyr Thr Gly Thr Arg Glu
325 330 335
Ala Arg Asp Ile Phe Tyr Lys Pro Phe His Gly Asp Ile Gln Cys Gly
340 345 350 355
Gly His Ala Pro Gly Ser Ser Lys Ser Phe Pro Cys Gly Ser Glu His
360 365
Leu Pro Tyr Pro Leu Gly Ser Arg Gly Leu Arg Gly Thr Ala Val
370 375 380
Leu Gln Asp Leu Asn Leu Thr Ala Val Thr Val Ala Ala Glu
385 390 395 400
Asn Asn His Thr Val Ala Phe Leu Gly Thr Ser Asp Gly Arg Ile Leu
405 410 415
Lys Val Tyr Leu Thr Pro Asp Gly Thr Ser Ser Glu Tyr Asp Ser Ile
420 425 430
Leu Val Glu Ile Asn Lys Arg Val Lys Arg Asp Leu Val Leu Ser Gly
435 440 445 450
Asp Leu Gly Ser Leu Tyr Ala Met Thr Gln Asp Lys Val Phe Arg Leu
455 460
Pro Val Gln Glu Cys Leu Ser Tyr Pro Thr Cys Thr Gln Cys Arg Asp
465 470 475 480
Ser Gln Asp Pro Tyr Cys Gly Trp Cys Val Val Glu Gly Arg Cys Thr
485 490 495
Arg Lys Ala Glu Cys Pro Arg Ala Glu Ala Ser His Thr Leu Trp
500 505 510
Ser Arg Ser Lys Ser Cys Val Ala Val Thr Ser Ala Glu Pro Glu Asn
515 520 525
Met Ser Arg Arg Ala Gln Gly Glu Val Val Leu Thr Val Ser Pro Leu
530 535 540
Pro Ala Leu Ser Glu Glu Glu Leu Leu Cys Leu Phe Gly Glu Ser
545 550 555 560 565
Pro Pro His Pro Ala Arg Val Gln Glu Ala Val Ile Cys Asn Ser
570 575
Pro Ser Ser Ile Pro Val Thr Pro Pro Gly Glu His Val Ala Val
580 585 590
Thr Ile Gln Leu Leu Leu Arg Gly Asn Ile Phe Leu Thr Ser Tyr
595 600 605
Gln Tyr Pro Phe Tyr Asp Cys Arg Glu Ala Met Ser Leu Glu Glu Asn
610 615 620
Leu Pro Cys Ile Ser Cys Val Ser Asn Arg Trp Thr Cys Glu Trp Asp
625 630 635 640
<table>
<thead>
<tr>
<th>1075</th>
<th>Phe Glu Tyr Val Pro Asp Pro Thr Phe Glu Asn Phe Thr Gly Gly Val 1090</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080</td>
<td>1095</td>
</tr>
<tr>
<td>1085</td>
<td>Lys Lys Gln Val Asn Lys Leu Ile His Ala Arg Gly Thr Asn Leu Asn 1105</td>
</tr>
<tr>
<td></td>
<td>1110</td>
</tr>
<tr>
<td></td>
<td>1120</td>
</tr>
<tr>
<td></td>
<td>Lys Ala Met Thr Leu Gln Glu Ala Glu Ala Phe Val Gly Ala Glu Arg 1130</td>
</tr>
<tr>
<td></td>
<td>1135</td>
</tr>
<tr>
<td></td>
<td>Cys Thr Met Lys Thr Leu Thr Glu Thr Asp Leu Tyr Cys Glu Pro Pro 1140</td>
</tr>
<tr>
<td></td>
<td>1145</td>
</tr>
<tr>
<td></td>
<td>1150</td>
</tr>
<tr>
<td></td>
<td>Glu Val Gln Pro Pro Pro Lys Arg Arg Gln Lys Arg Asp Thr Thr His 1155</td>
</tr>
<tr>
<td></td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td>1165</td>
</tr>
<tr>
<td></td>
<td>Asn Leu Pro Glu Phe Ile Val Lys Phe Gly Ser Arg Glu Trp Val Leu 1170</td>
</tr>
<tr>
<td></td>
<td>1175</td>
</tr>
<tr>
<td></td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>Gly Arg Val Glu Tyr Asp Thr Arg Val Ser Arg Val Pro Leu Ser Leu 1185</td>
</tr>
<tr>
<td></td>
<td>1190</td>
</tr>
<tr>
<td></td>
<td>1195</td>
</tr>
<tr>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Ile Leu Pro Leu Val Ile Val Val Val Ile Ala Val Ser 1205</td>
</tr>
<tr>
<td></td>
<td>1210</td>
</tr>
<tr>
<td></td>
<td>1215</td>
</tr>
<tr>
<td></td>
<td>Val Tyr Cys Tyr Trp Arg Lys Ser Gln Gln Ala Glu Arg Glu Tyr Glu 1220</td>
</tr>
<tr>
<td></td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>1230</td>
</tr>
<tr>
<td></td>
<td>Lys Ile Lys Ser Gln Leu Glu Gly Leu Glu Glu Ser Val Arg Asp Arg 1235</td>
</tr>
<tr>
<td></td>
<td>1240</td>
</tr>
<tr>
<td></td>
<td>1245</td>
</tr>
<tr>
<td></td>
<td>Cys Lys Lys Glu Phe Thr Asp Leu Met Ile Glu Met Glu Asp Gln Thr 1250</td>
</tr>
<tr>
<td></td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>1260</td>
</tr>
<tr>
<td></td>
<td>Asn Asp Val His Glu Ala Gly Ile Pro Val Leu Asp Tyr Lys Thr Tyr 1265</td>
</tr>
<tr>
<td></td>
<td>1270</td>
</tr>
<tr>
<td></td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td>Thr Asp Arg Val Phe Phe Leu Pro Ser Lys Asp Gly Asp Lys Asp Val 1285</td>
</tr>
<tr>
<td></td>
<td>1290</td>
</tr>
<tr>
<td></td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>Met Ile Thr Gly Lys Leu Asp Ile Pro Glu Pro Arg Arg Pro Val Val 1300</td>
</tr>
<tr>
<td></td>
<td>1305</td>
</tr>
<tr>
<td></td>
<td>1310</td>
</tr>
<tr>
<td></td>
<td>Glu Gln Ala Leu Tyr Gln Phe Ser Asn Leu Leu Asn Ser Lys Ser Phe 1315</td>
</tr>
<tr>
<td></td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td>1325</td>
</tr>
<tr>
<td></td>
<td>Leu Ile Asn Phe Ile His Thr Leu Glu Asn Gln Arg Glu Phe Ser Ala 1330</td>
</tr>
<tr>
<td></td>
<td>1335</td>
</tr>
<tr>
<td></td>
<td>1340</td>
</tr>
<tr>
<td></td>
<td>Arg Ala Lys Val Tyr Phe Ala Ser Leu Leu Thr Val Ala Leu His Gly 1345</td>
</tr>
<tr>
<td></td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>1355</td>
</tr>
<tr>
<td></td>
<td>1360</td>
</tr>
<tr>
<td></td>
<td>Lys Leu Glu Tyr Thr Thr Asp Ile Met His Thr Leu Phe Leu Glu Leu 1365</td>
</tr>
<tr>
<td></td>
<td>1370</td>
</tr>
<tr>
<td></td>
<td>1375</td>
</tr>
<tr>
<td></td>
<td>Leu Glu Gln Tyr Val Val Ala Lys Asn Pro Lys Leu Met Leu Arg Arg 1380</td>
</tr>
<tr>
<td></td>
<td>1385</td>
</tr>
<tr>
<td></td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>Ser Glu Thr Val Val Glu Arg Met Leu Ser Asn Trp Met Ser Ile Cys 1395</td>
</tr>
<tr>
<td></td>
<td>1400</td>
</tr>
<tr>
<td></td>
<td>1405</td>
</tr>
<tr>
<td></td>
<td>Leu Tyr Gln Tyr Leu Lys Asp Ser Ala Gly Glu Pro Leu Tyr Lys Leu 1410</td>
</tr>
<tr>
<td></td>
<td>1415</td>
</tr>
<tr>
<td></td>
<td>1420</td>
</tr>
<tr>
<td></td>
<td>Phe Lys Ala Ile Lys His Gln Val Glu Lys Gly Pro Val Asp Ala Val 1425</td>
</tr>
<tr>
<td></td>
<td>1430</td>
</tr>
<tr>
<td></td>
<td>1435</td>
</tr>
<tr>
<td></td>
<td>1440</td>
</tr>
<tr>
<td></td>
<td>Gln Lys Ala Lys Tyr Thr Leu Asn Asp Thr Gly Leu Gly Asp 1445</td>
</tr>
<tr>
<td></td>
<td>1450</td>
</tr>
<tr>
<td></td>
<td>1455</td>
</tr>
<tr>
<td></td>
<td>Asp Val Glu Tyr Ala Pro Leu Thr Val Ser Val Ile Val Glu Asp Glu 1460</td>
</tr>
<tr>
<td></td>
<td>1465</td>
</tr>
<tr>
<td></td>
<td>1470</td>
</tr>
<tr>
<td></td>
<td>Gly Val Asp Ala Ile Pro Val Lys Val Leu Asn Cys Asp Thr Ile Ser 1475</td>
</tr>
<tr>
<td></td>
<td>1480</td>
</tr>
<tr>
<td></td>
<td>1485</td>
</tr>
<tr>
<td></td>
<td>1490</td>
</tr>
<tr>
<td></td>
<td>1495</td>
</tr>
<tr>
<td></td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Ser Cys Trp Pro Arg Pro Asp Ser Val Val Leu Glu Trp Arg Pro Gly 1505</td>
</tr>
<tr>
<td></td>
<td>1510</td>
</tr>
<tr>
<td></td>
<td>1515</td>
</tr>
<tr>
<td></td>
<td>1520</td>
</tr>
</tbody>
</table>
Ser Thr Ala Gln Ile Leu Ser Asp Leu Asp Leu Thr Ser Gln Arg Glu
1525 1530 1535
Gly Arg Trp Lys Arg Val Asn Thr Leu Met His Tyr Asn Val Arg Asp
1540 1545 1550
Gly Ala Thr Leu Ile Leu Ser Lys Val Gly Val Ser Gln Gln Gln Pro Glu
1555 1560 1565
Asp Ser Gln Gln Asp Leu Pro Gly Glu Arg His Ala Leu Leu Glu Glu
1570 1575 1580
Glu Asn Arg Val Trp His Leu Val Arg Pro Thr Asp Glu Val Asp Glu
1585 1590 1595 1600
Gly Lys Ser Lys Arg Gly Ser Val Lys Glu Lys Glu Arg Thr Lys Ala
1605 1610 1615
Ile Thr Glu Ile Tyr Leu Thr Arg Leu Leu Ser Val Lys Gly Thr Leu
1620 1625 1630
Gln Gln Phe Val Asp Asn Phe Phe Glu Ser Val Leu Ala Pro Gly His
1635 1640 1645
Ala Val Pro Pro Ala Val Lys Tyr Phe Phe Asp Pro Leu Asp Glu Gln
1650 1655 1660
Ala Glu Lys His Asn Ile Glu Asp Glu Asp Thr Ile His Ile Trp Lys
1660 1665 1670 1675 1680
Thr Asn Ser Leu Pro Leu Arg Phe Trp Pro Trp Val Leu Lys Asn Pro
1685 1690 1695
His Phe Ile Phe Asp Val His Val Glu Val Val Asp Ala Ser Leu
1700 1705 1710
Ser Val Ile Ala Gln Thr Phe Met Asp Ala Cys Thr Arg Thr Glu His
1715 1720 1725
Lys Leu Ser Arg Asp Ser Pro Ser Asn Lys Leu Leu Tyr Ala Lys Glu
1730 1735 1740
Ile Ser Thr Tyr Lys Met Val Glu Asp Tyr Tyr Lys Gly Ile Arg
1745 1750 1755 1760
Gln Met Val Glu Val Ser Asp Gln Asp Met Asn Thr His Leu Ala Glu
1765 1770 1775
Ile Ser Arg Ala His Thr Asp Ser Leu Asn Thr Leu Val Ala Leu His
1780 1785 1790
Gln Leu Tyr Glu Tyr Thr Glu Thr Tyr Thr Lys Tyr Asp Glu Ile Ile Asn Ala
1795 1800 1805
Leu Glu Glu Asp Pro Ala Ala Glu Lys Met Gln Leu Ala Phe Arg Leu
1810 1815 1820
Gln Glu Ile Ala Ala Leu Glu Asn Lys Val Thr Asp Leu
1825 1830 1835

<210> 3
<211> 5367
<212> DNA
<213> HOMO SAPIEN

<400> 3
atggctcgct ggcctccctt cggctctgcct ttcctctgcct gtcgctgtgct cccacgcca
60
cctgctttgct caggggcctt tcctctctcct cgcactaatct ccacttccaa ccacttggca
120
cctgaggcttc acctagcttcct gcggcagctgc actgacgtgg ctactgtggc taactgtgaa
180
cagcgtcgcgcc cggcagcagc tcggtgctgct tgcctggtgct gcggcagctg cggcagctgc
240
tgcctggtgtgct gtcgcggctgc cgctggtgcgg gcgcggtgctgc gcggcagctg cggcagctgc
300
tcggcggcggg tcggtgctgct gcggcggcgg gcggcgggagc gcggcgggagc gcggcgggagc
360
tcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc
420
tcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc gcggcgggagc
480
cccttgccgcc gcgggagaccc ccctgtcttgt gcgcagagcc ggcgggcaaa gcgtcgccga 540
ggggagccac cccctgccct tcgcaggttc gcggcgttgc acccccttcc cagccagggcc 600
tgctgcgggg tgcattgcgc gcacatctggt tgccttcgct cagatgtgcc 660
gcgaagccgc cttcccgctta cttctgcgtt gcggcggcgc ggccgggcgg ccaagctgcc 720
taacgctctct agtgctgccg cgtctgcttg ggggaaacca acctgtactc tctagttgag 780
tgccctcttc ctcgctcgcc acagggcgcg attcagccgc cttcctcggg cccgggacc 840
tgctcaggg gggttgccgc ctgaggtcag cctgccttgg tgcctctccc 900
tgctcaggg gggttgccgc ctgaggtcag cctgccttgg tgcctctccc 960
cggggcccca gcgggagcac cggagacaccc ggtgaggact gcgctcgctc gcgctcgctc 1020
accttgcccct ccttattccca cctcgcgatt cctctgcggt acgagcaacc cccacgccccc 1080
attgtgcgcc gcacagcccc ggtagtcgca cctctgctga agctgcggca gcggctcagc 1140
gccgttgccag cttcctagcc agatggccac atgtacgctt cttgctgggga cccagccggt 1200
cagcgtgata cagttctttct ccaagctgcc cagggccagc cttacacttc ccaagcagtg 1260
ggcggcctag gtcgaatcgc cagggcagac cttgctgtgg cagacgcttg ctgctatggc 1320
atacgacctg cgcgtctgccgt ttcgggtgtct ctcgctgtct gcgttggtgt cttccgcggc 1380
gatgtctac ccagagctca gcgggtcgag ctcgctggct ggtggtgtgt cttccgcggc 1440
agttgatcag ggacagggcc gcgtcgggcag cggagcacgc tggagcagtg gcgttggtgtt 1500
atatgagagg cgacacagct ccgctaccct cagagctgtg cttgctgggc ccacccagcc 1560
cagagctcag gcagctgcac ttctgctgtc ctccggggtc ccagcttgaa 1620
tactttcatt ctgcgtcctcg gaactacatg aatgttgcgct atgtgggaag gcgcagaagt 1680
gcggccgtca ccctttccca agacagcagct gcagtttacc ccctaatcagcc acacagtgc 1740
actgtgcgcc gcgtcctccga gctgctgagg gttgtcgttg atacctgttg gatcgctgce caatggcct 1800
attgaacatg gcgtcctccga gctgctgagg gttgtcgttg atacctgttg gatcgctgce caatggcct 1860
cctgctctct tccactgcttg gctgagcttg cttgctggactt cttgggact gcccggccac 1920
tccgctgagg gtcgaggtgg tgcgggagac ccatgcctca tccggctggc ccaagccgct 1980
cctggagctta cccctctccgg cggcagatgt caagctgttg ggcggcggcc ggtggtgtgt 2040
taacttgacat ctgcgtctccat ctgctgctgc cttgcttggc ggcgggctgg caagggccgg 2100
tgctcgatcg atgtgctgctgc acgtccagcc gggtctggtg cttgctgttg ggcgggctgg 2160
tgcggagcct cccacagccg ccaacggtag ctcgctgggt cttgcttggc cctgctgctgc 2220
ggcggcctaaa ccacagccgc tcggccctgg tgggctggtt ggcgggctgg ccaacagccg 2280
tctgcaagatg cgcagccggc acggtcgcag cctgcgtcttc tccgtgcttg ggtgggtgct 2340
gacctgctga cccctctccgg cggcagatgt caagctgttg ggcggcggcc ggtggtgtgt 2400
ggcggcctgct cccctctccgg cggcagatgt caagctgttg ggcggcggcc ggtggtgtgt 2460
tgcggagcct cccacagccg ccaacggtag ctcgctgggt cttgcttggc cctgctgctgc 2520
 gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2580
gtcgggctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2640
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2700
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2760
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2820
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2880
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 2940
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3000
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3060
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3120
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3180
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3240
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3300
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3360
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3420
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3480
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3540
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3600
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3660
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3720
ggcggcctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct gcggccctgct 3780
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1025</td>
<td>Val Lys Thr Leu Thr Arg Thr His Leu Tyr Cys Glu Pro Pro Ala His</td>
<td>1030</td>
<td>1035</td>
<td>1040</td>
</tr>
<tr>
<td>1045</td>
<td>Ala Pro Gln Pro Ala Asn Gly Ser Gly Leu Pro Gln Phe Val Val Gln</td>
<td>1050</td>
<td>1055</td>
<td></td>
</tr>
<tr>
<td>1065</td>
<td>Met Gly Asn Val Gln Leu Ala Leu Gly Pro Val Gln Tyr Glu Ala Glu</td>
<td>1070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1080</td>
<td>Pro Pro Leu Ser Ala Phe Pro Val Ala Ala Gln Ala Gly Val Gly Met</td>
<td>1085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1095</td>
<td>Gly Ala Ala Val Leu Ile Ala Ala Val Leu Leu Thr Leu Met Tyr</td>
<td>1100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>Arg His Lys Ser Lys Gln Ala Leu Arg Asp Tyr Gln Lys Val Leu Val</td>
<td>1115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1130</td>
<td>Gln Leu Glu Ser Leu Glu Thr Gly Val Gln Gly Asp Cys Arg Lys Gly</td>
<td>1120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1135</td>
<td>Phe Thr Asp Leu Met Thr Glu Met Thr Asp Leu Ser Ser Asp Leu Glu</td>
<td>1140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1145</td>
<td>Gly Ser Gly Ile Pro Phe Leu Asp Tyr Arg Thr Tyr Ala Glu Arg Ala</td>
<td>1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1155</td>
<td>Phe Phe Pro Gly His Gly Gly Cys Pro Leu Gln Pro Lys Pro Gly Gly</td>
<td>1160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1175</td>
<td>Pro Gly Glu Asp Gly His Cys Ala Thr Val Arg Glu Gln Gly Leu Thr Gln</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1195</td>
<td>Leu Ser Asn Leu Leu Asn Ser Lys Leu Phe Leu Leu Thr Val Arg Ala</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td>Val Trp Arg Glu Cys Pro Val Gly Lys Val Gly Leu Gly Asn Tyr</td>
<td>1210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1220</td>
<td>Trp Pro Glu Thr Tyr Val Gly Glu Thr Glu Thr Met Val Glu Lys</td>
<td>1225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1230</td>
<td>Leu Leu Thr Asn Trp Leu Ser Ile Cys Leu Tyr Ala Phe Leu Arg Glu</td>
<td>1240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1245</td>
<td>Val Ala Gly Glu Pro Leu Tyr Met Leu Phe Arg Ala Ile Gln Tyr Gln</td>
<td>1250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1260</td>
<td>Val Asp Lys Gly Pro Val Asp Ala Val Thr Gly Lys Ala Lys Arg Thr</td>
<td>1275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1280</td>
<td>Leu Asn Asp Ser Arg Leu Leu Arg Glu Asp Val Glu Phe Gln Pro Leu</td>
<td>1290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1295</td>
<td>Thr Leu Met Val Leu Val Gly Pro Gly Ala Gly Gln Ala Gly Ser</td>
<td>1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1305</td>
<td>Ser Glu Met Gln Arg Val Pro Ala Arg Val Leu Asp Thr Asp Thr Ile</td>
<td>1310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1315</td>
<td>Thr Gln Val Lys Glu Lys Val Leu Asp Gln Val Tyr Lys Gly Thr Pro</td>
<td>1320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1325</td>
<td>Phe Ser Gln Arg Pro Ser Val His Ala Leu Asp Leu Gly Gln Arg Ala</td>
<td>1330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1335</td>
<td>Ser Pro Ala His Pro Pro Gln Gly Pro Phe Pro Thr Pro Pro Ala Pro</td>
<td>1340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1345</td>
<td>Gly Ala Pro Gln Leu Cys Leu Thr Met Asn Ile Pro Thr Leu Glu Asp</td>
<td>1350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1355</td>
<td>Gly Glu Glu Gly Gly Val Cys Leu Trp His Leu Val Lys Ala Thr Glu</td>
<td>1360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1370</td>
<td>Gly Pro Glu Gly Ala Lys Val Arg Cys Ser Leu Arg Glu Arg Glu</td>
<td>1375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1380</td>
<td>Pro Ala Arg Ala Lys Ala Ile Pro Glu Ile Tyr Leu Thr Arg Leu Leu</td>
<td>1385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1390</td>
<td>1395</td>
<td>1400</td>
<td>1405</td>
<td>1410</td>
</tr>
</tbody>
</table>
Ser Met Lys Val Gly Ala Ala Trp Val Ala Gly Pro Glu Arg Arg Leu
1475 1480 1485
Ser Gln Gly Pro Arg Pro Ser Gln Gly Val Gly Gly Ala Gly Ala Ala
1490 1495 1500
Ser Ala Val Asp Gly Pro His Thr Leu Pro Ser Thr Gln Pro Leu Ser
1505 1510 1515 1520
Pro Ala Ser Gln Gly Thr Leu Gln Lys Phe Val Asp Thr Phe Gln
1525 1530 1535
Ala Ile Leu Ser Val Asn Arg Pro Ile Pro Ile Ala Val Lys Tyr Leu
1540 1545 1550
Phe Asp Leu Leu Asp Glu Leu Ala Glu Lys His Gly Ile Glu Asp Pro
1555 1560 1565
Gly Thr Leu His Ile Trp Lys Thr Asn Ser Leu Leu Arg Phe Trp
1570 1575 1580
Val Asn Ala Leu Lys Asn Pro Glu Leu Ile Phe Asp Val Arg Val Ser
1585 1590 1595 1600
Asp Cys Thr Thr Ser Glu His Lys Gly Val Arg Val Arg Ala Val Pro
1605 1610 1615
1620 1625 1630
Ala Ala Ala Ala Gly Arg Gly Leu Arg Arg Lys Gly Leu Trp Gly Lys
1635 1640 1645
Pro Arg Gly Leu Cys Thr Glu Leu Trp Val Gly Ser Gly Ser Ile Met
1650 1655 1660
Gly Ala Pro Ser Pro Pro Ser Ser Cys Leu Ala Pro Pro Leu Pro Pro
1665 1670 1675 1680
Glu Gln Asp Ser Pro Val Asn Lys Leu Tyr Ala Arg Glu Ile Pro
1685 1690 1695
Arg Tyr Lys Glu Met Val Glu Arg Tyr Tyr Ala Asp Ile Arg Glu Ser
1700 1705 1710
Ser Pro Ala Ser Tyr Gln Glu Met Asn Ser Ala Leu Ala Glu Leu Ser
1715 1720 1725
Gly Asn Tyr Thr Ser Ala Pro His Cys Leu Glu Ala Leu Glu Glu Leu
1730 1735 1740
Tyr Asn His Ile His Arg Tyr Asp Gln Ile Ile Ser Ala Leu Glu
1745 1750 1755 1760
Glu Asp Pro Val Gly Glu Gln Lys Leu Gln Ala Cys Arg Leu Gln Glu
1765 1770 1775
Val Ala Ala Leu Val Glu Asn Lys Val Thr Asp Leu
1780 1785

<210> 5
<211> 5892
<212> DNA
<213> HOMO SAPIEN

<400> 5
ggcgaagcccc ggtatggctct tcgcgccgcg ggcggccgaa ccttttagcg gcccggccgc 60
gtgcggacgc cccggccggt cccagacgcc cccgggtggc ccggtccgct gctgttgctg 120
ttcgctcgag gcgcggcggcg ggcggccgca ctcggagatcc agcgtcggg cccctgccgc 180
acgaccccca acaaccttcgc cctgagacgc gcggagggqa cctgtgacct gggcggcgtc 240
aaccgcctct atcagctgct gcggcgccac ccagccggtg acgagcctgg agcgcggcgc ggcggtgggc 300
cgggtcgccg acagccgctg tggtagcggc ccaagctgcc gcgcggccta tggcgcgag 360
cgcggcgcgt tcaagcgcac ctcgagcgtt atcgctcgac tggacccggg ccaagccctg 420
gtctgagctg gcgcgtgttat ctacccgggc ttctgcgcgc gcggccgccc ggttacatc 480
tcgcccggtgg cgctgctgctt cccgcgcgcgc gcgcgcgcgc gcgcgcgcgc gcgcgcgcgt cacgtgcttc 540
cccccgcatgc tgaagcctgcgc ggccaaccaac cccaggcggcg cacggcgcttc gcgtggcttc 600
ccctccggcccg cgccggcccc gcggcacaac ccggagcttt gcgtgctgctg gcgtgctgctg 660
ggacgcttctt ttctccggcgc caaccgaggg ttgaggagcc acctgcctgta gcgcgctaca 720
agagctccca tcgagggcggc cgcctgctgc ctgctgctgc caggcgcttc cgccggcagc 780
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 840
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 900
tcgccgagcag gcgcgctgctc gcggcgctgc ccgcggcgcg gcggagagcc ggctgctgctg 960
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1020
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1080
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1140
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 1200
tcgccgagcag gcgcgctgctc gcggcgctgc ccgcggcgcg gcggagagcc ggctgctgctg 1260
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1320
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1380
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1440
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 1500
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1560
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1620
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1680
tgctgggctgg tgggagcggcc cgcctgctgc cggcggcgcg gcggagagcc ggctgctgctg 1740
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 1800
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1860
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 1920
tcccaacccct ccggacgcgac atctgctgctc cagctgctgc gagccggcgc ccgcggcgcg 1980
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2040
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2100
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2160
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2220
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2280
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2340
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2400
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2460
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2520
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2580
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2640
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2700
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2760
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2820
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2880
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 2940
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3000
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3060
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3120
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3180
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3240
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3300
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3360
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3420
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3480
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3540
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3600
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3660
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3720
ccggcggcgcg cgccggccgg cgccggccgg cgccggccgg ggccggccgg gcggagagcc 3780
<table>
<thead>
<tr>
<th>Position</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Met</td>
</tr>
<tr>
<td>2</td>
<td>Ala</td>
</tr>
<tr>
<td>3</td>
<td>Leu</td>
</tr>
<tr>
<td>4</td>
<td>Arg</td>
</tr>
<tr>
<td>5</td>
<td>Ala</td>
</tr>
<tr>
<td>6</td>
<td>Ala</td>
</tr>
<tr>
<td>7</td>
<td>Gly</td>
</tr>
<tr>
<td>8</td>
<td>Gly</td>
</tr>
<tr>
<td>9</td>
<td>Ala</td>
</tr>
<tr>
<td>10</td>
<td>Pro</td>
</tr>
<tr>
<td>11</td>
<td>Phe</td>
</tr>
<tr>
<td>12</td>
<td>Ser</td>
</tr>
<tr>
<td>13</td>
<td>Gly</td>
</tr>
<tr>
<td>14</td>
<td>Pro</td>
</tr>
<tr>
<td>15</td>
<td>Ala</td>
</tr>
</tbody>
</table>

<210> 6
<211> 1925
<212> PRT
<213> HOMO SAPIEN

<400> 6

```
Met Ala Leu Arg Ala Ala Gly Gly Ala Pro Phe Ser Gly Pro Ala Ala
1   5   10   15
Ala Ala Ser Pro Pro Pro Phe Gln Thr Pro Pro Arg Cys Pro Val Pro
20  25  30
Leu Leu Leu Leu Leu Leu Gly Ala Arg Ala Gly Ala Leu Glu
35  40  45
Ile Gln Arg Arg Pro Ser Pro Thr Pro Thr Asn Asn Phe Ala Leu
50  55  60
Asp Gly Ala Ala Gly Thr Val Tyr Leu Ala Ala Val Asn Arg Leu Tyr
65  70  75  80
```

- 15 -
Gln Leu Ser Gly Ala Asn Leu Ser Leu Glu Ala Glu Ala Ala Val Gly
 85 90 95
Pro Val Pro Asp Ser Pro Leu Cys His Ala Pro Gln Leu Pro Gln Ala
 100 105 110
Ser Cys Glu His Pro Arg Arg Leu Thr Asp Asn Tyr Asn Lys Ile Leu
 115 120 125
Gln Leu Asp Pro Gly Gln Gly Leu Val Val Cys Gly Ser Ile Tyr
 130 135 140
Gln Gly Phe Cys Gin Leu Arg Arg Arg Gly Asn Ile Ser Ala Val Ala
 145 150 155 160
Val Arg Phe Pro Pro Ala Ala Pro Pro Ala Glu Pro Val Thr Val Phe
 165 170 175
Pro Ser Met Leu Asn Val Ala Ala Asn His Pro Asn Ala Ser Thr Val
 180 185 190
Gly Leu Val Leu Pro Pro Ala Ala Gly Ala Gly Gly Ser Arg Leu Leu
 195 200 205
Val Gly Ala Thr Tyr Thr Gly Tyr Gly Ser Ser Phe Phe Pro Arg Asn
 210 215 220
Arg Ser Leu Glu Asp His Arg Phe Glu Asn Thr Pro Glu Ile Ala Ile
 225 230 235 240
Arg Ser Leu Asp Thr Arg Gly Asp Leu Ala Lys Leu Phe Thr Phe Asp
 245 250 255
Leu Asn Pro Ser Asp Asp Asn Ile Leu Lys Ile Lys Gin Gly Ala Lys
 260 265 270
Glu Gln His Lys Leu Gly Phe Val Ser Ala Phe Leu His Pro Ser Asp
 275 280 285
Pro Pro Pro Gly Ala Cln Ser Tyr Ala Tyr Leu Ala Leu Asn Ser Glu
 290 295 300
Ala Arg Ala Gly Asp Lys Glu Ser Gin Ala Arg Ser Leu Leu Leu Arg
 305 310 315 320
Ile Cys Leu Pro His Gly Ala Gly Gly Asp Ala Lys Lys Leu Thr Glu
 325 330 335
Ser Tyr Ile Gln Leu Gly Leu Gin Cys Ala Gly Gly Ala Gly Arg Gly
 340 345 350
Asp Leu Tyr Ser Arg Leu Val Ser Val Phe Pro Ala Arg Glu Arg Leu
 355 360 365
Phe Ala Val Phe Glu Arg Pro Gln Gly Ser Pro Ala Ala Arg Ala Ala
 370 375 380
Pro Ala Ala Leu Cys Ala Phe Arg Phe Ala Asp Val Arg Ala Ala Ile
 385 390 395 400
Arg Ala Ala Arg Thr Ala Cys Phe Val Glu Pro Ala Pro Asp Val Val
 405 410 415
Ala Val Leu Asp Ser Val Val Gln Gly Thr Gly Pro Ala Cys Glu Arg
 420 425 430
Lys Leu Asn Ile Gln Leu Gin Pro Glu Gin Leu Asp Cys Gly Ala Ala
 435 440 445
His Leu Gln His Pro Leu Ser Ile Leu Gin Pro Leu Lys Ala Thr Pro
 450 455 460
Val Phe Arg Ala Pro Gly Leu Thr Ser Val Ala Val Ala Ser Val Asn
 465 470 475 480
Asn Tyr Thr Ala Val Phe Leu Gly Thr Val Asn Gly Arg Leu Leu Lys
 485 490 495
Ile Asn Leu Asn Glu Ser Met Gin Val Val Ser Arg Arg Val Val Thr
 500 505 510
Val Ala Tyr Gly Glu Pro Val His His Val Met Gin Phe Asp Pro Ala
515 Asp Ser Gly Tyr Leu Tyr Leu Met Thr Ser His Gln Met Ala Arg Val
520 530 535 540 545 550 555 560 565 570 575 580 585 590
Lys Val Ala Ala Cys Asn Val His Ser Thr Cys Gly Asp Cys Val Gly
595 600 605 610 615 620 625 630 635 640 645 650 655
Glu Ser Leu Pro Ser Leu Ser Gly Met Ala Cys Asp Tyr Gly
660 665 670 675 680 685 690
Asn Asn Ile Arg Thr Val Ala Arg Val Pro Gly Pro Ala Phe Gly His
695 700 705 710 715 720 725 730 735 740 745 750 755
Gln Ile Ala Tyr Cys Asn Leu Leu Pro Arg Asp Gln Phe Pro Pro Phe
760 765 770 775 780 785 790 795 800 805 810 815
Gly Arg Asn Ile Val Lys Ala Asn Phe Thr Ile Tyr Asp Cys Ser Arg
820 825 830 835 840 845 850 855 860
Thr Ala Gln Val Tyr Pro His Thr Ala Cys Thr Ser Cys Leu Ser Ala
865 870 875 880 885 890 895
Gln Trp Pro Cys Phe Trp Cys Ser Gln Glu His Ser Cys Val Ser Asn
900 905 910 915 920 925 930 935 940 945 950 955 960
<table>
<thead>
<tr>
<th>1395</th>
<th>1400</th>
<th>1405</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Ile</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>His</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Asn</td>
</tr>
<tr>
<td>Asn</td>
<td>Lys</td>
<td>His</td>
</tr>
<tr>
<td>Phe</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Thr</td>
<td>Ile</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>Lys</td>
<td>Tyr</td>
<td>Tyr</td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Ile</td>
</tr>
<tr>
<td>Met</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Pro</td>
<td>Lys</td>
<td>Met</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Asn</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Cys</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Lys</td>
<td>Cys</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Ser</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Met</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Thr</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Gin</td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Lys</td>
<td>Cys</td>
<td>Val</td>
</tr>
<tr>
<td>Pro</td>
<td>Tyr</td>
<td>Ser</td>
</tr>
<tr>
<td>Gly</td>
<td>Trp</td>
<td>Tyr</td>
</tr>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Gin</td>
<td>Lys</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Thr</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Ser</td>
</tr>
<tr>
<td>Val</td>
<td>Lys</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Met</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Arg</td>
</tr>
<tr>
<td>Lys</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Lys</td>
</tr>
<tr>
<td>Asn</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Tyr</td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Lys</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>Lys</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td>Lys</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td>Lys</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Phe</td>
<td>Asp</td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td>Tyr</td>
<td>Phe</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Lys</td>
</tr>
<tr>
<td>Asp</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Glu</td>
<td>Trp</td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Pro</td>
</tr>
<tr>
<td>Thr</td>
<td>Arg</td>
<td>His</td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Phe</td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Pro</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Leu</td>
</tr>
</tbody>
</table>
Gln Ile Gln Asp Met Thr Pro Leu Ser Glu Gln Glu Met Asn Ala His
1845 1850 1855
Leu Ala Glu Glu Ser Arg Lys Tyr Gln Asn Glu Phe Asn Thr Asn Val
1860 1865 1870
Ala Met Ala Glu Ile Phe Arg Ser Pro Lys Arg Tyr Arg Pro Glu Ile
1875 1880 1885
Met Ala Ala Leu Glu Ala Asn Pro Thr Ala Arg Arg Thr Gin Leu Gin
1890 1895 1900
His Lys Phe Glu Gin Val Val Ala Leu Met Glu Asp Asn Ile Tyr Glu
1905 1910 1915 1920
Cys Tyr Ser Glu Ala
1925

<210> 7
<211> 601
<212> DNA
<213> HOMO SAPIEN

<400> 7
caacagtc cctgtggagt cctgtggtca gtatcagagc tgcggcagat tgccttggtct
60
tagcagcc cactgtggct ggttgtgtgt gcaacaaact tgcacccgga aggagcgttg
120
tgacggttcc aagagcccc gcagtttgc ttggagatgtt gtcggctgac
180
tggcctaccc aacaatattt ccgttcttca gtacacaagc ctagctggtcc tggagagcata
240
caatgcggtg gacgtgctgac cttcgctgctaa ctgacaccttt gaggacctgt cagagatgga
300
ttgctgtggt tcggcgaatt agatcagagt tctactccct gcagcccaagag agtgccccc
360
gatcatca gagaatgaggg accaccagtt ctagcagcctt cagctcaaat caaagagacg
420
cggcatgacc tttgcagaca cccagtttct ccctctcaaat tgcagctgcc acaattctgtg
480
cctggtcctgc ttggagagtc ctcaccccttg ctctgggtgtt aatgccctgc atgctgcatc
540
ccatgacc aagacctgtg cctcttccggg aagccagagtg aagctgcctg aggtaggtcc
600

<210> 8
<211> 199
<212> PRT
<213> HOMO SAPIEN

<400> 8
Thr Arg Val Pro Val Glu Ser Cys Gly Gln Tyr Gln Ser Cys Gly Glu
1 5 10 15
Cys Leu Gly Ser Gly Asp Pro His Cys Gly Trp Cys Val Leu His Asn
20 25 30
Thr Cys ThrArg Lys Glu Arg Cys Glu Arg Ser Lys Glu Pro Arg Arg
35 40 45
Phe Ala Ser Glu Met Lys Gin Cys Val Arg Leu Thr Val His Pro Asn
50 55 60
Asn Ile Ser Val Ser Gin Tyr Asn Ala Leu Leu Val Leu Thr Tyr
65 70 75 80
Asn Val Pro Glu Leu Ser Ala Gly Val Asn Cys Thr Phe Glu Asp Leu
85 90 95
Ser Glu Met Asp Gly Leu Val Val Gly Asn Gin Ile Gin Cys Tyr Ser
100 105 110
Pro Ala Ala Lys Glu Val Pro Arg Ile Ile Thr Glu Asn Gly Asp His
115 120 125
His Val Val Gin Leu Glu Leu Lys Ser Lys Glu Thr Gly Met Thr Phe
130 135 140
Ala Ser Thr Ser Phe Val Phe Tyr Asn Cys Ser Val His Asn Ser Cys
Leu Ser Cys Val Glu Ser Pro Tyr Arg Cys His Trp Cys Lys Tyr Arg
His Val Cys Thr Asp Pro Lys Thr Cys Ser Phe Gln Glu Gly Arg Val
Lys Leu Pro Glu Val Gly Pro

(210) 9
(211) 6408
(212) DNA
(213) HOMO SAPIEN

(400) 9
atgccttgctc tgggcccgacg ttccttcctcg gctcttcggg cgggtgtggttc cctcaccctg cctccaccctc
60
cagccccctc acacactcct attaacttcc aatggcagct atcttgagcta cctggtcasg
120
gacaccacct caggccacct ctcacctccgtt tcgcttcggg cctcattccat gcttgaactc
180
gggtgctagc tggaggtcagc agagcctgacg ggcctctgag tcgacggtgc cgggtgtggtc
240
catccacactc tcctgctgctg gctgctgctg cgggtgtggtg tgccttgagt gcgttgtctg
300
ccttccggtgc ctgagctgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
360
cagtggcgcc tcggtgtgtgct ggtgtgtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc
420
cggggtaggc tcgcttttctg gcggattagt ggggtttgggt cgggtgtggtg tgggtctgcgt
480
gcgggggagc ctccttcctcg ggtgtgtgtgct ggtgtgtgtgct ggtgtgtgtggt tgggtctgcgt
540
gcaacatcctt tcttcacctct cctgctgggtc ggggttgctg cgggtgtggtg tgggtctgcgt
600
gggagactc attaactcct attaactctcc cgggtgtggtg tgggtctgcgt gctggtgtgc ccggtgtggtg
660
gctgttagttt cttcaccctt cctgctgggtc ggggttgctg cgggtgtggtg tgggtctgcgt
720
ttgggttgtttt tcctgctgctg ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
780
tgcggcagct gctggtgtgc ccggtgtggtg tgggtctgcgt gctggtgtgc ccggtgtggtg
840
tggggtgggag ctgctgctgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
900
ccgggggagc ctccttcctcg ggtgtgtgtgct ggtgtgtgtgct ggtgtgtgtggt tgggtctgcgt
960
cctcctgtgctt ctccttcctt cctgctgggtc ggggttgctg cgggtgtggtg tgggtctgcgt
1020
tacccacacgt tcggtgtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1080
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1140
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1200
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1260
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1320
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1380
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1440
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1500
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1560
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1620
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1680
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1740
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1800
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1860
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1920
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
1980
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2040
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2100
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2160
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2220
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2280
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2340
tgctgctgctg ggcgggtgtgct ggtgtgtgtggt tgggtctgcgt gctggtgtgc ccggtgtggtg
2400
	Met	Pro	Leu	Ala	Leu	Gly	Pro	Ala	Leu	Leu	Gln	Ala	Leu	Trp	Ala	Leu	Gly	Trp		
1		5			10		15													
20	Val	Leu	Thr	Leu	Gln	Pro	Leu	Pro	Leu	Pro	Thr	Ala	Phe	Thr	Pro	Asn	Gly	30		
25	Thr	Tyr	Leu	Gln	His	Leu	Ala	Arg	Pro	Thr	Ser	Gly	Thr	Leu	Tyr	40	45			
35	Leu	Gly	Ala	Thr	Asn	Phe	Leu	Phe	Gln	Leu	Ser	Pro	Gly	Leu	Gln	Leu	55	60		
50	Glu	Ala	Thr	Val	Ser	Thr	Gly	Pro	Val	Leu	Asp	Ser	Arg	Asp	Cys	Leu	65	75	80	
70	Pro	Pro	Val	Met	Pro	Asp	Glu	Cys	Pro	Gln	Ala	Gln	Pro	Thr	Asn	Asn	85	90	95	
90	Pro	Asn	Gln	Leu	Leu	Leu	Val	Ser	Pro	Gly	Ala	Leu	Val	Cys	Gly	100	105	110		
110	Ser	Val	His	Gln	Gly	Val	Cys	Gln	Gln	Arg	Arg	Leu	Gly	Gln	Leu	Gly	115	120	125	
130	Gln	Leu	Leu	Arg	Pro	Gly	Arg	Pro	Gly	Asp	Thr	Gln	Tyr	Val	Ala	135	135	140		
140	Ala	Asn	Asp	Pro	Ala	Val	Ser	Thr	Val	Gln	Leu	Ala	Val	Gln	Gly	Leu	145	150	155	160
150	Ala	Gly	Leu	Pro	Leu	Leu	Phe	Val	Gly	Arg	Gly	Tyr	Thr	Ser	Arg	Gly	166	170	175	
170	Val	Gly	Gly	Ile	Pro	Pro	Ile	Thr	Thr	Arg	Ala	Leu	Trp	Pro	Pro	180	185	190		
180	Asp	Pro	Gln	Ala	Ala	Phe	Ser	Tyr	Glu	Gly	Thr	Ala	Lys	Leu	Ala	Val	195	200	205	
205	Gly	Arg	Leu	Ser	Gly	Tyr	Ser	His	His	Phe	Val	Ser	Ala	Phe	Ala	Arg	210	215	220	
220	Gly	Ala	Ser	Ala	Tyr	Phe	Leu	Phe	Leu	Arg	Arg	Asp	Leu	Gln	Ala	Gln	225	230	235	240
230	Ser	Arg	Ala	Phe	Arg	Ala	Tyr	Val	Ser	Arg	Val	Cys	Leu	Arg	Asp	Gln	245	250	255	
255	His	Tyr	Tyr	Ser	Tyr	Val	Glu	Leu	Pro	Leu	Ala	Cys	Leu	Gly	Gly	Arg	260	265	270	
Tyr Gly Leu Ile Gln Ala Ala Ala Val Ala Thr Ser Arg Glu Val Ala
275 280
His Gly Glu Val Leu Phe Ala Ala Phe Ser Ser Ala Ala Pro Pro Thr
290 295 300
Val Gly Arg Pro Pro Ser Ala Ala Ala Gly Ala Ser Gly Ala Ser Ala
305 310 315 320
Leu Cys Ala Phe Pro Leu Asp Glu Val Asp Arg Leu Ala Asn Arg Thr
325 330 335
Arg Asp Ala Cys Tyr Thr Arg Gly Arg Ala Glu Asp Gly Thr Glu
340 345 350
Val Ala Tyr Ile Glu Tyr Asp Val Asn Ser Asp Cys Ala Gln Leu Pro
355 360 365
Val Asp Thr Leu Asp Ala Tyr Pro Cys Gly Ser Asp His Thr Pro Ser
370 375 380
Pro Met Ala Ser Arg Val Pro Leu Glu Ala Thr Pro Ile Leu Glu Trp
385 390 395 400
Pro Gly Ile Gln Leu Thr Ala Val Ala Val Thr Met Glu Asp Gly His
405 410 415
Thr Ile Ala Phe Leu Gly Asp Ser Gin Gly Gln Leu His Arg Val Tyr
420 425 430
Leu Gly Pro Gly Ser Asp Gly His Pro Tyr Ser Thr Gln Ser Ile Gin
435 440 445
Gln Gly Ser Ala Val Ser Arg Asp Leu Thr Phe Asp Gly Thr Phe Glu
450 455 460
His Leu Tyr Val Met Thr Gin Ser Thr Leu Leu Lys Val Pro Val Ala
465 470 475 480
Ser Cys Ala Gin His Leu Asp Cys Ala Ser Cys Leu Ala His Arg Asp
485 490 495
Pro Tyr Cys Gly Trp Cys Val Leu Leu Gly Arg Cys Ser Arg Arg Ser
500 505 510
Glu Cys Ser Arg Gly Gin Gly Pro Glu Gin Trp Leu Trp Ser Phe Gin
515 520 525
Pro Glu Leu Gly Cys Leu Gin Val Ala Ala Met Ser Pro Ala Asn Ile
530 535 540
Ser Arg Glu Glu Thr Arg Glu Val Phe Leu Ser Val Pro Asp Leu Pro
545 550 555 560
Pro Leu Trp Pro Gly Glu Ser Tyr Ser Cys His Phe Gly Glu His Gin
565 570 575
Ser Pro Ala Leu Leu Thr Gly Ser Gly Val Met Cys Pro Ser Pro Asp
580 585 590
Pro Ser Glu Ala Pro Val Leu Pro Arg Gly Ala Asp Tyr Val Ser Val
595 600 605
Ser Val Glu Leu Arg Phe Gly Ala Val Ala Ala Lys Thr Ser Leu
610 615 620
Ser Phe Tyr Asp Cys Val Ala Thr Glu Leu Arg Pro Ser Ala Gln
625 630 635 640
Cys Gin Ala Cys Val Ser Ser Arg Trp Gly Cys Asn Trp Cys Val Trp
645 650 655
Gln His Leu Cys Thr His Lys Ala Ser Cys Asp Ala Gly Pro Met Val
660 665 670
Ala Ser His Gln Ser Pro Leu Val Ser Pro Asp Pro Pro Ala Arg Gly
675 680 685
Gly Pro Ser Pro Ser Pro Thr Ala Pro Lys Ala Leu Ala Thr Pro
690 695 700
Ala Pro Asp Thr Leu Pro Val Glu Pro Gly Ala Pro Ser Thr Ala Thr
Ala Ser Asp Ile Ser Pro Gly Ala Ser Pro Ser Leu Leu Ser Pro Trp
Gly Pro Trp Ala Gly Ser Gly Ser Ile Ser Ser Pro Gly Ser Thr Gly
Ser Pro Leu His Glu Glu Pro Ser Pro Ser Pro Ser Gln Asn Gly Pro
Gly Thr Ala Val Pro Ala Pro Thr Asp Phe Arg Pro Ser Ala Thr Pro
Glu Asp Leu Leu Ala Ser Pro Leu Ser Ser Pro Ser Glu Val Ala Ala Val
Pro Pro Ala Asp Gly Pro Gly Pro Leu Ala His Pro Thr Val Pro Leu
Asp Leu Pro Pro Ala Thr Val Pro Ala Thr Thr Phe Pro Gly Ala Met
Gly Ser Val Lys Pro Ala Leu Asp Trp Leu Thr Arg Glu Gly Gly Glu
Leu Pro Glu Ala Asp Glu Trp Thr Gly Gly Asp Ala Pro Ala Phe Ser
Thr Ser Thr Leu Leu Ser Gly Asp Gly Asp Ser Ala Glu Leu Gly
Pro Pro Ala Pro Leu Ile Leu Pro Ser Leu Asp Tyr Gln Tyr Asp
Thr Pro Gly Leu Trp Glu Leu Glu Glu Ala Thr Leu Gly Ala Ser Ser
Cys Pro Cys Val Glu Ser Val Gln Gly Ser Thr Leu Met Pro Val His
Val Glu Arg Glu Ile Arg Leu Leu Gly Arg Arg Leu His Leu Phe Gln
Asp Gly Pro Gly Asp Asn Glu Cys Val Met Glu Leu Glu Gly Leu Glu
Val Val Val Glu Ala Arg Val Glu Cys Glu Pro Pro Pro Asp Thr Gln
Cys His Val Thr Cys Gln Gln His Gln Leu Ser Tyr Glu Ala Leu Gln
Pro Glu Leu Arg Val Gly Leu Phe Leu Arg Arg Ala Gly Arg Leu Arg
Val Asp Ser Ala Glu Gly Leu His Val Leu Tyr Asp Cys Ser Val
Gly His Gly Asp Cys Ser Arg Cys Glu Thr Ala Met Pro Glu Tyr Gln
Cys Val Trp Cys Gly Gly Glu Arg Pro Arg Cys Val Thr Arg Glu Ala
Cys Gly Glu Ala Glu Ala Val Ala Thr Gln Cys Pro Ala Pro Leu Ile
His Ser Val Glu Pro Leu Thr Gly Pro Val Asp Gly Gly Thr Arg Val
Thr Ile Arg Gly Ser Asn Leu Gly Gln His Val Gln Asp Val Leu Gly
Met Val Thr Val Ala Gly Val Pro Cys Ala Val Asp Ala Glu Gly Tyr
Glu Val Ser Ser Ser Leu Val Cys Ile Thr Gly Ala Ser Gly Glu Glu
Val Ala Gly Ala Thr Val Glu Val Pro Gly Arg Gly Arg Gly Val
GLn Gly Leu Gly GLn Leu Ser Asn Leu Leu Asn Ser Lys Leu Phe Leu
Thr Lys Phe Ile His Thr Leu Glu Ser GLn Arg Thr Phe Ser Ala Arg
Asp Arg Ala Tyr Val Ala Ser Leu Thr Val Ala Leu His Gly Lys
Leu Glu Tyr Phe Thr Asp Ile Leu Arg Thr Leu Ser Asp Leu Val
Ala GLn Tyr Val Ala Lys Asn Pro Leu Met Leu Arg Arg Thr Glu
Thr Val GLn Lys Leu Thr Thr Asp Ile Ser Trp Met Ser Ile Cys Leu Tyr
Thr Phe Val Arg Asp Ser Val Gly Glu Pro Leu Tyr Met Leu Phe Arg
Gly Ile Lys His GLn Val Asp Lys GLy Pro Val Asp Ser Val Thr Gly

Lys Ala Lys Tyr Thr Leu Asn Asp Asn Arg Leu Leu Arg Glu Asp Val
Glu Tyr Arg Pro Leu Thr Leu Asn Ala Leu Leu Ala Val Gly Pro Gly
Ala Gly GLn Ala GLn Gly Val Pro Val Lys Val Leu Asp Cys Asp Thr
Ile Ser GLn Ala Lys Glu Lys Met Leu Asp GLn Leu Tyr Lys Gly Val
Pro Leu THR GLn Arg Pro Asp Pro Arg Thr Leu Asp Val Glu TRp Arg
Ser Gly Val Ala Gly His Leu Ile Leu Ser Asp Glu Asp Val THR Ser
Glu Val GLn Gly Leu TRp Arg Arg Leu Asn THR Leu GLn His Tyr Lys
Val Pro Asp GLy Ala THR Val Ala Leu Val Pro Cys Leu THR Lys His
Val Leu Arg GLu Asn GLn Asp Tyr Val Pro Gly Glu Arg THR Pro Met
Leu GLu Asp Val Asp GLy Gly Ile Arg Pro THR His Leu Val Lys
Pro Ser Asp Glu Pro Glu Pro Arg Pro Arg Arg Gly Ser Leu Arg
GLy GLu Arg GLu Arg Ala Lys Ala Ile Pro GLu Ile Tyr Leu THR
Arg Leu Leu Ser Met Lys GLy THR Leu GLn Lys Phe Val Asp Asp
Phe GLn Val Ile Leu Ser THR Ser Arg Pro Val Pro Leu Ala Val Lys
Tyr Phe Phe Asp Leu Leu Asp GLn GLa GLn GLn His Gly Ile Ser
Asp GLn Asp THR Ile His Ile TRp Lys THR Asn Ser Leu Pro Leu Arg
Phe TRp Ile Asp Ile Ile Lys Asn Pro GLn Phe Val Phe Asp Val GLn
Thr Ser Asp Asn Met Asp Ala Val Leu Leu Val Ile Ala GLn THR Phe
Met Asp Ala Cys THR Leu Ala Asp His Lys Leu Gly Arg Asp Ser Pro
Ile Asn Lys Leu Leu Tyr Ala Arg Asp Ile Pro Arg Tyr Lys Arg Met
Val Glu Arg Tyr Tyr Ala Asp Ile Arg Gln Thr Val Pro Ala Ser Asp
Gln Glu Met Asn Ser Val Leu Ala Glu Leu Ser Trp Asn Tyr Ser Gly
Asp Leu Gly Ala Arg Val Ala Leu His Glu Leu Tyr Lys Tyr Ile Asn
Lys Tyr Tyr Asp Gln Ile Ile Thr Ala Leu Glu Gly Thr Ala
Gln Lys Met Glu Leu Gly Tyr Arg Leu Glu Gln Ile Ala Ala Ala Val
Glu Asn Lys Val Thr Asp Leu

<210> 11
<211> 2190
<212> DNA
<213> HOMO SAPIE

<400> 11
atgcctctgct tggcgccacgc tctctccacag gctctcctggg cgggtggtgt cctacccctc 60
cagcccttc cacaacctgc attactacct aatgcaacat atctcgacagc cctggcaagg 120
gacccacacc gagccacctt ctaacctccgg gctacacact tctgcgttcca gctgagcctt 180
gggctgacgc tggagccgcc aagttctgac gttcctgctgctgt tagacagcgag gacagtctgct 240
cacccctgga tcgctgctgta tgtcccccag ccagccacat ccaacacacc gatcagctgt 300
tctctgaatgc cggcgccagg cctctggtgta tgtcggggagc tcagracgagc ctgctgacac 360
cacgagcccc tggcgccagt cagacagctg cagctgctgctgctgt tagacagcgag gacagtctgct 420
cataatggtg ctcgcaaatg tctctccgctc agcagctgggt gctggtgagtc cagaggtcgtg 480
gcaggagcg cccctctcgt tgtgggcgcga gatgcacaccc gcaggggtggt gggggctggc 540
tagctccaccc tctacaacgg ggcggtccttc ccagccagcc cccagccgcac ctcttctctct 600
gaggagcag ccaacgctgc agtcgaggcg cctcctgctgt ccagccacac cttcctgctgt 660
gcttggcagc gttgagcagc cgcctacacct cttgctcctcg ggccgagccc gcaggcctgc 720
tctagagtct tgtggtgctct tgtatctctg tgtggtgctct tgtggtgctct 780
tgctgaggtgt ctcgcaagacgt gcgcgtgctcg ggtctgatcag gctgctgctgc 840

tgagccacg tgcagggagt gcggcgtcaggg gaggagctcg tgtcagctct cttcctgctct 900
ggcccacacc ctcggtgctcg ccagccacatg gcggcgtcaggg gaggagctcg tgtcagctct 960
caccctgctc tccctcctgg agagggatgc ccgctgcctct atgcggctgc agatggtcctg 1020
tacccggcgg aggctgctgc tgtccaggg ccagccacatgt gcggcgtcaggg gaggagctcg tgtcagctct 1080
aatctggact gtgcacacgtg ggcagctgcag acctcggtgct tctctgctgt 1140
cacaggcacc cccgctaccc gcagcgagcc gcgtggtgaag cccacacacat gctggtgagtc 1200
cagggaggtc agtaacagtc tgtggccagtgc acatgatgac gcggcgtcaggg gaggagctcg tgtcagctct 1260
tgtcgatata gccgaacaccg gcggcgtcaggg gaggagctcg tgtcagctct 1320
ccacatctcgc ccaacgacggt gcggcgtcaggg gaggagctcg tgtcagctct 1380
ggggagctgg agctgcgtgc tgtggccagtgc acatgatgac gcggcgtcaggg gaggagctcg tgtcagctct 1440
tcctggtgctc agctgcgtgc tgtggccagtgc acatgatgac gcggcgtcaggg gaggagctcg tgtcagctct 1500
tgtgctgtgc gcggcgtcaggg gaggagctcg tgtcagctct 1560
gagccaggtgc tgtgctgtgc gcggcgtcaggg gaggagctcg tgtcagctct 1620
cctgcccagc cagcggagag gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1680
ccctgcggac cgcggagag gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1740
tgcaggtgtg gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1800
agagaggagc gttgccaggtgc gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1860
aagagagcgg ctcggaggtgc gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1920
tgcacacgc ccaagcggag gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 1980
acccagcagc gcgggaggtg gcggcgtcaggg gaggagctcg tgtcagctct 2040
<210> 12
<211> 729
<212> PRT
<213> HOMO SAPIEN

10 15
<400> 12
Met Pro Ala Leu Gly Pro Ala Leu Leu Gln Ala Leu Trp Ala Gly Trp
Val Leu Thr Leu Gln Pro Leu Pro Pro Thr Ala Phe Thr Pro Asn Gly
Thr Tyr Leu Gln His Leu Ala Arg Asp Pro Thr Ser Gly Thr Leu Tyr
35 40 45
Leu Gly Ala Thr Asn Phe Leu Phe Gln Leu Ser Pro Gly Leu Gln Leu
50 55 60
Glu Ala Thr Val Ser Thr Gly Pro Val Leu Asp Ser Arg Asp Cys Leu
70 75 80
Pro Pro Val Met Pro Gly Cys Pro Ala Asn Pro Ala Glu Gln Pro Thr Asn
85 90 95
Pro Asn Gln Leu Leu Val Ser Pro Gly Ala Leu Val Cys Gly
100 105 110
Ser Val His Gln Gly Val Cys Glu Gln Arg Arg Leu Gly Gln Leu Glu
115 120 125
Gln Leu Leu Leu Arg Pro Gly Arg Pro Gly Asp Thr Glu Tyr Val Ala
135 140
Ala Asn Asp Pro Ala Val Ser Thr Val Gly Leu Val Ala Gln Gly Leu
145 150 155 160
Ala Gly Pro Leu Pro Leu Phe Val Gly Arg Gly Tyr Thr Ser Arg Gly
165 170 175
Val Gly Gly Gly Ile Pro Pro Ile Thr Thr Thr Arg Ala Leu Thr Pro Pro
180 185 190
Asp Pro Gln Ala Ala Phe Ser Tyr Gly Thr Leu Ala Lys Leu Ala Val
195 200 205
Gly Arg Leu Ser Gly Tyr Ser His His Phe Val Ser Ala Phe Ala Arg
210 215 220
Gly Ala Ser Ala Tyr Phe Leu Phe Ala Arg Asp Leu Gln Ala Gln
225 230 235 240
Ser Arg Ala Phe Arg Ala Tyr Val Ser Thr Val Cys Leu Arg Asp Gln
245 250 255
His Tyr Ser Tyr Ser Tyr Val Leu Pro Leu Ala Cys Gly Gly Gly Arg
260 265 270
Tyr Gly Leu Ile Gln Ala Ala Val Ala Thr Ser Arg Glu Val Ala
275 280 285
His Gly Glu Val Leu Phe Ala Ala Phe Ser Ser Ala Ala Pro Pro Thr
290 295 300
Val Gly Arg Pro Ser Ala Ala Gly Ala Ser Gly Ala Ala Ser Ala
305 310 315 320
Leu Cys Ala Phe Pro Leu Asp Gly Val Asp Arg Leu Ala Asn Arg Thr
325 330 335
Arg Asp Ala Cys Tyr Thr Arg Glu Gly Arg Ala Gly Asp Gly Thr Glu
340 345 350
Val Ala Tyr Ile Glu Thr Asp Val Asn Ser Asp Cys Ala Gln Leu Pro
Val Asp Thr Leu Asp Ala Tyr Pro Cys Gly Ser Asp His Thr Pro Ser 355 360 365
Pro Met Ala Ser Arg Val Pro Leu Glu Ala Thr Pro Ile Leu Glu Trp 370 375 380
Pro Gly Ile Gln Leu Thr Ala Val Ala Val Ala Val Thr Met Gly Asp Gly His 385 390 395 400 405 410 415
Thr Ile Ala Phe Leu Gly Asp Ser Gln Gly Gln Leu His Arg Val Tyr 420 425 430 435 440 445
Leu Gly Pro Gly Ser Asp Gly His Pro Tyr Ser Thr Gln Ser Ile Gln 450 455 460
Gln Gly Ser Ala Val Ser Arg Asp Leu Thr Phe Asp Gly Thr Phe Glu 465 470 475 480 485 490 495 500 505 510
His Leu Tyr Val Met Thr Gln Ser Thr Leu Lys Val Pro Val Ala 515 520 525 530 535 540
Ser Cys Ala Gln His Leu Asp Cys Ala Ser Cys Leu Ala His Arg Asp 545 550 555 560 565 570 575
Pro Tyr Cys Gly Trp Cys Val Leu Leu Gly Arg Cys Ser Arg Arg Ser 580 585 590 595 600 605
Glu Cys Ser Arg Gly Gln Gly Pro Glu Gln Trp Leu Trp Ser Phe Gln 610 615 620
Pro Glu Leu Gly Cys Leu Gln Val Ala Ala Met Ser Pro Ala Asn Ile 625 630 635 640 645 650 655
Ser Arg Glu Glu Thr Arg Glu Val Phe Leu Ser Val Pro Asp Leu Pro 660 665 670 675 680 685 690 695 700
Pro Leu Trp Pro Gly Glu Ser Tyr Ser Cys His Phe Gly Glu His Gln 705 710 715 720
Ser Pro Ala Leu Leu Thr Gly Ser Gly Val Met Cys Pro Ser Pro Asp 725