发明名称 一种抗高血压药洛沙坦的制备方法
摘要
一种抗高血压药洛沙坦的制备方法。
1. 一种抗高血压药洛沙坦的制备方法。

该方法的特征为：将式 (I) 化合物

![化学结构式](attachment:image.png)

式 (I)

在磷酸二氢盐的溶液中进行脱三苯甲基的反应得到洛沙坦。如需要，将其制备成钾盐或其它盐的形式。

2. 权利要求 1 所述的方法，其中脱三苯甲基的反应溶剂为磷酸二氢盐水溶液-水溶性有机溶剂的混合溶液；

3. 权利要求 2 所述的方法，其中脱三苯甲基所用的磷酸二氢盐水溶液为磷酸二氢钾水溶液或磷酸二氢钠水溶液，优选磷酸二氢钾水溶液；

4. 权利要求 3 所述的方法，其中脱三苯甲基的反应溶剂磷酸二氢钾水溶液的 pH 值为 0~5，优选 3.0；

5. 权利要求 2 所述的方法，其中脱三苯甲基的反应溶剂中加入的水溶性有机溶剂为乙腈、丙酮、四氢呋喃等水溶性有机溶剂；

6. 权利要求 5 所述的方法，其中脱三苯甲基的反应溶剂中加入的水溶性有机溶剂为乙腈；

7. 权利要求 2 所述的方法，其中所述的脱三苯甲基的磷酸二氢盐水溶液-水溶性有机溶剂的混合溶液中，水溶性有机溶剂与磷酸二氢盐溶液的比例为 0-80% （体积比）；

8. 权利要求 7 所述的方法，其中水溶性有机溶剂与磷酸二氢盐溶液的比例为 40% （体积比）；
9. 权利要求1所述的方法，其中脱三苯甲基的反应温度为40℃~回流温度；

10. 权利要求9所述的方法，其中脱三苯甲基的反应温度为回流温度。
一种抗高血压药洛沙坦的制备方法

发明领域

本发明涉及抗高血压药洛沙坦的简单、环保的制备方法。

发明背景

洛沙坦具有下式：

洛沙坦能够抑制 angiotensin Ⅱ的活性，因此能够有效缓解由血管紧张素导致的高血压。此外，由于洛沙坦能够降低总胆固醇量，因而对于治疗高胆固醇症也有一定的作用。目前洛沙坦的药用形式多为其钾盐。

目前已公开的合成洛沙坦的方法中，大多数都是经过对关键中间体式（I）的化合物进行脱三苯甲基保护基的反应，制备成洛沙坦，然后视需要，制备成钾盐。式（I）的化合物如权利要求中所示。已经公开的式（I）的化合物经脱三苯甲基反应制备洛沙坦的方法主要有如下2种：

方法一：用碱的醇溶液脱三苯甲基制备洛沙坦的方法见于专利WO02/094816和WO01/81336。该方法包括：a）2-丁基-4-氯-5-（羟甲基）-1-[[2`-[（三苯基甲基）-四氮唑-5-]联苯基-4-]甲基]咪唑的醇溶液在如氢氧化钾等碱性物质的存在下加热回流反应；b）浓缩反应液，丙酮洗涤，得到洛沙坦的钾盐。

方法二：用酸脱三苯甲基制备洛沙坦的方法见于专利WO95/17396。该方法包括：a）2-丁基-4-氯-5-（羟甲基）-1-[[2`-[（三苯基甲基）-四氮唑-5-]联苯基-4-]甲基]咪唑在 0.75M 硫酸-乙腈溶液
中，在20-25°C条件下反应；b) 浓碱调节pH值，加入晶种析出洛沙坦。在专利EP0470794中也描述了用酸进行脱三苯甲基保护的方法，该方法包括：a) 2-丁基-4-氯-5-(羟甲基)-1-[[2'-[(-三苯基甲基)-
四氮唑-5]-联苯基-4-]甲基]咪唑在7.5M盐酸二氧六环溶液中室温反应；b) 调节pH值，萃取浓缩得洛沙坦。

在上述制备洛沙坦的两种方法中，用碱的醇溶液脱三苯甲基的方法得到的产物中含杂质较多，不能很好地达到产品的纯度要求，且反应过程中往往需要加入过量的碱，后处理复杂，在工业化生产中不利于环境保护。用酸溶液脱三苯甲基的方法收率较低，只有约50%，而且对反应釜有较强的腐蚀作用，增加了工业化生产成本，且由于后处理较复杂，同样会产生环保问题。因此有必要寻找一条更加经济、高效且有利于环保的制备方法。

发明目的

本发明的目的是提供一种经济、高效且有利于环保的洛沙坦的制备方法。

发明内容

本发明提供的洛沙坦制备方法包括：在磷酸二氢盐水溶液与水溶性有机溶剂的混溶液中，将式（I）所示化合物进行脱三苯甲基保护的反应，得到洛沙坦。

本发明的特征是，由于采用了酸式盐水溶液和水溶性有机溶剂的混合液作为反应媒介，体系pH值较为适中，避免了使用强酸或强碱进行反应，进而避免了后处理过程中采用强酸强碱的中和反应，在工业化生产中有利于环保需要，且反应收率较高，得到的产品含杂质较少，易于纯化精制。

本发明的详细公开：

在磷酸二氢盐水溶液与水溶性有机溶剂的混合液中，将式（I）
所示化合物进行脱三苯甲基保护的反应，得到洛沙坦。其中，磷酸二氢盐水溶液的 pH 值为 0-5，优选为 3.0；磷酸二氢盐可选用磷酸二氢钾、磷酸二氢钠，优选磷酸二氢钾；水溶性有机溶剂可选用乙腈、丙酮、四氢呋喃及醇类等，优选乙腈；水溶性有机溶剂与磷酸二氢盐溶液的比例为 0-80%（体积比），优选 40%（体积比）；反应温度为 40℃～回流温度，优选为回流温度。如有必要，将依照上述方法得到的洛沙坦制备成钾盐等盐的形式。

以下的实施例仅在于详细说明本发明，而非限制本发明。

实施例
实施例 1:

向 500 毫升三口瓶中加入 10.0 克 2-丁基-4-氯-5-（羟甲基）-1-[[2’-[(三苯基甲基)-四氮唑-5-]联苯基-4-]甲基]咪唑、80 毫升 0.05M 磷酸二氢钾水溶液（pH 值为 3.0）和 120 毫升乙腈，加热回流 3.5 小时。冷却至 8-10℃，析出白色沉淀，过滤除去白色沉淀。向滤液中加入二氯甲烷，搅拌，分液，有机相用无水硫酸镁干燥，过滤，浓缩，向残余物中加入乙醚，析出白色固体，过滤，得 11.6 克洛沙坦，收率 91.4%。

实施例 2:

向 500 毫升三口瓶中加入 10.0 克 2-丁基-4-氯-5-（羟甲基）-1-[[2’-[(三苯基甲基)-四氮唑-5-]联苯基-4-]甲基]咪唑、80 毫升 0.05M 磷酸二氢钾水溶液（pH3.0）和 120 毫升丙酮，加热回流反应 3.5 小时。冷却至 8-10℃，析出白色沉淀，过滤除去白色沉淀。向滤液中加入二氯甲烷，搅拌，分液。有机相用无水硫酸镁干燥，过滤，浓缩溶剂，向残余物中加入乙醚得到白色固体，过滤，得 10.6 克洛沙坦，收率 83.5%。

实施例 3:

向 500 毫升三口瓶中加入 10.0 克 2-丁基-4-氯-5-（羟甲基）
-1-[[2'-[(三苯基甲基)-四氨唑-5-]联苯基-4-]甲基]咪唑、100 毫升
0.05M 磷酸二氢钾水溶液 (pH 值为 3.0) 水溶液和 100 毫升乙腈，加热
回流反应 3.5 小时。冷却至 8~10℃，析出白色沉淀，过滤除去白色
沉淀，向滤液中加入二氯甲烷，搅拌，分液，有机相用无水硫酸镁干
燥，过滤，浓缩溶剂，向残余物中加入乙醚，析出白色固体，过滤，
得 11.4 克洛沙坦，收率 89.8%。

实施例 4：

向 500 毫升三口瓶中加入 10.0 克 2-丁基-4-氯-5-（羟甲基）
-1-[[2'-[(三苯基甲基)-四氨唑-5-]联苯基-4-]甲基]咪唑、120 毫升
0.05M 磷酸二氢钾水溶液 (pH 值为 3.0) 和 80 毫升四氢呋喃，加热
回流反应 3.5 小时。冷却至 8~10℃，析出白色沉淀，过滤除去白色沉
淀，向滤液中加入二氯甲烷，搅拌，分液，有机相用无水硫酸镁干燥，
过滤，浓缩，向残余物中加入乙醚，析出白色固体，过滤，得 10.4
克洛沙坦，收率 81.9%。

文献参考例

WO02/094816 实施例 1：

将 100 克 (0.152mol) 2-丁基-4-氯-5-（羟甲基）-1-[[2'-[(三苯
基甲基)-四氨唑-5-]联苯基-4-]甲基]咪唑 (三苯基洛沙坦) 悬浮于 650
毫升甲醇中，加入 10 克 (0.152mol) 85%氢氧化钾水溶液，氮气保护
下加热回流反应近 6 小时。反应液冷至 8~10℃，过滤除去三苯甲醇
副产物，再用 50 毫升冷甲醇洗涤。滤液用 1 克活性炭处理，45~50
℃下浓缩除去大部分甲醇。加入 200 毫升丙酮，减压浓缩至约 120 毫
升。冷却至室温，过滤得白色结晶，丙酮洗涤，减压干燥得到 60 克
洛沙坦的钾盐，收率：86.58%。

WO95/17396 实施例 4：

将 1.0 克 2-丁基-4-氯-5-（羟甲基）-1-[[2'-[(三苯基甲基)-四氨
唑-5-\text{-}联苯基-4-\text{-}甲基\]咪唑加入到 7.5M 氯化氢二氧六环溶液中，室温搅拌反应 1 小时。减压除去易挥发性物质，加入碳酸钠溶液，20 毫升×2 次乙醚洗涤。水层用 2M 盐酸调节 pH 值为 3，二氯甲烷萃取。萃取液用硫酸镁干燥。过滤，浓缩溶剂。向残留白色泡沫中加入乙醚，过滤，得到 0.37 克洛沙坦，m.p.179~180℃，收率：58.2%。