wo 20207190808 A 1 | I 000V KO Y000 0O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
24 September 2020 (24.09.2020)

(10) International Publication Number

WO 2020/190808 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 9/30 (2018.01) GO6F 9/38 (2018.01)

(21) International Application Number:
PCT/US2020/022846

(22) International Filing Date:
14 March 2020 (14.03.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
62/819,435 15 March 2019 (15.03.2019) UsS
62/819,337 15 March 2019 (15.03.2019) UsS
62/819.361 15 March 2019 (15.03.2019) UsS
62/935,670 15 November 2019 (15.11.2019) US

(71) Applicant: INTEL CORPORATION [US/US]; 2200
Mission College Blvd., Santa Clara, California 95054 (US).

(72) Inventors: RAY, Joydeep; 727 Misty Ridge Cir, Folsom,
California 95054 (US). JANUS, Scott; 4670 Vista Drive,
Loomis, California 95650 (US). GEORGE, Varghese; 460

Tobrurry Way, Folsom, California 95630 (US). MAIYU-
RAN, Subramaniam; 1915 Black Slate Court, Gold Riv-
et, California 95670 (US). KOKER, Altug; 8241 Tre-
vi Way, El Dorado Hills, California 95762 (US). APPU,
Abhishek; 8032 Murcia Way, El Dorado Hills, Califor-
nia 95762 (US). SURTI, Prasoonkumar; 1408 Kilrenny
Ct, Folsom, California 95630 (US). RANGANATHAN,
Vasanth;, 3620 RoseCrest Circle, El Dorado Hills, Cal-
ifornia 95762 (US). ANDREI, Valentin, 320 Crescent
Village Cir., San Jose, California 95134 (US). GARG,
Ashutosh; 1900 Prairie City Road, Folsom, California
95630 (US). HAREL, Yoav; 5955 Van Alstine Avenue
#49, Carmichael, California 95608 (US). HUNTER, JR.,
Arthur; 2122 Decente Ct., Cameron Park, California 95682
(US). KIM, SungYe, 1844 Orchard Terrace Ct, Folsom,
California 95630 (US). MACPHERSON, Mike; 12476
NW Hibbard Drive, Portland, Oregon 97229 (US). OULD-
AHMED-VALL, Elmoustapha; 5000 W Chandler Blvd
M/S: CH7-401, Chandler, Arizona 85226 (US). SADLER,
William; 1900 Prairie City Rd FM5-2-D1, Folsom, Cal-
ifornia 95630 (US). STRIRAMASSARMA, Lakshmi-
narayanan, 2073 Tarbolton Circle, Folsom, California

(54) Title: SPARSE OPTIMIZATIONS FOR A MATRIX ACCELERATOR ARCHITECTURE

/3002 3004
01010{0]0(0]0]0 1{0O]0[0]O]0[0]0
O[o]jojOJO|1][4]7 O[5[6]|0]0|1]4]7
0{0]0]0I8]9]0(0 0[O[0]0]8]9]0]0
0[0]0]0]9]0[1]1 0]0)10[0]9[0]1]1
0[{0]0]010]0[0[0 X 0[0[0]0]0O]0]0]0
O11]1[{410]0(0]0 0[1]10[(0]0]0[0]0
5(810[0]0(0]0]0 0[0]10[0]0]0[0]0
0[0]0]0JO]O]O[O 0[0[0]0]O]0]0]0

/
l Single non-zero value ¢
3012 Suggioa;[rlx “ol4
/) Z
0f1 1|1
1{0 00
FIG. 30A

(57) Abstract: Embodiments described herein include, software, firmware, and hardware logic that provides techniques to perform
arithmetic on sparse data via a systolic processing unit. Embodiment described herein provided techniques to skip computational oper-
ations for zero filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data compression through
to a processing unit. Embodiments additionally provide an architecture for a sparse aware logic unit.

[Continued on next page]

WO 2020/190808 A 1| [0} 18901 00O O

95630 (US). VEMULAPALLI, Vikranth;, 677 Westch-
ester Drive, Folsom, California 95630 (US).

(74) Agent: HAMILTON, Howard S., Jaffery Watson Men-
donsa & Hamilton LLP, 7501 Village Square Drive, Suite
206, Castle Pines, Colorado 80108 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

SPARSE OPTIMIZATIONS FOR A MATRIX ACCELERATOR ARCHITECTURE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application is related to and, under 35 U.S.C. 119(e), claims the benefit
of and priority to U.S. Provisional Applications 62/819,337, entitled GRAPHICS
PROCESSING, by Abhishek Appu, et al., filed March 15, 2019 (Attorney Docket No. AC0271-
7), 62/819,435, entitled GRAPHICS DATA PROCESSING, by Lakshminarayanan
Striramassarma, et al., filed March 15, 2019 (Attorney Docket No. AC0285-7), 62/819,361,
entitled SYSTEMS AND METHODS FOR PARTITIONING CACHE TO REDUCE CACHE
ACCESS LATENCY, by Subramaniam Maiyuran, et al., filed March 15, 2019 (Attorney Docket
No. AC0286-Z), and 62/935,670, entitled SYSTOLIC ARITHMETIC ON SPARSE DATA, by
Abhishek Appu, et al., filed November 15, 2019 (Attorney Docket No. AC5197-Z7), the contents

of all are incorporated herein by reference.

FIELD

[0002] This disclosure relates generally to data processing and more particularly to sparse
data processing via a matrix accelerator of a general-purpose graphics processing unit.

BACKGROUND OF THE DISCLOSURE

[0003] Current paralle] graphics data processing includes systems and methods developed to
perform specific operations on graphics data such as, for example, linear interpolation,
tessellation, rasterization, texture mapping, depth testing, etc. Traditionally, graphics processors
used fixed function computational units to process graphics data; however, more recently,
portions of graphics processors have been made programmable, enabling such processors to
support a wider variety of operations for processing vertex and fragment data.

[0004] To further increase performance, graphics processors typically implement processing
techniques such as pipelining that attempt to process, in parallel, as much graphics data as
possible throughout the different parts of the graphics pipeline. Parallel graphics processors with
single instruction, multiple thread (SIMT) architectures are designed to maximize the amount of
parallel processing in the graphics pipeline. In an SIMT architecture, groups of parallel threads
attempt to execute program instructions synchronously together as often as possible to increase
processing efficiency. A general overview of software and hardware for SIMT architectures can
be found in Shane Cook, CUDA Programming Chapter 3, pages 37-51 (2013).

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] So that the manner in which the above recited featares of the present embodiments
can be understood in detail, a more particular description of the embodiments, briefly

summarized above, may be had by reference to embodiments, some of which are illustrated in

1

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

the appended drawings. It is to be noted, however, that the appended drawings illustrate only
typical embodiments and are therefore not to be considered limiting of its scope.

[0006] FIG. 1 is a block diagram illustrating a computer system configured to implement
one or more aspects of the embodiments described herein;

[0007] FIG. 2A-2D illustrate parallel processor components;

[0008] FIG. 3A-3C are block diagrams of graphics multiprocessors and multiprocessor-
based GPUs;

[0009] FIG. 4A-4F illustrate an exemplary architecture in which a plurality of GPUs is
communicatively coupled to a plurality of multi-core processors;

[0010] FIG. 5 illustrates a graphics processing pipeline;

[0011] FIG. 6 illustrates a machine learning software stack;

[0012] FIG. 7 illustrates a general-purpose graphics processing unit;

[0013] FIG. 8 illustrates a multi-GPU computing system;

[0014] FIG. 9A-9B illustrate layers of exemplary deep neural networks;

[0015] FIG. 10 illustrates an exemplary recurrent neural network;

[0016] FIG. 11 illustrates training and deployment of a deep neural network;

[0017] FIG. 12 is a block diagram illustrating distributed learning;

[0018] FIG. 13 illustrates an exemplary inferencing system on a chip (SOC) suitable for
performing inferencing using a trained model;

[0019] FIG. 14 is a block diagram of a processing system;

[0020] FIG. 15A-15C illustrate computing systems and graphics processors;

[0021] FIG. 16A-16C illustrate block diagrams of additional graphics processor and
compute accelerator architectures;

[0022] FIG. 17 is a block diagram of a graphics processing engine of a graphics processor;
[0023] FIG. 18A-18B illustrate thread execution logic including an array of processing
elements employed in a graphics processor core;

[0024] FIG. 19 illustrates an additional execution unit;

[0025] FIG. 20 is a block diagram illustrating a graphics processor instruction formats;
[0026] FIG. 21 is a block diagram of an additional graphics processor architecture;
[0027] FIG. 22A-22B illustrate a graphics processor command format and command
sequence;

[0028] FIG. 23 illustrates exemplary graphics software architecture for a data processing
system;

[0029] FIG. 24A is a block diagram illustrating an IP core development system;

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0030] FIG. 24B illustrates a cross-section side view of an integrated circuit package
assembly;

[0031] FIG. 24C illustrates a package assembly that includes multiple units of hardware
logic chiplets connected to a substrate (e.g., base die);

[0032] FIG. 24D illustrates a package assembly including interchangeable chiplets;

[0033] FIG. 25 is a block diagram illustrating an exemplary system on a chip integrated
circuit;

[0034] FIG. 26A-26B are block diagrams illustrating exemplary graphics processors for use
within an SoC;

[0035] FIG. 27 illustrates an additional execution unit, according to an embodiment;

[0036] FIG. 28 illustrates a matrix operation performed by an instruction pipeline, according
to an embodiment;

[0037] FIG. 29A-29B illustrate details of hardware-based systolic array, according to some
embodiments;

[0038] FIG. 30A-30B illustrates a system to bypass zero value submatrices, according to
embodiments;

[0039] FIG. 31A-31B illustrate a method and system to perform matrix multiply operations
on sparse data;

[0040] FIG. 32 is a block diagram of a graphics processing system including a GPGPU data
compression pipeline;

[0041] FIG. 33A-33B illustrate compute architectures configured to enable compressed
transmission data to processing resources on a parallel compute processor or general purpose
graphics processing unit, according to an embodiment;

[0042] FIG. 34 illustrates a processing resource that includes zero detection logic for output
data;

[0043] FIG. 35 illustrates a method to compressing and decompressing data for a matrix
operation within a processing resource;

[0044] FIG. 36 illustrates a method to perform zero detection operations on output generated
by a processing resource; and

[0045] FIG. 37 is a block diagram of a computing device including a graphics processor,
according to an embodiment.

DETAILED DESCRIPTION

[0046] A graphics processing unit (GPU) is communicatively coupled to host/processor
cores to accelerate, for example, graphics operations, machine-learning operations, pattern

analysis operations, and/or various general-purpose GPU (GPGPU) functions. The GPU may be

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

communicatively coupled to the host processor/cores over a bus or another interconnect (e.g., a
high-speed interconnect such as PCle or NVLink). Alternatively, the GPU may be integrated on
the same package or chip as the cores and communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or chip). Regardless of the manner in
which the GPU is connected, the processor cores may allocate work to the GPU in the form of
sequences of commands/instructions contained in a work descriptor. The GPU then uses
dedicated circuitry/logic for efficiently processing these commands/instructions.

[0047] Embodiments described herein include, software, firmware, and hardware logic that
provides techniques to perform arithmetic on sparse data via a systolic processing unit.
Embodiment described herein provided techniques to skip computational operations for zero
filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data
compression through to a processing unit. Embodiments additionally provide an architecture for
a sparse aware logic unit.

[0048] In the following description, numerous specific details are set forth to provide a more
thorough understanding. However, it will be apparent to one of skill in the art that the
embodiments described herein may be practiced without one or more of these specific details. In
other instances, well-known features have not been described to avoid obscuring the details of
the present embodiments.

System Overview

[0049] FIG. 1 is a block diagram illustrating a computing system 100 configured to
implement one or more aspects of the embodiments described herein. The computing system
100 includes a processing subsystem 101 having one or more processor(s) 102 and a system
memory 104 communicating via an interconnection path that may include a memory hub 105.
The memory hub 105 may be a separate component within a chipset component or may be
integrated within the one or more processor(s) 102. The memory hub 105 couples with an I/O
subsystem 111 via a communication link 106. The I/O subsystem 111 includes an I/O hub 107
that can enable the computing system 100 to receive input from one or more input device(s) 108.
Additionally, the I/O hub 107 can enable a display controller, which may be included in the one
or more processor(s) 102, to provide outputs to one or more display device(s) 110A. In one
embodiment the one or more display device(s) 110A coupled with the I/O hub 107 can include a
local, internal, or embedded display device.

[0050] The processing subsystem 101, for example, includes one or more parallel
processor(s) 112 coupled to memory hub 105 via a bus or other communication link 113. The
communication link 113 may be one of any number of standards-based communication link

technologies or protocols, such as, but not limited to PCI Express, or may be a vendor specific

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

communications interface or communications fabric. The one or more parallel processor(s) 112
may form a computationally focused parallel or vector processing system that can include a large
number of processing cores and/or processing clusters, such as a many integrated core (MIC)
processor. For example, the one or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more display device(s) 110A coupled via
the I/O Hub 107. The one or more parallel processor(s) 112 can also include a display controller
and display interface (not shown) to enable a direct connection to one or more display device(s)
110B.

[0051] Within the I/O subsystem 111, a system storage unit 114 can connect to the I/O hub
107 to provide a storage mechanism for the computing system 100. An I/O switch 116 can be
used to provide an interface mechanism to enable connections between the I/O hub 107 and other
components, such as a network adapter 118 and/or wireless network adapter 119 that may be
integrated into the platform, and various other devices that can be added via one or more add-in
device(s) 120. The add-in device(s) 120 may also include, for example, one or more external
graphics processor devices and/or compute accelerators. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The wireless network adapter 119 can
include one or more of a Wi-Fi, Bluetooth, near field communication (NFC), or other network
device that includes one or more wireless radios.

[0052] The computing system 100 can include other components not explicitly shown,
including USB or other port connections, optical storage drives, video capture devices, and the
like, may also be connected to the I/O hub 107. Communication paths interconnecting the
various components in FIG. 1 may be implemented using any suitable protocols, such as PCI
(Peripheral Component Interconnect) based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s), such as the NV-Link high-speed
interconnect, or interconnect protocols known in the art.

[0053] The one or more parallel processor(s) 112 may incorporate circuitry optimized for
graphics and video processing, including, for example, video output circuitry, and constitutes a
graphics processing unit (GPU). Alternatively or additionally, the one or more parallel
processor(s) 112 can incorporate circuitry optimized for general purpose processing, while
preserving the underlying computational architecture, described in greater detail herein.
Components of the computing system 100 may be integrated with one or more other system
elements on a single integrated circuit. For example, the one or more parallel processor(s) 112,
memory hub 105, processor(s) 102, and I/O hub 107 can be integrated into a system on chip
(SoC) integrated circuit. Alternatively, the components of the computing system 100 can be

integrated into a single package to form a system in package (SIP) configuration. In one

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

embodiment at least a portion of the components of the computing system 100 can be integrated
into a multi-chip module (MCM), which can be interconnected with other multi-chip modules
into a modular computing system.

[0054] It will be appreciated that the computing system 100 shown herein is illustrative and
that variations and modifications are possible. The connection topology, including the number
and arrangement of bridges, the number of processor(s) 102, and the number of parallel
processor(s) 112, may be modified as desired. For instance, system memory 104 can be
connected to the processor(s) 102 directly rather than through a bridge, while other devices
communicate with system memory 104 via the memory hub 105 and the processor(s) 102. In
other alternative topologies, the parallel processor(s) 112 are connected to the I/0 hub 107 or
directly to one of the one or more processor(s) 102, rather than to the memory hub 105. In other
embodiments, the I/O hub 107 and memory hub 105 may be integrated into a single chip. Itis
also possible that two or more sets of processor(s) 102 are attached via multiple sockets, which
can couple with two or more instances of the parallel processor(s) 112.

[0055] Some of the particular components shown herein are optional and may not be
included in all implementations of the computing system 100. For example, any number of add-
in cards or peripherals may be supported, or some components may be eliminated. Furthermore,
some architectures may use different terminology for components similar to those illustrated in
FIG. 1. For example, the memory hub 105 may be referred to as a Northbridge in some
architectures, while the I/O hub 107 may be referred to as a Southbridge.

[0056] FIG. 2A illustrates a parallel processor 200. The parallel processor 200 may be a
GPU, GPGPU or the like as described herein. The various components of the parallel processor
200 may be implemented using one or more integrated circuit devices, such as programmable
processors, application specific integrated circuits (ASICs), or field programmable gate arrays
(FPGA). The illustrated parallel processor 200 may be the, or one of the parallel processor(s)
112 shown in FIG. 1.

[0057] The parallel processor 200 includes a parallel processing unit 202. The parallel
processing unit includes an I/O unit 204 that enables communication with other devices,
including other instances of the parallel processing unit 202. The I/O unit 204 may be directly
connected to other devices. For instance, the I/O unit 204 connects with other devices via the
use of a hub or switch interface, such as memory hub 105. The connections between the
memory hub 105 and the I/O unit 204 form a communication link 113. Within the parallel
processing unit 202, the I/O unit 204 connects with a host interface 206 and a memory crossbar

216, where the host interface 206 receives commands directed to performing processing

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

operations and the memory crossbar 216 receives commands directed to performing memory
operations.

[0058] When the host interface 206 receives a command buffer via the I/O unit 204, the host
interface 206 can direct work operations to perform those commands to a front end 208. In one
embodiment the front end 208 couples with a scheduler 210, which is configured to distribute
commands or other work items to a processing cluster array 212. The scheduler 210 ensures that
the processing cluster array 212 is properly configured and in a valid state before tasks are
distributed to the processing clusters of the processing cluster array 212. The scheduler 210 may
be implemented via firmware logic executing on a microcontroller. The microcontroller
implemented scheduler 210 is configurable to perform complex scheduling and work distribution
operations at coarse and fine granularity, enabling rapid preemption and context switching of
threads executing on the processing array 212. Preferably, the host software can prove
workloads for scheduling on the processing array 212 via one of multiple graphics processing
doorbells. The workloads can then be automatically distributed across the processing array 212
by the scheduler 210 logic within the scheduler microcontroller.

[0059] The processing cluster array 212 can include up to “N” processing clusters (e.g.,
cluster 214 A, cluster 214B, through cluster 214N). Each cluster 214A-214N of the processing
cluster array 212 can execute a large number of concurrent threads. The scheduler 210 can
allocate work to the clusters 214A-214N of the processing cluster array 212 using various
scheduling and/or work distribution algorithms, which may vary depending on the workload
arising for each type of program or computation. The scheduling can be handled dynamically by
the scheduler 210, or can be assisted in part by compiler logic during compilation of program
logic configured for execution by the processing cluster array 212. Optionally, different clusters
214A-214N of the processing cluster array 212 can be allocated for processing different types of
programs or for performing different types of computations.

[0060] The processing cluster array 212 can be configured to perform various types of
parallel processing operations. For example, the cluster array 212 is configured to perform
general-purpose parallel compute operations. For example, the processing cluster array 212 can
include logic to execute processing tasks including filtering of video and/or audio data,
performing modeling operations, including physics operations, and performing data
transformations.

[0061] The processing cluster array 212 is configured to perform parallel graphics
processing operations. In such embodiments in which the parallel processor 200 is configured to
perform graphics processing operations, the processing cluster array 212 can include additional

logic to support the execution of such graphics processing operations, including, but not limited

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

to texture sampling logic to perform texture operations, as well as tessellation logic and other
vertex processing logic. Additionally, the processing cluster array 212 can be configured to
execute graphics processing related shader programs such as, but not limited to vertex shaders,
tessellation shaders, geometry shaders, and pixel shaders. The parallel processing unit 202 can
transfer data from system memory via the I/O unit 204 for processing. During processing the
transferred data can be stored to on-chip memory (e.g., parallel processor memory 222) during
processing, then written back to system memory.

[0062] In embodiments in which the parallel processing unit 202 is used to perform graphics
processing, the scheduler 210 may be configured to divide the processing workload into
approximately equal sized tasks, to better enable distribution of the graphics processing
operations to multiple clusters 214A-214N of the processing cluster array 212. In some of these
embodiments, portions of the processing cluster array 212 can be configured to perform different
types of processing. For example a first portion may be configured to perform vertex shading
and topology generation, a second portion may be configured to perform tessellation and
geometry shading, and a third portion may be configured to perform pixel shading or other
screen space operations, to produce a rendered image for display. Intermediate data produced by
one or more of the clusters 214A-214N may be stored in buffers to allow the intermediate data to
be transmitted between clusters 214A-214N for further processing.

[0063] During operation, the processing cluster array 212 can receive processing tasks to be
executed via the scheduler 210, which receives commands defining processing tasks from front
end 208. For graphics processing operations, processing tasks can include indices of data to be
processed, e.g., surface (patch) data, primitive data, vertex data, and/or pixel data, as well as state
parameters and commands defining how the data is to be processed (e.g., what program is to be
executed). The scheduler 210 may be configured to fetch the indices corresponding to the tasks
or may receive the indices from the front end 208. The front end 208 can be configured to
ensure the processing cluster array 212 is configured to a valid state before the workload
specified by incoming command buffers (e.g., batch-buffers, push buffers, etc.) is initiated.
[0064] Each of the one or more instances of the parallel processing unit 202 can couple with
parallel processor memory 222. The parallel processor memory 222 can be accessed via the
memory crossbar 216, which can receive memory requests from the processing cluster array 212
as well as the I/O unit 204. The memory crossbar 216 can access the parallel processor memory
222 via a memory interface 218. The memory interface 218 can include multiple partition units
(e.g., partition unit 220A, partition unit 220B, through partition unit 220N) that can each couple
to a portion (e.g., memory unit) of parallel processor memory 222. The number of partition units

220A-220N may be configured to be equal to the number of memory units, such that a first

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

partition unit 220A has a corresponding first memory unit 224 A, a second partition unit 220B
has a corresponding memory unit 224B, and an Nth partition unit 220N has a corresponding Nth
memory unit 224N. In other embodiments, the number of partition units 220A-220N may not be
equal to the number of memory devices.

[0065] The memory units 224 A-224N can include various types of memory devices,
including dynamic random-access memory (DRAM) or graphics random access memory, such
as synchronous graphics random access memory (SGRAM), including graphics double data rate
(GDDR) memory. Optionally, the memory units 224 A-224N may also include 3D stacked
memory, including but not limited to high bandwidth memory (HBM). Persons skilled in the art
will appreciate that the specific implementation of the memory units 224A-224N can vary, and
can be selected from one of various conventional designs. Render targets, such as frame buffers
or texture maps may be stored across the memory units 224A-224N, allowing partition units
220A-220N to write portions of each render target in parallel to efficiently use the available
bandwidth of parallel processor memory 222. In some embodiments, a local instance of the
parallel processor memory 222 may be excluded in favor of a unified memory design that
utilizes system memory in conjunction with local cache memory.

[0066] Optionally, any one of the clusters 214A-214N of the processing cluster array 212 has
the ability to process data that will be written to any of the memory units 224 A-224N within
parallel processor memory 222. The memory crossbar 216 can be configured to transfer the
output of each cluster 214A-214N to any partition unit 220A-220N or to another cluster 214 A-
214N, which can perform additional processing operations on the output. Each cluster 214 A-
214N can communicate with the memory interface 218 through the memory crossbar 216 to read
from or write to various external memory devices. In one of the embodiments with the memory
crossbar 216 the memory crossbar 216 has a connection to the memory interface 218 to
communicate with the I/O unit 204, as well as a connection to a local instance of the parallel
processor memory 222, enabling the processing units within the different processing clusters
214A-214N to communicate with system memory or other memory that is not local to the
parallel processing unit 202. Generally, the memory crossbar 216 may, for example, by able to
use virtual channels to separate traffic streams between the clusters 214A-214N and the partition
units 220A-220N.

[0067] While a single instance of the parallel processing unit 202 is illustrated within the
parallel processor 200, any number of instances of the parallel processing unit 202 can be
included. For example, multiple instances of the parallel processing unit 202 can be provided on
a single add-in card, or multiple add-in cards can be interconnected. The different instances of

the parallel processing unit 202 can be configured to inter-operate even if the different instances

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

have different numbers of processing cores, different amounts of local parallel processor
memory, and/or other configuration differences. Optionally, some instances of the parallel
processing unit 202 can include higher precision floating point units relative to other instances.
Systems incorporating one or more instances of the parallel processing unit 202 or the parallel
processor 200 can be implemented in a variety of configurations and form factors, including but
not limited to desktop, laptop, or handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

[0068] FIG. 2B is a block diagram of a partition unit 220. The partition unit 220 may be an
instance of one of the partition units 220A-220N of FIG. 2A. As illustrated, the partition unit
220 includes an L2 cache 221, a frame buffer interface 225, and a ROP 226 (raster operations
unit). The L2 cache 221 is a read/write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP 226. Read misses and urgent write-
back requests are output by L2 cache 221 to frame buffer interface 225 for processing. Updates
can also be sent to the frame buffer via the frame buffer interface 225 for processing. In one
embodiment the frame buffer interface 225 interfaces with one of the memory units in parallel
processor memory, such as the memory units 224A-224N of FIG. 2A (e.g., within parallel
processor memory 222). The partition unit 220 may additionally or alternatively also interface
with one of the memory units in parallel processor memory via a memory controller (not shown).
[0069] In graphics applications, the ROP 226 is a processing unit that performs raster
operations such as stencil, z test, blending, and the like. The ROP 226 then outputs processed
graphics data that is stored in graphics memory. In some embodiments the ROP 226 includes
compression logic to compress depth or color data that is written to memory and decompress
depth or color data that is read from memory. The compression logic can be lossless
compression logic that makes use of one or more of multiple compression algorithms. The type
of compression that is performed by the ROP 226 can vary based on the statistical characteristics
of the data to be compressed. For example, in one embodiment, delta color compression is
performed on depth and color data on a per-tile basis.

[0070] The ROP 226 may be included within each processing cluster (e.g., cluster 214A-
214N of FIG. 2A) instead of within the partition unit 220. In such embodiment, read and write
requests for pixel data are transmitted over the memory crossbar 216 instead of pixel fragment
data. The processed graphics data may be displayed on a display device, such as one of the one
or more display device(s) 110 of FIG. 1, routed for further processing by the processor(s) 102, or
routed for further processing by one of the processing entities within the parallel processor 200

of FIG. 2A.

10

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0071] FIG. 2C is a block diagram of a processing cluster 214 within a parallel processing
unit. For example, the processing cluster is an instance of one of the processing clusters 214 A-
214N of FIG. 2A. The processing cluster 214 can be configured to execute many threads in
parallel, where the term “thread” refers to an instance of a particular program executing on a
particular set of input data. Optionally, single-instruction, multiple-data (SIMD) instruction
issue techniques may be used to support parallel execution of a large number of threads without
providing multiple independent instruction units. Alternatively, single-instruction, multiple-
thread (SIMT) techniques may be used to support parallel execution of a large number of
generally synchronized threads, using a common instruction unit configured to issue instructions
to a set of processing engines within each one of the processing clusters. Unlike a SIMD
execution regime, where all processing engines typically execute identical instructions, SIMT
execution allows different threads to more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will understand that a SIMD processing regime
represents a functional subset of a SIMT processing regime.

[0072] Operation of the processing cluster 214 can be controlled via a pipeline manager 232
that distributes processing tasks to SIMT parallel processors. The pipeline manager 232 receives
instructions from the scheduler 210 of FIG. 2A and manages execution of those instructions via a
graphics multiprocessor 234 and/or a texture unit 236. The illustrated graphics multiprocessor
234 is an exemplary instance of a SIMT parallel processor. However, various types of SIMT
parallel processors of differing architectures may be included within the processing cluster 214.
One or more instances of the graphics multiprocessor 234 can be included within a processing
cluster 214. The graphics multiprocessor 234 can process data and a data crossbar 240 can be
used to distribute the processed data to one of multiple possible destinations, including other
shader units. The pipeline manager 232 can facilitate the distribution of processed data by
specifying destinations for processed data to be distributed via the data crossbar 240.

[0073] Each graphics multiprocessor 234 within the processing cluster 214 can include an
identical set of functional execution logic (e.g., arithmetic logic units, load-store units, etc.). The
functional execution logic can be configured in a pipelined manner in which new instructions
can be issued before previous instructions are complete. The functional execution logic supports
a variety of operations including integer and floating-point arithmetic, comparison operations,
Boolean operations, bit-shifting, and computation of various algebraic functions. The same
functional-unit hardware could be leveraged to perform different operations and any combination
of functional units may be present.

[0074] The instructions transmitted to the processing cluster 214 constitutes a thread. A set

of threads executing across the set of parallel processing engines is a thread group. A thread

11

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

group executes the same program on different input data. Each thread within a thread group can
be assigned to a different processing engine within a graphics multiprocessor 234. A thread
group may include fewer threads than the number of processing engines within the graphics
multiprocessor 234. When a thread group includes fewer threads than the number of processing
engines, one or more of the processing engines may be idle during cycles in which that thread
group is being processed. A thread group may also include more threads than the number of
processing engines within the graphics multiprocessor 234. When the thread group includes
more threads than the number of processing engines within the graphics multiprocessor 234,
processing can be performed over consecutive clock cycles. Optionally, multiple thread groups
can be executed concurrently on the graphics multiprocessor 234.

[0075] The graphics multiprocessor 234 may include an internal cache memory to perform
load and store operations. Optionally, the graphics multiprocessor 234 can forego an internal
cache and use a cache memory (e.g., L1 cache 248) within the processing cluster 214. Each
graphics multiprocessor 234 also has access to L2 caches within the partition units (e.g., partition
units 220A-220N of FIG. 2A) that are shared among all processing clusters 214 and may be used
to transfer data between threads. The graphics multiprocessor 234 may also access off-chip
global memory, which can include one or more of local parallel processor memory and/or system
memory. Any memory external to the parallel processing unit 202 may be used as global
memory. Embodiments in which the processing cluster 214 includes multiple instances of the
graphics multiprocessor 234 can share common instructions and data, which may be stored in the
L1 cache 248.

[0076] Each processing cluster 214 may include an MMU 245 (memory management unit)
that is configured to map virtual addresses into physical addresses. In other embodiments, one or
more instances of the MMU 245 may reside within the memory interface 218 of FIG. 2A. The
MMU 245 includes a set of page table entries (PTEs) used to map a virtual address to a physical
address of a tile and optionally a cache line index. The MMU 245 may include address
translation lookaside buffers (TLB) or caches that may reside within the graphics multiprocessor
234 or the L1 cache or processing cluster 214. The physical address is processed to distribute
surface data access locality to allow efficient request interleaving among partition units. The
cache line index may be used to determine whether a request for a cache line is a hit or miss.
[0077] In graphics and computing applications, a processing cluster 214 may be configured
such that each graphics multiprocessor 234 is coupled to a texture unit 236 for performing
texture mapping operations, e.g., determining texture sample positions, reading texture data, and
filtering the texture data. Texture data is read from an internal texture .1 cache (not shown) or

in some embodiments from the L1 cache within graphics multiprocessor 234 and is fetched from

12

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

an L2 cache, local parallel processor memory, or system memory, as needed. Each graphics
multiprocessor 234 outputs processed tasks to the data crossbar 240 to provide the processed task
to another processing cluster 214 for further processing or to store the processed task in an L2
cache, local parallel processor memory, or system memory via the memory crossbar 216. A
preROP 242 (pre-raster operations unit) is configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be located with partition units as
described herein (e.g., partition units 220A-220N of FIG. 2A). The preROP 242 unit can
perform optimizations for color blending, organize pixel color data, and perform address
translations.

[0078] It will be appreciated that the core architecture described herein is illustrative and that
variations and modifications are possible. Any number of processing units, e.g., graphics
multiprocessor 234, texture units 236, preROPs 242, etc., may be included within a processing
cluster 214. Further, while only one processing cluster 214 is shown, a parallel processing unit
as described herein may include any number of instances of the processing cluster 214.
Optionally, each processing cluster 214 can be configured to operate independently of other
processing clusters 214 using separate and distinct processing units, .1 caches, etc.

[0079] FIG. 2D shows an example of the graphics multiprocessor 234 in which the graphics
multiprocessor 234 couples with the pipeline manager 232 of the processing cluster 214. The
graphics multiprocessor 234 has an execution pipeline including but not limited to an instruction
cache 252, an instruction unit 254, an address mapping unit 256, a register file 258, one or more
general purpose graphics processing unit (GPGPU) cores 262, and one or more load/store units
266. The GPGPU cores 262 and load/store units 266 are coupled with cache memory 272 and
shared memory 270 via a memory and cache interconnect 268. The graphics multiprocessor 234
may additionally include tensor and/or ray-tracing cores 263 that include hardware logic to
accelerate matrix and/or ray-tracing operations.

[0080] The instruction cache 252 may receive a stream of instructions to execute from the
pipeline manager 232. The instructions are cached in the instruction cache 252 and dispatched
for execution by the instruction unit 254. The instruction unit 254 can dispatch instructions as
thread groups (e.g., warps), with each thread of the thread group assigned to a different execution
unit within GPGPU core 262. An instruction can access any of a local, shared, or global address
space by specifying an address within a unified address space. The address mapping unit 256
can be used to translate addresses in the unified address space into a distinct memory address
that can be accessed by the load/store units 266.

[0081] The register file 258 provides a set of registers for the functional units of the graphics

multiprocessor 234. The register file 258 provides temporary storage for operands connected to

13

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

the data paths of the functional units (e.g., GPGPU cores 262, load/store units 266) of the
graphics multiprocessor 234. The register file 258 may be divided between each of the
functional units such that each functional unit is allocated a dedicated portion of the register file
258. For example, the register file 258 may be divided between the different warps being
executed by the graphics multiprocessor 234.

[0082] The GPGPU cores 262 can each include floating point units (FPUs) and/or integer
arithmetic logic units (ALUs) that are used to execute instructions of the graphics multiprocessor
234. In some implementations, the GPGPU cores 262 can include hardware logic that may
otherwise reside within the tensor and/or ray-tracing cores 263. The GPGPU cores 262 can be
similar in architecture or can differ in architecture. For example and in one embodiment, a first
portion of the GPGPU cores 262 include a single precision FPU and an integer ALU while a
second portion of the GPGPU cores include a double precision FPU. Optionally, the FPUs can
implement the IEEE 754-2008 standard for floating point arithmetic or enable variable precision
floating point arithmetic. The graphics multiprocessor 234 can additionally include one or more
fixed function or special function units to perform specific functions such as copy rectangle or
pixel blending operations. One or more of the GPGPU cores can also include fixed or special
function logic.

[0083] The GPGPU cores 262 may include SIMD logic capable of performing a single
instruction on multiple sets of data. Optionally, GPGPU cores 262 can physically execute
SIMD4, SIMDS, and SIMD16 instructions and logically execute SIMD1, SIMD2, and SIMD32
instructions. The SIMD instructions for the GPGPU cores can be generated at compile time by a
shader compiler or automatically generated when executing programs written and compiled for
single program multiple data (SPMD) or SIMT architectures. Multiple threads of a program
configured for the SIMT execution model can be executed via a single SIMD instruction. For
example and in one embodiment, eight SIMT threads that perform the same or similar operations
can be executed in parallel via a single SIMDS logic unit.

[0084] The memory and cache interconnect 268 is an interconnect network that connects
each of the functional units of the graphics multiprocessor 234 to the register file 258 and to the
shared memory 270. For example, the memory and cache interconnect 268 is a crossbar
interconnect that allows the load/store unit 266 to implement load and store operations between
the shared memory 270 and the register file 258. The register file 258 can operate at the same
frequency as the GPGPU cores 262, thus data transfer between the GPGPU cores 262 and the
register file 258 is very low latency. The shared memory 270 can be used to enable
communication between threads that execute on the functional units within the graphics

multiprocessor 234. The cache memory 272 can be used as a data cache for example, to cache

14

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

texture data communicated between the functional units and the texture unit 236. The shared
memory 270 can also be used as a program managed cached. Threads executing on the GPGPU
cores 262 can programmatically store data within the shared memory in addition to the
automatically cached data that is stored within the cache memory 272.

[0085] FIG. 3A-3C illustrate additional graphics multiprocessors, according to
embodiments. FIG. 3A-3B illustrate graphics multiprocessors 325, 350, which are related to the
graphics multiprocessor 234 of FIG. 2C and may be used in place of one of those. Therefore, the
disclosure of any features in combination with the graphics multiprocessor 234 herein also
discloses a corresponding combination with the graphics multiprocessor(s) 325, 350, but is not
limited to such. FIG. 3C illustrates a graphics processing unit (GPU) 380 which includes
dedicated sets of graphics processing resources arranged into multi-core groups 365A-365N,
which correspond to the graphics multiprocessors 325, 350. The illustrated graphics
multiprocessors 325, 350 and the multi-core groups 365A-365N can be streaming
multiprocessors (SM) capable of simultaneous execution of a large number of execution threads.
[0086] The graphics multiprocessor 325 of FIG. 3A includes multiple additional instances of
execution resource units relative to the graphics multiprocessor 234 of FIG. 2D. For example,
the graphics multiprocessor 325 can include multiple instances of the instruction unit 332A-
332B, register file 334A-334B, and texture unit(s) 344A-344B. The graphics multiprocessor 325
also includes multiple sets of graphics or compute execution units (e.g., GPGPU core 336A-
336B, tensor core 337A-337B, ray-tracing core 338A-338B) and multiple sets of load/store units
340A-340B. The execution resource units have a common instruction cache 330, texture and/or
data cache memory 342, and shared memory 346.

[0087] The various components can communicate via an interconnect fabric 327. The
interconnect fabric 327 may include one or more crossbar switches to enable communication
between the various components of the graphics multiprocessor 325. The interconnect fabric
327 may be a separate, high-speed network fabric layer upon which each component of the
graphics multiprocessor 325 is stacked. The components of the graphics multiprocessor 325
communicate with remote components via the interconnect fabric 327. For example, the
GPGPU cores 336A-336B, 337A-337B, and 3378 A-338B can each communicate with shared
memory 346 via the interconnect fabric 327. The interconnect fabric 327 can arbitrate
communication within the graphics multiprocessor 325 to ensure a fair bandwidth allocation
between components.

[0088] The graphics multiprocessor 350 of FIG. 3B includes multiple sets of execution
resources 356A-356D, where each set of execution resource includes multiple instruction units,

register files, GPGPU cores, and load store units, as illustrated in FIG. 2D and FIG. 3A. The

15

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

execution resources 356A-356D can work in concert with texture unit(s) 360A-360D for texture
operations, while sharing an instruction cache 354, and shared memory 353. For example, the
execution resources 356A-356D can share an instruction cache 354 and shared memory 353, as
well as multiple instances of a texture and/or data cache memory 358A-358B. The various
components can communicate via an interconnect fabric 352 similar to the interconnect fabric
327 of FIG. 3A.

[0089] Persons skilled in the art will understand that the architecture described in FIG. 1,
2A-2D, and 3A-3B are descriptive and not limiting as to the scope of the present embodiments.
Thus, the techniques described herein may be implemented on any properly configured
processing unit, including, without limitation, one or more mobile application processors, one or
more desktop or server central processing units (CPUs) including multi-core CPUs, one or more
parallel processing units, such as the parallel processing unit 202 of FIG. 2A, as well as one or
more graphics processors or special purpose processing units, without departure from the scope
of the embodiments described herein.

[0090] The parallel processor or GPGPU as described herein may be communicatively
coupled to host/processor cores to accelerate graphics operations, machine-learning operations,
pattern analysis operations, and various general-purpose GPU (GPGPU) functions. The GPU
may be communicatively coupled to the host processor/cores over a bus or other interconnect
(e.g., a high-speed interconnect such as PCle or NVLink). In other embodiments, the GPU may
be integrated on the same package or chip as the cores and communicatively coupled to the cores
over an internal processor bus/interconnect (i.e., internal to the package or chip). Regardless of
the manner in which the GPU is connected, the processor cores may allocate work to the GPU in
the form of sequences of commands/instructions contained in a work descriptor. The GPU then
uses dedicated circuitry/logic for efficiently processing these commands/instructions.

[0091] FIG. 3C illustrates a graphics processing unit (GPU) 380 which includes dedicated
sets of graphics processing resources arranged into multi-core groups 365A-365N. While the
details of only a single multi-core group 365A are provided, it will be appreciated that the other
multi-core groups 365B-365N may be equipped with the same or similar sets of graphics
processing resources. Details described with respect to the multi-core groups 365A-365N may
also apply to any graphics multiprocessor 234, 325, 350 described herein.

[0092] As illustrated, a multi-core group 365A may include a set of graphics cores 370, a set
of tensor cores 371, and a set of ray tracing cores 372. A scheduler/dispatcher 368 schedules and
dispatches the graphics threads for execution on the various cores 370, 371, 372. A set of
register files 369 store operand values used by the cores 370, 371, 372 when executing the

graphics threads. These may include, for example, integer registers for storing integer values,

16

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

floating point registers for storing floating point values, vector registers for storing packed data
elements (integer and/or floating-point data elements) and tile registers for storing tensor/matrix
values. The tile registers may be implemented as combined sets of vector registers.

[0093] One or more combined level 1 (L.1) caches and shared memory units 373 store
graphics data such as texture data, vertex data, pixel data, ray data, bounding volume data, etc.,
locally within each multi-core group 365A. One or more texture units 374 can also be used to
perform texturing operations, such as texture mapping and sampling. A Level 2 (L2) cache 375
shared by all or a subset of the multi-core groups 365A-365N stores graphics data and/or
instructions for multiple concurrent graphics threads. As illustrated, the L2 cache 375 may be
shared across a plurality of multi-core groups 365A-365N. One or more memory controllers 367
couple the GPU 380 to a memory 366 which may be a system memory (e.g., DRAM) and/or a
dedicated graphics memory (e.g., GDDR6 memory).

[0094] Input/output (I/0) circuitry 363 couples the GPU 380 to one or more I/O devices 362
such as digital signal processors (DSPs), network controllers, or user input devices. An on-chip
interconnect may be used to couple the I/0 devices 362 to the GPU 380 and memory 366. One
or more I/O memory management units (IOMMUSs) 364 of the I/O circuitry 363 couple the /O
devices 362 directly to the system memory 366. Optionally, the IOMMU 364 manages multiple
sets of page tables to map virtual addresses to physical addresses in system memory 366. The /O
devices 362, CPU(s) 361, and GPU(s) 380 may then share the same virtual address space.
[0095] In one implementation of the IOMMU 364, the IOMMU 364 supports virtualization.
In this case, it may manage a first set of page tables to map guest/graphics virtual addresses to
guest/graphics physical addresses and a second set of page tables to map the guest/graphics
physical addresses to system/host physical addresses (e.g., within system memory 366). The
base addresses of each of the first and second sets of page tables may be stored in control
registers and swapped out on a context switch (e.g., so that the new context is provided with
access to the relevant set of page tables). While not illustrated in FIG. 3C, each of the cores 370,
371, 372 and/or multi-core groups 365A-365N may include translation lookaside buffers (TLBs)
to cache guest virtual to guest physical translations, guest physical to host physical translations,
and guest virtual to host physical translations.

[0096] The CPUs 361, GPUs 380, and I/O devices 362 may be integrated on a single
semiconductor chip and/or chip package. The illustrated memory 366 may be integrated on the
same chip or may be coupled to the memory controllers 367 via an off-chip interface. In one
implementation, the memory 366 comprises GDDR6 memory which shares the same virtual
address space as other physical system-level memories, although the underlying principles

described herein are not limited to this specific implementation.

17

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0097] The tensor cores 371 may include a plurality of execution units specifically designed
to perform matrix operations, which are the fundamental compute operation used to perform
deep learning operations. For example, simultaneous matrix multiplication operations may be
used for neural network training and inferencing. The tensor cores 371 may perform matrix
processing using a variety of operand precisions including single precision floating-point (e.g.,
32 bits), half-precision floating point (e.g., 16 bits), integer words (16 bits), bytes (8 bits), and
half-bytes (4 bits). For example, a neural network implementation extracts features of each
rendered scene, potentially combining details from multiple frames, to construct a high-quality
final image.

[0098] In deep learning implementations, parallel matrix multiplication work may be
scheduled for execution on the tensor cores 371. The training of neural networks, in particular,
requires a significant number matrix dot product operations. In order to process an inner-product
formulation of an N x N x N matrix multiply, the tensor cores 371 may include at least N dot-
product processing elements. Before the matrix multiply begins, one entire matrix is loaded into
tile registers and at least one column of a second matrix is loaded each cycle for N cycles. Each
cycle, there are N dot products that are processed.

[0099] Matrix elements may be stored at different precisions depending on the particular
implementation, including 16-bit words, 8-bit bytes (e.g., INT8) and 4-bit half-bytes (e.g.,
INT4). Different precision modes may be specified for the tensor cores 371 to ensure that the
most efficient precision is used for different workloads (e.g., such as inferencing workloads
which can tolerate quantization to bytes and half-bytes).

[0100] The ray tracing cores 372 may accelerate ray tracing operations for both real-time ray
tracing and non-real-time ray tracing implementations. In particular, the ray tracing cores 372
may include ray traversal/intersection circuitry for performing ray traversal using bounding
volume hierarchies (BVHs) and identifying intersections between rays and primitives enclosed
within the BVH volumes. The ray tracing cores 372 may also include circuitry for performing
depth testing and culling (e.g., using a Z buffer or similar arrangement). In one implementation,
the ray tracing cores 372 perform traversal and intersection operations in concert with the image
denoising techniques described herein, at least a portion of which may be executed on the tensor
cores 371. For example, the tensor cores 371 may implement a deep learning neural network to
perform denoising of frames generated by the ray tracing cores 372. However, the CPU(s) 361,
graphics cores 370, and/or ray tracing cores 372 may also implement all or a portion of the
denoising and/or deep learning algorithms.

[0101] In addition, as described above, a distributed approach to denoising may be employed

in which the GPU 380 is in a computing device coupled to other computing devices over a

18

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

network or high-speed interconnect. In this distributed approach, the interconnected computing
devices may share neural network learning/training data to improve the speed with which the
overall system learns to perform denoising for different types of image frames and/or different
graphics applications.

[0102] The ray tracing cores 372 may process all BVH traversal and/or ray-primitive
intersections, saving the graphics cores 370 from being overloaded with thousands of
instructions per ray. For example, each ray tracing core 372 includes a first set of specialized
circuitry for performing bounding box tests (e.g., for traversal operations) and/or a second set of
specialized circuitry for performing the ray-triangle intersection tests (e.g., intersecting rays
which have been traversed). Thus, for example, the multi-core group 365A can simply launch a
ray probe, and the ray tracing cores 372 independently perform ray traversal and intersection and
return hit data (e.g., a hit, no hit, multiple hits, etc.) to the thread context. The other cores 370,
371 are freed to perform other graphics or compute work while the ray tracing cores 372 perform
the traversal and intersection operations.

[0103] Optionally, each ray tracing core 372 may include a traversal unit to perform BVH
testing operations and/or an intersection unit which performs ray-primitive intersection tests.
The intersection unit generates a “hit”, “no hit”, or “multiple hit” response, which it provides to
the appropriate thread. During the traversal and intersection operations, the execution resources
of the other cores (e.g., graphics cores 370 and tensor cores 371) are freed to perform other
forms of graphics work.

[0104] In one optional embodiment described below, a hybrid rasterization/ray tracing
approach is used in which work is distributed between the graphics cores 370 and ray tracing
cores 372.

[0105] The ray tracing cores 372 (and/or other cores 370, 371) may include hardware
support for a ray tracing instruction set such as Microsoft’s DirectX Ray Tracing (DXR) which
includes a DispatchRays command, as well as ray-generation, closest-hit, any-hit, and miss
shaders, which enable the assignment of unique sets of shaders and textures for each object.
Another ray tracing platform which may be supported by the ray tracing cores 372, graphics
cores 370 and tensor cores 371 is Vulkan 1.1.85. Note, however, that the underlying principles
described herein are not limited to any particular ray tracing ISA.

[0106] In general, the various cores 372, 371, 370 may support a ray tracing instruction set
that includes instructions/functions for one or more of ray generation, closest hit, any hit, ray-
primitive intersection, per-primitive and hierarchical bounding box construction, miss, visit, and
exceptions. More specifically, a preferred embodiment includes ray tracing instructions to

perform one or more of the following functions:

19

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0107] Ray Generation — Ray generation instructions may be executed for each pixel,
sample, or other user-defined work assignment.

[0108] Closest Hit — A closest hit instruction may be executed to locate the closest
intersection point of a ray with primitives within a scene.

[0109] Any Hit — An any hit instruction identifies multiple intersections between a ray and
primitives within a scene, potentially to identify a new closest intersection point.

[0110] Intersection — An intersection instruction performs a ray-primitive intersection test
and outputs a result.

[0111] Per-primitive Bounding box Construction — This instruction builds a bounding box
around a given primitive or group of primitives (e.g., when building a new BVH or other
acceleration data structure).

[0112] Miss — Indicates that a ray misses all geometry within a scene, or specified region of a
scene.

[0113] Visit — Indicates the children volumes a ray will traverse.

[0114] Exceptions — Includes various types of exception handlers (e.g., invoked for various
error conditions).

Techniques for GPU to Host Processor Interconnection

[0115] FIG. 4A illustrates an exemplary architecture in which a plurality of GPUs 410-413,
e.g. such as the parallel processors 200 shown in FIG. 2A, are communicatively coupled to a
plurality of multi-core processors 405-406 over high-speed links 440A-440D (e.g., buses, point-
to-point interconnects, etc.). The high-speed links 440A-440D may support a communication
throughput of 4GB/s, 30GB/s, 80GB/s or higher, depending on the implementation. Various
interconnect protocols may be used including, but not limited to, PCle 4.0 or 5.0 and NVLink
2.0. However, the underlying principles described herein are not limited to any particular
communication protocol or throughput.

[0116] Two or more of the GPUs 410-413 may be interconnected over high-speed links

442 A-442B, which may be implemented using the same or different protocols/links than those
used for high-speed links 440A-440D. Similarly, two or more of the multi-core processors 405-
406 may be connected over high speed link 443 which may be symmetric multi-processor (SMP)
buses operating at 20GB/s, 30GB/s, 120GB/s or higher. Alternatively, all communication
between the various system components shown in FIG. 4A may be accomplished using the same
protocols/links (e.g., over a common interconnection fabric). As mentioned, however, the
underlying principles described herein are not limited to any particular type of interconnect

technology.

20

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0117] Each multi-core processor 405-406 may be communicatively coupled to a processor
memory 401-402, via memory interconnects 430A-430B, respectively, and each GPU 410-413 is
communicatively coupled to GPU memory 420-423 over GPU memory interconnects 450A-
450D, respectively. The memory interconnects 430A-430B and 450A-450D may utilize the
same or different memory access technologies. By way of example, and not limitation, the
processor memories 401-402 and GPU memories 420-423 may be volatile memories such as
dynamic random-access memories (DRAMs) (including stacked DRAMs), Graphics DDR
SDRAM (GDDR) (e.g., GDDRS, GDDR6), or High Bandwidth Memory (HBM) and/or may be
non-volatile memories such as 3D XPoint/Optane or Nano-Ram. For example, some portion of
the memories may be volatile memory and another portion may be non-volatile memory (e.g.,
using a two-level memory (2LM) hierarchy).

[0118] As described below, although the various processors 405-406 and GPUs 410-413
may be physically coupled to a particular memory 401-402, 420-423, respectively, a unified
memory architecture may be implemented in which the same virtual system address space (also
referred to as the “effective address™ space) is distributed among all of the various physical
memories. For example, processor memories 401-402 may each comprise 64GB of the system
memory address space and GPU memories 420-423 may each comprise 32GB of the system
memory address space (resulting in a total of 256GB addressable memory in this example).
[0119] FIG. 4B illustrates additional optional details for an interconnection between a multi-
core processor 407 and a graphics acceleration module 446. The graphics acceleration module
446 may include one or more GPU chips integrated on a line card which is coupled to the
processor 407 via the high-speed link 440. Alternatively, the graphics acceleration module 446
may be integrated on the same package or chip as the processor 407.

[0120] The illustrated processor 407 includes a plurality of cores 460A-460D, each with a
translation lookaside buffer 461A-461D and one or more caches 462A-462D. The cores may
include various other components for executing instructions and processing data which are not
illustrated to avoid obscuring the underlying principles of the components described herein (e.g.,
instruction fetch units, branch prediction units, decoders, execution units, reorder buffers, etc.).
The caches 462A-462D may comprise level 1 (L1) and level 2 (L.2) caches. In addition, one or
more shared caches 456 may be included in the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor 407 includes 24 cores, each with its
own L1 cache, twelve shared L2 caches, and twelve shared L3 caches. In this embodiment, one
of the L2 and L3 caches are shared by two adjacent cores. The processor 407 and the graphics
accelerator integration module 446 connect with system memory 441, which may include

processor memories 401-402.

21

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0121] Coherency is maintained for data and instructions stored in the various caches 462 A-
462D, 456 and system memory 441 via inter-core communication over a coherence bus 464. For
example, each cache may have cache coherency logic/circuitry associated therewith to
communicate to over the coherence bus 464 in response to detected reads or writes to particular
cache lines. In one implementation, a cache snooping protocol is implemented over the
coherence bus 464 to snoop cache accesses. Cache snooping/coherency techniques are well
understood by those of skill in the art and will not be described in detail here to avoid obscuring
the underlying principles described herein.

[0122] A proxy circuit 425 may be provided that communicatively couples the graphics
acceleration module 446 to the coherence bus 464, allowing the graphics acceleration module
446 to participate in the cache coherence protocol as a peer of the cores. In particular, an
interface 435 provides connectivity to the proxy circuit 425 over high-speed link 440 (e.g., a
PCle bus, NVLink, etc.) and an interface 437 connects the graphics acceleration module 446 to
the high-speed link 440.

[0123] In one implementation, an accelerator integration circuit 436 provides cache
management, memory access, context management, and interrupt management services on
behalf of a plurality of graphics processing engines 431, 432, N of the graphics acceleration
module 446. The graphics processing engines 431, 432, N may each comprise a separate
graphics processing unit (GPU). Alternatively, the graphics processing engines 431, 432, N may
comprise different types of graphics processing engines within a GPU such as graphics execution
units, media processing engines (e.g., video encoders/decoders), samplers, and blit engines. In
other words, the graphics acceleration module may be a GPU with a plurality of graphics
processing engines 431-432, N or the graphics processing engines 431-432, N may be individual
GPUs integrated on a common package, line card, or chip.

[0124] The accelerator integration circuit 436 may include a memory management unit
(MMU) 439 for performing various memory management functions such as virtual-to-physical
memory translations (also referred to as effective-to-real memory translations) and memory
access protocols for accessing system memory 441. The MMU 439 may also include a
translation lookaside buffer (TLB) (not shown) for caching the virtual/effective to physical/real
address translations. In one implementation, a cache 438 stores commands and data for efficient
access by the graphics processing engines 431-432, N. The data stored in cache 438 and
graphics memories 433-434, M may be kept coherent with the core caches 462A-462D, 456 and
system memory 411. As mentioned, this may be accomplished via proxy circuit 425 which takes

part in the cache coherency mechanism on behalf of cache 438 and memories 433-434, M (e.g.,

22

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

sending updates to the cache 438 related to modifications/accesses of cache lines on processor
caches 462A-462D, 456 and receiving updates from the cache 438).

[0125] A set of registers 445 store context data for threads executed by the graphics
processing engines 431-432, N and a context management circuit 448 manages the thread
contexts. For example, the context management circuit 448 may perform save and restore
operations to save and restore contexts of the various threads during contexts switches (e.g.,
where a first thread is saved and a second thread is stored so that the second thread can be
execute by a graphics processing engine). For example, on a context switch, the context
management circuit 448 may store current register values to a designated region in memory (e.g.,
identified by a context pointer). It may then restore the register values when returning to the
context. An interrupt management circuit 447, for example, may receive and processes
interrupts received from system devices.

[0126] In one implementation, virtual/effective addresses from a graphics processing engine
431 are translated to real/physical addresses in system memory 411 by the MMU 439.
Optionally, the accelerator integration circuit 436 supports multiple (e.g., 4, 8, 16) graphics
accelerator modules 446 and/or other accelerator devices. The graphics accelerator module 446
may be dedicated to a single application executed on the processor 407 or may be shared
between multiple applications. Optionally, a virtualized graphics execution environment is
provided in which the resources of the graphics processing engines 431-432, N are shared with
multiple applications or virtual machines (VMs). The resources may be subdivided into “slices”
which are allocated to different VMs and/or applications based on the processing requirements
and priorities associated with the VMs and/or applications.

[0127] Thus, the accelerator integration circuit 436 acts as a bridge to the system for the
graphics acceleration module 446 and provides address translation and system memory cache
services. In one embodiment, to facilitate the bridging functionality, the accelerator integration
circuit 436 may also include shared I/O 497 (e.g., PCle, USB) and hardware to enable system
control of voltage, clocking, performance, thermals, and security. The shared I/O 497 may
utilize separate physical connections or may traverse the high-speed link 440. In addition, the
accelerator integration circuit 436 may provide virtualization facilities for the host processor to
manage virtualization of the graphics processing engines, interrupts, and memory management.
[0128] Because hardware resources of the graphics processing engines 431-432, N are
mapped explicitly to the real address space seen by the host processor 407, any host processor
can address these resources directly using an effective address value. One optional function of
the accelerator integration circuit 436 is the physical separation of the graphics processing

engines 431-432, N so that they appear to the system as independent units.

23

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0129] One or more graphics memories 433-434, M may be coupled to each of the graphics
processing engines 431-432, N, respectively. The graphics memories 433-434, M store
instructions and data being processed by each of the graphics processing engines 431-432, N.
The graphics memories 433-434, M may be volatile memories such as DRAMs (including
stacked DRAMs), GDDR memory (e.g., GDDRS, GDDR6), or HBM, and/or may be non-
volatile memories such as 3D XPoint/Optane or Nano-Ram.

[0130] To reduce data traffic over the high-speed link 440, biasing techniques may be used
to ensure that the data stored in graphics memories 433-434, M is data which will be used most
frequently by the graphics processing engines 431-432, N and preferably not used by the cores
460A-460D (at least not frequently). Similarly, the biasing mechanism attempts to keep data
needed by the cores (and preferably not the graphics processing engines 431-432, N) within the
caches 462A-462D, 456 of the cores and system memory 411.

[0131] According to a variant shown in FIG. 4C the accelerator integration circuit 436 is
integrated within the processor 407. The graphics processing engines 431-432, N communicate
directly over the high-speed link 440 to the accelerator integration circuit 436 via interface 437
and interface 435 (which, again, may be utilize any form of bus or interface protocol). The
accelerator integration circuit 436 may perform the same operations as those described with
respect to FIG. 4B, but potentially at a higher throughput given its close proximity to the
coherency bus 464 and caches 462A-462D, 456.

[0132] The embodiments described may support different programming models including a
dedicated-process programming model (no graphics acceleration module virtualization) and
shared programming models (with virtualization). The latter may include programming models
which are controlled by the accelerator integration circuit 436 and programming models which
are controlled by the graphics acceleration module 446.

[0133] In the embodiments of the dedicated process model, graphics processing engines 431-
432, N may be dedicated to a single application or process under a single operating system. The
single application can funnel other application requests to the graphics engines 431-432, N,
providing virtualization within a VM/partition.

[0134] In the dedicated-process programming models, the graphics processing engines 431-
432, N, may be shared by multiple VM/application partitions. The shared models require a
system hypervisor to virtualize the graphics processing engines 431-432, N to allow access by
each operating system. For single-partition systems without a hypervisor, the graphics
processing engines 431-432, N are owned by the operating system. In both cases, the operating
system can virtualize the graphics processing engines 431-432, N to provide access to each

process or application.

24

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0135] For the shared programming model, the graphics acceleration module 446 or an
individual graphics processing engine 431-432, N selects a process element using a process
handle. The process elements may be stored in system memory 411 and be addressable using the
effective address to real address translation techniques described herein. The process handle
may be an implementation-specific value provided to the host process when registering its
context with the graphics processing engine 431-432, N (that is, calling system software to add
the process element to the process element linked list). The lower 16-bits of the process handle
may be the offset of the process element within the process element linked list.

[0136] FIG. 4D illustrates an exemplary accelerator integration slice 490. As used herein, a
“slice” comprises a specified portion of the processing resources of the accelerator integration
circuit 436. Application effective address space 482 within system memory 411 stores process
elements 483. The process elements 483 may be stored in response to GPU invocations 481
from applications 480 executed on the processor 407. A process element 483 contains the
process state for the corresponding application 480. A work descriptor (WD) 484 contained in
the process element 483 can be a single job requested by an application or may contain a pointer
to a queue of jobs. In the latter case, the WD 484 is a pointer to the job request queue in the
application’s address space 482.

[0137] The graphics acceleration module 446 and/or the individual graphics processing
engines 431-432, N can be shared by all or a subset of the processes in the system. For example,
the technologies described herein may include an infrastructure for setting up the process state
and sending a WD 484 to a graphics acceleration module 446 to start a job in a virtualized
environment.

[0138] In one implementation, the dedicated-process programming model is implementation-
specific. In this model, a single process owns the graphics acceleration module 446 or an
individual graphics processing engine 431. Because the graphics acceleration module 446 is
owned by a single process, the hypervisor initializes the accelerator integration circuit 436 for
the owning partition and the operating system initializes the accelerator integration circuit 436
for the owning process at the time when the graphics acceleration module 446 is assigned.
[0139] In operation, a WD fetch unit 491 in the accelerator integration slice 490 fetches the
next WD 484 which includes an indication of the work to be done by one of the graphics
processing engines of the graphics acceleration module 446. Data from the WD 484 may be
stored in registers 445 and used by the MMU 439, interrupt management circuit 447 and/or
context management circuit 448 as illustrated. For example, the MMU 439 may include
segment/page walk circuitry for accessing segment/page tables 486 within the OS virtual address

space 485. The interrupt management circuit 447 may process interrupt events 492 received

25

10

15

WO 2020/190808 PCT/US2020/022846

from the graphics acceleration module 446. When performing graphics operations, an effective
address 493 generated by a graphics processing engine 431-432, N is translated to a real address
by the MMU 439.

[0140] The same set of registers 445 may be duplicated for each graphics processing engine
431-432, N and/or graphics acceleration module 446 and may be initialized by the hypervisor or
operating system. Each of these duplicated registers may be included in an accelerator
integration slice 490. Exemplary registers that may be initialized by the hypervisor are shown in

Table 1.

Table 1 — Hypervisor Initialized Registers

1 Slice Control Register

2 Real Address (RA) Scheduled Processes Area Pointer

3 Authority Mask Override Register

4 Interrupt Vector Table Entry Offset

5 Interrupt Vector Table Entry Limit

6 State Register

7 Logical Partition ID

8 Real address (RA) Hypervisor Accelerator Utilization Record Pointer

9 Storage Description Register

[0141] Exemplary registers that may be initialized by the operating system are shown in
Table 2.
Table 2 — Operating System Initialized Registers

1 Process and Thread Identification

2 Effective Address (EA) Context Save/Restore Pointer

3 Virtual Address (VA) Accelerator Utilization Record Pointer

4 Virtual Address (VA) Storage Segment Table Pointer

5 Authority Mask

26

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

6 Work descriptor

[0142] Each WD 484 may be specific to a particular graphics acceleration module 446
and/or graphics processing engine 431-432, N. It contains all the information a graphics
processing engine 431-432, N requires to do its work or it can be a pointer to a memory location
where the application has set up a command queue of work to be completed.

[0143] FIG. 4E illustrates additional optional details of a shared model. It includes a
hypervisor real address space 498 in which a process element list 499 is stored. The hypervisor
real address space 498 is accessible via a hypervisor 496 which virtualizes the graphics
acceleration module engines for the operating system 495.

[0144] The shared programming models allow for all or a subset of processes from all or a
subset of partitions in the system to use a graphics acceleration module 446. There are two
programming models where the graphics acceleration module 446 is shared by multiple
processes and partitions: time-sliced shared and graphics directed shared.

[0145] In this model, the system hypervisor 496 owns the graphics acceleration module 446
and makes its function available to all operating systems 495. For a graphics acceleration
module 446 to support virtualization by the system hypervisor 496, the graphics acceleration
module 446 may adhere to the following requirements: 1) An application’s job request must be
autonomous (that is, the state does not need to be maintained between jobs), or the graphics
acceleration module 446 must provide a context save and restore mechanism. 2) An
application’s job request is guaranteed by the graphics acceleration module 446 to complete in a
specified amount of time, including any translation faults, or the graphics acceleration module
446 provides the ability to preempt the processing of the job. 3) The graphics acceleration
module 446 must be guaranteed fairness between processes when operating in the directed
shared programming model.

[0146] For the shared model, the application 480 may be required to make an operating
system 495 system call with a graphics acceleration module 446 type, a work descriptor (WD),
an authority mask register (AMR) value, and a context save/restore area pointer (CSRP). The
graphics acceleration module 446 type describes the targeted acceleration function for the system
call. The graphics acceleration module 446 type may be a system-specific value. The WD is
formatted specifically for the graphics acceleration module 446 and can be in the form of a
graphics acceleration module 446 command, an effective address pointer to a user-defined
structure, an effective address pointer to a queue of commands, or any other data structure to
describe the work to be done by the graphics acceleration module 446. In one embodiment, the

AMR value is the AMR state to use for the current process. The value passed to the operating

27

10

15

20

25

WO 2020/190808 PCT/US2020/022846

system is similar to an application setting the AMR. If the accelerator integration circuit 436 and
graphics acceleration module 446 implementations do not support a User Authority Mask
Override Register (UAMOR), the operating system may apply the current UAMOR value to the
AMR value before passing the AMR in the hypervisor call. The hypervisor 496 may optionally
apply the current Authority Mask Override Register (AMOR) value before placing the AMR into
the process element 483. The CSRP may be one of the registers 445 containing the effective
address of an area in the application’s address space 482 for the graphics acceleration module
446 to save and restore the context state. This pointer is optional if no state is required to be
saved between jobs or when a job is preempted. The context save/restore area may be pinned
system memory.

[0147] Upon receiving the system call, the operating system 495 may verify that the
application 480 has registered and been given the authority to use the graphics acceleration
module 446. The operating system 495 then calls the hypervisor 496 with the information

shown in Table 3.

Table 3 — OS to Hypervisor Call Parameters

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer (CSRP)

4 A process ID (PID) and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer (AURP)

6 The virtual address of the storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

[0148] Upon receiving the hypervisor call, the hypervisor 496 verifies that the operating
system 495 has registered and been given the authority to use the graphics acceleration module
446. The hypervisor 496 then puts the process element 483 into the process element linked list
for the corresponding graphics acceleration module 446 type. The process element may include

the information shown in Table 4.

Table 4 — Process Element Information

28

10

15

WO 2020/190808 PCT/US2020/022846

1 A work descriptor (WD)

2 An Authority Mask Register (AMR) value (potentially masked).

3 An effective address (EA) Context Save/Restore Area Pointer (CSRP)

4 A process ID (PID) and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer (AURP)

6 The virtual address of the storage segment table pointer (SSTP)

7 A logical interrupt service number (LISN)

8 Interrupt vector table, derived from the hypervisor call parameters.

9 A state register (SR) value

10 | A logical partition ID (LPID)

11 | A real address (RA) hypervisor accelerator utilization record pointer

12 The Storage Descriptor Register (SDR)

[0149] The hypervisor may initialize a plurality of accelerator integration slice 490 registers
445.

[0150] As illustrated in FIG. 4F, in one optional implementation a unified memory
addressable via a common virtual memory address space used to access the physical processor
memories 401-402 and GPU memories 420-423 is employed. In this implementation, operations
executed on the GPUs 410-413 utilize the same virtual/effective memory address space to access
the processors memories 401-402 and vice versa, thereby simplifying programmability. A first
portion of the virtual/effective address space may be allocated to the processor memory 401, a
second portion to the second processor memory 402, a third portion to the GPU memory 420,
and so on. The entire virtual/effective memory space (sometimes referred to as the effective
address space) may thereby be distributed across each of the processor memories 401-402 and
GPU memories 420-423, allowing any processor or GPU to access any physical memory with a
virtual address mapped to that memory.

[0151] Bas/coherence management circuitry 494A-494E within one or more of the MMUs s
439A-439E may be provided that ensures cache coherence between the caches of the host
processors (e.g., 405) and the GPUs 410-413 and implements biasing techniques indicating the
physical memories in which certain types of data should be stored. While multiple instances of

bias/coherence management circuitry 494A-494E are illustrated in FIG. 4F, the bias/coherence

29

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

circuitry may be implemented within the MMU of one or more host processors 405 and/or within
the accelerator integration circuit 436.

[0152] The GPU-attached memory 420-423 may be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology, but without suffering the typical
performance drawbacks associated with full system cache coherence. The ability to GPU-
attached memory 420-423 to be accessed as system memory without onerous cache coherence
overhead provides a beneficial operating environment for GPU offload. This arrangement
allows the host processor 405 software to setup operands and access computation results, without
the overhead of tradition I/O DMA data copies. Such traditional copies involve driver calls,
interrupts and memory mapped /O (MMIO) accesses that are all inefficient relative to simple
memory accesses. At the same time, the ability to access GPU attached memory 420-423
without cache coherence overheads can be critical to the execution time of an offloaded
computation. In cases with substantial streaming write memory traffic, for example, cache
coherence overhead can significantly reduce the effective write bandwidth seen by a GPU 410-
413. The efficiency of operand setup, the efficiency of results access, and the efficiency of GPU
computation all play a role in determining the effectiveness of GPU offload.

[0153] A selection of between GPU bias and host processor bias may be driven by a bias
tracker data structure. A bias table may be used, for example, which may be a page-granular
structure (i.e., controlled at the granularity of a memory page) that includes 1 or 2 bits per GPU-
attached memory page. The bias table may be implemented in a stolen memory range of one or
more GPU-attached memories 420-423, with or without a bias cache in the GPU 410-413 (e.g.,
to cache frequently/recently used entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

[0154] In one implementation, the bias table entry associated with each access to the GPU-
attached memory 420-423 is accessed prior the actual access to the GPU memory, causing the
following operations. First, local requests from the GPU 410-413 that find their page in GPU
bias are forwarded directly to a corresponding GPU memory 420-423. Local requests from the
GPU that find their page in host bias are forwarded to the processor 405 (e.g., over a high-speed
link as discussed above). Optionally, requests from the processor 405 that find the requested
page in host processor bias complete the request like a normal memory read. Alternatively,
requests directed to a GPU-biased page may be forwarded to the GPU 410-413. The GPU may
then transition the page to a host processor bias if it is not currently using the page.

[0155] The bias state of a page can be changed either by a software-based mechanism, a
hardware-assisted software-based mechanism, or, for a limited set of cases, a purely hardware-

based mechanism.

30

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0156] One mechanism for changing the bias state employs an API call (e.g. OpenCL),
which, in turn, calls the GPU’s device driver which, in turn, sends a message (or enqueues a
command descriptor) to the GPU directing it to change the bias state and, for some transitions,
perform a cache flushing operation in the host. The cache flushing operation is required for a
transition from host processor 405 bias to GPU bias, but is not required for the opposite
transition.

[0157] Cache coherency may be maintained by temporarily rendering GPU-biased pages
uncacheable by the host processor 405. To access these pages, the processor 405 may request
access from the GPU 410 which may or may not grant access right away, depending on the
implementation. Thus, to reduce communication between the host processor 405 and GPU 410
it is beneficial to ensure that GPU-biased pages are those which are required by the GPU but not
the host processor 405 and vice versa.

Graphics Processing Pipeline

[0158] FIG. 5 illustrates a graphics processing pipeline 500. A graphics multiprocessor,
such as graphics multiprocessor 234 as in FIG. 2D, graphics multiprocessor 325 of FIG. 3A,
graphics multiprocessor 350 of FIG. 3B can implement the illustrated graphics processing
pipeline 500. The graphics multiprocessor can be included within the parallel processing
subsystems as described herein, such as the parallel processor 200 of FIG. 2A, which may be
related to the parallel processor(s) 112 of FIG. 1 and may be used in place of one of those. The
various parallel processing systems can implement the graphics processing pipeline 500 via one
or more instances of the parallel processing unit (e.g., parallel processing unit 202 of FIG. 2A) as
described herein. For example, a shader unit (e.g., graphics multiprocessor 234 of FIG. 2C) may
be configured to perform the functions of one or more of a vertex processing unit 504, a
tessellation control processing unit 508, a tessellation evaluation processing unit 512, a geometry
processing unit 516, and a fragment/pixel processing unit 524. The functions of data assembler
502, primitive assemblers 506, 514, 518, tessellation unit 510, rasterizer 522, and raster
operations unit 526 may also be performed by other processing engines within a processing
cluster (e.g., processing cluster 214 of FIG. 2A) and a corresponding partition unit (e.g., partition
unit 220A-220N of FIG. 2A). The graphics processing pipeline 500 may also be implemented
using dedicated processing units for one or more functions. It is also possible that one or more
portions of the graphics processing pipeline 500 are performed by parallel processing logic
within a general-purpose processor (e.g., CPU). Optionally, one or more portions of the graphics
processing pipeline 500 can access on-chip memory (e.g., parallel processor memory 222 as in

FIG. 2A) via a memory interface 528, which may be an instance of the memory interface 218 of

31

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

FIG. 2A. The graphics processor pipeline 500 may also be implemented via a multi-core group
365A as in FIG. 3C.

[0159] The data assembler 502 is a processing unit that may collect vertex data for surfaces
and primitives. The data assembler 502 then outputs the vertex data, including the vertex
attributes, to the vertex processing unit 504. The vertex processing unit 504 is a programmable
execution unit that executes vertex shader programs, lighting and transforming vertex data as
specified by the vertex shader programs. The vertex processing unit 504 reads data that is stored
in cache, local or system memory for use in processing the vertex data and may be programmed
to transform the vertex data from an object-based coordinate representation to a world space
coordinate space or a normalized device coordinate space.

[0160] A first instance of a primitive assembler 506 receives vertex attributes from the vertex
processing unit 504. The primitive assembler 506 readings stored vertex attributes as needed and
constructs graphics primitives for processing by tessellation control processing unit 508. The
graphics primitives include triangles, line segments, points, patches, and so forth, as supported
by various graphics processing application programming interfaces (APIs).

[0161] The tessellation control processing unit 508 treats the input vertices as control points
for a geometric patch. The control points are transformed from an input representation from the
patch (e.g., the patch’s bases) to a representation that is suitable for use in surface evaluation by
the tessellation evaluation processing unit 512. The tessellation control processing unit 508 can
also compute tessellation factors for edges of geometric patches. A tessellation factor applies to
a single edge and quantifies a view-dependent level of detail associated with the edge. A
tessellation unit 510 is configured to receive the tessellation factors for edges of a patch and to
tessellate the patch into multiple geometric primitives such as line, triangle, or quadrilateral
primitives, which are transmitted to a tessellation evaluation processing unit 512. The
tessellation evaluation processing unit 512 operates on parameterized coordinates of the
subdivided patch to generate a surface representation and vertex attributes for each vertex
associated with the geometric primitives.

[0162] A second instance of a primitive assembler 514 receives vertex attributes from the
tessellation evaluation processing unit 512, reading stored vertex attributes as needed, and
constructs graphics primitives for processing by the geometry processing unit 516. The
geometry processing unit 516 is a programmable execution unit that executes geometry shader
programs to transform graphics primitives received from primitive assembler 514 as specified by
the geometry shader programs. The geometry processing unit 516 may be programmed to
subdivide the graphics primitives into one or more new graphics primitives and calculate

parameters used to rasterize the new graphics primitives.

32

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0163] The geometry processing unit 516 may be able to add or delete elements in the
geometry stream. The geometry processing unit 516 outputs the parameters and vertices
specifying new graphics primitives to primitive assembler 518. The primitive assembler 518
receives the parameters and vertices from the geometry processing unit 516 and constructs
graphics primitives for processing by a viewport scale, cull, and clip unit 520. The geometry
processing unit 516 reads data that is stored in parallel processor memory or system memory for
use in processing the geometry data. The viewport scale, cull, and clip unit 520 performs
clipping, culling, and viewport scaling and outputs processed graphics primitives to a rasterizer
522.

[0164] The rasterizer 522 can perform depth culling and other depth-based optimizations.
The rasterizer 522 also performs scan conversion on the new graphics primitives to generate
fragments and output those fragments and associated coverage data to the fragment/pixel
processing unit 524. The fragment/pixel processing unit 524 is a programmable execution unit
that is configured to execute fragment shader programs or pixel shader programs. The
fragment/pixel processing unit 524 transforming fragments or pixels received from rasterizer
522, as specified by the fragment or pixel shader programs. For example, the fragment/pixel
processing unit 524 may be programmed to perform operations included but not limited to
texture mapping, shading, blending, texture correction and perspective correction to produce
shaded fragments or pixels that are output to a raster operations unit 526. The fragment/pixel
processing unit 524 can read data that is stored in either the parallel processor memory or the
system memory for use when processing the fragment data. Fragment or pixel shader programs
may be configured to shade at sample, pixel, tile, or other granularities depending on the
sampling rate configured for the processing units.

[0165] The raster operations unit 526 is a processing unit that performs raster operations
including, but not limited to stencil, z-test, blending, and the like, and outputs pixel data as
processed graphics data to be stored in graphics memory (e.g., parallel processor memory 222 as
in FIG. 2A, and/or system memory 104 as in FIG 1), to be displayed on the one or more display
device(s) 110 or for further processing by one of the one or more processor(s) 102 or parallel
processor(s) 112. The raster operations unit 526 may be configured to compress z or color data
that is written to memory and decompress z or color data that is read from memory.

Machine Learning Overview

[0166] The architecture described above can be applied to perform training and inference
operations using machine learning models. Machine learning has been successful at solving
many kinds of tasks. The computations that arise when training and using machine learning

algorithms {e.g., neural networks) lend themselves naturally to efficient parailel

33

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

implementations. Accordingly, parallel processors such as general-purpose graphic processing
units (GPGPUs) have played a significant role in the practical implementation of deep neural
networks. Parallel graphics processors with single instruction, multiple thread (SIMT)
architectures are designed to maximize the amount of parallel processing in the graphics
pipeline. In an SIMT architecture, groups of parallel threads attempt to execute program
instructions synchronously together as often as possible to increase processing efficiency. The
efficiency provided by parallel machine learning algorithm implementations allows the use of
high capacity networks and enables those networks to be trained on larger datasets.

[0167] A machine learning algorithm is an algorithm that can learn based on a set of data.
For example, machine learning algorithms can be designed to model high-level abstractions
within a data set. For example, image recognition algorithms can be used to determine which of
several categories to which a given input belong; regression algorithms can output a numerical
value given an input; and pattern recognition algorithms can be used to generate translated text
or perform text to speech and/or speech recognition.

[0168] An exemplary type of machine learning algorithm is a neural network. There are
many types of neural networks; a simple type of neural network is a feedforward network. A
feedforward network may be implemented as an acyclic graph in which the nodes are arranged in
layers. Typically, a feedforward network topology includes an input layer and an output layer
that are separated by at least one hidden layer. The hidden layer transforms input received by the
input layer into a representation that is useful for generating output in the output layer. The
network nodes are fully connected via edges to the nodes in adjacent layers, but there are no
edges between nodes within each layer. Data received at the nodes of an input layer of a
feedforward network are propagated (i.e., “fed forward”) to the nodes of the output layer via an
activation function that calculates the states of the nodes of each successive layer in the network
based on coefficients (“weights™) respectively associated with each of the edges connecting the
layers. Depending on the specific model being represented by the algorithm being executed, the
output from the neural network algorithm can take various forms.

[0169] Before a machine learning algorithm can be used to model a particular problem, the
algorithm is trained using a training data set. Training a neural network involves selecting a
network topology, using a set of training data representing a problem being modeled by the
network, and adjusting the weights until the network model performs with a minimal error for all
instances of the training data set. For example, during a supervised learning training process for
a neural network, the output produced by the network in response to the input representing an
instance in a training data set is compared to the “correct” labeled output for that instance, an

error signal representing the difference between the output and the labeled output is calculated,

34

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

and the weights associated with the connections are adjusted to minimize that error as the error
signal is backward propagated through the layers of the network. The network is considered
“trained” when the errors for each of the outputs generated from the instances of the training data
set are minimized.

[0170] The accuracy of a machine learning algorithm can be affected significantly by the
quality of the data set used to train the algorithm. The training process can be computationally
intensive and may require a significant amount of time on a conventional general-purpose
processor. Accordingly, parallel processing hardware is used to train many types of machine
learning algorithms. This is particularly useful for optimizing the training of neural networks, as
the computations performed in adjusting the coefficients in neural networks lend themselves
naturally to parallel implementations. Specifically, many machine learning algorithms and
software applications have been adapted to make use of the parallel processing hardware within
general-purpose graphics processing devices.

[0171] FIG. 6 is a generalized diagram of a machine learning software stack 600. A
machine learning application 602 can be configured to train a neural network using a training
dataset or to use a trained deep neural network to implement machine intelligence. The machine
learning application 602 can include training and inference functionality for a neural network
and/or specialized software that can be used to train a neural network before deployment. The
machine learning application 602 can implement any type of machine intelligence including but
not limited to image recognition, mapping and localization, autonomous navigation, speech
synthesis, medical imaging, or language translation.

[0172] Hardware acceleration for the machine learning application 602 can be enabled via a
machine learning framework 604. The machine learning framework 604 can provide a library of
machine learning primitives. Machine learning primitives are basic operations that are
commonly performed by machine learning algorithms. Without the machine learning framework
604, developers of machine learning algorithms would be required to create and optimize the
main computational logic associated with the machine learning algorithm, then re-optimize the
computational logic as new parallel processors are developed. Instead, the machine learning
application can be configured to perform the necessary computations using the primitives
provided by the machine learning framework 604. Exemplary primitives include tensor
convolutions, activation functions, and pooling, which are computational operations that are
performed while training a convolutional neural network (CNN). The machine learning
framework 604 can also provide primitives to implement basic linear algebra subprograms

performed by many machine-learning algorithms, such as matrix and vector operations.

35

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0173] The machine learning framework 604 can process input data received from the
machine learning application 602 and generate the appropriate input to a compute framework
606. The compute framework 606 can abstract the underlying instructions provided to the
GPGPU driver 608 to enable the machine learning framework 604 to take advantage of hardware
acceleration via the GPGPU hardware 610 without requiring the machine learning framework
604 to have intimate knowledge of the architecture of the GPGPU hardware 610. Additionally,
the compute framework 606 can enable hardware acceleration for the machine learning
framework 604 across a variety of types and generations of the GPGPU hardware 610.

GPGPU Machine Learning Acceleration

[0174] FIG. 7 illustrates a general-purpose graphics processing unit 700, , which may be the
parallel processor 200 of FIG. 2A or the parallel processor(s) 112 of FIG. 1. The general-
purpose processing unit (GPGPU) 700 may be configured to be particularly efficient in
processing the type of computational workloads associated with training deep neural networks.
Additionally, the GPGPU 700 can be linked directly to other instances of the GPGPU to create a
multi-GPU cluster to improve training speed for particularly deep neural networks.

[0175] The GPGPU 700 includes a host interface 702 to enable a connection with a host
processor. The host interface 702 may be a PCI Express interface. However, the host interface
can also be a vendor specific communications interface or communications fabric. The GPGPU
700 receives commands from the host processor and uses a global scheduler 704 to distribute
execution threads associated with those commands to a set of processing clusters 706 A-706H.
The processing clusters 706A-706H share a cache memory 708. The cache memory 708 can
serve as a higher-level cache for cache memories within the processing clusters 706 A-706H.
The illustrated processing clusters 706 A-706H may correspond with processing clusters 214 A-
214N as in FIG. 2A.

[0176] The GPGPU 700 includes memory 714A-714B coupled with the processing clusters
706A-H via a set of memory controllers 712A-712B. The memory 714A-714B can include
various types of memory devices including dynamic random-access memory (DRAM) or
graphics random access memory, such as synchronous graphics random access memory
(SGRAM), including graphics double data rate (GDDR) memory. The memory 714A-714B may
also include 3D stacked memory, including but not limited to high bandwidth memory (HBM).
[0177] Each of the processing clusters 706 A-706H may include a set of graphics
multiprocessors, such as the graphics multiprocessor 234 of FIG. 2D, graphics multiprocessor
325 of FIG. 3A, graphics multiprocessor 350 of FIG. 3B, or may include a multi-core group
365A-365N as in FIG. 3C. The graphics multiprocessors of the compute cluster include multiple

types of integer and floating-point logic units that can perform computational operations at a

36

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

range of precisions including suited for machine learning computations. For example, at least a
subset of the floating-point units in each of the processing clusters 706 A-706H can be configured
to perform 16-bit or 32-bit floating point operations, while a different subset of the floating-point
units can be configured to perform 64-bit floating point operations.

[0178] Multiple instances of the GPGPU 700 can be configured to operate as a compute
cluster. The communication mechanism used by the compute cluster for synchronization and
data exchange varies across embodiments. For example, the multiple instances of the GPGPU
700 communicate over the host interface 702. In one embodiment the GPGPU 700 includes an
I/O hub 709 that couples the GPGPU 700 with a GPU link 710 that enables a direct connection
to other instances of the GPGPU. The GPU link 710 may be coupled to a dedicated GPU-to-
GPU bridge that enables communication and synchronization between multiple instances of the
GPGPU 700. Optionally, the GPU link 710 couples with a high-speed interconnect to transmit
and receive data to other GPGPUs or parallel processors. The multiple instances of the GPGPU
700 may be located in separate data processing systems and communicate via a network device
that is accessible via the host interface 702. The GPU link 710 may be configured to enable a
connection to a host processor in addition to or as an alternative to the host interface 702.

[0179] While the illustrated configuration of the GPGPU 700 can be configured to train
neural networks, an alternate configuration of the GPGPU 700 can be configured for deployment
within a high performance or low power inferencing platform. In an inferencing configuration,
the GPGPU 700 includes fewer of the processing clusters 706A-706H relative to the training
configuration. Additionally, memory technology associated with the memory 714A-714B may
differ between inferencing and training configurations. In one embodiment, the inferencing
configuration of the GPGPU 700 can support inferencing specific instructions. For example, an
inferencing configuration can provide support for one or more 8-bit integer dot product
instructions, which are commonly used during inferencing operations for deployed neural
networks.

[0180] FIG. 8 illustrates a multi-GPU computing system 800. The multi-GPU computing
system 800 can include a processor 802 coupled to multiple GPGPUs 806A-806D via a host
interface switch 804. The host interface switch 804 may be a PCI express switch device that
couples the processor 802 to a PCI express bus over which the processor 802 can communicate
with the set of GPGPUs 806A-806D. Each of the multiple GPGPUs 806A-806D can be an
instance of the GPGPU 700 of FIG. 7. The GPGPUs 806A-806D can interconnect via a set of
high-speed point to point GPU to GPU links 816. The high-speed GPU to GPU links can
connect to each of the GPGPUs 806A-806D via a dedicated GPU link, such as the GPU link 710
as in FIG. 7. The P2P GPU links 816 enable direct communication between each of the

37

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

GPGPUs 806A-806D without requiring communication over the host interface bus to which the
processor 802 is connected. With GPU-to-GPU traffic directed to the P2P GPU links, the host
interface bus remains available for system memory access or to communicate with other
instances of the multi-GPU computing system 800, for example, via one or more network
devices. While in FIG. 8 the GPGPUs 806A-806D connect to the processor 802 via the host
interface switch 804, the processor 802 may alternatively include direct support for the P2P GPU
links 816 and connect directly to the GPGPUs 806A-806D.

Machine Learning Neural Network Implementations

[0181] The computing architecture described herein can be configured to perform the types
of parallel processing that is particularly suited for training and deploying neural networks for
machine learning. A neural network can be generalized as a network of functions having a graph
relationship. As is well-known in the art, there are a variety of types of neural network
implementations used in machine learning. One exemplary type of neural network is the
feedforward network, as previously described.

[0182] A second exemplary type of neural network is the Convolutional Neural Network
(CNN). A CNN is a specialized feedforward neural network for processing data having a
known, grid-like topology, such as image data. Accordingly, CNNs are commonly used for
compute vision and image recognition applications, but they also may be used for other types of
pattern recognition such as speech and language processing. The nodes in the CNN input layer
are organized into a set of “filters” (feature detectors inspired by the receptive fields found in the
retina), and the output of each set of filters is propagated to nodes in successive layers of the
network. The computations for a CNN include applying the convolution mathematical operation
to each filter to produce the output of that filter. Convolution is a specialized kind of
mathematical operation performed by two functions to produce a third function that is a modified
version of one of the two original functions. In convolutional network terminology, the first
function to the convolution can be referred to as the input, while the second function can be
referred to as the convolution kernel. The output may be referred to as the feature map. For
example, the input to a convolution layer can be a multidimensional array of data that defines the
various color components of an input image. The convolution kernel can be a multidimensional
array of parameters, where the parameters are adapted by the training process for the neural
network.

[0183] Recurrent neural networks (RNNs) are a family of feedforward neural networks that
include feedback connections between layers. RNNs enable modeling of sequential data by
sharing parameter data across different parts of the neural network. The architecture for an RNN

includes cycles. The cycles represent the influence of a present value of a variable on its own

38

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

value at a future time, as at least a portion of the output data from the RNN is used as feedback
for processing subsequent input in a sequence. This feature makes RNNs particularly useful for
language processing due to the variable nature in which language data can be composed.

[0184] The figures described below present exemplary feedforward, CNN, and RNN
networks, as well as describe a general process for respectively training and deploying each of
those types of networks. It will be understood that these descriptions are exemplary and non-
limiting as to any specific embodiment described herein and the concepts illustrated can be
applied generally to deep neural networks and machine learning techniques in general.

[0185] The exemplary neural networks described above can be used to perform deep
learning. Deep learning is machine learning using deep neural networks. The deep neural
networks used in deep learning are artificial neural networks composed of multiple hidden
layers, as opposed to shallow neural networks that include only a single hidden layer. Deeper
neural networks are generally more computationally intensive to train. However, the additional
hidden layers of the network enable multistep pattern recognition that results in reduced output
error relative to shallow machine learning techniques.

[0186] Deep neural networks used in deep learning typically include a front-end network to
perform feature recognition coupled to a back-end network which represents a mathematical
model that can perform operations (e.g., object classification, speech recognition, etc.) based on
the feature representation provided to the model. Deep learning enables machine learning to be
performed without requiring hand crafted feature engineering to be performed for the model.
Instead, deep neural networks can learn features based on statistical structure or correlation
within the input data. The learned features can be provided to a mathematical model that can
map detected features to an output. The mathematical model used by the network is generally
specialized for the specific task to be performed, and different models will be used to perform
different task.

[0187] Once the neural network is structured, a learning model can be applied to the network
to train the network to perform specific tasks. The learning model describes how to adjust the
weights within the model to reduce the output error of the network. Backpropagation of errors is
a common method used to train neural networks. An input vector is presented to the network for
processing. The output of the network is compared to the desired output using a loss function
and an error value is calculated for each of the neurons in the output layer. The error values are
then propagated backwards until each neuron has an associated error value which roughly
represents its contribution to the original output. The network can then learn from those errors
using an algorithm, such as the stochastic gradient descent algorithm, to update the weights of

the of the neural network.

39

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0188] FIG. 9A-9B illustrate an exemplary convolutional neural network. FIG. 9A
illustrates various layers within a CNN. As shown in FIG. 9A, an exemplary CNN used to
model image processing can receive input 902 describing the red, green, and blue (RGB)
components of an input image. The input 902 can be processed by multiple convolutional layers
(e.g., convolutional layer 904, convolutional layer 906). The output from the multiple
convolutional layers may optionally be processed by a set of fully connected layers 908.
Neurons in a fully connected layer have full connections to all activations in the previous layer,
as previously described for a feedforward network. The output from the fully connected layers
908 can be used to generate an output result from the network. The activations within the fully
connected layers 908 can be computed using matrix multiplication instead of convolution. Not
all CNN implementations make use of fully connected layers 908. For example, in some
implementations the convolutional layer 906 can generate output for the CNN.

[0189] The convolutional layers are sparsely connected, which differs from traditional neural
network configuration found in the fully connected layers 908. Traditional neural network layers
are fully connected, such that every output unit interacts with every input unit. However, the
convolutional layers are sparsely connected because the output of the convolution of a field is
input (instead of the respective state value of each of the nodes in the field) to the nodes of the
subsequent layer, as illustrated. The kernels associated with the convolutional layers perform
convolution operations, the output of which is sent to the next layer. The dimensionality
reduction performed within the convolutional layers is one aspect that enables the CNN to scale
to process large images.

[0190] FIG. 9B illustrates exemplary computation stages within a convolutional layer of a
CNN. Input to a convolutional layer 912 of a CNN can be processed in three stages of a
convolutional layer 914. The three stages can include a convolution stage 916, a detector stage
918, and a pooling stage 920. The convolution layer 914 can then output data to a successive
convolutional layer. The final convolutional layer of the network can generate output feature
map data or provide input to a fully connected layer, for example, to generate a classification
value for the input to the CNN.

[0191] In the convolution stage 916 performs several convolutions in parallel to produce a
set of linear activations. The convolution stage 916 can include an affine transformation, which
is any transformation that can be specified as a linear transformation plus a translation. Affine
transformations include rotations, translations, scaling, and combinations of these
transformations. The convolution stage computes the output of functions (e.g., neurons) that are
connected to specific regions in the input, which can be determined as the local region associated

with the neuron. The neurons compute a dot product between the weights of the neurons and the

40

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

region in the local input to which the neurons are connected. The output from the convolution
stage 916 defines a set of linear activations that are processed by successive stages of the
convolutional layer 914.

[0192] The linear activations can be processed by a detector stage 918. In the detector stage
918, each linear activation is processed by a non-linear activation function. The non-linear
activation function increases the nonlinear properties of the overall network without affecting the
receptive fields of the convolution layer. Several types of non-linear activation functions may be
used. One particular type is the rectified linear unit (ReLU), which uses an activation function
defined as f(x) = max (0, x), such that the activation is thresholded at zero.

[0193] The pooling stage 920 uses a pooling function that replaces the output of the
convolutional layer 906 with a summary statistic of the nearby outputs. The pooling function
can be used to introduce translation invariance into the neural network, such that small
translations to the input do not change the pooled outputs. Invariance to local translation can be
useful in scenarios where the presence of a feature in the input data is more important than the
precise location of the feature. Various types of pooling functions can be used during the
pooling stage 920, including max pooling, average pooling, and 12-norm pooling. Additionally,
some CNN implementations do not include a pooling stage. Instead, such implementations
substitute and additional convolution stage having an increased stride relative to previous
convolution stages.

[0194] The output from the convolutional layer 914 can then be processed by the next layer
922. The next layer 922 can be an additional convolutional layer or one of the fully connected
layers 908. For example, the first convolutional layer 904 of FIG. 9A can output to the second
convolutional layer 906, while the second convolutional layer can output to a first layer of the
fully connected layers 908.

[0195] FIG. 10 illustrates an exemplary recurrent neural network 1000. In a recurrent neural
network (RNN), the previous state of the network influences the output of the current state of the
network. RNNSs can be built in a variety of ways using a variety of functions. The use of RNNs
generally revolves around using mathematical models to predict the future based on a prior
sequence of inputs. For example, an RNN may be used to perform statistical language modeling
to predict an upcoming word given a previous sequence of words. The illustrated RNN 1000 can
be described has having an input layer 1002 that receives an input vector, hidden layers 1004 to
implement a recurrent function, a feedback mechanism 1005 to enable a ‘memory’ of previous
states, and an output layer 1006 to output a result. The RNN 1000 operates based on time-steps.
The state of the RNN at a given time step is influenced based on the previous time step via the

feedback mechanism 1005. For a given time step, the state of the hidden layers 1004 is defined

41

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

by the previous state and the input at the current time step. An initial input (x1) at a first time
step can be processed by the hidden layer 1004. A second input (x2) can be processed by the
hidden layer 1004 using state information that is determined during the processing of the initial
input (x1). A given state can be computed as s; = f(Ux; + Ws;_,), where U and W are
parameter matrices. The function f is generally a nonlinearity, such as the hyperbolic tangent
function (Tanh) or a variant of the rectifier function f(x) = max(0, x). However, the specific
mathematical function used in the hidden layers 1004 can vary depending on the specific
implementation details of the RNN 1000.

[0196] In addition to the basic CNN and RNN networks described, variations on those
networks may be enabled. One example RNN variant is the long short term memory (LSTM)
RNN. LSTM RNNs are capable of learning long-term dependencies that may be necessary for
processing longer sequences of language. A variant on the CNN is a convolutional deep belief
network, which has a structure similar to a CNN and is trained in a manner similar to a deep
belief network. A deep belief network (DBN) is a generative neural network that is composed of
multiple layers of stochastic (random) variables. DBNs can be trained layer-by-layer using
greedy unsupervised learning. The learned weights of the DBN can then be used to provide pre-
train neural networks by determining an optimal initial set of weights for the neural network.
[0197] FIG. 11 illustrates training and deployment of a deep neural network. Once a given
network has been structured for a task the neural network is trained using a training dataset 1102.
Various training frameworks 1104 have been developed to enable hardware acceleration of the
training process. For example, the machine learning framework 604 of FIG. 6 may be
configured as a training framework 604. The training framework 604 can hook into an untrained
neural network 1106 and enable the untrained neural net to be trained using the parallel
processing resources described herein to generate a trained neural net 1108.

[0198] To start the training process the initial weights may be chosen randomly or by pre-
training using a deep belief network. The training cycle then be performed in either a supervised
or unsupervised manner.

[0199] Supervised learning is a learning method in which training is performed as a mediated
operation, such as when the training dataset 1102 includes input paired with the desired output
for the input, or where the training dataset includes input having known output and the output of
the neural network is manually graded. The network processes the inputs and compares the
resulting outputs against a set of expected or desired outputs. Errors are then propagated back
through the system. The training framework 1104 can adjust to adjust the weights that control
the untrained neural network 1106. The training framework 1104 can provide tools to monitor

how well the untrained neural network 1106 is converging towards a model suitable to

42

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

generating correct answers based on known input data. The training process occurs repeatedly as
the weights of the network are adjusted to refine the output generated by the neural network.
The training process can continue until the neural network reaches a statistically desired
accuracy associated with a trained neural net 1108. The trained neural network 1108 can then be
deployed to implement any number of machine learning operations to generate an inference
result 1114 based on input of new data 1112.

[0200] Unsupervised learning is a learning method in which the network attempts to train
itself using unlabeled data. Thus, for unsupervised learning the training dataset 1102 will
include input data without any associated output data. The untrained neural network 1106 can
learn groupings within the unlabeled input and can determine how individual inputs are related
to the overall dataset. Unsupervised training can be used to generate a self-organizing map,
which is a type of trained neural network 1108 capable of performing operations useful in
reducing the dimensionality of data. Unsupervised training can also be used to perform anomaly
detection, which allows the identification of data points in an input dataset that deviate from the
normal patterns of the data.

[0201] Variations on supervised and unsupervised training may also be employed. Semi-
supervised learning is a technique in which in the training dataset 1102 includes a mix of labeled
and unlabeled data of the same distribution. Incremental learning is a variant of supervised
learning in which input data is continuously used to further train the model. Incremental
learning enables the trained neural network 1108 to adapt to the new data 1112 without
forgetting the knowledge instilled within the network during initial training.

[0202] Whether supervised or unsupervised, the training process for particularly deep neural
networks may be too computationally intensive for a single compute node. Instead of using a
single compute node, a distributed network of computational nodes can be used to accelerate the
training process.

[0203] FIG. 12 is a block diagram illustrating distributed learning. Distributed learning is a
training model that uses multiple distributed computing nodes to perform supervised or
unsupervised training of a neural network. The distributed computational nodes can each
include one or more host processors and one or more of the general-purpose processing nodes,
such as the highly parallel general-purpose graphics processing unit 700 as in FIG. 7. As
illustrated, distributed learning can be performed model parallelism 1202, data parallelism 1204,
or a combination of model and data parallelism 1204.

[0204] In model parallelism 1202, different computational nodes in a distributed system can
perform training computations for different parts of a single network. For example, each layer of

a neural network can be trained by a different processing node of the distributed system. The

43

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

benefits of model parallelism include the ability to scale to particularly large models. Splitting
the computations associated with different layers of the neural network enables the training of
very large neural networks in which the weights of all layers would not fit into the memory of a
single computational node. In some instances, model parallelism can be particularly useful in
performing unsupervised training of large neural networks.

[0205] In data parallelism 1204, the different nodes of the distributed network have a
complete instance of the model and each node receives a different portion of the data. The
results from the different nodes are then combined. While different approaches to data
parallelism are possible, data parallel training approaches all require a technique of combining
results and synchronizing the model parameters between each node. Exemplary approaches to
combining data include parameter averaging and update based data parallelism. Parameter
averaging trains each node on a subset of the training data and sets the global parameters (e.g.,
weights, biases) to the average of the parameters from each node. Parameter averaging uses a
central parameter server that maintains the parameter data. Update based data parallelism is
similar to parameter averaging except

that instead of transferring parameters from the nodes to the parameter server, the updates to the
model are transferred. Additionally, update based data parallelism can be performed in a
decentralized manner, where the updates are compressed and transferred between nodes.
[0206] Combined model and data parallelism 1206 can be implemented, for example, in a
distributed system in which each computational node includes multiple GPUs. Each node can
have a complete instance of the model with separate GPUs within each node are used to train
different portions of the model.

[0207] Distributed training has increased overhead relative to training on a single machine.
However, the parallel processors and GPGPUs described herein can each implement various
techniques to reduce the overhead of distributed training, including techniques to enable high
bandwidth GPU-to-GPU data transfer and accelerated remote data synchronization.

Exemplary Machine Learning Applications

[0208] Machine learning can be applied to solve a variety of technological problems,
including but not limited to computer vision, autonomous driving and navigation, speech
recognition, and language processing. Computer vision has traditionally been one of the most
active research areas for machine learning applications. Applications of computer vision range
from reproducing human visual abilities, such as recognizing faces, to creating new categories of
visual abilities. For example, computer vision applications can be configured to recognize sound
waves from the vibrations induced in objects visible in a video. Parallel processor accelerated

machine learning enables computer vision applications to be trained using significantly larger

44

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

training dataset than previously feasible and enables inferencing systems to be deployed using
low power parallel processors.

[0209] Parallel processor accelerated machine learning has autonomous driving applications
including lane and road sign recognition, obstacle avoidance, navigation, and driving control.
Accelerated machine learning techniques can be used to train driving models based on datasets
that define the appropriate responses to specific training input. The parallel processors described
herein can enable rapid training of the increasingly complex neural networks used for
autonomous driving solutions and enables the deployment of low power inferencing processors
in a mobile platform suitable for integration into autonomous vehicles.

[0210] Parallel processor accelerated deep neural networks have enabled machine learning
approaches to automatic speech recognition (ASR). ASR includes the creation of a function that
computes the most probable linguistic sequence given an input acoustic sequence. Accelerated
machine learning using deep neural networks have enabled the replacement of the hidden
Markov models (HMMs) and Gaussian mixture models (GMMs) previously used for ASR.
[0211] Parallel processor accelerated machine learning can also be used to accelerate natural
language processing. Automatic learning procedures can make use of statistical

inference algorithms to produce models that are robust to erroneous or unfamiliar input.
Exemplary natural language processor applications include automatic machine translation
between human languages.

[0212] The parallel processing platforms used for machine learning can be divided into
training platforms and deployment platforms. Training platforms are generally highly parallel
and include optimizations to accelerate multi-GPU single node training and multi-node, multi-
GPU training. Exemplary parallel processors suited for training include the general-purpose
graphics processing unit 700 of FIG. 7 and the multi-GPU computing system 800 of FIG. 8. On
the contrary, deployed machine learning platforms generally include lower power parallel
processors suitable for use in products such as cameras, autonomous robots, and autonomous
vehicles.

[0213] FIG. 13 illustrates an exemplary inferencing system on a chip (SOC) 1300 suitable
for performing inferencing using a trained model. The SOC 1300 can integrate processing
components including a media processor 1302, a vision processor 1304, a GPGPU 1306 and a
multi-core processor 1308. The GPGPU 1306 may be a GPGPU as described herein, such as the
GPGPU 700, and the multi-core processor 1308 may be a multi-core processor described herein,
such as the multi-core processors 405-406. The SOC 1300 can additionally include on-chip
memory 1305 that can enable a shared on-chip data pool that is accessible by each of the

processing components. The processing components can be optimized for low power operation

45

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

to enable deployment to a variety of machine learning platforms, including autonomous vehicles
and autonomous robots. For example, one implementation of the SOC 1300 can be used as a
portion of the main control system for an autonomous vehicle. Where the SOC 1300 is
configured for use in autonomous vehicles the SOC is designed and configured for compliance
with the relevant functional safety standards of the deployment jurisdiction.

[0214] During operation, the media processor 1302 and vision processor 1304 can work in
concert to accelerate computer vision operations. The media processor 1302 can enable low
latency decode of multiple high-resolution (e.g., 4K, 8K) video streams. The decoded video
streams can be written to a buffer in the on-chip-memory 1305. The vision processor 1304 can
then parse the decoded video and perform preliminary processing operations on the frames of the
decoded video in preparation of processing the frames using a trained image recognition model.
For example, the vision processor 1304 can accelerate convolution operations for a CNN that is
used to perform image recognition on the high-resolution video data, while back end model
computations are performed by the GPGPU 1306.

[0215] The multi-core processor 1308 can include control logic to assist with sequencing and
synchronization of data transfers and shared memory operations performed by the media
processor 1302 and the vision processor 1304. The multi-core processor 1308 can also function
as an application processor to execute software applications that can make use of the inferencing
compute capability of the GPGPU 1306. For example, at least a portion of the navigation and
driving logic can be implemented in software executing on the multi-core processor 1308. Such
software can directly issue computational workloads to the GPGPU 1306 or the computational
workloads can be issued to the multi-core processor 1308, which can offload at least a portion of
those operations to the GPGPU 1306.

[0216] The GPGPU 1306 can include compute clusters such as a low power configuration of
the processing clusters 706A-706H within general-purpose graphics processing unit 700. The
compute clusters within the GPGPU 1306 can support instruction that are specifically optimized
to perform inferencing computations on a trained neural network. For example, the GPGPU
1306 can support instructions to perform low precision computations such as 8-bit and 4-bit
integer vector operations.

Additional System Overview

[0217] FIG. 14 is a block diagram of a processing system 1400. The elements of FIG. 14

having the same or similar names as the elements of any other figure herein describe the same
elements as in the other figures, can operate or function in a manner similar to that, can comprise
the same components, and can be linked to other entities, as those described elsewhere herein,

but are not limited to such. System 1400 may be used in a single processor desktop system, a

46

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

multiprocessor workstation system, or a server system having a large number of processors 1402
or processor cores 1407. The system 1400 may be a processing platform incorporated within a
system-on-a-chip (SoC) integrated circuit for use in mobile, handheld, or embedded devices such
as within Internet-of-things (IoT) devices with wired or wireless connectivity to a local or wide
area network.

[0218] The system 1400 may be a processing system having components that correspond
with those of FIG. 1. For example, in different configurations, processor(s) 1402 or processor
core(s) 1407 may correspond with processor(s) 102 of FIG. 1. Graphics processor(s) 1408 may
correspond with parallel processor(s) 112 of FIG. 1. External graphics processor 1418 may be
one of the add-in device(s) 120 of FIG. 1.

[0219] The system 1400 can include, couple with, or be integrated within: a server-based
gaming platform; a game console, including a game and media console; a mobile gaming
console, a handheld game console, or an online game console. The system 1400 may be part of a
mobile phone, smart phone, tablet computing device or mobile Internet-connected device such as
a laptop with low internal storage capacity. Processing system 1400 can also include, couple
with, or be integrated within: a wearable device, such as a smart watch wearable device; smart
eyewear or clothing enhanced with augmented reality (AR) or virtual reality (VR) features to
provide visual, audio or tactile outputs to supplement real world visual, audio or tactile
experiences or otherwise provide text, audio, graphics, video, holographic images or video, or
tactile feedback; other augmented reality (AR) device; or other virtual reality (VR) device. The
processing system 1400 may include or be part of a television or set top box device. The system
1400 can include, couple with, or be integrated within a self-driving vehicle such as a bus, tractor
trailer, car, motor or electric power cycle, plane or glider (or any combination thereof). The self-
driving vehicle may use system 1400 to process the environment sensed around the vehicle.
[0220] The one or more processors 1402 may include one or more processor cores 1407 to
process instructions which, when executed, perform operations for system or user software. The
least one of the one or more processor cores 1407 may be configured to process a specific
instruction set 1409. The instruction set 1409 may facilitate Complex Instruction Set Computing
(CISC), Reduced Instruction Set Computing (RISC), or computing via a Very Long Instruction
Word (VLIW). One or more processor cores 1407 may process a different instruction set 1409,
which may include instructions to facilitate the emulation of other instruction sets. Processor
core 1407 may also include other processing devices, such as a Digital Signal Processor (DSP).
[0221] The processor 1402 may include cache memory 1404. Depending on the
architecture, the processor 1402 can have a single internal cache or multiple levels of internal

cache. In some embodiments, the cache memory is shared among various components of the

47

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

processor 1402. In some embodiments, the processor 1402 also uses an external cache (e.g., a
Level-3 (L3) cache or Last Level Cache (LLC)) (not shown), which may be shared among
processor cores 1407 using known cache coherency techniques. A register file 1406 can be
additionally included in processor 1402 and may include different types of registers for storing
different types of data (e.g., integer registers, floating point registers, status registers, and an
instruction pointer register). Some registers may be general-purpose registers, while other
registers may be specific to the design of the processor 1402.

[0222] The one or more processor(s) 1402 may be coupled with one or more interface
bus(es) 1410 to transmit communication signals such as address, data, or control signals between
processor 1402 and other components in the system 1400. The interface bus 1410, in one of
these embodiments, can be a processor bus, such as a version of the Direct Media Interface
(DMI) bus. However, processor busses are not limited to the DMI bus, and may include one or
more Peripheral Component Interconnect buses (e.g., PCI, PCI express), memory busses, or
other types of interface busses. For example, the processor(s) 1402 may include an integrated
memory controller 1416 and a platform controller hub 1430. The memory controller 1416
facilitates communication between a memory device and other components of the system 1400,
while the platform controller hub (PCH) 1430 provides connections to I/O devices via a local I/O
bus.

[0223] The memory device 1420 can be a dynamic random-access memory (DRAM) device,
a static random-access memory (SRAM) device, flash memory device, phase-change memory
device, or some other memory device having suitable performance to serve as process memory.
The memory device 1420 can, for example, operate as system memory for the system 1400, to
store data 1422 and instructions 1421 for use when the one or more processors 1402 executes an
application or process. Memory controller 1416 also couples with an optional external graphics
processor 1418, which may communicate with the one or more graphics processors 1408 in
processors 1402 to perform graphics and media operations. In some embodiments, graphics,
media, and or compute operations may be assisted by an accelerator 1412 which is a coprocessor
that can be configured to perform a specialized set of graphics, media, or compute operations.
For example, the accelerator 1412 may be a matrix multiplication accelerator used to optimize
machine learning or compute operations. The accelerator 1412 can be a ray-tracing accelerator
that can be used to perform ray-tracing operations in concert with the graphics processor 1408.
In one embodiment, an external accelerator 1419 may be used in place of or in concert with the
accelerator 1412.

[0224] A display device 1411 may be provided that can connect to the processor(s) 1402.

The display device 1411 can be one or more of an internal display device, as in a mobile

48

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

electronic device or a laptop device or an external display device attached via a display interface
(e.g., DisplayPort, etc.). The display device 1411 can be a head mounted display (HMD) such as
a stereoscopic display device for use in virtual reality (VR) applications or augmented reality
(AR) applications.

[0225] The platform controller hub 1430 may enable peripherals to connect to memory
device 1420 and processor 1402 via a high-speed I/O bus. The I/O peripherals include, but are
not limited to, an audio controller 1446, a network controller 1434, a firmware interface 1428, a
wireless transceiver 1426, touch sensors 1425, a data storage device 1424 (e.g., non-volatile
memory, volatile memory, hard disk drive, flash memory, NAND, 3D NAND, 3D
XPoint/Optane, etc.). The data storage device 1424 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as a Peripheral Component Interconnect bus (e.g., PCI, PCI
express). The touch sensors 1425 can include touch screen sensors, pressure sensors, or
fingerprint sensors. The wireless transceiver 1426 can be a Wi-Fi transceiver, a Bluetooth
transceiver, or a mobile network transceiver such as a 3G, 4G, 5G, or Long-Term Evolution
(LTE) transceiver. The firmware interface 1428 enables communication with system firmware,
and can be, for example, a unified extensible firmware interface (UEFI). The network controller
1434 can enable a network connection to a wired network. In some embodiments, a high-
performance network controller (not shown) couples with the interface bus 1410. The audio
controller 1446 may be a multi-channel high definition audio controller. In some of these
embodiments the system 1400 includes an optional legacy I/O controller 1440 for coupling
legacy (e.g., Personal System 2 (PS/2)) devices to the system. The platform controller hub 1430
can also connect to one or more Universal Serial Bus (USB) controllers 1442 connect input
devices, such as keyboard and mouse 1443 combinations, a camera 1444, or other USB input
devices.

[0226] It will be appreciated that the system 1400 shown is exemplary and not limiting, as
other types of data processing systems that are differently configured may also be used. For
example, an instance of the memory controller 1416 and platform controller hub 1430 may be
integrated into a discreet external graphics processor, such as the external graphics processor
1418. The platform controller hub 1430 and/or memory controller 1416 may be external to the
one or more processor(s) 1402. For example, the system 1400 can include an external memory
controller 1416 and platform controller hub 1430, which may be configured as a memory
controller hub and peripheral controller hub within a system chipset that is in communication
with the processor(s) 1402.

[0227] For example, circuit boards (*“sleds”) can be used on which components such as

CPUs, memory, and other components are placed are designed for increased thermal

49

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

performance. Processing components such as the processors may be located on a top side of a
sled while near memory, such as DIMMs, are located on a bottom side of the sled. As a result of
the enhanced airflow provided by this design, the components may operate at higher frequencies
and power levels than in typical systems, thereby increasing performance. Furthermore, the
sleds are configured to blindly mate with power and data communication cables in a rack,
thereby enhancing their ability to be quickly removed, upgraded, reinstalled, and/or replaced.
Similarly, individual components located on the sleds, such as processors, accelerators, memory,
and data storage drives, are configured to be easily upgraded due to their increased spacing from
each other. In the illustrative embodiment, the components additionally include hardware
attestation features to prove their authenticity.

[0228] A data center can utilize a single network architecture (“fabric”) that supports
multiple other network architectures including Ethernet and Omni-Path. The sleds can be
coupled to switches via optical fibers, which provide higher bandwidth and lower latency than
typical twisted pair cabling (e.g., Category 5, Category 5e, Category 6, etc.). Due to the high
bandwidth, low latency interconnections and network architecture, the data center may, in use,
pool resources, such as memory, accelerators (e.g., GPUs, graphics accelerators, FPGAs, ASICs,
neural network and/or artificial intelligence accelerators, etc.), and data storage drives that are
physically disaggregated, and provide them to compute resources (e.g., processors) on an as
needed basis, enabling the compute resources to access the pooled resources as if they were
local.

[0229] A power supply or source can provide voltage and/or current to system 1400 or any
component or system described herein. In one example, the power supply includes an AC to DC
(alternating current to direct current) adapter to plug into a wall outlet. Such AC power can be
renewable energy (e.g., solar power) power source. In one example, the power source includes a
DC power source, such as an external AC to DC converter. A power source or power supply
may also include wireless charging hardware to charge via proximity to a charging field. The
power source can include an internal battery, alternating current supply, motion-based power
supply, solar power supply, or fuel cell source.

[0230] FIG. 15A-15C illustrate computing systems and graphics processors. The elements
of FIG. 15A-15C having the same or similar names as the elements of any other figure herein
describe the same elements as in the other figures, can operate or function in a manner similar to
that, can comprise the same components, and can be linked to other entities, as those described
elsewhere herein, but are not limited to such.

[0231] FIG. 15A is a block diagram of a processor 1500, which may be a variant of one of

the processors 1402 and may be used in place of one of those. Therefore, the disclosure of any

50

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

features in combination with the processor 1500 herein also discloses a corresponding
combination with the processor(s) 1402, but is not limited to such. The processor 1500 may
have one or more processor cores 1502A-1502N, an integrated memory controller 1514, and an
integrated graphics processor 1508. Where an integrated graphics processor 1508 is excluded,
the system that includes the processor will include a graphics processor device within a system
chipset or coupled via a system bus. Processor 1500 can include additional cores up to and
including additional core 1502N represented by the dashed lined boxes. Each of processor cores
1502 A-1502N includes one or more internal cache units 1504A-1504N. In some embodiments
each processor core 1502A-1502N also has access to one or more shared cache units 1506. The
internal cache units 1504 A-1504N and shared cache units 1506 represent a cache memory
hierarchy within the processor 1500. The cache memory hierarchy may include at least one level
of instruction and data cache within each processor core and one or more levels of shared mid-
level cache, such as a Level 2 (L2), Level 3 (L3), Level 4 (L4), or other levels of cache, where
the highest level of cache before external memory is classified as the LLC. In some
embodiments, cache coherency logic maintains coherency between the various cache units 1506
and 1504A-1504N.

[0232] The processor 1500 may also include a set of one or more bus controller units 1516
and a system agent core 1510. The one or more bus controller units 1516 manage a set of
peripheral buses, such as one or more PCI or PCI express busses. System agent core 1510
provides management functionality for the various processor components. The system agent
core 1510 may include one or more integrated memory controllers 1514 to manage access to
various external memory devices (not shown).

[0233] For example, one or more of the processor cores 1502A-1502N may include support
for simultaneous multi-threading. The system agent core 1510 includes components for
coordinating and operating cores 1502A-1502N during multi-threaded processing. System agent
core 1510 may additionally include a power control unit (PCU), which includes logic and
components to regulate the power state of processor cores 1502A-1502N and graphics processor
1508.

[0234] The processor 1500 may additionally include graphics processor 1508 to execute
graphics processing operations. In some of these embodiments, the graphics processor 1508
couples with the set of shared cache units 1506, and the system agent core 1510, including the
one or more integrated memory controllers 1514. The system agent core 1510 may also include
a display controller 1511 to drive graphics processor output to one or more coupled displays.
The display controller 1511 may also be a separate module coupled with the graphics processor

via at least one interconnect, or may be integrated within the graphics processor 1508.

51

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0235] A ring-based interconnect unit 1512 may be used to couple the internal components
of the processor 1500. However, an alternative interconnect unit may be used, such as a point-
to-point interconnect, a switched interconnect, or other techniques, including techniques well
known in the art. In some of these embodiments with a ring-based interconnect 1512, the
graphics processor 1508 couples with the ring-based interconnect 1512 via an I/O link 1513.
[0236] The exemplary I/O link 1513 represents at least one of multiple varieties of I/O
interconnects, including an on package I/O interconnect which facilitates communication
between various processor components and a high-performance embedded memory module
1518, such as an eDRAM module. Optionally, each of the processor cores 1502A-1502N and
graphics processor 1508 can use embedded memory modules 1518 as a shared Last Level Cache.
[0237] The processor cores 1502A-1502N may, for example, be homogenous cores
executing the same instruction set architecture. Alternatively, the processor cores 1502A-1502N
are heterogeneous in terms of instruction set architecture (ISA), where one or more of processor
cores 1502A-1502N execute a first instruction set, while at least one of the other cores executes a
subset of the first instruction set or a different instruction set. The processor cores 1502A-1502N
may be heterogeneous in terms of microarchitecture, where one or more cores having a relatively
higher power consumption couple with one or more power cores having a lower power
consumption. As another example, the processor cores 1502A-1502N are heterogeneous in
terms of computational capability. Additionally, processor 1500 can be implemented on one or
more chips or as an SoC integrated circuit having the illustrated components, in addition to other
components.

[0238] FIG. 15B is a block diagram of hardware logic of a graphics processor core 1519,
according to some embodiments described herein. The graphics processor core 1519, sometimes
referred to as a core slice, can be one or multiple graphics cores within a modular graphics
processor. The graphics processor core 1519 is exemplary of one graphics core slice, and a
graphics processor as described herein may include multiple graphics core slices based on target
power and performance envelopes. Each graphics processor core 1519 can include a fixed
function block 1530 coupled with multiple sub-cores 1521A-1521F, also referred to as sub-
slices, that include modular blocks of general-purpose and fixed function logic.

[0239] The fixed function block 1530 may include a geometry/fixed function pipeline 1531
that can be shared by all sub-cores in the graphics processor core 1519, for example, in lower
performance and/or lower power graphics processor implementations. The geometry/fixed
function pipeline 1531 may include a 3D fixed function pipeline (e.g., 3D pipeline 1612 as in

FIG. 16A described below) a video front-end unit, a thread spawner and thread dispatcher, and a

52

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

unified return buffer manager, which manages unified return buffers (e.g., unified return buffer
1718 in FIG. 17, as described below).

[0240] The fixed function block 1530 may also include a graphics SoC interface 1532, a
graphics microcontroller 1533, and a media pipeline 1534. The graphics SoC interface 1532
provides an interface between the graphics processor core 1519 and other processor cores within
a system on a chip integrated circuit. The graphics microcontroller 1533 is a programmable sub-
processor that is configurable to manage various functions of the graphics processor core 1519,
including thread dispatch, scheduling, and pre-emption. The media pipeline 1534 (e.g., media
pipeline 1616 of FIG. 16A and FIG. 17) includes logic to facilitate the decoding, encoding, pre-
processing, and/or post-processing of multimedia data, including image and video data. The
media pipeline 1534 implement media operations via requests to compute or sampling logic
within the sub-cores 1521-1521F.

[0241] The SoC interface 1532 may enable the graphics processor core 1519 to communicate
with general-purpose application processor cores (e.g., CPUs) and/or other components within
an SoC, including memory hierarchy elements such as a shared last level cache memory, the
system RAM, and/or embedded on-chip or on-package DRAM. The SoC interface 1532 can
also enable communication with fixed function devices within the SoC, such as camera imaging
pipelines, and enables the use of and/or implements global memory atomics that may be shared
between the graphics processor core 1519 and CPUs within the SoC. The SoC interface 1532
can also implement power management controls for the graphics processor core 1519 and enable
an interface between a clock domain of the graphic core 1519 and other clock domains within
the SoC. Optionally, the SoC interface 1532 enables receipt of command buffers from a
command streamer and global thread dispatcher that are configured to provide commands and
instructions to each of one or more graphics cores within a graphics processor. The commands
and instructions can be dispatched to the media pipeline 1534, when media operations are to be
performed, or a geometry and fixed function pipeline (e.g., geometry and fixed function pipeline
1531, geometry and fixed function pipeline 1537) when graphics processing operations are to be
performed.

[0242] The graphics microcontroller 1533 can be configured to perform various scheduling
and management tasks for the graphics processor core 1519. In one configuration the graphics
microcontroller 1533 can, for example, perform graphics and/or compute workload scheduling
on the various graphics parallel engines within execution unit (EU) arrays 1522A-1522F, 1524A-
1524F within the sub-cores 1521A-1521F. In this workload scheduling, host software executing
on a CPU core of an SoC including the graphics processor core 1519 can submit workloads to

one of multiple graphic processor doorbells, which invokes a scheduling operation on the

53

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

appropriate graphics engine. Scheduling operations include determining which workload to run
next, submitting a workload to a command streamer, pre-empting existing workloads running on
an engine, monitoring progress of a workload, and notifying host software when a workload is
complete. Optionally, the graphics microcontroller 1533 can also facilitate low-power or idle
states for the graphics processor core 1519, providing the graphics processor core 1519 with the
ability to save and restore registers within the graphics processor core 1519 across low-power
state transitions independently from the operating system and/or graphics driver software on the
system.

[0243] The graphics processor core 1519 may have more than or fewer than the illustrated
sub-cores 1521A-1521F, up to N modular sub-cores. For each set of N sub-cores, the graphics
processor core 1519 can also include shared function logic 1535, shared and/or cache memory
1536, a geometry/fixed function pipeline 1537, as well as additional fixed function logic 1538 to
accelerate various graphics and compute processing operations. The shared function logic 1535
can include logic units associated with the shared function logic 1720 of FIG. 17 (e.g., sampler,
math, and/or inter-thread communication logic) that can be shared by each N sub-cores within
the graphics processor core 1519. The shared and/or cache memory 1536 can be a last-level
cache for the set of N sub-cores 1521A-1521F within the graphics processor core 1519, and can
also serve as shared memory that is accessible by multiple sub-cores. The geometry/fixed
function pipeline 1537 can be included instead of the geometry/fixed function pipeline 1531
within the fixed function block 1530 and can include the same or similar logic units.

[0244] The graphics processor core 1519 may include additional fixed function logic 1538
that can include various fixed function acceleration logic for use by the graphics processor core
1519. Optionally, the additional fixed function logic 1538 includes an additional geometry
pipeline for use in position only shading. In position-only shading, two geometry pipelines exist,
the full geometry pipeline within the geometry/fixed function pipeline 1538, 1531, and a cull
pipeline, which is an additional geometry pipeline which may be included within the additional
fixed function logic 1538. For example, the cull pipeline may be a trimmed down version of the
full geometry pipeline. The full pipeline and the cull pipeline can execute different instances of
the same application, each instance having a separate context. Position only shading can hide
long cull runs of discarded triangles, enabling shading to be completed earlier in some instances.
For example, the cull pipeline logic within the additional fixed function logic 1538 can execute
position shaders in parallel with the main application and generally generates critical results
faster than the full pipeline, as the cull pipeline fetches and shades only the position attribute of
the vertices, without performing rasterization and rendering of the pixels to the frame buffer.

The cull pipeline can use the generated critical results to compute visibility information for all

54

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

the triangles without regard to whether those triangles are culled. The full pipeline (which in this
instance may be referred to as a replay pipeline) can consume the visibility information to skip
the culled triangles to shade only the visible triangles that are finally passed to the rasterization
phase.

[0245] Optionally, the additional fixed function logic 1538 can also include machine-
learning acceleration logic, such as fixed function matrix multiplication logic, for
implementations including optimizations for machine learning training or inferencing.

[0246] Within each graphics sub-core 1521A-1521F a set of execution resources is included
that may be used to perform graphics, media, and compute operations in response to requests by
graphics pipeline, media pipeline, or shader programs. The graphics sub-cores 1521A-1521F
include multiple EU arrays 1522 A-1522F, 1524 A-1524F, thread dispatch and inter-thread
communication (TD/IC) logic 1523A-1523F, a 3D (e.g., texture) sampler 1525A-1525F, a media
sampler 1506A-1506F, a shader processor 1527A-1527F, and shared local memory (SLM)
1528A-1528F. The EU arrays 1522A-1522F, 1524 A-1524F each include multiple execution
units, which are general-purpose graphics processing units capable of performing floating-point
and integer/fixed-point logic operations in service of a graphics, media, or compute operation,
including graphics, media, or compute shader programs. The TD/IC logic 1523 A-1523F
performs local thread dispatch and thread control operations for the execution units within a sub-
core and facilitate communication between threads executing on the execution units of the sub-
core. The 3D sampler 1525A-1525F can read texture or other 3D graphics related data into
memory. The 3D sampler can read texture data differently based on a configured sample state
and the texture format associated with a given texture. The media sampler 1506A-1506F can
perform similar read operations based on the type and format associated with media data. For
example, each graphics sub-core 1521A-1521F can alternately include a unified 3D and media
sampler. Threads executing on the execution units within each of the sub-cores 1521 A-1521F
can make use of shared local memory 1528A-1528F within each sub-core, to enable threads
executing within a thread group to execute using a common pool of on-chip memory.

[0247] FIG. 15C is a block diagram of general-purpose graphics processing unit (GPGPU)
1570 that can be configured as a graphics processor, e.g. the graphics processor 1508, and/or
compute accelerator, according to embodiments described herein. The GPGPU 1570 can
interconnect with host processors (e.g., one or more CPU(s) 1546) and memory 1571, 1572 via
one or more system and/or memory busses. Memory 1571 may be system memory that can be
shared with the one or more CPU(s) 1546, while memory 1572 is device memory that is
dedicated to the GPGPU 1570. For example, components within the GPGPU 1570 and device

memory 1572 may be mapped into memory addresses that are accessible to the one or more

55

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

CPU(s) 1546. Access to memory 1571 and 1572 may be facilitated via a memory controller
1568. The memory controller 1568 may include an internal direct memory access (DMA)
controller 1569 or can include logic to perform operations that would otherwise be performed by
a DMA controller.

[0248] The GPGPU 1570 includes multiple cache memories, including an L.2 cache 1553, L1
cache 1554, an instruction cache 1555, and shared memory 1556, at least a portion of which may
also be partitioned as a cache memory. The GPGPU 1570 also includes multiple compute units
1560A-1560N. Each compute unit 1560A-1560N includes a set of vector registers 1561, scalar
registers 1562, vector logic units 1563, and scalar logic units 1564. The compute units 1560A-
1560N can also include local shared memory 1565 and a program counter 1566. The compute
units 1560A-1560N can couple with a constant cache 1567, which can be used to store constant
data, which is data that will not change during the run of kernel or shader program that executes
on the GPGPU 1570. The constant cache 1567 may be a scalar data cache and cached data can
be fetched directly into the scalar registers 1562.

[0249] During operation, the one or more CPU(s) 1546 can write commands into registers or
memory in the GPGPU 1570 that has been mapped into an accessible address space. The
command processors 1557 can read the commands from registers or memory and determine how
those commands will be processed within the GPGPU 1570. A thread dispatcher 1558 can then
be used to dispatch threads to the compute units 1560A-1560N to perform those commands.
Each compute unit 1560A-1560N can execute threads independently of the other compute units.
Additionally, each compute unit 1560A-1560N can be independently configured for conditional
computation and can conditionally output the results of computation to memory. The command
processors 1557 can interrupt the one or more CPU(s) 1546 when the submitted commands are
complete.

[0250] FIG. 16A-16C illustrate block diagrams of additional graphics processor and
compute accelerator architectures provided by embodiments described herein, e.g. in accordance
with FIG. 15A-15C. The elements of FIG. 16A-16C having the same or similar names as the
elements of any other figure herein describe the same elements as in the other figures, can
operate or function in a manner similar to that, can comprise the same components, and can be
linked to other entities, as those described elsewhere herein, but are not limited to such.

[0251] FIG. 16A is a block diagram of a graphics processor 1600, which may be a discrete
graphics processing unit, or may be a graphics processor integrated with a plurality of processing
cores, or other semiconductor devices such as, but not limited to, memory devices or network
interfaces. The graphics processor 1600 may be a variant of the graphics processor 1508 and

may be used in place of the graphics processor 1508. Therefore, the disclosure of any features in

56

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

combination with the graphics processor 1508 herein also discloses a corresponding combination
with the graphics processor 1600, but is not limited to such. The graphics processor may
communicate via a memory mapped I/O interface to registers on the graphics processor and with
commands placed into the processor memory. Graphics processor 1600 may include a memory
interface 1614 to access memory. Memory interface 1614 can be an interface to local memory,
one or more internal caches, one or more shared external caches, and/or to system memory.
[0252] Optionally, graphics processor 1600 also includes a display controller 1602 to drive
display output data to a display device 1618. Display controller 1602 includes hardware for one
or more overlay planes for the display and composition of multiple layers of video or user
interface elements. The display device 1618 can be an internal or external display device. In
one embodiment the display device 1618 is a head mounted display device, such as a virtual
reality (VR) display device or an augmented reality (AR) display device. Graphics processor
1600 may include a video codec engine 1606 to encode, decode, or transcode media to, from, or
between one or more media encoding formats, including, but not limited to Moving Picture
Experts Group (MPEG) formats such as MPEG-2, Advanced Video Coding (AVC) formats such
as H.264/MPEG-4 AVC, H.265/HEVC, Alliance for Open Media (AOMedia) VP8, VP9, as well
as the Society of Motion Picture & Television Engineers (SMPTE) 421M/VC-1, and Joint
Photographic Experts Group (JPEG) formats such as JPEG, and Motion JPEG (MJPEG) formats.
[0253] Graphics processor 1600 may include a block image transfer (BLIT) engine 1604 to
perform two-dimensional (2D) rasterizer operations including, for example, bit-boundary block
transfers. However, alternatively, 2D graphics operations may be performed using one or more
components of graphics processing engine (GPE) 1610. In some embodiments, GPE 1610 is a
compute engine for performing graphics operations, including three-dimensional (3D) graphics
operations and media operations.

[0254] GPE 1610 may include a 3D pipeline 1612 for performing 3D operations, such as
rendering three-dimensional images and scenes using processing functions that act upon 3D
primitive shapes (e.g., rectangle, triangle, etc.). The 3D pipeline 1612 includes programmable
and fixed function elements that perform various tasks within the element and/or spawn
execution threads to a 3D/Media sub-system 1615. While 3D pipeline 1612 can be used to
perform media operations, an embodiment of GPE 1610 also includes a media pipeline 1616 that
is specifically used to perform media operations, such as video post-processing and image
enhancement.

[0255] Media pipeline 1616 may include fixed function or programmable logic units to
perform one or more specialized media operations, such as video decode acceleration, video de-

interlacing, and video encode acceleration in place of, or on behalf of video codec engine 1606.

57

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

Media pipeline 1616 may additionally include a thread spawning unit to spawn threads for
execution on 3D/Media sub-system 1615. The spawned threads perform computations for the
media operations on one or more graphics execution units included in 3D/Media sub-system
1615.

[0256] The 3D/Media subsystem 1615 may include logic for executing threads spawned by
3D pipeline 1612 and media pipeline 1616. The pipelines may send thread execution requests to
3D/Media subsystem 1615, which includes thread dispatch logic for arbitrating and dispatching
the various requests to available thread execution resources. The execution resources include an
array of graphics execution units to process the 3D and media threads. The 3D/Media subsystem
1615 may include one or more internal caches for thread instructions and data. Additionally, the
3D/Media subsystem 1615 may also include shared memory, including registers and addressable
memory, to share data between threads and to store output data.

[0257] FIG. 16B illustrates a graphics processor 1620, being a variant of the graphics
processor 1600 and may be used in place of the graphics processor 1600 and vice versa.
Therefore, the disclosure of any features in combination with the graphics processor 1600 herein
also discloses a corresponding combination with the graphics processor 1620, but is not limited
to such. The graphics processor 1620 has a tiled architecture, according to embodiments
described herein. The graphics processor 1620 may include a graphics processing engine cluster
1622 having multiple instances of the graphics processing engine 1610 of FIG. 16A within a
graphics engine tile 1610A-1610D. Each graphics engine tile 1610A-1610D can be
interconnected via a set of tile interconnects 1623A-1623F. Each graphics engine tile 1610A-
1610D can also be connected to a memory module or memory device 1626A-1626D via memory
interconnects 1625A-1625D. The memory devices 1626A-1626D can use any graphics memory
technology. For example, the memory devices 1626A-1626D may be graphics double data rate
(GDDR) memory. The memory devices 1626A-1626D may be high-bandwidth memory (HBM)
modules that can be on-die with their respective graphics engine tile 1610A-1610D. The
memory devices 1626A-1626D may be stacked memory devices that can be stacked on top of
their respective graphics engine tile 1610A-1610D. Each graphics engine tile 1610A-1610D and
associated memory 1626A-1626D may reside on separate chiplets, which are bonded to a base
die or base substrate, as described in further detail in FIG. 24B-24D.

[0258] The graphics processor 1620 may be configured with a non-uniform memory access
(NUMA) systemin which memory devices 1626A-1626D are coupled with associated graphics
engine tiles 1610A-1610D. A given memory device may be accessed by graphics engine tiles
other than the tile to which it is directly connected. However, access latency to the memory

devices 1626A-1626D may be lowest when accessing a local tile. In one embodiment, a cache

58

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

coherent NUMA (ccNUMA) system is enabled that uses the tile interconnects 1623A-1623F to
enable communication between cache controllers within the graphics engine tiles 1610A-1610D
to keep a consistent memory image when more than one cache stores the same memory location.
[0259] The graphics processing engine cluster 1622 can connect with an on-chip or on-
package fabric interconnect 1624. The fabric interconnect 1624 can enable communication
between graphics engine tiles 1610A-1610D and components such as the video codec 1606 and
one or more copy engines 1604. The copy engines 1604 can be used to move data out of, into,
and between the memory devices 1626A-1626D and memory that is external to the graphics
processor 1620 (e.g., system memory). The fabric interconnect 1624 can also be used to
interconnect the graphics engine tiles 1610A-1610D. The graphics processor 1620 may
optionally include a display controller 1602 to enable a connection with an external display
device 1618. The graphics processor may also be configured as a graphics or compute
accelerator. In the accelerator configuration, the display controller 1602 and display device 1618
may be omitted.

[0260] The graphics processor 1620 can connect to a host system via a host interface 1628.
The host interface 1628 can enable communication between the graphics processor 1620, system
memory, and/or other system components. The host interface 1628 can be, for example, a PCI
express bus or another type of host system interface.

[0261] FIG. 16C illustrates a compute accelerator 1630, according to embodiments
described herein. The compute accelerator 1630 can include architectural similarities with the
graphics processor 1620 of FIG. 16B and is optimized for compute acceleration. A compute
engine cluster 1632 can include a set of compute engine tiles 1640A-1640D that include
execution logic that is optimized for parallel or vector-based general-purpose compute
operations. The compute engine tiles 1640A-1640D may not include fixed function graphics
processing logic, although in some embodiments one or more of the compute engine tiles
1640A-1640D can include logic to perform media acceleration. The compute engine tiles
1640A-1640D can connect to memory 1626A-1626D via memory interconnects 1625A-1625D.
The memory 1626A-1626D and memory interconnects 1625A-1625D may be similar technology
as in graphics processor 1620, or can be different. The graphics compute engine tiles 1640A-
1640D can also be interconnected via a set of tile interconnects 1623 A-1623F and may be
connected with and/or interconnected by a fabric interconnect 1624. In one embodiment the
compute accelerator 1630 includes a large L3 cache 1636 that can be configured as a device-
wide cache. The compute accelerator 1630 can also connect to a host processor and memory via

a host interface 1628 in a similar manner as the graphics processor 1620 of FIG. 16B.

59

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

Graphics Processing Engine

[0262] FIG. 17 is a block diagram of a graphics processing engine 1710 of a graphics
processor in accordance with some embodiments. The graphics processing engine (GPE) 1710
may be a version of the GPE 1610 shown in FIG. 16A, and may also represent a graphics engine
tile 1610A-1610D of FIG. 16B. The elements of FIG. 17 having the same or similar names as
the elements of any other figure herein describe the same elements as in the other figures, can
operate or function in a manner similar to that, can comprise the same components, and can be
linked to other entities, as those described elsewhere herein, but are not limited to such. For
example, the 3D pipeline 1612 and media pipeline 1616 of FIG. 16A are also illustrated in FIG.
17. The media pipeline 1616 is optional in some embodiments of the GPE 1710 and may not be
explicitly included within the GPE 1710. For example and in at least one embodiment, a
separate media and/or image processor is coupled to the GPE 1710.

[0263] GPE 1710 may couple with or include a command streamer 1703, which provides a
command stream to the 3D pipeline 1612 and/or media pipelines 1616. Alternatively or
additionally, the command streamer 1703 may be directly coupled to a unified return buffer
1718. The unified return buffer 1718 may be communicatively coupled to a graphics core array
1714. Optionally, the command streamer 1703 is coupled with memory, which can be system
memory, or one or more of internal cache memory and shared cache memory. The command
streamer 1703 may receive commands from the memory and sends the commands to 3D pipeline
1612 and/or media pipeline 1616. The commands are directives fetched from a ring buffer,
which stores commands for the 3D pipeline 1612 and media pipeline 1616. The ring buffer can
additionally include batch command buffers storing batches of multiple commands. The
commands for the 3D pipeline 1612 can also include references to data stored in memory, such
as but not limited to vertex and geometry data for the 3D pipeline 1612 and/or image data and
memory objects for the media pipeline 316. The 3D pipeline 1612 and media pipeline 1616
process the commands and data by performing operations via logic within the respective
pipelines or by dispatching one or more execution threads to the graphics core array 1714. The
graphics core array 1714 may include one or more blocks of graphics cores (e.g., graphics
core(s) 1715A, graphics core(s) 1715B), each block including one or more graphics cores. Each
graphics core includes a set of graphics execution resources that includes general-purpose and
graphics specific execution logic to perform graphics and compute operations, as well as fixed
function texture processing and/or machine learning and artificial intelligence acceleration logic.
[0264] In various embodiments the 3D pipeline 1612 can include fixed function and
programmable logic to process one or more shader programs, such as vertex shaders, geometry

shaders, pixel shaders, fragment shaders, compute shaders, or other shader programs, by

60

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

processing the instructions and dispatching execution threads to the graphics core array 1714.
The graphics core array 1714 provides a unified block of execution resources for use in
processing these shader programs. Multi-purpose execution logic (e.g., execution units) within
the graphics core(s) 1715A-1714B of the graphic core array 1714 includes support for various
3D API shader languages and can execute multiple simultaneous execution threads associated
with multiple shaders.

[0265] The graphics core array 1714 may include execution logic to perform media
functions, such as video and/or image processing. The execution units may include general-
purpose logic that is programmable to perform parallel general-purpose computational
operations, in addition to graphics processing operations. The general-purpose logic can perform
processing operations in parallel or in conjunction with general-purpose logic within the
processor core(s) 1407 of FIG. 14 or core 1502A-1502N as in FIG. 15A.

[0266] Output data generated by threads executing on the graphics core array 1714 can
output data to memory in a unified return buffer (URB) 1718. The URB 1718 can store data for
multiple threads. The URB 1718 may be used to send data between different threads executing
on the graphics core array 1714. The URB 1718 may additionally be used for synchronization
between threads on the graphics core array 1714 and fixed function logic within the shared
function logic 1720.

[0267] Optionally, the graphics core array 1714 may be scalable, such that the array includes
a variable number of graphics cores, each having a variable number of execution units based on
the target power and performance level of GPE 1710. The execution resources may be
dynamically scalable, such that execution resources may be enabled or disabled as needed.
[0268] The graphics core array 1714 couples with shared function logic 1720 that includes
multiple resources that are shared between the graphics cores in the graphics core array. The
shared functions within the shared function logic 1720 are hardware logic units that provide
specialized supplemental functionality to the graphics core array 1714. In various embodiments,
shared function logic 1720 includes but is not limited to sampler 1721, math 1722, and inter-
thread communication (ITC) 1723 logic. Additionally, one or more cache(s) 1725 within the
shared function logic 1720 may be implemented.

[0269] A shared function is implemented at least in a case where the demand for a given
specialized function is insufficient for inclusion within the graphics core array 1714. Instead a
single instantiation of that specialized function is implemented as a stand-alone entity in the
shared function logic 1720 and shared among the execution resources within the graphics core
array 1714. The precise set of functions that are shared between the graphics core array 1714

and included within the graphics core array 1714 varies across embodiments. Specific shared

61

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

functions within the shared function logic 1720 that are used extensively by the graphics core
array 1714 may be included within shared function logic 1716 within the graphics core array
1714. Optionally, the shared function logic 1716 within the graphics core array 1714 can include
some or all logic within the shared function logic 1720. All logic elements within the shared
function logic 1720 may be duplicated within the shared function logic 1716 of the graphics core
array 1714. Alternatively, the shared function logic 1720 is excluded in favor of the shared
function logic 1716 within the graphics core array 1714.

Execution Units

[0270] FIG. 18A-18B illustrate thread execution logic 1800 including an array of processing
elements employed in a graphics processor core according to embodiments described herein.
The elements of FIG. 18A-18B having the same or similar names as the elements of any other
figure herein describe the same elements as in the other figures, can operate or function in a
manner similar to that, can comprise the same components, and can be linked to other entities, as
those described elsewhere herein, but are not limited to such. FIG. 18A-18B illustrates an
overview of thread execution logic 1800, which may be representative of hardware logic
illustrated with each sub-core 1521A-1521F of FIG. 15B. FIG. 18A is representative of an
execution unit within a general-purpose graphics processor, while FIG. 18B is representative of
an execution unit that may be used within a compute accelerator.

[0271] As illustrated in FIG. 18A, thread execution logic 1800 may include a shader
processor 1802, a thread dispatcher 1804, instruction cache 1806, a scalable execution unit array
including a plurality of execution units 1808A-1808N, a sampler 1810, shared local memory
1811, a data cache 1812, and a data port 1814. Optionally, the scalable execution unit array can
dynamically scale by enabling or disabling one or more execution units (e.g., any of execution
units 1808A, 1808B, 1808C, 1808D, through 1808N-1 and 1808N) based on the computational
requirements of a workload. The included components may be interconnected via an
interconnect fabric that links to each of the components. Thread execution logic 1800 may
include one or more connections to memory, such as system memory or cache memory, through
one or more of instruction cache 1806, data port 1814, sampler 1810, and execution units

1808 A-1808N. Each execution unit (e.g. 1808A) may be a stand-alone programmable general-
purpose computational unit that is capable of executing multiple simultaneous hardware threads
while processing multiple data elements in parallel for each thread. In various embodiments, the
array of execution units 1808A-1808N is scalable to include any number individual execution
units.

[0272] The execution units 1808 A-1808N may be primarily used to execute shader

programs. A shader processor 1802 can process the various shader programs and dispatch

62

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

execution threads associated with the shader programs via a thread dispatcher 1804. The thread
dispatcher may include logic to arbitrate thread initiation requests from the graphics and media
pipelines and instantiate the requested threads on one or more execution units 1808 A-1808NN.
For example, a geometry pipeline can dispatch vertex, tessellation, or geometry shaders to the
thread execution logic for processing. Optionally, the thread dispatcher 1804 can also process
runtime thread spawning requests from the executing shader programs.

[0273] The execution units 1808 A-1808N may support an instruction set that includes native
support for many standard 3D graphics shader instructions, such that shader programs from
graphics libraries (e.g., Direct 3D and OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing (e.g., vertex programs, geometry
programs, vertex shaders), pixel processing (e.g., pixel shaders, fragment shaders) and general-
purpose processing (e.g., compute and media shaders). Each of the execution units 1808 A-
1808N is capable of multi-issue single instruction multiple data (SIMD) execution and multi-
threaded operation enables an efficient execution environment in the face of higher latency
memory accesses. Each hardware thread within each execution unit has a dedicated high-
bandwidth register file and associated independent thread-state. Execution is multi-issue per
clock to pipelines capable of integer, single and double precision floating point operations,
SIMD branch capability, logical operations, transcendental operations, and other miscellaneous
operations. While waiting for data from memory or one of the shared functions, dependency
logic within the execution units 1808A-1808N causes a waiting thread to sleep until the
requested data has been returned. While the waiting thread is sleeping, hardware resources may
be devoted to processing other threads. For example, during a delay associated with a vertex
shader operation, an execution unit can perform operations for a pixel shader, fragment shader,
or another type of shader program, including a different vertex shader, such as vertex shader
2107 illustrated in FIG. 21. Various embodiments can apply to use execution by use of Single
Instruction Multiple Thread (SIMT) as an alternate to use of SIMD or in addition to use of
SIMD. Reference to a SIMD core or operation can apply also to SIMT or apply to SIMD in
combination with SIMT.

[0274] Each execution unit in execution units 1808 A-1808N operates on arrays of data
elements. The number of data elements is the “execution size,” or the number of channels for
the instruction. An execution channel is a logical unit of execution for data element access,
masking, and flow control within instructions. The number of channels may be independent of
the number of physical Arithmetic Logic Units (ALUs), Floating-Point Units (FPUs), or other

logic units (e.g., tensor cores, ray tracing cores, etc.) for a particular graphics processor.

63

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

Additionally, the execution units 1808 A-1808N may support integer and floating-point data
types.

[0275] The execution unit instruction set includes SIMD instructions. The various data
elements can be stored as a packed data type in a register and the execution unit will process the
various elements based on the data size of the elements. For example, when operating on a 256-
bit wide vector, the 256 bits of the vector are stored in a register and the execution unit operates
on the vector as four separate 184-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements (Double Word (DW) size data elements),
sixteen separate 16-bit packed data elements (Word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements). However, different vector widths and
register sizes are possible.

[0276] Optionally, one or more execution units can be combined into a fused execution unit
1809A-1809N having thread control logic (1807A-1807N) that is common to the fused EUs.
Multiple EUs can be fused into an EU group. Each EU in the fused EU group can be configured
to execute a separate SIMD hardware thread. The number of EUs in a fused EU group can vary
according to embodiments. Additionally, various SIMD widths can be performed per-EU,
including but not limited to SIMDS, SIMD16, and SIMD32. Each fused graphics execution unit
1809A-1809N includes at least two execution units. For example, fused execution unit 1809A
includes a first EU 1808A, second EU 1808B, and thread control logic 1807A that is common to
the first EU 1808A and the second EU 1808B. The thread control logic 1807A controls threads
executed on the fused graphics execution unit 1809A, allowing each EU within the fused
execution units 1809A-1809N to execute using a common instruction pointer register.

[0277] One or more internal instruction caches (e.g., 1806) are included in the thread
execution logic 1800 to cache thread instructions for the execution units. One or more data
caches (e.g., 1812) may be included in the thread execution logic 1800 to cache thread data
during thread execution. Threads executing on the execution logic 1800 can also store explicitly
managed data in the shared local memory 1811. A sampler 1810 may be included to provide
texture sampling for 3D operations and media sampling for media operations. Sampler 1810
may include specialized texture or media sampling functionality to process texture or media data
during the sampling process before providing the sampled data to an execution unit.

[0278] During execution, the graphics and media pipelines send thread initiation requests to
thread execution logic 1800 via thread spawning and dispatch logic. Once a group of geometric
objects has been processed and rasterized into pixel data, pixel processor logic (e.g., pixel shader
logic, fragment shader logic, etc.) within the shader processor 1802 is invoked to further

compute output information and cause results to be written to output surfaces (e.g., color buffers,

64

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

depth buffers, stencil buffers, etc.). A pixel shader or fragment shader may calculate the values
of the various vertex attributes that are to be interpolated across the rasterized object. The pixel
processor logic within the shader processor 1802 may then execute an application programming
interface (API)-supplied pixel or fragment shader program. To execute the shader program, the
shader processor 1802 dispatches threads to an execution unit (e.g., 1808A) via thread dispatcher
1804. Shader processor 1802 may use texture sampling logic in the sampler 1810 to access
texture data in texture maps stored in memory. Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each geometric fragment, or discards one or
more pixels from further processing.

[0279] In addition, the data port 1814 may provide a memory access mechanism for the
thread execution logic 1800 to output processed data to memory for further processing on a
graphics processor output pipeline. The data port 1814 may include or couple to one or more
cache memories (e.g., data cache 1812) to cache data for memory access via the data port 1814.
[0280] Optionally, the execution logic 1800 can also include a ray tracer 1805 that can
provide ray tracing acceleration functionality. The ray tracer 1805 can support a ray tracing
instruction set that includes instructions/functions for ray generation. The ray tracing instruction
set can be similar to or different from the ray-tracing instruction set supported by the ray tracing
cores 372 in FIG. 3C.

[0281] FIG. 18B illustrates exemplary internal details of an execution unit 1808. A graphics
execution unit 1808 can include an instruction fetch unit 1837, a general register file array (GRF)
1824, an architectural register file array (ARF) 1826, a thread arbiter 1822, a send unit 1830, a
branch unit 1832, a set of SIMD floating point units (FPUs) 1834, and optionally a set of
dedicated integer SIMD ALUs 1835. The GRF 1824 and ARF 1826 includes the set of general
register files and architecture register files associated with each simultaneous hardware thread
that may be active in the graphics execution unit 1808. Per thread architectural state may be
maintained in the ARF 1826, while data used during thread execution is stored in the GRF 1824.
The execution state of each thread, including the instruction pointers for each thread, can be held
in thread-specific registers in the ARF 1826.

[0282] The graphics execution unit 1808 may have an architecture that is a combination of
Simultaneous Multi-Threading (SMT) and fine-grained Interleaved Multi-Threading (IMT). The
architecture may have a modular configuration that can be fine-tuned at design time based on a
target number of simultaneous threads and number of registers per execution unit, where
execution unit resources are divided across logic used to execute multiple simultaneous threads.

The number of logical threads that may be executed by the graphics execution unit 1808 is not

65

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

limited to the number of hardware threads, and multiple logical threads can be assigned to each
hardware thread.

[0283] Optionally, the graphics execution unit 1808 can co-issue multiple instructions, which
may each be different instructions. The thread arbiter 1822 of the graphics execution unit thread
1808 can dispatch the instructions to one of the send unit 1830, branch unit 1832, or SIMD
FPU(s) 1834 for execution. Each execution thread can access 128 general-purpose registers
within the GRF 1824, where each register can store 32 bytes, accessible as a SIMD 8-element
vector of 32-bit data elements. Each execution unit thread may have access to 4 Kbytes within
the GRF 1824, although embodiments are not so limited, and greater or fewer register resources
may be provided in other embodiments. The graphics execution unit 1808 may be partitioned
into seven hardware threads that can independently perform computational operations, although
the number of threads per execution unit can also vary according to embodiments, for example,
up to 16 hardware threads may be supported. In an exemplary embodiment, in which seven
threads may access 4 Kbytes, the GRF 1824 can store a total of 28 Kbytes. In another exemplary
embodiment, where 16 threads may access 4Kbytes, the GRF 1824 can store a total of 64Kbytes.
The number of threads per execution unit are, however, not limited to those examples and may
be more or less than the given numbers. Flexible addressing modes can permit registers to be
addressed together to build effectively wider registers or to represent strided rectangular block
data structures.

[0284] Additionally or alternatively, memory operations, sampler operations, and other
longer-latency system communications may be dispatched via “send” instructions that are
executed by the message passing send unit 1830. Branch instructions may be dispatched to a
dedicated branch unit 1832 to facilitate SIMD divergence and eventual convergence.

[0285] The graphics execution unit 1808 may include one or more SIMD floating point units
(FPU(s)) 1834 to perform floating-point operations. The FPU(s) 1834 may also support integer
computation. In some instances, the FPU(s) 1834 can SIMD execute up to M number of 32-bit
floating-point (or integer) operations, or SIMD execute up to 2M 16-bit integer or 16-bit
floating-point operations. Optionally, at least one of the FPU(s) provides extended math
capability to support high-throughput transcendental math functions and double precision 184-bit
floating-point. A set of 8-bit integer SIMD ALUs 1835 may also be present, and may be
specifically optimized to perform operations associated with machine learning computations.
[0286] Optionally, arrays of multiple instances of the graphics execution unit 1808 can be
instantiated in a graphics sub-core grouping (e.g., a sub-slice). For scalability, product architects

can choose the exact number of execution units per sub-core grouping. The execution unit 1808

66

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

may execute instructions across a plurality of execution channels. In addition, each thread
executed on the graphics execution unit 1808 may be executed on a different channel.

[0287] FIG. 19 illustrates a further exemplary execution unit 1900. The elements of FIG. 19
having the same or similar names as the elements of any other figure herein describe the same
elements as in the other figures, can operate or function in a manner similar to that, can comprise
the same components, and can be linked to other entities, as those described elsewhere herein,
but are not limited to such. The execution unit 1900 may be a compute-optimized execution unit
for use in, for example, a compute engine tile 1640A-1640D as in FIG. 16C, but is not limited as
such. The execution unit 1900 may also be used in a graphics engine tile 1610A-1610D as in
FIG. 16B. The execution unit 1900 may include a thread control unit 1901, a thread state unit
1902, an instruction fetch/prefetch unit 1903, and an instruction decode unit 1904. The
execution unit 1900 may additionally include a register file 1906 that stores registers that can be
assigned to hardware threads within the execution unit. The execution unit 1900 may
additionally include a send unit 1907 and a branch unit 1908. The send unit 1907 and branch
unit 1908 may operate similarly as the send unit 1830 and a branch unit 1832 of the graphics
execution unit 1808 of FIG. 18B.

[0288] The execution unit 1900 can also include a compute unit 1910 that includes multiple
different types of functional units. The compute unit 1910 may also include an ALU unit 1911
that includes an array of arithmetic logic units. The ALU unit 1911 can be configured to
perform 64-bit, 32-bit, and 16-bit integer and floating-point operations. Integer and floating-
point operations may be performed simultaneously. The compute unit 1910 can also include a
systolic array 1912, and a math unit 1913. The systolic array 1912 includes a W wide and D
deep network of data processing units that can be used to perform vector or other data-parallel
operations in a systolic manner. The systolic array 1912 can be configured to perform matrix
operations, such as matrix dot product operations. The systolic array 1912 may support 16-bit
floating point operations, as well as 8-bit and 4-bit integer operations. The systolic array 1912
may be configured to accelerate machine learning operations. The systolic array 1912 can be
configured with support for the bfloat16, a 16-bit floating point format. A math unit 1913 can be
included to perform a specific subset of mathematical operations in an efficient and lower-power
manner than then ALU unit 1911. The math unit 1913 can include math logic found in shared
function logic of a graphics processing engine provided by other embodiments described, e.g.,
the math logic 1722 of the shared function logic 1720 of FIG. 17. The math unit 1913 can be
configured to perform 32-bit and 64-bit floating point operations.

[0289] The thread control unit 1901 includes logic to control the execution of threads within

the execution unit. The thread control unit 1901 can include thread arbitration logic to start,

67

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

stop, and preempt execution of threads within the execution unit 1900. The thread state unit
1902 can be used to store thread state for threads assigned to execute on the execution unit 1900.
Storing the thread state within the execution unit 1900 enables the rapid pre-emption of threads
when those threads become blocked or idle. The instruction fetch/prefetch unit 1903 can fetch
instructions from an instruction cache of higher-level execution logic (e.g., instruction cache
1806 as in FIG. 18A). The instruction fetch/prefetch unit 1903 can also issue prefetch requests
for instructions to be loaded into the instruction cache based on an analysis of currently
executing threads. The instruction decode unit 1904 can be used to decode instructions to be
executed by the compute units. The instruction decode unit 1904 can be used as a secondary
decoder to decode complex instructions into constituent micro-operations.

[0290] The execution unit 1900 additionally includes a register file 1906 that can be used by
hardware threads executing on the execution unit 1900. Registers in the register file 1906 can be
divided across the logic used to execute multiple simultaneous threads within the compute unit
1910 of the execution unit 1900. The number of logical threads that may be executed by the
graphics execution unit 1900is not limited to the number of hardware threads, and multiple
logical threads can be assigned to each hardware thread. The size of the register file 1906 can
vary across embodiments based on the number of supported hardware threads. Register
renaming may be used to dynamically allocate registers to hardware threads.

[0291] FIG. 20 is a block diagram illustrating a graphics processor instruction format 2000.
The graphics processor execution units support an instruction set having instructions in multiple
formats. The solid lined boxes illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include components that are optional or that are
only included in a sub-set of the instructions. The instruction formats 2000 described and
illustrated are macro-instructions, in that they are instructions supplied to the execution unit, as
opposed to micro-operations resulting from instruction decode once the instruction is processed.
[0292] The graphics processor execution units as described herein may natively support
instructions in a 128-bit instruction format 2010. A 64-bit compacted instruction format 2030 is
available for some instructions based on the selected instruction, instruction options, and number
of operands. The native 128-bit instruction format 2010 provides access to all instruction
options, while some options and operations are restricted in the 64-bit format 2030. The native
instructions available in the 64-bit format 2030 vary by embodiment. The instruction is
compacted in part using a set of index values in an index field 2013. The execution unit
hardware references a set of compaction tables based on the index values and uses the
compaction table outputs to reconstruct a native instruction in the 128-bit instruction format

2010. Other sizes and formats of instruction can be used.

68

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0293] For each format, instruction opcode 2012 defines the operation that the execution unit
is to perform. The execution units execute each instruction in parallel across the multiple data
elements of each operand. For example, in response to an add instruction the execution unit
performs a simultaneous add operation across each color channel representing a texture element
or picture element. By default, the execution unit performs each instruction across all data
channels of the operands. Instruction control field 2014 may enable control over certain
execution options, such as channels selection (e.g., predication) and data channel order (e.g.,
swizzle). For instructions in the 128-bit instruction format 2010 an exec-size field 2016 limits
the number of data channels that will be executed in parallel. An exec-size field 2016 may not
be available for use in the 64-bit compact instruction format 2030.

[0294] Some execution unit instructions have up to three operands including two source
operands, src0 2020, srcl 2022, and one destination 2018. The execution units may support dual
destination instructions, where one of the destinations is implied. Data manipulation instructions
can have a third source operand (e.g., SRC2 2024), where the instruction opcode 2012
determines the number of source operands. An instruction's last source operand can be an
immediate (e.g., hard-coded) value passed with the instruction.

[0295] The 128-bit instruction format 2010 may include an access/address mode field 2026
specifying, for example, whether direct register addressing mode or indirect register addressing
mode is used. When direct register addressing mode is used, the register address of one or more
operands is directly provided by bits in the instruction.

[0296] The 128-bit instruction format 2010 may also include an access/address mode field
20026, which specifies an address mode and/or an access mode for the instruction. The access
mode may be used to define a data access alignment for the instruction. Access modes including
a 16-byte aligned access mode and a 1-byte aligned access mode may be supported, where the
byte alignment of the access mode determines the access alignment of the instruction operands.
For example, when in a first mode, the instruction may use byte-aligned addressing for source
and destination operands and when in a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0297] The address mode portion of the access/address mode field 2026 may determine
whether the instruction is to use direct or indirect addressing. When direct register addressing
mode is used bits in the instruction directly provide the register address of one or more operands.
When indirect register addressing mode is used, the register address of one or more operands
may be computed based on an address register value and an address immediate field in the

instruction.

69

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0298] Instructions may be grouped based on opcode 2012 bit-fields to simplify Opcode
decode 2040. For an 8-bit opcode, bits 4, 5, and 6 allow the execution unit to determine the type
of opcode. The precise opcode grouping shown is merely an example. A move and logic
opcode group 2042 may include data movement and logic instructions (e.g., move (mov),
compare (cmp)). Move and logic group 2042 may share the five most significant bits (MSB),
where move (mov) instructions are in the form of 0000xxxxb and logic instructions are in the
form of 0001xxxxb. A flow control instruction group 2044 (e.g., call, jump (jmp)) includes
instructions in the form of 0010xxxxb (e.g., 0x20). A miscellaneous instruction group 2046
includes a mix of instructions, including synchronization instructions (e.g., wait, send) in the
form of 001 1xxxxb (e.g., 0x30). A parallel math instruction group 2048 includes component-
wise arithmetic instructions (e.g., add, multiply (mul)) in the form of 0100xxxxb (e.g., 0x40).
The parallel math group 2048 performs the arithmetic operations in parallel across data channels.
The vector math group 2050 includes arithmetic instructions (e.g., dp4) in the form of
0101xxxxb (e.g., 0x50). The vector math group performs arithmetic such as dot product
calculations on vector operands. The illustrated opcode decode 2040, in one embodiment, can be
used to determine which portion of an execution unit will be used to execute a decoded
instruction. For example, some instructions may be designated as systolic instructions that will
be performed by a systolic array. Other instructions, such as ray-tracing instructions (not shown)
can be routed to a ray-tracing core or ray-tracing logic within a slice or partition of execution
logic.

Graphics Pipeline

[0299] FIG. 21 is a block diagram of graphics processor 2100, according to another
embodiment. The elements of FIG. 21 having the same or similar names as the elements of any
other figure herein describe the same elements as in the other figures, can operate or function in
a manner similar to that, can comprise the same components, and can be linked to other entities,
as those described elsewhere herein, but are not limited to such.

[0300] The graphics processor 2100 may include different types of graphics processing
pipelines, such as a geometry pipeline 2120, a media pipeline 2130, a display engine 2140,
thread execution logic 2150, and a render output pipeline 2170. Graphics processor 2100 may be
a graphics processor within a multi-core processing system that includes one or more general-
purpose processing cores. The graphics processor may be controlled by register writes to one or
more control registers (not shown) or via commands issued to graphics processor 2100 via a ring
interconnect 2102. Ring interconnect 2102 may couple graphics processor 2100 to other
processing components, such as other graphics processors or general-purpose processors.

Commands from ring interconnect 2102 are interpreted by a command streamer 2103, which

70

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

supplies instructions to individual components of the geometry pipeline 2120 or the media
pipeline 2130.

[0301] Command streamer 2103 may direct the operation of a vertex fetcher 2105 that reads
vertex data from memory and executes vertex-processing commands provided by command
streamer 2103. The vertex fetcher 2105 may provide vertex data to a vertex shader 2107, which
performs coordinate space transformation and lighting operations to each vertex. Vertex fetcher
2105 and vertex shader 2107 may execute vertex-processing instructions by dispatching
execution threads to execution units 2152A-2152B via a thread dispatcher 2131.

[0302] The execution units 2152A-2152B may be an array of vector processors having an
instruction set for performing graphics and media operations. The execution units 2152A-2152B
may have an attached L1 cache 2151 that is specific for each array or shared between the arrays.
The cache can be configured as a data cache, an instruction cache, or a single cache that is
partitioned to contain data and instructions in different partitions.

[0303] A geometry pipeline 2120 may include tessellation components to perform hardware-
accelerated tessellation of 3D objects. A programmable hull shader 2111 may configure the
tessellation operations. A programmable domain shader 2117 may provide back-end evaluation
of tessellation output. A tessellator 2113 may operate at the direction of hull shader 2111 and
contain special purpose logic to generate a set of detailed geometric objects based on a coarse
geometric model that is provided as input to geometry pipeline 2120. In addition, if tessellation
is not used, tessellation components (e.g., hull shader 2111, tessellator 2113, and domain shader
2117) can be bypassed.

[0304] Complete geometric objects may be processed by a geometry shader 2119 via one or
more threads dispatched to execution units 2152A-2152B, or can proceed directly to the clipper
2129. The geometry shader may operate on entire geometric objects, rather than vertices or
patches of vertices as in previous stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 2119 receives input from the vertex shader 2107. The geometry shader
2119 may be programmable by a geometry shader program to perform geometry tessellation if
the tessellation units are disabled.

[0305] Before rasterization, a clipper 2129 processes vertex data. The clipper 2129 may be a
fixed function clipper or a programmable clipper having clipping and geometry shader functions.
A rasterizer and depth test component 2173 in the render output pipeline 2170 may dispatch
pixel shaders to convert the geometric objects into per pixel representations. The pixel shader
logic may be included in thread execution logic 2150. Optionally, an application can bypass the
rasterizer and depth test component 2173 and access un-rasterized vertex data via a stream out

unit 2123.

71

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0306] The graphics processor 2100 has an interconnect bus, interconnect fabric, or some
other interconnect mechanism that allows data and message passing amongst the major
components of the processor. In some embodiments, execution units 2152A-2152B and
associated logic units (e.g., L1 cache 2151, sampler 2154, texture cache 2158, etc.) interconnect
via a data port 2156 to perform memory access and communicate with render output pipeline
components of the processor. A sampler 2154, caches 2151, 2158 and execution units 2152 A-
2152B each may have separate memory access paths. Optionally, the texture cache 2158 can
also be configured as a sampler cache.

[0307] The render output pipeline 2170 may contain a rasterizer and depth test component
2173 that converts vertex-based objects into an associated pixel-based representation. The
rasterizer logic may include a windower/masker unit to perform fixed function triangle and line
rasterization. An associated render cache 2178 and depth cache 2179 are also available in some
embodiments. A pixel operations component 2177 performs pixel-based operations on the data,
though in some instances, pixel operations associated with 2D operations (e.g. bit block image
transfers with blending) are performed by the 2D engine 2141, or substituted at display time by
the display controller 2143 using overlay display planes. A shared L3 cache 2175 may be
available to all graphics components, allowing the sharing of data without the use of main
system memory.

[0308] The graphics processor media pipeline 2130 may include a media engine 2137 and a
video front-end 2134. Video front-end 2134 may receive pipeline commands from the command
streamer 2103. The media pipeline 2130 may include a separate command streamer. Video
front-end 2134 may process media commands before sending the command to the media engine
2137. Media engine 2137 may include thread spawning functionality to spawn threads for
dispatch to thread execution logic 2150 via thread dispatcher 2131.

[0309] The graphics processor 2100 may include a display engine 2140. This display engine
2140 may be external to processor 2100 and may couple with the graphics processor via the ring
interconnect 2102, or some other interconnect bus or fabric. Display engine 2140 may include a
2D engine 2141 and a display controller 2143. Display engine 2140 may contain special purpose
logic capable of operating independently of the 3D pipeline. Display controller 2143 may couple
with a display device (not shown), which may be a system integrated display device, as in a
laptop computer, or an external display device attached via a display device connector.

[0310] The geometry pipeline 2120 and media pipeline 2130 maybe configurable to perform
operations based on multiple graphics and media programming interfaces and are not specific to
any one application programming interface (API). A driver software for the graphics processor

may translate API calls that are specific to a particular graphics or media library into commands

72

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

that can be processed by the graphics processor. Support may be provided for the Open
Graphics Library (OpenGL), Open Computing Language (OpenCL), and/or Vulkan graphics and
compute API, all from the Khronos Group. Support may also be provided for the Direct3D
library from the Microsoft Corporation. A combination of these libraries may be supported.
Support may also be provided for the Open Source Computer Vision Library (OpenCV). A
future API with a compatible 3D pipeline would also be supported if a mapping can be made
from the pipeline of the future API to the pipeline of the graphics processor.

Graphics Pipeline Programming

[0311] FIG. 22A is a block diagram illustrating a graphics processor command format 2200
used for programming graphics processing pipelines, such as, for example, the pipelines
described herein in conjunction with FIG. 16A, 17, 21. FIG. 22B is a block diagram illustrating
a graphics processor command sequence 2210 according to an embodiment. The solid lined
boxes in FIG. 22A illustrate the components that are generally included in a graphics command
while the dashed lines include components that are optional or that are only included in a sub-set
of the graphics commands. The exemplary graphics processor command format 2200 of FIG.
22A includes data fields to identify a client 2202, a command operation code (opcode) 2204, and
data 2206 for the command. A sub-opcode 2205 and a command size 2208 are also included in
some commands.

[0312] Client 2202 may specify the client unit of the graphics device that processes the
command data. A graphics processor command parser may examine the client field of each
command to condition the further processing of the command and route the command data to the
appropriate client unit. The graphics processor client units may include a memory interface unit,
arender unit, a 2D unit, a 3D unit, and a media unit. Each client unit may have a corresponding
processing pipeline that processes the commands. Once the command is received by the client
unit, the client unit reads the opcode 2204 and, if present, sub-opcode 2205 to determine the
operation to perform. The client unit performs the command using information in data field
2206. For some commands an explicit command size 2208 is expected to specify the size of the
command. The command parser may automatically determine the size of at least some of the
commands based on the command opcode. Commands may be aligned via multiples of a double
word. Other command formats can also be used.

[0313] The flow diagram in FIG. 22B illustrates an exemplary graphics processor command
sequence 2210. Software or firmware of a data processing system that features an exemplary
graphics processor may use a version of the command sequence shown to set up, execute, and
terminate a set of graphics operations. A sample command sequence is shown and described for

purposes of example only and is not limited to these specific commands or to this command

73

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

sequence. Moreover, the commands may be issued as batch of commands in a command
sequence, such that the graphics processor will process the sequence of commands in at least
partially concurrence.

[0314] The graphics processor command sequence 2210 may begin with a pipeline flush
command 2212 to cause any active graphics pipeline to complete the currently pending
commands for the pipeline. Optionally, the 3D pipeline 2222 and the media pipeline 2224 may
not operate concurrently. The pipeline flush is performed to cause the active graphics pipeline to
complete any pending commands. In response to a pipeline flush, the command parser for the
graphics processor will pause command processing until the active drawing engines complete
pending operations and the relevant read caches are invalidated. Optionally, any data in the
render cache that is marked ‘dirty’ can be flushed to memory. Pipeline flush command 2212 can
be used for pipeline synchronization or before placing the graphics processor into a low power
state.

[0315] A pipeline select command 2213 may be used when a command sequence requires
the graphics processor to explicitly switch between pipelines. A pipeline select command 2213
may be required only once within an execution context before issuing pipeline commands unless
the context is to issue commands for both pipelines. A pipeline flush command 2212 may be
required immediately before a pipeline switch via the pipeline select command 2213.

[0316] A pipeline control command 2214 may configure a graphics pipeline for operation
and may be used to program the 3D pipeline 2222 and the media pipeline 2224. The pipeline
control command 2214 may configure the pipeline state for the active pipeline. The pipeline
control command 2214 may be used for pipeline synchronization and to clear data from one or
more cache memories within the active pipeline before processing a batch of commands.

[0317] Return buffer state commands 2216 may be used to configure a set of return buffers
for the respective pipelines to write data. Some pipeline operations require the allocation,
selection, or configuration of one or more return buffers into which the operations write
intermediate data during processing. The graphics processor may also use one or more return
buffers to store output data and to perform cross thread communication. The return buffer state
2216 may include selecting the size and number of return buffers to use for a set of pipeline
operations.

[0318] The remaining commands in the command sequence differ based on the active
pipeline for operations. Based on a pipeline determination 2220, the command sequence is
tailored to the 3D pipeline 2222 beginning with the 3D pipeline state 2230 or the media pipeline
2224 beginning at the media pipeline state 2240.

74

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0319] The commands to configure the 3D pipeline state 2230 include 3D state setting
commands for vertex buffer state, vertex element state, constant color state, depth buffer state,
and other state variables that are to be configured before 3D primitive commands are processed.
The values of these commands are determined at least in part based on the particular 3D API in
use. The 3D pipeline state 2230 commands may also be able to selectively disable or bypass
certain pipeline elements if those elements will not be used.

[0320] A 3D primitive 2232 command may be used to submit 3D primitives to be processed
by the 3D pipeline. Commands and associated parameters that are passed to the graphics
processor via the 3D primitive 2232 command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D primitive 2232 command data to
generate vertex data structures. The vertex data structures are stored in one or more return
buffers. The 3D primitive 2232 command may be used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D pipeline 2222 dispatches shader
execution threads to graphics processor execution units.

[0321] The 3D pipeline 2222 may be triggered via an execute 2234 command or event. A
register may write trigger command executions. An execution may be triggered via a ‘go’ or
‘kick’ command in the command sequence. Command execution may be triggered using a
pipeline synchronization command to flush the command sequence through the graphics
pipeline. The 3D pipeline will perform geometry processing for the 3D primitives. Once
operations are complete, the resulting geometric objects are rasterized and the pixel engine
colors the resulting pixels. Additional commands to control pixel shading and pixel back end
operations may also be included for those operations.

[0322] The graphics processor command sequence 2210 may follow the media pipeline 2224
path when performing media operations. In general, the specific use and manner of
programming for the media pipeline 2224 depends on the media or compute operations to be
performed. Specific media decode operations may be offloaded to the media pipeline during
media decode. The media pipeline can also be bypassed and media decode can be performed in
whole or in part using resources provided by one or more general-purpose processing cores. The
media pipeline may also include elements for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform SIMD vector operations using
computational shader programs that are not explicitly related to the rendering of graphics
primitives.

[0323] Media pipeline 2224 may be configured in a similar manner as the 3D pipeline 2222.
A set of commands to configure the media pipeline state 2240 are dispatched or placed into a

command queue before the media object commands 2242. Commands for the media pipeline

75

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

state 2240 may include data to configure the media pipeline elements that will be used to process
the media objects. This includes data to configure the video decode and video encode logic
within the media pipeline, such as encode or decode format. Commands for the media pipeline
state 2240 may also support the use of one or more pointers to “indirect” state elements that
contain a batch of state settings.

[0324] Media object commands 2242 may supply pointers to media objects for processing by
the media pipeline. The media objects include memory buffers containing video data to be
processed. Optionally, all media pipeline states must be valid before issuing a media object
command 2242. Once the pipeline state is configured and media object commands 2242 are
queued, the media pipeline 2224 is triggered via an execute command 2244 or an equivalent
execute event (e.g., register write). Output from media pipeline 2224 may then be post
processed by operations provided by the 3D pipeline 2222 or the media pipeline 2224. GPGPU
operations may be configured and executed in a similar manner as media operations.

Graphics Software Architecture

[0325] FIG. 23 illustrates an exemplary graphics software architecture for a data processing
system 2300. Such a software architecture may include a 3D graphics application 2310, an
operating system 2320, and at least one processor 2330. Processor 2330 may include a graphics
processor 2332 and one or more general-purpose processor core(s) 2334. The processor 2330
may be a variant of the processor 1402 or any other of the processors described herein. The
processor 2330 may be used in place of the processor 1402 or any other of the processors
described herein. Therefore, the disclosure of any features in combination with the processor
1402 or any other of the processors described herein also discloses a corresponding combination
with the graphics processor 2330, but is not limited to such. Moreover, the elements of FIG. 23
having the same or similar names as the elements of any other figure herein describe the same
elements as in the other figures, can operate or function in a manner similar to that, can comprise
the same components, and can be linked to other entities, as those described elsewhere herein,
but are not limited to such. The graphics application 2310 and operating system 2320 are each
executed in the system memory 2350 of the data processing system.

[0326] 3D graphics application 2310 may contain one or more shader programs including
shader instructions 2312. The shader language instructions may be in a high-level shader
language, such as the High-Level Shader Language (HLSL) of Direct3D, the OpenGL Shader
Language (GLSL), and so forth. The application may also include executable instructions 2314
in a machine language suitable for execution by the general-purpose processor core 2334. The

application may also include graphics objects 2316 defined by vertex data.

76

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0327] The operating system 2320 may be a Microsoft® Windows® operating system from
the Microsoft Corporation, a proprietary UNIX-like operating system, or an open source UNIX-
like operating system using a variant of the Linux kernel. The operating system 2320 can
support a graphics API 2322 such as the Direct3D API, the OpenGL API, or the Vulkan APL
When the Direct3D APl is in use, the operating system 2320 uses a front-end shader compiler
2324 to compile any shader instructions 2312 in HLSL into a lower-level shader language. The
compilation may be a just-in-time (JIT) compilation or the application can perform shader pre-
compilation. High-level shaders may be compiled into low-level shaders during the compilation
of the 3D graphics application 2310. The shader instructions 2312 may be provided in an
intermediate form, such as a version of the Standard Portable Intermediate Representation
(SPIR) used by the Vulkan API.

[0328] User mode graphics driver 2326 may contain a back-end shader compiler 2327 to
convert the shader instructions 2312 into a hardware specific representation. When the OpenGL
APl is in use, shader instructions 2312 in the GLSL high-level language are passed to a user
mode graphics driver 2326 for compilation. The user mode graphics driver 2326 may use
operating system kernel mode functions 2328 to communicate with a kernel mode graphics
driver 2329. The kernel mode graphics driver 2329 may communicate with graphics processor
2332 to dispatch commands and instructions.

IP Core Implementations

[0329] One or more aspects may be implemented by representative code stored on a
machine-readable medium which represents and/or defines logic within an integrated circuit such
as a processor. For example, the machine-readable medium may include instructions which
represent various logic within the processor. When read by a machine, the instructions may
cause the machine to fabricate the logic to perform the techniques described herein. Such
representations, known as “IP cores,” are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a hardware model that describes the
structure of the integrated circuit. The hardware model may be supplied to various customers or
manufacturing facilities, which load the hardware model on fabrication machines that
manufacture the integrated circuit. The integrated circuit may be fabricated such that the circuit
performs operations described in association with any of the embodiments described herein.
[0330] FIG. 24A is a block diagram illustrating an IP core development system 2400 that
may be used to manufacture an integrated circuit to perform operations according to an
embodiment. The IP core development system 2400 may be used to generate modular, re-usable
designs that can be incorporated into a larger design or used to construct an entire integrated

circuit (e.g., an SOC integrated circuit). A design facility 2430 can generate a software

77

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

simulation 2410 of an IP core design in a high-level programming language (e.g., C/C++). The
software simulation 2410 can be used to design, test, and verify the behavior of the IP core using
a simulation model 2412. The simulation model 2412 may include functional, behavioral, and/or
timing simulations. A register transfer level (RTL) design 2415 can then be created or
synthesized from the simulation model 2412. The RTL design 2415 is an abstraction of the
behavior of the integrated circuit that models the flow of digital signals between hardware
registers, including the associated logic performed using the modeled digital signals. In addition
to an RTL design 2415, lower-level designs at the logic level or transistor level may also be
created, designed, or synthesized. Thus, the particular details of the initial design and simulation
may vary.

[0331] The RTL design 2415 or equivalent may be further synthesized by the design facility
into a hardware model 2420, which may be in a hardware description language (HDL), or some
other representation of physical design data. The HDL may be further simulated or tested to
verify the IP core design. The IP core design can be stored for delivery to a 3" party fabrication
facility 2465 using non-volatile memory 2440 (e.g., hard disk, flash memory, or any non-volatile
storage medium). Alternatively, the [P core design may be transmitted (e.g., via the Internet)
over a wired connection 2450 or wireless connection 2460. The fabrication facility 2465 may
then fabricate an integrated circuit that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform operations in accordance with at least
one embodiment described herein.

[0332] FIG. 24B illustrates a cross-section side view of an integrated circuit package
assembly 2470. The integrated circuit package assembly 2470 illustrates an implementation of
one or more processor or accelerator devices as described herein. The package assembly 2470
includes multiple units of hardware logic 2472, 2474 connected to a substrate 2480. The logic
2472, 2474 may be implemented at least partly in configurable logic or fixed-functionality logic
hardware, and can include one or more portions of any of the processor core(s), graphics
processor(s), or other accelerator devices described herein. Each unit of logic 2472, 2474 can be
implemented within a semiconductor die and coupled with the substrate 2480 via an interconnect
structure 2473. The interconnect structure 2473 may be configured to route electrical signals
between the logic 2472, 2474 and the substrate 2480, and can include interconnects such as, but
not limited to bumps or pillars. The interconnect structure 2473 may be configured to route
electrical signals such as, for example, input/output (I/O) signals and/or power or ground signals
associated with the operation of the logic 2472, 2474. Optionally, the substrate 2480 may be an
epoxy-based laminate substrate. The substrate 2480 may also include other suitable types of

substrates. The package assembly 2470 can be connected to other electrical devices via a

78

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

package interconnect 2483. The package interconnect 2483 may be coupled to a surface of the
substrate 2480 to route electrical signals to other electrical devices, such as a motherboard, other
chipset, or multi-chip module.

[0333] The units of logic 2472, 2474 may be electrically coupled with a bridge 2482 that is
configured to route electrical signals between the logic 2472, 2474. The bridge 2482 may be a
dense interconnect structure that provides a route for electrical signals. The bridge 2482 may
include a bridge substrate composed of glass or a suitable semiconductor material. Electrical
routing features can be formed on the bridge substrate to provide a chip-to-chip connection
between the logic 2472, 2474.

[0334] Although two units of logic 2472, 2474 and a bridge 2482 are illustrated,
embodiments described herein may include more or fewer logic units on one or more dies. The
one or more dies may be connected by zero or more bridges, as the bridge 2482 may be excluded
when the logic is included on a single die. Alternatively, multiple dies or units of logic can be
connected by one or more bridges. Additionally, multiple logic units, dies, and bridges can be
connected together in other possible configurations, including three-dimensional configurations.
[0335] FIG. 24C illustrates a package assembly 2490 that includes multiple units of
hardware logic chiplets connected to a substrate 2480 (e.g., base die). A graphics processing
unit, parallel processor, and/or compute accelerator as described herein can be composed from
diverse silicon chiplets that are separately manufactured. In this context, a chiplet is an at least
partially packaged integrated circuit that includes distinct units of logic that can be assembled
with other chiplets into a larger package. A diverse set of chiplets with different IP core logic
can be assembled into a single device. Additionally the chiplets can be integrated into a base die
or base chiplet using active interposer technology. The concepts described herein enable the
interconnection and communication between the different forms of IP within the GPU. IP cores
can be manufactured using different process technologies and composed during manufacturing,
which avoids the complexity of converging multiple IPs, especially on a large SoC with several
flavors IPs, to the same manufacturing process. Enabling the use of multiple process
technologies improves the time to market and provides a cost-effective way to create multiple
product SKUs. Additionally, the disaggregated IPs are more amenable to being power gated
independently, components that are not in use on a given workload can be powered off, reducing
overall power consumption.

[0336] The hardware logic chiplets can include special purpose hardware logic chiplets
2472, logic or I/O chiplets 2474, and/or memory chiplets 2475. The hardware logic chiplets
2472 and logic or I/O chiplets 2474 may be implemented at least partly in configurable logic or

fixed-functionality logic hardware and can include one or more portions of any of the processor

79

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

core(s), graphics processor(s), parallel processors, or other accelerator devices described herein.
The memory chiplets 2475 can be DRAM (e.g., GDDR, HBM) memory or cache (SRAM)
memory.

[0337] Each chiplet can be fabricated as separate semiconductor die and coupled with the
substrate 2480 via an interconnect structure 2473. The interconnect structure 2473 may be
configured to route electrical signals between the various chiplets and logic within the substrate
2480. The interconnect structure 2473 can include interconnects such as, but not limited to
bumps or pillars. In some embodiments, the interconnect structure 2473 may be configured to
route electrical signals such as, for example, input/output (I/O) signals and/or power or ground
signals associated with the operation of the logic, I/O and memory chiplets.

[0338] The substrate 2480 may be an epoxy-based laminate substrate, however, it is not
limited to that and the substrate 2480 may also include other suitable types of substrates. The
package assembly 2490 can be connected to other electrical devices via a package interconnect
2483. The package interconnect 2483 may be coupled to a surface of the substrate 2480 to route
electrical signals to other electrical devices, such as a motherboard, other chipset, or multi-chip
module.

[0339] A logic or I/O chiplet 2474 and a memory chiplet 2475 may be electrically coupled
via a bridge 2487 that is configured to route electrical signals between the logic or I/O chiplet
2474 and a memory chiplet 2475. The bridge 2487 may be a dense interconnect structure that
provides a route for electrical signals. The bridge 2487 may include a bridge substrate composed
of glass or a suitable semiconductor material. Electrical routing features can be formed on the
bridge substrate to provide a chip-to-chip connection between the logic or I/O chiplet 2474 and a
memory chiplet 2475. The bridge 2487 may also be referred to as a silicon bridge or an
interconnect bridge. For example, the bridge 2487 is an Embedded Multi-die Interconnect
Bridge (EMIB). Alternatively, the bridge 2487 may simply be a direct connection from

one chiplet to another chiplet.

[0340] The substrate 2480 can include hardware components for I/O 2491, cache memory
2492, and other hardware logic 2493. A fabric 2485 can be embedded in the substrate 2480 to
enable communication between the various logic chiplets and the logic 2491, 2493 within the
substrate 2480. Optionally, the I/O 2491, fabric 2485, cache, bridge, and other hardware logic
2493 can be integrated into a base die that is layered on top of the substrate 2480.

[0341] Furthermore, a package assembly 2490 can also include a smaller or greater number
of components and chiplets that are interconnected by a fabric 2485 or one or more bridges 2487.
The chiplets within the package assembly 2490 may be arranged in a 3D or 2.5D arrangement.

In general, bridge structures 2487 may be used to facilitate a point to point interconnect between,

80

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

for example, logic or I/O chiplets and memory chiplets. The fabric 2485 can be used to
interconnect the various logic and/or I/O chiplets (e.g., chiplets 2472, 2474, 2491, 2493). with
other logic and/or 1/O chiplets. The cache memory 2492 within the substrate can act as a global
cache for the package assembly 2490, part of a distributed global cache, or as a dedicated cache
for the fabric 2485.

[0342] FIG. 24D illustrates a package assembly 2494 including interchangeable chiplets
2495, according to an embodiment. The interchangeable chiplets 2495 can be assembled into
standardized slots on one or more base chiplets 2496, 2498. The base chiplets 2496, 2498 can be
coupled via a bridge interconnect 2497, which can be similar to the other bridge interconnects
described herein and may be, for example, an EMIB. Memory chiplets can also be connected to
logic or I/O chiplets via a bridge interconnect. I/O and logic chiplets can communicate via an
interconnect fabric. The base chiplets can each support one or more slots in a standardized
format for one of logic or I/O or memory/cache.

[0343] SRAM and power delivery circuits may be fabricated into one or more of the base
chiplets 2496, 2498, which can be fabricated using a different process technology relative to the
interchangeable chiplets 2495 that are stacked on top of the base chiplets. For example, the base
chiplets 2496, 2498 can be fabricated using a larger process technology, while the
interchangeable chiplets can be manufactured using a smaller process technology. One or more
of the interchangeable chiplets 2495 may be memory (e.g., DRAM) chiplets. Different memory
densities can be selected for the package assembly 2494 based on the power, and/or performance
targeted for the product that uses the package assembly 2494. Additionally, logic chiplets with a
different number of type of functional units can be selected at time of assembly based on the
power, and/or performance targeted for the product. Additionally, chiplets containing IP logic
cores of differing types can be inserted into the interchangeable chiplet slots, enabling hybrid
processor designs that can mix and match different technology IP blocks.

Exemplary System on a Chip Integrated Circuit

[0344] FIG. 25-26 illustrate exemplary integrated circuits and associated graphics processors
that may be fabricated using one or more IP cores. In addition to what is illustrated, other logic
and circuits may be included, including additional graphics processors/cores, peripheral interface
controllers, or general-purpose processor cores. The elements of FIG. 25-26 having the same or
similar names as the elements of any other figure herein describe the same elements as in the
other figures, can operate or function in a manner similar to that, can comprise the same
components, and can be linked to other entities, as those described elsewhere herein, but are not

limited to such.

81

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0345] FIG. 25 is a block diagram illustrating an exemplary system on a chip integrated
circuit 2500 that may be fabricated using one or more IP cores. Exemplary integrated circuit
2500 includes one or more application processor(s) 2505 (e.g., CPUs), at least one graphics
processor 2510, which may be a variant of the graphics processor 1408, 1508, 2510, or of any
graphics processor described herein and may be used in place of any graphics processor
described. Therefore, the disclosure of any features in combination with a graphics processor
herein also discloses a corresponding combination with the graphics processor 2510, but is not
limited to such. The integrated circuit 2500 may additionally include an image processor 2515
and/or a video processor 2520, any of which may be a modular IP core from the same or multiple
different design facilities. Integrated circuit 2500 may include peripheral or bus logic including
a USB controller 2525, UART controller 2530, an SPI/SDIO controller 2535, and an I>S/I°C
controller 2540. Additionally, the integrated circuit can include a display device 2545 coupled to
one or more of a high-definition multimedia interface (HDMI) controller 2550 and a mobile
industry processor interface (MIPI) display interface 2555. Storage may be provided by a flash
memory subsystem 2560 including flash memory and a flash memory controller. Memory
interface may be provided via a memory controller 2565 for access to SDRAM or SRAM
memory devices. Some integrated circuits additionally include an embedded security engine
2570.

[0346] FIG. 26A-26B are block diagrams illustrating exemplary graphics processors for use
within an SoC, according to embodiments described herein. The graphics processors may be
variants of the graphics processor 1408, 1508, 2510, or any other graphics processor described
herein. The graphics processors may be used in place of the graphics processor 1408, 1508,
2510, or any other of the graphics processors described herein. Therefore, the disclosure of any
features in combination with the graphics processor 1408, 1508, 2510, or any other of the
graphics processors described herein also discloses a corresponding combination with the
graphics processors of FIG. 26A-26B, but is not limited to such. FIG. 26A illustrates an
exemplary graphics processor 2610 of a system on a chip integrated circuit that may be
fabricated using one or more IP cores, according to an embodiment. FIG. 26B illustrates an
additional exemplary graphics processor 2640 of a system on a chip integrated circuit that may
be fabricated using one or more IP cores, according to an embodiment. Graphics processor 2610
of FIG. 26A is an example of a low power graphics processor core. Graphics processor 2640 of
FIG. 26B is an example of a higher performance graphics processor core. For example, each of
the graphics processors 2610, 2640 can be a variant of the graphics processor 2510 of FIG. 25,

as mentioned at the outset of this paragraph.

82

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0347] As shown in FIG. 26 A, graphics processor 2610 includes a vertex processor 2605 and
one or more fragment processor(s) 2615A-2615N (e.g., 2615A, 2615B, 2615C, 2615D, through
2615N-1, and 2615N). Graphics processor 2610 can execute different shader programs via
separate logic, such that the vertex processor 2605 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor(s) 2615A-2615N execute fragment
(e.g., pixel) shading operations for fragment or pixel shader programs. The vertex processor
2605 performs the vertex processing stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 2615A-2615N use the primitive and vertex data
generated by the vertex processor 2605 to produce a framebuffer that is displayed on a display
device. The fragment processor(s) 2615A-2615N may be optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be used to perform similar operations
as a pixel shader program as provided for in the Direct 3D APL

[0348] Graphics processor 2610 additionally includes one or more memory management
units (MMUSs) 2620A-2620B, cache(s) 2625A-2625B, and circuit interconnect(s) 2630A-2630B.
The one or more MMU(s) 2620A-2620B provide for virtual to physical address mapping for the
graphics processor 2610, including for the vertex processor 2605 and/or fragment processor(s)
2615A-2615N, which may reference vertex or image/texture data stored in memory, in addition
to vertex or image/texture data stored in the one or more cache(s) 2625A-2625B. The one or
more MMU(s) 2620A-2620B may be synchronized with other MMUs within the system,
including one or more MMU s associated with the one or more application processor(s) 2505,
image processor 2515, and/or video processor 2520 of FIG. 25, such that each processor 2505-
2520 can participate in a shared or unified virtual memory system. Components of graphics
processor 2610 may correspond with components of other graphics processors described herein.
The one or more MMU(s) 2620A-2620B may correspond with MMU 245 of FIG. 2C. Vertex
processor 2605 and fragment processor(s) 2615A-2615N may correspond with graphics
multiprocessor 234. The one or more circuit interconnect(s) 2630A-2630B enable graphics
processor 2610 to interface with other IP cores within the SoC, either via an internal bus of the
SoC or via a direct connection, according to embodiments. The one or more circuit
interconnect(s) 2630A-2630B may correspond with the data crossbar 240 of FIG. 2C. Further
correspondence may be found between analogous components of the graphics processor 2610
and the various graphics processor architectures described herein.

[0349] As shown FIG. 26B, graphics processor 2640 includes the one or more MMUJ(s)
2620A-2620B, cache(s) 2625A-26258B, and circuit interconnect(s) 2630A-2630B of the graphics
processor 2610 of FIG. 26A. Graphics processor 2640 includes one or more shader cores

2655A-2655N (e.g., 2655A, 2655B, 2655C, 2655D, 2655E, 2655F, through 2655N-1, and

83

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

2655N), which provides for a unified shader core architecture in which a single core or type or
core can execute all types of programmable shader code, including shader program code to
implement vertex shaders, fragment shaders, and/or compute shaders. The exact number of
shader cores present can vary among embodiments and implementations. Additionally, graphics
processor 2640 includes an inter-core task manager 2645, which acts as a thread dispatcher to
dispatch execution threads to one or more shader cores 2655A-2655N and a tiling unit 2658 to
accelerate tiling operations for tile-based rendering, in which rendering operations for a scene are
subdivided in image space, for example to exploit local spatial coherence within a scene or to
optimize use of internal caches. Shader cores 2655A-2655N may correspond with, for example,
graphics multiprocessor 234 as in FIG. 2D, or graphics multiprocessors 325, 350 of FIG. 3A and
3B respectively, or multi-core group 365A of FIG. 3C.

[0350] Embodiments described herein include, software, firmware, and hardware logic that
provides techniques to perform arithmetic on sparse data via a systolic processing unit.
Embodiment described herein provided techniques to skip computational operations for zero
filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data
compression through to a processing unit. Embodiments additionally provide an architecture for
a sparse aware logic unit.

GPGPU with Tensor Acceleration Logic and Unified Memory

[0351] FIG. 27 is a block diagram of a data processing system 2700, according to an
embodiment. The data processing system 2700 is a heterogeneous processing system having a
processor 2702, unified memory 2710, and a GPGPU 2720 including machine learning
acceleration logic. The processor 2702 and the GPGPU 2720 can be any of the processors and
GPGPU/parallel processors as described herein. The processor 2702 can execute instructions for
a compiler 2715 stored in system memory 2712. The compiler 2715 executes on the processor
2702 to compile source code 2714 A into compiled code 2714B. The compiled code 2714B can
include instructions that may be executed by the processor 2702 and/or instructions that may be
executed by the GPGPU 2720. During compilation, the compiler 2715 can perform operations
to insert metadata, including hints as to the level of data parallelism present in the compiled code
2714B and/or hints regarding the data locality associated with threads to be dispatched based on
the compiled code 2714B. The compiler 2715 can include the information necessary to perform
such operations or the operations can be performed with the assistance of a runtime library 2716.
The runtime library 2716 can also assist the compiler 2715 in the compilation of the source code
2714A and can also include instructions that are linked at runtime with the compiled code 2714B

to facilitate execution of the compiled instructions on the GPGPU 2720.

84

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0352] The unified memory 2710 represents a unified address space that may be accessed
by the processor 2702 and the GPGPU 2720. The unified memory can include system memory
2712 as well as GPGPU memory 2718. The GPGPU memory 2718 is memory within an address
pace of the GPGPU 2720 and can include some or all of system memory 2712. In one
embodiment the GPGPU memory 2718 can also include at least a portion of any memory
dedicated for use exclusively by the GPGPU 2720. In one embodiment, compiled code 2714B
stored in system memory 2712 can be mapped into GPGPU memory 2718 for access by the
GPGPU 2720.

[0353] The GPGPU 2720 includes multiple compute blocks 2724 A-2724N, which can
include one or more of a variety of processing resources described herein. The processing
resources can be or include a variety of different computational resources such as, for example,
execution units, compute units, streaming multiprocessors, graphics multiprocessors, or multi-
core groups. In one embodiment the GPGPU 2720 additionally includes a tensor (e.g., matrix)
accelerator 2723, which can include one or more special function compute units that are
designed to accelerate a subset of matrix operations (e.g., dot product, etc.). The tensor
accelerator 2723 may also be referred to as a tensor accelerator or tensor core. In one
embodiment, logic components within the tensor accelerator 2723 may be distributed across the
processing resources of the multiple compute blocks 2724 A-2724N.

[0354] The GPGPU 2720 can also include a set of resources that can be shared by the
compute blocks 2724A-2724N and the tensor accelerator 2723, including but not limited to a set
of registers 2725, a power and performance module 2726, and a cache 2727. In one embodiment
the registers 2725 include directly and indirectly accessible registers, where the indirectly
accessible registers are optimized for use by the tensor accelerator 2723. The power and
performance module 2726 can be configured to adjust power delivery and clock frequencies for
the compute blocks 2724 A-2724N to power gate idle components within the compute blocks
2724A-2724N. In various embodiments the cache 2727 can include an instruction cache and/or
a lower level data cache.

[0355] The GPGPU 2720 can additionally include an L3 data cache 2730, which can be
used to cache data accessed from the unified memory 2710 by the tensor accelerator 2723 and/or
the compute elements within the compute blocks 2724A-2724N. In one embodiment the L3 data
cache 2730 includes shared local memory 2732 that can be shared by the compute elements
within the compute blocks 2724 A-2724N and the tensor accelerator 2723.

[0356] In one embodiment the GPGPU 2720 includes instruction handling logic, such as a
fetch and decode unit 2721 and a scheduler controller 2722. The fetch and decode unit 2721

includes a fetch unit and decode unit to fetch and decode instructions for execution by one or

85

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

more of the compute blocks 2724 A-2724N or the tensor accelerator 2723. The instructions can
be scheduled to the appropriate functional unit within the compute block 2724 A-2724N or the
tensor accelerator via the scheduler controller 2722. In one embodiment the scheduler controller
2722 is an ASIC configurable to perform advanced scheduling operations. In one embodiment
the scheduler controller 2722 is a micro-controller or a low energy-per-instruction processing
core capable of executing scheduler instructions loaded from a firmware module.

[0357] In one embodiment some functions to be performed by the compute blocks 2724 A-
2724N can be directly scheduled to or offloaded to the tensor accelerator 2723. In various
embodiments the tensor accelerator 2723 includes processing element logic configured to
efficiently perform matrix compute operations, such as multiply and add operations and dot
product operations used by 3D graphics or compute shader programs. In one embodiment the
tensor accelerator 2723 can be configured to accelerate operations used by machine learning
frameworks. In one embodiment the tensor accelerator 2723 is an application specific integrated
circuit explicitly configured to perform a specific set of parallel matrix multiplication and/or
addition operations. In one embodiment the tensor accelerator 2723 is a field programmable gate
array (FPGA) that provides fixed function logic that can updated between workloads. The set of
matrix operations that can be performed by the tensor accelerator 2723 may be limited relative to
the operations that can be performed by the compute block 2724A-2724N. However, the tensor
accelerator 2723 can perform those the operations at a significantly higher throughput relative to
the compute block 2724 A-2724N.

[0358] FIG. 28 illustrates a matrix operation 2805 performed by an instruction pipeline
2800, according to an embodiment. The instruction pipeline 2800 can be configured to perform
a matrix operation 2805, such as, but not limited to a dot product operation. The dot product of
two vectors is a scalar value that is equal to sum of products of corresponding components of the

vectors. The dot product can be calculated as shown in equation (1) below.

(2

a-b= E a;b; = a1by + ...+ a,b, (N

=1

[0359] The dot product can be used in a convolution operation for a convolutional neural
network (CNN). FIG. 28 illustrates a two-dimensional (2D) convolution using a matrix
operation 2805 including a dot product operation. While 2D convolution is illustrated, N-
dimensional convolution can be performed on an N-dimensional volume using N-dimensional

filters. A receptive field tile 2802 highlights a portion of an input volume in an input volume

86

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

buffer 2804. The input volume buffer can be stored in memory 2830. A dot product matrix
operation 2805 can be performed between the data within the receptive field tile 2802 and a
convolutional filter to generate a data point within output buffer 2806, which can also be stored
in memory 2830. The memory 2830 can be any of the memory described herein, including
system memory 2712, GPGPU memory 2718, or one or more cache memories 2727, 2730 as in
FIG 27.

[0360] The combination of the data points within the output buffer 2806 represents an
activation map generated by the convolution operation. Each point within the activation map is
generated by sliding the receptive field tile across the input volume buffer 2804. The activation
map data can be input to an activation function to determine an output activation value. In one
embodiment, convolution of the input volume buffer 2804 can be defined within a framework as
high-level matrix operation 2905. The high-level matrix operations can be performed via
primitive operations, such as a basic linear algebra subprogram (BLAS) operation. The primitive
operations can be accelerated via hardware instructions executed by the instruction pipeline
2800.

[0361] The instruction pipeline 2800 used to accelerate hardware instructions can include
the instruction fetch and decode unit 2721, which can fetch and decode hardware instructions,
and the scheduler controller 2722 which can schedule decoded instructions to one or more
processing resources within the compute blocks 2724 A-2724N and/or the tensor accelerator
2723. In one embodiment, a hardware instruction can be scheduled to the compute blocks

2724 A-2724N and offloaded to the tensor accelerator 2723. The one or more hardware
instructions and associated data to perform the matrix operation 2805 can be stored in the
memory 2830. Output of the hardware instruction can also be stored in the memory 2830.
[0362] In one embodiment, the tensor accelerator 2723 can execute one or more hardware
instructions to perform the matrix operation 2805 using an integrated systolic array 2808 (DP
logic). The systolic array 2808 can include a combination of programmable and fixed function
hardware that is configurable to perform dot product operations. While functional units within
the compute blocks 2724 A-2724N can also be configured to perform dot product operations, the
systolic array 2808 can be configured to perform a limited subset of dot product operations at a
significantly higher throughput relative to the compute block 2724A-2724N.

[0363] FIG. 29A-29B illustrate details of hardware-based systolic array 2808, according to
some embodiments. FIG. 29A illustrates a grid of multiple functional units that are configurable
to perform multiple dot product operations within a single clock cycle. FIG. 29B illustrates a

single exemplary functional unit. During aa systolic matrix computation,

87

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

[0364] As shown in FIG. 29A, in one embodiment the systolic array 2808 is configurable to
perform a set of parallel dot product operations using a variety of functional units. The dot
products can be performed in a ‘systolic’ manner, in which SIMD data is pumped across
multiple layers of functional units. As shown in FIG. 29A, in one embodiment the systolic array
2808 is configurable to perform a set of parallel dot product operations using a variety of
functional units. The dot products can be performed in a ‘systolic’ manner, in which SIMD data
is pumped across multiple layers of functional units. The systolic array 2808 is a collection of
functional units that are arranged in a grid. The grid of functional units work in lockstep and are
optimized to perform multiply-accumulate operations. Matrices to be operated on by the systolic
array 2808 are divided in to sub-matrices, which are pumped across the grid of functional units.
[0365] In one embodiment the systolic array 2808 can process a configurable number of
SIMD channels of data using a configurable systolic depth. For a given instruction, a SIMD
width and a systolic depth can be selected to process a set of source data. The systolic depth
defines the number of systolic layers of hardware logic that will be used to process an
instruction. A systolic layer is a group of multiplier and adder logic units having a variable
SIMD width, where the systolic layer can receive, as input, an initial accumulator value and
generates a dot product value for output to a successive systolic layer or to an output register.
[0366] In some embodiments, three sources can be processed, where each source can be a
vector register or an immediate. In one embodiment, source 2900 (SRCO) can be one or more
initial accumulator values, which can be a single value or a vector of accumulator values. The
initial accumulator value will be added to the first set of dot products computed by each
functional unit within the first systolic layer. The dot product computed by a functional unit can
be provided to the next systolic layer for the given SIMD channel. The dot products can be
computed based on source 2901 (SRC1) and source 2902 (SRC2), which are vector registers that
can contain one more channels of packed data, each channel containing a four-element vector.

In one embodiment, each channel is 32-bits wide and provides four, 8-bit vector elements. Some
embodiments are configurable to calculate dot products from input vectors having 8-bit
elements, 4-bit elements, and/or 2-bit elements. In one embodiment, mixed precision operations
can be performed using any combination of supported element sizes (e.g., 8-bit x 2-bit, 8-bit x 4-
bit, 4-bit x 4-bit, etc.). In one embodiment, the systolic array 2808 is configured for integer
calculation, although automatic fixed-point operation is configurable in some embodiments.
Although the instruction described herein is a four-element dot product, in some embodiments
the systolic array 2808 may also be configured to support floating-point dot-product calculations

on a different number of elements per vector.

88

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0367] In one embodiment, multiple channels of four-element vectors can be packed into a
single vector register of various widths (e.g., 64-bit, 128-bit, 256-bit, 512-bit, etc.).
Simultaneous dot products can be computed via the systolic array 2808 for multiple channels of
vector elements provided via source 2901 and source 2902. The number of channels of vector
elements to be processed can be configured based on a selected execution size and systolic depth
for the dot product calculation. In one embodiment, source vectors that are wider than the
specified execution size and/or systolic depth may be calculated using multiple cycles of the
systolic array 2808.

[0368] The number of calculations that can be performed within a given clock cycle can
vary based on the number of SIMD lanes and systolic layers. The systolic array 2808, as
illustrated, can perform sixteen dot products per SIMD lane of throughput using a systolic depth
of four. If configured for eight SIMD lanes, the logic can perform 128 eight-bit integer (INTS)
dot products within a given cycle. If configured for eight SIMD lanes and a systolic depth of
eight, each lane can perform 32 eight-bit integer (INT8) dot products and 256 dot products in
total. These specific number of operations are exemplary of one embodiment, and other
embodiments vary in throughput. Furthermore, if the data types are different, then the number of
operations will be scaled based on the different data types.

[0369] At each functional unit, a dot product is computed via multiplier and adder logic and
the dot product is added to an accumulator value. The resulting data can be output to a
destination register or provide to the accumulator of the next systolic layer. Details of a
functional unit 2912 are shown in FIG. 29B.

[0370] As shown in FIG. 29B a functional unit 2912 can include a set of input data buffers
2904, 2906 and an accumulator 2922, which can each accept input data. In one embodiment,
data buffer 2906 can accept source 2902, (SRC2), which can be a packed vector of input data.
Input data buffer 2904 can accept a source 2901 (SRC1), which can also be a packed vector of
input data. The accumulator 2922 can accept source 2900 (SRCO) that provides an initial
accumulator value for the functional unit 2912. The initial accumulator value is added to the dot
product computed from the elements of source 2901 and source 2902. The dot product is
computed via an element-wise multiplication of the source vectors using a set of multipliers
2923A-2923D and an adder 2924. The multipliers 2923 A-2923D are used to compute a set of
products. A sum of the set of products is computed by the adder 2924. The sum can be
accumulated with (e.g., added to) any initial value provided via source 2900. In one
embodiment, this accumulated value can be provided as an input value 2926 to the next
accumulator, which can reside in a subsequent systolic layer. In one embodiment, source 2901

may include multiple channels of input data. Additional channels of source 2901 can be relayed

89

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

as SRC1 input to additional SIMD lanes 2928. In one embodiment, source 2902 may include
multiple channels of input data. Additional channels of source 2902 can be used as SRC2 input
data to logic units within additional systolic depths. In one embodiment, source 2900 can
optionally include multiple channels, with additional channels provided as input to the
accumulator within additional functional units. In one embodiment, source 2900 can be a single
value that is added to each accumulator in each functional unit of the initial systolic layer.

Skipping Computational Operations for Zero Filled Matrices and Sub-Matrices

[0371] One embodiment provides techniques to optimize training and inference on a systolic
array when using sparse data. If a matrix or submatrix to be processed by the systolic tensor
array 2808 or systolic array 1912 is entirely zero, a dimension value for the matrix or submatrix
can be set to zero and the systolic tensor array 2808 may bypass one or more computational
phases associated with the submatrix depending on the operation to be performed. During pre-
processing of matrix data, zero submatrices can be identified and a submatrix map for the matrix
can be generated to indicate which submatrices include only zero values. In one embodiment, at
least some operations may be bypassed for a matrix or submatrix that includes an entire row or
column of zero values. In one embodiment, submatrices that also include only one non-zero
value can also be bypassed.

[0372] FIG. 30A-30B illustrates a system to bypass zero value submatrices, according to
embodiments. As shown in FIG. 30A, matrix 3002 and matrix 3004 are matrices in which one
or more submatrices contain only zero values. Processing logic can generate submatrix map
3012 for matrix 3002 and submatrix map 3014 for matrix 3004 to indicate whether a submatrix
contains only zero values. The submap can be generated using a variety of techniques, including
performing a bitwise comparison to zero for each submatrix. The submatrix maps can be
generated by framework or driver logic that execute on general purpose processing logic (e.g.,
CPUs) or can be generated by dedicated hardware logic within the processing resources. In one
embodiment, a where a submatrix 3005 includes a limited number of non-zero values, systolic
operations for that sub-matrix also be bypassed. Instead, a result of a matrix operation on the
submatrix 3005 can be computed using an ALU instead of the systolic tensor array.

[0373] As shown in FIG. 30B, a memory 3020 can store matrix 3002 and matrix 3004. The
systolic tensor array 2808 can include a matrix A load unit 3026, matrix B load unit 3022, a
matrix A feed unit 3028, and matrix B feed unit 3024. Matrix 3002 can be loaded and fed as
matrix B, while matrix 3004 can be loaded and fed as matrix A. Submatrices of matrix A and
matrix B can be loaded and fed through the functional units 3030 that operate as the processing

elements of the systolic tensor array 2808.

90

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0374] In one embodiment a load B filter 3027 and load A filter 3027 can include a buffer to
store the submatrix map 3012 for matrix 3002 and submatrix map 3014 for matrix 3004. The
load B filter 3021 can bypass the load of zero value submatrices by the matrix B load unit 3022.
The load A filter 3027 can bypass the load of zero value submatrices by the matrix A load unit
3026. Submatrices that are not bypassed can be processed by the functional units 3030.
Depending on the operation to be performed by the systolic tensor array 2808, where one of the
submatrices is zero, the entire operation can be bypassed. When the submatrix includes a single
non-zero value submatrix the submatrices associated with the operation to be performed can
bypass the systolic tensor array 2808 and the operation can be performed by an ALU via a
system 3110 as shown in FIG. 31B below.

[0375] FIG. 31A-31B illustrate a method 3100 and system 3110 to perform matrix multiply
operations on sparse data. FIG. 31A illustrates a method 3100 of skipping matrix multiply
operations for zero-filled matrices and sub-matrices. FIG. 31B illustrates a system 3110 in
which operations for near-sparse matrices and sub-matrices may be bypassed. Method 3100 may
be performed by a processing resource including a systolic array or systolic tensor array as
described herein, where the processing resource additionally includes compression or encoding
logic that includes zero detection and/or zero skipping circuitry. Exemplary zero detection
and/or zero skipping circuity includes, for example, load B filter 3021 and load A filter 3027 as
in FIG. 30B. System 3110 includes components of a compute unit as described herein, such as
but not limited to compute unit 1910.

[0376] As shown in FIG. 31 A, method 3100 includes for a graphics processing unit, graphics
multiprocessor, or graphics processor having zero detection and/or zero skipping circuitry to
track zero values for operands of matrices to be input into a processing element of a systolic
array (3102). If the circuitry detects a zero-filled matrix or zero-filled submatrix to be provided
as input (3104, YES), the circuitry can bypass operations for the entire matrix or sub-matrix
(3109). A zero-filled submatrix can include a zero-filled block of an input matrix or a zero-filled
row or column of the matrix. If the circuitry that the matrix or sub-matrix to be provided as
input is not zero-filled (3104, NO), the circuitry can proceed to perform operations for the matrix
or sub-matrix (3106), such as matrix multiply operations or one or more vectorized computations
that will have a zero result based in zero value input. Processing circuitry may then bypass
computation operations at a per-operand level as needed (3107). For example, even if an entire
matrix or sub-matrix cannot be bypassed, the total number of operations may be reduced by
skipping operation based on individual zero-value operands. Furthermore, near-sparse matrices
or sub-matrices may bypass the systolic array and the limited number of operations required may

be performed by a conventional logic unit within a processing resource, as shown in FIG. 31B.

91

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0377] FIG. 31B illustrates a system 3110 including logic to bypass a systolic tensor array
for operations on a submatrix that include a limited number of non-zero values. The system
3110 includes memory 3020 and compute unit 1910 as in FIG. 19. Although compute unit 1910
is illustrated, the system 3110 may alternatively or additionally include other types of compute
units or processing resources described herein. The compute unit 1910 includes a register file
1906, ALU 1911, a systolic array 1912, and a math unit 1913 that is optimized to perform a
specific subset of mathematical operations. Techniques described with respect to the systolic
array 1912 may also be applicable to the systolic tensor array 2808 of FIG. 28.

[0378] Elements of matrix 3002 and matrix 3004 that are stored in the memory 3120 can be
loaded into the register file 1906 of the compute unit 1910. When, for example, a submatrix of
matrix 3004 includes a limited number non-zero values (e.g., submatrix 3005 of FIG. 30A), logic
within the systolic array 1912 can transmit a submatrix bypass message 3112 to the ALU 1911
that identifies the registers that store operands for a bypassed operation and the bypassed
operation to be performed. The ALU 1911 can then read the bypassed submatrix data 3114 from
the register file 1906 and perform the bypassed operation using vector processing logic. The
processing of the bypassed operation can be performed in parallel with the non-bypassed
operations performed by the systolic array 1912.

[0379] Using the techniques above, one skilled in the art may implement, for example, a
graphics processor comprising a processing resource including a tensor accelerator, the tensor
accelerator including a load filter to bypass a load of a sparse submatrix of an input tensor. The
tensor accelerator includes a systolic tensor array to process one or more submatrices of a set of
input matrix data. The processing resource can additionally include a logic unit to perform an
operation for a bypassed submatrix of the input tensor, where the bypassed submatrix of the
input tensor includes only zero values. In one embodiment the bypassed submatrix includes a
limited number of non-zero values.

[0380] Using the techniques above, one skilled in the art may also implement an apparatus
comprising a processing resource including a tensor accelerator and a decoder. The tensor
accelerator includes a load filter to bypass a load of a sparse submatrix of an input tensor. The
decoder is configured to decode an encoded set of data associated with the input tensor to
generate a decoded set of data. The decoder can decode the encoded set of data based on
metadata associated with the encoded set of data, wherein the load filter is to bypass the load of
the sparse submatrix based on the metadata associated with the encoded set of data. In one
embodiment, the decoder is to provide the metadata associated with the encoded set of data to
the load filter. The metadata associated with the encoded set of data includes a significance map,

where the significance map indicates a zero or non-zero value for a bitstream of the decoded set

92

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

of data. In one embodiment the decoder is included in the tensor accelerator and the tensor
accelerator is to read one or more encoded submatrices as input.

Sending Compressed Data to EU

[0001] A GPU can include a data compression pipeline to enable the compression of pixel
data that is used by 3D and media applications. The data used by 3D and media applications is
considered typed data from the standpoint of the GPU data compression. However, GPGPU
compute data, such as data for machine learning and deep learning operation, is considered
untyped data and a conventional GPGPU compression pipeline cannot use typed data
compression techniques to compress such data. For example, typed data is generally not stored
sequentially in memory and instead may be stored using a tiled, planar, or other data format that
is specific to the type of data to be compressed. In contrast, untyped compute data is stored
sequentially in memory.

[0002] Embodiments described herein enable 3D compression blocks within a GPGPU to be
adapted to enable compression of untyped compute data. In some embodiments, current
Graphics assets are utilized for compression of machine Learning (ML) data, using a current
pipeline for 3D data.

[0003] For 3D data, there is state metadata associated with the data that specifies how the
data is laid out in memory. In some embodiments, in order to reuse the 3D compression
hardware for compression of untyped data, an apparatus, system, or process is configured to
detect the memory allocation of untyped data by in software and generate state metadata for the
allocation. A graphics driver associated with the GPGPU can be used to determine whether data
is to be compressed and a compressed status may be configured within the state metadata
associated with the allocation. The state metadata is used to indicate to the system that
compression is to be performed on a memory allocation associated with untyped compute data.
The state metadata can include one or more data structures that can be used to specify the
parameters to use for the data compression. The state metadata may also include a pointer to the
data, and may include elements such as the size of the buffer, the compression type, and a
pointer to an auxiliary buffer is included to store compression metadata for use in compressing
the untyped data.

[0004] In some embodiments, a data port allows for transmission of DL/ML data without
format conversion. For 3D data format, there is a conversion to shader format for pixel data.
However, a different process is used for machine learning and deep learning data, wherein there
is no format conversion of the data. In some embodiments, the data port is modified to allow
transmission without format conversion. In some embodiments, software will instead address

the DL/ML data.

93

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0005] FIG. 32 is a block diagram of a graphics processing system 3200 including a GPGPU
data compression pipeline. The data compression pipeline of the graphics processing system
3200 is configured to enable compression of 3D graphics and media data, as well as untyped
compute data. The graphics processing system 3200 includes a processing resource 3205 that
includes a set of shader cores 3210, 3212, 3214, a data port 3220, and a surface state cache 3222.
The shader cores 3210, 3212, 3214 send memory read/write messages to the Data Port 3220 to
access a memory subsystem 3234 of the graphics processing system 3200. Accesses to the
memory subsystem 3234 are cached by a cache hierarchy 3230. Cached data in the cache
hierarchy 3230 may be compressed via a GPGPU codec unit 3232 before the data is written to
the memory subsystem 3234. The GPGPU codec unit 3232 can also decompress data that is read
from the memory subsystem 3234 before the data is written to the cache hierarchy 3230.

[0006] The shader memory surfaces are associated with a surface state that can be stored in
the surface state cache 3222. The surface state has information about the surface such as bits per
pixel, tiling mode, clear pixel status, compression status, etc. This information is used by the
GPGPU codec unit to compress the data before sending to the memory subsystem. For GPGPU
programs running on the processing resource 3205, such as deep learning and/or machine
learning workloads, the data is typically “untyped” (i.e. no hardware data format is used) and not
tiled (i.e. laid out linearly in memory). During memory allocation by the software, the GPU
driver will apply heuristics to determine whether or not data compression will be enabled for a
buffer. If data compression is enabled, the driver will allocate an auxiliary buffer to store the
compression metadata, and will also allocate a surface state. In some embodiments, the compiler
is to ensure that all accesses to the buffer from the kernel is done with the proper surface-state
pointer. In some embodiments, for GPGPU applications, the surface state will indicate a buffer
memory layout (i.e., not tiled, or structured in to 2D/3D). The data format for these surfaces will
depend on the data type of the surface. For example, for Deep Learning inference, the data type
may be an 8-bit integer data type (e.g., INT8). For Deep Learning training, the format may be a
16-bit floating port format (e.g., FP16, bfloat16).

[0007] In some embodiments, even though the compute data surfaces have a specified
format, the data port 3220 will not perform any format conversion during accesses, because this
is not required by these applications. Instead, the format information is only used for driving the
compression/decompression algorithm heuristics. A compression data “block™ is a block of
cache lines (typically 2 or 4 cache lines) that are compressed together by the compression unit.
In one embodiment, for GPGPU compression cache line addresses in a block are always
sequential. Deep learning programs typically have good sequential locality in accesses and this

provides good performance while keeping the hardware simple.

94

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0008] FIG. 33A-33B illustrate compute architectures 3300, 3320 configured to enable
compressed transmission of neural network data to processing resources on a parallel compute
processor or general purpose graphics processing unit, according to an embodiment. FIG. 33A
illustrates a compute architecture 3300 in which data decompression is performed within a
compute block 3302. The illustrated compute block 3302 may represent one of the compute
blocks 2724A-2724N as in FIG. 27. FIG. 33B illustrates a compute architecture 3320 in which
data compression and decompression is performed within a processing resource.

[0009] As shown in FIG. 33 A, compute architecture 3300 includes a compute block 3302
and hardware scratch buffer 3304 that is coupled to memory 3308 via a DMA controller 3306.
The memory 3308 can be main memory or system memory of a data processing system as
described herein. The compute block 3302 includes a set of processing resources as described
herein and can be similar to any of the compute blocks 2724A-2724N as in FIG. 27. The scratch
buffer 3304 can be a high-speed on-chip memory, such as on-chip static random access memory
(SRAM). In one embodiment the scratch buffer 3304 is optimized to store feature block units or
kernel block units for neural network operations performed by the compute block 3302.

[0010] In one embodiment the decoder 3312 can be hardware decoder logic that is integrated
into the compute block 3302 to enable compressed transmission of neural network data across
the compute architecture. For example, when processing a CNN, the compute block 3302 can
generate output feature map (OFM) data in the scratch buffer 3304 in an uncompressed format.
An encoder 3316 integrated into the DMA controller 3306 to enable the writing the output
feature maps data to the memory 3308 in a compressed format. When the OFM of one layer
become the input feature map (IFM) of the next layer, those IFMs are read from memory 3306 as
compressed data 3314 and stored in the scratch buffer 3304. The decoder 3312 can enable the
compute block 3302 to read in the compressed data 3314 without requiring the data to be
decoded. Alternatively, a codec unit having both encode and decode logic can be integrated into
the DMA controller 3306, enabling compressed data to be transmitted and read by the DMA
controller 3306. The feature map data can then be decompressed by the DMA controller 3306
and written to the scratch buffer 3304 in an uncompressed format to be read by the compute
block 3302.

[0011] In the embodiments described herein, the specific encoding format for kernel and
feature data can be varied based on the statistics of the data to be encoded. Analysis of neural
network feature map data indicates that many feature maps may be highly sparse. Analysis of
neural network kernel data indicates that while the kernel data is not as sparse as the feature map
data, many values in the kernel data are repeated. The dynamic range of kernel data is relatively

low, which indicates that raw data allocate more bits than required to store the coefficients.

95

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

Using varied encoding techniques feature map and kernel data can be compressed by as much as
80% in a lossless manner using a selection of various encoding techniques.

[0012] Neural network related data can be encoded (e.g., compressed) using a variety of
encoding techniques, such as but not limited to unique absolute value (UAV) table encoding,
significance map (SM) encoding, table encoding (TE), unique value coordinate (UVC) encoding,
and mean encoding (ME). Metadata for the encoded data indicates the type of encoding format
used for the data. In one embodiment, specific encoding formats can be selected for specific
types of data, such as kernel data or feature data. In one embodiment, statistical analysis is
performed on the data prior to encoding to enable an appropriate encoder to be selected for each
block of data.

[0013] In one embodiment data generated during SM encoding can be used to facilitate
submatrix bypass within a systolic tensor array. In SM encoding mode, only non-zero values in
a block are encoded. The number of non-zero values in a sample block is indicated in the
header, followed by a significance map indicating a map of the non-zero values within the block.
The non-zero values of the sample are then encoded in order of appearance within the stream.
[0014] As shown in FIG. 33B, a compute architecture 3320 can include logic to perform data
compression and decompression within a processing resource. Compute architecture 3320
includes memory 3308 and a DMA controller 3306, as in compute architecture 3300 of FIG.
33A. However, the DMA controller 3306 may exclude an encoder 3316. Instead, compressed
data read from memory 3308 via the DMA controller 3306 can be stored in the cache hierarchy
(e.g., L3 cache 3326, L1 cache 3327) in a compressed format. The compute architecture 3320
includes a compute block 3322 having multiple processing resources 3328A-3328N, each
processing resource including codecs 3334A-3334N that can decode compressed data from the
cache hierarchy via load operations and encode compressed data written to the cache hierarchy
via store operations. Data may be decompressed by the codecs 3334 A-3334N before providing
the data to systolic arrays 3332A-3332N within the processing resources 33328 A-3328N.
Results generated by the systolic arrays 3332A-3332N may be compressed by the codecs 3334 A-
3334N before the data is written to the cache hierarchy and/or memory 3308.

[0015] FIG. 34 illustrates a processing resource 3328 that includes zero detection logic for
output data. The illustrated processing resource 3328 may be one of processing resources
processing resource 3328A-3328N of FIG. 33B. The processing resource 3328 can include an
ALU 3434 to perform processing operations based on source operands (e.g., SRC1 3432, SRC2
3433) stored in a register file of the processing resource 3328. Output of the operation
performed by the ALU 3434 can be written to a temporary destination register 3436 in the

register file of the processing resource 3328. The processing resource 3328 additionally includes

96

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

zero detection logic 3438 that can perform a zero detection operation on the data in the
temporary destination register 3436 as the data flows from the temporary destination register
3436 to a destination register 3440 in the register file. The zero detection logic 3438 can write
zero detection metadata 3439 that indicates whether the value written to the destination register
3440 is a zero value. The zero detection logic 3438 may be hardware circuitry within the
processing resource or may be higher level logic, such as a shader program that is performed by
a shader processor of the processing resource 3328. Where the registers are vector registers
containing multiple elements of packed data, the zero detection metadata 3439 may be a bitfield
that includes one bit per vector element.

[0016] In one embodiment the zero detection metadata 3439 may be used by a codec 3334
within the processing resource 3328 to compress the destination data when data compression is
enabled. The zero detection metadata 3439 may be used by the codec 3334 to generate metadata
used to manage compressed data when the compressed data is stored in the cache hierarchy and
memory, such as, for example, surface state data stored in a surface state cache 3222 as in FIG.
32.

[0017] In various embodiments the ALU 3434 may be any one of a variety of processing
elements described herein, and may be configured to perform integer and/or floating-point
operations, including parallel integer and floating point operations. The ALU 3434 may also be
representative of a systolic array 3332A-3332N as in FIG. 33B.

[0018] FIG. 35 illustrates a method 3500 to compressing and decompressing data for a
matrix operation within a processing resource. Method 3500 may be performed by a processing
resource including compression and decompression logic, such as processing resource 3328 as in
FIG. 34 or processing resources 3328A-3328N as in FIG. 33B.

[0019] Method 3500 includes for a processing resource to read compressed data including
elements of multiple matrices from a cache hierarchy of a GPGPU (3502). The processing
resource can decompress the compressed data and store the elements of the multiple matrices to
aregister file of the processing resource (3504). The processing resource can then load the
elements of the multiple matrices into a systolic array within the processing resource (3506). For
example, the processing resource may send a message to the systolic array with an operation
(e.g., opcode) to perform and the source and destination registers associated with those
operations. The processing resource may then perform a specified matrix operation (e.g., the
operation specified via the opcode) via the systolic array, where the systolic array may store
output of the matrix operation to the register file (3508).

[0020] For some operations, the processing resource may perform one or more additional

operations on the output of the matrix operation via additional functional units (e.g., ALUs,

97

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

FPUs) of the processing resource (3510). For example, some post processing operations may be
performed on the output generated by the systolic array, including performing a set of operations
that were bypassed by the systolic array on near-sparse matrices or sub-matrices.

[0021] The processing resource can then compress the output of the matrix operation or the
one or more additional operations for output from the processing resource (3512). For example,
the processing resource can output compressed data and compression metadata to the cache
hierarchy of the GPGPU.

[0022] FIG. 36 illustrates a method 3600 to perform zero detection operations on output
generated by a processing resource. Method 3600 may be performed by a processing resource
including zero detection logic, such as processing resource 3328 as in FIG. 34.

[0023] Method 3600 includes for a processing resource to read data elements from a cache
hierarchy of a GPGPU (3602). The data elements may be vector elements, packed data
elements, or matrix elements for a SIMD or SIMT operation to be performed by the processing
resource. The processing resource can then perform one or more operations on the data elements
via one or more functional units of the processing resource (3604). The one or more functional
units may be integer or floating-point functional units, mixed precision functional units, or a
matrix acceleration unit. The matrix acceleration unit may be, for example, a systolic array
1912, systolic tensor array 2808, or one of systolic arrays 3332A-3332N as described herein.
[0024] The processing resource may then perform a zero detection operation on output of the
one or more operations (3606). The zero detection operation is performed by zero detection
logic within the processing resource. The zero detection logic may be dedicated hardware
circuitry within the processing resource. The zero detection logic may also be shader logic that
is executed with the processing resource. The zero detection operation may be performed as the
data is read from a temporary destination register and written to a destination register specified in
the operands for an operation.

[0025] The processing resource may then write output of the one or more operations and
zero detection metadata to the cache hierarchy of the GPGPU (3608). In one embodiment the
zero detection metadata may be used by a codec to compress the data before writing the data to
the cache hierarchy. The data may remain compressed within the cache hierarchy and memory
of the GPGPU. Should compressed data be required to be read by a CPU, decompression logic
may decompress the data during a write to CPU visible memory. In one embodiment,
decompression logic may reside in a DMA controller that is used to write the data to the CPU
visible memory.

[0026] Using the techniques above, one skilled in the art may implement, for example, a

general-purpose graphics processor comprising a processing resource including a tensor

98

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

accelerator to perform one or more matrix multiply operations and codec hardware to
decompress compressed data received via a load operation to be performed by the processing
resource, the compressed data including elements of input matrices identified by operands of the
one or more matrix multiply operations. The general-purpose graphics processor can include a
register file and the codec hardware can write the elements of the input matrices to registers in
the register file. The tensor accelerator can read the elements of the input matrices from the
register file. The processing resource can include the codec hardware and the register file.
[0027] Using the techniques above, one skilled in the art may implement, for example, a
method comprising, on a general-purpose graphics processing unit (GPGPU), reading, at a
processing resource of the GPGPU, data elements from a cache hierarchy of the GPGPU,
performing one or more operations on the data elements via one or more functional units of the
processing resource, performing, via zero detection logic within the processing resource, a zero
detection operation on output of the one or more operations, and writing output of the one or
more operations and zero detection metadata to the cache hierarchy of the GPGPU. The method
may further comprise compressing output of the one or more operations using the zero detection
metadata via a compressor of a codec unit, where the codec unit is included within the
processing resource of the GPGPU.

Additional Exemplary Computing Device

[0028] FIG. 37 is a block diagram of a computing device 3700 including a graphics
processor 3704, according to an embodiment. The computing device 3700 can be a computing
device that includes functionality of each of the embodiments described above. The computing
device 3700 may be or be included within a communication device such as a set-top box (e.g.,
Internet-based cable television set-top boxes, etc.), global positioning system (GPS)-based
devices, etc. The computing device 3700 may also be or be included within mobile computing
devices such as cellular phones, smartphones, personal digital assistants (PDAs), tablet
computers, laptop computers, e-readers, smart televisions, television platforms, wearable devices
(e.g., glasses, watches, bracelets, smartcards, jewelry, clothing items, etc.), media players, etc.
For example, in one embodiment, the computing device 3700 includes a mobile computing
device employing an integrated circuit (“IC”), such as system on a chip (“SoC” or “SOC”),
integrating various hardware and/or software components of computing device 3700 on a single
chip.

[0001] The computing device 3700 includes a graphics processor 3704. The graphics
processor 3704 represents any graphics processor described herein. The graphics processor
includes one or more graphics engine(s), graphics processor cores, and other graphics execution

resources as described herein. Such graphics execution resources can be presented in the forms

99

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

including but not limited to execution units, shader engines, fragment processors, vertex
processors, streaming multiprocessors, graphics processor clusters, or any collection of
computing resources suitable for the processing of graphics resources or image resources, or
performing general purpose computational operations in a heterogeneous processor.

[0002] In one embodiment, the graphics processor 3704 includes a cache 3714, which can be
a single cache or divided into multiple segments of cache memory, including but not limited to
any number of L1, L2, L3, or L4 caches, render caches, depth caches, sampler caches, and/or
shader unit caches. The cache 3714 may have a near and far region as described herein. The
cache 3714 may also include dynamic hash logic that supports dynamic reconfiguration of a
memory bank hash algorithm. In some embodiments, the graphics processor 3704 includes a
GPGPU engine 3744 that includes shared local memory (SLM 3734), as well as a register file
3724, including includes registers for use by the GPGPU engine 3744. The register file 3724 can
include general-purpose registers, architectural registers, configuration registers, and other types
of registers. A general-purpose register file (GRF) and/or architectural register file (ARF) can
also reside within processing resources within one or more blocks of compute units (e.g.,
compute 3750, compute 3755) within the GPGPU engine 3744. A shared fabric 3742 may also
be present that enables rapid communication between the various components of the GPGPU
engine 3744.

[0003] As illustrated, in one embodiment, and in addition to the graphics processor 3704, the
computing device 3700 may further include any number and type of hardware components
and/or software components, including, but not limited to an application processor 3706,
memory 3708, and input/output (I/O) sources 3710. The application processor 3706 can interact
with a hardware graphics pipeline to share graphics pipeline functionality. Processed data is
stored in a buffer in the hardware graphics pipeline and state information is stored in memory
3708. The resulting data can be transferred to a display controller for output via a display device
as described herein. The display device may be of various types, such as Cathode Ray Tube
(CRT), Thin Film Transistor (TFT), Liquid Crystal Display (LCD), Organic Light Emitting
Diode (OLED) array, etc., and may be configured to display information to a user via a graphical
user interface.

[0004] The application processor 3706 can include one or processors and may be the central
processing unit (CPU) that is used at least in part to execute an operating system (OS) 3702 for
the computing device 3700. The OS 3702 can serve as an interface between hardware and/or
physical resources of the computing device 3700 and one or more users. The OS 3702 can

include driver logic for various hardware devices in the computing device 3700, including

100

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

graphics driver logic 3722, such as the user mode graphics driver 2326 and/or kernel mode
graphics driver 2329 of FIG. 23.

[0005] It is contemplated that in some embodiments the graphics processor 3704 may exist
as part of the application processor 3706 (such as part of a physical CPU package) in which case,
at least a portion of the memory 3708 may be shared by the application processor 3706 and
graphics processor 3704, although at least a portion of the memory 3708 may be exclusive to the
graphics processor 3704, or the graphics processor 3704 may have a separate store of memory.
The memory 3708 may comprise a pre-allocated region of a buffer (e.g., framebuffer); however,
it should be understood by one of ordinary skill in the art that the embodiments are not so
limited, and that any memory accessible to the lower graphics pipeline may be used. The
memory 3708 may include various forms of random-access memory (RAM) (e.g., SDRAM,
SRAM, etc.) comprising an application that makes use of the graphics processor 3704 to render a
desktop or 3D graphics scene. A memory controller hub may access data in the memory 3708
and forward it to graphics processor 3704 for graphics pipeline processing. The memory 3708
may be made available to other components within the computing device 3700. For example,
any data (e.g., input graphics data) received from various I/O sources 3710 of the computing
device 3700 can be temporarily queued into memory 3708 prior to their being operated upon by
one or more processor(s) (e.g., application processor 3706) in the implementation of a software
program or application. Similarly, data that a software program determines should be sent from
the computing device 3700 to an outside entity through one of the computing system interfaces,
or stored into an internal storage element, is often temporarily queued in memory 3708 prior to
its being transmitted or stored.

[0006] The I/O sources can include devices such as touchscreens, touch panels, touch pads,
virtual or regular keyboards, virtual or regular mice, ports, connectors, network devices, or the
like, and can attach via an I/O hub 107 as in FIG. 1, Input/output (I/O) circuitry 363 as in FIG.
3,, a platform controller hub 1430 as in FIG. 14, or the like. Additionally, the I/O sources 3710
may include one or more I/O devices that are implemented for transferring data to and/or from
the computing device 3700 (e.g., a networking adapter); or, for a large-scale non-volatile storage
within the computing device 3700 (e.g., hard disk drive). User input devices, including
alphanumeric and other keys, may be used to communicate information and command selections
to graphics processor 3704. Another type of user input device is cursor control, such as a mouse,
a trackball, a touchscreen, a touchpad, or cursor direction keys to communicate direction
information and command selections to GPU and to control cursor movement on the display

device. Camera and microphone arrays of the computing device 3700 may be employed to

101

10

15

20

25

30

WO 2020/190808 PCT/US2020/022846

observe gestures, record audio and video and to receive and transmit visual and audio
commands.

[0007] I/O sources 3710 configured as network interfaces can provide access to a network,
such as a LAN, a wide area network (WAN), a metropolitan area network (MAN), a personal
area network (PAN), Bluetooth, a cloud network, a cellular or mobile network (e.g., 3w
Generation (3G), 4™ Generation (4G), 5* Generation (5G), etc.), a satellite network, an intranet,
the Internet, etc. Network interface(s) may include, for example, a wireless network interface
having one or more antenna(e). Network interface(s) may also include, for example, a wired
network interface to communicate with remote devices via network cable, which may be, for
example, an Ethernet cable, a coaxial cable, a fiber optic cable, a serial cable, or a parallel cable.
[0008] Network interface(s) may provide access to a LAN, for example, by conforming to
IEEE 802.11 standards, and/or the wireless network interface may provide access to a personal
area network, for example, by conforming to Bluetooth standards. Other wireless network
interfaces and/or protocols, including previous and subsequent versions of the standards, may
also be supported. In addition to, or instead of, communication via the wireless LAN standards,
network interface(s) may provide wireless communication using, for example, Time Division,
Multiple Access (TDMA) protocols, Global Systems for Mobile Communications (GSM)
protocols, Code Division, Multiple Access (CDMA) protocols, and/or any other type of wireless
communications protocols.

[0009] It is to be appreciated that a lesser or more equipped system than the example
described above may be preferred for certain implementations. Therefore, the configuration of
the computing device 3700 may vary from implementation to implementation depending upon
numerous factors, such as price constraints, performance requirements, technological
improvements, or other circumstances. Examples include (without limitation) a mobile device, a
personal digital assistant, a mobile computing device, a smartphone, a cellular telephone, a
handset, a one-way pager, a two-way pager, a messaging device, a computer, a personal
computer (PC), a desktop computer, a laptop computer, a notebook computer, a handheld
computer, a tablet computer, a server, a server array or server farm, a web server, a network
server, an Internet server, a work station, a mini-computer, a main frame computer, a
supercomputer, a network appliance, a web appliance, a distributed computing system,
multiprocessor systems, processor-based systems, consumer electronics, programmable
consumer electronics, television, digital television, set top box, wireless access point, base
station, subscriber station, mobile subscriber center, radio network controller, router, hub,

gateway, bridge, switch, machine, or combinations thereof.

102

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0010] Embodiments may be implemented as any one, or a combination of one or more
microchips or integrated circuits interconnected using a parent-board, hardwired logic, software
stored by a memory device and executed by a microprocessor, firmware, an application specific
integrated circuit (ASIC), and/or a field programmable gate array (FPGA). The term "logic"
may include, by way of example, software or hardware and/or combinations of software and
hardware.

[0011] Embodiments may be provided, for example, as a computer program product which
may include one or more machine-readable media having stored thereon machine-executable
instructions that, when executed by one or more machines such as a computer, network of
computers, or other electronic devices, may result in the one or more machines carrying out
operations in accordance with embodiments described herein. A machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks, CD-ROMs (Compact Disc-Read
Only Memories), and magneto-optical disks, ROMs, RAMs, EPROMs (Erasable Programmable
Read Only Memories), EEPROMs (Electrically Erasable Programmable Read Only Memories),
magnetic or optical cards, flash memory, or other type of non-transitory machine-readable media
suitable for storing machine-executable instructions.

[0012] Moreover, embodiments may be downloaded as a computer program product,
wherein the program may be transferred from a remote computer (e.g., a server) to a requesting
computer {(e.g., a client) by way of one or more data signals embodied in and/or modulated by a
carrier wave or other propagation medium via a communication link (e.g., a modem and/or
network connection).

[0013] Reference herein to “one embodiment” or “an embodiment” means that a particular
feature, structure, or characteristic described in conjunction with the embodiment can be
included in at least one embodiment of the invention. The appearances of the phrase “in one
embodiment” in various places in the specification do not necessarily all refer to the same
embodiment. The processes depicted in the figures that follow can be performed by processing
logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), software (as instructions on a
non-transitory machine-readable storage medium), or a combination of both hardware and
software. Reference will be made in detail to various embodiments, examples of which are
illustrated in the accompanying drawings. In the following detailed description, numerous
specific details are set forth in order to provide a thorough understanding of the present
invention. However, it will be apparent to one of ordinary skill in the art that the present
invention may be practiced without these specific details. In other instances, well-known
methods, procedures, components, circuits, and networks have not been described in detail so as

not to unnecessarily obscure aspects of the embodiments.

103

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

[0014] It will also be understood that, although the terms first, second, etc. may be used
herein to describe various elements, these elements should not be limited by these terms. These
terms are only used to distinguish one element from another. For example, a first contact could
be termed a second contact, and, similarly, a second contact could be termed a first contact,
without departing from the scope of the present invention. The first contact and the second
contact are both contacts, but they are not the same contact.

[0015] The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting as to all embodiments. As used in the description of the
invention and the appended claims, the singular forms "a", "an" and "the" are intended to include
the plural forms as well, unless the context clearly indicates otherwise. It will also be understood
that the term "and/or" as used herein refers to and encompasses any and all possible
combinations of one or more of the associated listed items. It will be further understood that the
terms "comprises" and/or "comprising,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers, steps, operations, elements,
components, and/or groups thereof.

[0016] As used herein, the term "if" may be construed to mean "when" or "upon" or "in
response to determining"” or "in response to detecting,”" depending on the context. Similarly, the
phrase "if it is determined" or "if [a stated condition or event] is detected" may be construed to
mean "upon determining" or "in response to determining” or "upon detecting [the stated
condition or event]" or "in response to detecting [the stated condition or event]," depending on
the context.

[0017] Embodiments described herein include, software, firmware, and hardware logic that
provides techniques to perform arithmetic on sparse data via a systolic processing unit.
Embodiment described herein provided techniques to skip computational operations for zero
filled matrices and sub-matrices. Embodiments additionally provide techniques to maintain data
compression through to a processing unit. Embodiments additionally provide an architecture for
a sparse aware logic unit.

[0018] One embodiment provides for a general purpose graphics processor comprising a
processing resource including a matrix accelerator and a decoder, the matrix accelerator
including a load filter to bypass a load of a sparse submatrix of an input matrix and the decoder
to decode an encoded set of data associated with the input matrix to generate a decoded set of
data. The decoder can decode the encoded set of data based on metadata associated with the
encoded set of data. The load filter can bypass the load of the sparse submatrix based on the

metadata associated with the encoded set of data. The decoder can provide the metadata

104

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

associated with the encoded set of data to the load filter. The metadata may be associated with
the encoded set of data includes a significance map, where the significance map indicates a zero
or non-zero value for a bitstream of the decoded set of data. The decoder may be included in the
matrix accelerator, where the matrix accelerator can read one or more encoded submatrices as
input. The matrix accelerator can include multiple processing elements, where the multiple
processing elements are arranged as a systolic array and configured to process one or more
submatrices of a set of input matrix data. The processing resource can additionally include a
hardware logic unit to perform an operation for a bypassed submatrix of the input tensor.

[0019] One embodiment provides for a data processing system comprising a memory device
and the general purpose graphics processor as described above, where the memory device is
coupled with the general purpose graphics processor.

[0020] One embodiment provides for a method comprising, on a general-purpose graphics
processing unit including a matrix accelerator, tracking, via zero detection circuitry, zero-value
operands of matrices to be input to a matrix accelerator and bypassing a matrix multiply
operation on the matrix accelerator in response to detection of a zero-value operand. The zero-
value operand may be associated with a first submatrix of an input matrix, where the first
submatrix is a zero-value submatrix. When the input matrix is a zero-value matrix, all matrix
operations on the matrix accelerator may be bypassed. In one embodiment the method
additionally comprises bypassing a matrix accelerator in response to detection of a second
submatrix of the input matrix, where the second submatrix has a limited number of non-zero
values. The limited number of non-zero values may be a predetermined value, such as a single
non-zero value. The method additionally includes sending a message to a processing resource
external to the matrix accelerator, the message to indicate bypass of the second submatrix. The
bypassed operation for the second submatrix may performed by the processing resource based on
the message, where the message can identify the bypassed operation and operands for the
bypassed operation. In one embodiment, tracking, via the zero detection circuitry, zero-value
operands of matrices to be input to a matrix accelerator includes generating a submatrix map for
a first input matrix, where the submatrix map identifies a zero-value submatrix for the first input
matrix.

[0021] The foregoing description and drawings are to be regarded in an illustrative rather
than a restrictive sense. Persons skilled in the art will understand that various modifications and
changes may be made to the embodiments described herein without departing from the broader

spirit and scope of the features set forth in the appended claims.

105

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

CLAIMS

What is claimed is:

1. A general purpose graphics processor comprising:

a processing resource including a matrix accelerator and a decoder, the matrix
accelerator including a load filter to bypass a load of a sparse submatrix of an input
matrix and the decoder to decode an encoded set of data associated with the input matrix
to generate a decoded set of data, the decoder to decode the encoded set of data based on
metadata associated with the encoded set of data, wherein the load filter is to bypass the
load of the sparse submatrix based on the metadata associated with the encoded set of

data.

2. The general purpose graphics processor as in claim 1, wherein the decoder is to provide

the metadata associated with the encoded set of data to the load filter.

3. The general purpose graphics processor as in claim 2, wherein the metadata associated
with the encoded set of data includes a significance map, the significance map to indicate

a zero or non-zero value for a bitstream of the decoded set of data.

4. The general purpose graphics processor as in claim 3, wherein the decoder is included in
the matrix accelerator and the matrix accelerator is to read one or more encoded

submatrices as input.

5. The general purpose graphics processor as in claim 1, wherein the matrix accelerator

includes multiple processing elements.

6. The general purpose graphics processor as in claim 5, wherein the multiple processing
elements are arranged as a systolic array and configured to process one or more

submatrices of a set of input matrix data.
7. The general purpose graphics processor as in claim 6, wherein the processing resource

additionally includes a hardware logic unit to perform an operation for a bypassed

submatrix of the input matrix.

106

10

15

20

25

30

35

WO 2020/190808 PCT/US2020/022846

10.

11.

12.

13.

14.

A method comprising:

on a general-purpose graphics processing unit including a matrix accelerator:

tracking, via zero detection circuitry, zero-value operands of matrices to be input
to a matrix accelerator; and

bypassing a matrix multiply operation on the matrix accelerator in response to
detection of a zero-value operand, the zero-value operand associated with a first

submatrix of an input matrix, wherein the first submatrix is a zero-value submatrix.

The method as in claim 8, wherein the input matrix is a zero-value matrix and all matrix

multiply operations on the matrix accelerator are bypassed for the zero-value matrix.

The method as in claim 8, additionally comprising:

bypassing a matrix multiply operation on the matrix accelerator in response to
detection of a second submatrix of the input matrix, the second submatrix having a
limited number of non-zero values; and

sending a message to a processing resource external to the matrix accelerator, the

message to indicate bypass of the second submatrix.

The method as in claim 10, additionally comprising performing a bypassed operation for

the second submatrix via the processing resource based on the message.

The method as in claim 11, wherein the message identifies the bypassed operation and

operands for the bypassed operation.

The method as in claim 8, wherein tracking, via the zero detection circuitry, zero-value
operands of matrices to be input to a matrix accelerator includes generating a submatrix
map for a first input matrix, the submatrix map to identify a zero-value submatrix for the

first input matrix.

A data processing system comprising:
a memory device; and
a graphics processor coupled with the memory device, the graphics processor
comprising:
a processing resource including a matrix accelerator and a decoder, the

matrix accelerator including a load filter to bypass a load of a sparse submatrix of

107

10

15

20

25

WO 2020/190808 PCT/US2020/022846

15.

16.

17.

18.

19.

20.

an input matrix and the decoder to decode an encoded set of data associated with
the input matrix to generate a decoded set of data, the decoder to decode the
encoded set of data based on metadata associated with the encoded set of data;
and

wherein the load filter is to bypass the load of the sparse submatrix based

on the metadata associated with the encoded set of data.

The data processing system as in claim 14, wherein the decoder is to provide the

metadata associated with the encoded set of data to the load filter.

The data processing system as in claim 15, wherein the metadata associated with the
encoded set of data includes a significance map, the significance map to indicate a zero

or non-zero value for a bitstream of the decoded set of data.

The data processing system as in claim 16, wherein the decoder is included in the matrix
accelerator and the matrix accelerator is to read one or more encoded submatrices as

input.

The data processing system as in claim 14, wherein the matrix accelerator includes

multiple processing elements.

The data processing system as in claim 18, wherein the multiple processing elements are
arranged as a systolic array and configured to process one or more submatrices of a set of

input matrix data.
The data processing system as in claim 19, wherein the processing resource additionally

includes a hardware logic unit to perform an operation for a bypassed submatrix of the

input matrix.

108

WO 2020/190808 PCT/US2020/022846
1/59
100 Wirel
[Teress Network
Network
Adapter
Adapter 118
119 —
1O Switch Add-In
116 Device(s)
Display =2 120
Device(s)
110A
—
1/O Hub System
Storage
107
] - 114
Input /)
Device(s) I/O Subsystem
108 111
Communication
106
yEEEE T U R
I
! M
1|| Parallel Processor(s) emory System
| 112 Hub Memory
| = S 105 104
|.
Communication
Link
Display 113 I — =
Device(s) |- |
110B | Processor(s) .
102 Processing
| - Subsystem
L 101

FIG. 1

WO 2020/190808

2159

PCT/US2020/022846

1
1
1
: Parallel Processor Memory 222
: Memory Memory Memory
- Unit Unit [®*®*®| Unit Parallel
mll 224A 224B 224N Processor
. . 200
(| 1
_____ I I) I /
- h 1 T -
!]
1
1
1
: Partition Partition Partition
I Unit Unit XX Unit
| 220A 220B 220N
1
I Memory Interface 218
1
| I
: Memory Crossbar 216 —
1
1
1
: Cluster Cluster | ®®®| Cluster
I 214A 214B 214N
: Processing Array 212
I
1
I
1 Scheduler 210
I
1
I
: Front End Host Interface [IJ/I?H
— | | 2_08 2_06 M
] Parallel Processing Unit 202
Memory Hub
105

FIG. 2A

WO 2020/190808 PCT/US2020/022846
3/59
To/From
Memory Unit
224
Frame buffer ROP
Interface 276
225 ==
L2 Cache
221
A
Partition Unit
220
Y
To/From
Memory
Crossbar
216

FIG. 2B

WO 2020/190808 PCT/US2020/022846
4/59
To
Memory Crossbar
216 and/or
other Processing
Clusters
A
PreROP
MMU 242 Data Crossbar
245 _ 240
To/From Texture
Memory Graphics Unit
Crossbar . 236
216 Multiprocessor
234
L1 Cache
248
Processing Pipeline Manager
Cluster 232
214 ,1\
To/From
Scheduler

210

FIG. 2C

WO 2020/190808 PCT/US2020/022846

5/59

Shared Memory Cache Memory
270 272
[Memory and Cache Interconnect 268)—
] B | : =1 1
Load/Store |1 GPGPU 1! Tensor/RT |}
Unit y Cores | Cores ||
266 I 262 I! 263 I!
! - | — |
Register File 258
Addres{sj Mapping Instruction Unit
ot 254
256 —
Graphics '
Multiprocessor Instruction Cache 252
234

!

From
Pipeline Manager
232

FIG. 2D

WO 2020/190808 PCT/US2020/022846

6/59

Graphics Multiprocessor 325

Interconnect Fabric 327

Shared Memory 346

Texture Unit(s) 344A Texture Unit(s) 344B

Cache Memory 342

Load/Store RT Tensor | GPGPU |Load/Store RT Tensor | GPGPU
Unit Core Core Core Unit Core Core Core
340A 338A 337A 336A 340B 338B 337B 336B

Register File 334A Register File 334B

Instruction Unit 332A Instruction Unit 332B

Instruction Cache 330

FIG. 3A

WO 2020/190808 PCT/US2020/022846

7/59

Graphics Multiprocessor 350

Interconnect Fabric 352

Shared Memory 353

Texture Unit(s) 360A Texture Unit(s) 360B

Cache Memory 358A

Execution Resources 356A Execution Resources 356B

Texture Unit(s) 360C Texture Unit(s) 360D

Cache Memory 358B

Execution Resources 356C Execution Resources 356D

Instruction Cache 354

FIG. 3B

PCT/US2020/022846

WO 2020/190808

8/59

(®he ~ - T T T T T T T T T T T T T T T T T
_ SLEAHIVI T
- ———————————————————=— _
1 p—
_ | PLE SLINN TYNLXAL]
1 | | | 1
_ I €2 KIOWAN ATIVHS/AHOVD 11 I"
_ _ _ [_ :
_ _ 7I% :
— — —
TZ¢E OLE |
|
| U oniovar SEIOD STI0D
_ . l AVY HOSNHL XAD 1 790¢
NSOt Jcoe || gcoc | N
| oow oon || oom |1 ! ! ! !
_ ; (S)ATId YALSIOTT _
I |
_ : —— I
_ : 39¢ n
| : AAHD LVASIA/IATNATHDS I
I 1
_ I V$9€ dNOUD TI0D-TLTINN ."
_ - 1
£9¢ ! 7ot 3
_ 0/1 _ NININOI v
_ I e o e e e e e e e e e e e = == |
T I..H.I\”..l |||||||||||
79¢ : ﬁ w ﬁ Q ﬁ w : ot
Py B .

99¢
AJONWEIN

PCT/US2020/022846

WO 2020/190808

9/59

Vv DId

Ty Ty
KIOWIN NdD KIOWIN NdD
aosy Vry VOsy
qavy
D0SY qd0¢v
€Ty — — — — 0Ty
foua nt s ds ao oudy
ndo d 9 ndo
daory %Oo b movv\& VOb
or 90¥ Sov 0¥
AIOWAA J0SS9001d A v 10SS3001J KJOWON
J0SS9001q QI0))-INIA QI0))-INIA J0SS9001q
qd0¢r 9747 Voey

PCT/US2020/022846

WO 2020/190808

10/59

dv ‘DId

K%

AJOWHN WALSAS

LGy
O/1 A4 VHS
6
NNIN
8¢t
. N oypoe)
N HANIDNA — —
A0 SOIHIVED) U010 | sIs1oy
. 8tv
. LINDIN XUoy)
_ zer Ltp
vey ANIDONA | LIIWDIN LddLNI
zmw “] oNISSEO0Ud 5T
X4
SOTHAVAD > NOLLVIDHALNI
= AOLVIHTHODV
— [§3%
ey | ANIONE | | AW
zmw 7| ONISSED0¥d . n
X4
SOIHd VYD IINI
Sy

UONBId[O00Y sorydeln

sk

aooy
(s)ayoe)

aror
q'1L

aooy =10H

Ser
ALNI

STy
AX0dd

=

orv

$9¢ shg 20UIYO))

o
(s)ayoe)

J19¥
q'1L

D097 H40D

S (454
(s)ayoe)

d19t
q'1L

d09t 210D

_ Vior
(s)aypoe)

VIov
q'1L

LO¥
10SS9001

PCT/US2020/022846

WO 2020/190808

11/59

oY DId

(e
AJOWTN IWALSAS
S | S — oy — _
! — p— 1
; —
| L6Y oy o !
! O/l AAYVHS (8)oqoe] pareys 10ss0001g !
1 — 7"\ === L] |
" oLy : 5w |
" NINN - V| (S)euoe) |
— 1
! 3T acor | — !
! oyoe)) (s)oyoe) AHV“ 19 Ly
R T Ty - —— _ a1l !
_ _ Tor | SPp - | K | _
" N m ! 010 | SI0ISI3y Mmmu ' wmﬁvnmwﬁow 3 m
i A aNoNa | L L etetoletolstot 1
| WEN [S721 oNissanoud v 37y —— ooy |
| XdD SOIHIVID ! i LINDIA 1X21U07) d09¥ 9100 Y (s)eqoen ¥
_ L — - "l
! m _ ! Lt i q7or o
_ C LNDWN Ld¥LNI ! a1 X
| — 437 | _ och = | 'y
I i 9ty A”V a4 — !
! sﬁ? NIONA | Lo NOILVYDALNI AXO¥d = , _@0oFow0) 1,
! ONISSHIOMd 1 | MOvNETIDOY PN
1| XdO SOIHAV IO L e |
1
" Ter " " MW AHV" (s)ayoe) ! "
ccH —_— 1 1 1
| g o ANIONE IEp ! 53 ! N
NN ONISSHIOUd |~ ALNI JLNI o AL
| XdD SOIHAVED Idv I " i d1L " I
I J— 1 1 — 1
! wonesojoony sod ! ot 1 P9p Sng 20ua1040) YOIy
| uoneIo[ed0Y sodeny ! | !
1

WO 2020/190808 PCT/US2020/022846

12/59

Processor 407
=TT - mmss-—------- T e e it i
; Application 480 ro Application !
: o :
! GPU Invocation 481 L GPU Invocation !
| o |
v System Memory 441
Application Effective Address
Space 482 o s s === !

Process Element 483

1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1
1

: v Segment/Page Tables :
1

i | Work Descriptor (WD) | : 486 :

! 484 e :

1 1 1 / \ 1

1 1 | T = === == -=7-~-=-=-======
C I

Accelerator Integration Slice

490 v
MMU 439 <
Y
WD)
Fetch Re Lgtzssters > Interrugz 17\/IGMT < Effective
ﬂ — — INT Address
492 43
Context MGMT
448
Save/Restore
Y A

Graphics Acceleration 446

FIG. 4D

PCT/US2020/022846

WO 2020/190808

13/59

€67

SSAIPPY
AdAYH

H¥ "DId

OFF UonRIo[R0Y somydern

A A
y lorsay/aeg
8tv
Zor LINDIN X005
LNI 5 vy 6V
= LNOW iy Sy HOLdd am
— A
> oty NININ 061
901 UOTIRISAU] JOJBID[AI0Y
7
b o .
1 1 1 1 " "
: 667 L — " ! rsr !
" S A 987 " | (aa) soduosoq o |
X JUSWO[H SS9001 X X soqqey. . 1 I
e <
! ! [oSegpuowSeg || ! €3F JUDWO $S9901 |m
1 1 1 | I L ittt
I 36t 2oedg sso ! ! —_ ! —
! wwwm smio%m« L ¢y douds ! T8t 9oedg ssaIppy
b em i mm e immmm e 41 SSAIPPY EMIA SO danoyg uonedrddy
TP A1owopy wasig e - - !
567 A [
osapdiy € 0 <—{ 08% voneorddy
0¥ 10Ss2001q

PCT/US2020/022846

WO 2020/190808

14/59

AV "DId

AJOWAA
payyrun
................................ e e
— — — —_ | —_ ! —_
€T (47 K47 0cr | 07 : TO%
AJOWDA AJOWAA AJOWAA AIOWRN 1 AIOWR 1 AJOWSN
Nndo Nndo ndo NdD | I0sse001y ; 10SSA00I]
1 1
7
V. ____ B ,h. Ap— -V ___- o B ,h.. myepepepnn I E— \ fA——
" I " “ " I " I " "
_ aver " " arev " i Jver " " aver " ! vrer !
.| eouaseyo) ! '| ooussyo)y |! 1| 9ouaroyo) ! Il oouaryo) 1| ouaroyo) |
" /serg ! i seig AR /serg ! i selg | \ /serg "
! i I i ! I i I ! !
! I | I ! I i I ! !
| H6ET AN 1 67 TN \ D6EV NN ! 1 H6EY NN ! | V6er NININ
L T T I e T [e [oS l e e e e e e e = = = .
Sov
iz v [15% 01v J0ss9001d
Nndo Nndo Nndo Nndo 210D)-INIA

WO 2020/190808

15/59

PCT/US2020/022846

Graphics
Processing
Pipeline
500

~

Raster Operations Unit 526

A

Fragment/Pixel Processing Unit 524

>

Rasterizer 522

>

Viewport Scale, Cull, and Clip Unit 520

>

Primitive Assembler 518

>

Geometry Processing Unit 516

>

Primitive Assembler 514

—>>

Tessellation Evaluation Processing Unit 512

—>>

wn

Tessellation Unit 510

—>>

Tessellation Control Processing Unit 508

—>

Primitive Assembler 506

>

Vertex Processing Unit 504

A

Data Assembler 502

A

Memory
- Interface
528

FIG. 5

Instruction Stream
and Parameters

WO 2020/190808 PCT/US2020/022846

16/59

600

Machine Learning Application
602

1

Machine Learning Framework
604

I

Compute Framework
606

I

GPGPU Driver
608

!

GPGPU Hardware
610

FIG. 6

PCT/US2020/022846

WO 2020/190808

17/59

q7IL
I9[[01u0)) AIOWSA

J

L OId

OIL Yurl NdO

60L 9nH O/I

VCIL
I9[[0nu0)) AIOWSA

HO90L
Isn[) Surssadoid

Bo0L
I1sn[)) SuIssa0Id

d90L
I91sn[D) SuIssad0Id

d490L
Isn[) SuIssadoid

Q0L AIOWAIN dyor))

asoL
Isn[) Surssadoid

J90L
I1sn[)) SuIssa0Id

q90L
I91sn[D) SuIssad0Id

V9oL
Isn[) SuIssadoid

aviL
AIOWAA

00L

¥OL 39[NPaYDS [8qO[D

0L 9ovJIoUI 1SOH

VviL
AIOWAN

WO 2020/190808 PCT/US2020/022846

18/59

P2P GPU 800
Links T
816
l’ \I
GPGPU |; 1| GPGPU
806A [, 1| 806B
A : : A
l’ =T ====""=\/ "= - = \'
N e/ \y e e o . -~
Y h : Y
1
GPGPU |! .| GPGPU
806C ! ! 806D
‘_ ,'
\ i \

Host Interface Switch
804

\ 4

Processor
802

FIG. 8

WO 2020/190808 PCT/US2020/022846

19/59

902

RGB Convolutional Fully Connected
Components Layers Layers

FIG. 9A

Input to Convolutional
Layer
912

Convolutional Layer
914

Y

Convolution Stage
916

\ 4

Detector Stage
918

\ 4

Pooling Stage
920

\

Next layer
922

FIG. 9B

PCT/US2020/022846

WO 2020/190808

20/59

9001

[l
o
—

Ol DIA

G001

2001

PCT/US2020/022846

WO 2020/190808

21/59

1481
nsoy

8011
SIOMION [BINON PoUTel],

[T "DId

9011

SJIOMION [INON pouTenu)

CIIIT
BIB(] MAN]

YOIl

JIOMAWRI]

sururely,

=4

[4Un!
iENG g
sururely,

PCT/US2020/022846

WO 2020/190808

22/59

¢l "OId

ndo l ' ndo

C__Id

L _Ia

T I

ndo l ' ndo

ndo

ndo l l ndo

Eol
[

K

& - ndo & - ndo
¥ 9PON € 9PON C9PON [9PON
90¢1
wisId[eIed e pue [9PON
m ¥ J0AeT | 1 9pON
- - €9poN | ¢ 10he] 7 AR 7 9PON
¥ 9PON € 9PON // — —
X y4
[JoAeT | 19poN
0TI 0l
wisto[[ered vleq C9PON [9PON wstd[[ered [PPOIN

WO 2020/190808 PCT/US2020/022846

23/59

1300
MEDIA PROCESSOR VISION PROCESSOR
1302
2 1304
ON-CHIP MEMORY 1305
MULTI-CORE
Gll’g}OI;U PROCESSOR
1306 1308

FIG. 13

WO 2020/190808

24/59

MEMORY DEVICE - 1420

INSTRUCTIONS - 1421

DATA- 1422

PCT/US2020/022846

PROCESSOR(S)
1402

FILE
1406

REGISTER

PROCESSOR CORE(S) - 1407

INSTRUCTION SET

1409

MEMORY

DISPLAY DEVICE
1411

CONTROLLER
1416

GRAPHICS

| EXTERNAL
| GRAPHICS PROCESSOR

I EXTERNAL
l ACCELERATOR

ACCELERATOR
1412

| PROCESSOR(S)
| 1408
|

INTERFACE BUS(ES) - 1410

DATA STORAGE
DEVICE
1424

TOUCH SENSORS
1425

WIRELESS
TRANSCEIVER
1426

FIRMWARE INTERFACE
1428

PLATFORM
CONTROLLER
HUB
1430

1400

FIG. 14

@

g 4

NETWORK AUDIO | LEGACY /O |
CONTROLLER || CONTROLLER | CONTROLLER |
1434 1448 | 1m0 |
A4
USB CONTROLLER(S)
144

| KEYBOARD/ || CAMERA |

I
I_MOUSE -1443 | L _14_&; i

PCT/US2020/022846

WO 2020/190808

25/59

V&l DId

80G1

d0SS300dd SOIHAVHO

9ISt
(S)LINN
H3TI0YLINOD
sng

161
YITI0HLINOD
AHOWIN

216 - ONIY

9061 - (S)LINN IHOVD QIHVHS

)
¥3TI0HLINOD
AvV1dsia

016Gl
3400
LIN3IOVINILSAS

_Am:;z:

Ny0G 1 _

JHOVD |

NCOG 1 m_m_ool_

7051
(S)LINN
JHOVD

V2041 3400

8161
3INAON AYONIN
a3aa3an3

0061 40SS300dd

PCT/US2020/022846

WO 2020/190808

26/59

(=2

~

dc1 DId

38251 — __ 082S —
_ 95 7} o) _ s 05¢s) Ve
YAV | 91907 UV |
3725V as NOILONN4 a3XI4 Ry ae
d0553004dd TYNOLLIQaY d0S5300dd
¥3AVHS ¥IAVHS
Jo05) 3625 3225 BED DELSH 7))
NERRTIR ol/al AVHHY N3 _ NERRE olal AVEdY N3
vIa3an ./ mzwmra \- vIa3an
eI d1zst | NOILONNA @3XId | oiezs) 39201
E[72]) — 9 AMLINOTD aczar —
WS ET72]) W1s avzer
— UITAAYS | A — UFIAAYS | e
EYEZ) as) ae
¥0SS3004d ¥0SS300Ud
¥3AVHS 3ear ¥IAVHS
3905+ E1579]) ST Ew_\r,_mm_m_“,__\,_m%_\,_oé 5905+ aezer azes
NERATIR ol/al AVHEY N3 J Ay \q NERSTIR olal AVEdY N3
VIaaw VIaaw
31251 g1zsl
a8est — Ve —
WIS ascst avze) _ WIS Vs oot
UTANYS | e UFUAAYS | A
alest as &ear Viesh as
¥0SS3004d 91907 ¥0SS300Nd
d3AvHS NOILONNAS 43AvHS
RED dezs) azesy d3dvHS Voes) vezer U144
NENRTINE ol | avavna |[) 1] watawvs oiaL | Avedvn3
VIA3n aLzst V1251 VIA3n
0esl = £eal Zesl \TeST aNMadid !
INF3dId VIa3n HATIOHLNODOHOIN JOV4431INI “ NOILONN4 a@3xi4d “
SOIHdVYHD J0S SOIHAYH9 “ ® A413N0TD |"

PCT/US2020/022846

WO 2020/190808

27/59

D61 "DId

ISl
AHOWIN

_ N NO9S) -

| < LINN 3LNdNOD big

_ 1951 —

IHOVD — — —

_ 1SNOD 9961 vasl €951 L0
¥ILINNOD S1INN S1INN vYAa

_ "1 NY890Nd 21907 21907

_ HYIVOS ¥0L03A

_] GoS) — — T
ANONAN 2951 1951

_ V0951 qadvhs || S¥ALso ||| s¥3Lsioy =

_ T Wan

_ \ 4 \ 4

8GG 1 . 9551 GGSl
_ Y3HOLY4SIA QVIYHL i ASOWIN QIHVHS JHOVD |«
|) ! "YLSNI
JE— A

_ #GS)

_ JHOVD LT

_ v !

_ g An. > % M >

_ SY0SSIV0Yd ANVININOD IHOVD T

_

)
AHONAN

ovs 1
(sind?d

PCT/US2020/022846

28/59

V9l DId

WO 2020/190808

8191
32IA3d
AY1dSId
"\
Z, N\
T T T T T T T T T T T T T T T
“ Y191 - JOV4HILNI ASOW3IN |
! “
:)
I
! “
! I
! I
! I
' I
' I
! I
! I
_ T _ _ _ _
9091 | 9191) Glol L9l “ 7091 09l
INIONT | | _
04d090 1 | ANIT3dId W3LSAS-9NS dNIT3dId “ ANION3 d3TT04LNOD
O3dIA “ VId3an VIA3a/ac ac 1 AdOD AV1dSId
I
I
| 0191
“ m/ ANION3
............................ | ONISSIO0Yd SOIHAVHD
0091
d0SS300dd SOIHAVHD

PCT/US2020/022846

WO 2020/190808

29/59

d91 DId

819}
e e
8297 - JOV443LNI 1SOH AV1dSId
PN
P N
7297 - 1OINNOOYILNI D1ygvA
P o o e e e e e e e e e e e, — ————,——————— 1
m |
| |
! 4gz0L 36794 !
| |
| |
| — . |
| A JONaN UL INIONT 1L INIONT aonan | 1] 0ot co9l
: SOIHdYY9 SOIHdYHD 1] 3NIONZ [4T TI0MINGD
_ aseol aszol 26291 [92909 Al
| ' |_odan oo
_ _ ANION3
| €29l VEzol | 0D
i asz9l asz9) V291 |
—_ —_ |
| — goror Y019} — |
| dozor v929)
I71L INION3 I71L INION3 229l
| |
[ASONNA SOIHAYHO SOIHAYHO AHONIN ”/ ¥3LSNTO INIONI
! ! ONISSIO0Hd SOIHAYHO
| e L
0291
¥0SSI00Yd SOIHAYYEO

PCT/US2020/022846

WO 2020/190808

30/59

D91 DIA

829 - JOV4YTLNI LSOH

¥291 - LOANNODYILNI D1¥dv4

d9gcol
AHONEN

49¢91
AHONEN

aecol

a6e9l

4€¢91 €291
daovol o0¥9l1
3111 INIONS 3111 ANIONS
3LNdNOD 41NdNOD
aeeol
€9l veeol
aceol
a0v9l Yovol
3111 INIONS 3111 ANIONS
3LNdNOD 41NdNOD

0629l

V6ol

09291
AHONEN

Y99l
AHONEN

9c91
AHIVO
€1

o~ ol

d31SN10

ANIONT 31NdNOD

N

d01vd31400V 4LNdNOD

0€91

PCT/US2020/022846

WO 2020/190808

31/59

L1 DIA

KAows|y
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII wol4
_
_ A\
_
(S)aHOvO — g61L) _ |
- ($)3400 | _ _
SOIHAVHD a79) _
<—> _
T R —— A|_ ANIM3dId
NOILYOINNINOD a0 K—! 9LL “ VIGIN |
QYIUHL-HAINL [NOLLONNA | O190TNOILONNA ! _ |
A1} <—>! - —
|| a3ums Lo QS | | o
A <—> VeIZ1 | [Y3INVILS
A1} (S)30D —_— | | anwwmoo
HITdNYS <—> SOIHdVYO 1ol _
1Z/1 3aNI13dId AH
o / @ Aw as _
AVHHY 3400 T — _
SOIHAVYEO Y344n9 _
WIENE _
a3lINn _

0LLl
ANIONT ONISS300dd SOIHAVHO

PCT/US2020/022846

WO 2020/190808

32/59

—— - == —
.W—‘w—‘ “ - __ “ - _“ - 1
140d V1va ! zwmﬁ _m -— ! owme m“ mwo% m 531 5031
ATTA I I ! " B EREL JHOVO
JHOVYO VIVQa “_|||_| |_m “ . m_ . | AVY NOILONYLSNI
— = =9 I I !
__ | | Ni0gT || grost [} TIost |
KT j oL | oL [f oL [
S_l_m “” ”_ “ 1 _“ 1 |
“_ b “ ! | o 2080
__ h e | | mocor | Taoer |1 | ¥AHOLYASIA [40SS300Nd
0T8T “:z:w%: - | 2000 TR Tavaun | wu3avHs
(S)43TdNYS “ ! “ ““ !
R (S| S|
N /pmmoﬁﬂéoe

JI90TNOILNOIAXS

0081

PCT/US2020/022846

WO 2020/190808

33/59

d31 DId

-

L I
| W
Ge8l S v
sy = WK |
aws W
_
ye8l \L, d
sndd <~ N
anis [
zm V7
HONVYE N
o 7
aN3s N

@Q - LINN NOILNO3X3 SOIHAVHO

waF\/\

e

HOL34 NOILONYHLSNI / /

al =i 1|V
|
= =)
i)
[Fmes) (e -)]

e wm—wmm |||

d31184V dvayHL

\

PCT/US2020/022846

WO 2020/190808

34/59

61 DIA

8061
HONVE

106}
aN3s

ei6l
HLWYW

ci6l
AVYYY OITOLSAS

L6l
nv

0161
3LNdNOD

9061
3114 ¥3LSIOIY

7061

3003030 NOILONHLSNI

€061
HOL13434d/HOL3S
NOILONYLSN

206}
31V1S Av3¥HL

106}

TOHLINOD dvVadHL

0061
LINA NOILNO3Xd

PCT/US2020/022846

WO 2020/190808

35/59

===

0S0C - WeN J0j0e), —» XXX} 0 li0=9poodo ON @Mm
370 - Wen |olesed — Qxxxx”ﬁo lio=apoodo
00z - SNosUR|RISIN —> Qxxxx.:omouwbooao
¥70C - 108U00 MOjy —» OXXXXQ Fomouw_uooao
770z - o1bo/enop —»> Qxxxxmrxoomouw_uooao
AA
ojbyclelvieloll
w0z
3d033d 3d02d0
¢¢0¢ | 0coc | 8L0¢ ¥10¢ €10¢ ¢loc
10dS | 00dS | 1S3d | 104LNOD | XAANI |3dO2d0
| 0€0¢ |
NOILONYLSNI LOVANOD 119-19
-t T —_ =TT T T T T~ —== — —
| 9¢0¢ | 20z | Zzoz | Ozoe | 81oc 910¢ ¥10¢ ¢loc
| AdOW SS34dAv/SS300V ¢OdS | 10dS | 00dS | 1S3d |3ZIS-03X3| 10dLNOJ | 3d01d0
010¢

0002

NOILONYLSNI L1I19-8¢1

S1VINYO04 NOILONYLSNI 40SSIO0Ud SOIHAVHO

WO 2020/190808 PCT/US2020/022846

36/59

GRAPHICS PROCESSOR
2100 MEDIA PIPELINE

\ 2130
(—\ DISPLAY ENGINE

2140
| COMMAND
™ STREAMER ,———$ —————— -
GEOMETRY 9103 . ¥ \
PIPELINE —_ I VIDEO MEDIA : SR I
2102 2120 \r, ———>| FRONT-END ENGINE | | |) !
=== —=F ===\ 2134 2137 I 1| 2D ENGINE DISPLAY "
(, ! AN A Py CONTROLLER |i
| [VERTEX |1 S—g§mmmmmmmm-- |24 TROLLER i
| FETCHER] dhN EXECUTIONLOGIC « _ _ _ _ _ __ _—— |
: 205 | 2131 2150
i | ! J N\
|
I VERTEX) ! EXECUTION
: SR [T L1 b SA%&‘ER TEXTURE
| 2107 ! 2152A £00
_ | = ! »||CACHE —n || CACHE
Q L HULL Y o 2151 | |[Execution || O || 258
= i— SHADER |—— & UNITS v
& ! 2111 ! o 21528 £
Q 1 | = Yy A
S I | I <
% ! : %)
= 'l | TESSELLATOR| 1 =
= I 2113 [A
g ! — ! <G \R VP v v
z | i % FE:EAQCDHEER
| DOMAIN) ! = RASTER/ L3 PIXEL 5178
! SHADER | — > | DEPTH | [cAcHE | | oPS
: 2117 2173 2175 2177 DEPTH
! =T — || CACHE
: 2178
! (GEOMETRY "
| SHADER e
! 219)1 A
l .
| |
- STREAM 1 1 RENDER OUTPUT
MR ouT I PIPELINE
L 1 2123 1 2170
|
: .
I CLIP/ :
| SETUP |
i 2129 I
Lo_—=—__

FIG. 21

WO 2020/190808

37/59

PCT/US2020/022846

FIG. 22 A GRAPHICS PROCESSOR COMMAND FORMAT
2200
CLIENT | OPCODE |SUB-OPCODE| DATA | COMMAND SIZE
2202 2204 2208 2206 2208
— — — — e— — —)
FIG. 22B GRAPHICS PROCESSOR COMMAND SEQUENCE
2210
~ PPELNEFLUSH |
2212 |
I — ; — —— ——
I ~ PPELNESELECT |
2213 |
— e — T_ — — —
PIPELINE CONTROL
2214
RETURN BUFFER STATE
2216
2224
2222 i 2220 Mo d|a/
¢ Pipeline?
3D PIPELINE STATE MEDIA PIPELINE STATE
2230 2240
3D PRIMITIVE MEDIA OBJECT
2232 2242
EXECUTE EXECUTE
2234 2244

WO 2020/190808

MEMORY
2550

38/59

PCT/US2020/022846

DATA PROCESSING SYSTEM -2300

A

3D GRAPHICS APPLICATION
2310
SHADER INSTRUCTIONS EXECUTABLE INSTRUCTIONS
2312 2314
GRAPHICS
OBJECTS
2316
\ 4 \ 4 \ 4
OPERATING SYSTEM (0S)
2320
USER MODE GRAPHICS DRIVER
2326 _ | SHADER 1 | GraPHICS API
£ <>{ COMPILER |« o
SHADER COMPILER 2324 =
2307

A

—

J_T

A

OS KERNEL MODE FUNCTIONS

KERNEL MODE GRAPHICS] 2328
DRIVER ==
2329
A A A
A A J \ /
GRAPHICS GENERAL
PROCESSOR PROS3E3%SOR PURPOSE CORE(s)

233

2334

FIG.

23

PCT/US2020/022846

WO 2020/190808

39/59

Vi< DIA

09%2
NOILOINNOD
SSTTTHIM
05vz BN G 0572 ALITIOV4 NoIsad
NOILOINNOD
RENI —
N 0z NDISIA TAATT _
(V1va NOISIq YIISNVHL HILSIOTY 0Lve
TVOISAHd HO 1aH) — Mmﬁ,ﬁ_\ww
“~N | 1300n F8vMauvH AN T4
T3AON NOILYINIIS
J
T orve
oz
ALITIOVA AHONIN
NOLLYONEY J111¥TOANON

007Z - INIWdO13AIA IH0D dI

WO 2020/190808 PCT/US2020/022846
40/59
PACKAGE
ASSEMBLY
2470
LOGIC INTERCONNECT LOGIC or I/0
2472 STRUCTURE 2474
2473\ G
BRIDGE
2482
SUBSTRATE
2480

—~O000 0000000000000

PACKAGE
INTERCONNECT
2483

FIG. 24B

PCT/US2020/022846

WO 2020/190808

41/59

OvC "DId

124174
LO3ANNODJHSLNI
JOVNMOVd

000000000000000000000000000000

—

08
31v41Sans
cohe 18V¢ 6ve Geve 16%¢
21907 300149 JHOVD oV oll
(1) m [X) eIvT
SIve) r yIve))
TUNLONYLS K JUNLONYLS

AHONTN 103NNOOMALNI Ol 10 91907 193INNODYALNI 190

06¥¢
ATdN3SSY
JOVMOvd

WO 2020/190808 PCT/US2020/022846

42/59

2494

Interchangeable Chiplets
2495

Base Chiplet
2496

Bridge
Interconnect
2497

Base Chiplet
2498

FIG. 24D

WO 2020/190808 PCT/US2020/022846

43/59

SOC
INTEGRATED CIRCUIT
[\zjoo
(- \\
APPLICATION GRAPHICS
PROCESSOR(s) PROCESSOR
2505 2510
IMAGE VIDEO
PROCESSOR PROCESSOR
2919 2520
USB UART SPISDIO | | 1S/12C DISPLAY
2925 2530 2535 2540 2545
SEURTY! | MEmORY | | FLasH || MPI 1| HOMI
- = — — a4 I |
N /)

FIG. 25

WO 2020/190808

44/59

PCT/US2020/022846

GRAPHICS PROCESSOR
/\?10
(r N\
VERTEX PROCESSOR
2609
FRAGMENT | FRAGMENT | FRAGMENT |
PROCESSOR | | PROCESSOR | e e | PROCESSOR |
2615A | 2615C 2615N-1 |
| FRAGMENT | | FRAGMENT | FRAGMENT |
| PROCESSOR | | PROCESSOR | emes | PROCESSOR |
%158 1 | 2615D 615N |
r-—-————=-=-=--=-= _I
MMU ' MMU |
2620A | 26208 |
____________ d
|m == |
CACHE | CACHE ,
2625 | 26258 |
i |
|m = |
INTERCONNECT | INTERCONNECT ,
2630A | 26308 |
i |
-)

FIG. 26A

WO 2020/190808 PCT/US2020/022846

45/59

GRAPHICS PROCESSOR
2640
/(\\
INTER-CORE TASK-MANAGER
(e.g., THREAD DISPATCHER)
2645
SHADER | I SHADER | | SHADER | | SHADER |
CORE |! CORE Il CORE | emem | CORE |
2655A || 2655C || 2655E | l 2655N1 |
| I e T e | — o —
| SHADER | | SHADER | | SHADER | I—S_HAE)E_R_i
| CORE Il CORE Il CORE | e ! CORE I
| 26558 Il 2656D 11 2666F | | 2656N |
- — R T I — —] - —]
TILING UNIT
2658
r-r—— - =-=-=-= _i
MMU ' MMU |
2620A | 26208 |
____________ d
|— - — == |
CACHE | CACHE |
2625A | 2625B |
i |
|————————==== |
INTERCONNECT | INTERCONNECT |
2630A | 2630B |
\)

FIG. 268

WO 2020/190808 PCT/US2020/022846

46/59

Application Processor

v

Unified Memory
2110

System Memory
2712
Source Code Runtime Library

2714A 2716

Compiler

Compiled Code 2715

2714B

GPGPU Memory
2718

2700

2702 /\/

GPGPU
2720

Fetch & Decode Unit Scheduler Controller Tensor Accelerator
221 2722 2723

Computs Compuie Computs Compute
Block Block Block . Blogk
2724A 2724B 2724C 2724N

Registers Power and Performance Module Cache
2125 2126 2121

L3 Data Cache
2730

Shared Local Memory
2132

FIG. 27

WO 2020/190808 PCT/US2020/022846

47/59
2800
Receptive Field Tile Input Volume Buffer Matrix
2802 2804 Operation
- 2805 Output Buffer
e / 2806
« X = 000000000000000000000000000)
oo essess: R]
D ¢ X D ¢ 2
gj(xr)¢ 3 $ELLLL 3344
{ J
{ J
S
{) ¢ J
{ D ¢ J
}<><><><><>§<><><><>< e e ><><><>%
{ X X D}
{) ¢) 4 D]
D ¢ . J D ¢ 2
oSS s s e e esesesesesess)
{ J
{ J
T O
{ X) ¢ J
{ D ¢ D ¢ J
Instruction Fetch & Decode Unit
2721
Scheduler Controller
2722
Tensor Accelerator
Compute Compute 2723
Block oo Block Systolic Tensor
1524A 1524N Array
2808
Memory
> 2830

PCT/US2020/022846

WO 2020/190808

48/59

2808

SRC 2
2902

2912

s s [
“ + | + | + | + |
| ST, ST, & - Sl
| 6 111 6 1] 6 I &) |
“ A\~4 _I A~4 _I A~4 I \>4 _
. t & t & -6 I
| | U | Y H |
|re Hre Hre Hre i
T Qo] < 09 V————< 0] |_|_|_|_E_“
o ; I ; I ; I o
L + | _ + _ + | _ + |
| S | S - & - ol
| o I oy I 6 Il 6 |
_ A4 I A4 I hed I hed |
! 6 6 6 63 I
I H H H 1
Al 9 9 9 i
| <O O <O O <O O ACC"
! I I I o
L + | i + _ + | i + |
_ & | & - & - S
! & [6 I 6 I & |
_ A~4 I A~4 I A~4 I \>4 _
! © - - - !
H H H |
Hlss re ¢ e !
| <00 <O O <O O ACC"
“ [} L) L) [} I
N | + | ! + _ + | ! + | !
T e s
| £ il A\ 1 Py M &L “
_ A~ I o I A~4 I A~4 _
I I
I I
! I
|
|

SRC 0
2900

SRC 1

2901

FIG. 29A

WO 2020/190808 PCT/US2020/022846

49/59

2902

2901
2912
2904 2906 J///
N\ "//"":
! [f |
| ’CY\ !
IR g |
CoH o [29234 |
: - ;AXR - |
| %N > |
L 29238] |
I o
— :(Xl |
LH 2923€] |
2900 i i - — i
N | |" 2923D : /
| o A _ | >
o o I
: g : to next
| \ ' accumulator
| 2924 1
|
' 2022 i
I I R !
\
\ Y A \ J 2928

to additional SIMD lanes

FIG. 29B

WO 2020/190808 PCT/US2020/022846

50/59

/3002 3004
010]0]0J0(0Of0O[O0 110{O[OJO([O[O]O
0101000 (1([4][7 01516010147
010]0]018(9(0[0 010]0[018[9(0]0
010]0[0]9([0|1]1 X 0101009011
010]0]0J0(0Of0O[O0 010]0[0J0([0O(0O]O
O11]1]410({0f0[0 011]0[010(0O(0O]O0
5(8({0[0J0[0]0]0 010]0[0J0([0O(0O]O
010]0]0J0[0O[0O[O0 010]0[0J0[0O[0O]O

/
Single non-zero value
\J Submatrix \/
3012 3005 3014
/
0]1 11
1{0 010
FIG. 30A
Systolic Tensor
Memory Array
/3020 /2808
3021
/
Load B Filter Load B Feed B
3002 ™ [3012 3022 [] 3024
3027
Z
Load A Filter LoadA | | Functional Units
3004 3014 3026 Feed A || (e.g., Processing
— 3028 Elements)
3030

FIG. 30B

WO 2020/190808 PCT/US2020/022846

51/59

3100

TRACK, WITH ZERO DETECTION CIRCUITRY, ZERO VALUE
OPERANDS OF MATRICES TO BE INPUT TO APROCESSING
ELEMENT OF A SYSTOLIC ARRAY

> 3102

l

ZERO-FILLED MATRIX
OR SUB-MATRIX

3104

YES

PROCEED TO PERFORM OPERATIONS FOR MATRIX OR SUB-
MATRIX
(e.g., matrix multiply, vectorized computations)

=~ 3106

l

BYPASS COMPUTATION OPERATIONS AT PER-OPERAND LEVEL

- 3107

— | BYPASS OPERATIONS FOR THE ENTIRE MATRIX OR SUB-MATRIX

=~ 3109

FIG. 31A

WO 2020/190808 PCT/US2020/022846

52/59

3110
Memory /\/
3020
3002 3004
Compute
1910
Yy
ALU
\ 1911
A
Bypassed Submatrix
Submatrix Bypass
Data Message
3114 e 3112
Register File
1906
Systolic Array

1912
Math
1913

FIG. 31B

PCT/US2020/022846

WO 2020/190808

53/59

yece

¢t DI

304N0S3d ONISSFI0dd

_
_
_
|| aHowo
A REN .MWfl
| [3OV4HNS 7ezs
zeee 0gze _ pize 2uee 01ze
_
LINN _
N3LSASENS 000 AHOMYMIH | | | 180d 00 | | 300 | | 3w0o
AMOWIW Hovo [T| wva [¥3avHs [] ¥3avHs [] ¥3avHs
Nd9dO |
I
_ 0zze
L - - - -
002€

PCT/US2020/022846

WO 2020/190808

54/59

432>

Vee DId

AHONEN

91€¢

Jayng-yojelog

/7
y0E€

N\

AN

d30d00N4

d3TIOH1INOD
YNd

/

clLee
N

AN

ﬁ d40093d

Y0019 41LNdNOD

c0ce

90¢€¢

80¢€¢

00€¢

PCT/US2020/022846

WO 2020/190808

55/59

dee DId

FHOVO _ : FHOVO
11 £
A
128¢ 9z€ee
/7 N\
(JpeoT (Jeiors
: o)
\zgmm | 9ep00 98p00) [~ VFEEE
L XX]
Nzees —f onoshs OloyshS - vzeee
Yd ¥d
N8zee v8zee
_ %0018 3LNdINOD W,
Z
czee

90¢€¢

d3TIOH1INOD
YNd

80¢€¢

AHONEN

0cee

WO 2020/190808 PCT/US2020/022846

56/59

3328

PROCESSING RESOURCE

SRC1 SRC2
3432 3433

I—¢¢—I

ALU
3434

4

TEMP DEST
3436

\

ZERO DETECT
3438

Z DEST
3439 3440

CODEC
3334

\ 4

FIG. 34

WO 2020/190808 PCT/US2020/022846

57159

3500

/_/

READ, AT A PROCESSING RESOURCE, COMPRESSED DATA
INCLUDING ELEMENTS OF MULTIPLE MATRICES FROMA
CACHE HIERARCHY OF A GPGPU
3502

!

DECOMPRESS THE COMPRESSED DATA AND STORE THE
ELEMENTS OF THE MULTIPLE MATRICES TO A REGISTER FILE
OF THE PROCESSING RESOURCE
3904

'

LOAD THE ELEMENTS OF THE MULTIPLE MATRICES INTO A
SYSTOLIC ARRAY WITHIN THE PROCESSING RESOURCE
3506

'

PERFORMA SPECIFIED MATRIX OPERATION VIA THE SYSTOLIC
ARRAY AND STORE OUTPUT OF THE MATRIX OPERATION TO
THE REGISTER FILE VIA THE SYSTOLIC ARRAY
3508

PERFORM ONE OR MORE ADDITIONAL OPERATIONS ON THE
OUTPUT OF THE MATRIX OPERATION VIAADDITIONAL
FUNCTIONAL UNITS OF THE PROCESSING RESOURCE

3910

COMPRESS THE OUTPUT OF THE MATRIX OPERATION OR THE
ONE OR MORE ADDITIONAL OPERATIONS FOR OUTPUT FROM
THE PROCESSING RESOURCE
3912

FIG. 35

WO 2020/190808 PCT/US2020/022846

58/59

3600

/_/

READ, AT APROCESSING RESOURCE, DATAELEMENTS FROM
A CACHE HIERARCHY OF A GPGPU
3602

'

PERFORM ONE OR MORE OPERATIONS ON THE DATA
ELEMENTS VIA ONE OR MORE FUNCTIONAL UNITS OF THE
PROCESSING RESOURCE
3604

'

PERFORMA ZERO DETECTION OPERATION ON OUTPUT OF
THE ONE OR MORE OPERATIONS
3606

!

WRITE OUTPUT OF THE ONE OR MORE OPERATIONS AND
ZERO DETECTION METADATA TO THE CACHE HIERARCHY OF
THE GPGPU
3608

FIG. 36

WO 2020/190808

PCT/US2020/022846

59/59

COMPUTING DEVICE (E.G., HOST COMPUTER)
3700

OPERATING SYSTEM (0S)
3702

GRAPHICS DRIVER LOGIC
3122

GRAPHICS PROCESSOR
3704

CACHE
314

GPGPU ENGINE
3744

REGISTER
FILE
3124

SLM
3734

SHARED FABRIC
3742

COMPUTE COMPUTE
3730 3799

APPLICATION
PROCESSOR
3706

MEMORY
3708

INPUT/OUTPUT (1/0) SOURCES
3710

FIG. 37

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/022846

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/30 GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 20197065195 A1 (POOL JEFFREY MICHAEL
[US] ET AL) 28 February 2019 (2019-02-28)
paragraphs [0025], [0028], [0032],
[0042], [0047], [0048]

A EP 3 396 533 A2 (INTEL CORP [US])

31 October 2018 (2018-10-31)

paragraphs [0156], [0192], [0194]

1-7,
14-20

1-7,
14-2

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

cited to establish the publication date of another citation or other
special reason (as specified)

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is

"Q" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

29 June 2020 31/08/2020

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik
Tel. (+31-70) 340-2040,

Name and mailing address of the ISA/ Authorized officer

Fax: (+31-70) 340-3016 Gratia, Romain

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/022846
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2019065195 Al 28-02-2019

EP 3396533 A2 31-10-2018

CN
DE
us
us

CN
EP
us
us

109426519 A
102018120859 Al
2019065195 Al
2020125363 Al

108805792 A
3396533 A2
2018315158 Al
2019139182 Al

05-03-2019
21-03-2019
28-02-2019
23-04-2020

13-11-2018
31-10-2018
01-11-2018
09-05-2019

Form PCT/ISA/210 (patent family annex) (April 2005)

International Application No. PCT/ US2020/ 022846

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-7, 14-20

Method to avoid loading matrices containing only zeroes.

2. claims: 8-13

Method to avoid performing a multiplication operation on
matrices containing only zeroes.

International application No.
INTERNATIONAL SEARCH REPORT PLT/US2020/022846
BoxNo.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. |:| Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. |:| Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. |:| Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. lll Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

—_

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. m No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-7, 14-20

Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - claims
	Page 109 - claims
	Page 110 - claims
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - wo-search-report
	Page 171 - wo-search-report
	Page 172 - wo-search-report
	Page 173 - wo-search-report

