Office de la Proprieté Canadian CA 2784896 C 2017/06/20

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 784 896
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 2010/12/21 (51) Cl.Int./Int.Cl. GO6F 21/50(2013.01)
(87) Date publication PCT/PCT Publication Date: 2011/06/30 | (72) Inventeurs/Inventors:
- . LARSON, BROND, US;
(45) Date de délivrance/lssue Date: 2017/06/20 SHAPIRO RICHARD A.. US
(85) Entree phase nationale/National Entry: 2012/06/138

(73) Proprietaire/Owner:
(86) N demande PCT/PCT Application No.: US 2010/061517 AB INITIO TECHNOLOGY LLC, US

(87) N® publication PCT/PCT Publication No.: 2011/0/9112 (74) Agent: MARKS & CLERK
(30) Priorité/Priority: 2009/12/23 (US12/646,059)

(54) Titre : SECURISATION DE L'EXECUTION DE RESSOURCES DE CALCUL
(54) Title: SECURING EXECUTION OF COMPUTATIONAL RESOURCES

Component

130 {7 Brand
122
120.\/\1/ Component va

124 “"‘/\I/ Signature

‘®_‘<XA,< /Obscuring Key J
v —
<

A
142
_ 130a
Key Container /
130 Brand 130b
I Brand Public Key "\‘_’134
136 \l--'" ‘l Feature Indicator \
132

(57) Abréegée/Abstract:

Controlling access to computational features includes: preparing a computational resource (120) for execution by an execution
system (100) that has been provided a primary descriptor (132) containing an identity value (130) and that has associated a feature
Indicator (136) with the primary descriptor; accessing a secondary descriptor (1338) containing the Iidentity value and
cryptographically assigned to the computational resource (120); and granting the computational resource access to a
computational feature (510, 510a) of the execution system based on the feature indicator (136).

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

woO 2011/079112 A4 | I 1N 641 KO0 OO SO 00 R

CA 02784896 2012-06-18

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

30 June 2011 (30.06.2011)

(10) International Publication Number

WO 2011/079112 A4

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)
(75)

International Patent Classification:
GO6F 21/00 (2006.01)

International Application Number:
PCT/US2010/061517

International Filing Date:
21 December 2010 (21.12.2010)

Filing Language: English
Publication Language: English
Priority Data:

12/646,059 23 December 2009 (23.12.2009) US

Applicant (for all designated States except US). AB INI-
TIO TECHNOLOGY LLC [US/US]J; 201 Spring Street,
Lexington, Massachusetts 02421 (US).

Inventors; and

Inventors/Applicants (for US only): LARSON, Brond
[US/US]; 49 Lantern Lane, Sharon, MA 02067 (US).
SHAPIRO, Richard A. [US/US]; 39 Hodge Road, Ar-
lington, Massachusetts 02474 (US).

(74)

(81)

(84)

Agents: HENNESSEY, Gilbert H. et al; Fish &
Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota
55440-1022 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, S8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
/M, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: SECURING EXECUTION OF COMPUTATIONAL RESOURCES

Component
130\/\|/ Brand ‘
| 122
120_/\(Component ‘ f
124 \,‘/\]/ Signhature ‘
Execution System G
ran
1 46—/®< Token |‘
12
Y Y 130 oo 144J(8<
140 112 110
L
< :
x/\ﬂ I/ Obscuring Key |—
viD
e 3
142
_ 130a
Key Container /
130
Brand _130b
| .
| Brand Public Key |f\~_~ .
136 Feature Indicator ‘

FIG. 1A 1é2

(57) Abstract: Controlling access to computational fea-
tures includes: preparing a computational resource (120)
for execution by an execution system (100) that has been
provided a primary descriptor (132) containing an identity
value (130) and that has associated a feature mdicator
(136) with the primary descriptor; accessing a secondary
descriptor (138) containing the identity value and crypto-

g

| —

raphically assigned to the computational resource (120);

and granting the computational resource access to a com-
putational feature (510, 510a) of the execution system
based on the feature indicator (136).

CA 02784896 2012-06-18

WO 2011/0791.12 A4 MU AON V00 0 O A

SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

— with amended claims (Art. 19(1))
Date of publication of the amended claims: 18 August 2011

10

15

20

29

CA 02784896 2015-02-26

60412-4607

SECURING EXECUTION OF COMPUTATIONAL RESOURCES

BACKGROUND
This description relates to securing the execution of computational resources.

Vendors of computational resources, such as computer software, take risks
when supplying those resources to third parties. A vendor may wish to limit access to certain

elements of the computational resources. In some cases, some parties should be granted access

to certain elements, while others are denied access. In other cases, certain aspects of the
resources should be obscured from all parties. A malicious actor may attempt to circumvent

the restrictions placed on the resources.

SUMMARY

According to an aspect of the present invention, there is provided a method of
controlling access to computational features, the method including: preparing a first
computational resource for execution by an execution system that has been provided primary
descriptors each associated with a respective identity value and each associated with a
respective feature indicator; accessing a secondary descriptor containing a first identity value,
the first identity value associated with a first primary descriptor of the primary descriptors, the
secondary descriptor being cryptographically assigned to the first computational resource;

accepting an instruction from the first computational resource to execute a second

computational resource; cryptographically assigning at least one instance of the secondary

descriptor containing the first identity value to the second computational resource, including
combining the second computational resource with the instance of the secondary descriptor,

and cryptographically signing the combination; granting the second computational resource

access to a computational feature of the execution system based on the feature indicator
assoclated with the instance of the secondary descriptor; and verifying, during an execution of
the second computational resource, that the instance of the secondary descriptor is
cryptographically assigned to the second computational resource, to determine that the second
computational resource 1s authorized to access only the computational features enabled

according to the feature indicator associated with the first computational resource.
-1 -

10

15

20

25

30

CA 02784896 2015-02-26

60412-4607

According to another aspect of the present invention, there is provided a
system for controlling access to computational features, the system including: a development
computer system contigured to prepare a first computational resource for execution including
providing primary descriptors each associated with a respective identity value; and an
execution computer system configured to execute the computational resource, including
associating respective feature indicators with respective primary descriptors; accessing a
secondary descriptor containing a first identity value, the first identity value associated with a
first primary descriptor of the primary descriptors, the secondary descriptor being
cryptographically assigned to the first computational resource; accepting an instruction from
the first computational resource to execute a second computational resource;
cryptographically assigning at least one instance of the secondary descriptor containing the
first 1dentity value to the second computational resource, including combining the second
computational resource with the instance of the secondary descriptor, and cryptographically
signing the combination; granting the second computational resource access to a
computational feature of the execution system based on the feature indicator associated with
the instance of the secondary descriptor; and verifying, during an execution of the second
computational resource, that the instance of the secondary descriptor is cryptographically
assigned to the second computational resource, to determine that the second computational
resource 1s authorized to access only the computational features enabled according to the

feature indicator associated with the first computational resource.

According to another aspect of the present invention, there is provided a
system for controlling access to computational features, the system including: means for
preparing a first computational resource for execution including providing primary descriptors
each associated with a respective identity value; and means for executing the computational
resource, including associating respective feature indicators with respective primary
descriptors; accessing a secondary descriptor containing a first identity value, the first identity
value associated with a first primary descriptor of the primary descriptors, the secondary
descriptor being cryptographically assigned to the first computational resource; accepting an
instruction from the first computational resource to execute a second computational resource;

cryptographically assigning at least one instance of the secondary descriptor containing the

-]1a -

10

15

20

25

30

CA 02784896 2015-02-26

60412-4607

first identity value to the second computational resource, including combining the second
computational resource with the instance of the secondary descriptor, and cryptographically
signing the combination; granting the second computational resource access to a
computational feature of an execution system based on the feature indicator associated with
the instance of the secondary descriptor; and verifying, during an execution of the second
computational resource, that the instance of the secondary descriptor 1s cryptographically
assigned to the second computational resource, to determine that the second computational
resource 1s authorized to access only the computational features enabled according to the

feature indicator associated with the first computational resource.

According to another aspect of the present invention, there is provided a non-
transitory computer-readable medium storing a computer program for controlling access to
computational features, the computer program including instructions for causing a computer
to: prepare a first computational resource for execution by an execution system that has been
provided primary descriptors each associated with a respective 1identity value and each
associated with a respective feature indicator; access a secondary descriptor containing a first
identity value, the first identity value associated with a first primary descriptor of the primary
descriptors, the secondary descriptor being cryptographically assigned to the first
computational resource; accept an instruction from the first computational resource to execute
a second computational resdurce; cryptographically assign at least one instance of the
secondary descriptor containing the first identity value to the second computational resource,
including combining the second computational resource with the instance of the secondary
descriptor, and cryptographically signing the combination; grant the second computational
resource access to a computational feature of the execution system based on the feature
indicator associated with the instance of the secondary descriptor; and verity, during an
execution of the second computational resource, that the instance of the secondary descriptor
is cryptographically assigned to the second computational resource, to determine that the
second computational resource is authorized to access only the computational features enabled

according to the feature indicator associated with the first computational resource.

In one aspect, in general, a method of controlling access to computational

features includes: preparing a computational resource for execution by an execution system
- 1b -

10

15

CA 02784896 2015-02-26

60412-4607

that has been provided a primary descriptor containing an identity value and that has
associated a feature indicator with the primary descriptor; accessing a secondary descriptor
containing the identity value and cryptographically assigned to the computational resource;

and granting the computational resource access to a computational feature of the execution

system based on the feature indicator.

Aspects can include one or more of the following features.

The computational resource is encrypted.

Cryptographically assigning the secondary descriptor to a computational
resource includes combining the resource with the secondary descriptor, and

cryptographically signing the combination.

Cryptographically signing the combination includes encrypting a value derived

from the combination using a private encryption key assigned to the primary descriptor.

The method further includes veritying the secondary descriptor
cryptographically assigned to the computational resource during an execution of the

computational resource.

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

Veritying the secondary descriptor includes decrypting a value derived from the
combination of the computational resource and the secondary descriptor using a public
encryption key assigned to the primary descriptor.

The method further includes generating a first instance of the secondary
descriptor before executing the computational resource; generating a second instance of
the secondary descriptor before executing the computational resource; and comparing the
two 1nstances of the descriptor to determine 1f the computational resource 1s authorized to
execute.

The method further includes encrypting the first instance of the secondary
descriptor.

The method further includes encrypting the second instance of the secondary
descriptor.

The first instance of the secondary descriptor has a first data value in common
with the second 1nstance of the secondary descriptor, and a second data value not 1n
common with the second 1nstance of the secondary descriptor.

The method further includes assigning to the computational resource and the first
instance of the secondary descriptor an inner container having instructions to execute the
computational resource, and assigning to the inner container and the second instance of
the secondary descriptor an outer container representing as data the instructions to
execute the computational resource.

The method further includes cryptographically signing the outer container.

The method further includes accepting an instruction from the computational
resource to access a second computational resource; executing the second computational
resource on a system; cryptographically assigning the secondary descriptor to the second
computational resource; and providing access to a computational feature, based on the
feature indicator, to the second executed computational resource.

The second computational resource continues execution after the first
computational resource has completed execution.

The computational resource 1s executed on a first system and the second

computational resource 1s executed on a second system.

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

Cryptographically assigning the secondary descriptor to the second computational
resource 1ncludes accessing a storage location containing an instance of the secondary
descriptor.

The method further includes accessing a second computational resource,
cryptographically assigned to a second secondary descriptor containing a second 1dentity
value; executing the second computational resource; accessing a second feature indicator
cryptographically assigned to a second primary descriptor containing a second identity
value; providing, to the executed second computational resource, access to a
computational feature based on the second feature indicator.

In another aspect, in general, a system for controlling access to computational
features includes a development computer system configured to prepare a computational
resource for execution including providing a primary descriptor containing an identity
value; and an execution computer system configured to execute the computational
resource. Executing the computational resource includes associating a feature indicator
with the primary descriptor; accessing a secondary descriptor containing the identity
value and cryptographically assigned to the computational resource; and granting the
computational resource access to a computational feature of the execution system based
on the feature indicator.

In another aspect, in general, a system for controlling access to computational
features includes means for preparing a computational resource for execution including
providing a primary descriptor containing an identity value; and means for executing the
computational resource. Executing the computational resource includes associating a
feature indicator with the primary descriptor; accessing a secondary descriptor containing
the 1dentity value and cryptographically assigned to the computational resource; and
granting the computational resource access to a computational feature based on the
feature mdicator.

In another aspect, in general, a computer-readable medium stores a computer
program for controlling access to computational features. The computer program
includes instructions for causing a computer to: prepare a computational resource for
execution by an execution system that has been provided a primary descriptor containing

an 1dentity value and that has associated a feature indicator with the primary descriptor;

10

15

20

235

30

35

CA 02784896 2016-09-16

access a secondary descriptor containing the identity value and cryptographically

assigned to the computational resource; and grant the computational resource access to a
computational feature of the execution system based on the feature indicator.

Aspects can include one or more of the following advantages.

By cryptographically assigning a descriptor to a computational resource, the
assignment cannot be changed without authorization. By providing access to a
computational feature based on a feature indicator assigned to the descriptor, a
computational feature cannot be accessed without authorization.

In one aspect, there is provided a method of controlling access to computational
features, the method including: preparing a first computational resource for execution by
an execution system that has been provided primary descriptors each associated with a
respective identity value and each associated with a respective feature indicator;
accessing a secondary descriptor containing a first identity value, the first identity value
associated with a first primary descriptor of the primary descriptors, the secondary
descriptor being cryptographically assigned to the first computational resource;
accepting an instruction from the first computational resource to execute a second
computational resource; cryptographically assigning an instance of the secondary
descriptor containing the first identity value to the second computational resource,
including combining the second computational resource with the instance of the
secondary descriptor, and cryptographically signing the combination; granting the
second computational resource access to a computational feature of the execution
system based on the feature indicator associated with the first computational resource,
the feature indicator associated with the first computational resource being associated
with the first identity value of the instance of the secondary descriptor; and verifying,
during an execution of the second computational resource, that the instance of the
secondary descriptor is cryptographically assigned to the second computational
resource, to determine that the second computational resource is authorized to access

only the computational features enabled according to the feature indicator associated

with the first computational resource.

In one aspect, there is provided a system for cohtrolling access to computational
features, the system including: a development computer system configured to prepare a
first computational resource for execution including providing primary descriptors each
associated with a respective identity value; and an execution computer system
configured to execute the computational resource, including associating respective
feature indicators with respective primary descriptors; accessing a secondary descriptor

containing a first identity value, the first identity value associated with a first primary
-4 -

10

15

20

235

30

35

CA 02784896 2016-09-16

descriptor of the primary descriptors, the secondary descriptor being cryptographically

assigned to the first computational resource; accepting an instruction from the first
computational resource to execute a second computational resource; cryptographically
assigning an instance of the secondary descriptor containing the first identity value to
the second computational resource, including combining the second computational
resource with the instance of the secondary descriptor, and cryptographically signing the
combination; granting the second computational resource access to a computational
feature of the execution system based on the feature indicator associated with the first
computational resource, the feature indicator associated with the first computational
resource being associated with the first identity value of the instance of the secondary
descriptor; and verifying, during an execution of the second computational resource, that
the instance of the secondary descriptor is cryptographically assigned to the second
computational resource, to determine that the second computational resource is
authorized to access only the computational features enabled according to the feature
indicator associated with the first computational resource.

In one aspect, there is provided a system for controlling access to computational
features, the system including: means for preparing a first computational resource for
execution including providing primary descriptors each associated with a respective
identity value; and means for executing the computational resource, including;:
associating respective feature indicators with respective primary descriptors; accessing a
secondary descriptor containing a first identity value, the first identity value associated
with a first primary descriptor of the primary descriptors, the secondary descriptor being
cryptographically assigned to the first computational resource; accepting an instruction
from the first computational resource to execute a second computational resource;
cryptographically assigning an instance of the secondary descriptor containing the first
identity value to the second computational resource, including combining the second
computational resource with the instance of the secondary descriptor, and
cryptographically signing the combination; granting the second computational resource
access to a computational feature of an execution system based on the feature indicator
associated with the first computational resource, the feature indicator associated with the

first computational resource being associated with the first identity value of the instance
of the secondary descriptor; and verifying, during an execution of the second
computational resource, that the instance of the secondary descriptor 1s

cryptographically assigned to the second computational resource, to determine that the

second computational resource is authorized to access only the computational features

- 43 -

10

15

20

25

30

35

CA 02784896 2016-09-16

enabled according to the feature indicator associated with the first computational

reSource.

In one aspect, there is provided a non-transitory computer-readable medium
storing a computer program for controlling access to computational features, the
computer program including instructions for causing a computer to: prepare a first
computational resource for execution by an execution system that has been provided
primary descriptors each associated with a respective identity value and each associated
with a respective feature indicator; access a secondary descriptor containing a first
identity value, the first identity value associated with a first primary descriptor of the
primary descriptors, the secondary descriptor being cryptographically assigned to the
first computational resource; accept an instruction from the first computational resource
to execute a second computational resource; cryptographically assign an instance of the
secondary descriptor containing the first identity value to the second computational
resource; including combining the second computational resource with the instance of
the secondary descriptor, and cryptographically signing the combination; grant the
second computational resource access to a computational feature of the execution
system based on the feature indicator associated with the first computational resource,
the feature indicator associated with the first computational resource being associated
with the first identity value of the instance of the secondary descriptor; and verify,
during an execution of the second computational resource, that the instance of the
secondary descriptor is cryptographically assigned to the second computational 10
resource, to determine that the second computational resource is authorized to access
only the computational features enabled according to the feature indicator associated

with the first computational resource.

Other features and advantages of some embodiments of the invention will

become apparent from the folloWing description and drawings.

| DESCRIPTION OF DRAWINGS
FIG. 1A is an overview of an execution system and associated components.

FIG. 1B is an overview of an execution system and associated components.
FIG. 2A 1s a block diagram of a dataflow graph.

FIG. 2B 15 a block diagram of an execution sysiem.

FIG. 3A 1s a block diagram of a key container.

FIG. 3B 1s a block diagram of a component container.

FIG. 4A is a portion of the execution system for generating brand tokens,

_4h -

10

CA 02784896 2016-09-16

FI1G. 4B is a portion of the execution system for generating an execution script.
F1G. 4C is a portion of the execution system for generating a script container.
FIG. 5A is a portion of the execution system for accessing a script container.
FIG. SB is a portion of the execution system for accessing an execution script.
FIG. 5C is a portion of the execution system for enabling and disabling features.
FIG. 6A is a portion of the cxecution system for generating another brand token.
FIG, 6B is a portion of the execution system for accessing another brand token.
FIG. 7 is a flow chart for a procedure for assigning a brand.

FIG. 8 is a flow chart for a procedure for accessing a feature indicator.

FIG. 9 is a flow chart for a procedure for éxecuting an executable component.

FIG. 10 is a flow chart for a procedure for providing access to a feature.

-4c -

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

DESCRIPTION

1 Overview

When a computational resource 1s executed on a computational system, the
resource can operate in a certain way, and access certain features of the computational
system. A malicious actor executing the resource may attempt to use security flaws to
overcome any limits imposed upon the execution by the supplier or authority of the
resource. For example, the malicious actor may try to modify the resource itself to
operate 1n a way that uses features of the system that the resource was not originally
designed to use. Thus, the computational system may protect the integrity of an
associated computational resource to ensure that no actor can modify or tamper with the
resource without authorization. In some cases, the authority of the resource may also
wish to prevent any actor from accessing the underlying structure or design of the
resource, even 1f that actor 1s permitted to execute the resource.

Further, the authority of a computational resource may be a different entity than
the authority of a computational system upon which the resource 1s executed. For
example, a system authority that provides system software for the computational system
may enable a resource authority to develop software modules as a resource for use with
the system software. In this case, the system authority may wish to allow the resource
authority access to some features of the system, but not others. Thus, the system may
have a mechanism to provide a computational resource access to a particular set of
available features, and also provide other computational resources access to other
respective sets of available features, where the sets may or may not overlap with each
other.

A complex computational system may be associated with many different
computational resources, all of which may execute 1n the form of multiple instances of
those computational resources and may interact with each other. For example, the system
may execute one computational resource, which 1n turn causes the execution of a second
computational resource. At the same time, a third computational resource may cause the
execution of another instance of the second computational resource. This kind of

complex computational system may have a mechanism to keep track of which instances

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

of a computational resource are associated with which other instances of a computational
resource. Further, the system may use this information to allow access to certain features
based on the access privileges of only one of the computational resources, such as the
first resource executed by an operator or user. In this scenario, all of the executed
instances of a computational resource associated with the first computational resource
will only have access to the features accessible to the first computational resource.

FIG. 1A 1s a block diagram of one exemplary arrangement of a computational
system showing the interrelationship between associated principal elements. An
execution system 100 mcludes an execution module 110, which handles executable
component 120. An executable component 120 includes any discrete computational
constituent that can be executed, such as a computer program, software code, or another
kind of executable element.

An executable component 120 can be stored in a component container 122.
Optionally, the executable component 120 1n the component container 122 may be
encrypted using a symmetric obscuring key 112 available to the execution system 100.
The component container 122 also has other information related to the executable
component 120, mncluding a brand 130 and an e¢lectronic component signature 124. A
brand 130 1s an 1dentity for the component that indicates which features 510, 510a can be
used with this component. A component associated with a brand 130 has access to the
same features 510, 510a as other components that identify with the same brand. The
features 510, 510a may be different elements of the execution system 100. For example,
a feature 510, 510a could correspond to a command, an instruction, a software process, a
hardware device, a data file, some other kind of element, or any combination of these.

The execution system 100 has access to a key container 132 that also contains one
or more brands 130, 130a, 130b. The execution module 110 recerves the key container
132 as input. The relationships of some portions of the system as input to other portions
of the system 18 represented 1n the figure by an arrow, which 1s the convention used
throughout the figures 1n this description. Each brand 130 in the key container 132 1s
assoclated with a brand public key 134. The execution system 100 uses the brand public
key 134 to verify that a brand 130 1n a component container 122 1s valid. Each brand 130

18 also associlated with a feature indicator 136, which describes the features 510, 510a of

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

the execution system 100 that are associated with the brand 130. A component 120
assoclated with a brand 130 can only access features 510, 510a described by the feature
indicator 136.

The execution system 100 executes an executable component 120 by accessing
the component container 122. The execution system 100 has a signature verification
module 140 that determines 1f the component signature 124 1s valid. The signature
verification module 140 uses the brand public key 134 to perform this validity check. If
the executable component 120 1s encrypted, the signature verification module 140 passes
the validated component container 122 to a decryption module 142 to be decrypted, using
the obscuring key 112. The executable component 120 1s then made available to the
execution system 100.

The execution system 100 also has a brand tokenization module 144. The brand
tokenization module 144 prepares a brand token 138 containing the brand 130 associated
with the component 120. The brand token 138 1s used to maintain the brand 130
association with the component 120 while the component 1s executing.

When the execution module 110 executes the component 120, the brand
tokenization module 144 securely attaches the brand token 138 to the component 120.
During execution, the component 120 can only access features of the execution system
100 described by the feature indicator 136 associated with the brand 130 in the brand
token 138.

FIG. 1B 1s a block diagram of another exemplary arrangement of the
computational system. In FIG. 1B, the brand token 13¥ 1s also used to associate a brand
130 with other executable components 120a. If an executable component 120 causes the
execution of an mstance of another executable component 120a, an execution context
module 146 will allow the brand token 138 to be attached to that other executable
component 120a. Thus, the other executable component 120a will only be able to access
features described by the feature indicator 136 associated with the brand 130 1n the brand
token 138, even if the other executable component 120a did not have a brand 130 1n 1ts
component container 122a. The brand token 138 can also be attached to a non-
executable component, such as a data component 121, using the execution context

module 146a. The execution context module 1s shown as multiple instances 146, 146a,

W

10

15

20

30

CA 02784896 2016-09-16

1460 in the figure, but depending on the implementation, only one instance may be
necessary.

One of the executable components 120, 120a may also access an executable
component 120b on another execution system 100a, such as a secondary or remote
system accessed over a network 104. The other execution system 100a also has an
execution module 110a capable of accessing the obscuring key 112, and has access to a

key container 132a containing the brand 130, The execution context module 146b can

‘allow the brand token 138 to be attached to the executable component 120b handled by

the other execution system 100a, Thus, the executable component 120b will operate
under the brand 130, even if the component container 122b does not contain the brand
130. The execution system 100 may interact with the other execution system 100a
according to a standard nctwork protocol, a standard remote procedure call protocol, a
custom-tailorcd protocol, another kind of protocol, or any combination of these.

In some implementations, an executable component 120 is implemented using a
“dataflow graph” that is represented by a directed graph, with vertices in the graph
representing components (either data components 121 or executable components 120),
and the directed links or “edges” in the graph representing flows of data between
components. A graph is a modular entity. Each graph can be made up of one or more
other graphs, and a particular graph can be a component in a larger graph. A graphical
development environment (GDE) provides a user interface for specifying executable
graphs and defining parameters for the graph components. A system that implements

such graph-based computations is described in U.S. Patent 5,966,072, EXECUTING
COMPUTATIONS EXPRESSED AS GRAPHS.

Referring to FIG. 2A, an example of a dataflow graph 201 includes an input data
set component 202 providing a collection of data to be processed by the executable
components 204a — 204j of the dataflow graph 201. For example, the data set component
202 can include data records associated with a database system or transactions associated
with a transaction processing system. Each executable component 204a — 204 s
associated with a portion of the computation defined by the overall dataflow graph 201.

Work clements (e.g., individual data records from the data collection) enter one or more

10

15

20

25

30

CA 02784896 2016-09-16

input ports of a component, and output work elements (which are in some cases the input
work elements, or processed versions of the input work elements) typically leave one or
more output ports of the component. In graph 201, output work elements from
components 204e, 204g, and 204 are stored in output data set components 202a - 202c.

FIG. 2B shows an exemplary exccution system 100 coupled to a storage system
210 and configured to process data received from a data source 212 to be processed using
one or more secured programs such as dataflow graphs. The data source 212 may include
onc or more sources of data such as storage devices or connections to online data streams,
cach of which may store data in any of a variety of storage formats (e.g., database tables,
spreadsheet files, flat text files, or a native format used by a mainframe). The execution
system 100 includes a security layer 214 that provides security using the descriptors (e.g.,
kcy containers) described herein stored in the storage system 210, and an operating '

system 216. In some implementations, the security layer 214 is part of the operating

system 216.

The execution system 100 receives data from the data source 212 for processing.
Storage devices providing the data source 212 may be local to the execution system 100,
for example, being stored on a storage medium connected to a computer running the
operating system 216 (e.g., hard drive 218), or may be remote to the execution system
100, for example, being hostcd on a remote system (e.g., mainframe 220) in

communication with a computer running the operating system 216, over a remote

connection.

The data storage system 210 may receive a secured program 232 that has been
developed by a developer 234 in a development system 230. The developer 234 is able
to develop secured programs for execution in the execution system 100, with the
development system 230 configured to cryptographically assign descriptors as described
herein. The development system 230 is, in some implementations, a system for
developing applications as dataflow graphs (e.g., using the GDE described above). In
addition to features described herein, other features of such a system are described in

more detail, for example, in U.S. Publication No. 2007/0011668, entitled “Managing
Parameters for Graph-Based Applications.”

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

The development system 230 and the execution system 100 may cach be hosted
on one¢ or more general-purpose computer systems under the control of a suitable
operating system, such as the UNIX operating system, and the storage system 210 can
include storage media integrated with or in communication with the computer system.
For example, the computer systems can include a multiple-node parallel computing
environment including a configuration of computer systems using multiple central
processing units (CPUs), either local (e.g., multiprocessor systems such as SMP
computers), or locally distributed (e.g., multiple processors coupled as clusters or MPPs),
or remotely, or remotely distributed (e.g., multiple processors coupled via a local arca

network (LAN) and/or wide-area network (WAN)), or any combination thereof.

2 Containers

As shown 1n FIG. 3A, the key container 132 can contain multiple brands 130,
130a, 130b. One executable component 120 may operate according to one brand 130a,
and another may operate according to another brand 130b. The execution system 100
handles an executable component 120 1f the brand 130 associated with the component 1s
available 1n the key container 132. In some examples, the key container 132 could be a
data file, a memory location, or another kind of container.

Each brand 130 has a corresponding public key 134, which allows the signature
verification module 140 to determine 1f the association between an executable component
120 and a brand 130 1s valid. Each brand 130 also has an expiration indicator 135, which
allows a brand authority to set a time period in which a brand 130 1s valid. Further, each
brand 130 has a feature indicator 136, which describes the features 510 of the execution
system 100 available to an executable component 120 operating according to this brand
130.

As shown 1n FIG. 3B, the component container 122 has elements relating to a
component 300. The component 300 may be an executable component 120, for example.
In some examples, other types of components 300 can be used, such as a data component
121 having information used by an executable component 120, but not itself executable.
In some examples, the component container 122 could be a data file, a memory location,

or another kind of container.

- 10-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

The component 300 1s optionally encrypted to obscure the structure or contents of
the component from unauthorized viewing or analysis. An encryption module 342 uses
the obscuring key 112 to encrypt the component 300. The encryption module 342 may
be based on a standard encryption protocol, such as the Data Encryption Standard (DES),
the Advanced Encryption Standard (AES), another standard encryption protocol, or a
combination of these. The encryption module 342 may use a custom-tailored encryption
protocol, alone or 1n concert with a standard encryption protocol.

The component container 122 contains a brand 130 associated with the
component 300. The brand 130 1s used to assign a set of features to the component 300.

The component container 122 has the component signature 124, used to check the
validity of the contents of the component container 122. A signature generation module
340 creates the component signature 124 by processing the component 300 and the brand
130 according to an ¢lectronic signature protocol. The protocol may be a standard
cryptographic protocol used for electronic signatures, such as RSA, Digital Signature
Algorithm (DSA), an elliptic curve protocol, or another kind of cryptographic protocol.
The signature generation module 340 may use a custom-tailored electronic signature
protocol, alone or in concert with a standard encryption protocol.

The component signature 124 1s generated using a brand private key 334. The
brand private key 334 1s available to an authority of the component container 122, and 18
not available at an execution system 100 handling the component 300. The execution
system 100 can only verify that the brand 130 and the component 300 have not been
altered since the component signature 124 was generated. Thus, the component signature
124 1s a cryptographically secure means of associating the brand 130 with the component
300, as well as ensuring the integrity of the component 300.

Further, the component container 122 has a container number 302, which 1s a
unique 1dentifier for this component container 122. It also has a container format 304,
which indicates the particular arrangement of the data that makes up this component
container 122. The component container 122 also has a component type 306, which
indicates the particular arrangement of the data that makes up the component 300

contained within, including whether or not the component 300 has been encrypted.

-11-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

3 Brand Tokenization

As described above, the execution system 100 attaches a brand token 138 to
executable components 120, 120a, 120b to associate a brand 130 with each component
prior to execution. The execution system 100 takes these tokenization steps 1n advance
of cach execution to make this association secure, so that 1f a malicious actor attempts to
intercept the execution process to alter or replace the brand 130, this malicious action can
be detected.

As shown 1n FIG. 4A, the execution system 100 uses multiple instances of the
brand token 138a, 138b. Each instance 1s generated from the component container of a
component, which 1n this example 1s the component container 122 of the executable
component 120.

The execution system 100 verifies the component signature 124 using the
signature verification module 140. The signature verification module 140 uses the brand
public key 134 to determine 1f the executable component 120 or the brand 130 have been
modified or otherwise tampered with at some time after the component container 122 was
created. If either the executable component 120 or brand 130 has been tampered with,
the signature verification module 140 will detect the discrepancy and reject the
component container 122.

The brand tokenization module 144, 144a uses the contents of the component
container 122 to generate the brand token instances 138a, 138b. Two instances of the
brand tokenization module are shown, but in some 1mplementations, only one instance
may be necessary. The brand tokenization module 144, 144a places the brand 130 from
the component container into each instance of the brand token 138a, 138b. The brand
tokenization module 144 also uses the component type 306 to generate a flag 406
indicating if the executable component 120 1s encrypted.

Further, a random number generator 410 creates a different salt 412 for each
instance of the brand token 138a, 138b. Thus, each instance of the brand token 138a,
138b will contain a unique random value different from the other instances.

As shown 1n FIG. 4B, the brand tokenization module 144 generates an execution
script 420. The execution script 420 contains instructions for executing an instance of the

executable component 120, and can take any of several forms. The execution script 420

- 12-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

may be a set of interpreted or compiled commands indicating to the execution module
110 specific information needed to properly handle the executable component 120.

The executable component 120 1s associated with the execution script 420. For
example, the execution script 420 may then contain the mstructions making up the
executable component 120 itself, or it may instead have a pointer or reference to the
executable component 120. One of the instructions 1n the execution script 420 may
access this pointer or reference.

If the executable component 120 was encrypted before being placed mn the
component container 122, the decryption module 142 handles decrypting the executable
component 120 using the obscuring key 112.

One of the instances of the brand token 138a 15 used with the execution script 420.
The brand tokenization module 144 completes the brand token instance 138a by
generating an execution number 408 and placing 1t in the brand token instance 138a. The
same execution number 408 applies to all instances of the brand token 138 used 1n the
tokenization process for this execution of the executable component 120. The brand
tokenization module 144 keeps track of the execution number 408 1t assigns to this
instance of the brand token 138a, and will use the same execution number 408 for the
other mstances.

Once the brand token 1nstance 138a 1s complete, the encryption module 342
encrypts the brand token mstance using the obscuring key 112. The brand tokenization
module 144 then places the encrypted brand token 438a 1n the execution script 420. As
with the executable component 120, the execution script 420 may then contain the data
making up the encrypted brand token 438a itself, or 1t may instead have a pointer or
reference to the encrypted brand token 438a.

As shown 1n FIG. 4C, the brand tokenization module 144 gencrates a script
container 430 and places the execution script 420 inside. In some implementations, the
script container 430 18 a data file or a data structure. The brand tokenization module 144
also completes the second instance of the brand token 138b by adding the same execution
number 408 used for the first instance of the brand token 138a. The second instance of
the brand token 138b 1s encrypted with the encryption module 342 and the encrypted
brand token 438b 1s placed inside the script container 430.

- 13-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

The tokenization signature generation module 450 generates a script container
signature 424 based on the script container 430. The tokenization signature generation
module 450 uses a tokenizer private key 452 available at the execution system 100. The
script container signature 424 provides a mechanism of ensuring the validity of the script
container 430 when the component execution commences.

The tokenization signature generation module 450 operates 1n a similar fashion to
other signature generation modules described elsewhere and creates the script container
signature 424 by processing the script container 430 according to an electronic signature
protocol. The protocol may be a standard cryptographic protocol used for electronic
signatures, such as RSA, Digital Signature Algorithm (DSA), an elliptic curve protocol,
or another kind of cryptographic protocol. The tokenization signature generation module
450 may use a custom-tailored electronic signature protocol, alone or in concert with a
standard encryption protocol. After the script container 430 1s established, the executable

component 120 1s prepared for secure execution.

4 Branded Execution

As shown 1n FIG. 5A, the execution module 110 recerves a script container 430
containing an executable component 120. The execution module 110 carries out the steps
needed to verity the contents of the script container 430, which has been structured to
allow for the secure execution of the executable component 120.

The execution module 110 verifies the script container signature 424 using the
container signature verification module 550. The container signature verification module
550 uses the container public key 454 to determine if the script container 430 has been
modified or otherwise tampered with at some time after the script container 430 was
created. The container signature verification module 550 will detect any discrepancy and
reject the script container 430. The execution module 110 also extracts the encrypted
brand token 438b from the verified script container 430 and applies the decryption
module 142, using the obscuring key 112.

As shown 1n FIG. 5B, the execution module 110 acquires the decrypted instance
of the brand token 138b, which was previously decrypted by the decryption module 142.

The execution module 110 also carries out the instructions contained 1n the execution

_ 14-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

script 420, which was previously acquired from the verified script container 430. The
execution script 420 contains the executable component 120, as well as another encrypted
brand token 438a. The execution module 110 applies the decryption module 142 to this
encrypted brand token 438a.

As shown 1n FIG. 5C, a token verification module 148 compares the contents of
the first instance of the brand token 138a, extracted from the execution script 420, and the
second instance of the brand token 138b, extracted from the script container 430. Two
instances of the brand token 138a, 138b as created by the brand tokenization module 144
will have 1dentical contents except for the random salts 412a, 412b. If the salts 412a,
412b are different, but the contents are otherwise the same, including the brand 130 and
execution number 408, then the token verification module 148 will provide the verified
brand 130 to the execution module 110.

Because one instance of the brand token 138a arrived at the execution module 110
with the execution script 420, and another 1nstance of the brand token 138b arrived with
the script container 430, the two 1nstances of the brand token 138a, 138b can be used to
verify the authenticity of the executable component 120 and its association with a brand
130. Any particular execution script 420 cannot be re-used by placing it inside a new
script container 430, because the new script container 430 will not have a brand token
138 with a matching execution number 408. The brand token instance 138a from the
execution script 420 cannot be used with the script container 430, because the brand
token 1nstances from the execution script 420 and the script container 430 will not have a
different random salt 412a, 412b, as expected by the execution module 110. Further, a
new brand token instance for the script container 430 cannot be generated from the brand
token 1nstance 138a inside the execution script 420 by an unauthorized actor, because the
brand token 1nstance 138a 1s encrypted with the obscuring key 112 as encrypted brand
token 438a.

When the execution module 110 1s notified by the token verification module 148
that the brand token 1nstances 138a, 138b represent a valid brand 130, the execution
module 110 accesses the key container 132 to access the expiration indicator 135 and
feature indicator 136 associated with the brand 130 1n the key container corresponding to

the brand 130 1n the brand token instances 138a, 138b. The execution module 110 uses

- 15-

10

15

20

25

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

the feature indication 136 to enable some features 510a, 510b, 510c, 510d 1n the teature
set 500 available to an executable component, and disable other features 512a, 512b in
the feature set 500.

The execution module 110 accesses the executable component 120 from the

execution script 420, and allows 1t to execute using only the features 510 enabled

according to the feature indicator 120 of the brand 130.

5 Maintaining Branded Execution Context

An executable component 120 associated with a brand 130 may initiate the
execution of other executable components 120a. These other executable components
120a may not be directly associated with a brand 130 1n their container files 122a, for
example, but are instead associated with the brand 130 during execution. The other
executable components 120a will only access features 510 enabled according to the
feature indicator 136 of the brand 130 associated with the initial executable component
120, even 1f the other executable components 120a would have accessed other features
512a, 512b 1f their execution was 1nitiated in some other context. The 1nitial executable
component 120 1s thus limited from accessing disabled features 512a, 512b using other
executable components 120a.

Further, the other executable components 120a, 120b may initiate the execution of
still other executable components, such as executable component 120b, even after the
initial executable component 120 has finished execution. The execution system 100
keeps track of the brand 130 associated with the initial executable component 120, so that
the features 510 accessible to all of these components 120, 120a, 120b will be determined
according to the feature indicator 136 of that brand 130.

In some implementations, the execution system 100 processes multiple executable
components 120 and associates a brand 130 with those executable components 120. For
example, the execution system 100 may retain information pertaining to one executable
component 120 after 1t has completed execution with the addition of a mechanism to
retain this information for other executable components 120a. Further, the mechanism

does not allow other components, or malicious actors, to access or alter the retained

- 16-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

information, nor does the mechanism have additional elements that add unnecessary
overhead or act as points of insecurity.

As shown 1n FIG. 6A, the execution system 100 has an execution context module
146 that accepts information from the token verification module 148 about the contents
of instances of a brand token 138a, 138b used to verify the brand 130 of an executable
component 120. The execution context module 146 generates a transient container 622
and an environment reference 610 that points to the transient container 622. The
environment reference 610 exists 1n the context of the execution environment 605 of the
executable component 130. In some examples, the execution environment 605 contains
memory locations, variables, data files, or other kinds of information pertinent to the
execution of an executable component 120, or could contain any combination of these
kinds of information.

The transient container 622 1s not available to the execution system 100 at large.
Instead, the transient container 622 1s only available by accessing the environment
reference 610. In turn, the environment reference 610 1s only available 1n the execution
environment 6035 of the executable component 130. If the executable component 120
initiates the execution of another executable component 120a, the other executable
component 120a 1s granted access to the environment reference 610, because 1t operates
in same execution environment 605 as the executable component 120 responsible for
initiating its execution. In some examples, the transient container 622 may be a data file
not accessible using the normal file system of the execution system 100 without using the
environment reference 610. The transient contamer 622 could be available to an
executable component 120b handled by another execution system 100a.

The execution context module 146 uses the information acquired from the token
verification module 148 to generate a new 1nstance of the brand token 138¢. This
instance of the brand token 138c has the same brand 130, flag 406, and execution number
408 as do the other instances of the brand token 138a, 138b, and also has a new random
salt 412¢ acquired from the random number generator 410. The execution context

module 146 places the new mstance of the brand token 138c¢ inside the transient container

622.

- 17-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

FIG. 6B shows a component container 122a that has an executable component
120a, but does not have a brand 130. The execution module 110 prepares the executable
component 120a by accessing the execution environment 605 of the executable
component. If this execution of this executable component 120a was 1nitiated by another
executable component 120, then this executable component 120a will be operating within
the same execution environment 605 as the other executable component 120, and so an
environment reference 610 to a transient container 622 will be available. The execution
module 110 accesses the brand token instance 138c 1nside the transient container 622 and
acquires the brand 130 1n the brand token. The brand token instance 138c¢ can also be
compared to the other instances of the same brand token 138a, 138b to check 1its validity.
For example, 1f a malicious actor has copied one of the other instances of the brand token
138a, 138b 1nto the transient container 622, the instance of the brand token 138c in the
transient container 622 will have the same random salt 412a, 412b as 1n the other
instances, and can thus be 1dentified as invalid.

The brand tokenization module 144, 144a activates and acquires the brand 130
from the execution module 110. The brand tokenization module 1s shown as two
instances 144, 144a 1n the figure, but depending on the implementation, only one instance
may be necessary. The brand tokenization module 144, 144a then constructs new
instances of a brand token 138d, 138¢, containing the brand 130, the flag 406a
determined from the component type 306 in the component container 122a of the new
executable component 120a, and new salts 412d, 412¢ acquired from the random number
generator 410. These new mstances of the brand token 138d, 138¢ are then used by the
brand tokenization module 144, 144a to prepare the executable component 120 as

described above with respect to FIGS. 4A —4C.

6 Procedures

FIG. 7 shows a flow chart for an exemplary procedure 700 used to
cryptographically assign a brand 130 to an executable component 120. The procedure
generates 702 a digital signature for a component container 122 based on the executable
component 120 and the brand 130. The procedure verifies 704 the digital signature and
assigns 706 the brand 130 to multiple instances of a brand token 138a, 138b. The

- |1 8-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

procedure encrypts 708 one mstance of the brand token 138a and attaches 710 1t to an
execution script 420. The procedure encrypts 712 the other instance of the brand token
138b and attaches 714 the encrypted brand token, along with the execution script 420, to
a script container 430. The procedure generates 716 a digital signature for the script
container 430 based on the script contamer 430.

FIG. 8 shows a tlow chart for an exemplary procedure 800 used to access the
feature indicator 136 assigned to the brand 130. The procedure verifies 802 a digital
signature and accesses a script container 430. The procedure decrypts 804 an instance of
a brand token 138b and accesses 806 an execution script 420 1n the script container 430.
The procedure decrypts 808 another instance of the brand token 138a and accesses 810 an
executable component 120 1n the execution script 420. The procedure verifies 812 the
two 1nstances of the brand token 138a, 138b. Using the brand 130 1n the brand token
instances 138a, 138b, the procedure acquires 814 the feature indicator 136 assigned to the
brand 130 1n a key container 132.

FIG. 9 shows a flow chart for an exemplary procedure 900 used to execute an
executable component 120 on an execution system 100. The procedure generates 902 a
transient container 622 and generates 904 an environment reference pointing to the
transient container 622. The procedure generates 906 an instance of a brand token 138¢
containing the brand 130 associated with the executable component 120. The procedure
assigns 908 the instance of the brand token 138c to the transient container 622. The
procedure removes 910 any other reference to the transient container 622 other than the
environment reference 622. The procedure executes 912 the executable component 120
and places the environment reference 610 1n the execution environment 605 of the
executable component 120.

FIG. 10 shows a show chart for an exemplary procedure 1000 used to provide
access to a feature 510 of an execution system, based on a feature indicator 136, to an
executable component 120. The procedure accesses 1002 an acquired feature indicator
136 associated with a brand 130. The procedure 1dentifies 1004 a feature 510 described
by the feature indicator 136 and the corresponding feature 510 1n a feature set 500
available to an execution system 100. The procedure enables 1006 the feature 510 for

access by the executable component 120. The procedure associates 1008 the brand 130

- 19-

10

15

20

25

30

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

with other executable components 120a which have execution initiated by the executable

component 120.

7 Implementations

The approach for controlling access to computational features described above
can be implemented using software for execution on a computer. For instance, the
software forms procedures in one or more computer programs that execute on one or
more programmed or programmable computer systems (which may be of various
architectures such as distributed, client/server, or grid) each including at least one
processor, at least one data storage system (including volatile and non-volatile memory
and/or storage clements), at least one mnput device or port, and at Ieast one output device
or port. The software may form one or more modules of a larger program, for example,
that provides other services related to the design and configuration of dataflow graphs.
The nodes and elements of the graph can be implemented as data structures stored 1n a
computer readable medium or other organized data conforming to a data model stored 1n
a data repository.

The software may be provided on a storage medium, such as a CD-ROM,
readable by a general or special purpose programmable computer or delivered (encoded
in a propagated signal) over a communication medium of a network to the computer
where 1t 18 executed. All of the functions may be performed on a special purpose
computer, or using special-purpose hardware, such as coprocessors. The software may
be implemented 1n a distributed manner in which different parts of the computation
specified by the software are performed by different computers. Each such computer
program 1s preferably stored on or downloaded to a storage media or device (e.g., solid
state memory or media, or magnetic or optical media) readable by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage media or device 1s read by the computer system to perform the procedures
described herein. The inventive system may also be considered to be implemented as a
computer-readable storage medium, configured with a computer program, where the
storage medium so configured causes a computer system to operate 1n a specific and

predefined manner to perform the functions described herein.

- 2()-

CA 02784896 2015-02-26

60412-4607

A number of embodiments of the invention have been described. Nevertheless, it
will be understood that various modifications may be made without departing ‘fr‘om the
scope of the invcnﬁon. For example, some of the steps described above may be '
order independent, and thus can be performed in an order different from that described.
5 It is to be understood that the foregoing description is 'intended to illustrate and

not to limit the scope of the invention, which is defined by the scope of the appended
claims. For example, a number of the function steps described above may be performed
in a different order without substantially affecting overall processing. Other

embodiments are within the scope of the following claims.

-21-

CA 02784896 2016-09-16

The embodiments of the invention in which an exclusive property or privilege 1s

claimed are defined as follows:

1. A method of controlling access to computational features, the method including:
preparing a first computational resource for execution by an execution system
that has been provided primary descriptors each associated with a respective 1dentity

value and each associated with a respective feature indicator;

accessing a secondary descriptor containing a first identity value, the first
identity value associated with a first primary descriptor of the primary descriptors, the

secondary descriptor being cryptographically assigned to the first computational

resource;

accepting an instruction from the first computational resource to execute a

second computational resource;

cryptographically assigning an instance of the secondary descriptor containing
the first identity value to the second computational resource, including combining the
second computational resource with the instance of the secondary descriptor, and
cryptographically signing the combination;
' eranting the second computational resource access to a computational feature of

the execution system based on the feature indicator associated with the first
computational resource, the feature indicator associated with the first computational

resource being associated with the first identity value of the instance of the secondary

descriptor; and

verifying, during an execution of the second computational resource, that the

instance of the secondary descriptor is cryptographically assigned to the second
computational resource, to determine that the second computational resource 1s

authorized to access only the computational features enabled according to the feature

indicator associated with the first computational resource.

2. The method of claim 1, wherein the computational resource is encrypted.

_79

CA 02784896 2016-09-16

3. The method of claim 1 or 2, wherein cryptographically assigning the secondary

descriptor to the first computational resource includes combining the first computational

resource with the secondary descriptor, and cryptographically signing the combination.

4. The method of claim 3, wherein cryptographically signing the combination 5

includes encrypting a value derived from the combination using a private encryption key

assigned to the first primary descriptor.

5. The method of any one of claims 1 to 3, wherein verifying the instance of the

secondary descriptor includes decrypting a value derived from the combination of the
second computational resource and the instance of the secondary descriptor using a

public encryption key assigned to the first primary descriptor.

6. The method of any one of claims 1 to 3, further including:

generating a first instance of the secondary descriptor before executing the first

computational resource;

generating a second instance of the secondary descriptor before executing the

first computational resource; and

comparing the two instances of the descriptor to determine 1f the first

computational resource is authorized to execute.

7. The method of claim 6, further including encrypting the first instance of the

secondary descriptor.

3. The method of claim 6 or 7, further including encrypting the second instance of

the secondary descriptor.

9. The method of any one of claims 6 to 8, wherein the first instance of the
secondary descriptor has a first data value in common with the second instance of the

secondary descriptor, and a second data value not in common with the second instance

of the secondary descriptor.

223 -

CA 02784896 2016-09-16

10. The method of any one of claims 6 to 9, further including;:

assigning to the first computational resource and the first instance of the
secondary descriptor a first container having instructions to execute the first

computational resource; and

assigning to the first container and the second instance of the secondary

descriptor a second container representing as data the instructions to execute the first

computational resource.

11. The method of claim 10, further including cryptographically signing the second

container.

12. The method of claim 1, further including:

accepting an instruction from the first computational resource to access the

second computational resource;
executing the second computational resource on a system;

cryptographically assigning the secondary descriptor to the second computational

resource; and

providing access to a computational feature, based on the feature indicator, to the

second executed computational resource.

13. The method of claim 12, wherein the second computational resource continues

execution after the first computational resource has completed execution.

14. The method of claim 12 or 13, wherein the first computational resource 1s

executed on a first system and the second computational resource 1s executed on a.

second system.

15. The method of any one of claims 12 to 14, wherein cryptographically assigning
the secondary descriptor to the second computational resource includes accessing a

storage location containing an instance of the secondary descriptor.

16. The method of claim 1, further including:

Y

CA 02784896 2016-09-16

accessing the second computational resource, cryptographically assigned to a

second secondary descriptor containing a second identity value; executing the second

computational resource;

accessing a second feature indicator cryptographically assigned to a second |

primary descriptor containing a second 1dentity value; and

providing, to the executed second computational resource, access to a

computational feature based on the second feature indicator.

17. The method of claim 1, wherein the second computational resource is authorized

to access fewer computational features than it would otherwise be authorized to access if
the execution of the second computational resource was not initiated by the first

- computational resource.

18. A system for controlling access to computational features, the system including:
a development computer system configured to prepare a first computational

resource for execution including providing primary descriptors each associated with a

respective identity value; and

an execution computer system configured to execute the computational resource,

including

associating respective feature indicators with respective primary

descriptors;

accessing a secondary descriptor containing a first identity value, the first
identity value associated with a first primary descriptor of the primary
descriptors, the secondary descriptor being cryptographically assigned to the first

computational resource;

accepting an instruction from the first computational resource to execute

a second computational resource;

cryptographically assigning an instance of the secondary descriptor
containing the first identity value to the second computational resource, including

combining the second computational resource with the instance of the secondary

descriptor, and cryptographically signing the combination;

295 _

CA 02784896 2016-09-16

granting the second computational resource access to a computational

feature of the execution system based on the feature indicator associated with the
first computational resource, the feature indicator associated with the first

computational resource being associated with the first identity value of the

instance of the secondary descriptor; and

verifying, during an execution of the second computational resource, that
the instance of the secondary descriptor is cryptographically assigned to the
second computational resource, to determine that the second computational
resource is authorized to access only the computational features enabled

according to the feature indicator associated with the first computational

resource.
19. The system of claim 18, wherein the computational resource 1s encrypted.
20. The system of claim 18 or 19, wherein cryptographically assigning the secondary

descriptor to the first computational resource includes combining the first computational

resource with the secondary descriptor, and cryptographically signing the combination.

21. The system of claim 18 or 19, wherein cryptographically signing the combination

includes encrypting a value derived from the combination using a private encryption key

assigned to the first primary descriptor.

22. The system of any one of claims 18 to 21, wherein verifying the instance of the

secondary descriptor includes decrypting a value derived from the combination of the
second 25 computational resource and the instance of the secondary descriptor using a

public encryption key assigned to the first primary descriptor.

23. The system of any one of claims 18 to 21, the execution of the first

computational resource further including:

generating a first instance of the secondary descriptor before executing the first

computational resource;

226 -

CA 02784896 2016-09-16

generating a second instance of the secondary descriptor before executing the

first computational resource; and

comparing the two instances of the descriptor to determine if the first

computational resource is authorized to execute.

24. The system of any one of claims 18 to 23, wherein the second computational

resource continues execution after the first computational resource has completed

execution.

25. The system of any one of claims 18 to 24, wherein the second computational
resource 1s authorized to access fewer computational features than it would otherwise be

authorized to access if the execution of the second computational resource was not

initiated by the first computational resource.

26. A system for controlling access to computational features, the system including:
means for preparing a first computational resource for execution including
providing primary descriptors each associated with a respective 1dentity value; and
means for executing the computational resource, including:
associating respective feature indicators with respective primary

descriptors;

accessing a secondary descriptor containing a first identity value, the first
identity value associated with a first primary descriptor of the primary
descriptors, the secondary descriptor being cryptographically assigned to the first

computational resource;

accepting an instruction from the first computational resource to execute
a second computational resource;

cryptographically assigning an instance of the secondary descriptor
containing the first identity value to the second computational resource, including
combining the second computational resource with the instance of the secondary
descriptor, and cryptographically signing the combination;

granting the second computational resource access to a computational

feature of an execution system based on the feature indicator associated with the

_27 -

CA 02784896 2016-09-16

first computational resource, the feature indicator associated with the first

computational resource being associated with the first identity value of the

instance of the secondary descriptor; and

verifying, during an execution of the second computational resource, that
the instance of the secondary descriptor is cryptographically assigned to the
second computational resource, to determine that the second computational
resource 1s authorized to access only the computational features enabled

according to the feature indicator associated with the first computational

resource.

27. A non-transitory computer-readable medium storing a computer program for

controlling access to computational features, the computer program including

instructions for causing a computer to:

prepare a first computational resource for execution by an execution system that
has been provided primary descriptors each associated with a respective identity value

and each associated with a respective feature indicator;

access a secondary descriptor containing a first identity value, the first identity
value associated with a first primary descriptor of the primary descriptors, the secondary

descriptor being cryptographically assigned to the first computational resource;

accept an instruction from the first computational resource to execute a second
computational resource;

cryptographically assign an instance of the secondary descriptor containing the
first identity value to the second computational resource, including combining the
second computational resource with the instance of the secondary descriptor, and
cryptographically signing the combination;

grant the second computational resource access to a computational feature of the
execution system based on the feature indicator associated with the first computational
resource, the feature indicator associated with the first computational resource being
associated with the first identity value of the instance of the secondary descriptor; and

verify, during an execution of the second computational resource, that the

instance of the secondary descriptor is cryptographically assigned to the second

computational 10 resource, to determine that the second computational resource 1s

_78 -

CA 02784896 2016-09-16

authorized to access only the computational features enabled according to the feature

indicator associated with the first computational resource.

28. The computer-readable medium of claim 27, wherein the computational resource

1S encrypted.

29. The computer-readable medium of claim 27 or 28, wherein cryptographically
assigning the secondary descriptor to the first computational resource includes

combining the first computational resource with the secondary descriptor, and

cryptographically signing the combination.

30. The computer-readable medium of claim 27 or 28, wherein cryptographically 20

signing the combination includes encrypting a value derived from the combination using

a private encryption key assigned to the first primary descriptor.

31. The computer-readable medium of any one of claims 27 to 29, wherein verifying

the instance of the secondary descriptor includes decrypting a value derived from the

combination of the second computational resource and the instance of the secondary 25

descriptor using a public encryption key assigned to the first primary descriptor.

32. The computer-readable medium of any one of claims 27 to 30, further including

instructions for causing the computer to:

generate a first instance of the secondary descriptor before executing the first

computational resource;

generate a second instance of the secondary descriptor before executing the first

computational resource; and

compare the two instances of the descriptor to determine if the first

computational resource 1s authorized to execute.

33. The computer-readable medium of any one of claims 27 to 32, wherein the

second computational resource continues execution after the first computational resource

has completed execution.

_79 _

CA 02784896 2016-09-16

34. The computer-readable medium of any one of claims 27 to 33, wherein the
second computational resource is authorized to access fewer computational features than

it would otherwise be authorized to access if the execution of the second computational

resource. was not initiated by the first computational resource.

130 -

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

1/18
I Component
I 122
120
100
Execution System
2
146 & Token
120 138 %
15, v
510 2 'V
140 112 11 \O/\
\/x> Obscuring Key

.:‘ A
T

130a

Key Container
Brand "

FIG. 1A

132

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

2/18

Key Container 132a
122D Execution System
120b 110a
C t
I I | Obscurlng Key |
“—~100a
_ a
Network
100

Execution System

122a

Component
Container

CA 02784896 2012-06-18

PCT/US2010/061517

3/18

WO 2011/079112

V¢ Ol

—d H00 pd FOZ $ L pROZ f
2¢0C _

x Ur0C ¢

4c0c

= i Bpoz pe—§ WOC g

¢0c¢
€c0c¢ c
i oz be—d B0 PR
—S$ 3 3Y0C | .
Lm<l7 msaeld s lgNOO]«WE D XL [cooc oo o]
dieH MOpUIpp uny 1olold J1ebbBnge(] pesu] MaIA Up3 o__ma

X181

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

4/18

210
234
\ DEVELOPMENT
% ENVIRONMENT DATA STORAGE

230

219 / 100

SECURITY OPERATING
LAYER ENVIRONMENT

214 216

FIG. 2B

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

5/18

Key Container

130 130a
Brand II 130b
134 132

Brand Public Key

135
Expiration
Indicator

136
Feature Indicator

FIG. 3A

CA 02784896 2012-06-18

WO 2011/079112 5/18 PCT/US2010/061517
122
Component Container
302
I Number
Container
304 |
Component
I ignature r'
I- —
300 I
112 334
LT T T ' 342
| Obscuring
BT Y
N —

FIG. 3B

CA 02784896 2012-06-18

PCT/US2010/061517

7/18

WO 2011/079112

0L
90V

"“ 01%%

O0cl
907

uayo | pueug

Aclv

8¢l

uayo | pueug

“pueig
B e

e
__es ehe |

eCLY

1

Vv Ol

eyl

¢cl

el

Jusuodwon

5|qeIN29x3

a.lnjeubis
Jusuodwon

adA | usuodwon

JelllO4 Jaulejuod)

JDqUINN JaUuleluod)

JauIBluO N Jusuodwon

0

A8y a11gnd
pue.g

0cl

0L

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

8/18

122
Component Container

Executable

Component

142 77
N
e | Execution Script
Executable 120 112 _
1 44 cCom ponent Obscu rnNg
Key

438a

Encrypted
Brand Token 490

Brand Token

FIG. 4B 1382

CA 02784896 2012-06-18

PCT/US2010/061517

9/18

WO 2011/079112

Aay) buluNasqo

¢kl

Ocl

90V
80V

aclvy

USM0 | pue.g

I¥ Ol

[es |

48¢tl

0187

144 4174

uayo| pue.g

144%

}d1I0S UOIjNISX]

Jauieyuon 1d1og Vay

A8} 81eALId
IEVA[VEE) (o]]

%
'. 0S¥

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

10/18

112

Obscuring
Key

110
—%
550 494 Script Container 438b
' Encrypted
.‘ Brand Token
Execution Script
Executable 430
454 Component

Tokenizer
Public Key

420

Encrypted Brand
Token

FIG. 5A

CA 02784896 2012-06-18

WO 2011/079112 PCT/US2010/061517
11/18

112

Obscuring Key

1

0

.:‘ 42

Execution Script

4125 120
408 Executable

406 Component

130 1385

Brand Token Encrypted
Brand Token I

FIG. 5B

CA 02784896 2012-06-18

WO 2011/079112 PCT/US2010/061517
12/18

420

Execution
Script
138b
412
o L :

-1 1 | 408

' ' e
510a - S 4y X\ \ 130
512a 510b 510d | Brand Token
512b 510c
130

o X
%S X
Expiration
138

Feature 419
°
- 408
406

ey] 132 150
Container Brand Token

FIG. 5C

CA 02784896 2012-06-18

WO 2011/079112

13/18

138D
—

408
406 610
130

Brand Token

412b

148 4
\/
%S
138a

412C

412a 408
408 106

406

130 130
Brand Token 138¢

FIG. 6A

PCT/US2010/061517

605

Environment
Reference

622

Transient
Container

Salt”

Number

Flag

Brand
Brand Token

410

e

CA 02784896 2012-06-18

WO 2011/079112 PCT/US2010/061517
14/13

122a

Component Container 005

' 200 610
Container Number 110
. 04
Container Format "‘

3006
Component Type

Transient
Container

Environment
Reference

120a

Flag

Brand Token

FIG. 6B

WO 2011/079112

700

Generate
signature

702

Verify
sighature

704

CA 02784896 2012-06-18

15/18

Encrypt
first token

708

Attach first
token

710

FIG. 7

PCT/US2010/061517

Attach

second
token

714

Generate
signature

716

WO 2011/079112

Verify
signature

802

Access
script

8u6

800

CA 02784896 2012-06-18

16/13

Access
component

810

FIG. 8

PCT/US2010/061517

Acquire
feature
indicator

814

CA 02784896 2012-06-18

WO 2011/079112 PCT/US2010/061517
17/18

900

Generate
transient
container

902

Generate Remove
environment references
reference

904 210

Generate Execute
token component

906 912

FIG. 9

CA 02784896 2012-06-18
WO 2011/079112 PCT/US2010/061517

13/13

1000

Access feature
Indicator

1002

|dentify feature
1004

Enable feature
1006

Associate brand
1008

FIG. 10

Component

130 Brand

122
120 Component ‘ va
124 Signature ‘

100

S

Execution System

140 112 110

1

<
x/\,q |/ Obscuring Key |—
v?>
A

- [Brand] [
\{ Y 146 w Token
510 510a é

130a

142
Key Container
180 Brand
Brand Public Key "\
136 Feature Indicator

130b

134

132

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - abstract drawing

