PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/57863
HO4L 29/06 Al . -
(43) International Publication Date: 11 November 1999 (11.11.99)
(21) International Application Number: PCT/GB98/03866 | (81) Designated States: CA, CN, CZ, IL, IN, JP, KR, PL, SG,
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
(22) International Filing Date: 21 December 1998 (21.12.98) GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: Published
09/072,597 5 May 1998 (05.05.98) Uus With international search report.

(71) Applicant: INTERNATIONAL BUSINESS MACHINES
CORPORATION [US/US]; New Orchard Road, Armonk,
NY 10504 (US).

(71) Applicant (for MC only): IBM UNITED KINGDOM LIMITED
[GB/GB]; P.O. Box 41, North Harbour, Portsmouth, Hamp-
shire PO6 3AU (GB).

(72) Inventors: HAYES, Kent, Fillmore, Jr.; 9309 Bracken Lane,
Chapel Hill, NC 27516 (US). KING, Brett, Graham; 411
Brook Creek Drive, Apex, NC 27502 (US).

(74) Agent: MOSS, Robert, Douglas; IBM United Kingdom Lim-
ited, Intellectual Property Dept., Hursley Park, Winchester,
Hampshire SO21 2JN (GB).

(54) Title: CLIENT-SERVER SYSTEM FOR MAINTAINING A USER DESKTOP CONSISTENT WITH SERVER APPLICATION
USER ACCESS PERMISSIONS

(57) Abstract

From Fig. 7 From Fig. 7
. . . Client - Seqver -
A system with a network interconnecting a server and a Continued Continued
plurality of user stations. The server stores a plurality of user
applications for downloading to user stations and further stores
access permissions for the applications for each user. When a user w0
attempts to log onto the system, the server uses the user’s log-on Desktop object -
identifier to build a list of applications for which the user has access oot deskiop
permission. The server downloads to the station a list of applications
to which the user has access permission. The user station uses [~ Req, Appiek It (Contexi(1D, Usa) 1D, Password |

the list to build a folder containing only the applications from the
list to which the user has access permission. The system further
verifies from the list that the user has access to applications that
are represented by objects that the user may have added to his or
her desktop at an earlier time. For each user desktop preference
specified by the user at an earlier time that corresponds to a user
application, the access permission for the user to the user application
is checked from the list, and, if the application is not included on
the list, the desktop object representing the application is removed
from the desktop.

§04 Appie Ut

814
Delete Appiet from

s‘
nﬂm) ;n, Password
820 Save response

%”r:w%




Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

15

20

25

30

35

40

WO 99/57863 PCT/GB98/03866

CLIENT - SERVER SYSTEM FOR MAINTAINING A USER DESKTOP
CONSISTENT WITH SERVER APPLICATION USER ACCESS PERMISSIONS

The invention relates generally to the fields of personal computing
and networking. Specifically, it relates to the new and evolving field of
network computing, in which desktop computer users use a personal
computer, .possibly diskless, connected to a network such as a corporate
intranet, the Internet, or to an network or Internet Service Provider
(ISP) to gain access to applications which are then executed on the
desktop computer. More specifically, the invention relates to
server-based storage of software preferences (configuration data) for
software retrieved from a server and executing at the desktop computer.

The field of network computers is presently in its infancy.
However, it is expected to evolve rapidly, especially in the corporate
environment, for a number of reasons. The expectation is that as
companies and possibly individual users reach hardware and software
upgrade points, it will be more efficient and less expensive to move to
this new field, rather than upgrade in the traditional way with disk
equipped computers and locally stored and administered software
applications. For example, in the corporate environment, a user can be
connected to a corporate intranet, using, for example, the TCP/IP and HTTP
protocols of the Internet, and download software applications as they are
needed directly from a network server to the desktop computer. An
application is executed on the desktop in the traditional manner by the
user to perform useful work. An advantage of this configuration is that
network computers are substantially less expensive than traditional disk
equipped computers. It might also cost less to purchase the reguired
number of software licenses for users, rather than purchase individual
copies of software for each user. Certainly, the software administration
problems that attend large numbers of corporate users will be
substantially reduced. At the present time, each user of a disk equipped
computer or workstation often is effectively his or her own system
administrator, a role that often consumes excessive resources due to lack
of expertise. It is expected to be a great advantage to eliminate this
problem by effectively offloading the problem to a small number of server
administration experts, rather than having many users struggle with the
problems of software installation, upgrades and computer administration.

As mentioned above, this vision of the future of personal computing
is presently in its infancy. As a result, there are presently many
problems and deficiencies with existing systems.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

Typically, in network computer systems, an administrator creates
user profiles that are stored on a network server. The profiles may
contain different types of information, such as user desktop preferences
and user permissions for access to different software applications that
might reside on the server. When a user logs onto the system, the user
identifies him or herself to the server, the server locates the profile
for the user and transmits it to the user computer where it is used to
configure the computer and generate a desktop. The desktop might include
a number of icons representing applications to which the user presumably
has access. The profile likely also contains other attributes of the
computer and desktop, such as for example, the background colour of the
desktop, or character fonts and point sizes used on the desktop, or data
file search paths, etc. that are unigue to the user. The profiles may be
user modifiable or non-modifiable.

In an environment in which users can modify their own profiles, a
modified profile is uploaded back to the server at log-off time, where it
is stored for retrieval the next time the user logs-on. In some prior art
systems, to the best of our knowledge, the users can generate on their
desktops any configuration of application icons they wish, whether or not
they exist on the server, and whether or not a user actually has access
permission to an application on the server. The Lotus Workplace Desktop
(previously called Kona Desktop) system is an example of this type of
operation. In other systems, the server presents a list to the user of
all applications that the server has, from which the user can pick. In
this case, there is no guarantee that the user actually has access
permission to an application that is selected from the 1list for inclusion
on the desktop. The Sun Hot Java Views system is an example of this type
of system. In other words, the prior art systems do not correlate between
what the user can configure for the set of desktop application icons and
applications to which the user actually has permission access. In such a
case, when the user clicks on a icon to execute an application, an error
message may occur (such as an unauthorized access message) if access
permission is not present, or in a worse case, the user’s computer may
crash.

Another limitation with existing art is that a flat data structure
is used to model users, user groups, terminals and groups of terminals.
Modeled after a common scheme for managing user access to computer
resources, known network computer implementations (e.g., Lotus
Administration Facility for Desktops, Microsoft Windows NT Profiles and
Policies, and Sun Hot Java Views) implement a flat ’‘groups’ structure on
the server for managing software preferences (or attributes) in various
contexts. A ‘context’, as used here, refers to an individual user, user
group, terminal, or terminal group. Any grouping structure for



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

managing software preferences on the server allows an administrator to
define preference attributes for different groups of users as well as for
individual users. However, flat systems are inflexible in many
environments, especially in environments having large numbers of users.
It is desirable to provide an administrative tool supporting the

organization of preference information into a hierarchical structure.

Another limitation with existing systems is that they are limited in
the ways that administrators and users have to perform user configuration
of workstation desktops. For example, administrators are presently
required to configure user preferences using configuration programs that
are separate from, but associated with, a user application. It is
desirable to allow vendors to provide only a single application. To
require only an end user application from a vendor necessitates that the
central management facility be able to execute the end user application in
a context of a user or user group. The prior art does not allow this
administrative flexibility of operation. 1In other words, in the prior
art, to the best of our knowledge, an administrator does not have the
ability to run a user application in the context of a user to set
preferences for that user and application. Further, in the art, an
administrator cannot run a user application to set preferences in the
context of a group of users.

Still another limitation in the prior art known to the inventors is
the manner in which the prior art partitions server permanent storage
space to guarantee that a unique space is reserved for storing user
preferences related to the different applications on the server. To the
knowledge of the inventors, the problem of preventing collisions in the
storage of preference information for different applications in
object-oriented systems, in which an object can be queried for its fully
qualified class name which uniquely identifies and differentiates it from
other classes, 1is solved by having a first central authority assign a
unique designation that applies to a vendor and by then having a second
authority at the vendor assign a second designation relative to the first
designation for each vendor application. For example, vendor A might be
assigned the designation vendorA by the first authority and that
designation is guaranteed to be unique within the architecture for which
the first authority is acting. The second authority at vendor A then
assigns the second designation for each of its applications within that
architecture. For example, one of vendor A’'s applications might be
designated—vendorA.2Appl; another might be designated vendorA.App2. The
art maps the unique designation for each application in a system to a
location in permanent storage of the system to guarantee that preference
data for the different applications do not collide in storage. An
application, when running, informs the network computer server of its



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

unigue storage location and it is the responsibility of the server to
partition an area at the starting location according to a context (user,
user group, terminal or terminal group) for storing preference
information so as not to collide with preference information in a
different context. Clearly, this manner of administering storage space is
awkward and undesirable. It is desirable to devise a method to
automatically generate unique storage locations for storing preference
information for the afore mentioned object-oriented applications, without
resorting to the requirement of having central authorities assign unique
designations for the purpose of preventing collisions in the storage of
preference information and without coding storage location information
into an application.

Still another limitation in the art lies in the lack of any
provision to migrate existing applications and hardware into the new
environment of the centrally managed network computing world without
requiring changes to the existing hardware and applications. Existing
hardware, a terminal for example, in a networked environment, gets its
configuration information at boot-up time from a file in a specific format
located on a server. The terminal is programmed to know how to access its
configuration file. The terminal uses a unique identifier to access the
file from the server. The unique identifier is often the media access
control (MAC) address of the terminal. However, in a new centrally
managed environment involving protocols and API’s that are different from
that to which the terminal is designed, the terminal cannot access
preference information in the new environment, the terminal can only
access its configuration file in the way for which it is designed. This
is a serious problem, because there are many such existing devices in use.
The inability to use them in new systems impedes substantially the
incentives for users to migrate to the new systems.

Still another limitation in the prior art concerns the interface
between an administrator and the configuration management system. When
configuring software within an administration facility to configure
preference information for various users and user groups, and terminals
and terminal groups, the administration software launches in the context
(user, user group, terminal or terminal group) set by the Administrator
who is running the facility. When the Administrator changes the context
that the application is running under, the application needs to be
relaunched to load configuration information for the new context. The
process of relaunching software each time a context is changed is time
consuming and inconvenient for an administrator, especially in systems
with many users. In such systems, it is expected that an administrator
will change contexts many times while configuring an application.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

According to one aspect, the invention provides, in a network system
comprising a network interconnecting a server and a plurality of user
stations, a method of managing desktops on the user stations from the
server, wherein the server stofes a plurality of user applications for
downloading to user stations, and further stores access permissions for
the applications for each user, said method comprising steps of: receiving
at the server a log-on request including a user identifier from a user
station; using the identifier to build a list of applications for which
the user has access permission; downloading to the station the list of
applications for which the user has access permissions; and displaying on
a portion of the desktop objects corresponding to each application in the
list, said objects when selected by the user being operative to request a
download of the corresponding application to the user station.

According to a second aspect, the invention provides, in a network
system comprising a network interconnecting a server and a plurality of
user stations, an apparatus for managing desktops on the user stations
from the server, said apparatus comprising: means for receiving at the
server a log-on reguest including a user identifier from a user station;
means for using the identifier to build a list of applications for which
the user has access permission; means for downloading to the station the
list of applications for which the user has access permissions; and means
for displaying on a portion of the desktop objects corresponding to each
application in the list, said objects when selected by the user being
operative to request a download of the corresponding application to the
user station.

According to a third aspect, the invention provides a computer
program product stored in a computer readable storage medium for, when run
on a computer, carrying out in a network system comprising a network
interconnecting a server and a plurality of user stations, a method of
managing desktops on the user stations from the server, wherein the server
stores a plurality of user applications for downloading to user statiomns,
and further stores access permissions for the applications for each user,
said method comprising steps of: receiving at the server a log-on request
including a user identifier from a user station; using the identifier to
build a list of applications for which the user has access permission;
downloading to the station the list of applications for which the user has
access permissions; and displaying on a portion of the desktop objects
corresponding to each application in the list, said objects when selected
by the user being operative to request a download of the corresponding
application to the user station.

The system described herein provides a common repository for
configuration information for users and applets in a client-server



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

environment. This is referred to as client profile management. The
system allows users to roam, that is, to log-in from any computer in the
system at any time and have it configured automatically at run time
according to the preferences stored for the user at the server. The
preferred embodiment is a Java (Java is a Trademark of Sun, Inc.) based
system and the client computers use a web browser interface arranged to
execute Java applications. Thus, in the preferred embodiment , user
applets and the desktop applet are assumed to be Java applets. However,
it is not intended to limit the invention to a Java environment.
Preferences for the locally stored applications might be stored locally in
the traditional manner, while preferences for the server-based applets
might be handled in the way described herein.

The invention solves the problem whereby a user is able to configure
his or her desktop so as presumably to be able to access an application on
the server when, in fact, the user does not have system permission to
access the application. When the user logs onto the system, the user
identifies him or herself to the server by means of a system identifier
and a password. The server uses this information to built dynamically a
list of applications to which the user has access permission. That list
is transmitted to the users station. The application list is then used to
build a portion of the desktop, preferably a desktop folder, of
applications to which the user has access permission. Preferably, the
folder is composed of a number of application icons each of which
correspond to a different application and which may be selected by the
user to launch the associated application. Associated with each
application in the list are parameters necessary for the user to execute
the associated application. For example, one such parameter might be the
URL on the server used to invoke the application. Nothing prevents a
user from modifying the desktop. For example, after the desktop is built,
the user generally can add other application icons to the desktop, even
though they would not be accessible to the user. A more common case might
be where the user copies an application icon that is dynamically generated
from the list from the generated folder to another part of the desktop and
then logs off. When the user logs off, or otherwise saves his or her
preferences for the desktop via any method the system might provide, the
copied icon is saved to the server and becomes part of the preferences
configured for the user. When the user later logs onto the system, the
copied icon is reproduced on the desktop, not as part of the automatically
generated list of accessible applications, but just as part of the
individual preferences set by the user. Thus, the user can still wind up
with applications configured on the desktop to which the user does not
have access. A related feature of the invention prevents this occurrence
from happening by also testing each application access preference set by
the user against the application permissions present on the server. If a



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866

user has included an application object on the desktop to which he or she
does not have access permission, then the object is automatically excluded
from the desktop object that is built by the server at log on time.

In a preferred embodiment comprising a system with a network
interconnecting a server and a plurality of user stations, the server
stores a plurality of user applications for downloading to user stations
and further stores access permissions for the applications for each user.
When a user attempts to log onto the system from a user station, the
server receives a user log-on identifier from the user. The server uses
the identifier to build a list of applications for which the user has
access permission. A desktop object is then downloaded to the user
station to control the interface between the user and the user’s station.
The server also downloads to the station a list of applications to which
the user has access permission. The user station uses the list to build a
folder containing only the applications from the list to which the user
has access permission. The system further verifies that the user has
access to applications that are represented by icons that the user may
have added to his or her desktop at an earlier time. For each user
desktop preference specified by the user at an earlier time that
corresponds to a user application, the access permission for the user to
the user application is checked from the list, and, if the application is
not included on the list, the desktop object representing the application
is removed from the desktop.

Fig. 1 shows an illustrative network and user stations, including an
administrator’s station, in which the invention might be practised;

Fig. 2 shows an illustrative block diagram form of the
administrator’s station in communication with a server, and components of
the administrator’s station and the server for providing the central
profile management and preference administration;

Fig. 3 shows one illustrative hierarchical organization of user
groups and users of a system. The illustrative hierarchical organization
might also contain individual terminals and terminal groups; however,
these are omitted for simplicity;

Fig. 4 shows one illustrative listing of individual users and the
group priority order that is used to determine a set of preferences from
the hierarchical organization of Fig. 3 that apply to a user and a
specific application executed by the user;.

Fig. 5 shows a more detailed view of the administrator‘’s station and
server of Fig. 2;



10

15

20

25

30

35

40

WO 99/57863 PCT/GB98/03866

Fig. 6 shows an illustrative view of the software objects at a
user’s terminal, including a user application and the API between the
application and other components, that cooperate to establish the user
preferences during execution of the application as the user’s terminal;

Figs. 7 through 8 show illustrative operations at both a user’s
terminal and a server for user log-on and initially establishing the

user’s desktop, including desktop preferences, at the user terminal;

Figs. 9 through 11 show illustrative operations at both an
administrator’s terminal and a server for administrator user log-on,
establishment of the administrator’s desktop, and, by way of example, the
selection of an application and a context for configuration; the example
also illustrates a context change during configuration the user’s desktop
and the resulting operations; and

Figs. 12 through 24 show a variety of actual administrator screen
snapshots in various phases of application administration, including
building of a hierarchy of which Fig. 3 is a representation of an
example of, the creation and deletion of users, etc. the establishment of
application preferences for applications, and context changes during
preference establishment.

The system described herein provides a common repository for
configuration information for all users and applets in a client-server
environment. This is referred to as client profile management. The
system allows users to roam, that is, to log-in from any computer in the
system at any time and have it configured automatically at run time
according to the preferences stored at the server. The preferred
embodiment is a Java (Java is a Trademark of Sun, Inc.) based system and
the client computers use a web browser interface arranged to execute Java
programs.

The terms ‘applet’ and ’‘servlet’ are established terms in the Java
programming language art and will be used herein, since the terms have
meaning to those skilled in this art. ’'aApplet’ refers to an independent
software module that runs within a Java enabled web browser. Servlet
refers to a software module that resides on a Java enabled web server. It
is to be understood that the use of the terms ’‘applet’ and ’'servlet’
herein is not intended to limit the invention in any way. For
clarification, the phrase ’‘configuration applet’ is used herein to refer
to a software module used to configure preferences for an end user
software application such as a word processor, a database manager, etc.
Since software applications are also ’‘applets’ in the Java environment,



10

15

20

25

30

35

40

WO 99/57863 PCT/GB98/03866

the phrase ‘user applet’ or just ‘applet’ .is used herein to refer to an
end user application.

In the preferred embodiment , user applets and the desktop applet
are assumed to be Java applets. However, it is understood that the
invention is not limited to a Java environment. The invention can be
used in any client-server system. For example, if desired, the system
could be designed to use proprietary communication protocols and
applications written and compiled in any desired programming language.
Further, even in the preferred Java based environment, disk-based
computers might access some applications locally, and other applets from
the server. Preferences for the locally stored applications might be
stored locally in the traditional manner, while preferences for the
server-based applets might be handled in the way described herein.
pPreferably, however, preferences for locally stored applications are
stored on the server using the Profile Management Properties API in
addition to the preferences for server based applets described herein.

A simple Application Program Interface (API) allows applets written
to the API to easily store and retrieve preference data when the applet is
executed by a user or administrator. Applet permissions and user
preferences can be defined based on group memberships and individual
identity.

Client profile management includes the following services:
Log-on support - mapping to a user profile;

User support - the administrative ability to create user identifications
and provide services and preferences directly to users;

User groups support - the administrative ability to create hierarchical
groups of users and provide services and preferences based on group
memberships;

User applet context transparency - automatic determination of the context
of user applet execution. That is, the determination of the user and/or
group profiles that apply to a user applet execution and the automatic
establishment of the profile environment;

User applet preferences repository - context-sensitive server storage for
user applet configuration data;



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
10

Dynamic user applet preferences inheritance - hierarchical load-time
coalescence of user applet preferences via the object-oriented principal
of inheritance; and

User applet access control - control of user applet execution based on
group default membership privileges. The administrator can override
default group privileges and permit or deny additional access privileges
for individual users.

Profile management provides a framework through which these tasks
are performed. Some tasks are supported by profile management directly,
e.g. user/group management, applet lists, context switching, preference
inheritance, etc., while configuration services specific to user applets
are usually supported by separate configuration applets invoked by a
system administrator within the client profile management environment.
Some end user applets might provide the configuration capability as part
of the end user applet. If this is the case, the administrator can run
the end user applet (as opposed to a separate configuration applet) in the
context of individual users and groups to set the configuration
preferences for those users and groups.

Fig. 1 shows one high level view of an intended environment for
practising the invention. 2 network 100 is provided for interconnecting a
plurality of user stations, such as desktop personal computers 102, mobile
laptop computers 104, workstations 106 (e.g., RISC computers), an
administrator’s station 108 and a server 110. In one embodiment, network
100 might be a local area network. In another embodiment, network 100
might include wide area networking for entities such as corporations that
have geographically displaced sites that are still included within the
system. There is no intent to limit the environment in which the
invention might be practised; indeed, a network of any type that

interconnects many types of stations is envisioned.

A high-level diagram of the profile management administrative
operating environment is shown in Fig. 2. An administrator client network
computer 200 is represented on the left of the Fig. and a server 202 for
the system is on the right. The client and server communicate via a
network represented as 203. The particular example of Fig. 2 assumes that
the client computer is a system administrator’s computer.

Profile manager 206 on the client side allows the administrator to
configure user applet preferences at both user and group levels. The
administrator can create new users and group hierarchies, add users to
different groups, specify applet permissions for each group and for
individual users. And the administrator can configure applets in the



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
11

context of an individual user or a group. The administrator can add,
delete and reset passwords for users. Profile management support is
transparent to the general user. The administrator can invoke the profile
manager 206 in the context of any user or group. Only the administrator
can change from his/her context to administer clients (users) and groups.
The server will not allow a user without administrative authority to
switch context. When a request comes into the server, it will query the
authenticated ID of the user trying to access this function. If the user
does not possess administrative authority, (i.e., is not a member of the
AllUsers.Administrator group), the Profile Manager Servlet 214 will
reject the request.

Profile manager 206 invokes other applets, such as appletl (208), as
shown in Fig. 2. In this example, appletl might be the administrative
applet for configuring preferences related to user desktops. Or appletl
could be a configuration utility related to an end user applet, such as
editors, word processors, databases, etc. It 1is preferred, but not
required, that configuration applets such as 208 exist as modules separate
from their corresponding user applets. In the context of Fig. 2, Appletl
is typically a configuration applet for a user applet; the administrator
runs the configuration applet appletl under a group context to set group
preference and permission defaults, or in a user context to customize user
applet configurations for an individual. By implementing appletl as a
module separate from its user applet, performance is enhanced, since the
configuration appletl will likely be small compared to the user applet.
Also, separate configuration applets allow the administrator to control
the end users ability to configure the user applet.

Traditional stand-alone computers store user applet configuration
information locally in association with its the user applet. Traditional
stand-alone Java based computers store user applet configuration
information using the format provided by the java.util.Properties class.
Both arrangements require that the user applet specify the name of a local
file in which to store configuration information related to the user
applet. In other words, a relationship is required between the computer
and the user applet loaded on it. Profile management as described herein
provides the familiar capabilities of a real Jjava.util.Properties object
plus additional facilities supporting user-roaming capabilities and
seamless pluggability into a powerful administrative framework (the
Profile Manager) .

ProfileManagementProperties P 210 is a properties object for appletl
and provides an API between Appletl and the server that allows the server
to determine where to store configuration information for appletl in the
context of users and groups. The ProfileManagementProperties object class



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
12

provides all of the functionality of the java.util.properties class with
the further ability to provide create, save, and retrieve the
configuration information for software from permanent storage. Storing
such information in a central location makes management of user and group
configurations possible.

When a user is in the role of administrator, ProfileManagementProperties
210 allows the administrator to configure the user applet corresponding to
configuration appletl, or to configure appletl if appletl is an end user
applet, and store the configuration information in the proper place on the
server in the proper context. This allows the establishment of a
relationship between the user applet and the user, rather than between
user applet and computer as in traditional systems.
ProfileManagementProperties 210 is an extension of the
java.util.Properties class. The extension allows the key/value pairs of
preference information of a Properties object to be associated with a key,
as opposed to a stream, as with java.util.Properties. This, in turn,
allows application developers to use the key to specify a unique location
relative to a context for preference information, rather than a file name
and path. ProfileManagementProperties 210 determines the key
automatically. The generation of the key is discussed more in connection
with Fig.’s 8 and 9. By modelling ProfileManagementProperties 210 after
the java.util.Properties class, the system can take advantage of
preference inheritance through recursive class-default evaluation. Thus,
this extended class provides a "group default" capability by accumulating
preferences starting at a current context, as discussed with respect to
Fig. 3, and traversing up the contextual hierarchy for defaults.

Server 202 includes a database 212 that stores user data and group
data, such as user and group preferences and user applet access
permissions. Webserver 218 represents a typical web server with support
for Java applets. Profile Manager servlet 214 maps user and group
identifications to preference data. It also maintains an access control

list to manage user access to applications on the server.

User and group preferences are stored as a tree hierarchy, as shown
in Fig. 3. All users of the system automatically belong to the top group
AllUsers. All users belong to the AllUsers group; this group contains the
default preferences for some or all user applets on the server. 1In Fig.
3, it is assumed that the server contains at least three user applets,
identified as App3, App4 and App5. As indicated in the AllUsers group,
the default background (BG) for App3 is BG = blue. Other illustrative
preferences labelled as x, y and z are shown to have the default values of
1, 2 and 3 respectively. The terms x, y and z are intended to represent
any desired preference and the values 1, 2 and 3 are arbitrary and used
merely to illustrate the point. The x preference might for example be the



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
13

screen font for the desktop; the value x = 1 might call for a default font
of Times-Roman. Similarly, the default preferences for App4 for all users
are BG = grey, x = 2, v =2 and z = 2..

The default values in the AllUsers group can be modified in any
desired way for other contexts, such as for other user groups and
individual users. By way of example, in addition to the context of
AllUsers in Fig. 3, four other groups (GroupX, GroupY, GroupYl and
GroupY2) are shown. Additionally, two individuals Userl and UserN are
shown. Users can be members of more than one group. In Fig. 3, Userl is
a member of AllUsers, GroupX and GroupYl; UsenN is a member of AllUsers
and GroupY2. If a user is a member of more than one group (another group
in addition to AllUsers), then the groups are prioritized for the purpose
of selecting the preferences for a given applet for that user. The
administrator configures the group priorities for a user. Group priority
is illustrated in Fig. 4. In Fig. 4, Userl has GroupX (identified by the
fully qualified name of AllUsers.GroupX for his or her highest priority
group. Userl’s next highest priority group is GroupYl
(AllUsers.GroupY.GroupYl). Userl’s lowest priority group is the AllUsers
group. When a user, say Userl, requests to run an applet say App3, the
preferences are coalesced from the tree of Fig. 3 according to the group
or groups to which the user belongs and the user applet is configured on
the user desktop accordingly.

The first step in coalescing preferences for any context is to get the
defaults. The defaults for a user, if there are any, 1is the coalesced
set of preferences for the applet from the highest priority group from
which preference information for the applet can be obtained. The defaults
for a group, if there are any, is the coalesced set of preferences for the
applet from the groups parent (i.e., The AllUsers group is the parent of
AllUsers.GroupX). If a group has no parent (i.e., the top level AllUsers
group) , there are no defaults for that group. To coalesce the preferences
for an applet at a context, the preferences for the applet explicitly
stored at the context, overwrite the default preferences for the applet
for the context. Thus, to coalesce preferences into the default set for
an applet in a group context, recursive calls are made from each group
node up to the AllUsers group requesting each parents set of preferences
for the applet. Please refer to figure 3 to illustrate the following
example. For example, if the context is Allusers.GroupY.GroupYl, a call is
made to the parent of GroupYl, which is GroupY, requesting its default
preferences for the applet. GroupYl makes a recursive call to its parent,
which is AllUsers. AllUsers has no parent, so AllUsers returns it set of
preferences for the applet to the call from GroupY. This set of
preferences is modified by the preferences stored in GroupY for the
applet, 1f any. This is now the default set of preferences for the applet



10

15

20

25

30

35

40

WO 99/57863 PCT/GB98/03866
14

for the context of GroupYl. This set of default preferences is returned
to GroupYl as a result of the recursive call from GroupYl to GroupY, and
are modified by the preferences at GroupYl for the applet, if any, to
become the actual set of preferences to be used in this instance. The set
of preferences for the context of a user is built in the same way, except
that the highest priority group from which preference information can be
obtained for the user is used to first establish the group context from
which the defaults will be obtained. Then the recursive procedure
described above is used to build the actual set of preferences for the
user and the applet requested by the user.

The following examples illustrate the above preference coalescence
and should be read in conjunction with Fig. 3.

Example 1: An administrator runs a configuration applet for App3 to
set preferences for the group AllUsers.GroupX.

To set the preferences for App3 in the context of Allusers.GroupX,
the present set of preferences must be determined. AllUsers.GroupX
requests defaults for its parent AllUsers. Since AllUsers is the top
level group, it returns its preferences for App3 to GroupX. These are the
default preferences for App3 in the context of GroupX. Since GroupX has
no preferences for App3, the default set from Allusers is the real set of
preferences to be used. In this example, these preferences from the
AllUsers group are : BG=Blue, x=1, y=2, z=3. The administrator can now
modify use the configuration applet to modify the coalesced preferences in
any desired manner.

Example 2: Userl requests execution of com.ibm.App3. Preferences
must be coalesced for com.ibm.App3 in the context of Userl.

Fig. 4 shows that the highest priority group for Userl is
AllUsers.GroupX; this branch of the group hierarchy will be checked first
for preference information pertaining to App3. From here on, the example
is essentially the same as example 1 above, except that the coalesced set
of preferences is used to configure App3 on the user’s workstation. The
preferences for App3 for Userl are : BG=Green, x=1, y=2, 2=3 since the
BG=Green preference stored in the Userl’s context for App3 over rides the
default BG=Blue preference obtained from the AllUsers.GroupX branch of the
preference tree.

Example 3: Coalescing preferences for com.ibm.App6é in the context of
Userl.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
15

This example illustrates the situation of the highest priority group
containing no coalesced preferences for the context of Userl. Again, the
highest priority group for Userl is GroupX. This group and its parent
AllUsers contain no preferences for Appé. Therefore, the next highest
priority group is searched. The next highest priority group for Userl is
GroupYl. A set of preferences can be obtained from this group for Appé6.
The coalescence of preferences proceeds as described in example 1.
Recursive calls are made from GroupYl up the tree to the root AllUsers
group and the preference sets are returned back down the recursive calls
and modified along the way to form the default set. The default set is
then modified with the preferences stored in GroupYl to form the
coalesced set of preferences that apply to this context. Stated briefly,
Allusers returns a null set of preferences, since it has no preferences
for App6. GroupY modifies this null set with the values a=1 and b=2 and
returns this set to GroupYl as the default set. GroupYl modifies the
default set with a =33. This set is returned to the Userl context for use
as its default set. Since there are no preferences for Appé stored at the
Userl context, the defaults obtained from the GroupYl branch of the
preference tree represent the fully coalesced set of preferences for Appé6.
The real set of preferences thus becomes a=33, b=2 for this context.

The above 3 examples described the gathering of preferences in
response to a load() for a particular piece of software. When preference
information is saved for a piece of software, any preferences that have
been explicitly written at the Context being saved to will be written to
the data store (212) at the location specified by the combination of the
Context the software is being run in and the key for the software whose
preferences are being stored.

Permissions operate similarly: a new group has access to all the
applet names permitted by the group itself as well as to all applets
permitted by its supergroups. However, just as Java allows the programmer
to override a superclass method, Profile Management allows the System
Administrator the ability to override an inherited permission. This is

called overriding a permission.

As with Java's form of inheritance, Profile Management’s form of
preferences and permissions inheritance is called single inheritance.
Single inheritance means that each Profile Management group can have only
one supergroup (although any given supergroup can have multiple
subgroups) .

Profile Management users (leaf nodes) may require membership in
multiple groups, so a facility is required to limit preference inheritance
to a single hierarchical group to minimize the chance of corrupt



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
16

configurations due to the introduction of incompatible variable subsets
introduced by cross group branch coalescing. By allowing a user’s group
memberships to be prioritized, profile management can follow a search
order when looking for preferences related to a particular applet. 1In
other words, starting with the group with the highest priority, the search
will stop at the first group found to contain configuration data for the -
applet attempting to load its preferences.

A user inherits software permissions from group memberships. With
careful enterprise modelling, the administrator can assign software access
to many users without having to navigate through panels, one user at a
time. Profile management controls access by programming the web server
to permit / deny access to applets. The web server enforces the access
control. The profile manager servlet is also protected by the WebServer
requiring user ID’s and passwords to be passed to the webserver for
authentication purposes. It is standard browser functionality to prompt
for user passwords as required.

Fig. 5 shows the system of Fig. 2 in more detail. Configuration
applet Appletl is invoked by the administrator within the profile
management framework. Appletl may implement the application program
interface (API) 515 for querying information about its operational
environment (e.g., query context, context changed events, query access
control list for this context, etc.) to integrate tightly within the
profile management framework, but this is not a requirement for a
configuration applet. In any event, the designer of appletl need only
understand the basic API methods: enablePersistence(), load(), and save()
in addition to the basic methods of a java.util.Properties object used to
get preference information into and out of a java.util.Properties object.
API 515 additionally provides list{() and getContext () methods. Appletl
need only register with the ProfileManagementProperties class and call
these methods as appropriate. The load() method can be called to retrieve
the present state of preferences for the user applet being configured in
the context of a user or group selected by the administrator The
administrator can then modify the preferences as desired and store them
using the configuration save functionality provided by the applet (which
uses the save() method of its ProfileManagementProperties object.
Similarly, if appletl needs the list of user applets authorized for access
by a user, it can use the list() method to obtain the 1list from the
server. The getContext () method can be used by the applet to display the
name of the context that it is running in or even to ensure that it only
runs in a certain context (i.e., if an applet wanted to configure a
service on the server using the export agent, it might only allow itself
to be run at the AllUsers context since the configuration being exported
is server specific as opposed to user specific. For appletl to run in



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
17

the profile management framework, all that is required is for the applet
to register with ProfileManagementProperties 410 and implement the
ProfileManagementProperties class, an extension of the
java.util.Properties class.

The profile manager 506 also provides a context change API 516 for
configuration applets. Appletl may implement a context change event
listener 512. The API 516 and the event listener 512 allows the
administrator to change contexts (user or group) while running the
configuration applet, without having to stop and restart it. For example,
when configuring applet user preferences, the administrator will likely
change contexts many times during the configuration. If the configuration
applet i1s registered as a listener to such events, profile manager 506
will notify it of a context change via API 516. This allows appletl to
refresh its preferences from the server for each new context. Without the
event listener API, appletl would have to be terminated by the
administrator and restarted after a new context has been selected to
reference the existing preference information for the new context and
avoid being stopped and restarted by the Profile Management applet. To
register, appletl calls a method on its properties object
ProfileManagementProperties 510 i.e., addContextChangeListener (API 516)
to register itself. When the administrator sets a new context, profile
manager 506 performs a set context call (API 516) to object 510, which in
response calls the reload method (API 516) on event listener 512. Event
listener 512 now performs a load properties call to its properties object
510 to get the new preference data from the server for the new context,
and causes appletl to updates it GUI and internal variables to reflect the
new preference information.

The above functionality avoids the possibility of a network
administrator reading data from one context, changing context, and
accidentally overwriting with a save() when intending to load() before

making configuration changes in the new context.

Applets that do not register as listeners will be stopped,
destroyed, reloaded, and restarted by the profile manager applet when the
administrator forces a context change.

The profile management also provides a "properties export" service
to allow the easy retrofitting of existing hardware and software into this
profile management environment. The properties export service allows
profile manager 514 to support user workstations (the physical hardware)
as well as users, groups, and user applications. Since existing
workstations do not know about ProfileManagementProperties 510, the export
service allows workstation vendors to create workstation-configuration



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
18

applets that specifies an export agent 520 to be invoked on the server
when the vendor applet saves it preference information. The export tag
causes an instance of a vendor-supplied class (the export agent 520
object) to be created and the export method to be invoked on the object to
specify that workstation configuration information be saved in whatever
proprietary file format and/ file location(s) that are required by the
workstation being configured.

Assume that appletl is the configuration applet provided by a vendor
for an existing terminal that is incompatible with the present profile
management system. The vendor also supplies export agent 520. An
administrator can configure the terminal for operation in this system by
running profile manager 506, set the context to the terminal being
configured, runs the vendor supplied configuration appletl and configures
the applet. When the administrator saves the configuration, part of the
information that is transmitted to the server is a unique identifier that
identifies the terminal being configured. Typically, this is the Media
Access Control (MAC) address of the terminal. Profile manager servlet 514
detects that an export agent is specified on the save. Profile manager
servlet 514 detects this from one of the preferences being saved that
specifies need for the export agent. The preference specifies the export
tag in the form of a key value pair of

XXXXEXPORT_AGENTXXXX={fully qualified class name of export agent}

The Export Agent’s export (Context context, config properties) method
is called by the profile manager servlet 514 to create one or more files
522 on the server from the save preferences information. The specific
file or files are identified by the unique identifier of the terminal that
came with the properties information from appletl. When the terminal
later boots up, it uses its unique identifier to locate and retrieve its
configuration information from files 522 on the server in the same manner

that it always did, independent of the profile management system.

Figure 6 illustrates an applet2 running on a client computer.
Applet2 might be an end-user applet such as a word processor. In any
event, applet2 has access to some of the same API methods as shown at 515
of Fig. 5 if it desires. BApplet2 uses the load method to retrieve
preferences and the save method to save any preferences that might be
changed by the end user. EnablePersistence initializes the Profile
Management Properties object for applet2 with context egual to the user
and generates the unique key for identifying the preference information
storage location on the server, as described above relative to the
administrator.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
19

Fig. 7 shows the situation of a user bringing up his or her desktop.
The user on the client (700) points his or her web browser at the URL of
the desktop applet on the server and at step 704 sends a message
http://server/Desktop.html) . Since Desktop.html is a file that the server
protects, a challenge is sent back to the web browser on the client at
706. The web browser on the client responds by prompting the user for a
user ID and password. The client then sends the user ID and password
information to the server at 708. The user ID and password are shown in
bold at 708 of Fig. 3 to illustrate that this information is passed by the
web browser itself. This type of nomenclature is used in other places to
illustrate the same thing. Since, presumably, the user has permission to
run the desktop applet, the request will be honoured.

There are a series of interactions between the client and the server
(not shown) where the code for the desktop applet is loaded to the client
from the server. The desktop object is created and begins to execute at
712. The desktop object needs its preference information (i.e.,
configuration information) so it can tailor the desktop for the end user
who is invoking it. To this end, as part of the desktop object’s
initialization process, the desktop creates a ProfileManagementProperties
object P at 714, which is used to load, , get, cache, set, and save a
copy of the user’s preference information from the server for the desktop
applet. The desktop object then performs an API call
P.enablePersistence (desktopObject (applet)) at 716, which, at step 1) of
716, initializes the ProfileManagementProperties object P with the URL of
the profile manager servlet 214. This URL is derived from the URL of the
desktop applet that was loaded from the server previously. The
ProfileManagementProperties object P sends a request 718 to the profile
manager servlet 214 to get the context for the user running the desktop
applet. In this case, the context consists of two components, a context
name which is the ID of the user, and a context type which in this case is
User. The profile manager servlet gets the ID of the user from the request
718 and returns the user context at 719. At step 2 of 716, the
ProfileManagementProperties object P is initialized with the context of
the user running the desktop. At step 3 of 716, the
ProfileManagementProperties object P generates a unique key for the
desktop software by asking the Java desktop object P for its fully
qualified class name. All Java objects know their class name. This unique
key is combined with the user’s context information to provide a parameter
that specifies a unigue location in the database 212 for storing the user
specific preference information for the desktop applet. Any desired
method can be used for mapping the string consisting of the fully
qualified class name and the user context information into the data store
location . Next, a request 720 is sent to the profile manager servlet
214 to get the preference information, tailored for the user, for the



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
20

Desktop applet. The context and key are passed as part of the request 720
to identify the requested preference information. The profile manager
servlet 214 responds with the reguested preference information at 722,
which is cached in the ProfileManagementProperties object P 604.

Continuing on at Fig. 8, at 800 the Desktop object reads it’s
preference information out of its ProfileManagementProperties object P,
and begins to update the desktop accordingly (i.e., it might set the
screen colour to blue, get information about the position of icons, etc.).
The desktop object calls a method on its ProfileManagementProperties
object P to get a list of the software to which the user has access
permission. The ProfileManagmentProperties object P requests the
information at 802 from the profile manager servlet 214, which generates a
response with the requested information at 804. For each such applet to
which the user has access, the information includes a user friendly name,
the applet’s URL, the URL of an icon for the applet, etc. (information
that is required for the desktop to represent the applet on the desktop
and to load and launch it). and other optional material which is not
relevant to the invention. This information is stored in the
ProfileManagmentProperties object P, and returned to the desktop object.
At 806, the desktop object uses the applet information to build a folder
for the applets and to generate a window displaying the icons and the user
friendly name for each applet to which the user has access.

Assume that in a previous run of the desktop by the user, the user
dragged and dropped the icons for some of the software displayed in the
folder that was just described. It is possible that at this time the user
no longer has access to the applets that were dragged and dropped from the
folder to the desktop. However, these desktop objects normally would be a
part of the users preferences that were saved during the last run and
would still be displayed on the desktop . To avoid this situation, the
desktop examines its preferences from it’s ProfileManagmentProperties
object P to check for applets that are configured to appear outside of the
window that is generated to display all applets to which the user has
access. Fig. 8 assumes that there is only one applet outside of the
applet window that is generated. If there were more than one such applet
outside of the applet window, the following procedure would be looped for
each such applet. At step 810 the desktop checks each of these applets
appearing outside of the applet window against the list of applets from
the server to which the user has access. If the applet appears in the
list, the icon for the applet is placed on the desktop at 810 in the same
position as before. If the user no longer has access to the applet, the
applet is removed from the desktop’s preferences at step 814 and removed
from the ProfileManagmentProperties object P. If any applets are removed
as part of this process, the desktop tells the ProfileManagmentProperties



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
21

object P to save the preferences at step 816. The
ProfileManagmentProperties object P sends a request 818 with the
preference, key, and context information to the profile manager servlet
214 to save the new preferences information in the Database 212. The
server sends a response 820 to the ProfileManagmentProperties object P
informing the ProfileManagmentProperties object P that the request was
successfully completed.

Fig. 9 illustrates the situation of an administrator running a
configuration applet to configure preferences for an applet for other
users or groups of users. It is understood that the principles discussed
here also apply generally to the configuration of terminals or groups of
terminals. The administrator on the client 900 points his or her web
browser to the URL of the profile manager applet 214 on the server, which
is to be run. The URL is sent to the server at 904. Since
ProfileManager.html is a file that the server protects, a challenge 906 is
sent back to the web browser on the client. The web browser responds by
prompting the administrator for a user ID and password. The request to get
ProfileManager.html is then repeated at 908 to the server with the user ID
and password information included in the message. Since presumably the
administrator has permission to run the profile manager, the request is
honoured and a profile manager applet is downloaded to the administrators
terminal at 910. There are a series of interactions between the client
and the server (not shown) where the code for the profile manager applet
is loaded to the client from the server. The profile manager object is
created and begins to execute at step 912.

A ProfileManagementProperties_nonContextFloating is used by the
profile manager instead of a normal ProfileManagementProperties object..
It has the same behaviour as a ProfileManagementProperties object with one
exception: when preferences are loaded and saved, they are loaded and
saved to and from the context of the administrator who is running the
profile manager, as opposed to loading and saving to and from the context

(i.e., user or user group) for which the administrator is configuring.

The profile manager object needs its preference information (i.e.,
configuration information) so it can tailor the profile manager for the
administrator is invoking it. To this end, as part of the profile manager
object’s initialization process, the profile manager creates a
ProfileManagementProperties_nonContextFloating object P_NCF at step 914,
which is used to load, get, cache, set, and save a copy of the
administrator’s preference information from the server for the profile
manager applet. The profile manager object then calls
P_NCF.enablePersistence (profileManagerObject (applet)), which in step 1 of
916 initializes the ProfileManagementProperties_nonContextFloating object



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
22

P_NCF with the URL of the profile manager servlet 214. This URL is derived
from the URL of the profile manager applet. The
ProfileManagementProperties_nonContextFloating object P_NCF sends a
request 918 to the profile manager servlet 214 to get the context name

(ID) of the administrator and the context type (USER). The profile manager
servlet gets the ID of the administrator from the request (918). The web.
browser passes the administrator ID and password in the message along with
the information sent by the ProfileManagementProperties_nonContextFloating
object P_NCF. The ProfileManagementProperties_nonContextFloating object
P_NCF is initialized with the context of the administrator running the
applet at step 2 of 916. At step 3 of 916, the
ProfileManagementProperties_nonContextFloating object P_NCF generates a
unique key for the profile manager applet by asking the Java
profileManagerObject object (passed as a parameter in the
enablePersistence call) for its fully qualified class name (i.e.,
profileManagerObject.getClass () .getName()). This unique key, combined with
the administrator’s context information, is mapped to specify a unique
location in the database 212 for the administrator’s specific preference
information for the profile manager applet.

A request (922) is sent to the profile manager servlet 214 to get
the preference information tailored for the profile manager applet as
configured for the administrator. The request (922) 1includes the
appropriate context name and type and key information to identify the
appropriate preference information. The profile manager servlet 214
responds with the requested preference information (924), which is cached
in the ProfileManagementProperties_nonContextFloating object P_NCF. The
profile manager reads its preference information out of the
ProfileManagementProperties_nonContextFloating and updates itself
accordingly (i.e., sets its background colour to blue for example).

Operation continues at Fig. 10. The profile manager requests the
information about existing users, user groups, and software from the
profile manager servlet 214 and builds the tree in the left panel of the
profile managers configuration window at 1002. See Figs. 13 through 24
for examples of the administrator’s left panel. At this point 1004, the
administrator selects a desired context for configuring by clicking on a
user or group from the left panel tree. The profile manager sets the
context for ProfileManagementProperties objects by calling
P_NCF.setContext (selected context). See Fig. 13 for a selected context of
'User Groups’, which refers to the group of all system users, or to Fig.
18, where a group context of ’‘Development’ is selected, or to Fig. 21
where a user context ‘colleend’ is selected. Next, at step 1006, the
administrator selects an applet to be configured from a list of all the
applets on the server. See Fig. 17 for an example of selecting an applet.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
23

At step 1008, the administrator then clicks a Run/Customize button to run
the applet selected for configuration. This applet might be a separate
configuration applet for an end user applet, or it might be the end user
applet itself. The selected applet is requested and loaded from the
Server at 1009 and 1011. At step 1010, the configuration applet object is
created and begins to execute and to generate its
ProfileManagementProperties object P.

If it is assumed that the applet is a separate configuration applet
for an end user applet, then at step 1012, the applet calls
p.enablePersistence (configaAppletObject,
fullyQualifiedClassNameOfAppletBeingConfigured). On the other hand, if
the applet is a user applet, rather than a separate configuration applet,
the call would be p.enablePersistence (endUserAppletObject) since it wants
to configure its own preference information as opposed to the preference
information for another applet. The current Context is already known by
the ProfileManagementProperties object P since it was previously set by
the administrator via the administrator’s
ProfileManagementProperties_nonContextFloating object PM_NCF. The location
of the profile manager servlet 214 was previously generated when
enablePersistence was called on the Profile Managers
ProfileManagementProperties_nonContextFloating object PM_NCF. In the case
of a configuration applet, the unique key for the applet does not need to
be generated because it is passed by the configuration applet to the
ProfileManagementProperties object P in the enablePersistence call.

At step 1014, the configuration applet registers itself with its
ProfileManagementProperties object P as a context change listener. As
discussed earlier, this allows the applet’s ProfileManagentProperties
object P to notify the applet if the administrator makes a context change
so that the applet can load the preference information for the new context
and update its Graphical User Interface to reflect the new configuration
information, without requiring that the applet be terminated and
relaunched in the new context.

Operation continues at Fig. 11. At step 1104, the configuration
applet tells the ProfileManagementProperties object P to load the
preferences from the current context for the applet being configured. A
request 1105 is sent to the profile manager servlet 214 to get the
preference information, tailored for the context previously selected by
the administrator, for the applet being configured. The request 1105
includes the appropriate context name (the context the administrator has
selected) and the context type (USER, USER_GROUP, or ALL_USERS_GROUP as
appropriate) and key information to specify the location of the
appropriate preference information. The profile manager servlet 214



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
24

responds with the requested preference information at 1106, which is
cached in the ProfileManagementProperties object P. The configuration
applet gets preferences from the ProfileManagementProperties object P and
updates its Graphical User Interface accordingly.

The administrator configures the applet at 1107 and saves the
modified preferences, for example by clicking a SAVE button provided by
the applet. As a result of this operation, the configuration applet calls
the save() method on its ProfileManagementProperties object p. The
ProfileManagementProperties object P sends the preferences and the unique
key for the applet being configured and the information specifying the
current context to the profile manager servlet 214. The profile manager
servlet stores the preference information in the database 212 in the
location specified by the Context and the key.

Step 1108 is an example of the administrator now changing context,
while the configuration applet is still running. The administrator
selects a new context by clicking on a user or user group (see Fig. 18 for
examples of new contexts in the administrators left screen panel). As a
result of the context change, profile manager 506 sends a set context
message to ProfileMangementProperties object P (510) by calling
P_NCF.setContext (selected NEW context), which in turn causes object P to
notify event listener 512 of the context change via the reload properties
API 515. This occurs at step 1110. At step 1112, the event listener 512
performs a load() call to retrieve the preferences for the new context and
the object P is updated with the new preferences at step 1118. The
administrator can now proceed to modify the new preferences for the new
context, if desired, and to save them i1f required, and then to proceed on
with a new context change if necessary as described above.

The remaining figures 12 through 24 show actual screen snapshots of
an administrator’s workstation while running portions of the profile
manager 206.

The main configuration window 1200 is shown in Figure 12. The tree
view panel 1202 on the left of the window depicts profile management 1204
as one of several services available on the server. When this item 1204 is
selected as shown in Fig. 12, the right panel 1205 of the main window
displays a welcome message for the profile management service. Expand and
contract icons such as 1208 are used to control the appearance of
sub-items under an item in the left panel, if any exist. The ‘+’ in 1208
is called an ‘expand icon’ and indicates that there are sub-items beneath
'profile management’. The administrator can display these sub-items by
clicking on the expand icon 1208, which will then become a ’contract icon’
(r-7).



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
25

Fig. 13 illustrates an expansion of the Profile management item 1208
in Fig. 12, which results in the display of three default sub-items in
Fig. 13 - ’Applets’ 1300, ‘User Groups’ 1302 and ‘Users’ 1304. Expansion
icons indicate that these items can also be expanded. 'Applets’ 1300
allows the administrator to define the user applets available on server
202, 'User groups’ 1302 allows the administrator to create and populate
the user group tree of Fig. 3 and to set group preferences. ‘Users’ 1304
allows the administrator to create new users and to set their preferences
or to change preferences for existing users. In the example of Fig. 13
'Applets’ 1300 is selected. When this item is selected, panel 1305 on the
right of the window displays a list 1306 of user applets that have already
been defined to the system. Attributes of the application that is
selected in 1306 are shown at 1308. The administrator defines a new
applet by selecting <NEW> in 1306 and entering the name and location
information requested in 1308. An existing applet ’‘Database Explorer’ is
shown selected in 1306. At 1308, the ’'Applet name’ field displays this
applet name. The ‘URL’ (Universal Resource Locator) field displays the
Intranet or Internet web address of this applet on server 202. The field
‘Complete path of html file’ displays the directory path and file name of
the applet in the disk directory structure of server 202. The field
'Fully qualified class name’ displays the fully gualified class name of
the applet. The field ‘Icon URL’ displays a web address of the image file
used to generate an icon for the applet on a users desktop. The remaining
fields are for optional information that may be required by the software
upon invocation. A command button 1310, ’'Import Applet List from File’,
allows the administrator to append definitions of applets to the existing
list 1306 from an existing text file. When button 1310 is clicked, the
window shown in Fig. 14 pops-up and allows the administrator to enter the
path and file name of the text file containing the applet definitions to
be appended. To save all pending changes, the administrator clicks on
File 1312 and then Save (not shown).

In the left panel, the User Groups item 1302 corresponds to the
AllUsers group of Fig. 3 (’User Groups’ and 'AllUsers’ are used
interchangeably herein). Fig. 15 shows the right panel of the
administrators station when the ’'User Groups’ item 1302 is selected. In
Fig. 15, a notebook panel is displayed on the right that contains three
tabs - a Members tab 1514, a Subgroups tab 1516 and an Applet Permissions
tab 1518. The Members tab is selected in Fig. 15. The Members panel
contains a list 1520 of the log-on identifications of all members that
have been defined to the system. To create a new user (who will
automatically gain membership into the presently selected group context -
‘User Group’), the administrator selects <NEW> from the list 1520, enters
the appropriate information in the entry fields 1522 to the right of the
list, and then clicks on the Create button 1522. When an existing member



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
26

is selected from the list 1520, the attributes previously saved for that
user are displayed at 1522. These attributes include the full name of the
selected member, the member’s system ID, password and any desired
comments. The attributes, except ID, may be edited and the changes
committed (but not Saved) by clicking the Modify button 1524, or the user
may be removed from the system entirely by clicking the Delete button
1526. Any pending change may be removed by selecting the entry in the
list 1520 and clicking the Undo button 1528-

Fig. 16 shows the administrator’s right panel that is displayed when
the Subgroups tab 1516 is selected. Subgroup list 1620 shows existing
groups that are subgroups of the item selected in the left panel, which is
'User Group’ in this example. Therefore, list 1620 displays all immediate
subgroups of the "AllUsers’ group. In the left panel, ’User Groups’ is
expanded. The subgroups shown in list 1620 are also the expanded items
under ‘User Groups’ in left panel. In list 1620, a status field shows the

present status of each subgroup, such as ’! delete’, ’! Modify’, and '!

Create’. An empty Status field in list 1620 indicates that the subgroup
exists and no actions are pending to be saved. The ’'!’ symbol indicates
that the status is pending (not yet saved). Attributes for the subgroup

selected in list 1620 appear in 1622. These attributes include the
subgroup name and desired comments about the subgroup. To create a new
subgroup, the administrator selects <NEW> from list 1620, enters the
subgroup name and desired comments in 1622, and clicks the Create button
1628. An entry of ’! create <subgroup name>’ then appears in list 1620
as a pending action. To save all pending changes, the administrator
clicks the File button in the top menu bar and then Save (not shown).

Fig. 17 shows the right panel that is displayed when the Applet
Permissions tab 1518 1is selected. List 1720 shows all names of all
applets that have been defined to the system and the permission status
(permit or deny access) that is assigned to each applet for the group or
subgroup (the current ’‘context’) that is selected in the left panel. As
with other notebook pages described, an exclamation point indicates that
the status depicted is a change that is pending a Save. In Fig. 17, the
group ’‘User Groups’ is selected in the tree shown in the left panel, which
corresponds to the ’AllUsers’ group shown in Fig. 3. Since all users of
the system have membership in the ’‘User Groups’ group, list 1720 shows the
global default permissions for all system users for each applet defined to
the system. For example, the default permission status for applet
'Database Explorer’ is ‘permit’ (meaning access is permitted) for the
‘AllUsers’ group; similarly, the default permission status for all users
to applet TFTP is ‘deny’ (access is denied). The administrator can change
the permission status of an applet by selecting it in list 1720 and
clicking the 'Permit group access’ button 1730 or the ‘Deny group access’



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
27

button 1732. Furthermore, regardless of an applet’s permission status for
the selected context, an administrator can select an applet from 1720 and
click the ‘Run/Customize’ button 1734 to execute the user applet under the
selected context. The panel region previously showing the notebook for
the current context then becomes occupied by the executing user applet.
If the user applet happens to be a configuration applet for other
software, the administrator can then save software preferences (through
the configuration applets unique facilities provided for this function)
which will then be saved as the software’'s default preferences for the
selected context. If the applet is an end user applet, the functions are
the same, except the end user applet loads and saves it own preferences
rather than preferences for a separate piece of software.

Fig. 18 shows the complete ekpansion of the administrators left
panel subgroup tree beneath ’'User Groups’. Immediately beneath ’User
Groups’, there are two subgroups ‘Administrators’, a default subgroup that
cannot be removed, and 'IBM’‘, a subgroup defined by the administrator.
The 'IBM’ subgroup has also been expanded and contains three subgroups
'Hardware’, ’'Services’ and ’'Software’. The ’Software’ subgroup has been
expanded and contains at least one subgroup called 'Development’. The
'Development’ subgroup contains at least one subgroup called NCoD.
Subgroup ‘'NCoD’ contains a number of subgroups, such as ConfigFW 58, which
have no children. Also in this example, subgroup ‘Development’ is
selected in the expansion tree. Since 'Development’ is not at the top of
the tree hierarchy (the ’All Users’ group), the notebook shown in the
right panel is somewhat different from that of Fig. 15 when 'User Groups’
was selected, because all users are not automatically a member of
'Development’, as they are of ’'User Groups’. The list 1820 displays the
log-on system IDs of all system members. The status beside each user ID
in 1list 1820 shows whether the user owns a membership in the ’‘Development’
subgroup. A status of ‘yes’ indicates that the user is a member of the
'Development’ subgroup, ‘no’ indicates that the user is not a member of
the ’'Development’ subgroup, and ’inherited’ indicates that the user
inherits membership within the ’Development’ group by belonging to at
least one of Development’s subgroups further down the tree. A user’s
membership status for a subgroup is modified by the administrator by
selecting the user in list 1820 and then clicking on the ’‘Add to Group’
button 1836 or ’'Remove from group’ button 1838. If the administrator
wishes to create a new system user, or modify or delete an existing
member, the administrator clicks on the ‘Create/Modify/Delete Users’
button button 1840. This action brings up the notebook page shown in
Fig. 19. The right panel of Fig. 19 is similar to that of Fig. 15 and
allows the administrator to create a new system user by selecting NEW in
list 1920 and then clicking the ‘Create’ button. Similarly, the
administrator can modify or delete an existing system user by selecting



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
28

the appropriate user in list 1920 and clicking the appropriate button
'Modify’ or ‘Delete’. Users created at any subgroup context (e.g.,
'Development’) not only gain the reduired membership in ’‘User Groups’, but
are automatically made members of the selected subgroup. Changes to the
system user list are saved by clicking on "File’ in the top menu bar of
the right panel and then clicking ’Save’ (not shown).

Fig. 20 shows a direct way to get to the system user list for
editing, rather than through the group and subgroup route shown in Fig.
19. To get to Fig. 20, the administrator selects ’'Users’ 1304 in the left
panel of Fig. 13, for example. Then in the right panel shown in Fig. 20,
the administrator can create new users and modify and delete existing
users, as already discussed., without being in the context of a group or
subgroup.

In Fig. 21, the administrator wishes to work directly on information
corresponding to a user whose ID is ‘colleend’. To do this the
administrator expands ‘Users’ in the left panel of Fig. 21, for example,
and then selects ‘colleend’, as shown. The right panel then appears,
which is devoted to colleend’s system information. The right panel
contains three tabs. The first tab ’'User Information’ is selected by
default. In this tab, the administrator can modify the name, ID, password
and comments pertaining to colleend.

Fig. 22 shows the right panel when the administrator selects the
second tab ’'Group Memberships’. List 2220 shows all subgroups of which
colleend is a member. The subgroups are shown in this list in the order
of subgroup priority for colleend. The administrator can change
colleend’s subgroup priority by selecting a subgroup and using the up and
down arrows to the right of list 2220 to move the selected subgroup up or
down the list as desired. If the administrator clicks the ’'Add/Remode
Group Memberships’ button 2242 in Fig. 22, the right panel then shows the
contents of Fig. 23. The Fig. 23 right panel allows the administrator to
modify the subgroups of which colleend is a member. The administrator
does this by clicking on an appropriate box corresponding to a desired
subgroup. If the box is clear (meaning that colleend is not presently a
member), then a check mark is added to the box to include colleend in the
subgroup. Conversely, if a subgroup box is already checked, then clicking
on the box clears the check mark and removes colleend from the subgroup.

Fig. 24 shows the right panel when the Applet Permissions tab of
Fig. 22 is selected by the administrator. In this right panel, list 2420
displays all applets that are defined in the system. The administrator
can permit access by colleend to an applet by selecting the applet in list
2420 and then clicking the ’'Permit user access’ button 2430; or access can



10

15

20

25

30

WO 99/57863 PCT/GB98/03866
29

be denied to colleend by clicking the ’‘Deny user access button’ 2432. The
administrator can also launch an applet in the context of colleend by
clicking the ’‘Run/Customize’ button 2434. When this is done, the applet
selected in list 2420 is launched in the right panel. The administrator
can then modify any preferences that the applet allows and save the
preferences in the manner provided by the applet. A typical scenario here
is for the administrator to launch a configuration applet then to fill in
a variety of preference fields. However, if a separate configuration is
not provided for a user applet, the administrator can launch the user
applet in the context of a user and set preferences from the user applet.
A typical scenario here is for the administrator to select a group or user
context and then to launch the user applet as described above. The
administrator can then typically modify preferences from an options menu
and save them in any manner provided by the user applet. For example,
typically, the user preferences are saved when the options dialogue is
closed, or the user applet may provide other methods of saving the
preferences. In any event, since the administrator is running the applet
in the context of colleend in this example, the preferences set up by the
administrator through the user applet are saved on the server as if
colleend had entered them directly herself by running the applet.

Not shown in the figures is a scenario whereby a user can modify
some preferences that pertain to a user applet. For example, a user
applet may allow a user to select a window background colour or fonts and
font sizes, so that each system user can individualize the applet to some
extent when the user applet executes on the users desktop. In this case,
the user modified preferences are saved in the same way as they are when
the administrator runs the user applet. One difference, however, is that
the administrator can run user applets to set preferences in group
contexts, whereas users can only affect preferences for their individual
context.



10

15

20

25

30

35

40

45

WO 99/57863 PCT/GB98/03866
30

CLAIMS

1. In a network system comprising a network interconnecting a server
and a plurality of user stations, a method of managing desktops on the
user stations from the server, wherein the server stores a plurality of
user applications for downloading to user stations, and further stores
access permissions for the applications for each user, said method
comprising steps of:

receiving at the server a log-on request including a user identifier
from a user station;:

using the identifier to build a list of applications for which the
user has access permission;

downloading to the station the list of applications for which the
user has access permissions; and

displaying on a portion of the desktop objects corresponding to each
application in the list, said objects when selected by the user being
operative to request a download of the corresponding application to the
user station.

2. The method of claim 1 further comprising steps of:

using the user identifier to built an icon on the desktop that

represents a user application specified by the user at an earlier time;

for each user desktop icon specified by the user at an earlier time
that corresponds to a user application, checking the access permission for
the user to the user application; and

omitting from the desktop any such user-specified icon corresponding
to a user application to which the user does not have access permission.

3. In a network system comprising a network interconnecting a server
and a plurality of user stations, an apparatus for managing desktops on
the user stations from the server, said apparatus comprising:

means for receiving at the server a log-on request including a user
identifier from a user station;

means for using the identifier to build a list of applications for
which the user has access permission;



10

15

20

25

WO 99/57863 PCT/GB98/03866
31

means for downloading to the station the list of applications for
which the user has access permissions; and

means for displaying on a portion of the desktop objects
corresponding to each application in the list, said objects when selected
by the user being operative to request a download of the corresponding
application to the user station.

4, A computer program product stored in a computer readable storage
medium for, when run on a computer, carrying out in a network system
comprising a network interconnecting a server and a plurality of user
stations, a method of managing desktops on the user stations from the
server, wherein the server stores a plurality of user applications for
downloading to user stations, and further stores access permissions for
the applications for each user, said method comprising steps of:

receiving at the server a log-on request including a user identifier
from a user station;

using the identifier to build a list of applications for which the
user has access permission;

downloading to the station the list of applications for which the
user has access permissions; and

displaying on a portion of the desktop objects corresponding to each
application in the list, said objects when selected by the user being
operative to request a download of the corresponding application to the
user station.



WO 99/57863 PCT/GB98/03866

1127

=

106
Workstation

106

108

Workstation LAY <3
Administrator
102 Lot
Desktop PC aptop computer )
Fig. 1
Server 202
o Client Database 212
Admlmstra(t)or ien User Data
200 Group Data
Software Access Data
Software Preferences
[
214
Profile Manager Serviet
206
— 208
Profile
Manager Applett
210 203 Webzéirver

Profile Mgm Properties P

Fig. 2



PCT/GB98/03866

com.ibm.App3: x = 2
com.ibm.App6: a=1, b=2

GroupY

WO 99/57863
2121
AllUsers
com.ibm.App3: BG=Blue, x=1, y=2, z=3
com.lotus.App3: x=2, y=3, z=4
com.ibm.App4: BG=Gray x=2,y=2, z=2
com.ibm.AppS: BG=White x=2, y=3, z=1
GroupX

GroupY'1

com.ibm.App3:y=3
com.ibm.App6: a=33

Usert

com.ibm.App3: BG = Green

GroupY2
com.ibm.AppS:y = 4

—_— - —

1

UserN
com.ibm.AppS: x=2
com.ibm.App4: y=3

UserList
User Group Priority
Usert: AllUsers.GroupX 1
AllUsers.GroupY.GroupY1 2
AllUsers 3
UserN: AllUsers.GroupY.GroupY2 1
AllUsers 2

Fig. 4




WO 99/57863 PCT/GB98/03866

3/21
Administrator Applett - 508
l Server 202
512 522
506 Event Config file(s)
Profile Listener for retrofitted
Manager hardware
I l
z 520
[} Export Agent
3| ol 2l 8
ol 2] 8| 8] T AP| T
ol gl 8 S 3le| V515
g o g gl o 88 e export(properties, context)
o el 9 s 8o
S 3ol @l 9 9l
o ol ol 2] 8| Sia
ol ol T © et
= 21 2| 3| g| 8| 514
alel 8l | = Profile Manager Serviet
= w *
API & -
516 3
‘? I Y V¥V Yy
210 518
Profile Mgm Propetrties P ~ Web Server
Fig. 5
602
600 User Applet2
User
Load() Save() List() Context()
"
@ g pui
Y Q >
s @ 8] 9@
) © ol &
p P a4l o
4l 3 9 3
@ 3l S| @
o - = -
a al £
(0] 6" E
y 9 @
604
Profile Mgm Properties P
o
o —
g 9
= 1
[e2] [}
@ X
606

Server Flg 6




PCT/GB98/03866

WO 99/57863
L1 27
© 100 702
( Client Server
-
704 serverURL.Desktop.html g
D 706 Challenge
708 User 1D, Password g
= 710 Desktop Object
712
Load and execute
Desktop Object
714

End User Desktop
Object - Generate
ProfileManProperties
Object P

716
P.enablePersistence(

this) _
1) Get URL of Profile 718 Req. context of user (ID, Password)
Manager Serviet 214
from Desktop Objedt,
2) Get user ID from

A

~ 719 Context (1D, User)

Desktop Object,

3) Generate Key = -
fully qual'ed class 720 Req. preferences (Key, Context( ID, User)) (ID,
name for Desktop Password)

Object

A

722 Preferences

To Fig. 8

Fig. 7



WO 99/57863

From Fig. 7
~ Client -
( Continued

Y

800
Desktop object -
get desktop
preferences

5121

PCT/GB98/03866

From Fig. 7

Server -
( Continued

802 Req. Applet list (Context(ID, User)) ID, Password

F

806
Build Applet folder in
memory and
generate applet
window

808
Preferences
include Applet
outside of Applet
window?

Yes
Y

810
Check user

804 Applet List

Not

authorization to
Applet

OK
y

812
Generate Applet
preferences icon

/

OK

Y

814
Delete Applet from
preferences

v

818 Save(Context, Key,

Save

preferences |

816 Preferences) 1D, Password

-t

Done J

820 Save response

Fig.8




WO 99/57863

900
Client

Administrator
N——

6121

PCT/GB98/03866

802
Server

. 904 URL.ProfileManager.html

7

906 Challenge

Y

908 User (Administrator) 1D, Password

-
“

A |

912
L.oad and execute
Profile Manager

I |

814
Profile Manager -
Generate
ProfileManProperties
_nonContextFloating
Object P_NCF

* .

916
P_NCF.enablePersis
tence(This)

1) Get URL of Profile
Manager Serviet 214
from Profile Mgr,
2) Get Adm D from
Profile Manager,
3) Generate Key =
fully qual'ed class
name for Profile
Manager

910 Profile Manager Object

918 Req. Adm context (ID, Password)

920 Context

&

922 Req. Adm preferences (Key, Context(ID, User) 1D, Password)

924 Preferences

To Fig. 10

Fig. 9




WO 99/57863 PCT/GB98/03866

1121

From Fig. 9 From Fig. 9

Client - Server -
Continued Continued
1002 Req. info for tree (iD, Password)

Build teft panel of adm
config window -

Tree info

y
1004
Adm selects config.
context from left panel

Y

1006
Adm selects applet to be
configured

/
1008

Adm clicks Run/Customize
to run config applet (or end 1009 Request applet
user applet)

l<
Y 1011 Retum applet

1010
Config. applet (or end user
applet) generates its
ProfileManagement object
P

y

1012
Config. Applet calls
P.enablePersistence(this,
fuli qual'ed class of applet
being configured)

y

1014
Register as context change
event listener

Y Y

{ ToFig. 11 ) To Fig. 11

Fig. 10



WO 99/57863 PCT/GB98/03866

8721

Client - From Fig. 10 From Fig. 10 @
i Continued
Continued

4

S
\

1104 1105 Req. preferences (Key, Context) (1D,
Config. applet calls Password)
P.load() to get :
preferences for config.
context N 1106 Preferences
/
1107

Configure and save

Y

1108
Administrator changes
context

v
1110
Call to config. Applet
to reload preferences
for new context

Y

1112
—= 1114 Req preferences (Key, new context) (ID,
Event listener does B Password)

P.load().

P
\

A

1116 Preferences

4

1118
Profile Mgm Properties
object P updates
preferences

Fig. 11



PCT/GB98/03866

9121

WO 99/57863

cocl

/

7 [ @ & NS E Buiuni sjie)2 o101 1NG 30u1s1s1ad oM N WL Wed 13iddy| \ |
~ WIBISAS By} -
saplaoid Jususabeury \
allold judlo

QONS ‘Aljeaytaadg

'S|8A8| dnoib

pue 1asn auj ui0q

1e saauasejsid js|dde
pue suojss|wad

-l 181dde |osju0d
0} Alljlge au} sapnjaul
siyj 'sdnoiB-18sn pue
s1asn 4o afiugl 8y} 40} voct
sasuslsjeid 8inbyuos Q3NIL @
o}.iojensiuiwpe Qdldl -
we)sAs 8y} "

smojje Juswebeuey uewiaheuew liod LR

81y01d JudlD puewag-uo pooyioquBiieN &# -

S3N @

- p 18AI8SOBAA 09 SNJOT ¢ -

. dOHQ m-®

ijuawebeuey 9)110id 01 SWOISAA eNaQ 1

— huawaBeuep aiyoid 0} ewoaam 1se1-buol -
_ “oien [~ e _ “ disH _ “ suondo _ * pajaa|as _ “aal)
M0 OI)RING I -U( N3 e T
~ Py

rentt s s e ™ ra i miimy s rmiire wmin wear maressdindiiaigmena N i e AT

zL Big

s0¢} 002}



PCT/GB98/03866

WO 99/57863

10727

OlEL —P _

4 »
-~

o

SjUBLLIWOND
HIOMJBNEALAIALO0IAS 8)-DUOL/aNY _
TN uol|

s18)auesed ja|ddy

gu.ucanoco.v_SEmZm,Ee.Eou_
auwieu sse|s paylenb Ajn4

T.mm__..* Buipoddng ajela0ssy

37 X8AQPUBWB QUOTTIALHWMAMD _
8|y lwiy Jo yied sjajdwiod

a"aapuewaquogsal-buosrdyy |

opun

8818

LE

N
1810[dx3 aseqeeQ _

aweu ja|ddy

80¢€l

_ AIPOW

3jeal)

:

ooel

“'8]14 Woi4 s jejddy yodw|

_Iﬂ | v
+ 1884 AW

Zisel AW

ddy Jopusp

uoD YI0MJaN8 puewaquo
81ddy 6507 maIA 892114607
10 puBwWaq-uo sabesssi
puewiaqQ uQ safesssiy
S4N

dldil

18l0jdx3 aseqeieq
JayauneTis|ddy
uewaq-uQ pooyloqysbisN

uews-uQ pooyloqubieN
InByuoD Ayjjjaed saesyBon
Aloe 4 esely6on

19 puewe@-up safiessol
puewaq uQ safessap
SiN

dldl
1as0jdxg aseqgeeq

\ awieu39yddy

Isijelddy

— sja|ddy (3]

, “ djeH _ “8ll4

Q3NIL *x-
QdLdl -

voel
I/' siesn 9 @

Ot} —— sdnosg 18sn :a
00g} ——

EmEmamcmE m_coi g
puewag-uo poouioqubieN &

Ziel IBAIBSTBAA 0O SNIOT #gy-

1s8)-buoy

¢l ‘Bi

&
|
|
3
N

4
d -0

w “ disH w *suondgo _ * pajisjsg _ “e81)




PCT/GB98/03866

WO 99/57863

A

_ ..._mcoo
_ﬂ@a

3|1} Jo yied ajs|dwo

'1S0} 8q 0} paAesS uaaq
Jjou aaey jey} safueya Buipuad Aue asned jjim a|y e wol s 1ajdde ue Buipodw)

914 o4 1s1 191ddy Wodhwy

vl Dl



PCT/GB98/03866

WO 99/57863

12127

jpaAes jou sabuey)

o , e
-~ Lﬂ »
8zsh |7 Brew
ylew
= AnB uisny | 9z51 0z04q
SUENI )] B0
piomssed yjuay
opun
_ uLyuoY . ses|f
_ PIOMSSEY eleleq quii
NIpoW
Apoom | al oj28q 8je81d
aweu _ 8)1e8Id <M3N>»
8 n
PIBAMPOOAA >2m_ i \ \\ - al{ dysoquisy
\ 0csl ereen
pZG| pZe ! ‘dnoiB S|y} Jo s1aquisw Yaldxe 81e s1asn iy

— mco_ww_EEEma%a — w%oan:mmﬂ

dnoio 10)sep :dnoin

siequisiy @

A3WIL *5-3

QdLldl "6

slasn @ ﬂ
sdnoly 1as .

91350 xfw

si8|ddy aﬂ

juswaleuew a|yoid H-0

puewsq-up pooyIoqybieN i

SiN #%-®

18A18SQ8AA DO SNIOT *gg -

dOHA #-®

SNQAQ #xy-

1se1-buos -0

o

—.a_mI m;wco_ao ~>umsm_mm *‘»mmﬁ

“dia “a
815} — ey \‘v‘sr I8H | end

2 U

AP IV

GL "B




PCT/GB98/03866

WO 99/57863

13121

Ip8AeS Jou safiueyd

K E Q3NIL *5-8
Adld4l *%-®
_l_.l_ E siesnN ¢ -@
. o1 Hp-2
wal e
_ opun SI0jRNSIUIWPY 3«_
— iPe1sI8p 89 j0UUeD _Imﬂa sdnouo Jasn B X
PTTIYS | siopensuiey | So1ddy £
_ AIPOW «H_mmh sl01ep | juswsbeuew 8|yold .ﬁm.
auwieu _.g C oMane PUBWBQ-UO POOUIOGUBIEN 8-
S sigjensiuwpy | dnoio \ TS SN -0
\‘ \ 5 dnoBans JBAIBSTBAA 0O SNJOT _..#Nr
8291 dOHQ #x-
229l ozo,  dnoupiajsen :dnoip SNaa «#:_
— suolssiuuad jaddy (] F sdnoifans 4 k SIELMEIE 1sej-buas -0

_.n_mx _,m_; _.a_mx _Jco_ao _.u%m_mw _,8;

JUWOLBUEY UONRINGIJUOT) PURMS(]-U() JIOMJNQ

9} bi4



PCT/GB98/03866

WO 99/57863

V6129

ceLl

vell

ipeaes Jou sefueyd

_ ssa29e dnoib Auaqg

_ $5899 dnoJB Juwisd

015748

P | ezWoISNOUNY
>_c02m_an<u§_§on§>ocm|_

g T
* 3@-uo pooyioquBbieN Ausp

3Qg-u0 pooyioqubieN Huwned

100 Aljjoe 4 83elsBon Ausp
Anse 4 aaessb0 Auap |

Bwaqg-uo sabessap Ausp

ewaq uo sabessap ywiad
S4N nwiad |

diil Auap

Jamdig aseqejeg - hunad
awew o ddy :o_mw_zzoa_l_
1sNi8jddy

0CLL  dnoig seysey :unouo

— suoissiwiad 18iddy (7] — sdnoiBans #yy — SIBqUBW ]

Q3INIL "B

adldl %@

siesn @ -@

1531 H}-® w

wel #1-® |
ngw_c_&u( i LM.V
,w
,a

sdnota 122N #a
sia|ddy [y)
Juawabeuew ajyoid vﬁm_
puewsg-uQ pooyloqubiaN &%
SiN #-®

19MBS0BAA 0O SNJOT *g -~
dOHQ #-@
SNQAQ &%
1$8)-buod G@

_ * diaH _ ‘8l

_ “djaH _ “ suondo “ “ pajalag _ “a81]

JUSUIRSEUR]] UONRINGIUOT) PUBUIR(]-U() JIOMJIN .




PCT/GB98/03866

WO 99/57863

1572

ov8l

————P-| 'si85N 618180IKIPON/AIERID

Ajuo slaquiaiu j1d1dxe moys I._

jpaaes jou safiueyd

10 wol) sAows

8e8l
|

v

oest

dnosb 0} ppy

0Zsl

4
S
_...|_| buoi pajlayul
L S|UjWpPY ou
Byiew pajuayul
uxiew ou

pauany

yiuax pajeyul

—

-

g 4

Bou  peluByul

—-

ses|| pajueyy |

quiyy ou
<M3N>

~al Ezwhan:_c.ip

1sJesn

weswudojaaaq :dnoin

— suojssiwiad js|ddy (F) _ sdnoi6ans ¥t — sisquisiy @

wibold -
abpemiN W3- I
wswA -
neysul Hg¥-
NNd| #3-
NS Y-

ETER > 2

x3eieq Hy-

dOHQA ¥}

SNQQ #¥-

M4BuUcD :a!

QOON sﬂu
uawmdola3raqg :dnw

alemyos #3-

saaines g}

siempieH ¥}

wal -0

siojelsiuIwpY s.e

sdnolo Jasn _40..@

siaiddy mm_w.u

uswebeuew eiyoid Y0

puewag-ug pooYIoqubiaN ¢#k-

SdN *-@

18AMIBSOBAA 0O SNI0T *xx--

dOHAQ "B

SNQQ %%~

* “ dieH _ “eii4

— 158}-buol E -

_ “ diaH ~ “ suondo _ “ peydajag - Y

AP

gl DI




PCT/GB98/03866

WO 99/57863

16121

ipeaes jou sabueyd

4 >
-

_.ﬂ| UMD|3

Sjuawiwicd

piomssed
_ wiguod

_ plOMSSEd

ozoq | al
auleu
ozog _ n4

Aluo slaquiawi J1a1dxa mous L

« J I

buoJ pajayuy

LBlSIUjWPY ou
ux:wE pajusyul
wiiew ou

_.843 pajuayy)
B3912 peajusyul
_ a181eq uuey  pejueyyl
u
_lw_ulos_l sesj| pawayul |
quug ou
_ a8iesld <M3N>
- o__n_:w.onp.:os__u

\ 1S 188N

0zsl wistudojaaeq :dno1o

~ suoissiwiad ia|ddy (] — wn:oan:mi — sisqusiy @

“ * djaH _ “aild

oo
-

1wbpyoid u.ﬂ
afpamiN a
wswn i
neysui gy
NNdI s
nNo s

dl4 a
x3ejeq a
dOHQa :ﬂ

sNaa Y-
M464U0D Y-
QoON H#t-
awdolaaaq i.ﬁu
8lemyos s-
s$8Jnes mﬁ.-
siempieH s

wel {10

siojels|uwipy Y-
sdnolg Jesn mﬂn._.u

sisiddy 81

juswabeuew 8jyoid gn.u
puewaq-uo pooyioqubiaN £
SiN -

13MBSHAAA 0O SN0 #xy -
dOHQ % ®

SNQAQg &~

1sei-buos -0

-®

_»a_mI _ “ suopdo w * pajie|es _ “s8l)

U D » -

Ay
o .

6l bi-




PCT/GB98/03866

WO 99/57863

17121

ipsAes jou sabueyy

4 »
-

~ UAD] U] UMO|I M8U

SjUBWIWGY

piomssed
wiyuo

_

plomssed

—

AsnI _ ql

aweu
UMoiD ‘L™ _ n4

opuUN
EIEIELe)
NIpoW

818810

LEEE

-

) — _v
buoi
ojeqsiuiwipy
Brsews
wiiew

0zog 3Blap |
(R
yjuex
sesl
qui

— af smes| |

1snJesn

~ siasn @

—.%x. —.m_c

G3WIL *-E

adlil %@

B » o

sdnoio 18sN g
s)a|ddy a&
uswabeuew 8jyoid Y-
PUBWBQ-UO POOUIOGUBISN &8k~
SdN #%-®

18AIBSUBAA 0O SNJ0T -
dOHQ #¢-C

SNQQ &%k

1s81-buo) ED

pus)

—>2m1 ﬂ.mco_ao m»usum_mm _.mm:,

“JUIUIOGEUR Y UONRINSIIUOL) PUBUD(]-U() JIOMJAN2




PCT/GB98/03866

WO 99/57863

18/21

ON 'dLy
zos/ized
~ ‘1adojaAsp INO pes|luswiaheuey 8jyold

SUBWIWCY

_ " plomssed wiyuod

_ opun _ plomssed
_z_uos_ pusslod _ al
fuorag cmm__oo_ aweu jjin4

— mco_mm_c:mmsa%@ ~ sdiysiagquap a:o_oi _ co:mc:er:mmb ®

pUAaN03 113SN

ubeit @ -
yabioeh @ -
ylaqezijia @ -
R 2 -
020gq @ -

syeq @ -
sellleyd @ -
JolRAISIUIWPY @ -
siesn @ B

— sdnoi9 iasn Y@
sja|ddy M%

uawabeuew ajyoid §®
puewaq-uQ poouloqybiaN i€
SN #xy-®

18AI8S03M 0O SNJOT] ey
dOHQ -3

SNAQ *g

_ “diaH _ a4

ca 188)-buol ﬁ -0

_ “ diaH _ “ suondo _ “ pajaajas — “8al]




PCT/GB98/03866

WO 99/57863

19121

ipaAes jou sabueyd T

A =t _ sdiysIaquap dnoio sA0WAY/PPY
181l 3y} Jo doj ayy je sieadde Quopd jsaybly ayL

o _ L

sdnnig 133N

1 Tv'yiseL'sdnolg Jasn i

_ opun _.ﬂ. |8A8Q B1EMYO0S WAl SENCIQ 185N

awet a:oho_

\ 18pI0 Alold dnoig

PU991j02 1 19SN

0cee

ﬁ suo|ssiwiad 1aiddy (3] k sdiysiagquiap dnoio ¥ — uoleuNOUf J3SN P

ﬁ.a_wf _ “ a4

uhaib
yabioah
yleqezi|s

3
i

0zoq
sueq

H

saiueyd
10]eNSIUIWPY
s1esn @ -@

sdnoig 18sn mﬁs
sislddy (%) I
juswabeuew aiyold Ht-0

L I B B B B IR B B

puewsq-uQ pooyioqybiaN m,n,...nr
dOHQA 3%

i
i
SAN gy

1BAIBSOBAA 0O SN0 -

SNQQ 8_

— 1s8)-buol ﬁ@

v “ djaH “ * suondo _ “ payssiag —pmmﬁ




PCT/GB98/03866

WO 99/57863

20121

jpaaes jou sabueyn — "auog

< — T !
:. NE® %
v O
1581 -8
ssles [
Bunaxiew ]
WYIA [
wood [
Qaw|L D_
abyey -
dLiil D“
o jwbpgold E.;”
sdiysiaquiap dnoig

PUSS(I0 1188

— suoissiuiad jejddy (i) — sdiysiaquisi dnoso g} — uojewiou} 1asn @

ybaib
yahioab
uliegezie
puaa|od
0z0q
speq
$aleyy
10jensiuwpy .
siesN ¢ -0
sdnoiQ 1asn :am.u

sja|ddy 81

luawabeuew e[yold an.u
puBWaQ-UO POOUIOqUBIBN 4
SN *x-@

18MASUBAA 0O SN0 #xy.-
dOHQ *%-®

SNQAQ #ys--

0 8 8 *D 8 B 8 0 o

- 1s3)-buos E -0

* * diaH _ * 8|14

_ “dieH _ “ suondo _ “pajdsjag _ “a8l)




PCT/GB98/03866

WO 99/57863

211N

peve
AluO siejddy pay

_ " 8ZIWLOJSNOUNY

jwiad moysg .D_

J I

_lﬂ
- dLd

euew adAf 8ainosay
tewaq uQ sabessapw
lai10jdx3 aseqejeq
isyoune )s|ddy
aQ-uo pooyloqyubisN

_ 558238 135N AuBQ

Anoe 4 saes jyhio
lelwwa@ uQ ssfiessap

\ _ $S8328 JasN jlwiad

ceye

oeye

gl

awuen 19jddy

1a10)ig aseqeleq

juiad
hwiad
nuiad
Juwuad
Huwiad
nuad
ywied
huusd
yuiad
:o_mm_zzou_._

..Qene

suo|ssjuiadjaiddy (7] F

sdiysiaquiap dnoi9 g — uojewIoujlasn @

IsMieiddy

pPUBSJ10 119S]

puewsqg-uo pooyioqyblaN s -

ybaib
ysfiioah
ylegezyie
puas||o)

H

0204

syeq
Sallleyd
10jBASIUILLIPY
siasn -0

sdnolg 1asn mﬂ—&
sia|ddy mﬂ_@

juawafeuew a|yoid a.,n.u

b B B B0 BR. IR BE. B BRJ

SIN #-@®

18AIBSQBA 0O SNJOT] #y ...
dOHQ #%-®

SNQQ #¢ -

1s8}-buo @ -8

_ * diaH ﬁ.m_:

“disH

“suondo _.omsm_wm _>mm_._,




INTERNATIONAL SEARCH REPORT

Intert 1al Application No

PCT/GB 98/03866

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6  HO04L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6  HO4L GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
P.X WO 98 50853 A (PINNACLE TECHNOLOGY INC) 1-4
12 November 1998
see page 10, line 4 - page 11, line 5
see page 15, line 28 - page 18, line 21
see page 20, Tine 9-20
see figures 1,2
Y CRIPE B E ET AL: "A COMMON DESKTOP 1-4
ENVIRONMENT FOR PLATFORMS BASED ON THE
UNIX OPERATING SYSTEM"
HEWLETT~-PACKARD JOURNAL,
vol. 47, no. 2, 1 April 1996, pages 6-14,
XP000591784
see page 7, right-hand column, line 6 -
page 9, left-hand column, line 11
see page 10, right-hand column, line 20-27
Sy
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

invention
"E" earlier document but published on or after the international

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

filing dat "X" document of particular relevance; the claimed invention
fling cate cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y' document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016 Lazaro Lopez, M.L.

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date ciaimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
2 July 1999 09/07/1999
Name and mailing address of the ISA Authorized officer

Fom PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2




INTERNATIONAL SEARCH REPORT

intert al Application No

PCT/GB 98/03866

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

Y "ADMINISTRATION OF GRAPHIC USER INTERFACE
AND MULTIMEDIA OBJECTS USING COOPERATIVE
PROCESSING"

IBM TECHNICAL DISCLOSURE BULLETIN,

vol. 37, no. 9, 1 September 1994, pages
675-678, XP000475542

see the whole document

1-4

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2




INTERNATIONAL SEARCH REPORT

) Intert al Application No
Information on patent family members PCT/GB 98/03866
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9850853 A 12-11-1998 AU 3123597 A 27-11-1998

Form PCT/ISA/210 (patent family annex) (July 1992)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

